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Introduction

In the late 60’s, Stallings [30] proved that if a finitely generated group G has cohomo-
logical dimension one, then G acts freely on a tree, namely, the geometric dimension of
G is also one. Later, Swan [31] extended the result for any group. These dimensions
are denoted, respectively, by ¢dG and gdG. Both definitions are extended to a more
general version based on the work of Bredon [3] and further formalised by Liick [23].
In this setting, we consider a family F of subgroups of G and we refer to the Bredon
cohomological and geometric dimensions of G over the family F, respectively denoted by
cdrG and gd zG. When F contains only the trivial subgroup, these dimensions become
the classical ones. An exciting open problem known as a general version of Stallings’

Theorem conjectures the following:

Conjecture 1. If G is a group and F is a family of subgroups of G such that cdrG < 1,

then gdrG < 1; that is, G acts on a tree with vertex stabilisers in F.

This question has been positively answered by Dunwoody [10] when F is family of the
finite subgroups of G and, recently by Degrijse 7] when F consists of all virtually cyclic
subgroups of G, that is, all subgroups of G containing a subgroup of finite index iso-
morphic to a cyclic group (Z or {1}). A special notation is given for both families,
respectively Fp;p, and Fyec.

Now, consider a group G and the family F3 of all virtually cyclic and virtually Z? sub-
groups of G (that is, all subgroups of G containing a subgroup of finite index isomorphic
to Z", n =0,1,2). A natural question to ask is: if cdr,G < 1 then is gdz,G <17 One
of the first steps given by Degrijse in his proof is to show that, if cdr, .G = 1, then G
does not contain a copy of the free abelian group on two generators Z2. This fact rises
from the property of Bredon cohomological dimension of groups which states that, if H

is a subgroup of G and F is family of subgroups of G satifying /' N H C F, then

Cd]:mHH < Cd]:G

1



2 Introduction

If H =72, it is known that cd zqz2Z2 = 3.
In an attempt to follow the same approach, I prove that, if cdz, G < 1, then G does not

contain Z3. More generally, I show that the following is true:

Proposition A. For any n > 3,

cdp,Z" = gd g, Z" = n + 2

The Conjecture above on groups with Bredon cohomological dimension one is very dif-
ficult to answer given any family of subgroups of GG. For the families Fp;, and F,., the
proofs depend on specific results related to each of those families. Therefore, Proposi-
tion A concludes the first chapter of this thesis.

At that time during my PhD, there was a discussion on how to approach the solution
for groups with Bredon cohomological dimension one for any family of subgroups of G.
It was thought to be possible to follow Dunwoody’s proof for the case Fy;, [10]. Given
a group G and a family F of subgroups of G satisfying cdzG < 1, the idea would be
to find a Bredon cohomological condition for G implying an action of G on a tree with
stabilisers on F. The best immediate step seemed to be finding a proof for Kropholler’s

Conjecture on splittings of groups:

The Kropholler Conjecture. Let G be a finitely generated group and H a subgroup
of G. If G contains an H-proper almost invariant subset A such that AH = A, then G

admits a non-trivial splitting over a subgroup C' which is commensurable with a subgroup

of H.

A group G is said to split over a subgroup H if G acts without global fixed points and
transitively on a tree with an edge stabiliser H.

In the second chapter of this thesis is presented my most relevant work, in which I answer
the conjecture for a special case. The following result is my contribution to the proof of

Kropholler’s Conjecture:

Main Theorem. Let H < G be finitely generated groups satisfying:

e 2<¢(G,H) < 0;
o H <y Commg(H);

e Vg € G, if gH is H-finite, then g € Commg(H).
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If G contains an H-proper almost invariant subset A such that AH = A, then G admits

a non-trivial splitting over a subgroup commensurable with H.

The theorem is a generalisation of [19], Lem. 4.4:

Lemma. Let G be a finitely generated group and H a Poincaré duality subgroup of
G satisfying H = Commg(H). If e(G,H) = 2 and G contains an H-proper almost
invariant subset A such that AH = A, then G splits over H.

Given groups H < @G, Kropholler and Roller [21] defined a new invariant of the pair
(G, H) denoted by e(G, H). If H is the trivial subgroup, then the invariant becomes the
number of ends of G, known as e(G). The latter is used in Stallings’ Theorem [30] and
Dunwoody’s Theorem [10] on groups with cohomological dimension one. In Section 2.1,
we show how e(G) and splittings of groups are directly related.

The motivation for my theorem was given by Peter Kropholler himself. He suggested I
should look at the results in [19] for groups satisfying e(G, H) = 2 and ask what happens
when e(G, H) = 3. It turns out more general results can be proven when e(G, H) = n,
for any 2 < n < oo, as we will see in Sections 2.8, 2.8.1 and 2.9.

It is possible that the Main Theorem can be extended to a more general version involving

the splitting of a group G over a finite family of subgroups of G, as discussed in [20].

Structure of Thesis

This thesis was written with the expectation that the reader is familiar with the following;:

e Category Theory: categories, functors, abelian functors, natural transformations,

adjoints, universal properties, natural isomorphisms.

e Algebraic Topology: universal cover of a space, CW-complexes, cellular chain com-

plex, Mayer-Vietoris homology sequence for spaces.

e Algebra: basic group theory, Bass-Serre theory, homology and cohomology of

groups with coefficients, ZG-modules, free, projective and flat modules.

Although this work consists of many formal statements, I tried to keep a certain informal
tone to my writing by creating questions and answering them instead of writing full formal

paragraphs linking the topics. I chose to do that for three reasons:
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1) Mainly, I believe that, when we read, we automatically ask questions in our minds
and we expect the author to fill these gaps as she/he explains the subject. Therefore,
why not put those questions in the paper? It will (hopefully) create a dynamical

reading and make the text flow better.

2) It helps to compensate a non-native English speaker some lack of proper writing skills

using formal English;

3) And, of course, it is less boring this way.

This thesis is divided in two chapters written according to the chronological development

of my work during my PhD. Chapter 2 contains my most relevant result.




Chapter 1

Bredon geometric dimension of Z"

In this chapter, we will work with a given group G and a family of subgroups of G,

consisting of virtually Z" subgroups, for some r > 0.

Definition 1.0.1. Let G be a group and H a subgroup of G. We say H is a virtually
7" subgroup of G, r > 0, if H contains a subgroup K of finite index such that K = 7.
If r =0, then H s finite. If r =1, then H is virtually infinite cyclic.

Let G=7" and H < G. For 0 <7 <n, we say H is virtually Z" if H 2 Z".

Now, given a group G, let F, denote the family of all virtually Z" subgroups of G, for
r =0,1,2. In this chapter, we define the Bredon cohomological and geometric dimensions

of a group G over a family of subgroups of G and prove the following:

Proposition A. For any n > 3,

cdp,Z" = gdg,Z" = n+ 2.

This proposition is a partial solution of the following question:

Question 1 ([5], Quest. 2.6). Let G be a finitely generated abelian group of finite torsion-
free rank n > 1, and denote by F, the family of subgroups of G of torsion-free rank less
than or equal to r > 0. Then

gdr G=n+r.

When r = 0, Fq is the family of all finite subgroups and has the special notation Fp;,.
Moreover,
cdr;,G:=cdG and gdr, G :=gdG
5



6 Chapter 1 Bredon geometric dimension of 7"

When r = 1, F; is the family of all virtually cyclic subgroups of G and has the special
notation F,.. Also,

cdr, G :=cdG and cdg, G :=cdG

It is already known that
cdZ" = gdZ" =n

and, for n > 1,
cdZ" = gdZ" =n+1

The first equalities are due to the fact that cdZ" = cdZ" and gdZ" = gdZ". Hence,
the result follows from classical cohomology theory ([4], Ch.VIII, Sec.2, Exm. 5). The
second pair of equalities are due to [26], Exm. 5.21.

In order to prove Propostition A, we will construct a model for a classifying space of Z™
over Fy, denoted by Ex,Z". In Section 1.10 we conclude the proof by calculating the

geometric dimension of such space and applying known results in Bredon cohomology.

Remark 1.0.2. In Section 1.6, we will mention a construction of models for classifying
spaces given by Lick and Weiermann [26]. This construction is used in [5] to obtain the
inequality gdx G < n +r for a finitely generated abelian group G of finite torsion-free
rank n > 1. In Section 1.9, we will compare this method to the one used to obtain our

main result of this chapter.

1.1 Bredon modules

Q. Who is Bredon?

Glen Eugene Bredon (1932 - 2000) was an American mathematician. In [3], he introduced
a homology theory for finite groups involving CW-complexes with a cellular action of a
group G (known as G-C'W-complexes) with stabilisers in a given family F of subgroups
of G. The theory was later studied, developed and formalised by Liick [23] for arbitrary
groups. In classical algebraic topology, we have a classifying space X of a fundamental
group G which acts freely on the universal cover of X denoted by X. This action gives
a chain complex of X of free ZG-modules over the trivial ZG-module Z. The Bredon
homology theory generalizes the classical homology theory by introducing a family F of
subgroups of the group G which are the only stabilisers of the action of G on a space
called the classifying space of G over F. Similarly, we build a chain complex of what we

call free Bredon modules.
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Q. What are Bredon modules?

From now on, we will take G to be a discrete group and, by a family F of subgroups of
G, we mean a set of subgroups of G closed under conjugation and taking subgroups. For
any H € F, the set G/H consists of all the left H-cosets of G. We consider the natural
action of G on G/H given by the translation of the left H-cosets by g € G, that is,

g-9H:=ggH

Given any subgroups H, K € F, a G-map between G/H and G/K is a G-equivariant
map fu x: G/H — G/K which, by definition, satisfies, Vg € G,

furx(gyH) = gfux(yH)

where yH € G/H. Thus, one can see that fi gk is completely defined by its evaluation
in H. Indeed, if fg x(H) = «K, then, for any yH € G/H, we have that

fux(WH) =yfux(H)=yrK
We denote this G-map as fy k. Observe that if f k. is a G-map, then, Vh € H,
iL'K = fH,K,I(H) = fH,K,x(hH) = thJ(,x(H) = th

Hence, 2 'Hzx C K.

Definition 1.1.1. The orbit category of G over F, denoted by OxG, consists of:

e Objects: G/H, for every H € F;

e Morphisms: G-maps fykq.: G/H — G/K, for every H K € F,z € G.

The abelian category of functors from OrG to the category Ab of abelian groups is
called the category of Bredon modules over OrG. A contravariant (covariant) functor of
this category is called a right (left) Bredon module over OxG. Let M be a contravariant
Bredon module over OrG and ¢: G/H — G/K a morphism in OrG, H,K € F.
Then, M(¢) is a morphism M(G/K) — M(G/H), sometimes denoted by ¢*. If M is
a covariant Bredon module over OxG, then M(¢) is a morphism M(G/H) — M(G/K)
and can be denoted by ¢,.

Example 1.1.2. The trivial Bredon module Zr: OrG — Ab is defined by:
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e 72r(G/H) =17,VH € F;
e For any G-map ¢ in OrG, Zx(¢) is the identity map on Z.
The category of right Bredon modules is denoted by O rG-Mod and the category of left

Bredon modules is denoted by Mod-OzG. The morphisms are maps of functors, which

are what we know as natural transformations.

1.2 ZG-modules

Q. In which sense does the Bredon homology theory generalize the classical homology

theory?

When F consists of only the trivial subgroup of G, the Bredon modules become ZG-
modules.

Q. Why is that true?

In this case, the category OrG has only the object G/ {1} and the G-maps in OxG are
G-equivariant automorphisms of G/ {1}, which are the elements of the set denoted by

Aut(G/{1}). As seen before, a G-map in Aut(G/{1}) will be uniquely defined by its
evaluation on {1}. Therefore, given any g € G, the G-map ~4: G/ {1} — G/ {1} is

defined by v4({1}) = g {1}.

Lemma 1.2.1 ([12], p.13). Aut(G/{1}) is a group isomorphic to G.

Proof. Let vg,vn € Aut(G/{1}). Then,

Vg 0 m({1}) = 19 (h{1}) = hg({1}) = hg {1} = g ({1})

Let ¢: Aut(G/{1}) — G be the map defined by ¢(v,) = g~ . Clearly, ¢ is a bijection.
Moreover, ¢(y1) = 1 and

D(vg 0 ) = d(ng) = (hg) ™" =g ' h™" = ¢(v9)d( )
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Hence, a right Bredon module M over OxG defines a right action of G on the abelian
group M(G/ {1}) given by
g = M(7,-1)(z),

for any g € G, € M(G/{1}). Indeed, for any g,h € G,

z-(gh) = M(ygny-1)(@) = M(yp-14-1)(2)
= M(yg-109,-1)(x) = M(yp-1) o M(yg-1)(z) = (z - g) - h

Also, clearly z - 1 = M(m)(z) = M(idg/qy)(z) = =.
On the other hand, if N is a right ZG-module, let N': OG — Ab be the functor
defined as:

N(G/{1}) = N and, for x € N, N(y,)(z) :=x-g~*

Then, clearly, N'(71)(z) = N (id)(x) = x and

N(vgom)(@) =N(mg) =a - (hg)™ = (x-g7") - b7 = N () o N () ()

Hence, N is a right Bredon module over OxG.

Therefore, when F = {{1}}, there exists a one-to-one correspondence between
{OrG-Mod} — {right ZG-modules}

Now, let M and N be right Bredon modules over O G and ao: M — N a natural trans-
formation, defined by a unique homomorphism of abelian groups ayy: M(G/{1}) — N(G/{1}).
Since « is a natural transformation, the following diagram must commute for every
7 € Aut(G/ {1}):

M(G/ {1}) == N(G/ 1)

M(%)J/ i/\/ (79)

M(G/{1}) 7~ N(G/{1})

{1}
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Note that N'(v,) is an isomorphism of abelian groups whose inverse is N'(7y,-1). Then,
for every x € M(G/{1}), g € G,

agpz-g) = N(yg1)oapyoM(y)(z-9g)
= N(yg1)eapy((-9)-97)
= N(yg-1) 0 aqy(2)
= am()-g (1.1)

Hence, ayy) is a homomorphism of right ZG-modules. On the other hand, if 3 is a
homomorphism between right ZG-modules M, N, we follow the steps above to construct
right Bredon modules M, N respectively correspondent to M, N and define, in this
case, ayyy = B. From the calculation above, we easily see that there exists a natural
transformation a: M — N uniquely defined by ay;.

Therefore, one can see that the correspondence above is actually a natural isomorphism
of the categories of right Bredon modules over OrG and right ZG-modules when F
contains only the trivial subgroup of GG. Similarly, one can prove there exists a natural
isomorphism between Mod-OxG and the category of left ZG-modules.

In this sense, Bredon modules generalise the concept of ZG-modules, and most of the
results in classical homology and cohomology theory apply to the Bredon homology

theory.

Unless stated otherwise, any further reference to a Bredon module should be considered
as a right Bredon module. Moreover, every result and definition concerning such modules

can also be similarly stated for left Bredon modules, with the proper adjustments.

1.3 Free Bredon modules
Q. What does "free" mean in this context?

Bredon modules are functors. Thus, a free Bredon module is a free functor in the categor-
ical sense, that is, a left adjoint to a forgetful functor. A reminder to the reader: a forget-
ful functor is a functor that, as the name suggests, "forgets" properties of the category in
its domain. The reader is probably familiar with the forgetful functor U: Grp — Set
from the category of groups to the category of sets, which assigns any group G to the

group itself without its group properties, and such that any map is just a map of sets
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and not morphisms of groups. If the definition of left adjoint is also not so fresh, here it

goes:

Definition 1.3.1 (D. M. Kan). Let F: C — D and G: D — C be two functors. An
adjunction between F' and G is a specification, for each pair A, B of objects respectively
inC, D, of a bijection between morphisms F(A) — B in D and morphisms A — G(B)
in C , which is natural in A and B. We say that F is left adjoint to G and G is right
adjoint to F.

In the familiar setting of groups, we say a group G is free with a generating set X and we
denote G := F(X). In this case, G is the image of the functor F': Set — Grp which
assigns a set X to the group F(X) freely generated by X and a map of sets ¢: X — Y
in Set to a homomorphism of groups F(¢): F(X) — F(Y) satisfying F(¢)|x = ¢.
The attribution free with generating set X given to G comes from the fact that F is left
adjoint to U. Alternatively, G is free with generating set X if G satisfies the following
universal property: for any group H and map of sets f: X — U(H), there exists a
unique homomorphism of groups f: F(X) — H that extends f, that is, U(j?) ot = f,

where, i: X — U(G) is the inclusion map of sets.

We will define a free Bredon module M in terms of the same universal property. However,

we first need to define a generator for M. Therefore, we introduce F-sets:

Definition 1.3.2. Given a group G and a family F of subgroups of G, an F-set is a pair
(X, f) consisting of a set X and a function f: X — F. For H € F, the H-component
of X is the pre-image f~'(H), denoted by Xpy.

Note that (X, f) is defined by its components.
Given two F-sets (X, f), (X', f"), a map of F-sets g: (X, f) — (X', f') is a map of

sets g: X — X’ such that the diagram below commutes:

X

g X/
N
f

The commutativity of this diagram means that, for H € F, g assigns elements from the

component Xz to elements in the component X7,

Definition 1.3.3. We say that (X, f) is an F-subset of (X', ') if Xy C X}, for every
HeF.
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A Bredon module M can be seen as an F-set, where its components are My :== M(G/H),
H € F, where each M(G/H) is seen as a set, not as an abelian group. If a: M — N
is a natural transformation of Bredon modules, then a can also be seen as a map of

F-sets. Indeed, for each H € F, there exists ay: Mg — Ng.

Definition 1.3.4. Let M be a Bredon module over OrG and (X, f) an F-subset of
M. Then, the smallest Bredon module in M containing (X, f) is called the Bredon
submodule of M generated by the F-set (X, f) and is denoted by (X, f)). If
M = ((X, f)), then we say that M is generated by (X, f).

Let G be a group and F a family of subgroups of G. Fix H € F. The (contravariant)
functor

Z[*,G/H]G: OrG — Ab

is a Bredon module over OxG, which sends the object G/K from OzG to the free
abelian group with basis the set [G/K,G/H]q of all G-maps from G/K to G/H. If
¢: G/K — G/L is a morphism in OrG, then

o*: Z[G/L,G/H|c — Z|G/K,G/H]g

is the homomorphism of abelian groups defined as ¢*(v) = yo ¢, for v € [G/L,G/H]q.

Lemma 1.3.5 ([12], Lem. 1.12). The Bredon module Z[*,G/H]q is generated by the
F-set (X, f) given by
idg/c if K = H,

Xk =
0 otherwise.

Let F-Set be the category whose objects are all the F-sets and the morphisms are all

the maps of F-sets. Now, we define the functor
F:. F-Set — OrG

which sends F-sets (X, f) to ((X, f)) and maps of F-sets to the natural transformations

corresponding to these maps. Moreover, let
U: OrG — F-Set

be the forgetful functor which assigns a Bredon module M over OzG to an F-set also

denoted by M, as seen before. The functor F' is left adjoint to U.
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Definition 1.3.6. A Bredon module M is free with generating F-set (X, f) if it satis-
fies the following universal property: for any Bredon module N over OxG and any map
of F-sets g: (X, f) — N, there exists a unique map of Bredon modules g: M — N
that extends g, that is, U(g)oi = g, where i: (X, f) < M is the inclusion map of F-sets.

M U(§)>N

Q. Is Z|*,G/H]q a free Bredon module then?

Yes! And to answer that we use the following lemma:

Lemma 1.3.7 (Yoneda Type Formula, [12], Lem. 1.14). Let G be a group and F a family
of subgroups of G. Given H € F and a Bredon module M over OrG, there exists an

isomorphism of abelian groups
er: Homz(Z[*,G/H]|g, M) — M(G/H)
where ey is the evaluation map given by eg(a) = ag(idg/y). This isomorphism is

natural in M.

Let A be a Bredon module over OxG and g: (X, f) — N a morphism of F-sets, where
(X, f) is the generating set of Z[*, G/H]¢ as given by Lemma 1.3.5. Then, there exists

a unique natural transformation o € Homz(Z[*,G/H]g,N) such that ag(idg/g) =

9(idg/m)-

1.4 Projective and flat Bredon modules

Q. Projective?

Definition 1.4.1. A Bredon module P over OxG is called projective if for any mor-
phism f: P — M to a Bredon module M over OxG and any epimorphism 3: N — M
of Bredon modules over O G there is a unique morphism ¢: P — N such that Bop = f.
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In cathegory theory, this is the universal property of projective functors and is rep-

resented by the commutative diagram below:

¢ - if
A
N—sM—0

Q. What is the relation between projective and free Bredon modules?

The answer is given by the next proposition, whose proof can be found in any homological
algebra book, as [4], Prop. 8.2. One has to follow the same steps of the proof in the
category theory setting:

Proposition 1.4.2 ([12], Prop. 1.23). Let P be a Bredon module over OrG. Then the

following statements for P are equivalent:

i) P is projective;
ii) every eract sequence 0 — M — N — P — 0 splits;
iii) Homz (P, *) is an exact functor;

i) P is a direct summand of a free Bredon module over OrG.

Therefore, free Bredon modules are projective.

Q. What about flat Bredon modules?

The tensor product of a right Bredon module M and a left Bredon module N is defined
in [23] by
MerN :=P/Q

where

P =[] M(G/H) @z N(G/H)
HeF

and @ is subgroup of P generated by the elements of the form v*(m) @ n — m ® v«(n),
where v € [G/K,G/H]|g, m € M(G/H), n € N(G/K), H K € F, and v* := M(7),
Y = N).

Definition 1.4.3. A right (or left) Bredon module M is called flat if the functor M®x *
(or *®@rM) is ezact.
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Q. What is the relation between flat, projective and free Bredon modules?

Proposition 1.4.4 (|12], Prop. 1.28). Projective Bredon modules are flat.

Consequently, free modules are flat.

1.5 Chain Complexes

Q. Given a topological space X, how does one define a chain complex of Bredon modules?

Let G be a group and F a family of subgroups of G. In order to answer that question,
we need to introduce a topological space on which G acts cellularly, known as a G-CW -

complez.
Definition 1.5.1. A G-CW-complex is a CW -complex on which G acts cellularly.

Moreover, if g € G fizes a cell, then g fizes the cell pointwise.

A formal definition of such space is given in [23|, pp. 6f, considering G a topological

group.

If H is a subgroup of G and X is a G-CW-complex, then X is a CTW-subcomplex of
X consisting of all points fixed by H.

Let A,, denote the set of the n-cells of X. we define the Bredon module over O G
CH(X) :=Z[x, A)g

where, for some H € F, Z|G/H, A, denotes the free abelian group with basis the set
[G/H, Ay of all G-maps from G/H to A,,.

Q. Is Z[*,Ay)q free?

Sometimes:

Proposition 1.5.2 (|12, Prop. 1.18). Let S be the set of all subgroups of G such that
HeS if Hr = x for some x € Ay,. If S C F, then Z[x, A,]q is free.

Lemma 1.5.3. Given H € F,

Oy (X)(G/H) = Cu(XT)
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Notation: Cp,(X™) is the nth element of the classical cellular chain complex (Cy(XH), dp ),
where, for each n > 0, C,,(X) := Z[AH].

Proof. Take the homomorphisms of abelian groups a: Z[*, A,]¢ — Z[AH] and

B: ZIAH] — Z[x, A,]g, satistying a(f) = f(H) and B(c) = g, such that f € [, A,]q,
o c Al and g: G/H — A, assigns H + o. For all h € H, we have that g(hH) =
ho = o = g(H), thus g is well defined. Clearly, 8 = a~!. O

Lemma 1.5.4. For each n > 1, the functor

dp: CT(X) — CF_(X)

n

given by the set of morphisms dp,: Cp(X) — Cn_1(XH), H € F, is a natural

transformation.

Proof. Let H/K € F and v € [G/H,G/K]qg, v(H) = gK for some g € G. For each
n >0,
T O (X)(G/K) — C7(X)(G/H)

is the map assigning f — f oy, f € [*,Ay]g. From Lemma 1.5.3, 7, is the morphism
induced by the map X% — X which assigns @ — gx. Therefore, v* defines a chain

map, implying the commutativity of the diagram below:

CT(X)(G/K) —"~ CT (X)(G/H)

dK,nl ldH,n

CT A (X)(G/K) ——= CT,(X)(G/H)

n—1
Hence, d,, is a natural transformation. O

Q. What about the augmentation map?

The augmentation map is the natural transformation e: Cg:(X) — ZF given by the

collection of the augmentation maps ez : Co(X) — Z, H € F.

Hence, the chain complex of the G-C'W-complex X is
= OF(X) I 0F (X)) — . — T (X) S 0 (X) - Zr — 0

Q. Can this sequence be exact?
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Lemma 1.5.5 ([12], Lem. 2.8). If X! is contractible for every H € F, then the chain

complex of X is an exact sequence.

1.6 Classifying space ErG

In this section, we define a special kind of G-CW -complex:
Definition 1.6.1. A classifying space of G for the family F of subgroups of G is a
G-CW -complex X, also called a model for ExG, that satisfies:

o X" =0 for every subgroup H of G which is not in F;

o X is contractible for every H € F.
Let X be a model for ErG. Note that, if H C K € F and z € XX, then ha = =z,
Vhe H = x € XH". Moreover, X is contractible since {1} € F.

Q. Does a model for ExG always exist?

Yes! And details can be found in [25|, Thm. 1.9.

Q. What does it classify?

The best answer for that, which can be found in [25], p.7, is that ExG is a terminal
object in the G-homotopy category of G-CW-complexes, whose isotropy groups belong
to F. In particular, two models for ExG are G-homotopic equivalent and for two families

Fo € Fi there exists, up to G-homotopy, precisely one G-map Er,G — Er G.

Q. What would be the equivalent general version of BG?

Let X be a model for ExG. The quotient X/G of X by the cellular action of G is called
a model for BrG. When F = {{1}}, a model for BrG is a model for BG. Differently
from the classical theory where one can build a model for BG given a presentation of G,

in the Bredon setting we are interested in building models for ExG.

Definition 1.6.2. Assume that there exists a finite dimensional model for ExG. Then
the least integer n > 0 for which there exists an n-dimensional model for ExG is called
the Bredon geometric dimension of G for the family F and we denote this by

gdrG := n. If there exists no finite dimensional model for ExG, then we set gd zG := oo.
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Q. Why ErG?

When F contains only the trivial subgroup, then E{;}G = EG and a model for E1}G is,
for example, the universal cover of a K(G,1). Moreover, if F contains GG, then a model

for ExG is a singleton space. In this case, we have that gd G = 0.
Notation: Er,, G :=EG and Er, G := EG.

Q. How does one build a model for ExG?

Building such a classifying space can be difficult. Below, we show a non-trivial example

given in [18], Ex.3:

Example 1.6.3. Let {H;},.; be the set of all mazimal infinite cyclic subgroups of 72,
whose index set I can be identified with Z. A model X; for E(Z*/H;) is a real line on
which 72/ H; acts by translation. Let p: Z? — 72/ H; be the canonical projection map
between both groups. If g € 72 and x € X;, we define the action

Note that, if g € H; then g -© = .
Now, take
X = (H (X * Xi+1)> / (ai(z) ~ Bi(z))
i€l

where x represents the join of the spaces and c;: X; — X;_ 1% X; and B;: X; — X;jx X411
are embedding maps of topological spaces. If H is a (virtually) cyclic subgroup of Z2, then
H is contained in a unique H;, for somei € I. Moreover, X; = XHi = XH s contractible
and, by construction, no subgroup of Z* isomorphic to Z? stabilises a point in X. In [12],
Fig.3, more details and an explicit picture of this 3-dimensional space space can be found.

Therefore, X is a model for £Z2.

Q. But is there any method to build these models?

Yes, and it is given by Liick and Weiermann ([26], Thm. 2.3). Let F C G be two families

and ~ an equivalence relation on G\ F satisfying the following properties:

o if H, K € G\F with H C K, then H ~ K;

e if HHK c G\Fand g € G, then H~ K & gHg ' ~ gKg~'.
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Denote by [G\F] the set of equivalence classes given by ~. If H € G\ F, then [H] denotes

the equivalence class of H. Now, we define
Ng[H] = {g€ G |[g" Hg] = [H]},

FNNg[H] :={K € F| K C Ng[H]},
G[H] :={K C Ng[H| | K € G\F, [K] = [H]} U (F N Ng[H]).

Theorem 1.6.4. Let I be a complete system of representatives [H| of the G-orbits in
[G\F] under the G-action coming from conjugation. Choose arbitrary Ng[H|-CW -models
for Exangm(Ne[H]) and Egig)(Ngl[H]), and an arbitrary G-CW -model for ExG. De-
fine a G-CW -complex X by the cellular G-push-out

[H]T[ IG X NgH] ErnngmNa[H] i ErG
€

i [H]]_IE IidG XN [H]f[H]

1 G %Ny EgumNelH]
[Hlel
such that fip) is a cellular Ng[H]-map for every [H] € I and i is an inclusion of G-
CW -complexes, or such that every map fim) is an inclusion of Ng[H]-CW -complexes
for every [H] € I and i is a cellular G-map. Then, X is a model for EgG.

In the same paper it is explained that, from the theorem, one can conclude that there
exists an n-dimensional model for EgG' if there exists an n-dimensional model for ExG
and, for every [H] € I, an (n — 1)-dimensional model for Erny, g Nc[H] and an n-

dimensional model for Eg(z Na|[H].

1.7 Bredon homological and cohomological dimensions

Let G be a group and F a family of subgroups of G.

Definition 1.7.1. The Bredon homological dimension of G over F, denoted by
hdrG, is the smallest positive number n such that there exists a flat resolution of Bredon

modules over OrG of the form

0—>Qn—... 291 >0Qy—~>Zr—0
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Definition 1.7.2. The Bredon cohomological dimension of G over F, denoted by
cdr(Q), is the smallest number n such that there exists a projetive resolution of Bredon

modules over OxG of the form
0—=Pn—...>P1—=>Py—=>Zr—0
Q. What is the relation between hdr(G) and cdz(G)?

Since projective Bredon modules are flat, every projective resolution is a flat resolution.
Therefore,

hdrG < cdzG

These dimensions can also be defined in terms of Bredon homological and cohomological

groups. Consider a projective resolution of Zx over O G
Pr:o.. —Pp—>Ppn1—...—P1—>Py—Zr—0

Definition 1.7.3. Let M and N be, respectively, right and left Bredon modules over
OrG:

e The Bredon homological groups with coefficients in N are defined, forn > 0,
by
HI (G,N) := H,(Pr @5 N)

e The Bredon cohomological groups with coefficients in M are defined, for
n >0, by
H% (G, M) := H"(Homz(Pr, M))

Now, we formulate:

Definition 1.7.4.
hd#(G) :=sup {n | H (G, M) # 0 for some left Bredon module M over OrG}

cdr(G) :=sup{n | H¥(G, M) # 0 for some right Bredon module M over OrG}

Q. As in the classical case, can these Bredon homology groups be defined in terms of the

classifying space of G over the family F?

Yes!
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Theorem 1.7.5 ([12|, Thm. 4.2). For all n > 0, there exist isomorphisms of abelian
groups

H (G;Z7) = H,(BrG) and H%(G;Zr) = H"(BxG).

Corollary 1.7.6 ([12], Cor. 4.3). If H,(BrG) # 0, then hdrG > n. Likewise, if
H™(BrG) # 0, then cdrG > m.

Q. What is the connection between hdrG, cdrG and gd G ?
If X is a model for ExG, then by Proposition 1.5.2 and Lemma 1.5.5, the chain complex

of X is a free resolution of Z r of Bredon modules over O G’ hence, a projective resolution

of ZF, where each term C; (X) corresponds to the n-cells of X. Therefore,
hd]:G < Cd]:G < gd;G

Other results comparing hd G and cdzG are known, as for example

Theorem 1.7.7 ([12], Thm. 3.13). If G and F are countable, then cdrG < hdrG + 1.
Our main interest though at this part of the thesis are results involving cd G and gd =G,
therefore that will be our focus.

Q. So when does the equality between cdrG and gd zG hold?

Proposition 1.7.8 (|12], Prop. 3.20). Given any family F of subgroups of a group G,

cdrG = 0 if and only if gdxG = 0 if and only if G € F.

A complete proof of cdrG = 0 < gdrG = 0 can be found in [12], Prop. 3.20. The
implication G € F = gdrG = 0 was already mentioned before in Section 1.6. Now,
if gd»G = 0, then the singleton space satisfies the condition to be a model for ErG.
Clearly, G € F.

Theorem 1.7.9 (|24], Thm. 0.1). Given any family F of subgroups of a group G,

cdrG < gdzG < max {3,cdrG}

If cdzG = 2, the equality might not always hold. In [2] one can find examples of groups
satisfying cdG = 2 but gdG = 3. In [13], it is shown that for some Coxeter groups one
can also have cdG = 2 but gdG = 3.
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Q. What about cdrG =17

When c¢dG < 1, it is well known that G satisfies gdG < 1, due to Stallings [30] and
Swan [31]. Dunwoody [10] later proved that, for any group G, cdG < 1 implies gdG < 1.
Recently, Degrijse [7] showed that, if cdG < 1, then gdG < 1.

For other families of subgroups of G, the following still holds:

Conjecture 1.7.10. Given a group G and any family F of subgroups of G, if cdrG < 1
then gdrG < 1.

1.8 The family F

The Conjecture 1.7.10 on groups with Bredon cohomological dimension one is a difficult
problem which at first sight can not be approached without working with specific families
or groups. The proofs given considering each one of the three families for which the
conjecture is true rely on particular results related to these families. In an attempt to
partially solve this problem, I considered the family that seemed most natural after Fy;,
and F,.. Given a group G, we take Fy to denote the family of all subgroups of G that
are virtually Z"™, for n = 0,1, 2. It means that F5 consists of all finite, infinite virtually
cyclic and virtually Z? subgroups of G. I started by following the same steps of the proof
given in [7] for Fy.. One of the first challenges is to prove the following:

Lemma 1.8.1 ([7], Lem. 2.3 (i)). If G is a group with cdG < 1, then G does not contain
a copy of Z2.

The proof of this lemma depends on the next result:

Proposition 1.8.2 ([12]|, Prop. 3.32). Let G be a group and F a family of subgroups
of G. If H is a subgroup of G such that F N H C F, then

cdrnpH < cdrG

Proof of Lemma 1.8.1. By [26], Exm. 5.21, cdZ? = 3. If Z? is a subgroup of G and F,.
is the family of all virtually cyclic subgroups of G, then, by Proposition 1.8.2,

3=cdZ® = cdp, 72 Z° < cdG < 1

which is clearly a contradiction. O
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Similarly, I prove the following;:

Lemma 1.8.3. If G is a group with cdz,G < 1, then G does not contain a copy of Z>.

The proof follows from the next proposition:

Proposition A. For any n > 3,

cdp,Z" = gd £, 2" = n +2

Sections 1.9 and 1.10 will be dedicated to prove Proposition A.

Proof of Lemma 1.8.3. By Proposition A, cd}-2m2323 = 5. Then, by Proposition 1.8.2,
5 = cdpnzsZ’ < cdpG <1

which is obviously a contradiction. O

1.9 A model for Er,Z"

In order to prove Proposition A, we build a model for Er,Z", n > 3, and show that
gdz,Z"™ = n + 2. Then, the result follows by Theorem 1.7.9.

Before this construction, a few remarks:

Remark 1.9.1. Let G be an abelian group, H a subgroup of G and F a family of
subgroups of G:

ErG will be used to denote a model for ErG;

E<pG stands for a model of the classifying space of G over the family consisting

of all subgroups of H;

Given i > 0, a Z*-subgroup of G is a subgroup isomorphic to Zt;

e H is a maximal Z'-subgroup of G if no other Zi-subgroup of G contains H as a

proper subgroup.

Remark 1.9.2. Observe that if G is not abelian and H is a subgroup of G, the set of
all subgroups of H is a family if and only if H is normal in G.
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Let I be the indexing set of all maximal Z-subgroups of Z". Let J; denote a maximal
Z-subgroup, i € I. A standard Bredon categorical argument ([25], p.7) yields a Z™-map
o;: BZ" — E<j,Z", for each i € I.

Now, let ~ define the equivalence relation in F,.\F iy, given by, for any H, S € Fuc\Ftin
H~Se tk(HNS) =1

where rk stands for rank. Then, Nyzn[H| = Z" and G[H] is the family of all subgroups
of H. By Theorem 1.6.4, the push-out below gives us a model X, for EZ":

| | EZ" d EZn
el
U o;
i€l
|_| E<JiZn Xo
iel

The next step is where the distinction from the construction for Ex,Z" as in [5] begins.

In that case, one consider for any H, S € F3\F,. the following equivalence relation:
H~K<& tk(HNS)=2

Moreover, for any H € F2\Fy, we have that Nzn[H] = Z" and G[H] = F,.U < H.

Let K be the indexing set of all maximal Z?-subgroups of Z". For each k € K, a
maximal Z2-subgroup of Z" will be denoted by Hj,. For each k € K, let f; be a Z"-map
E7" — Er,.u<n,Z". By Theorem 1.6.4, the following push-out

kEK o

U fr

keK

Ll Ex,.o<u,Z"
keK

gives us a model X for Er,Z".
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In our case, for each k € K, consider the family {Ji(k)} , of all maximal Z-subgroups
1€},

contained in Hy. We construct the following push-out (1):

|| EZ" : EZ"
i€},
L o;
i€l
U E_,wZ" X1
i€l — ¢

The inclusion Er, g, Z" — EZ" is a Z"-map of spaces. Moreover, there exists a Z"-

map oy : Er, g, 2" — FE<p,Z" for each k € K. Then, we build the following push-out

(2):

|| Er,.qm, 2" — EZ"
keK
LJ Qp
keK
U ESHk,Zn XQ
i€l

Both push-outs (1) and (2) satisfy enough conditions from Theorem 1.6.4 on the maps

in order to conclude that X is a model for Ex, ~p, and X3 is a model for Ex,Z".

1.10 Bredon geometric dimension of Z"

In [26], Exm. 5.21, we have that gdZ"™ = n + 1, for n > 2. In order to find an upper
bound to the geometric dimension of Ex,Z", we first see that gdz ~py, Z" < n+1, since

Ez,.nm,Z" embeds injectively in EZ".

Lemma 1.10.1 (|5], Lem. 2.3). Let H be a maximal Z"-subgroup of Z™, 0 < r < n.
Then, R™"™" is a model for E<gZ™ and

gdeyZ” =n—r

Therefore, from the push-out (2) we conclude that gdz, Z" < n + 2.

Knowing that hdz,Z" < gdz,Z", it is sufficient to show that hdz,Z"™ > n + 2. By the

definition of Bredon homological dimension, we need to prove that Hfiz(G, M) # 0 for




26 Chapter 1 Bredon geometric dimension of 7"

some left Bredon module M over Ox,Z". By Corollary 1.7.6, it is enough to show that
Hpto (B]:zzn) # 0.

Applying the Mayer-Vietoris long exact sequence of homology on the push-out (2), we

have:

0 — Hypyo(BrZ") — @ Hot1 (Br,.nm,2") —
kek

2y Hop (BZ") & Hy i1 < | | B<szn> — ...
keK

However, note that H, 41 < L] BngZn) =0, since By, Z" = R;f = T"2. Therefore,
keK
we need to prove that the following map from this sequence is not injective:

@ Hpy1 (BF,.nm,Z") 2 Hy1 (BZ")
keK

Similarly, applying the Mayer-Vietoris long exact sequence of homology on the push-out

(1) gives us

0 0
0 — Hyorrt TS Hyy (LP*) — Hyy (BZ") —
1€ -
n Y n n— 0
— H,(LUT") — H,(T")® H, — ...
i€l el

Since the map ~v: @ Z — Z cannot be injective, kery & Hy 1 (EZ”) = 0.

el -
Now, fix a maximal Z-subgroup J;, of Z". Considering the isomorphism above, {1(i) — 1(i0) liel }
is a basis for Hy11 (éZ"), where 1) corresponds to the identity element of Z in the ith
coordinate of the direct sum @ Z. Indeed,

i€l

m m m
(i5) . ()
kery = z;7 € ®@Z | meN, i; €1, z:7 | = z; =10
1= S egaimen pena(340) -5y
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= (i5)
Let >~ z;7" € kery. Then,
j=1

7j=1 7=1 7j=1
_ Z (Zj(ij) . zj(lo)
j=1

Now, for each k € K fix an i € I such that J;, ® R C H; ® R. Then, Hy41 (Br,.nH,Z")
is the group generated by the basis {l(i) — 1(i0) | i€ Ik}, where [j is the subset of I that
indexes every maximal Z-subgroup J; in Z" such that J; @ R C Hp ® R.

Claim 1.10.2. ¢ is not injective.

Proof. Given x = ) z,(;’;.’ﬂ) (10rs) — 1ROV ) € @ Hpiq (Br,.nm, Z"),
k=1 \j=1 keK

o) =3 30 o) (160 = 160 — (115 — 160)]

Given k1 € K, take i, o € I corresponding to the fixed maximal Z-subgroup Jix, 0 from
the basis of Hy 1 (vacﬂHkIZn) We see that

J; ®RC(Hk1®R)ﬁ(Hk2®R)

k1,0

for some ko € K, ki # ko. Now, let Ji,%o
the basis of Hj,11 (vacﬂHk2 Z”). Then,

be another fixed maximal Z-subgroup from

JikQ,o ®RC (sz ® R) N (Hks ® R)

for some k3 € K, k3 # k1, ko. Again, let Jik&o be another fixed maximal Z-subgroup in

Hoin (BfquHks Zn), If Jy,, o ®R C (Hy, ®R)N(Hy, @R), then take € @ Hyr1 (Br,.nim, "),
keK
such that

I = (1(ik3,o) _ 1(ik1,o))k1 + (1(ik1,o) _ 1(ik2,o)> + <1(ik2,o) _ 1(ik3,o)>

ko k3
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Then,

o(x) = (1(ik3,0) _ 1(ik1,o)) + (1(ik1,0) _ 1(ik2,o)) + (1(%2,0) — 1(11’“3’0)) =0.

Otherwise, let J; be a maximal Z-subgroup in Z" such that J;QR C (Hg, ®R)N(H, ®R).

Then, take z € @ Hyy1 (Br,.nH,Z"™) where
keK

T = (1(i) — 1(ik1,0)> + (1(ik1,o) — 1(ik2,o))k2 + [(1(@270) — 1(ik3,0)) — (1(i) — 1(ik3,o))]k3 )

k1

Hence,

d(x) = (1(0 — 1(ik1,0)) + (1(ik1,0) _ 1(ik2,0)> + (1(1‘;“270) _ 1(1’,@3,0)) _ (1(i) — 1(ik3,o)) —0.

O




Chapter 2

Relative ends and splittings of

groups

In Section 2.11, we prove the following:

Main Theorem. Let H < G be finitely generated groups satisfying:

e 2<¢(G,H) < 0;
o H <; Commg(H);

e Vg € G, if gH 1s H-finite, then g € Commg(H).

If G contains an H-proper almost invariant subset A such that AH = A, then G admits

a non-trivial splitting over a subgroup commensurable with H.

This is a particular case of a more general statement conjectured by Peter Kropholler in

[21], and formally stated below as in [27]:

The Kropholler Conjecture. Let G be a finitely generated group and H a subgroup
of G. If G contains an H-proper almost invariant subset A such that AH = A, then G

admits a non-trivial splitting over a subgroup C which is commensurable with a subgroup

of H.

In this chapter, we will explain the terms mentioned in the results above and the moti-

vation that led to the Main Theorem.

29
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The invariant e(G, H) of the pair of groups (G, H) was first introduced in the paper by
Kropholler and Roller [21] in Relative Ends and Duality Groups. When H = {1}, e(G, H)
becomes an invariant of G known as the number of ends of G. The latter invariant and
splittings of G over finite subgroups are directly related and, being €(G, H) a more
general definition of ends, one would expect similar relation with the splitting of G over
H (or over a subgroup "closely related" to H, which we will learn to be a commensurable
subgroup).

In order to understand the latter relation, we start this chapter by explaining in detail

the connection between ends and splittings of a group over finite subgroups.

2.1 Ends and splittings of groups

The theory of ends was first introduced in the work of Freudenthal [14| and Hopf [16].
Given a locally finite CW-complex X, it was defined:

Definition 2.1.1. The number of ends of X, denoted by e(X), is

e(X) = 1131 |[unbounded components of X\ K|
KcX

over all compact subsets of X .

Q. Why "ends"?

Informally, the number of ends of a space is the number of unbounded path-connected
components of the space at infinity. Below we show one of the most simple non-trivial

examples of a space and its number of ends.

Example 2.1.2. Let R be the real line given a CW -complex structure with vertices and

edges as below:

In order to roughly understand the concept of ends of this space, it is not difficult to see
that, extracting bigger and bigger compact sets (or finite subcomplexes) from R, as we go

to infinity on the right we have one path-connected component. The same happens on the

left. Therefore, e(R) = 2.
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Q. But how does ends of a space relate to groups?

Given a finitely generated group G, the Cayley graph of G over some finite generating set
X can be realised as a locally finite CW-complex, and we will denote it by Cay(G, X).

Hence,
Definition 2.1.3. If G is a finitely generated group, then the number of ends of G,

denoted by e(G), is defined as

e(G) :=e(Cay(G, X))

It is important to know that e(G) does not depend on the choice of the finite generating

set of G.

If a group G is finite, then its Cayley graph is compact. Consequently, by definition,
e(G) = 0. The converse is also true ([15], p. 302). More generally, if G acts properly
and cocompactly on a path-connected CW-complex X, then e(G) = e(X) ([15], Cor.
13.5.12).

Example 2.1.4. Here we can see some examples of the number of ends of some finitely
generated groups:
i) e(Z) =2 and, if n > 1, then e(Z™) = 1;

ii) e(Dso) = 2, where Do, is the infinite dihedral group, which contains an infinite cyclic

subgroup of index two;

i) the fundamental group of the bitorus w1 (T?#T?) is one-ended, because it acts freely

and cocompactly on the hyperbolic plane;

iv) e(SLa(Z)) = oo, because the group of invertible matrices with determinant one and
integral entries is isomorphic to a free product with amalgamation of finite cyclic
groups

SLQ(Z) = 04 *x 06
Co

which, from the Bass-Serre theory, acts properly and cocompactly on an infinitely

ended tree.

Q. Does there exist a two-ended group with no infinite cyclic subgroup of finite index?

No:
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Theorem 2.1.5 (|15], Thm. 13.5.9). A finitely generated group G has two ends if and
only if G has an infinite cyclic subgroup of finite index.

Q. What about examples of groups with 3 ends?

That can never happen:

Theorem 2.1.6 ([15], Thm. 13.5.7). The number of ends of a finitely generated group

15 0, 1, 2 or oo.

Q. Can one-ended and infinitely ended groups also be classified?

One-ended groups are not classified and interesting questions involving hyperbolic groups
are still open, as this one due to Gromov: Does every one-ended hyperbolic group have
a surface subgroup? [1]. On the other hand, to groups with infinitely many ends we

attribute to Stallings [30] the following famous result, reworded as in [15], Thm. 13.5.10:

Theorem 2.1.7 (Stallings’ Theorem). A finitely generated group G has infinitely many
ends if and only if either (i) G = G * Go where H is finite having index > 2 in Gy
and in Go, with one of these indices being > 3; or (i) G = Gy where H is finite with
mnder > 2 in G1.

This decomposition of G is a splitting of G. Formally,

Definition 2.1.8. We say that a group G splits non-trivially over a subgroup H if either
G can be decomposed as a non-trivial amalgamated free product over H or as a non-trivial

HN N -extension over H.

However, throughout this thesis we will be interested in splittings as actions on trees:

Lemma 2.1.9 ([19], Lem. 1.3). G splits over a subgroup H if and only if G acts (on
the left) on a tree without global fixed points and transitively on the edges with an edge
stabiliser H.

This is a classical result in Bass-Serre theory.

2.2 Almost invariant sets

Q. Can the notion of end be defined for an infinitely generated group?
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There exists an algebraic definition for the number of ends of an arbitrary group, not
necessarily finitely generated, which can be found in [8] and uses the concept of almost

muvariant sets.

Definition 2.2.1. Let G be a group. A subset A of G is called almost invariant if,
Y g € G, the symmetric difference between A and Ag is finite. Moreover, if A and A°

are infinite, then A is called proper.

Notation: The symmetric difference between two sets is denoted by A.

Let A, B be subsets of G. We say A ~¢ B if AAB is finite. Clearly ~ is an equivalence
relation and, if A, B belong to the same equivalence class, then [A] = [B]. A non-proper

subset of G is either in [G] or [(].

Let F(G) denote the set of all finite subsets of G and P(G) the power set of G. The
symmetric difference gives to both sets the structure of a vector space over the field
Fy = {0,1}. Indeed, if for any A € P(G) we define 1- A = A and 0- A = (), then we see
that

1+1)---A=A+A=0=0-A4

and it is not difficult to see that the other properties of vector space apply. Morevover,
0 € F(G) and, if A, B € F(G), then A+ B € F(G). Therefore, F(G) is a subspace of
P(G) over Fo.

Now, we define

Definition 2.2.2. Let G be any group. The number of ends of G is the dimension
of the vector space over Fo of all equivalence classes of almost invariant subsets of G,

namely,

e(G) = dimp, A(G)

Q. Is there an example to see almost invariant sets in the geometric interpretation of

ends?

Take G = F5, the free abelian group on two generators a,b. Let K be a finite subgraph of
Cay(G,{a,b}) containing the vertex corresponding to the trivial element 1. The vertices
of the path-connected components of Cay(G, {a,b}) — K correspond to proper almost

invariant subsets of G.

Q. Is there some form of Stallings’ theorem for infinitely generated groups?
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Stallings’ theorem was later extended by any group by Swan [31]. A more general form
of the theorem is also given by Dicks and Dunwoody using what they called the Almost

Stability Theorem. The statement is as follows:

Theorem 2.2.3 ([8], IV.6.10). Let G be a group. The following are equivalent:

i) e(G) > 1.
i) H'(G, M) # 0 for any non-trivial free G-module M.

iit) There exists a tree on which G acts without global fized points and finite edge sta-

bilisers.
iv) One of the following holds:
e G=0G4 ;}Gg where G1 # H # Gy and H s finite;

e G = Gl?}’ where H is finite;

e G is countably infinite and locally finite.

v) e(G) =2 ore(G) = oo.

The proof of this theorem relies on the existence of proper almost invariant subsets of G.
Note from the algebraic definition of e(G) that {[G], [0]} = F3 in A(G). Then, e(G) > 2

if and only if G contains a proper almost invariant subset.

2.3 Ends of pairs of groups

Given a pair of groups (G, H) with H < G and G finitely generated, let Cayy (G, X)
be the Cayley graph of G with generating set X quotiented by the left action of H.
Houghton [17] introduced an invariant of the pair (G, H), defined as follows:

Definition 2.3.1. The number of ends of the pair of groups (G, H) is an invariant
of the pair denoted by e(G, H) and is defined as

e(G,H) =e(Cayy (G, X))

Again, e(G, H) does not depend on the generating set of G.

The subject was further explored by Scott [29] as an attempt to generalise Stallings’
result to groups which split over infinite subgroups. Although Scott concluded that
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e(G,H) > 2 does not necessarily imply G splits over some finite extension of H, his

main result showed that

Theorem 2.3.2 ([29], 4.1). If H < G are finitely generated groups and G is H -residually
finite, then e(G, H) > 2 if and only if G has a subgroup Gy of finite index in G such that
G4 contains H and G4 splits over H.

We say a group G is H-residually finite if, given g € G\ H, there is a subgroup G; of
finite index in G such that GG; contains H but not g.

Therefore, if G splits over H then e(G, H) > 2.

Q. Does e(G, H) also take only values 0, 1, 2 and co?

Differently from e(G), the number of ends of a pair of groups can take values in any

positive integer. One can find examples of finitely generated groups H < G with e(G, H)
finite and strictly greater than 2 (see [29], 2.1).

Q. What does it mean when e(G, H) = 07

Lemma 2.3.3 ([29], Lem. 1.3). e(G, H) =0 if and only if H has finite index in G.

Q. When ise(G,H) =e(G)?

The equality holds when H = {1} and that is very easy to see. However, if H is a finite
subgroup of G, then the equality does not necessarily hold:

Lemma 2.3.4 ([29], Lem. 1.7). If H is a subgroup of G and K is a subgroup of finite
index n in H, then e(G, H) and e(G, K) are both finite or both infinite. When both are
finite, then the following inequality holds:

e(G,H)<e(G,K)<n-e(G,H)

If the reader is interested, the remark in [29] after the lemma provides a counterexample.

Q. Can e(G, H) also be defined in terms of almost invariant sets, for any group G?

Yes. Let G a group and H a subgroup of G. Define

AG/H) = (f(G/H)
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Definition 2.3.5. The number of ends of the pair (G, H) is the dimension of the

vector space over Fo of all equivalence classes of almost invariant subsets of G/H , namely,

e(G, H) = dimp, A(G/H)

Lemma 2.3.6 ([29], Lem. 1.6). e(G, H) > n if and only if one can find n disjoint infinite

almost invariant subsets of G/H.

Therefore, e(G, H) > 2 if and only if G/H contains a proper almost invariant subset.

2.4 H-almost invariant sets

The concept of almost invariant subsets of a group G can be generalised to H-almost
invariant subsets of G, where H is a subgroup of G. In this section, we show how they
arise and explore several properties through lemmas, remarks and corollaries which will

be useful tools further on in this thesis.

Suppose G is finitely generated with generating set X and take the projection map
m: Cay(G, X) — Cayn (G, X) which restricts to the canonical map G — G/H, g —

Hyg. The following result is a rewording of Lemma 2.3.6:

Theorem 2.4.1 (|28], Thm. 2.3). e(G,H) > 2 if and only if there exists A C G such
that:

(a) w(A) and w(A°) are infinite,
(b) Vg € G, m(ANAg) is finite,

(c) A is left H-invariant, ie, Vh € H, hA = A.

Note that from (a) A, A° must contain infinitely many right cosets of H. Moreover, from
(b), Vg € G, AAAg is contained in a finite union of right cosets of H. This leads us to

the next two definitions:

Definition 2.4.2. Let H be a subgroup of G. A subset of G is said H-finite if it is
contained in a finite union of right cosets of H. If a subset A of G contains infinitely
many right cosets of H, then A is called H-infinite. If A and A° are H-infinite, then
we say A is H-proper.
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Definition 2.4.3. A subset A of G that satisfies AgN\A is H-finite, Vg € G, is called

an H-almost invariant subset of G.

Notation 1: An H-proper almost invariant subset of G is an H-proper H-almost invariant
subset of G and, from now on, will be denoted by H-p.a.i.

Notation 2: We have mentioned before that P(G) equipped with the operation A is a
vector space over Fo. From now on, we will represent the binary operation symmetric

difference by the symbol +.

Remark 2.4.4. Let A, B be subsets of G. Then,

e (A+B)f=G+A+B=A°+B=A+ B°.
e Ifge G, (Ag)° =G+ Ag=Gg+ Ag = (G+ A)g = A%. Similarly, gA° = (gA)°.

Lemma 2.4.5. Let A, B, F be subsets of G:

i) If A, B are H-finite, then A+ B is also H-finite.

ii) If A is H-infinite and A + B is H-finite, then B is H-infinite.
iit) If A is H-almost invariant and A + B is H-finite, then B is H-almost invariant.
w) If A, B are H-almost invariant, then A+ B is also H-almost invariant.

v) If h € H and A is H-p.a.i., then hA, hA® are H-p.a.i.

vi) If F is finite and A is H-p.a.i., then AF is H-p.a.i.
Proof. 1) AC HF and B C HE, for some finite subsets F, E' in G. Thus,
A+ BCAUBCHFUHE.
ii) If B is H-finite, then A+ B + B = A is H-finite, contradiction.
iii) Let g € G. Then,

Bg+B = Bg+B+ A+ A+ Ag+ Ag

= (B+Ag+B+A+A+ Ay
—_—— Y N
H-finite H-finite H-finite

iv) (A+B)+ (A+ B)g = A+ Ag + B + Bg is H-finite, for any g € G.
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v) Vg € G, hA+ hAg C hHF = HF for some finite subset F' of G. Moreover, hA is
H-finite if and only if A is H-finite, so if (hA)¢ is H-finite, then hA® is H-finite and,

hence so is A°.
vi) We first show that AF + A is H-finite. Let F' = {f1,..., fi}. Then,
AF4+A = (ALU...UAfH)+A
= [(AfiU...UAf))NAJUAN(AfiU...UAf) ]
AfNAYDU...UALNAYDUANAfiN...NAS)

(
C (AfiNA)U(ANAF)U. .. U(Af; N A% U (AN AS)
(Afi + A)U...U(Af; + A)

which is a finite union of H-finite sets. Now, let g € G. Following similar steps, we

have that

AFg+ AF C (Afig+ AF)U...U(Afig+ AF)
= (A+AF(fi9) YfigU...U(A+ AF(fi9) Y fig

which is also a finite union of H-finite sets.

O

Lemma 2.4.6 (The Kropholler Corner). Let A, B be H-almost invariant subsets of G.
Then, the same holds for AN B.

Proof. Given g € G, we have
(ANB)+ (ANB)g=(ANB)+ (AgN Bg) = ((A+ Ag) N B) + (AgN (B + By))

which by hypothesis and Lemma 2.4.5 (i) is H-finite. O]

This decomposition was given by Kropholler in the proof of Lemma 4.3 in [19] and is
used by Dunwoody in his work on cuts and structure trees, where he defines the term
corner: each one of the four intersections AN B, AN B, ANB¢, A°N B¢ where A, B

are cuts in a tree. Definitions and further explanations can be found in [9].

If A, B are subsets of G, then A ~g B if A+ B is H-finite. This defines an equivalence

relation. If A, B are in the same equivalence class, then, [A] = [B].




Chapter 2 Relative ends and splittings of groups 39

Now, let
Fu(G) := {all H-finite subsets of G}

The vector space over Iy of all equivalence classes of H-almost invariant subsets of G is

defined as

An(G) = <g<(2>>(;

By Lemma 2.4.5 (iii), [G] is the equivalence class of all subsets of G with H-finite com-

plement and [()] is the equivalence class of all H-finite subsets of G.

Remark 2.4.7. (i) Clearly, when we say Ag(G) is a vector space over Fq, we consider

the following binary operation of the vectors: if [A],[B] € Agy(G), then

[A] & [B] := [A+ B]

(i1) If we add to P(G) a right action of G given by translation of sets (that is, A-g =
Ag VA C G, g € G), then P(G) becomes a right FoG-module. Moreover, Vg € G,
if A€ Fu(G) then Ag is clearly H-finite, that is, Ag € Fr(G). Therefore, Fr(Q)
is a right FoG-submodule of P(G).

Definition 2.4.8. Let Aq,..., A, be H-almost invariant subsets of G. We say that
A1,..., A are H-linearly independent if [A1],...,[Ax] are linearly independent vec-
tors in A (G).

Notation: If Aq,..., A are H-linearly independent H-p.a.i. subsets of G, we will say
that Aq,..., A are H-l.i.p.a.i.

Q. Given [A],[B] € Ag(G), what happens if the following binary operation is defined?
[A] ® [B] :=[AN B

Proposition 2.4.9. Ay (G) with the binary operations @&, ® is a Boolean ring.

Proof. From Remark 2.4.4, Lemma 2.4.5 and properties of sets, we see that Ay (G) with
@ is an abelian group with identity [0] and Ag(G) with ® is an abelian monoid with
identity [G]. Every element of Ag(G) is idempotent over ®. It remains to prove the
distributivity law holds. Let A,B,C C G. Clearly AN(B+C) = (B+C)NA. Itis
enough to show that

AN(B+C)=(ANnB)+(ANC).
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We have:

AN(B+C) = An((BNnC%U(CnNBY)
ANBNCYU(ANCN B
(ANB)\C)U ((ANC)\B)

(
(
(ANB\(CNA)U((ANCIN(BNA))
(

ANB)+(ANC)

2.5 Commensurability

When working with a subgroup H of G, all the properties of H-almost invariant sets
are still preserved if we consider subgroups "closely related" to H, which are known as

commensurable subgroups:

Definition 2.5.1. Let H,S be subgroups of G. We say H and S are commensurable
if [H: HNS| < o0 and |S : HN S| < co. Commensurability is an equivalence relation

and we refer to commensurable groups H,S as H ~ S.

If H<;S, then H~S.

Definition 2.5.2. The commensurator of H in G is the subgroup defined as

Commg(H) = {g€ G | gHg™! ~ H}

Clearly, H is a subgroup of Commg(H).
Lemma 2.5.3. Let H,S be subgroups of G such that H ~ S and A is a subset of G.
Then,
i) A is H-finite if and only if A is S-finite.
ii) A is H-infinite if and only if A is S-infinite.
Proof. Let F,E be finite subsets of G such that H = (HNS)F and S = (HNS)E.

Then, H C (HNS)EE"'F = SE"'F and S C (HNS)FF'E = HF'E. Thus, i)

and ii) follow easily. O
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Corollary 2.5.4. If H, S are subgroups of G such that H ~ S, then Ag(G) and Ag(G)

are isomorphic as right FoG-modules.

Proof. By Lemma 2.5.3, we conclude that a subset A of G is H-almost invariant if and
only if A is S-almost invariant. Then, A represents a class in Ag(G) which we will
denote by [A]g and also a class in Ag(G) which we will denote by [A]s. Therefore,
the map ¢: Ag(G) — As(G) defined by ¢([A]g) = [A]s is clearly an isomorphism
of vector spaces. Define the right action of G on each space as [A]gg := [Ag]y and

[A]sg := [Ag]s. Clearly, the map is right G-invariant. O

2.6 Relative Ends of Pairs of Groups

Now, we would like to introduce an algebraic invariant of the pair (G, H), for an arbitrary
group G with a subgroup H, first formally introduced by Kropholler and Roller in [21].

In this section, we discuss its properties and compare it to the other end invariants.
As the reader has probably guessed,

Definition 2.6.1 ([21], p. 200). Let H < G be groups. The number of relative ends
is an invariant of the pair (G, H) given by the dimension of the vector space over Fy of

all equivalence classes of H-almost invariant subsets of G, namely,

(G, H) = dimp, A (G)

Note that, when H = {1}, Fg(G) = F(G) and G/H = G. Hence,
e(G,1) =e(G,1) =e(G).

Q. What does it mean when €(G,H) = 0%

Lemma 2.6.2. ¢(G,H) =0 if and only if |G : H| < occ.

Proof. 1f [G] # [0], {[G],[0]} = F3 is a 1-dimensional subspace of Ay (G). Then,

é(G,H)=0 & [G] =[0] & G is H-finite & |G : H| < 00
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Q. Which values can (G, H) take?

Just as e(G, H), the invariant e(G, H) can take any positive integer value. For the curious

reader, an example can be found in [21], Prop. 4.7.

Q. What is the relation between e(G), e(G,H) and e(G,H)?

The next lemma is an extraction of lemmas in [21] whose proofs can be found there.

Lemma 2.6.3 ([21], Lem. 2.4, 2.5). Let H,S be subgroups of G.

i) if S <y H, then é(G,H) = é(G, 5);
i) if |G : H| =00 and K < H, then ¢(G,K) < e(G, H);
iii) e(G, H) < é(G, H);

w) if H is finitely generated and é(G, H) is finite, then there exists a subgroup Hy of
finite index in H such that e(G, Hy) = é(G, Hy) = é(G, H).

Corollary 2.6.4. If |G : H| = oo, then e(G) < e(G, H).
Proof. In Lemma 2.6.3 (ii), take K = {1}. O

As we can see by Lemma 2.6.3 (i), the number of relative ends €(G, H) depends only on
the commensurability class of H. Another important result shows how this number can

restrict the embedding of H in Commg(H):

Theorem 2.6.5 ([21], Thm. 1.3). Let H < G be finitely generated groups such that
H has infinite index in Commpy(G). Then, é(G, H) is either 1, 2, or co. In the case
é(G, H) = 2, there are subgroups Gy and Hy of finite index in G and H respectively such
that Hy is normal in Gy and Go/Hy is infinite cyclic.

Therefore, if 3 < é(G, H) < oo, then H <; Commg(H).

2.7 The Kropholler conjecture

We are now familiar with all the definitions necessary to understand the conjecture that
motivated the Main Theorem. The Kropholler Conjecture was first proposed in the joint

work of Kropholler and Roller in [21]. They were interested to know whether there is an
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analogue of Stallings’ Theorem on ends of groups [30] for relative ends. They observed

that when G splits over H, the kernel of the restriction map
Res§: HY(G, Fu(G)) — H'(H,Fu(G))

must be non-zero. The conjecture was that, for finitely generated groups H < G, the
non-vanishing of this kernel would imply that G splits over a subgroup related to H.
As pointed out in a letter written by Kropholler to Dunwoody in January of 1988, the
non-vanishing of the aforementioned kernel is equivalent to the existence of an H-p.a.i.
subset A of G satisfying AH = A. The conjecture is discussed in [27] and the following

formal statement was provided:

The Kropholler Conjecture. Let G be a finitely generated group and H a subgroup
of G. If G contains an H-p.a.i. subset A such that AH = A, then G admits a non-trivial

splitting over a subgroup C which is commensurable with a subgroup of H.

The following is true:

Lemma 2.7.1 ([19], Lem. 2.4). If G splits non-trivially over a subgroup commensurable

with H then G contains an H-p.a.i. subset A such that AH = A.

Proof. Because of Lemma 2.5.3, assume G splits non-trivially over H. Then, G acts
(left) without global fixed points on a tree I' transitively on the edges such that there is
an egde e with stabiliser H. The edge e separates the tree into two components Xg, X7.
Consider Xy > e. Take A = {g € G| ge € Xp}. Then, gHe = ge = AH = A. Also, let
x € G. Then,

A+Az = {geG|geec X andgmfleeXl}U{geG | ge € X1 andgxileEXo}
= {g € G | e belongs to the geodesic from ge to gw_le}

= {g eqG| g 'e belongs to the geodesic from e to xile}

which is H-finite, since the geodesic is finite and H stabilises e. Also, A is H-proper
since it acts without fixed points. Therefore, A is an H-p.a.i. subset of G satisfying

AH = A. O
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2.8 A cohomological argument for non-splittings of groups

In this section, we explain the relation between the cohomological argument involving the
kernel of the restriction map Res%: H(G, Fu(G)) — H'(H, Fu(G)) and the existence
of right H-invariant H-p.a.i subsets of G. Moreover, we show properties involving the

kernel.

Consider the canonical short exact sequence of right FoG-modules

0 — Fu(G) — P(G) —

This sequence induces a long exact sequence in cohomology

0 — H°(G, Fu(G)) — H°(G,P(G)) — H° (G, P(G) ) .

— H! (G, Fu(G)) — H! (G,P(Q)) — ...
We have that:

o H'(G,Fu(G)) = Fu(G)C = {0} = {0} C Fy

e H(G,P(Q)) =P(G)Y ={G,0} =T,

Shapiro’s lemma

4],p.67 .
267 (G, Comdﬁ}lﬁ‘b) = H' ({1} ,F2) = {0}

H' (G, P(G))

Consequently, we obtain the following short exact sequence of vector spaces over Fa:
0 — Fy — An(G) — H' (G, Fy(G)) — 0

Remark 2.8.1. In Stallings’ paper [30], the number of ends of a finitely generated group
G is given in terms of H(G,F2G) as

e(G) = 1 + dimp, H' (G, F2G)
From the short exact sequence above, €(G, H) can be given a similar definition:

&G, H) =1+ dimp, H' (G, Fu(G))
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Now, applying restriction maps of cohomology groups on the sequence above, we obtain

the following commutative diagram (D) of vector spaces over Fy:

0 Fy An(G) —>—= H' (G, Fu(G)) —=0

0 Fy(@)F ——= PG = (PO 2 1t (1, Fir (@) — ..

Denote K := o~ !(kerRes%).
Lemma 2.8.2. dimp,K = dimp,kerRes% + 1.
Proof. From the exactness of Diagram (D), we know that kera = {[G], [)]} = F2. Hence,

(A (Q)) =2 Au(G)/Fs. Since a is a surjective morphism of vector spaces and ker Res$

is a subspace of H'(G, Fy(G)), we obtain the result required. O

Proposition 2.8.3. Suppose &(G, H) > 0. If [B] € K, then [B] = [B], where B is an
H-almost invariant subset of G satisfying BH = B. Moreover, if B is an H-almost
invariant subset of G satisfying BH = B, then [B] € K.

Proof. 1f [B] € {[G], [0]}, then we are done. Therefore, assume B is H-proper. We look
at Diagram (D) and see that

vor([B]) = Res§ o a([B]) = 0 = r([B]) C kery = imf3

Therefore,

P(G) >H

r((B) = 5 = 8] € (£

for some B € P(G)¥, that is, BH = B. The image of ([B]) in (]Z;(%))H is an
equivalence class of all subsets of G satisfying: A € r([B]) if and only if A+ B is H-finite
and, Vh € H, Ah + A is H-finite. Therefore, B + B is H-finite. By Lemma 2.4.5 (iii),
we have that [B] = [B] € K = Bis H-p.a.i.

Now, let B be an H-almost invariant subset of G satisfying BH = B. We know that
[B] € Ap(G). If B is not H-proper, then either [B] = [G] or [B] = []. For either case,
[B] € K. Then, assume B is H-p.a.i. From the fact that B is right H-invariant, we know
that B € P(G)H. Moreover, 3(B) = r([B]). Hence,

vopB([B]) =0 = yor([B])=0 = Res%oa([B]):0 = [B] e K.
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O

Corollary 2.8.4. kerRest # {0} if and only if G contains an H-p.a.i. subset B satis-
fying BH = B.

Proof. By Lemma 2.8.2, kerRes$ # {0} <« dimp,K > 2. Since {[G],[0]} is a 1-
dimensional subspace of K, by lemma 2.8.3 there must exist [B] € K such that B is an
H-p.a.i. subset of G satisfying BH = B. O

Q. What happens if we consider IC with the binary operations @, @ as defined in Propo-
sition 2.4.9 for Ag(G)?

Corollary 2.8.5. K is a subring of Ag(QG).

Proof. We already know that [G], [0] € K. Now, let [4],[B] € K such that AH = A and
BH = B. By Lemmas 2.4.5 and 2.4.6, A+ B and AN B are H-almost invariant sets.
From set theory and the fact that H is a group, the following are also satisfied:

(ANB)H=ANB and (A+B)H=A+B.
By proposition 2.8.3, we conclude that [AN B],[A+ B] € K. O

Corollary 2.8.6. If k = dimFlerResg < 00, then there exist k H-l.i.p.a.i. subsets B;
of G such that BiH = B; for eachi=1,... k.

Proof. We have seen that dimp, K = k+1. We also know that [G] € K and [G]®[G] = [0].
Thus, let {[G], [Bi], ..., [Ek]} be a basis for K. Proposition 2.8.3 ensures there exist k
H-p.a.i. sets B; satisfying B;H = B;, where [B;] = [éz] inKC, foreachi=1,...,k. 0O

Proposition 2.8.7. Let H, S be subgroups of G such that H ~ S. Then, kerResfl = kerResg.

Proof. We assume S is a subgroup of finite index in H and we prove kerResg = kerResg.
First, we consider the following setting: Let (Dp) be the Diagram (D) with maps «, r, 5,y
respectively denoted by ag, g, B, vg. Then, if S is another subgroup of G, we fol-

low the steps to construct Diagram (D) to build Diagram (Dg), with related maps

as,rs,Bs,7s-




Chapter 2 Relative ends and splittings of groups 47

¢
Let ¢ denote the isomorphism Ay (G) = Ag(G) from Corollary 2.5.4.

From these considerations, we have the following diagram:

Au(G) > Ay (G)[Fy —2> HY (G, Fu(G))

¢l ia

As(G) "5 Ag(G)/Fs — 2+ H' (G, Fs(@))

where Fo 2 {[G], [0]}, the maps 7, g are the canonical projection maps, the map QNS is
the isomorphism induced by ¢ and ag, &g are the isomorphisms induced respectively by

the surjective maps ay and ag. Therefore, it suffices to prove that

2

ag' (kerRes$) = ag'(kerRes%)

since it implies that

2

mr(agy' (kerRes%)) Wg(agl(kerResg))

and hence

@
&y (kerRes$)) = agl (kerRes$),

the result follows.

We now prove the claim above:

Because of the definition of ¢, we will use [A] to denote a class of H-almost invariant sets
in Ay (G) and, without distinction, the class of S-almost invariant sets ¢([A]) in Ag(G).
Let [A] € aj (kerRes%). By Proposition 2.8.3, we can choose A to be an H-almost
invariant subset of G satisfying AH = A, which implies AS = A. By Lemma 2.5.3, A is
an S-almost invariant subset of G satisfying AS = A. Hence, [A] € ag'(kerRes$).
Now, let [A] € ag'(kerRes%), such that A is an S-almost invariant subset of G satisfying
AS = A. By Lemma 2.5.3, A is H-almost invariant. Take F' a finite subset of G such
that H = SF. Then,

AFH = ASFH = AH = ASF = AF

In additon, Lemma 2.4.5 (vi) gives us that AF is H-almost invariant and A + AF is
H-finite. Hence, [A] € a;' (kerRes%). O

As a conclusion, if the kernel of the restriction map Res%: HY(G, Fu(G)) — H'(H, Fu(G))
vanishes, then by Corollary 2.8.4 G does not contain an H-p.a.i. subset B satisfying
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BH = B and, by Lemmas 2.7.1 and 2.8.7, G does not split over any subgroup commen-
surable with H.

2.8.1 The singularity sing.(H)

In Diagram (D), the image of Resfl is a singularity denoted by sing(H) and first defined
in [19] in the studies of the splittings of Poincaré duality groups under the assumption
that (G, H) = 2. In this setting, when sing,(H) # {0}, the kernel of Res% vanishes
and G does not split over any subgroup commensurable with H. When e(G, H) > 2,
sing(H) loses its role as an obstruction to the splitting of G over H, but plays a different
part in the existence of right H-invariant H-p.a.i. subsets of G. The next results are a

generalisation of Lemmas 2.2 and 2.3 in [19] when (G, H) = n, for 2 <n < co.

Proposition 2.8.8. Let (G, H) =n, 2 <n < oo. The following are equivalent:

(i) singq(H) = 0;

(i) There exist n-1 H-l.i.p.a.i. subsets By of G such that, for each k = 1,...,n —1,
ByH = By.

Proof. We see that sing(H) = 0 if and only if dimp,kerRes$ =n — 1.

(i) = (di): Follows from Corollary 2.8.6.

(i3) = (i): We know that H'(G, Fu(G)) = Auy(G)/F2 = dimp,kerRes$ <n —1. On
the other hand, Proposition 2.8.3 gives us that the existence of such subsets By implies

that dimp,kerRes$ >n — 1. O
Lemma 2.8.9. Assume é(G,H) =n, 2 <n < co. Let H,S be commensurable subgroups

of G. Then, singg(H) = 0 if and only if sing,(S) = 0.

Proof. Follows from Proposition 2.8.7. O

2.9 A special basis for

In this section, we start to shape the Main Theorem. As mentioned in the introduction,
this part of my work started with Peter Kropholler’s suggestion to try to generalise the
results of his joint paper with Roller [19] for the case when €é(G, H) = 3. It turned out

that some results can be generalised for 2 < €(G, H) < oo and the hypothesis on H can
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be weakened. More specifically, let H < G be finitely generated such that H satisfies
(i) H <5 Commg(H) and (ii) a condition called Property P. In this section we prove the

following:

Proposition 2.9.1. Suppose dimp, K =k + 1. Let Ay, ..., A be pairwise disjoint

H-li.p.a.i. subsets of G\H satisfying A;H = A;, i=1,...,k. Foranyg € G, i,j € {1,...

the pair {A;, gA;} is nested.

This result is a general version of

Lemma 2.9.2 ([19], Lem. 4.3). Let H be a Poincaré duality subgroup of a finitely gen-
erated group G with €(G,H) = 2 and H = Commpg(G). Let B be an H-p.a.i. subset of
G\H such that BH = B. Then, Vg € G, the pair {B, gB} is nested.

Q. What is nested?

Definition 2.9.3. We say that a pair {A, B} of subsets of G is nested if one of the

following inclusions hold:
e ACB e A°CB e ACDB® e A°C B¢

Q. What is Property P?

Definition 2.9.4. Let H be a subgroup of G. The subgroup H satisfies Property P if,
Vg € G, if gH is H-finite, then g € Commg(H).

The Property P is satisfied by Poincaré duality subgroups ([19], Lem. 4.1 (i)).

Note that the converse is always true, that is, if ¢ € Commg(H), then gH is H-finite.
Indeed, gHg~' ~ H. Hence,

gHg 'NH <r gHg™ ' = gHg '=(¢gHg !N H)F, for some finite subset F of G
gHg ' CHF = gH C HFyg

4

= ¢gH is H-finite

Q. And why does H have finite index in Commeg(H)?

We recall from Theorem 2.6.5 that, if 2 < e(G, H) < oo, then H <y Commg(H). When
e(G,H) = 2, Proposition 2.9.1 is answered by Lemma 2.9.2, in which proof it suffices
that H satisfies (i) H <y Commg(H) and (ii) Property P.
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Lemma 2.9.5. If H <; Commg(H) and H satisfies Property P, then Commg(H)
satisfies Property P.

Proof. We know that H ~ Comme(H). Then, for g € G,
gHg '~ H & gCommg(H)g ' ~ Commg(H)

= Commg(Commeg(H)) = Commg(H).
Let g € G such that gComme(H) is Comme (H )-finite. Then, gComme(H ) is H-finite
= ¢H is H-finite = ¢g € Commg(H). O

The goal of our Main Theorem is to obtain a splitting of G over a subgroup commensu-
rable with H. Therefore, w.l.o.g., for all further results we assume H = Commg(H).
To summarize, in light of the above these are the conditions we will assume from now
on:

e 2<¢(G,H) < o0,

e H = Commg(H),

e H satisfies Property P.
A subset A of G is an H-p.a.i. subset of G\H if A is an H-p.a.i. subset of G such that
ANH=0.
Q. Why do we consider H-p.a.i. subsets of G\H ¢

This choice is a technicality which will turn out to be useful when picking a basis for IC

with pairwise disjoint representatives. Hopefully, it will be made clear later on.

Lemma 2.9.6. Suppose A, B are subsets of G\H such that AH = A and BH = B. If
A+ B is H-finite, then A = B.

Proof. Let g € A+ B. Then, gH C (A+ B)H = A+ B. Hence, if A+ B is H-finite,
so is gH. By Property P, we know that g € H, which is a contradiction. Therefore,

A+B=0 = A=B. O

We write A* for the subset (G\H)\A.
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Remark 2.9.7. Suppose A, B C G\H = H¢. Then,

o A*=HC+ A;

(A9)* = H\A® = H N A = A;

(A) =G+ A* =G+ (HNA) =G+ (HUAF = AUH = A+ H;

o A°=(A°NH)+(A°NH®) = (A°NH)+ A" =H+ A*;

if h € H, then (Ah)* = Ah+ H°h = (A+ H¢)h = A*h and the same follows with
(hA)*;

e (A+B)*=A+B+H°=A"+B=A+B*.

Suppose dimp, K = k+ 1. By Corollary 2.8.6, there exist k H-1.i.p.a.i subsets A1, ..., A
of G such that A;H = A; for each ¢ = 1,..., k. Explicitly, we have that

K= Spaan {[A1]7 ER) [Ak’]v [G]}
However, each representative A; can be chosen as a subset in G\ H. Indeed,
AZ—F(AZQHC) = (AZQG)—I—(AlﬁHC) :Alﬂ(G—I—HC) =ANHCH

which is H-finite. By Lemma 2.4.5 (iii), [A;] = [4;\H]. Moreover, (A;NH)H = A;NH°.
Therefore, we can write K as the spanned set of {[A;\H],...,[Ax\H], [G\H]}. Further-
more, as consequence of Proposition 2.8.3 and Lemma 2.9.6, if A is an H-almost invariant

subset of G\ H satisfying AH = A, then A € Spany, {A1\H, ..., Ax\H,G\H}.

We say Aj,..., Ay are H-li.p.a.i. subsets of G\H if Aj,..., Ay are H-p.a.i. subsets of
G\H and [A],...,[Ax] are linearly independent in Ay (G).

Given k right H-invariant H-1.i.p.a.i. subsets of G, we can always find H-l.i.p.a.i. subsets

A1, ..., A of G\H such that A;H = A; for each i =1,..., k. We denote
K* = Spang, {A1,..., Ay, G\H}
Clearly, if dimp, K = k£ + 1, then K and K* are isomorphic vector spaces over Fo and

dimp, £ = dimp, £
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Note that, by Lemma 2.9.6, K* is uniquely defined, that is, if A is an H-almost invariant
subset of G satisfying AH = A and AN H = (), then A € K*.

Proposition 2.9.8. Suppose dimp,K = k + 1. There exist pairwise disjoint H-li.p.a.i.
subsets Ay, ..., Ax of G\H such that A,;H = A;, i=1,... k.

Proof. By Corollary 2.8.6, there exist H-l.i.p.a.i. subsets Ay, ..., A of G, which we have
seen that can be chosen in G\ H, such that A;H = A;, i =1,...,k. When k = 1, the
proposition clearly holds.

We prove it by induction on k. Suppose Aq,...,Air_1 can be chosen to be pairwise
disjoint. Let I = {1,...,k— 1} and I’ a subset of I containing every i € I such that
AN A; =A;. We can take

iel’ iel’

Therefore, we may assume the sets Ay, ..., Ay satisfy, in addition, the following:
ArNA; #A;, YViel.

Below, we study two cases:

1) If Ay C > A;, then take
i€l

b= ApgNA; and A, == A)\A), = A; + A,

for some 4 € I with non-trivial intersection. Note that, if A} is a linear combination
of Ay,...,Ap_1,G\H, then A} N A; is either A; or (). In either case, we have a
contradiction with our previous assumptions. Therefore, we find new H-l.i.p.a.i. right
H-invariant sets

!/ /
Ala ceey Ai*bAiv Ai+17 ceey Ak—la Ak
which are pairwise disjoint.

2) If A; C ZIAi, then take Aj := Aj. If necessary, we apply Step S to obtain new
1€
H-lip.a.i. sets and we are in case (1) again.

Finally, we may additionally assume that Ay does not satisfy cases (1) and (2).

For each j € I, denote D; := A, N Aj and let ¢ € I such that D; # (. Knowing that
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D; € K*, we write

where A\;, A\g, A € Fo and B is a linear combination of Ay,..., A;—1, Aj41,..., Ax_1. For
the remaining proof, we show that, for any coefficients in Fy = {0, 1} satisfied by A;, Ax, A,
we will end up in a contradiction with our assumptions.

If B =0, then either D; =0, D; = A;, D; = Ay or D; = Af + A, = A; C A;. In either

case, we have a contradiction with the previous assumptions. Suppose then that B # ().

e )\ =0: We know that BNA; = 0 and D; C A;. Hence, B C A\, Ay. Since B # (), we
must have A\ =1. But BC Ay, = ApNA; = A; for some j € I, contradiction.

o \=1:

— if Ay =1, then

contradiction (case (2));

— otherwise, Ay = 0. Then,
Di:B*-i-)\iAi C A, = AZ C B+ \A;,
which, again, is a contradiction (case (2)).

Therefore, D; = (), Vi € I. O

Lemma 2.9.9. Suppose X,Y are H-p.a.i. subsets of G satisfying XH = X, YH =Y
and let x € X°N (YY) ™. Then, X NzY € K*.

Proof. Let D = X NaY. The fact that DH = D is clear. Also,
DNH#A) = aYNH#0) = YNa 'H#) = YNYH=YNY*#)

which is a contradiction. Thus, D C G\H. Now, let ¢ € G. We use the Kropholler
corner (Lemma 2.4.6) to decompose D + Dg in the following way:

D+Dg = (XNnzY)+(XNaY)g=(XNzY)+ (XgnaYyg)
= [(X+Xg)NnaY]+[(zY +2Yg)N Xg]
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Clearly, (X + Xg) NzY is H-finite. Now,

Xgn(zY +2Yg) = Xgna(Y+Yyg) C XgnNaHF, for some finite subset F of G
C XgNX°HF=XgnX°F

m m

= Uxgnxer) = JXgn(Xf)), fieF
=1 i=1

= J&xo\xf) cJXg+X1)

=1 =1
= J&Xgf ' +Xx)f
izl—/_/

H-finite

Hence, D is H-almost invariant. By Lemma 2.9.6, D € K*. 0

Lemma 2.9.10. If A is an H-p.a.i. subset of G\H satisfying AH = A, then the same
holds for A*.

Proof.

A*H = (H°NA°)H C H'HNA°H = H° N A° = A™.
Clearly, A* C A*H. Also, if A* = H°N A¢ is H-finite, so is A° = A*+(HNA°) C A*UH,
contradiction. Moreover, (A*)¢ = AU H is clearly not H-finite. Furthermore, V g € G,

A 4+ A*g = (HSNA®)+ (HSgN A%)
= (H°4+ H%)NA“+ (A°+ A°%) N H
= (H+Hg)NA°+(A+Ag)NHe
C HUHgU(A+ Ag)

which is H-finite. O

Lemma 2.9.11. Let k = dimp,K+1 and define K = {h € H | hX = X}, where X € KC*.
Then, |H : K| < 2*.

Proof. Clearly, K is a subgroup of H. If h € H, hX is a right H-invariant H-almost
invariant subset of G\H. By lemma 2.9.6, hX = Y for some Y € K*. If X = () or
X = G\H, then K = H. Suppose then X is H-proper. For each Y € K*, fix hy € H
such that hy X =Y (hy might not exist for every Y'). Then,

h = hyhy'h and hy'hX = hy'Y = X = h € hy K.
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Therefore, K has index at most |K| = 2% in H. O

Lemma 2.9.12. Suppose dimp, K < co. Let x € G\H and Y an H-p.a.i subset of G
satisfying YH =Y. If £Y C Z for some Z € K*, then x € Z.

Proof. Let g € Y/ = YNH€®. By lemma 2.9.6, we know that Y’ € K*. Take K = {h€ H | Y’ =Y'}.
We have that
KggY’ :xKgQ:cY’QwYQZ.

If x € Z*, then
xKg=axKg\Z* CaHg\Z* C Z*g\Z* C Z*g+ Z*

which is H-finite. By lemma 2.9.11, K <y H. Then, xK C HF} for some finite subset
F1 in G and, for some finite subset F5 in H, we have that tH = xKFy C HF1 Fy = xH
is H-finite. But, by Property P and the assumption that H = Commg (H), we have that

x € H, contradiction. Therefore, x € Z. O
Lemma 2.9.13. Let X,Y be H-l.i.p.a.i. subsets of G\H satisfying XH = X and

YH =Y. For any x € G\H, the pair {X,zY} is nested.

Proof. Consider the following partition of G\ H:
P=XnY ! PB=Xn{Y""! B=X"nYy! P=X"n¥y*)"!

(It is not difficult to show that, given any subset M of G, (M*)~! = (M~1)*). Let
x € P;. Then, we define the set D1 := X NaY® For x € P, for each ¢« = 2,3,4, we

similarly define a corresponding set D;. Thus, we have:
Dy =X°NzY® Dy:=X°NzY D3:=XnNzY® Dy:=XnNzY

Clearly, DsN H = ) and DyNH = 0. If DyNH # (), then zY°*NH # 0 =
YeNna 'H # 0 = Y°NYH =Y°NY # 0, contradiction. Similarly, we show
Dy N H = (. Hence, by Lemmas 2.9.6 and 2.9.9, we see that each D; € K*. Since X
is H-proper, we know that D; # G\H. For each i = 1,2,3,4, if D; = (), we have the

corresponding nesting cases:

1) 2Y°CX 2)2Y CX 3)aY°C X® 4)zY C X°
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We prove that Dy and D4 cannot be any other element in K* except (). The same proof

will follow for Dy and Ds.

e Suppose D1 # (). Then, D1 C 2Y°¢ = 2Y* U xH. But
DiNnzHCDINXCX‘NX =0.

Hence, x7!D; C Y*. By Lemma 2.9.12, 27! € Y* = =z € (Y*) ! = (Y 1)",

which is a contradiction, because we took z € Y 1.

e Suppose Dy # (). Then, Dy CzY = 27 'D;CY. By Lemma29.12, 27 ' €Y =
x € Y1, which is not possible, since x € (Y*)~! = (Y ~1)*.

Proof of Proposition 2.9.1. By Lemma 2.9.13, if g ¢ H, we know that the pair {4;, gA;}
is nested. Suppose then g € H. We have seen before that gA; is H-p.a.i. Moreover,
gAjH = gA; and gA; C H.H® = H°. Hence, gA; € K*. Thus:

gAj :/\1A1++)\kAk+/\HC

where A1,..., A, A € Fo = {0,1}. Suppose A = 0. Because Aj,..., Aj are pairwise
disjoint, any sum of those sets is a disjoint union. Therefore, if \; = 1, then A; C gA;.
Otherwise, gA; C Af.

Now, suppose A = 1. If \; = 1, then,

gA;k =MA +.. .+ N4+ A+ /\i+1Ai+1 + .o+ ARAL
which implies A; C gA7 C gAj. Otherwise, A; =0, and

gA; = MAI+ .+ ANAi A A+ A A C AT

= A; C gAj
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2.10 Building a cubing

In this section, we describe the construction of a CAT(0)-cube complex, which we will
refer as a cubing. This construction was given in details by Sageev in [28]. We will be
interested in building the 1-skeleton of such complex and studying the conditions for the
existence of squares. To the engaged reader curious in learning more about the details
of attaching n-cells and preserving the non-positively curved condition of the cubing, we
suggest reading [28]. We will leave such details out of the thesis and focus on the results

that will help us prove the Main Theorem.

Let H < G be groups. In [28], the first step for the construction of a cubing is to assume
that e(G,H) > 2. By Theorem 2.4.1, it implies that G contains an H-p.a.i. subset
satisfying HA = A. Then, one defines

¥ ={gA,gA° | g € G},

a partially ordered set whose combinatoric properties will be captured in the cubing,
which we will denote by X. There exists an action of G on X which is defined as
essential with respect to a hyperplane. If X is a tree, then G acts essentially on X if G
acts without global fixed points on X transitively on the edges such that there is an egde

e with stabiliser H, which is exactly what defines a splitting of G over H.

In our setting, we will have a slightly different start. We consider dimp,K < oo and
we assume that G contains an H-p.a.i. subset satisfying AH = A, not necessarily left
H-invariant. With this H-p.a.i. subset A we define X just as above. The construction of
X will follow exactly the same steps of Sageev’s construction and such choice of ¥ will

require only small adjustments further on.

2.10.1 Vertices and Edges

Definition 2.10.1. A vertex V of X is a subset of 3 satisfying the following conditions:

1. For oll B € X, exactly one of B, B is in V.

2.IfBeV, CeXand BCC, thenC eV.

The set of all vertices is denoted by V.
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Example 2.10.2. Given g € G, it is easily seen that the set V,={B € X | g € B} is a
vertex of X. Furthermore, if x € G, the action of G on Vy is given by

zV, = {zBeX|ge B}
= {zBe€X¥ |zg€aB}
= {BeX|zge B}
= Vi (2.1)

Definition 2.10.3. An edge e is defined by a pair (V,W) of vertices in V such that
[VAW| = [W\V| = 1. In other words, there exists B € V such that W = (V\{B}) U
{B°}. This set W is denoted by (V; B). The set of all edges is denoted by E.

Lemma 2.10.4. Suppose V is a vertex of X and B € V.. Then, (V; B) is a vertex of X
if and only if B is minimal with respect to inclusion in V. Moreover, B¢ is minimal in

(V;B).

Proof. If B is not minimal in V', then one can find C' C B, C € V and, hence, C € (V; B).
By definition of vertex, B € (V;B), which is an absurd. If B is minimal, it is not
difficult to see that (V'; B) satisfies the conditions to be a vertex given that V is a vertex.
Now, let (V; B) be a vertex and suppose there exists D € (V; B) such that D C B°.
Then, B C D¢ = D¢ € V, by definition of vertex. Hence, |V\(V;B)| = 2, which is a
contradiction with the definition of edge. O

Therefore, if e is an edge with vertices V' and (V; B), if we let (V; B) = W, then e is an
edge with vertices W and (W; B¢).

Q. Are the edges oriented?

One can define an orientation to an edge e € &: the starting point of e is (V; B) and its
end point is V. We say that e exits B. The edge € is the edge defined by the same pair
of vertices V' and (V; B), but with opposite orientation. Then, € exits B°.

Q. What happens when g acts on an edge, for some g € G?

If e is an edge defined by a pair of vertices (V, W), then the edge ge is defined by the
pair of vertices (gV, gWW). Since the action of G on vertices only translates the sets in
V', if B is minimal in V then ¢gB is minimal in gV. Therefore, if e exits B, then ge exits

gB.
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Q. What does the right H-invariance of A imply in the action of G on X ¢
Proposition 2.10.5. H fizes a point in X.

Proof. Take Vi = {B € X |1¢€ B}. Clearly, Vi # 0, since 1 € A, Yz € A~'. Since
AH = A, we have that, Va € A, he H

ahe A & hlaleA!

which implies HA™! = A~!. Similarly, H(A°)~! = (A°)~!. Hence, if h € H and
A € Vi, we know that

reEA ' = hre A = 1€ had= hzA e V.
If h € H and xA° € V7, then
r€(A)™ = hxe (A9 = 1€ hzA® = hzA®c V.

Therefore, HV; C V;. Clearly, Vi C HV;. Therefore, H fixes V7. O

Notation: Let C be minimal in (V;B). Then, ((V;B)\{C}) U {C¢} is denoted by
(Vs B,C).

Q. DoV and € compose the 1-skeleton of X then?

No, because we want a connected 1-skeleton. Thus, only a subset of both will be consid-
ered. Given two vertices V,W € fi, we say that they are joined by an edge-path if there
exists a finite sequence of vertices V = Vi,...,V,, = W such that (V;, V1) are pairs of
vertices defining edges e¢; € € foralli =1,...,n— 1.

Now, let V be the subset of V such that V € V if there exists an edge-path from V to
Vy, for some g € G. Let £ be the set of edges in £ that have both endpoints in V. The
l-skeleton X1 of X is the graph (V, ).

Theorem 2.10.6 (28], Thm. 3.3). X is connected.
The idea of the proof is to show that, Vg1, g2 € G, the vertices V,, and V;, are joined by
an edge-path. In order to prove that, a necessary step is to show that V,, AV, is finite.

Lemma 2.10.7. For any g1, 92 € G, the set Vy, A'V,, is finite.
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Proof.

Vl]lAV% = {BeE!BEVQlanngéVq2}U{B€E\BGVgQanngéVgl}
= {BeX|gi€Band g€ BSYU{BE€X | gs € Band g € B}

= {gA ] g1 €94, 92 € gA“TU{gA" | g1 € gA®, g2 € gA}
Y1 YQ

and it suffices to prove that Yj is finite.

gAeY, & g €ghA gegAeqg! GAgl_lﬁACg2_1
& gl e(AnA g = A\Agy g1 C A+ Agy g
—_———

H-finite

Therefore, g~' € Hz 1 U...UHz, = g walHU...UfL‘;lH for some z; € G. Let
K={he H|hA=A}

By lemma 2.9.11, K <; H. Since kA = A, Vk € K, and H = FK, for some finite set I’
in H, then
e 'HU...Uz,'H=2'FKU...Uz,'FK

n

Ifgi1,90 € x;lfK for some f € F, then g1 A = x;lfA = goA. Therefore, there is a finite
choice of gA in Y. O

Q. How does one build higher dimensional skeletons of X ¢

Informally, to build the higher dimensional skeletons of X, an n-cube is glued whenever
the boundary of an n-cube appears in X1 and the cube complex is built inductively.
The formal details of such construction are left out of this thesis, because our interest

will revolve on the existence of squares in X.

2.10.2 Squares

A 2-cube (or a square) is given by
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4 (V5 B)

(V;C) (V;B,C) = (V;C,B)

We say (V,{B,C}) spans the square above. As consequence to the existence of such

square, the following conditions are satisfied:
1) B,C are minimal in V,
2) B is minimal in (V;C),
3) C is minimal in (V; B).

Lemma 2.10.8. (V;{B,C}) spans a square if and only if B # C are minimal in V' and
B¢ ¢ C. Moreover, if B,C are nested then (V;{B,C}) does not spans a square.

Proof. Given condition 1, note that B is minimal in (V;C) if and only if C¢ ¢ B and
C'is minimal in (V; B) if and only if B¢ ¢ C. If B,C are distinct minimal sets in V,
then (V; B),(V;C) exist. Also, B ¢ C = B,C are minimal in (V;C) and (V; B)
respectively. Therefore, (V; B,C) = (V;C, B) exists. Furthermore, the existence of the

square implies that
e B¢ C and C ¢ B, otherwise it would contradict the minimality of B and C' in V/
(since B, C are distinct);
e B ¢ C¢ (or equivalently C' ¢ B€¢), otherwise C°¢ and B¢ would be in V', which
contradicts the definition of vertex;
Therefore, B and C' are not nested. O
Q. What about n-cubes, n > 3?2 How do they look like?
Each 2-dimensional face of an n-cube, for n > 3, is a picture similar to the square above

spanned by (V;{B,C}) with distinct spanning sets. We illustrate that with the picture

below of a 3-cube (or cube):
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(V; D) (V;C, D)

Note that, in order to an n-cube to exist, we need each square of this n-cube to exist.

Next two lemmas describe n-cubes and the conditions for their existence:

Lemma 2.10.9 (|28|, Lem. 3.5). Suppose C is an n-cube in X having V' as a vertex with
neighbouring vertices (V; B1),...,(V; By). Let V' be the vertex diagonally opposite to V
inC. Then, V! =(V;1,...,By).

We say that the n-cube described by this lemma is spanned by (V;{Bi,...,B,}).

Lemma 2.10.10 ([28], Lem. 3.6). Suppose V is a vertex and S = {Bi,...,B,} C V.
Then, (V;S) spans an n-cube in X if and only if B; # B;, each B; is minimal in V' and
B¢ ¢ Bj for alli,j € {1,...,n}.

The proof that X is a cubing is found in [28|, Thm 3.7.

2.10.3 Hyperplanes

In trees, the geometric concept of a hyperplane is the midpoint of each edge. In this
section, we work with combinatorial hyperplanes, defined as an equivalence class of edges.
The geometric definition will be provided, but all the results will revolve the first one.
We will better understand the action of G on X by studying the action of G on the
hyperplanes of X and, finally, show that G acts essentially on X with respect to a
hyperplane.

Q. Whats is a hyperplane?
We say two edges e, f are equivalent if there exists a finite sequence of edges e =

€1,...,en = f such that for each ¢ = 1,...,n — 1, e;,e;41 are opposite sides of the

same square, oriented in the same direction.
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4 (V;B)
e i
(V;C) (V;B,C) = (V;C,B)

Definition 2.10.11. A combinatorial hyperplane J is an equivalence class of edges.
If e is an edge in J, then J is the hyperplane consisting of edges equivalent to e.
Clearly, each edge defines a unique combinatorial hyperplane.

Q. What is a geometric hyperplane?

To each pair of hyperplanes (J,J) in X there exists a geometric definition of hyperplane
equivalent to the pair (J, J).

Definition 2.10.12. Given a combinatorial hyperplane J, the geometric hyperplane
related to (J,J) is the collection of the intersection of each n-cube in X containing edges

in J with a 1-codimensional hyperplane in R™ crossing the midpoints of those edges.

See the line in the middle of the square below to better illustrate the definition:

4 (V;B)
e v
(V;C) (V;B,C) = (V;C,B)

Unless stated otherwise, every further reference of a hyperplane will assume the definition

of a combinatorial hyperplane.

Definition 2.10.13. A hyperplane J crosses an edge-path in X if there exists an edge
e in the path such that e € J.

Definition 2.10.14. A geodesic in X from vertex V to vertex W is an edge-path from
V to W containing the smallest number of edges among all possible edge-paths from V
to W. We use the notation geod[V, W].
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Note that a geodesic is not necessarily unique. Just consider a square spanned by

(V;{B,C}). There are two edge-paths of same length from V to (V; B,C).

Lemma 2.10.15 ([28], 3.8). Suppose V,W are two vertices of X. Let a = geod[V, W]

consisting of edges ey, . .., e, arranged as follows:
€1 €2 €n—1 €n
. . — ' —® . °
V= Vb Vi Vo V2 V-1 V=W

where V; = (Vi_1; B;) fori=1,...,n and some B; € .. Then, the set {Bj, ..

1s a set of distinct elements.

Proof. We use induction on the number of edges (length) of a. If n =

proof is trivial. Now, suppose the lemma is true for m < n. The edge-path from V
to Vj,—1 is clearly a geodesic. Then, {Bl, .oy Bno1,BY, ... ,Bﬁhl} is a set of distinct

elements. Suppose B, = B; for some 1 < ¢ < n — 1. We know that B, is minimal

., Bn, BS, ..

1, then the

., BSY

in V,,_1 and also in V;_;. Since, V; = (Vi_1; B;), we see that B; ¢ V;. Therefore, if

B,, = B;, there must exits ¢ < j < n such that B; = BY, contradiction. Assume then
that B, = Bf, minimal in V,,_;. Suppose B; is not minimal in V; but minimal in V4
for some n —1 > j > i. Then, B;ji1 C By, which is equivalent to B; C Bj,;. But
by definition of a vertex in X, B, eV, contradiction, since B € V. Therefore,
Bf is minimal in V;, ¢« < j < n — 1. Hence, for i +1 < [ < n — 2, the vertices
(Vi; BY) and (Vj; Biy1) exist. Moreover, B; ¢ Bji1 because Bj, Bj; are minimal in
V. By Lemma 2.10.8, each (Vi;{B{, Bi41}) spans a square. Therefore, the sequence
of vertices Vo, V1,...,Vico, Vicr = (Vis BY), Vig1; BS), ..., (Vi—2; BY), (V-1 BY) = V,,
generates another path from V' to W whose length is smaller than the length of «, which

is a contradiction since « is a geodesic.

Lemma 2.10.16 (|28], 3.9). Suppose J is a hyperplane of X. Then, there exists an

B € X such that, for every e € J, e exits B. Moreover, every edge which exits B lies in

J.

Proof. Let eg be an edge in J and B the set which eg exits. Let e be another edge in J. By
the definition of hyperplane, there exists a sequence of edges eg, €1, ..., e, = e such that
foreach i =0,...,n — 1, e;,€;41 are opposite sides of the same square in X, with same
orientation. Using induction on n, if n = 1, then, by the construction of a square seen
before, let ey be the edge exiting B given by the pair of vertices ((V; B), V). Then, for
some B’ € ¥, e is the edge exiting B given by the pair of vertices ((V; B, B), (V; B')).
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Now, by induction, suppose e,_1 exits B. Again, being e, an edge opposite to e,_1 in a
same square, with same orientation, by the construction of a square we see that e, exits
B.

Now, let e be an edge in X which exits B and let eg be an edge in J. Take a geodesic
path « from the tail of ey denoted by Vj to the tail of e denoted by W. Both edges exit
B. Thus, we have the following picture:

€0 €1 €92 €n—1 €n (&
® ® L 4 o L 4 ®

—@ ®
Vo;B) Vo=V Vi v Vies  Vaa Vua=W  (W;B)

where V; = (Vi_1;B;) for i = 1,...,n and B; € ¥. (Observe that if By = B, then
B; = B¢ for some i = 1,...,n — 1, since B € W. By Lemma 2.10.15, B # B if
a is a geodesic. Similarly, if V,,_1 = (W;B), then B,, = B¢ and B; = B for some
i=1,...,n—1. Again, by Lemma 2.10.15, B # B; if « is a geodesic.)

Suppose n = 1. We see that By, B are minimal in V' and B is minimal in W = V1 =
(V; By). Therefore, we have sufficient conditions for a square spanned by (V;{B, B1}).
Hence, ey and e are opposite sides of this square = e € J. Now, we can use induction
on the length of a. The set Bf is minimal in W. If B = B, then (W;B) = V,,_;
and, by the observation above that cannot happen. Therefore Bf and B are distinct
minimal sets in W. If B is not minimal in (W;B), then B C B = B, C B =
B is not minimal in V, contradiction. Therefore, by Lemma 2.10.8 there exists a
square spanned by (W;{B,BS}). Hence, there exists a path from V to (W;B, Bf)
of length smaller than n passing by the edge ¢’ exiting B defined by the pair of ver-
tices (W; BS, B),(W; BS)) (see picture below). By induction, ¢ € J. But € and

e are opposite sides of the same square, with same orientation. Therefore, e € J.

Va2 €n—1 V-1 €n %4
—o . 'y
e e
B B
° °
(W; B, B) (W; B)

O

Remark 2.10.17. If Jp is the hyperplane consisting of edges exiting B, then gJp is the
hyperplane whose edges exit gB and is denoted by Jyp.
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Recall that, given any G-set Y, the group stabiliser of Y is {g € G | gY = Y} denoted
by Stab(Y).

Lemma 2.10.18. Let B € ¥. Then, Stab(Jg) = Stab(B).

Proof. Let g € G.

Jp=Jyp=J & B=B < Stab(B).
9/B 9B B Lemma?.lO.ng g€ a()

O
Lemma 2.10.19. If Jy, Jo are two hyperplanes in X such that J; = xJy for somex € G,

then Stab(J;) = xStab(Jy)x 1.

Proof.

Stab(J1) = {g9€G|gh =}
= {9€G|gaxJs=uals}
= {geqG| x_lngngQ}
= {g€G |z "gx € Stab(.2)}
= zStab(Jy)2z !

O

Corollary 2.10.20. The action of G on X is transitive on the geometric hyperplanes.

Proof. Let Ji, Jo be two geometric hyperplanes respectively related to the combinatorial

hyperplanes Jg, 4, Jg,4. Then,

9297 " Tpa = Jppa = gogy M1 = Jo.

Lemma 2.10.21. H ~ Stab(J4).

Proof. Let K = {h € H | hA = A}. We have seen that K <; H. By Lemma 2.5.3, A
is a K-p.a.d. subset of G satisfying KA = A. By Theorem 2.4.1, (G, K) > 2, which
implies by [28], Lem. 2.4, that |Stab(A) : K| < oco. Since K = H N Stab(A) and
Stab(J4) = Stab(A), we obtain the required result. O
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2.10.4 Essential action

Let J be a geometric hyperplane of X. Then, J partitions X into two components ([28],
Thm. 4.10) denoted by J© and J~. Given a vertex V € X, we define a partition of G
into two sets: Ay = {g € G | gV € J*} and its complement AS,.

Definition 2.10.22. G acts essentially with respect to a hyperplane J on the
cubing X if there exists a vertex in V € X such that Ay and A5, both contain infinitely
many right cosets of Stab(J).

Theorem 2.10.23. The action of G on X is essential with respect to the hyperplane J4.

Proof. Let e be an edge in J4 with tail V,, for some a € . In this case, note that A € V.
The geometric hyperplane related to J4 separates X into two components J;{ and J,.
Choose J;{ to be the component containing V,. Define Ay, = {g €eG|gV, € J;{}.
Then,

Ay, = {9€G| Ve S}
= {g € G| Ja does not cross an egde-path from V, to V. }
= {geG|AcVy,}
= {geG|gacA}
= {9geGlgedal}

= Aa!

Since A, A® are H-infinite, we have that Ay,, A{, are also H-infinite. By Lemmas 2.10.21
and 2.5.3, we conclude that Ay,, A{, are Stab(Ja)-infinite. O

Given these settings, we prove the next two lemmas below:

Lemma 2.10.24. For any vertex W in X, the partition sets Aw, Afy, of G with respect

to Ja are also H-infinite.

Proof.

Aw+ Ay, = {9eG|gWeJjand gV, ¢ J{}U{geG|gW ¢ J} and gV, € J}}
= {g € G | Je € J4 belonging to a geodesic from gW to gV}
= {g € G | Je € J4 such that g e belongs to a geodesic from W to Va}

= { geG | g 1J4 is some hyperplane crossing a geodesic W to Va}
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But there is a finite number of hyperplanes containing the edges of any geodesic from W

to V. Also, if ¢1,¢92 € G,
91J4 = g2Ja & g5 g1 € Stab(Ja),

which implies that Ay + Ay, is contained in a finite union of right cosets of Stab(Jy4).
Using the same argument, Af + Af, is also contained in a finite union of right cosets of

Stab(J4). Therefore, Ay and Af, are Stab(J4)-infinite and hence, H-infinite. O

Hence, for any vertex W € X, Ay and Ajf}, give a partition of G into two Stab(J4)-

infinite subsets.

Lemma 2.10.25. Ay is an H-p.a.i. subset of G.

Proof. By the previous lemma, we know that Ay is H-proper. Using a similar proof,

we show that Ay is H-almost invariant. Let y € G:

Aw + Awy = {gEG|gW€J;1r anndgg/_li/VgéJ:{}U{gEG|gVV§éJ:1r andgy_lWeJX}

= {g €q | g~ 1J4 is some hyperplane crossing an edge-path from W to y*IW} ,

which is Stab(.J4)-finite and, hence, H-finite. O

2.11 The Main Theorem
Finally, we have all the necessary definitions and results to understand and prove the
Main Theorem of this thesis:

Main Theorem. Let H < G be finitely generated groups satisfying:

e 2<¢(G,H) < o0;
o H <; Commg(H);
e Vg € G, if gH is H-finite, then g € Commg(H).

If G contains an H-p.a.i. subset A such that AH = A, then G admits a non-trivial

splitting over a subgroup commensurable with H.
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Proof. When ¢(G, H) = 2, the theorem was mentioned before to be true, see Lemma
2.9.2 and further comments. Then, consider 3 < ¢(G, H) < oo. By Corollary 2.8.4, the
fact that G contains an H-p.a.i. subset A satisfying AH = A gives us that

1<k= dimFlerResg < 00

which implies that
2§dimF2/C:k‘+1<OO.

By Proposition 2.9.8, we can find pairwise disjoint H-l.i.p.a.i. subsets Ai,..., Ay of
G\ H satisfying A;H = A;, fori =1,...,k. W.lo.g., we apply Sageev’s construction on
Y = {gAi1, gA{ | g € G} to build a cubing X on which G acts essentially with respect
to the hyperplane J4,, as in Theorem 2.10.23.

Let {X1, X2} be a distinct pair of elements in 3. By Proposition 2.9.1, we have that the
pair { X1, X2} is nested. But by Lemma 2.10.8, if V' is a vertex in X containing X7, X»
as minimal elements, then (V,{X;, X5}) does not span a square. Therefore, X is a tree
on which G acts without global fixed points transitively on the edges and, by Lemma
2.10.21, H is commensurable to an edge stabiliser. In other words, G splits non-trivially

over a subgroup commensurable with H. O
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