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Introduction

In the late 60’s, Stallings [30] proved that if a finitely generated group G has cohomo-

logical dimension one, then G acts freely on a tree, namely, the geometric dimension of

G is also one. Later, Swan [31] extended the result for any group. These dimensions

are denoted, respectively, by cdG and gdG. Both definitions are extended to a more

general version based on the work of Bredon [3] and further formalised by Lück [23].

In this setting, we consider a family F of subgroups of G and we refer to the Bredon

cohomological and geometric dimensions of G over the family F , respectively denoted by

cdFG and gdFG. When F contains only the trivial subgroup, these dimensions become

the classical ones. An exciting open problem known as a general version of Stallings’

Theorem conjectures the following:

Conjecture 1. If G is a group and F is a family of subgroups of G such that cdFG ≤ 1,

then gdFG ≤ 1; that is, G acts on a tree with vertex stabilisers in F .

This question has been positively answered by Dunwoody [10] when F is family of the

finite subgroups of G and, recently by Degrijse [7] when F consists of all virtually cyclic

subgroups of G, that is, all subgroups of G containing a subgroup of finite index iso-

morphic to a cyclic group (Z or {1}). A special notation is given for both families,

respectively Ffin and Fvc.

Now, consider a group G and the family F2 of all virtually cyclic and virtually Z2 sub-

groups of G (that is, all subgroups of G containing a subgroup of finite index isomorphic

to Zn, n = 0, 1, 2). A natural question to ask is: if cdF2G ≤ 1 then is gdF2
G ≤ 1? One

of the first steps given by Degrijse in his proof is to show that, if cdFvcG = 1, then G

does not contain a copy of the free abelian group on two generators Z2. This fact rises

from the property of Bredon cohomological dimension of groups which states that, if H

is a subgroup of G and F is family of subgroups of G satifying F ∩H ⊆ F , then

cdF∩HH ≤ cdFG

1



2 Introduction

If H = Z2, it is known that cdF∩Z2Z2 = 3.

In an attempt to follow the same approach, I prove that, if cdF2G ≤ 1, then G does not

contain Z3. More generally, I show that the following is true:

Proposition A. For any n ≥ 3,

cdF2Zn = gdF2
Zn = n+ 2

The Conjecture above on groups with Bredon cohomological dimension one is very dif-

ficult to answer given any family of subgroups of G. For the families Ffin and Fvc, the

proofs depend on specific results related to each of those families. Therefore, Proposi-

tion A concludes the first chapter of this thesis.

At that time during my PhD, there was a discussion on how to approach the solution

for groups with Bredon cohomological dimension one for any family of subgroups of G.

It was thought to be possible to follow Dunwoody’s proof for the case Ffin [10]. Given

a group G and a family F of subgroups of G satisfying cdFG ≤ 1, the idea would be

to find a Bredon cohomological condition for G implying an action of G on a tree with

stabilisers on F . The best immediate step seemed to be finding a proof for Kropholler’s

Conjecture on splittings of groups:

The Kropholler Conjecture. Let G be a finitely generated group and H a subgroup

of G. If G contains an H-proper almost invariant subset A such that AH = A, then G

admits a non-trivial splitting over a subgroup C which is commensurable with a subgroup

of H.

A group G is said to split over a subgroup H if G acts without global fixed points and

transitively on a tree with an edge stabiliser H.

In the second chapter of this thesis is presented my most relevant work, in which I answer

the conjecture for a special case. The following result is my contribution to the proof of

Kropholler’s Conjecture:

Main Theorem. Let H ≤ G be finitely generated groups satisfying:

• 2 ≤ ẽ(G,H) <∞;

• H ≤f CommG(H);

• ∀g ∈ G, if gH is H-finite, then g ∈ CommG(H).
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If G contains an H-proper almost invariant subset A such that AH = A, then G admits

a non-trivial splitting over a subgroup commensurable with H.

The theorem is a generalisation of [19], Lem. 4.4:

Lemma. Let G be a finitely generated group and H a Poincaré duality subgroup of

G satisfying H = CommG(H). If ẽ(G,H) = 2 and G contains an H-proper almost

invariant subset A such that AH = A, then G splits over H.

Given groups H ≤ G, Kropholler and Roller [21] defined a new invariant of the pair

(G,H) denoted by ẽ(G,H). If H is the trivial subgroup, then the invariant becomes the

number of ends of G, known as e(G). The latter is used in Stallings’ Theorem [30] and

Dunwoody’s Theorem [10] on groups with cohomological dimension one. In Section 2.1,

we show how e(G) and splittings of groups are directly related.

The motivation for my theorem was given by Peter Kropholler himself. He suggested I

should look at the results in [19] for groups satisfying ẽ(G,H) = 2 and ask what happens

when ẽ(G,H) = 3. It turns out more general results can be proven when ẽ(G,H) = n,

for any 2 ≤ n <∞, as we will see in Sections 2.8, 2.8.1 and 2.9.

It is possible that the Main Theorem can be extended to a more general version involving

the splitting of a group G over a finite family of subgroups of G, as discussed in [20].

Structure of Thesis

This thesis was written with the expectation that the reader is familiar with the following:

• Category Theory: categories, functors, abelian functors, natural transformations,

adjoints, universal properties, natural isomorphisms.

• Algebraic Topology: universal cover of a space, CW -complexes, cellular chain com-

plex, Mayer-Vietoris homology sequence for spaces.

• Algebra: basic group theory, Bass-Serre theory, homology and cohomology of

groups with coefficients, ZG-modules, free, projective and flat modules.

Although this work consists of many formal statements, I tried to keep a certain informal

tone to my writing by creating questions and answering them instead of writing full formal

paragraphs linking the topics. I chose to do that for three reasons:
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1) Mainly, I believe that, when we read, we automatically ask questions in our minds

and we expect the author to fill these gaps as she/he explains the subject. Therefore,

why not put those questions in the paper? It will (hopefully) create a dynamical

reading and make the text flow better.

2) It helps to compensate a non-native English speaker some lack of proper writing skills

using formal English;

3) And, of course, it is less boring this way.

This thesis is divided in two chapters written according to the chronological development

of my work during my PhD. Chapter 2 contains my most relevant result.



Chapter 1

Bredon geometric dimension of Zn

In this chapter, we will work with a given group G and a family of subgroups of G,

consisting of virtually Zr subgroups, for some r ≥ 0.

Definition 1.0.1. Let G be a group and H a subgroup of G. We say H is a virtually

Zr subgroup of G, r ≥ 0, if H contains a subgroup K of finite index such that K ∼= Zr.

If r = 0, then H is finite. If r = 1, then H is virtually infinite cyclic.

Let G = Zn and H ≤ G. For 0 ≤ r ≤ n, we say H is virtually Zr if H ∼= Zr.

Now, given a group G, let F2 denote the family of all virtually Zr subgroups of G, for

r = 0, 1, 2. In this chapter, we define the Bredon cohomological and geometric dimensions

of a group G over a family of subgroups of G and prove the following:

Proposition A. For any n ≥ 3,

cdF2Zn = gdF2
Zn = n+ 2.

This proposition is a partial solution of the following question:

Question 1 ([5], Quest. 2.6). Let G be a finitely generated abelian group of finite torsion-

free rank n ≥ 1, and denote by Fr the family of subgroups of G of torsion-free rank less

than or equal to r ≥ 0. Then

gdFr
G = n+ r.

When r = 0, F0 is the family of all finite subgroups and has the special notation Ffin.

Moreover,

cdFfin
G := cdG and gdFfin

G := gdG

5



6 Chapter 1 Bredon geometric dimension of Zn

When r = 1, F1 is the family of all virtually cyclic subgroups of G and has the special

notation Fvc. Also,

cdFvcG := cdG and cdFvcG := cdG

It is already known that

cdZn = gdZn = n

and, for n > 1,

cdZn = gdZn = n+ 1

The first equalities are due to the fact that cdZn = cdZn and gdZn = gdZn. Hence,

the result follows from classical cohomology theory ([4], Ch.VIII, Sec.2, Exm. 5). The

second pair of equalities are due to [26], Exm. 5.21.

In order to prove Propostition A, we will construct a model for a classifying space of Zn

over F2, denoted by EF2Zn. In Section 1.10 we conclude the proof by calculating the

geometric dimension of such space and applying known results in Bredon cohomology.

Remark 1.0.2. In Section 1.6, we will mention a construction of models for classifying

spaces given by Lück and Weiermann [26]. This construction is used in [5] to obtain the

inequality gdFr
G ≤ n + r for a finitely generated abelian group G of finite torsion-free

rank n ≥ 1. In Section 1.9, we will compare this method to the one used to obtain our

main result of this chapter.

1.1 Bredon modules

Q. Who is Bredon?

Glen Eugene Bredon (1932 - 2000) was an American mathematician. In [3], he introduced

a homology theory for finite groups involving CW -complexes with a cellular action of a

group G (known as G-CW -complexes) with stabilisers in a given family F of subgroups

of G. The theory was later studied, developed and formalised by Lück [23] for arbitrary

groups. In classical algebraic topology, we have a classifying space X of a fundamental

group G which acts freely on the universal cover of X denoted by X̃. This action gives

a chain complex of X̃ of free ZG-modules over the trivial ZG-module Z. The Bredon

homology theory generalizes the classical homology theory by introducing a family F of

subgroups of the group G which are the only stabilisers of the action of G on a space

called the classifying space of G over F . Similarly, we build a chain complex of what we

call free Bredon modules.
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Q. What are Bredon modules?

From now on, we will take G to be a discrete group and, by a family F of subgroups of

G, we mean a set of subgroups of G closed under conjugation and taking subgroups. For

any H ∈ F , the set G/H consists of all the left H-cosets of G. We consider the natural

action of G on G/H given by the translation of the left H-cosets by g ∈ G, that is,

g · g′H := gg′H

Given any subgroups H,K ∈ F , a G-map between G/H and G/K is a G-equivariant

map fH,K : G/H −→ G/K which, by definition, satisfies, ∀g ∈ G,

fH,K(gyH) = gfH,K(yH)

where yH ∈ G/H. Thus, one can see that fH,K is completely defined by its evaluation

in H. Indeed, if fH,K(H) = xK, then, for any yH ∈ G/H, we have that

fH,K(yH) = yfH,K(H) = yxK

We denote this G-map as fH,K,x. Observe that if fH,K,x is a G-map, then, ∀h ∈ H,

xK = fH,K,x(H) = fH,K,x(hH) = hfH,K,x(H) = hxK

Hence, x−1Hx ⊆ K.

Definition 1.1.1. The orbit category of G over F , denoted by OFG, consists of:

• Objects: G/H, for every H ∈ F ;

• Morphisms: G-maps fH,K,x : G/H −→ G/K, for every H,K ∈ F , x ∈ G.

The abelian category of functors from OFG to the category Ab of abelian groups is

called the category of Bredon modules over OFG. A contravariant (covariant) functor of

this category is called a right (left) Bredon module over OFG. LetM be a contravariant

Bredon module over OFG and φ : G/H −→ G/K a morphism in OFG, H,K ∈ F .

Then,M(φ) is a morphismM(G/K) −→M(G/H), sometimes denoted by φ∗. IfM is

a covariant Bredon module overOFG, thenM(φ) is a morphismM(G/H) −→M(G/K)

and can be denoted by φ∗.

Example 1.1.2. The trivial Bredon module ZF : OFG −→ Ab is defined by:
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• ZF (G/H) = Z, ∀H ∈ F ;

• For any G-map φ in OFG, ZF (φ) is the identity map on Z.

The category of right Bredon modules is denoted by OFG-Mod and the category of left

Bredon modules is denoted by Mod-OFG. The morphisms are maps of functors, which

are what we know as natural transformations.

1.2 ZG-modules

Q. In which sense does the Bredon homology theory generalize the classical homology

theory?

When F consists of only the trivial subgroup of G, the Bredon modules become ZG-

modules.

Q. Why is that true?

In this case, the category OFG has only the object G/ {1} and the G-maps in OFG are

G-equivariant automorphisms of G/ {1}, which are the elements of the set denoted by

Aut(G/ {1}). As seen before, a G-map in Aut(G/ {1}) will be uniquely defined by its

evaluation on {1}. Therefore, given any g ∈ G, the G-map γg : G/ {1} −→ G/ {1} is

defined by γg({1}) = g {1}.

Lemma 1.2.1 ([12], p.13). Aut(G/ {1}) is a group isomorphic to G.

Proof. Let γg, γh ∈ Aut(G/ {1}). Then,

γg ◦ γh({1}) = γg(h {1}) = hγg({1}) = hg {1} = γhg({1})

Let φ : Aut(G/ {1}) −→ G be the map defined by φ(γg) = g−1. Clearly, φ is a bijection.

Moreover, φ(γ1) = 1 and

φ(γg ◦ γh) = φ(γhg) = (hg)−1 = g−1h−1 = φ(γg)φ(γh).
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Hence, a right Bredon module M over OFG defines a right action of G on the abelian

groupM(G/ {1}) given by

x · g :=M(γg−1)(x),

for any g ∈ G, x ∈M(G/ {1}). Indeed, for any g, h ∈ G,

x · (gh) = M(γ(gh)−1)(x) =M(γh−1g−1)(x)

= M(γg−1 ◦ γh−1)(x) =M(γh−1) ◦M(γg−1)(x) = (x · g) · h

Also, clearly x · 1 =M(γ1)(x) =M(idG/{1})(x) = x.

On the other hand, if N is a right ZG-module, let N : OFG −→ Ab be the functor

defined as:

N (G/ {1}) = N and, for x ∈ N, N (γg)(x) := x · g−1

Then, clearly, N (γ1)(x) = N (id)(x) = x and

N (γg ◦ γh)(x) = N (γhg) = x · (hg)−1 = (x · g−1) · h−1 = N (γh) ◦ N (γg)(x)

Hence, N is a right Bredon module over OFG.

Therefore, when F = {{1}}, there exists a one-to-one correspondence between

{OFG-Mod} −→ {right ZG-modules}

Now, letM andN be right Bredon modules over OFG and α : M−→ N a natural trans-

formation, defined by a unique homomorphism of abelian groups α{1} : M(G/ {1}) −→ N (G/ {1}).

Since α is a natural transformation, the following diagram must commute for every

γg ∈ Aut(G/ {1}):

M(G/ {1})
α{1} //

M(γg)

��

N (G/ {1})

N (γg)

��
M(G/ {1}) α{1}

// N (G/ {1})
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Note that N (γg) is an isomorphism of abelian groups whose inverse is N (γg−1). Then,

for every x ∈M(G/ {1}), g ∈ G,

α{1}(x · g) = N (γg−1) ◦ α{1} ◦M(γg)(x · g)

= N (γg−1) ◦ α{1}((x · g) · g−1)

= N (γg−1) ◦ α{1}(x)

= α{1}(x) · g (1.1)

Hence, α{1} is a homomorphism of right ZG-modules. On the other hand, if β is a

homomorphism between right ZG-modulesM , N , we follow the steps above to construct

right Bredon modules M, N respectively correspondent to M , N and define, in this

case, α{1} := β. From the calculation above, we easily see that there exists a natural

transformation α : M−→ N uniquely defined by α{1}.

Therefore, one can see that the correspondence above is actually a natural isomorphism

of the categories of right Bredon modules over OFG and right ZG-modules when F

contains only the trivial subgroup of G. Similarly, one can prove there exists a natural

isomorphism between Mod-OFG and the category of left ZG-modules.

In this sense, Bredon modules generalise the concept of ZG-modules, and most of the

results in classical homology and cohomology theory apply to the Bredon homology

theory.

Unless stated otherwise, any further reference to a Bredon module should be considered

as a right Bredon module. Moreover, every result and definition concerning such modules

can also be similarly stated for left Bredon modules, with the proper adjustments.

1.3 Free Bredon modules

Q. What does "free" mean in this context?

Bredon modules are functors. Thus, a free Bredon module is a free functor in the categor-

ical sense, that is, a left adjoint to a forgetful functor. A reminder to the reader: a forget-

ful functor is a functor that, as the name suggests, "forgets" properties of the category in

its domain. The reader is probably familiar with the forgetful functor U : Grp −→ Set

from the category of groups to the category of sets, which assigns any group G to the

group itself without its group properties, and such that any map is just a map of sets
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and not morphisms of groups. If the definition of left adjoint is also not so fresh, here it

goes:

Definition 1.3.1 (D. M. Kan). Let F : C −→ D and G : D −→ C be two functors. An

adjunction between F and G is a specification, for each pair A, B of objects respectively

in C, D, of a bijection between morphisms F (A) −→ B in D and morphisms A −→ G(B)

in C , which is natural in A and B. We say that F is left adjoint to G and G is right

adjoint to F .

In the familiar setting of groups, we say a group G is free with a generating set X and we

denote G := F (X). In this case, G is the image of the functor F : Set −→ Grp which

assigns a set X to the group F (X) freely generated by X and a map of sets φ : X −→ Y

in Set to a homomorphism of groups F (φ) : F (X) −→ F (Y ) satisfying F (φ)|X = φ.

The attribution free with generating set X given to G comes from the fact that F is left

adjoint to U . Alternatively, G is free with generating set X if G satisfies the following

universal property : for any group H and map of sets f : X −→ U(H), there exists a

unique homomorphism of groups f̃ : F (X) −→ H that extends f , that is, U(f̃) ◦ i = f ,

where, i : X ↪→ U(G) is the inclusion map of sets.

We will define a free Bredon moduleM in terms of the same universal property. However,

we first need to define a generator forM. Therefore, we introduce F-sets:

Definition 1.3.2. Given a group G and a family F of subgroups of G, an F-set is a pair

(X, f) consisting of a set X and a function f : X −→ F . For H ∈ F , the H-component

of X is the pre-image f−1(H), denoted by XH .

Note that (X, f) is defined by its components.

Given two F-sets (X, f), (X ′, f ′), a map of F-sets g : (X, f) −→ (X ′, f ′) is a map of

sets g : X −→ X ′ such that the diagram below commutes:

X
g //

f   

X ′

f ′~~
F

The commutativity of this diagram means that, for H ∈ F , g assigns elements from the

component XH to elements in the component X ′H .

Definition 1.3.3. We say that (X, f) is an F-subset of (X ′, f ′) if XH ⊆ X ′H for every

H ∈ F .
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A Bredon moduleM can be seen as an F-set, where its components areMH := M(G/H),

H ∈ F , where eachM(G/H) is seen as a set, not as an abelian group. If α : M−→ N

is a natural transformation of Bredon modules, then α can also be seen as a map of

F-sets. Indeed, for each H ∈ F , there exists αH : MH −→ NH .

Definition 1.3.4. Let M be a Bredon module over OFG and (X, f) an F-subset of

M. Then, the smallest Bredon module in M containing (X, f) is called the Bredon

submodule of M generated by the F-set (X, f) and is denoted by 〈(X, f)〉. If

M = 〈(X, f)〉, then we say thatM is generated by (X, f).

Let G be a group and F a family of subgroups of G. Fix H ∈ F . The (contravariant)

functor

Z[∗, G/H]G : OFG −→ Ab

is a Bredon module over OFG, which sends the object G/K from OFG to the free

abelian group with basis the set [G/K,G/H]G of all G-maps from G/K to G/H. If

φ : G/K −→ G/L is a morphism in OFG, then

φ∗ : Z[G/L,G/H]G −→ Z[G/K,G/H]G

is the homomorphism of abelian groups defined as φ∗(γ) = γ ◦ φ, for γ ∈ [G/L,G/H]G.

Lemma 1.3.5 ([12], Lem. 1.12). The Bredon module Z[∗, G/H]G is generated by the

F-set (X, f) given by

XK =

 idG/K if K = H,

∅ otherwise.

Let F-Set be the category whose objects are all the F-sets and the morphisms are all

the maps of F-sets. Now, we define the functor

F : F-Set −→ OFG

which sends F-sets (X, f) to 〈(X, f)〉 and maps of F-sets to the natural transformations

corresponding to these maps. Moreover, let

U : OFG −→ F-Set

be the forgetful functor which assigns a Bredon module M over OFG to an F-set also

denoted byM, as seen before. The functor F is left adjoint to U .
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Definition 1.3.6. A Bredon moduleM is free with generating F-set (X, f) if it satis-

fies the following universal property: for any Bredon module N over OFG and any map

of F-sets g : (X, f) −→ N , there exists a unique map of Bredon modules g̃ : M −→ N

that extends g, that is, U(g̃)◦i = g, where i : (X, f) ↪→M is the inclusion map of F-sets.

M
U(g̃) // N

(X, f)

i

OO

g

<<

Q. Is Z[∗, G/H]G a free Bredon module then?

Yes! And to answer that we use the following lemma:

Lemma 1.3.7 (Yoneda Type Formula, [12], Lem. 1.14). Let G be a group and F a family

of subgroups of G. Given H ∈ F and a Bredon module M over OFG, there exists an

isomorphism of abelian groups

eH : HomF (Z[∗, G/H]G,M) −→M(G/H)

where eH is the evaluation map given by eH(α) := αH(idG/H). This isomorphism is

natural inM.

Let N be a Bredon module over OFG and g : (X, f) −→ N a morphism of F-sets, where

(X, f) is the generating set of Z[∗, G/H]G as given by Lemma 1.3.5. Then, there exists

a unique natural transformation α ∈ HomF (Z[∗, G/H]G,N ) such that αH(idG/H) =

g(idG/H).

1.4 Projective and flat Bredon modules

Q. Projective?

Definition 1.4.1. A Bredon module P over OFG is called projective if for any mor-

phism f : P −→M to a Bredon moduleM over OFG and any epimorphism β : N −→M

of Bredon modules over OFG there is a unique morphism φ : P −→ N such that β◦φ = f .
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In cathegory theory, this is the universal property of projective functors and is rep-

resented by the commutative diagram below:

P
f
��

φ

}}
N

β
//M // 0

Q. What is the relation between projective and free Bredon modules?

The answer is given by the next proposition, whose proof can be found in any homological

algebra book, as [4], Prop. 8.2. One has to follow the same steps of the proof in the

category theory setting:

Proposition 1.4.2 ([12], Prop. 1.23). Let P be a Bredon module over OFG. Then the

following statements for P are equivalent:

i) P is projective;

ii) every exact sequence 0 −→M −→ N −→ P −→ 0 splits;

iii) HomF (P, ∗) is an exact functor;

iv) P is a direct summand of a free Bredon module over OFG.

Therefore, free Bredon modules are projective.

Q. What about flat Bredon modules?

The tensor product of a right Bredon moduleM and a left Bredon module N is defined

in [23] by

M⊗F N := P/Q

where

P =
∐
H∈F
M(G/H)⊗Z N (G/H)

and Q is subgroup of P generated by the elements of the form γ∗(m)⊗ n−m⊗ γ∗(n),

where γ ∈ [G/K,G/H]G, m ∈ M(G/H), n ∈ N (G/K), H,K ∈ F , and γ∗ := M(γ),

γ∗ := N (γ).

Definition 1.4.3. A right (or left) Bredon moduleM is called flat if the functorM⊗F ∗

(or ∗ ⊗FM) is exact.
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Q. What is the relation between flat, projective and free Bredon modules?

Proposition 1.4.4 ([12], Prop. 1.28). Projective Bredon modules are flat.

Consequently, free modules are flat.

1.5 Chain Complexes

Q. Given a topological space X, how does one define a chain complex of Bredon modules?

Let G be a group and F a family of subgroups of G. In order to answer that question,

we need to introduce a topological space on which G acts cellularly, known as a G-CW -

complex.

Definition 1.5.1. A G-CW -complex is a CW -complex on which G acts cellularly.

Moreover, if g ∈ G fixes a cell, then g fixes the cell pointwise.

A formal definition of such space is given in [23], pp. 6f, considering G a topological

group.

If H is a subgroup of G and X is a G-CW -complex, then XH is a CW -subcomplex of

X consisting of all points fixed by H.

Let ∆n denote the set of the n-cells of X. we define the Bredon module over OFG

CFn (X) := Z[∗,∆n]G

where, for some H ∈ F , Z[G/H,∆n]G denotes the free abelian group with basis the set

[G/H,∆n]G of all G-maps from G/H to ∆n.

Q. Is Z[∗,∆n]G free?

Sometimes:

Proposition 1.5.2 ([12], Prop. 1.18). Let S be the set of all subgroups of G such that

H ∈ S if Hx = x for some x ∈ ∆n. If S ⊆ F , then Z[∗,∆n]G is free.

Lemma 1.5.3. Given H ∈ F ,

CFn (X)(G/H) ∼= Cn(XH)
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Notation: Cn(XH) is the nth element of the classical cellular chain complex (C∗(X
H), dH,∗),

where, for each n ≥ 0, Cn(XH) := Z[∆H
n ].

Proof. Take the homomorphisms of abelian groups α : Z[∗,∆n]G −→ Z[∆H
n ] and

β : Z[∆H
n ] −→ Z[∗,∆n]G, satisfying α(f) = f(H) and β(σ) = g, such that f ∈ [∗,∆n]G,

σ ∈ ∆H
n and g : G/H −→ ∆n assigns H 7→ σ. For all h ∈ H, we have that g(hH) =

hσ = σ = g(H), thus g is well defined. Clearly, β = α−1.

Lemma 1.5.4. For each n ≥ 1, the functor

dn : CFn (X) −→ CFn−1(X)

given by the set of morphisms dH,n : Cn(XH) −→ Cn−1(X
H), H ∈ F , is a natural

transformation.

Proof. Let H,K ∈ F and γ ∈ [G/H,G/K]G, γ(H) = gK for some g ∈ G. For each

n ≥ 0,

γ∗n : CFn (X)(G/K) −→ CFn (X)(G/H)

is the map assigning f −→ f ◦ γ, f ∈ [∗,∆n]G. From Lemma 1.5.3, γ∗n is the morphism

induced by the map XK −→ XH which assigns x 7→ gx. Therefore, γ∗ defines a chain

map, implying the commutativity of the diagram below:

CFn (X)(G/K)
γ∗n //

dK,n

��

CFn (X)(G/H)

dH,n

��
CFn−1(X)(G/K)

γ∗n−1

// CFn−1(X)(G/H)

Hence, dn is a natural transformation.

Q. What about the augmentation map?

The augmentation map is the natural transformation ε : CF0 (X) −→ ZF given by the

collection of the augmentation maps εH : C0(X
H) −→ Z, H ∈ F .

Hence, the chain complex of the G-CW -complex X is

. . . −→ CFn (X)
dn−→ CFn−1(X) −→ . . . −→ CF1 (X)

d1−→ CF0 (X)
ε−→ ZF −→ 0

Q. Can this sequence be exact?
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Lemma 1.5.5 ([12], Lem. 2.8). If XH is contractible for every H ∈ F , then the chain

complex of X is an exact sequence.

1.6 Classifying space EFG

In this section, we define a special kind of G-CW -complex:

Definition 1.6.1. A classifying space of G for the family F of subgroups of G is a

G-CW -complex X, also called a model for EFG, that satisfies:

• XH = ∅ for every subgroup H of G which is not in F ;

• XH is contractible for every H ∈ F .

Let X be a model for EFG. Note that, if H ⊆ K ∈ F and x ∈ XK , then hx = x,

∀h ∈ H ⇒ x ∈ XH . Moreover, X is contractible since {1} ∈ F .

Q. Does a model for EFG always exist?

Yes! And details can be found in [25], Thm. 1.9.

Q. What does it classify?

The best answer for that, which can be found in [25], p.7, is that EFG is a terminal

object in the G-homotopy category of G-CW -complexes, whose isotropy groups belong

to F . In particular, two models for EFG are G-homotopic equivalent and for two families

Fo ⊆ F1 there exists, up to G-homotopy, precisely one G-map EF0G −→ EF1G.

Q. What would be the equivalent general version of BG?

Let X be a model for EFG. The quotient X/G of X by the cellular action of G is called

a model for BFG. When F = {{1}}, a model for BFG is a model for BG. Differently

from the classical theory where one can build a model for BG given a presentation of G,

in the Bredon setting we are interested in building models for EFG.

Definition 1.6.2. Assume that there exists a finite dimensional model for EFG. Then

the least integer n ≥ 0 for which there exists an n-dimensional model for EFG is called

the Bredon geometric dimension of G for the family F and we denote this by

gdFG := n. If there exists no finite dimensional model for EFG, then we set gdFG :=∞.
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Q. Why EFG?

When F contains only the trivial subgroup, then E{1}G = EG and a model for E{1}G is,

for example, the universal cover of a K(G, 1). Moreover, if F contains G, then a model

for EFG is a singleton space. In this case, we have that gdFG = 0.

Notation: EFfin
G := EG and EFvcG := EG.

Q. How does one build a model for EFG?

Building such a classifying space can be difficult. Below, we show a non-trivial example

given in [18], Ex.3:

Example 1.6.3. Let {Hi}i∈I be the set of all maximal infinite cyclic subgroups of Z2,

whose index set I can be identified with Z. A model Xi for E(Z2/Hi) is a real line on

which Z2/Hi acts by translation. Let p : Z2 −→ Z2/Hi be the canonical projection map

between both groups. If g ∈ Z2 and x ∈ Xi, we define the action

g · x := p(g) · x

Note that, if g ∈ Hi then g · x = x.

Now, take

X :=

(∐
i∈I

(Xi ∗Xi+1)

)
/ (αi(x) ∼ βi(x))

where ∗ represents the join of the spaces and αi : Xi ↪→ Xi−1∗Xi and βi : Xi ↪→ Xi∗Xi+1

are embedding maps of topological spaces. If H is a (virtually) cyclic subgroup of Z2, then

H is contained in a unique Hi, for some i ∈ I. Moreover, Xi = XHi = XH is contractible

and, by construction, no subgroup of Z2 isomorphic to Z2 stabilises a point in X. In [12],

Fig.3, more details and an explicit picture of this 3-dimensional space space can be found.

Therefore, X is a model for EZ2.

Q. But is there any method to build these models?

Yes, and it is given by Lück and Weiermann ([26], Thm. 2.3). Let F ⊆ G be two families

and ∼ an equivalence relation on G\F satisfying the following properties:

• if H,K ∈ G\F with H ⊆ K, then H ∼ K;

• if H,K ∈ G\F and g ∈ G, then H ∼ K ⇔ gHg−1 ∼ gKg−1.
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Denote by [G\F ] the set of equivalence classes given by ∼. If H ∈ G\F , then [H] denotes

the equivalence class of H. Now, we define

NG[H] :=
{
g ∈ G | [g−1Hg] = [H]

}
,

F ∩NG[H] := {K ∈ F | K ⊆ NG[H]} ,

G[H] := {K ⊆ NG[H] | K ∈ G\F , [K] = [H]} ∪ (F ∩NG[H]).

Theorem 1.6.4. Let I be a complete system of representatives [H] of the G-orbits in

[G\F ] under the G-action coming from conjugation. Choose arbitrary NG[H]-CW -models

for EF∩NG[H](NG[H]) and EG[H](NG[H]), and an arbitrary G-CW -model for EFG. De-

fine a G-CW -complex X by the cellular G-push-out

∐
[H]∈I

G×NG[H] EF∩NG[H]NG[H]

∐
[H]∈I

idG×NG[H]f[H]

��

i // EFG

��∐
[H]∈I

G×NG[H] EG[H]NG[H] // X

such that f[H] is a cellular NG[H]-map for every [H] ∈ I and i is an inclusion of G-

CW -complexes, or such that every map f[H] is an inclusion of NG[H]-CW -complexes

for every [H] ∈ I and i is a cellular G-map. Then, X is a model for EGG.

In the same paper it is explained that, from the theorem, one can conclude that there

exists an n-dimensional model for EGG if there exists an n-dimensional model for EFG

and, for every [H] ∈ I, an (n − 1)-dimensional model for EF∩NG[H]NG[H] and an n-

dimensional model for EG[H]NG[H].

1.7 Bredon homological and cohomological dimensions

Let G be a group and F a family of subgroups of G.

Definition 1.7.1. The Bredon homological dimension of G over F , denoted by

hdFG, is the smallest positive number n such that there exists a flat resolution of Bredon

modules over OFG of the form

0→ Qn → . . .→ Q1 → Q0 → ZF → 0
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Definition 1.7.2. The Bredon cohomological dimension of G over F , denoted by

cdF (G), is the smallest number n such that there exists a projetive resolution of Bredon

modules over OFG of the form

0→ Pn → . . .→ P1 → P0 → ZF → 0

Q. What is the relation between hdF (G) and cdF (G)?

Since projective Bredon modules are flat, every projective resolution is a flat resolution.

Therefore,

hdFG ≤ cdFG

These dimensions can also be defined in terms of Bredon homological and cohomological

groups. Consider a projective resolution of ZF over OFG

PF : . . . −→ Pn −→ Pn−1 −→ . . . −→ P1 −→ P0 −→ ZF −→ 0

Definition 1.7.3. Let M and N be, respectively, right and left Bredon modules over

OFG:

• The Bredon homological groups with coefficients in N are defined, for n ≥ 0,

by

HFn (G,N ) := Hn(PF ⊗F N )

• The Bredon cohomological groups with coefficients in M are defined, for

n ≥ 0, by

Hn
F (G,M) := Hn(HomF (PF ,M))

Now, we formulate:

Definition 1.7.4.

hdF (G) := sup
{
n | HFn (G,M) 6= 0 for some left Bredon moduleM over OFG

}
cdF (G) := sup {n | Hn

F (G,M) 6= 0 for some right Bredon moduleM over OFG}

Q. As in the classical case, can these Bredon homology groups be defined in terms of the

classifying space of G over the family F?

Yes!
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Theorem 1.7.5 ([12], Thm. 4.2). For all n ≥ 0, there exist isomorphisms of abelian

groups

HFn (G;ZF ) ∼= Hn(BFG) and Hn
F (G;ZF ) ∼= Hn(BFG).

Corollary 1.7.6 ([12], Cor. 4.3). If Hn(BFG) 6= 0, then hdFG ≥ n. Likewise, if

Hm(BFG) 6= 0, then cdFG ≥ m.

Q. What is the connection between hdFG, cdFG and gdFG?

If X is a model for EFG, then by Proposition 1.5.2 and Lemma 1.5.5, the chain complex

ofX is a free resolution of ZF of Bredon modules overOFG; hence, a projective resolution

of ZF , where each term CFn (X) corresponds to the n-cells of X. Therefore,

hdFG ≤ cdFG ≤ gdFG

Other results comparing hdFG and cdFG are known, as for example

Theorem 1.7.7 ([12], Thm. 3.13). If G and F are countable, then cdFG ≤ hdFG+ 1.

Our main interest though at this part of the thesis are results involving cdFG and gdFG,

therefore that will be our focus.

Q. So when does the equality between cdFG and gdFG hold?

Proposition 1.7.8 ([12], Prop. 3.20). Given any family F of subgroups of a group G,

cdFG = 0 if and only if gdFG = 0 if and only if G ∈ F .

A complete proof of cdFG = 0 ⇔ gdFG = 0 can be found in [12], Prop. 3.20. The

implication G ∈ F ⇒ gdFG = 0 was already mentioned before in Section 1.6. Now,

if gdFG = 0, then the singleton space satisfies the condition to be a model for EFG.

Clearly, G ∈ F .

Theorem 1.7.9 ([24], Thm. 0.1). Given any family F of subgroups of a group G,

cdFG ≤ gdFG ≤ max {3, cdFG}

If cdFG = 2, the equality might not always hold. In [2] one can find examples of groups

satisfying cdG = 2 but gdG = 3. In [13], it is shown that for some Coxeter groups one

can also have cdG = 2 but gdG = 3.
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Q. What about cdFG = 1?

When cdG ≤ 1, it is well known that G satisfies gdG ≤ 1, due to Stallings [30] and

Swan [31]. Dunwoody [10] later proved that, for any group G, cdG ≤ 1 implies gdG ≤ 1.

Recently, Degrijse [7] showed that, if cdG ≤ 1, then gdG ≤ 1.

For other families of subgroups of G, the following still holds:

Conjecture 1.7.10. Given a group G and any family F of subgroups of G, if cdFG ≤ 1

then gdFG ≤ 1.

1.8 The family F2

The Conjecture 1.7.10 on groups with Bredon cohomological dimension one is a difficult

problem which at first sight can not be approached without working with specific families

or groups. The proofs given considering each one of the three families for which the

conjecture is true rely on particular results related to these families. In an attempt to

partially solve this problem, I considered the family that seemed most natural after Ffin
and Fvc. Given a group G, we take F2 to denote the family of all subgroups of G that

are virtually Zn, for n = 0, 1, 2. It means that F2 consists of all finite, infinite virtually

cyclic and virtually Z2 subgroups of G. I started by following the same steps of the proof

given in [7] for Fvc. One of the first challenges is to prove the following:

Lemma 1.8.1 ([7], Lem. 2.3 (i)). If G is a group with cdG ≤ 1, then G does not contain

a copy of Z2.

The proof of this lemma depends on the next result:

Proposition 1.8.2 ([12], Prop. 3.32). Let G be a group and F a family of subgroups

of G. If H is a subgroup of G such that F ∩H ⊆ F , then

cdF∩HH ≤ cdFG

Proof of Lemma 1.8.1. By [26], Exm. 5.21, cdZ2 = 3. If Z2 is a subgroup of G and Fvc
is the family of all virtually cyclic subgroups of G, then, by Proposition 1.8.2,

3 = cdZ2 = cdFvc∩Z2Z2 ≤ cdG ≤ 1

which is clearly a contradiction.
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Similarly, I prove the following:

Lemma 1.8.3. If G is a group with cdF2G ≤ 1, then G does not contain a copy of Z3.

The proof follows from the next proposition:

Proposition A. For any n ≥ 3,

cdF2Zn = gdF2
Zn = n+ 2

Sections 1.9 and 1.10 will be dedicated to prove Proposition A.

Proof of Lemma 1.8.3. By Proposition A, cdF2∩Z3Z3 = 5. Then, by Proposition 1.8.2,

5 = cdF2∩Z3Z3 ≤ cdF2G ≤ 1

which is obviously a contradiction.

1.9 A model for EF2
Zn

In order to prove Proposition A, we build a model for EF2Zn, n ≥ 3, and show that

gdF2
Zn = n+ 2. Then, the result follows by Theorem 1.7.9.

Before this construction, a few remarks:

Remark 1.9.1. Let G be an abelian group, H a subgroup of G and F a family of

subgroups of G:

• EFG will be used to denote a model for EFG;

• E≤HG stands for a model of the classifying space of G over the family consisting

of all subgroups of H;

• Given i ≥ 0, a Zi-subgroup of G is a subgroup isomorphic to Zi;

• H is a maximal Zi-subgroup of G if no other Zi-subgroup of G contains H as a

proper subgroup.

Remark 1.9.2. Observe that if G is not abelian and H is a subgroup of G, the set of

all subgroups of H is a family if and only if H is normal in G.
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Let I be the indexing set of all maximal Z-subgroups of Zn. Let Ji denote a maximal

Z-subgroup, i ∈ I. A standard Bredon categorical argument ([25], p.7) yields a Zn-map

σi : EZn −→ E≤JiZn, for each i ∈ I.

Now, let ∼ define the equivalence relation in Fvc\Ffin given by, for any H,S ∈ Fvc\Ffin

H ∼ S ⇔ rk(H ∩ S) = 1

where rk stands for rank. Then, NZn [H] = Zn and G[H] is the family of all subgroups

of H. By Theorem 1.6.4, the push-out below gives us a model X0 for EZn:

⊔
i∈I
EZn i //

t
i∈I

σi

��

EZn

��⊔
i∈I
E≤JiZn // X0

The next step is where the distinction from the construction for EF2Zn as in [5] begins.

In that case, one consider for any H,S ∈ F2\Fvc the following equivalence relation:

H ∼ K ⇔ rk(H ∩ S) = 2

Moreover, for any H ∈ F2\Fvc, we have that NZn [H] = Zn and G[H] = Fvc∪ ≤ H.

Let K be the indexing set of all maximal Z2-subgroups of Zn. For each k ∈ K, a

maximal Z2-subgroup of Zn will be denoted by Hk. For each k ∈ K, let fk be a Zn-map

EZn −→ EFvc∪≤Hk
Zn. By Theorem 1.6.4, the following push-out

⊔
k∈K

EZn i //

t
k∈K

fk

��

EZn

��⊔
k∈K

EFvc∪≤Hk
Zn // X

gives us a model X for EF2Zn.
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In our case, for each k ∈ K, consider the family
{
J
(k)
i

}
i∈Ik

of all maximal Z-subgroups

contained in Hk. We construct the following push-out (1):

⊔
i∈Ik

EZn i //

t
i∈Ik

σi

��

EZn

��⊔
i∈Ik

E≤J(k)
i

Zn // X1

The inclusion EFvc∩Hk
Zn ↪→ EZn is a Zn-map of spaces. Moreover, there exists a Zn-

map αk : EFvc∩Hk
Zn −→ E≤Hk

Zn for each k ∈ K. Then, we build the following push-out

(2): ⊔
k∈K

EFvc∩Hk
Zn i //

⊔
k∈K

αk

��

EZn

��⊔
i∈Ik

E≤Hk
Zn // X2

Both push-outs (1) and (2) satisfy enough conditions from Theorem 1.6.4 on the maps

in order to conclude that X1 is a model for EFvc∩Hk
and X2 is a model for EF2Zn.

1.10 Bredon geometric dimension of Zn

In [26], Exm. 5.21, we have that gdZn = n + 1, for n ≥ 2. In order to find an upper

bound to the geometric dimension of EF2Zn, we first see that gdFvc∩Hk
Zn ≤ n+ 1, since

EFvc∩Hk
Zn embeds injectively in EZn.

Lemma 1.10.1 ([5], Lem. 2.3). Let H be a maximal Zr-subgroup of Zn, 0 ≤ r < n.

Then, Rn−r is a model for E≤HZn and

gd≤HZn = n− r

Therefore, from the push-out (2) we conclude that gdF2
Zn ≤ n+ 2.

Knowing that hdF2Zn ≤ gdF2
Zn, it is sufficient to show that hdF2Zn ≥ n + 2. By the

definition of Bredon homological dimension, we need to prove that HF2
n+2(G,M) 6= 0 for
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some left Bredon moduleM over OF2Zn. By Corollary 1.7.6, it is enough to show that

Hn+2 (BF2Zn) 6= 0.

Applying the Mayer-Vietoris long exact sequence of homology on the push-out (2), we

have:

0 −→ Hn+2(BF2Zn) −→
⊕
k∈K

Hn+1 (BFvc∩Hk
Zn) −→

φ−→ Hn+1

(
BZn

)
⊕Hn+1

(⊔
k∈K

B≤Hk
Zn
)
−→ . . .

However, note that Hn+1

( ⊔
k∈K

B≤Hk
Zn
)

= 0, since B≤Hk
Zn ∼= Rn−2

Zn = Tn−2. Therefore,

we need to prove that the following map from this sequence is not injective:

⊕
k∈K

Hn+1 (BFvc∩Hk
Zn)

φ−→ Hn+1

(
BZn

)

Similarly, applying the Mayer-Vietoris long exact sequence of homology on the push-out

(1) gives us

0 −→���
���:0

Hn+1(Tn)⊕
���

���
��:0

Hn+1( t
i∈I

Tn−1) −→ Hn+1

(
BZn

)
−→

−→ Hn( t
i∈I

Tn)
γ−→ Hn(Tn)⊕

��
���

��:0
Hn( t

i∈I
Tn−1) −→ . . .

Since the map γ : ⊕
i∈I

Z −→ Z cannot be injective, kerγ ∼= Hn+1

(
BZn

)
6= 0.

Now, fix a maximal Z-subgroup Ji0 of Zn. Considering the isomorphism above,
{

1(i) − 1(i0) | i ∈ I
}

is a basis for Hn+1

(
BZn

)
, where 1(i) corresponds to the identity element of Z in the ith

coordinate of the direct sum ⊕
i∈I

Z. Indeed,

kerγ =


m∑
j=1

z
(ij)
j ∈ ⊕

i∈I
Z | m ∈ N, ij ∈ I, γ

 m∑
j=1

z
(ij)
j

 =
m∑
j=1

zj = 0

 .



Chapter 1 Bredon geometric dimension of Zn 27

Let
m∑
j=1

z
(ij)
j ∈ kerγ. Then,

m∑
j=1

z
(ij)
j =

m∑
j=1

z
(ij)
j +

m∑
j=1

z
(i0)
j −

m∑
j=1

z
(i0)
j

=

m∑
j=1

(
z
(ij)
j − z(i0)j

)
+

m∑
j=1

z
(i0)
j

=

m∑
j=1

zj

(
1(ij) − 1(i0)

)
+

�
�
�
�
��

0 m∑
j=1

zj

 · 1(i0)

Now, for each k ∈ K fix an i0 ∈ I such that Ji0 ⊗R ⊂ Hk⊗R. Then, Hn+1 (BFvc∩Hk
Zn)

is the group generated by the basis
{

1(i) − 1(i0) | i ∈ Ik
}
, where Ik is the subset of I that

indexes every maximal Z-subgroup Ji in Zn such that Ji ⊗ R ⊂ Hk ⊗ R.

Claim 1.10.2. φ is not injective.

Proof. Given x =
m∑
k=1

(
mk∑
j=1

z
(ik,j)
k,j

(
1(ik,j) − 1(k,0)

))
∈
⊕
k∈K

Hn+1 (BFvc∩Hk
Zn),

φ(x) =

m∑
k=1

mk∑
j=1

z
(ik,j)
k,j

[(
1(ik,j) − 1(i0)

)
−
(

1(ik,0) − 1(i0)
)]

Given k1 ∈ K, take ik1,0 ∈ I corresponding to the fixed maximal Z-subgroup Jik1,0 from

the basis of Hn+1

(
BFvc∩Hk1

Zn
)
. We see that

Jik1,0 ⊗ R ⊂ (Hk1 ⊗ R) ∩ (Hk2 ⊗ R)

for some k2 ∈ K, k1 6= k2. Now, let Jik2,0 be another fixed maximal Z-subgroup from

the basis of Hn+1

(
BFvc∩Hk2

Zn
)
. Then,

Jik2,0 ⊗ R ⊂ (Hk2 ⊗ R) ∩ (Hk3 ⊗ R)

for some k3 ∈ K, k3 6= k1, k2. Again, let Jik3,0 be another fixed maximal Z-subgroup in

Hn+1

(
BFvc∩Hk3

Zn
)
. If Jik3,0⊗R ⊂ (Hk3⊗R)∩(Hk1⊗R), then take x ∈

⊕
k∈K

Hn+1 (BFvc∩Hk
Zn),

such that

x =
(

1(ik3,0) − 1(ik1,0)
)
k1

+
(

1(ik1,0) − 1(ik2,0)
)
k2

+
(

1(ik2,0) − 1(ik3,0)
)
k3
.
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Then,

φ(x) =
(

1(ik3,0) − 1(ik1,0)
)

+
(

1(ik1,0) − 1(ik2,0)
)

+
(

1(ik2,0) − 1(ik3,0)
)

= 0.

Otherwise, let Ji be a maximal Z-subgroup in Zn such that Ji⊗R ⊂ (Hk3⊗R)∩(Hk1⊗R).

Then, take x ∈
⊕
k∈K

Hn+1 (BFvc∩Hk
Zn) where

x =
(

1(i) − 1(ik1,0)
)
k1

+
(

1(ik1,0) − 1(ik2,0)
)
k2

+
[(

1(ik2,0) − 1(ik3,0)
)
−
(

1(i) − 1(ik3,0)
)]

k3
.

Hence,

φ(x) =
(

1(i) − 1(ik1,0)
)

+
(

1(ik1,0) − 1(ik2,0)
)

+
(

1(ik2,0) − 1(ik3,0)
)
−
(

1(i) − 1(ik3,0)
)

= 0.



Chapter 2

Relative ends and splittings of

groups

In Section 2.11, we prove the following:

Main Theorem. Let H ≤ G be finitely generated groups satisfying:

• 2 ≤ ẽ(G,H) <∞;

• H ≤f CommG(H);

• ∀g ∈ G, if gH is H-finite, then g ∈ CommG(H).

If G contains an H-proper almost invariant subset A such that AH = A, then G admits

a non-trivial splitting over a subgroup commensurable with H.

This is a particular case of a more general statement conjectured by Peter Kropholler in

[21], and formally stated below as in [27]:

The Kropholler Conjecture. Let G be a finitely generated group and H a subgroup

of G. If G contains an H-proper almost invariant subset A such that AH = A, then G

admits a non-trivial splitting over a subgroup C which is commensurable with a subgroup

of H.

In this chapter, we will explain the terms mentioned in the results above and the moti-

vation that led to the Main Theorem.

29
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The invariant ẽ(G,H) of the pair of groups (G,H) was first introduced in the paper by

Kropholler and Roller [21] in Relative Ends and Duality Groups. WhenH = {1}, ẽ(G,H)

becomes an invariant of G known as the number of ends of G. The latter invariant and

splittings of G over finite subgroups are directly related and, being ẽ(G,H) a more

general definition of ends, one would expect similar relation with the splitting of G over

H (or over a subgroup "closely related" to H, which we will learn to be a commensurable

subgroup).

In order to understand the latter relation, we start this chapter by explaining in detail

the connection between ends and splittings of a group over finite subgroups.

2.1 Ends and splittings of groups

The theory of ends was first introduced in the work of Freudenthal [14] and Hopf [16].

Given a locally finite CW -complex X, it was defined:

Definition 2.1.1. The number of ends of X, denoted by e(X), is

e(X) = lim
←

K⊂X

|unbounded components of X\K|

over all compact subsets of X.

Q. Why "ends"?

Informally, the number of ends of a space is the number of unbounded path-connected

components of the space at infinity. Below we show one of the most simple non-trivial

examples of a space and its number of ends.

Example 2.1.2. Let R be the real line given a CW -complex structure with vertices and

edges as below:

. . . t t t t t t . . .

In order to roughly understand the concept of ends of this space, it is not difficult to see

that, extracting bigger and bigger compact sets (or finite subcomplexes) from R, as we go

to infinity on the right we have one path-connected component. The same happens on the

left. Therefore, e(R) = 2.
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Q. But how does ends of a space relate to groups?

Given a finitely generated group G, the Cayley graph of G over some finite generating set

X can be realised as a locally finite CW -complex, and we will denote it by Cay(G,X).

Hence,

Definition 2.1.3. If G is a finitely generated group, then the number of ends of G,

denoted by e(G), is defined as

e(G) := e(Cay(G,X))

It is important to know that e(G) does not depend on the choice of the finite generating

set of G.

If a group G is finite, then its Cayley graph is compact. Consequently, by definition,

e(G) = 0. The converse is also true ([15], p. 302). More generally, if G acts properly

and cocompactly on a path-connected CW -complex X, then e(G) = e(X) ([15], Cor.

13.5.12).

Example 2.1.4. Here we can see some examples of the number of ends of some finitely

generated groups:

i) e(Z) = 2 and, if n > 1, then e(Zn) = 1;

ii) e(D∞) = 2, where D∞ is the infinite dihedral group, which contains an infinite cyclic

subgroup of index two;

iii) the fundamental group of the bitorus π1(T2#T2) is one-ended, because it acts freely

and cocompactly on the hyperbolic plane;

iv) e(SL2(Z)) =∞, because the group of invertible matrices with determinant one and

integral entries is isomorphic to a free product with amalgamation of finite cyclic

groups

SL2(Z) ∼= C4 ∗
C2

C6

which, from the Bass-Serre theory, acts properly and cocompactly on an infinitely

ended tree.

Q. Does there exist a two-ended group with no infinite cyclic subgroup of finite index?

No:
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Theorem 2.1.5 ([15], Thm. 13.5.9). A finitely generated group G has two ends if and

only if G has an infinite cyclic subgroup of finite index.

Q. What about examples of groups with 3 ends?

That can never happen:

Theorem 2.1.6 ([15], Thm. 13.5.7). The number of ends of a finitely generated group

is 0, 1, 2 or ∞.

Q. Can one-ended and infinitely ended groups also be classified?

One-ended groups are not classified and interesting questions involving hyperbolic groups

are still open, as this one due to Gromov: Does every one-ended hyperbolic group have

a surface subgroup? [1]. On the other hand, to groups with infinitely many ends we

attribute to Stallings [30] the following famous result, reworded as in [15], Thm. 13.5.10:

Theorem 2.1.7 (Stallings’ Theorem). A finitely generated group G has infinitely many

ends if and only if either (i) G = G1 ∗
H
G2 where H is finite having index ≥ 2 in G1

and in G2, with one of these indices being ≥ 3; or (ii) G = G1∗H where H is finite with

index ≥ 2 in G1.

This decomposition of G is a splitting of G. Formally,

Definition 2.1.8. We say that a group G splits non-trivially over a subgroup H if either

G can be decomposed as a non-trivial amalgamated free product over H or as a non-trivial

HNN -extension over H.

However, throughout this thesis we will be interested in splittings as actions on trees:

Lemma 2.1.9 ([19], Lem. 1.3). G splits over a subgroup H if and only if G acts (on

the left) on a tree without global fixed points and transitively on the edges with an edge

stabiliser H.

This is a classical result in Bass-Serre theory.

2.2 Almost invariant sets

Q. Can the notion of end be defined for an infinitely generated group?
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There exists an algebraic definition for the number of ends of an arbitrary group, not

necessarily finitely generated, which can be found in [8] and uses the concept of almost

invariant sets.

Definition 2.2.1. Let G be a group. A subset A of G is called almost invariant if,

∀ g ∈ G, the symmetric difference between A and Ag is finite. Moreover, if A and Ac

are infinite, then A is called proper.

Notation: The symmetric difference between two sets is denoted by 4.

Let A,B be subsets of G. We say A ∼f B if A4B is finite. Clearly ∼f is an equivalence

relation and, if A,B belong to the same equivalence class, then [A] = [B]. A non-proper

subset of G is either in [G] or [∅].

Let F(G) denote the set of all finite subsets of G and P(G) the power set of G. The

symmetric difference gives to both sets the structure of a vector space over the field

F2 = {0, 1}. Indeed, if for any A ∈ P(G) we define 1 ·A = A and 0 ·A = ∅, then we see

that

(1 + 1) · · ·A = A+A = ∅ = 0 ·A

and it is not difficult to see that the other properties of vector space apply. Morevover,

∅ ∈ F(G) and, if A,B ∈ F(G), then A + B ∈ F(G). Therefore, F(G) is a subspace of

P(G) over F2.

Now, we define

A(G) :=

(
P(G)

F(G)

)G
Definition 2.2.2. Let G be any group. The number of ends of G is the dimension

of the vector space over F2 of all equivalence classes of almost invariant subsets of G,

namely,

e(G) = dimF2A(G)

Q. Is there an example to see almost invariant sets in the geometric interpretation of

ends?

Take G = F2, the free abelian group on two generators a, b. Let K be a finite subgraph of

Cay(G, {a, b}) containing the vertex corresponding to the trivial element 1. The vertices

of the path-connected components of Cay(G, {a, b}) − K correspond to proper almost

invariant subsets of G.

Q. Is there some form of Stallings’ theorem for infinitely generated groups?



34 Chapter 2 Relative ends and splittings of groups

Stallings’ theorem was later extended by any group by Swan [31]. A more general form

of the theorem is also given by Dicks and Dunwoody using what they called the Almost

Stability Theorem. The statement is as follows:

Theorem 2.2.3 ([8], IV.6.10). Let G be a group. The following are equivalent:

i) e(G) > 1.

ii) H1(G,M) 6= 0 for any non-trivial free G-module M .

iii) There exists a tree on which G acts without global fixed points and finite edge sta-

bilisers.

iv) One of the following holds:

• G = G1 ∗
H
G2 where G1 6= H 6= G2 and H is finite;

• G = G1∗
H
, where H is finite;

• G is countably infinite and locally finite.

v) e(G) = 2 or e(G) =∞.

The proof of this theorem relies on the existence of proper almost invariant subsets of G.

Note from the algebraic definition of e(G) that {[G], [∅]} ∼= F2 in A(G). Then, e(G) ≥ 2

if and only if G contains a proper almost invariant subset.

2.3 Ends of pairs of groups

Given a pair of groups (G,H) with H ≤ G and G finitely generated, let CayH(G,X)

be the Cayley graph of G with generating set X quotiented by the left action of H.

Houghton [17] introduced an invariant of the pair (G,H), defined as follows:

Definition 2.3.1. The number of ends of the pair of groups (G,H) is an invariant

of the pair denoted by e(G,H) and is defined as

e(G,H) = e(CayH(G,X))

Again, e(G,H) does not depend on the generating set of G.

The subject was further explored by Scott [29] as an attempt to generalise Stallings’

result to groups which split over infinite subgroups. Although Scott concluded that
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e(G,H) ≥ 2 does not necessarily imply G splits over some finite extension of H, his

main result showed that

Theorem 2.3.2 ([29], 4.1). If H ≤ G are finitely generated groups and G is H-residually

finite, then e(G,H) ≥ 2 if and only if G has a subgroup G1 of finite index in G such that

G1 contains H and G1 splits over H.

We say a group G is H-residually finite if, given g ∈ G\H, there is a subgroup G1 of

finite index in G such that G1 contains H but not g.

Therefore, if G splits over H then e(G,H) ≥ 2.

Q. Does e(G,H) also take only values 0, 1, 2 and ∞?

Differently from e(G), the number of ends of a pair of groups can take values in any

positive integer. One can find examples of finitely generated groups H ≤ G with e(G,H)

finite and strictly greater than 2 (see [29], 2.1).

Q. What does it mean when e(G,H) = 0?

Lemma 2.3.3 ([29], Lem. 1.3). e(G,H) = 0 if and only if H has finite index in G.

Q. When is e(G,H) = e(G)?

The equality holds when H = {1} and that is very easy to see. However, if H is a finite

subgroup of G, then the equality does not necessarily hold:

Lemma 2.3.4 ([29], Lem. 1.7). If H is a subgroup of G and K is a subgroup of finite

index n in H, then e(G,H) and e(G,K) are both finite or both infinite. When both are

finite, then the following inequality holds:

e(G,H) ≤ e(G,K) ≤ n · e(G,H)

If the reader is interested, the remark in [29] after the lemma provides a counterexample.

Q. Can e(G,H) also be defined in terms of almost invariant sets, for any group G?

Yes. Let G a group and H a subgroup of G. Define

A(G/H) :=

(
P(G/H)

F(G/H)

)G
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Definition 2.3.5. The number of ends of the pair (G,H) is the dimension of the

vector space over F2 of all equivalence classes of almost invariant subsets of G/H, namely,

e(G,H) = dimF2A(G/H)

Lemma 2.3.6 ([29], Lem. 1.6). e(G,H) ≥ n if and only if one can find n disjoint infinite

almost invariant subsets of G/H.

Therefore, e(G,H) ≥ 2 if and only if G/H contains a proper almost invariant subset.

2.4 H-almost invariant sets

The concept of almost invariant subsets of a group G can be generalised to H-almost

invariant subsets of G, where H is a subgroup of G. In this section, we show how they

arise and explore several properties through lemmas, remarks and corollaries which will

be useful tools further on in this thesis.

Suppose G is finitely generated with generating set X and take the projection map

π : Cay(G,X) −→ CayH(G,X) which restricts to the canonical map G −→ G/H, g 7→

Hg. The following result is a rewording of Lemma 2.3.6:

Theorem 2.4.1 ([28], Thm. 2.3). e(G,H) ≥ 2 if and only if there exists A ⊂ G such

that:

(a) π(A) and π(Ac) are infinite,

(b) ∀g ∈ G, π(A4Ag) is finite,

(c) A is left H-invariant, ie, ∀h ∈ H, hA = A.

Note that from (a) A,Ac must contain infinitely many right cosets of H. Moreover, from

(b), ∀g ∈ G, A4Ag is contained in a finite union of right cosets of H. This leads us to

the next two definitions:

Definition 2.4.2. Let H be a subgroup of G. A subset of G is said H-finite if it is

contained in a finite union of right cosets of H. If a subset A of G contains infinitely

many right cosets of H, then A is called H-infinite. If A and Ac are H-infinite, then

we say A is H-proper.
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Definition 2.4.3. A subset A of G that satisfies Ag4A is H-finite, ∀g ∈ G, is called

an H-almost invariant subset of G.

Notation 1: AnH-proper almost invariant subset ofG is anH-properH-almost invariant

subset of G and, from now on, will be denoted by H-p.a.i.

Notation 2: We have mentioned before that P(G) equipped with the operation 4 is a

vector space over F2. From now on, we will represent the binary operation symmetric

difference by the symbol +.

Remark 2.4.4. Let A,B be subsets of G. Then,

• (A+B)c = G+A+B = Ac +B = A+Bc.

• If g ∈ G, (Ag)c = G+Ag = Gg +Ag = (G+A)g = Acg. Similarly, gAc = (gA)c.

Lemma 2.4.5. Let A,B, F be subsets of G:

i) If A,B are H-finite, then A+B is also H-finite.

ii) If A is H-infinite and A+B is H-finite, then B is H-infinite.

iii) If A is H-almost invariant and A+B is H-finite, then B is H-almost invariant.

iv) If A,B are H-almost invariant, then A+B is also H-almost invariant.

v) If h ∈ H and A is H-p.a.i., then hA, hAc are H-p.a.i.

vi) If F is finite and A is H-p.a.i., then AF is H-p.a.i.

Proof. i) A ⊆ HF and B ⊆ HE, for some finite subsets F,E in G. Thus,

A+B ⊆ A ∪B ⊆ HF ∪HE.

ii) If B is H-finite, then A+B +B = A is H-finite, contradiction.

iii) Let g ∈ G. Then,

Bg +B = Bg +B +A+A+Ag +Ag

= (B +A)g︸ ︷︷ ︸
H-finite

+B +A︸ ︷︷ ︸
H-finite

+A+Ag︸ ︷︷ ︸
H-finite

iv) (A+B) + (A+B)g = A+Ag +B +Bg is H-finite, for any g ∈ G.
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v) ∀g ∈ G, hA + hAg ⊆ hHF = HF for some finite subset F of G. Moreover, hA is

H-finite if and only if A is H-finite, so if (hA)c is H-finite, then hAc is H-finite and,

hence so is Ac.

vi) We first show that AF +A is H-finite. Let F = {f1, . . . , fl}. Then,

AF +A = (Af1 ∪ . . . ∪Afl) +A

= [(Af1 ∪ . . . ∪Afl) ∩Ac] ∪ [A ∩ (Af1 ∪ . . . ∪Afl)c]

= (Af1 ∩Ac) ∪ . . . ∪ (Afl ∩Ac) ∪ (A ∩Acf1 ∩ . . . ∩Acfl)

⊆ (Af1 ∩Ac) ∪ (A ∩Acf1) ∪ . . . ∪ (Afl ∩Ac) ∪ (A ∩Acfl)

= (Af1 +A) ∪ . . . ∪ (Afl +A)

which is a finite union of H-finite sets. Now, let g ∈ G. Following similar steps, we

have that

AFg +AF ⊆ (Af1g +AF ) ∪ . . . ∪ (Aflg +AF )

= (A+AF (f1g)−1)f1g ∪ . . . ∪ (A+AF (flg)−1)flg

which is also a finite union of H-finite sets.

Lemma 2.4.6 (The Kropholler Corner). Let A,B be H-almost invariant subsets of G.

Then, the same holds for A ∩B.

Proof. Given g ∈ G, we have

(A ∩B) + (A ∩B)g = (A ∩B) + (Ag ∩Bg) = ((A+Ag) ∩B) + (Ag ∩ (B +Bg))

which by hypothesis and Lemma 2.4.5 (i) is H-finite.

This decomposition was given by Kropholler in the proof of Lemma 4.3 in [19] and is

used by Dunwoody in his work on cuts and structure trees, where he defines the term

corner : each one of the four intersections A ∩B, Ac ∩B, A ∩Bc, Ac ∩Bc, where A,B

are cuts in a tree. Definitions and further explanations can be found in [9].

If A,B are subsets of G, then A ∼H B if A+B is H-finite. This defines an equivalence

relation. If A,B are in the same equivalence class, then, [A] = [B].
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Now, let

FH(G) := {all H-finite subsets of G}

The vector space over F2 of all equivalence classes of H-almost invariant subsets of G is

defined as

AH(G) :=

(
P(G)

FH(G)

)G
By Lemma 2.4.5 (iii), [G] is the equivalence class of all subsets of G with H-finite com-

plement and [∅] is the equivalence class of all H-finite subsets of G.

Remark 2.4.7. (i) Clearly, when we say AH(G) is a vector space over F2, we consider

the following binary operation of the vectors: if [A], [B] ∈ AH(G), then

[A]⊕ [B] := [A+B]

(ii) If we add to P(G) a right action of G given by translation of sets (that is, A · g =

Ag ∀A ⊆ G, g ∈ G), then P(G) becomes a right F2G-module. Moreover, ∀g ∈ G,

if A ∈ FH(G) then Ag is clearly H-finite, that is, Ag ∈ FH(G). Therefore, FH(G)

is a right F2G-submodule of P(G).

Definition 2.4.8. Let A1, . . . , Ak be H-almost invariant subsets of G. We say that

A1, . . . , Ak are H-linearly independent if [A1], . . . , [Ak] are linearly independent vec-

tors in AH(G).

Notation: If A1, . . . , Ak are H-linearly independent H-p.a.i. subsets of G, we will say

that A1, . . . , Ak are H-l.i.p.a.i.

Q. Given [A], [B] ∈ AH(G), what happens if the following binary operation is defined?

[A]� [B] := [A ∩B]

Proposition 2.4.9. AH(G) with the binary operations ⊕,� is a Boolean ring.

Proof. From Remark 2.4.4, Lemma 2.4.5 and properties of sets, we see that AH(G) with

⊕ is an abelian group with identity [∅] and AH(G) with � is an abelian monoid with

identity [G]. Every element of AH(G) is idempotent over �. It remains to prove the

distributivity law holds. Let A,B,C ⊆ G. Clearly A ∩ (B + C) = (B + C) ∩ A. It is

enough to show that

A ∩ (B + C) = (A ∩B) + (A ∩ C).
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We have:

A ∩ (B + C) = A ∩ ((B ∩ Cc) ∪ (C ∩Bc))

= (A ∩B ∩ Cc) ∪ (A ∩ C ∩Bc)

= ((A ∩B)\C) ∪ ((A ∩ C)\B)

= ((A ∩B)\(C ∩A)) ∪ ((A ∩ C)\(B ∩A))

= (A ∩B) + (A ∩ C)

2.5 Commensurability

When working with a subgroup H of G, all the properties of H-almost invariant sets

are still preserved if we consider subgroups "closely related" to H, which are known as

commensurable subgroups:

Definition 2.5.1. Let H,S be subgroups of G. We say H and S are commensurable

if |H : H ∩ S| < ∞ and |S : H ∩ S| < ∞. Commensurability is an equivalence relation

and we refer to commensurable groups H,S as H ∼ S.

If H ≤f S, then H ∼ S.

Definition 2.5.2. The commensurator of H in G is the subgroup defined as

CommG(H) =
{
g ∈ G | gHg−1 ∼ H

}

Clearly, H is a subgroup of CommG(H).

Lemma 2.5.3. Let H,S be subgroups of G such that H ∼ S and A is a subset of G.

Then,

i) A is H-finite if and only if A is S-finite.

ii) A is H-infinite if and only if A is S-infinite.

Proof. Let F,E be finite subsets of G such that H = (H ∩ S)F and S = (H ∩ S)E.

Then, H ⊆ (H ∩ S)EE−1F = SE−1F and S ⊆ (H ∩ S)FF−1E = HF−1E. Thus, i)

and ii) follow easily.
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Corollary 2.5.4. If H,S are subgroups of G such that H ∼ S, then AH(G) and AS(G)

are isomorphic as right F2G-modules.

Proof. By Lemma 2.5.3, we conclude that a subset A of G is H-almost invariant if and

only if A is S-almost invariant. Then, A represents a class in AH(G) which we will

denote by [A]H and also a class in AS(G) which we will denote by [A]S . Therefore,

the map φ : AH(G) −→ AS(G) defined by φ([A]H) = [A]S is clearly an isomorphism

of vector spaces. Define the right action of G on each space as [A]Hg := [Ag]H and

[A]Sg := [Ag]S . Clearly, the map is right G-invariant.

2.6 Relative Ends of Pairs of Groups

Now, we would like to introduce an algebraic invariant of the pair (G,H), for an arbitrary

group G with a subgroup H, first formally introduced by Kropholler and Roller in [21].

In this section, we discuss its properties and compare it to the other end invariants.

As the reader has probably guessed,

Definition 2.6.1 ([21], p. 200). Let H ≤ G be groups. The number of relative ends

is an invariant of the pair (G,H) given by the dimension of the vector space over F2 of

all equivalence classes of H-almost invariant subsets of G, namely,

ẽ(G,H) = dimF2AH(G)

Note that, when H = {1}, FH(G) = F(G) and G/H = G. Hence,

ẽ(G, 1) = e(G, 1) = e(G).

Q. What does it mean when ẽ(G,H) = 0?

Lemma 2.6.2. ẽ(G,H) = 0 if and only if |G : H| <∞.

Proof. If [G] 6= [∅], {[G], [∅]} ∼= F2 is a 1-dimensional subspace of AH(G). Then,

ẽ(G,H) = 0 ⇔ [G] = [∅] ⇔ G is H-finite ⇔ |G : H| <∞
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Q. Which values can ẽ(G,H) take?

Just as e(G,H), the invariant ẽ(G,H) can take any positive integer value. For the curious

reader, an example can be found in [21], Prop. 4.7.

Q. What is the relation between e(G), e(G,H) and ẽ(G,H)?

The next lemma is an extraction of lemmas in [21] whose proofs can be found there.

Lemma 2.6.3 ([21], Lem. 2.4, 2.5). Let H,S be subgroups of G.

i) if S ≤f H, then ẽ(G,H) = ẽ(G,S);

ii) if |G : H| =∞ and K ≤ H, then ẽ(G,K) ≤ ẽ(G,H);

iii) e(G,H) ≤ ẽ(G,H);

iv) if H is finitely generated and ẽ(G,H) is finite, then there exists a subgroup H0 of

finite index in H such that e(G,H0) = ẽ(G,H0) = ẽ(G,H).

Corollary 2.6.4. If |G : H| =∞, then e(G) ≤ ẽ(G,H).

Proof. In Lemma 2.6.3 (ii), take K = {1}.

As we can see by Lemma 2.6.3 (i), the number of relative ends ẽ(G,H) depends only on

the commensurability class of H. Another important result shows how this number can

restrict the embedding of H in CommG(H):

Theorem 2.6.5 ([21], Thm. 1.3). Let H ≤ G be finitely generated groups such that

H has infinite index in CommH(G). Then, ẽ(G,H) is either 1, 2, or ∞. In the case

ẽ(G,H) = 2, there are subgroups G0 and H0 of finite index in G and H respectively such

that H0 is normal in G0 and G0/H0 is infinite cyclic.

Therefore, if 3 ≤ ẽ(G,H) <∞, then H ≤f CommG(H).

2.7 The Kropholler conjecture

We are now familiar with all the definitions necessary to understand the conjecture that

motivated the Main Theorem. The Kropholler Conjecture was first proposed in the joint

work of Kropholler and Roller in [21]. They were interested to know whether there is an
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analogue of Stallings’ Theorem on ends of groups [30] for relative ends. They observed

that when G splits over H, the kernel of the restriction map

ResGH : H1(G,FH(G)) −→ H1(H,FH(G))

must be non-zero. The conjecture was that, for finitely generated groups H ≤ G, the

non-vanishing of this kernel would imply that G splits over a subgroup related to H.

As pointed out in a letter written by Kropholler to Dunwoody in January of 1988, the

non-vanishing of the aforementioned kernel is equivalent to the existence of an H-p.a.i.

subset A of G satisfying AH = A. The conjecture is discussed in [27] and the following

formal statement was provided:

The Kropholler Conjecture. Let G be a finitely generated group and H a subgroup

of G. If G contains an H-p.a.i. subset A such that AH = A, then G admits a non-trivial

splitting over a subgroup C which is commensurable with a subgroup of H.

The following is true:

Lemma 2.7.1 ([19], Lem. 2.4). If G splits non-trivially over a subgroup commensurable

with H then G contains an H-p.a.i. subset A such that AH = A.

Proof. Because of Lemma 2.5.3, assume G splits non-trivially over H. Then, G acts

(left) without global fixed points on a tree Γ transitively on the edges such that there is

an egde e with stabiliser H. The edge e separates the tree into two components X0, X1.

Consider X0 3 e. Take A = {g ∈ G | ge ∈ X0}. Then, gHe = ge ⇒ AH = A. Also, let

x ∈ G. Then,

A+Ax =
{
g ∈ G | ge ∈ X0 and gx−1e ∈ X1

}
∪
{
g ∈ G | ge ∈ X1 and gx−1e ∈ X0

}
=

{
g ∈ G | e belongs to the geodesic from ge to gx−1e

}
=

{
g ∈ G | g−1e belongs to the geodesic from e to x−1e

}
which is H-finite, since the geodesic is finite and H stabilises e. Also, A is H-proper

since it acts without fixed points. Therefore, A is an H-p.a.i. subset of G satisfying

AH = A.
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2.8 A cohomological argument for non-splittings of groups

In this section, we explain the relation between the cohomological argument involving the

kernel of the restriction map ResGH : H1(G,FH(G)) −→ H1(H,FH(G)) and the existence

of right H-invariant H-p.a.i subsets of G. Moreover, we show properties involving the

kernel.

Consider the canonical short exact sequence of right F2G-modules

0 −→ FH(G) −→ P(G) −→ P(G)

FH(G)
−→ 0

This sequence induces a long exact sequence in cohomology

0 −→ H0 (G,FH(G)) −→ H0 (G,P(G)) −→ H0

(
G,
P(G)

FH(G)

)
−→

−→ H1 (G,FH(G)) −→ H1 (G,P(G)) −→ . . .

We have that:

• H0 (G,FH(G)) ∼= FH(G)G = {∅} ∼= {0} ⊂ F2

• H0 (G,P(G)) ∼= P(G)G = {G, ∅} ∼= F2

• H0
(
G, P(G)
FH(G)

)
∼= AH(G)

• H1 (G,P(G))
[[4],p.67]

= H1
(
G, CoindG{1}F2

) Shapiro’s lemma∼= H1 ({1} ,F2) = {0}

Consequently, we obtain the following short exact sequence of vector spaces over F2:

0 −→ F2 −→ AH(G) −→ H1 (G,FH(G)) −→ 0

Remark 2.8.1. In Stallings’ paper [30], the number of ends of a finitely generated group

G is given in terms of H1(G,F2G) as

e(G) = 1 + dimF2H
1(G,F2G)

From the short exact sequence above, ẽ(G,H) can be given a similar definition:

ẽ(G,H) = 1 + dimF2H
1 (G,FH(G))
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Now, applying restriction maps of cohomology groups on the sequence above, we obtain

the following commutative diagram (D) of vector spaces over F2:

0 // F2
//

��

AH(G)
α //

r
��

H1 (G,FH(G)) //

ResGH
��

0

0 // FH(G)H // P(G)H
β //
(
P(G)
FH(G)

)H γ // H1 (H,FH(G)) // . . .

Denote K := α−1(kerResGH).

Lemma 2.8.2. dimF2K = dimF2kerResGH + 1.

Proof. From the exactness of Diagram (D), we know that kerα = {[G], [∅]} ∼= F2. Hence,

α(AH(G)) ∼= AH(G)/F2. Since α is a surjective morphism of vector spaces and kerResGH

is a subspace of H1(G,FH(G)), we obtain the result required.

Proposition 2.8.3. Suppose ẽ(G,H) > 0. If [B̃] ∈ K, then [B̃] = [B], where B is an

H-almost invariant subset of G satisfying BH = B. Moreover, if B is an H-almost

invariant subset of G satisfying BH = B, then [B] ∈ K.

Proof. If [B̃] ∈ {[G], [∅]}, then we are done. Therefore, assume B̃ is H-proper. We look

at Diagram (D) and see that

γ ◦ r([B̃]) = ResGH ◦ α([B̃]) = 0⇒ r([B̃]) ⊆ kerγ = imβ

Therefore,

r([B̃]) = β(B) = [B] ∈
(
P(G)

FH(G)

)H
for some B ∈ P(G)H , that is, BH = B. The image of r([B̃]) in

(
P(G)
FH(G)

)H
is an

equivalence class of all subsets of G satisfying: A ∈ r([B̃]) if and only if A+ B̃ is H-finite

and, ∀h ∈ H, Ah + A is H-finite. Therefore, B + B̃ is H-finite. By Lemma 2.4.5 (iii),

we have that [B] = [B̃] ∈ K ⇒ B is H-p.a.i.

Now, let B be an H-almost invariant subset of G satisfying BH = B. We know that

[B] ∈ AH(G). If B is not H-proper, then either [B] = [G] or [B] = [∅]. For either case,

[B] ∈ K. Then, assume B is H-p.a.i. From the fact that B is right H-invariant, we know

that B ∈ P(G)H . Moreover, β(B) = r([B]). Hence,

γ ◦ β([B]) = 0 ⇒ γ ◦ r([B]) = 0 ⇒ ResGH ◦ α([B]) = 0 ⇒ [B] ∈ K.
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Corollary 2.8.4. kerResGH 6= {0} if and only if G contains an H-p.a.i. subset B satis-

fying BH = B.

Proof. By Lemma 2.8.2, kerResGH 6= {0} ⇔ dimF2K ≥ 2. Since {[G], [∅]} is a 1-

dimensional subspace of K, by lemma 2.8.3 there must exist [B] ∈ K such that B is an

H-p.a.i. subset of G satisfying BH = B.

Q. What happens if we consider K with the binary operations ⊕, � as defined in Propo-

sition 2.4.9 for AH(G)?

Corollary 2.8.5. K is a subring of AH(G).

Proof. We already know that [G], [∅] ∈ K. Now, let [A], [B] ∈ K such that AH = A and

BH = B. By Lemmas 2.4.5 and 2.4.6, A + B and A ∩ B are H-almost invariant sets.

From set theory and the fact that H is a group, the following are also satisfied:

(A ∩B)H = A ∩B and (A+B)H = A+B.

By proposition 2.8.3, we conclude that [A ∩B], [A+B] ∈ K.

Corollary 2.8.6. If k = dimF2kerResGH < ∞, then there exist k H-l.i.p.a.i. subsets Bi

of G such that BiH = Bi for each i = 1, . . . , k.

Proof. We have seen that dimF2K = k+1. We also know that [G] ∈ K and [G]⊕[G] = [∅].

Thus, let
{

[G], [B̃1], . . . , [B̃k]
}

be a basis for K. Proposition 2.8.3 ensures there exist k

H-p.a.i. sets Bi satisfying BiH = Bi, where [Bi] = [B̃i] in K, for each i = 1, . . . , k.

Proposition 2.8.7. Let H,S be subgroups of G such that H ∼ S. Then, kerResGH
∼= kerResGS .

Proof. We assume S is a subgroup of finite index inH and we prove kerResGH
∼= kerResGS .

First, we consider the following setting: Let (DH) be the Diagram (D) with maps α, r, β, γ

respectively denoted by αH , rH , βH , γH . Then, if S is another subgroup of G, we fol-

low the steps to construct Diagram (D) to build Diagram (DS), with related maps

αS , rS , βS , γS .
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Let φ denote the isomorphism AH(G)
φ∼= AS(G) from Corollary 2.5.4.

From these considerations, we have the following diagram:

AH(G)
πH //

φ

��

AH(G)/F2
α̃H //

φ̃
��

H1 (G,FH(G))

AS(G)
πS // AS(G)/F2

α̃S // H1 (G,FS(G))

where F2
∼= {[G], [∅]}, the maps πH , πS are the canonical projection maps, the map φ̃ is

the isomorphism induced by φ and α̃H , α̃S are the isomorphisms induced respectively by

the surjective maps αH and αS . Therefore, it suffices to prove that

α−1H (kerResGH)
φ∼= α−1S (kerResGS )

since it implies that

πH(α−1H (kerResGH))
φ̃∼= πS(α−1S (kerResGS ))

and hence

α̃−1H (kerResGH)
φ̃∼= α̃−1S (kerResGS ),

the result follows.

We now prove the claim above:

Because of the definition of φ, we will use [A] to denote a class of H-almost invariant sets

in AH(G) and, without distinction, the class of S-almost invariant sets φ([A]) in AS(G).

Let [A] ∈ α−1H (kerResGH). By Proposition 2.8.3, we can choose A to be an H-almost

invariant subset of G satisfying AH = A, which implies AS = A. By Lemma 2.5.3, A is

an S-almost invariant subset of G satisfying AS = A. Hence, [A] ∈ α−1S (kerResGS ).

Now, let [A] ∈ α−1S (kerResGS ), such that A is an S-almost invariant subset of G satisfying

AS = A. By Lemma 2.5.3, A is H-almost invariant. Take F a finite subset of G such

that H = SF . Then,

AFH = ASFH = AH = ASF = AF

In additon, Lemma 2.4.5 (vi) gives us that AF is H-almost invariant and A + AF is

H-finite. Hence, [A] ∈ α−1H (kerResGH).

As a conclusion, if the kernel of the restriction mapResGH : H1(G,FH(G)) −→ H1(H,FH(G))

vanishes, then by Corollary 2.8.4 G does not contain an H-p.a.i. subset B satisfying
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BH = B and, by Lemmas 2.7.1 and 2.8.7, G does not split over any subgroup commen-

surable with H.

2.8.1 The singularity singG(H)

In Diagram (D), the image of ResGH is a singularity denoted by singG(H) and first defined

in [19] in the studies of the splittings of Poincaré duality groups under the assumption

that ẽ(G,H) = 2. In this setting, when singG(H) 6= {0}, the kernel of ResGH vanishes

and G does not split over any subgroup commensurable with H. When ẽ(G,H) > 2,

singG(H) loses its role as an obstruction to the splitting of G over H, but plays a different

part in the existence of right H-invariant H-p.a.i. subsets of G. The next results are a

generalisation of Lemmas 2.2 and 2.3 in [19] when ẽ(G,H) = n, for 2 ≤ n <∞.

Proposition 2.8.8. Let ẽ(G,H) = n, 2 ≤ n <∞. The following are equivalent:

(i) singG(H) = 0;

(ii) There exist n-1 H-l.i.p.a.i. subsets Bk of G such that, for each k = 1, . . . , n − 1,

BkH = Bk.

Proof. We see that singG(H) = 0 if and only if dimF2kerResGH = n− 1.

(i)⇒ (ii): Follows from Corollary 2.8.6.

(ii)⇒ (i): We know that H1(G,FH(G)) ∼= AH(G)/F2 ⇒ dimF2kerResGH ≤ n− 1. On

the other hand, Proposition 2.8.3 gives us that the existence of such subsets Bk implies

that dimF2kerResGH ≥ n− 1.

Lemma 2.8.9. Assume ẽ(G,H) = n, 2 ≤ n <∞. Let H,S be commensurable subgroups

of G. Then, singG(H) = 0 if and only if singG(S) = 0.

Proof. Follows from Proposition 2.8.7.

2.9 A special basis for K

In this section, we start to shape the Main Theorem. As mentioned in the introduction,

this part of my work started with Peter Kropholler’s suggestion to try to generalise the

results of his joint paper with Roller [19] for the case when ẽ(G,H) = 3. It turned out

that some results can be generalised for 2 ≤ ẽ(G,H) <∞ and the hypothesis on H can
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be weakened. More specifically, let H ≤ G be finitely generated such that H satisfies

(i) H ≤f CommG(H) and (ii) a condition called Property P. In this section we prove the

following:

Proposition 2.9.1. Suppose dimF2K = k + 1. Let A1, . . . , Ak be pairwise disjoint

H-l.i.p.a.i. subsets of G\H satisfying AiH = Ai, i = 1, . . . , k. For any g ∈ G, i, j ∈ {1, . . . , k},

the pair {Ai, gAj} is nested.

This result is a general version of

Lemma 2.9.2 ([19], Lem. 4.3). Let H be a Poincaré duality subgroup of a finitely gen-

erated group G with ẽ(G,H) = 2 and H = CommH(G). Let B be an H-p.a.i. subset of

G\H such that BH = B. Then, ∀g ∈ G, the pair {B, gB} is nested.

Q. What is nested?

Definition 2.9.3. We say that a pair {A,B} of subsets of G is nested if one of the

following inclusions hold:

• A ⊆ B • Ac ⊆ B • A ⊆ Bc • Ac ⊆ Bc

Q. What is Property P?

Definition 2.9.4. Let H be a subgroup of G. The subgroup H satisfies Property P if,

∀g ∈ G, if gH is H-finite, then g ∈ CommG(H).

The Property P is satisfied by Poincaré duality subgroups ([19], Lem. 4.1 (i)).

Note that the converse is always true, that is, if g ∈ CommG(H), then gH is H-finite.

Indeed, gHg−1 ∼ H. Hence,

gHg−1 ∩H ≤f gHg−1 ⇒ gHg−1 = (gHg−1 ∩H)F, for some finite subset F of G

⇒ gHg−1 ⊆ HF ⇒ gH ⊆ HFg

⇒ gH is H-finite

Q. And why does H have finite index in CommG(H)?

We recall from Theorem 2.6.5 that, if 2 < ẽ(G,H) <∞, then H ≤f CommG(H). When

ẽ(G,H) = 2, Proposition 2.9.1 is answered by Lemma 2.9.2, in which proof it suffices

that H satisfies (i) H ≤f CommG(H) and (ii) Property P.
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Lemma 2.9.5. If H ≤f CommG(H) and H satisfies Property P, then CommG(H)

satisfies Property P.

Proof. We know that H ∼ CommG(H). Then, for g ∈ G,

gHg−1 ∼ H ⇔ gCommG(H)g−1 ∼ CommG(H)

⇒ CommG(CommG(H)) = CommG(H).

Let g ∈ G such that gCommG(H) is CommG(H)-finite. Then, gCommG(H) is H-finite

⇒ gH is H-finite ⇒ g ∈ CommG(H).

The goal of our Main Theorem is to obtain a splitting of G over a subgroup commensu-

rable with H. Therefore, w.l.o.g., for all further results we assume H = CommG(H).

To summarize, in light of the above these are the conditions we will assume from now

on:

• 2 ≤ ẽ(G,H) <∞,

• H = CommG(H),

• H satisfies Property P.

A subset A of G is an H-p.a.i. subset of G\H if A is an H-p.a.i. subset of G such that

A ∩H = ∅.

Q. Why do we consider H-p.a.i. subsets of G\H?

This choice is a technicality which will turn out to be useful when picking a basis for K

with pairwise disjoint representatives. Hopefully, it will be made clear later on.

Lemma 2.9.6. Suppose A,B are subsets of G\H such that AH = A and BH = B. If

A+B is H-finite, then A = B.

Proof. Let g ∈ A + B. Then, gH ⊆ (A + B)H = A + B. Hence, if A + B is H-finite,

so is gH. By Property P, we know that g ∈ H, which is a contradiction. Therefore,

A+B = ∅ ⇒ A = B.

We write A∗ for the subset (G\H)\A.
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Remark 2.9.7. Suppose A,B ⊆ G\H = Hc. Then,

• A∗ = Hc +A;

• (Ac)∗ = Hc\Ac = Hc ∩A = A;

• (A∗)c = G+A∗ = G+ (Hc ∩Ac) = G+ (H ∪A)c = A ∪H = A+H;

• Ac = (Ac ∩H) + (Ac ∩Hc) = (Ac ∩H) +A∗ = H +A∗;

• if h ∈ H, then (Ah)∗ = Ah+Hch = (A+Hc)h = A∗h and the same follows with

(hA)∗;

• (A+B)∗ = A+B +Hc = A∗ +B = A+B∗.

Suppose dimF2K = k+ 1. By Corollary 2.8.6, there exist k H-l.i.p.a.i subsets A1, . . . , Ak

of G such that AiH = Ai for each i = 1, . . . , k. Explicitly, we have that

K = SpanF2
{[A1], . . . , [Ak], [G]}

However, each representative Ai can be chosen as a subset in G\H. Indeed,

Ai + (Ai ∩Hc) = (Ai ∩G) + (Ai ∩Hc) = Ai ∩ (G+Hc) = Ai ∩H ⊆ H

which is H-finite. By Lemma 2.4.5 (iii), [Ai] = [Ai\H]. Moreover, (Ai∩Hc)H = Ai∩Hc.

Therefore, we can write K as the spanned set of {[A1\H], . . . , [Ak\H], [G\H]}. Further-

more, as consequence of Proposition 2.8.3 and Lemma 2.9.6, if A is anH-almost invariant

subset of G\H satisfying AH = A, then A ∈ SpanF2
{A1\H, . . . , Ak\H,G\H}.

We say A1, . . . , Ak are H-l.i.p.a.i. subsets of G\H if A1, . . . , Ak are H-p.a.i. subsets of

G\H and [A1], . . . , [Ak] are linearly independent in AH(G).

Given k right H-invariant H-l.i.p.a.i. subsets of G, we can always find H-l.i.p.a.i. subsets

A1, . . . , Ak of G\H such that AiH = Ai for each i = 1, . . . , k. We denote

K∗ = SpanF2
{A1, . . . , Ak, G\H}

Clearly, if dimF2K = k + 1, then K and K∗ are isomorphic vector spaces over F2 and

dimF2K = dimF2K∗
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Note that, by Lemma 2.9.6, K∗ is uniquely defined, that is, if A is an H-almost invariant

subset of G satisfying AH = A and A ∩H = ∅, then A ∈ K∗.

Proposition 2.9.8. Suppose dimF2K = k + 1. There exist pairwise disjoint H-l.i.p.a.i.

subsets A1, . . . , Ak of G\H such that AiH = Ai, i = 1, . . . , k.

Proof. By Corollary 2.8.6, there exist H-l.i.p.a.i. subsets A1, . . . , Ak of G, which we have

seen that can be chosen in G\H, such that AiH = Ai, i = 1, . . . , k. When k = 1, the

proposition clearly holds.

We prove it by induction on k. Suppose A1, . . . , Ak−1 can be chosen to be pairwise

disjoint. Let I = {1, . . . , k − 1} and I ′ a subset of I containing every i ∈ I such that

Ak ∩Ai = Ai. We can take

A′k := Ak +
∑
i∈I′

Ai = Ak\
⋃̇
i∈I′

Ai (Step S)

Therefore, we may assume the sets A1, . . . , Ak satisfy, in addition, the following:

Ak ∩Ai 6= Ai, ∀i ∈ I.

Below, we study two cases:

1) If Ak ⊂
∑
i∈I
Ai, then take

A′k := Ak ∩Ai and A′i := Ai\A′k = Ai +A′k,

for some i ∈ I with non-trivial intersection. Note that, if A′k is a linear combination

of A1, . . . , Ak−1, G\H, then A′k ∩ Ai is either Ai or ∅. In either case, we have a

contradiction with our previous assumptions. Therefore, we find new H-l.i.p.a.i. right

H-invariant sets

A1, . . . , Ai−1, A
′
i, Ai+1, . . . , Ak−1, A

′
k

which are pairwise disjoint.

2) If A∗k ⊂
∑
i∈I
Ai, then take A′k := A∗k. If necessary, we apply Step S to obtain new

H-l.i.p.a.i. sets and we are in case (1) again.

Finally, we may additionally assume that Ak does not satisfy cases (1) and (2).

For each j ∈ I, denote Dj := Ak ∩ Aj and let i ∈ I such that Di 6= ∅. Knowing that
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Di ∈ K∗, we write

Di = B + λiAi + λkAk + λHc,

where λi, λk, λ ∈ F2 and B is a linear combination of A1, . . . , Ai−1, Ai+1, . . . , Ak−1. For

the remaining proof, we show that, for any coefficients in F2 = {0, 1} satisfied by λi, λk, λ,

we will end up in a contradiction with our assumptions.

If B = ∅, then either Di = ∅, Di = Ai, Di = Ak or Di = A∗k +Ai ⇒ A∗k ⊂ Ai. In either

case, we have a contradiction with the previous assumptions. Suppose then that B 6= ∅.

• λ = 0: We know that B∩Ai = ∅ and Di ⊂ Ai. Hence, B ⊂ λkAk. Since B 6= ∅, we

must have λk = 1. But B ⊂ Ak ⇒ Ak ∩Aj = Aj for some j ∈ I, contradiction.

• λ = 1:

– if λk = 1, then

Di = B + λiAi +A∗k ⊂ Ak ⇒ A∗k ⊂ B + λiAi,

contradiction (case (2));

– otherwise, λk = 0. Then,

Di = B∗ + λiAi ⊂ Ak ⇒ A∗k ⊂ B + λiAi,

which, again, is a contradiction (case (2)).

Therefore, Di = ∅, ∀i ∈ I.

Lemma 2.9.9. Suppose X,Y are H-p.a.i. subsets of G satisfying XH = X, Y H = Y

and let x ∈ Xc ∩ (Y c)−1. Then, X ∩ xY ∈ K∗.

Proof. Let D = X ∩ xY . The fact that DH = D is clear. Also,

D ∩H 6= ∅ ⇒ xY ∩H 6= ∅ ⇒ Y ∩ x−1H 6= ∅ ⇒ Y ∩ Y cH = Y ∩ Y c 6= ∅

which is a contradiction. Thus, D ⊂ G\H. Now, let g ∈ G. We use the Kropholler

corner (Lemma 2.4.6) to decompose D +Dg in the following way:

D +Dg = (X ∩ xY ) + (X ∩ xY )g = (X ∩ xY ) + (Xg ∩ xY g)

= [(X +Xg) ∩ xY ] + [(xY + xY g) ∩Xg]
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Clearly, (X +Xg) ∩ xY is H-finite. Now,

Xg ∩ (xY + xY g) = Xg ∩ x(Y + Y g) ⊆ Xg ∩ xHF, for some finite subset F of G

⊆ Xg ∩XcHF = Xg ∩XcF

=
m⋃
i=1

(Xg ∩Xcfi) =
m⋃
i=1

(Xg ∩ (Xfi)
c), fi ∈ F

=
m⋃
i=1

(Xg\Xfi) ⊆
m⋃
i=1

(Xg +Xfi)

=
m⋃
i=1

(Xgf−1i +X)fi︸ ︷︷ ︸
H-finite

Hence, D is H-almost invariant. By Lemma 2.9.6, D ∈ K∗.

Lemma 2.9.10. If A is an H-p.a.i. subset of G\H satisfying AH = A, then the same

holds for A∗.

Proof.

A∗H = (Hc ∩Ac)H ⊆ HcH ∩AcH = Hc ∩Ac = A∗.

Clearly, A∗ ⊆ A∗H. Also, if A∗ = Hc∩Ac is H-finite, so is Ac = A∗+(H∩Ac) ⊆ A∗∪H,

contradiction. Moreover, (A∗)c = A ∪H is clearly not H-finite. Furthermore, ∀ g ∈ G,

A∗ +A∗g = (Hc ∩Ac) + (Hcg ∩Acg)

= (Hc +Hcg) ∩Ac + (Ac +Acg) ∩Hcg

= (H +Hg) ∩Ac + (A+Ag) ∩Hcg

⊆ H ∪Hg ∪ (A+Ag)

which is H-finite.

Lemma 2.9.11. Let k = dimF2K+1 and define K = {h ∈ H | hX = X}, where X ∈ K∗.

Then, |H : K| ≤ 2k.

Proof. Clearly, K is a subgroup of H. If h ∈ H, hX is a right H-invariant H-almost

invariant subset of G\H. By lemma 2.9.6, hX = Y for some Y ∈ K∗. If X = ∅ or

X = G\H, then K = H. Suppose then X is H-proper. For each Y ∈ K∗, fix hY ∈ H

such that hYX = Y (hY might not exist for every Y ). Then,

h = hY h
−1
Y h and h−1Y hX = h−1Y Y = X ⇒ h ∈ hYK.
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Therefore, K has index at most |K| = 2k in H.

Lemma 2.9.12. Suppose dimF2K < ∞. Let x ∈ G\H and Y an H-p.a.i subset of G

satisfying Y H = Y . If xY ⊆ Z for some Z ∈ K∗, then x ∈ Z.

Proof. Let g ∈ Y ′ = Y ∩Hc. By lemma 2.9.6, we know that Y ′ ∈ K∗. TakeK = {h ∈ H | hY ′ = Y ′}.

We have that

Kg ⊆ Y ′ ⇒ xKg ⊆ xY ′ ⊆ xY ⊆ Z.

If x ∈ Z∗, then

xKg = xKg\Z∗ ⊆ xHg\Z∗ ⊆ Z∗g\Z∗ ⊆ Z∗g + Z∗

which is H-finite. By lemma 2.9.11, K ≤f H. Then, xK ⊆ HF1 for some finite subset

F1 in G and, for some finite subset F2 in H, we have that xH = xKF2 ⊆ HF1F2 ⇒ xH

is H-finite. But, by Property P and the assumption that H = CommG(H), we have that

x ∈ H, contradiction. Therefore, x ∈ Z.

Lemma 2.9.13. Let X,Y be H-l.i.p.a.i. subsets of G\H satisfying XH = X and

Y H = Y . For any x ∈ G\H, the pair {X,xY } is nested.

Proof. Consider the following partition of G\H:

P1 = X ∩ Y −1 P2 = X ∩ (Y ∗)−1 P3 = X∗ ∩ Y −1 P4 = X∗ ∩ (Y ∗)−1

(It is not difficult to show that, given any subset M of G, (M∗)−1 = (M−1)∗). Let

x ∈ P1. Then, we define the set D1 := Xc ∩ xY c. For x ∈ Pi, for each i = 2, 3, 4, we

similarly define a corresponding set Di. Thus, we have:

D1 := Xc ∩ xY c D2 := Xc ∩ xY D3 := X ∩ xY c D4 := X ∩ xY

Clearly, D3 ∩ H = ∅ and D4 ∩ H = ∅. If D1 ∩ H 6= ∅, then xY c ∩ H 6= ∅ ⇒

Y c ∩ x−1H 6= ∅ ⇒ Y c ∩ Y H = Y c ∩ Y 6= ∅, contradiction. Similarly, we show

D2 ∩ H = ∅. Hence, by Lemmas 2.9.6 and 2.9.9, we see that each Di ∈ K∗. Since X

is H-proper, we know that Di 6= G\H. For each i = 1, 2, 3, 4, if Di = ∅, we have the

corresponding nesting cases:

1) xY c ⊆ X 2) xY ⊆ X 3) xY c ⊆ Xc 4) xY ⊆ Xc
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We prove that D1 and D4 cannot be any other element in K∗ except ∅. The same proof

will follow for D2 and D3.

• Suppose D1 6= ∅. Then, D1 ⊆ xY c = xY ∗ ∪̇ xH. But

D1 ∩ xH ⊆ D1 ∩X ⊆ Xc ∩X = ∅.

Hence, x−1D1 ⊆ Y ∗. By Lemma 2.9.12, x−1 ∈ Y ∗ ⇒ x ∈ (Y ∗)−1 = (Y −1)∗,

which is a contradiction, because we took x ∈ Y −1.

• Suppose D4 6= ∅. Then, D4 ⊆ xY ⇒ x−1D4 ⊆ Y . By Lemma 2.9.12, x−1 ∈ Y ⇒

x ∈ Y −1, which is not possible, since x ∈ (Y ∗)−1 = (Y −1)∗.

Proof of Proposition 2.9.1. By Lemma 2.9.13, if g /∈ H, we know that the pair {Ai, gAj}

is nested. Suppose then g ∈ H. We have seen before that gAj is H-p.a.i. Moreover,

gAjH = gAj and gAj ⊂ H.Hc = Hc. Hence, gAj ∈ K∗. Thus:

gAj = λ1A1 + . . .+ λkAk + λHc

where λ1, . . . , λk, λ ∈ F2 = {0, 1}. Suppose λ = 0. Because A1, . . . , Ak are pairwise

disjoint, any sum of those sets is a disjoint union. Therefore, if λi = 1, then Ai ⊆ gAj .

Otherwise, gAj ⊂ Aci .

Now, suppose λ = 1. If λi = 1, then,

gA∗j = λ1A1 + . . .+ λi−1Ai−1 +Ai + λi+1Ai+1 + . . .+ λkAk

which implies Ai ⊂ gA∗j ⊂ gAcj . Otherwise, λi = 0, and

gA∗j = λ1A1 + . . .+ λi−1Ai−1 + λi+1Ai+1 + . . .+ λkAk ⊂ A∗i

⇒ Ai ⊂ gAj
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2.10 Building a cubing

In this section, we describe the construction of a CAT(0)-cube complex, which we will

refer as a cubing. This construction was given in details by Sageev in [28]. We will be

interested in building the 1-skeleton of such complex and studying the conditions for the

existence of squares. To the engaged reader curious in learning more about the details

of attaching n-cells and preserving the non-positively curved condition of the cubing, we

suggest reading [28]. We will leave such details out of the thesis and focus on the results

that will help us prove the Main Theorem.

Let H ≤ G be groups. In [28], the first step for the construction of a cubing is to assume

that e(G,H) ≥ 2. By Theorem 2.4.1, it implies that G contains an H-p.a.i. subset

satisfying HA = A. Then, one defines

Σ = {gA, gAc | g ∈ G} ,

a partially ordered set whose combinatoric properties will be captured in the cubing,

which we will denote by X. There exists an action of G on X which is defined as

essential with respect to a hyperplane. If X is a tree, then G acts essentially on X if G

acts without global fixed points on X transitively on the edges such that there is an egde

e with stabiliser H, which is exactly what defines a splitting of G over H.

In our setting, we will have a slightly different start. We consider dimF2K < ∞ and

we assume that G contains an H-p.a.i. subset satisfying AH = A, not necessarily left

H-invariant. With this H-p.a.i. subset A we define Σ just as above. The construction of

X will follow exactly the same steps of Sageev’s construction and such choice of Σ will

require only small adjustments further on.

2.10.1 Vertices and Edges

Definition 2.10.1. A vertex V of X is a subset of Σ satisfying the following conditions:

1. For all B ∈ Σ, exactly one of B,Bc is in V .

2. If B ∈ V, C ∈ Σ and B ⊆ C, then C ∈ V .

The set of all vertices is denoted by V̂.
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Example 2.10.2. Given g ∈ G, it is easily seen that the set Vg = {B ∈ Σ | g ∈ B} is a

vertex of X. Furthermore, if x ∈ G, the action of G on Vg is given by

xVg = {xB ∈ Σ | g ∈ B}

= {xB ∈ Σ | xg ∈ xB}

= {B ∈ Σ | xg ∈ B}

= Vxg (2.1)

Definition 2.10.3. An edge e is defined by a pair (V,W ) of vertices in V̂ such that

|V \W | = |W\V | = 1. In other words, there exists B ∈ V such that W = (V \ {B}) ∪

{Bc}. This set W is denoted by (V ;B). The set of all edges is denoted by Ê.

Lemma 2.10.4. Suppose V is a vertex of X and B ∈ V . Then, (V ;B) is a vertex of X

if and only if B is minimal with respect to inclusion in V . Moreover, Bc is minimal in

(V ;B).

Proof. If B is not minimal in V , then one can find C ⊂ B, C ∈ V and, hence, C ∈ (V ;B).

By definition of vertex, B ∈ (V ;B), which is an absurd. If B is minimal, it is not

difficult to see that (V ;B) satisfies the conditions to be a vertex given that V is a vertex.

Now, let (V ;B) be a vertex and suppose there exists D ∈ (V ;B) such that D ⊂ Bc.

Then, B ⊂ Dc ⇒ Dc ∈ V , by definition of vertex. Hence, |V \(V ;B)| = 2, which is a

contradiction with the definition of edge.

Therefore, if e is an edge with vertices V and (V ;B), if we let (V ;B) = W , then e is an

edge with vertices W and (W ;Bc).

Q. Are the edges oriented?

One can define an orientation to an edge e ∈ Ê : the starting point of e is (V ;B) and its

end point is V . We say that e exits B. The edge ē is the edge defined by the same pair

of vertices V and (V ;B), but with opposite orientation. Then, ē exits Bc.

Q. What happens when g acts on an edge, for some g ∈ G?

If e is an edge defined by a pair of vertices (V,W ), then the edge ge is defined by the

pair of vertices (gV, gW ). Since the action of G on vertices only translates the sets in

V , if B is minimal in V then gB is minimal in gV . Therefore, if e exits B, then ge exits

gB.



Chapter 2 Relative ends and splittings of groups 59

Q. What does the right H-invariance of A imply in the action of G on X?

Proposition 2.10.5. H fixes a point in X.

Proof. Take V1 = {B ∈ Σ | 1 ∈ B}. Clearly, V1 6= ∅, since 1 ∈ xA, ∀x ∈ A−1. Since

AH = A, we have that, ∀a ∈ A, h ∈ H

ah ∈ A ⇔ h−1a−1 ∈ A−1

which implies HA−1 = A−1. Similarly, H(Ac)−1 = (Ac)−1. Hence, if h ∈ H and

xA ∈ V1, we know that

x ∈ A−1 ⇒ hx ∈ A−1 ⇒ 1 ∈ hxA⇒ hxA ∈ V1.

If h ∈ H and xAc ∈ V1, then

x ∈ (Ac)−1 ⇒ hx ∈ (Ac)−1 ⇒ 1 ∈ hxAc ⇒ hxAc ∈ V1.

Therefore, HV1 ⊆ V1. Clearly, V1 ⊆ HV1. Therefore, H fixes V1.

Notation: Let C be minimal in (V ;B). Then, ((V ;B)\ {C}) ∪ {Cc} is denoted by

(V ;B,C).

Q. Do V̂ and Ê compose the 1-skeleton of X then?

No, because we want a connected 1-skeleton. Thus, only a subset of both will be consid-

ered. Given two vertices V,W ∈ V̂, we say that they are joined by an edge-path if there

exists a finite sequence of vertices V = V1, . . . , Vn = W such that (Vi, Vi+1) are pairs of

vertices defining edges ei ∈ Ê for all i = 1, . . . , n− 1.

Now, let V be the subset of V̂ such that V ∈ V if there exists an edge-path from V to

Vg, for some g ∈ G. Let E be the set of edges in Ê that have both endpoints in V. The

1-skeleton X(1) of X is the graph (V, E).

Theorem 2.10.6 ([28], Thm. 3.3). X(1) is connected.

The idea of the proof is to show that, ∀g1, g2 ∈ G, the vertices Vg1 and Vg2 are joined by

an edge-path. In order to prove that, a necessary step is to show that Vg14Vg2 is finite.

Lemma 2.10.7. For any g1, g2 ∈ G, the set Vg1 4 Vg2 is finite.
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Proof.

Vg1 4 Vg2 = {B ∈ Σ | B ∈ Vg1 and B /∈ Vg2} ∪ {B ∈ Σ | B ∈ Vg2 and B /∈ Vg1}

= {B ∈ Σ | g1 ∈ B and g2 ∈ Bc} ∪ {B ∈ Σ | g2 ∈ B and g1 ∈ Bc}

= {gA | g1 ∈ gA, g2 ∈ gAc}︸ ︷︷ ︸
Y1

∪{gAc | g1 ∈ gAc, g2 ∈ gA}︸ ︷︷ ︸
Y2

and it suffices to prove that Y1 is finite.

gA ∈ Y1 ⇔ g1 ∈ gA, g2 ∈ gAc ⇔ g−1 ∈ Ag−11 ∩A
cg−12

⇔ g−1 ∈ (A ∩Acg−12 g1)g
−1
1 = A\Ag−12 g1 ⊆ A+Ag−12 g1︸ ︷︷ ︸

H-finite

Therefore, g−1 ∈ Hx1 ∪ . . . ∪Hxn ⇒ g ∈ x−11 H ∪ . . . ∪ x−1n H for some xj ∈ G. Let

K = {h ∈ H | hA = A}

By lemma 2.9.11, K ≤f H. Since kA = A, ∀k ∈ K, and H = FK, for some finite set F

in H, then

x−11 H ∪ . . . ∪ x−1n H = x−11 FK ∪ . . . ∪ x−1n FK

If g1, g2 ∈ x−1i fK for some f ∈ F , then g1A = x−1i fA = g2A. Therefore, there is a finite

choice of gA in Y1.

Q. How does one build higher dimensional skeletons of X?

Informally, to build the higher dimensional skeletons of X, an n-cube is glued whenever

the boundary of an n-cube appears in X(n−1) and the cube complex is built inductively.

The formal details of such construction are left out of this thesis, because our interest

will revolve on the existence of squares in X.

2.10.2 Squares

A 2-cube (or a square) is given by
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tV t(V ;B)

t
(V ;C)

t
(V ;B,C) = (V ;C,B)

<

<

∧ ∧

We say (V, {B,C}) spans the square above. As consequence to the existence of such

square, the following conditions are satisfied:

1) B,C are minimal in V ,

2) B is minimal in (V ;C),

3) C is minimal in (V ;B).

Lemma 2.10.8. (V ; {B,C}) spans a square if and only if B 6= C are minimal in V and

Bc 6⊂ C. Moreover, if B,C are nested then (V ; {B,C}) does not spans a square.

Proof. Given condition 1, note that B is minimal in (V ;C) if and only if Cc 6⊂ B and

C is minimal in (V ;B) if and only if Bc 6⊂ C. If B,C are distinct minimal sets in V ,

then (V ;B), (V ;C) exist. Also, Bc 6⊂ C ⇒ B,C are minimal in (V ;C) and (V ;B)

respectively. Therefore, (V ;B,C) = (V ;C,B) exists. Furthermore, the existence of the

square implies that

• B 6⊂ C and C 6⊂ B, otherwise it would contradict the minimality of B and C in V

(since B,C are distinct);

• B 6⊂ Cc (or equivalently C 6⊂ Bc), otherwise Cc and Bc would be in V , which

contradicts the definition of vertex;

Therefore, B and C are not nested.

Q. What about n-cubes, n ≥ 3? How do they look like?

Each 2-dimensional face of an n-cube, for n ≥ 3, is a picture similar to the square above

spanned by (V ; {B,C}) with distinct spanning sets. We illustrate that with the picture

below of a 3-cube (or cube):
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tV t(V ;C)

t
(V ;D)

t
(V ;C,D)

t(V ;E)

t
(V ;D,E)

t(V ;C,E)

t
(V ;C,D,E)

�
�
�

�
�
�

�
�
�

Note that, in order to an n-cube to exist, we need each square of this n-cube to exist.

Next two lemmas describe n-cubes and the conditions for their existence:

Lemma 2.10.9 ([28], Lem. 3.5). Suppose C is an n-cube in X having V as a vertex with

neighbouring vertices (V ;B1), . . . , (V ;Bn). Let V ′ be the vertex diagonally opposite to V

in C. Then, V ′ = (V ;1 , . . . , Bn).

We say that the n-cube described by this lemma is spanned by (V ; {B1, . . . , Bn}).

Lemma 2.10.10 ([28], Lem. 3.6). Suppose V is a vertex and S = {B1, . . . , Bn} ⊂ V .

Then, (V ;S) spans an n-cube in X if and only if Bi 6= Bj, each Bi is minimal in V and

Bc
i 6⊂ Bj for all i, j ∈ {1, . . . , n}.

The proof that X is a cubing is found in [28], Thm 3.7.

2.10.3 Hyperplanes

In trees, the geometric concept of a hyperplane is the midpoint of each edge. In this

section, we work with combinatorial hyperplanes, defined as an equivalence class of edges.

The geometric definition will be provided, but all the results will revolve the first one.

We will better understand the action of G on X by studying the action of G on the

hyperplanes of X and, finally, show that G acts essentially on X with respect to a

hyperplane.

Q. Whats is a hyperplane?

We say two edges e, f are equivalent if there exists a finite sequence of edges e =

e1, . . . , en = f such that for each i = 1, . . . , n − 1, ei, ei+1 are opposite sides of the

same square, oriented in the same direction.
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tV t(V ;B)

t
(V ;C)

t
(V ;B,C) = (V ;C,B)

<

<

∧e ∧f

Definition 2.10.11. A combinatorial hyperplane J is an equivalence class of edges.

If e is an edge in J , then J̄ is the hyperplane consisting of edges equivalent to ē.

Clearly, each edge defines a unique combinatorial hyperplane.

Q. What is a geometric hyperplane?

To each pair of hyperplanes (J, J̄) in X there exists a geometric definition of hyperplane

equivalent to the pair (J, J̄).

Definition 2.10.12. Given a combinatorial hyperplane J , the geometric hyperplane

related to (J, J̄) is the collection of the intersection of each n-cube in X containing edges

in J with a 1-codimensional hyperplane in Rn crossing the midpoints of those edges.

See the line in the middle of the square below to better illustrate the definition:

tV t(V ;B)

t
(V ;C)

t
(V ;B,C) = (V ;C,B)

<

<

∧e ∧f

Unless stated otherwise, every further reference of a hyperplane will assume the definition

of a combinatorial hyperplane.

Definition 2.10.13. A hyperplane J crosses an edge-path in X if there exists an edge

e in the path such that e ∈ J .

Definition 2.10.14. A geodesic in X from vertex V to vertex W is an edge-path from

V to W containing the smallest number of edges among all possible edge-paths from V

to W . We use the notation geod[V,W ].
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Note that a geodesic is not necessarily unique. Just consider a square spanned by

(V ; {B,C}). There are two edge-paths of same length from V to (V ;B,C).

Lemma 2.10.15 ([28], 3.8). Suppose V,W are two vertices of X. Let α = geod[V,W ]

consisting of edges e1, . . . , en arranged as follows:

t
V = V0

<
e1 t

V1

<
e2 t

V2

. . . t
Vn−2

<
en−1 t

Vn−1

<
en t
Vn = W

where Vi = (Vi−1;Bi) for i = 1, . . . , n and some Bi ∈ Σ. Then, the set {B1, . . . , Bn, B
c
1, . . . , B

c
n}

is a set of distinct elements.

Proof. We use induction on the number of edges (length) of α. If n = 1, then the

proof is trivial. Now, suppose the lemma is true for m < n. The edge-path from V

to Vn−1 is clearly a geodesic. Then,
{
B1, . . . , Bn−1, B

c
1, . . . , B

c
n−1
}

is a set of distinct

elements. Suppose Bn = Bi for some 1 ≤ i ≤ n − 1. We know that Bn is minimal

in Vn−1 and also in Vi−1. Since, Vi = (Vi−1;Bi), we see that Bi /∈ Vi. Therefore, if

Bn = Bi, there must exits i < j < n such that Bj = Bc
i , contradiction. Assume then

that Bn = Bc
i , minimal in Vn−1. Suppose Bc

i is not minimal in Vj but minimal in Vj+1

for some n − 1 > j > i. Then, Bj+1 ⊆ Bc
i , which is equivalent to Bi ⊆ Bc

j+1. But

by definition of a vertex in X, Bc
j+1 ∈ V , contradiction, since Bj+1 ∈ V . Therefore,

Bc
i is minimal in Vj , i ≤ j ≤ n − 1. Hence, for i + 1 ≤ l ≤ n − 2, the vertices

(Vl;B
c
i ) and (Vl;Bl+1) exist. Moreover, Bi 6⊂ Bl+1 because Bi, Bl+1 are minimal in

V . By Lemma 2.10.8, each (Vl; {Bc
i , Bl+1}) spans a square. Therefore, the sequence

of vertices V0, V1, . . . , Vi−2, Vi−1 = (Vi;B
c
i ), (Vi+1;B

c
i ), . . . , (Vn−2;B

c
i ), (Vn−1;B

c
i ) = Vn

generates another path from V to W whose length is smaller than the length of α, which

is a contradiction since α is a geodesic.

Lemma 2.10.16 ([28], 3.9). Suppose J is a hyperplane of X. Then, there exists an

B ∈ Σ such that, for every e ∈ J , e exits B. Moreover, every edge which exits B lies in

J .

Proof. Let e0 be an edge in J and B the set which e0 exits. Let e be another edge in J . By

the definition of hyperplane, there exists a sequence of edges e0, e1, . . . , en = e such that

for each i = 0, . . . , n− 1, ei, ei+1 are opposite sides of the same square in X, with same

orientation. Using induction on n, if n = 1, then, by the construction of a square seen

before, let e0 be the edge exiting B given by the pair of vertices ((V ;B), V ). Then, for

some B′ ∈ Σ, e1 is the edge exiting B given by the pair of vertices ((V ;B′, B), (V ;B′)).
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Now, by induction, suppose en−1 exits B. Again, being en an edge opposite to en−1 in a

same square, with same orientation, by the construction of a square we see that en exits

B.

Now, let e be an edge in X which exits B and let e0 be an edge in J . Take a geodesic

path α from the tail of e0 denoted by V0 to the tail of e denoted by W . Both edges exit

B. Thus, we have the following picture:

t
(V0;B)

>
e0 t

V0 = V
<
e1 t

V1
<
e2 t

V2

. . . t
Vn−2

<
en−1 t

Vn−1
<
en t
Vn = W

<
e t

(W ;B)

where Vi = (Vi−1;Bi) for i = 1, . . . , n and Bi ∈ Σ. (Observe that if B1 = B, then

Bi = Bc for some i = 1, . . . , n − 1, since B ∈ W . By Lemma 2.10.15, Bc
i 6= B1 if

α is a geodesic. Similarly, if Vn−1 = (W ;B), then Bn = Bc and Bi = B for some

i = 1, . . . , n− 1. Again, by Lemma 2.10.15, Bc
n 6= Bi if α is a geodesic.)

Suppose n = 1. We see that B1, B are minimal in V and B is minimal in W = V 1 =

(V ;B1). Therefore, we have sufficient conditions for a square spanned by (V ; {B,B1}).

Hence, e0 and e are opposite sides of this square ⇒ e ∈ J . Now, we can use induction

on the length of α. The set Bc
n is minimal in W . If Bc

n = B, then (W ;B) = Vn−1

and, by the observation above that cannot happen. Therefore Bc
n and B are distinct

minimal sets in W . If Bc
n is not minimal in (W ;B), then Bc ⊂ Bc

n ⇒ Bn ⊂ B ⇒

B is not minimal in V , contradiction. Therefore, by Lemma 2.10.8 there exists a

square spanned by (W ; {B,Bc
n}). Hence, there exists a path from V to (W ;B,Bc

n)

of length smaller than n passing by the edge e′ exiting B defined by the pair of ver-

tices ((W ;Bc
n, B), (W ;Bc

n)) (see picture below). By induction, e′ ∈ J . But e′ and

e are opposite sides of the same square, with same orientation. Therefore, e ∈ J .

. . . tVn−2 <
en−1 tVn−1 <

en tW

∧
B

e

t
(W ;B)

>t
(W ;B,Bc

n)

∧
B

e′

Remark 2.10.17. If JB is the hyperplane consisting of edges exiting B, then gJB is the

hyperplane whose edges exit gB and is denoted by JgB.
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Recall that, given any G-set Y , the group stabiliser of Y is {g ∈ G | gY = Y } denoted

by Stab(Y ).

Lemma 2.10.18. Let B ∈ Σ. Then, Stab(JB) = Stab(B).

Proof. Let g ∈ G.

gJB = JgB = JB ⇔
Lemma 2.10.16

gB = B ⇔ g ∈ Stab(B).

Lemma 2.10.19. If J1, J2 are two hyperplanes in X such that J1 = xJ2 for some x ∈ G,

then Stab(J1) = xStab(J2)x
−1.

Proof.

Stab(J1) = {g ∈ G | gJ1 = J1}

= {g ∈ G | gxJ2 = xJ2}

=
{
g ∈ G | x−1gxJ2 = J2

}
=

{
g ∈ G | x−1gx ∈ Stab(J2)

}
= xStab(J2)x

−1

Corollary 2.10.20. The action of G on X is transitive on the geometric hyperplanes.

Proof. Let J1, J2 be two geometric hyperplanes respectively related to the combinatorial

hyperplanes Jg1A, Jg2A. Then,

g2g
−1
1 Jg1A = Jg2A ⇒ g2g

−1
1 J1 = J2.

Lemma 2.10.21. H ∼ Stab(JA).

Proof. Let K = {h ∈ H | hA = A}. We have seen that K ≤f H. By Lemma 2.5.3, A

is a K-p.a.i. subset of G satisfying KA = A. By Theorem 2.4.1, e(G,K) ≥ 2, which

implies by [28], Lem. 2.4, that |Stab(A) : K| < ∞. Since K = H ∩ Stab(A) and

Stab(JA) = Stab(A), we obtain the required result.
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2.10.4 Essential action

Let J be a geometric hyperplane of X. Then, J partitions X into two components ([28],

Thm. 4.10) denoted by J+ and J−. Given a vertex V ∈ X, we define a partition of G

into two sets: AV = {g ∈ G | gV ∈ J+} and its complement AcV .

Definition 2.10.22. G acts essentially with respect to a hyperplane J on the

cubing X if there exists a vertex in V ∈ X such that AV and AcV both contain infinitely

many right cosets of Stab(J).

Theorem 2.10.23. The action of G on X is essential with respect to the hyperplane JA.

Proof. Let e be an edge in JA with tail Va, for some a ∈ G. In this case, note that A ∈ Va.

The geometric hyperplane related to JA separates X into two components J+
A and J−A .

Choose J+
A to be the component containing Va. Define AVa =

{
g ∈ G | gVa ∈ J+

A

}
.

Then,

AVa =
{
g ∈ G | Vga ∈ J+

A

}
= {g ∈ G | JA does not cross an egde-path from Va to Vga}

= {g ∈ G | A ∈ Vga}

= {g ∈ G | ga ∈ A}

=
{
g ∈ G | g ∈ Aa−1

}
= Aa−1

Since A,Ac are H-infinite, we have that AVa , AcVa are also H-infinite. By Lemmas 2.10.21

and 2.5.3, we conclude that AVa , AcVa are Stab(JA)-infinite.

Given these settings, we prove the next two lemmas below:

Lemma 2.10.24. For any vertex W in X, the partition sets AW , AcW of G with respect

to JA are also H-infinite.

Proof.

AW +AVa =
{
g ∈ G | gW ∈ J+

A and gVa /∈ J+
A

}
∪
{
g ∈ G | gW /∈ J+

A and gVa ∈ J+
A

}
= {g ∈ G | ∃e ∈ JA belonging to a geodesic from gW to gVa}

=
{
g ∈ G | ∃e ∈ JA such that g−1e belongs to a geodesic from W to Va

}
=

{
g ∈ G | g−1JA is some hyperplane crossing a geodesic W to Va

}
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But there is a finite number of hyperplanes containing the edges of any geodesic from W

to Va. Also, if g1, g2 ∈ G,

g1JA = g2JA ⇔ g−12 g1 ∈ Stab(JA),

which implies that AW + AVa is contained in a finite union of right cosets of Stab(JA).

Using the same argument, AcW +AcVa is also contained in a finite union of right cosets of

Stab(JA). Therefore, AW and AcW are Stab(JA)-infinite and hence, H-infinite.

Hence, for any vertex W ∈ X, AW and AcW give a partition of G into two Stab(JA)-

infinite subsets.

Lemma 2.10.25. AW is an H-p.a.i. subset of G.

Proof. By the previous lemma, we know that AW is H-proper. Using a similar proof,

we show that AW is H-almost invariant. Let y ∈ G:

AW +AW y =
{
g ∈ G | gW ∈ J+

A and gy−1W /∈ J+
A

}
∪
{
g ∈ G | gW /∈ J+

A and gy−1W ∈ J+
A

}
=

{
g ∈ G | g−1JA is some hyperplane crossing an edge-path from W to y−1W

}
,

which is Stab(JA)-finite and, hence, H-finite.

2.11 The Main Theorem

Finally, we have all the necessary definitions and results to understand and prove the

Main Theorem of this thesis:

Main Theorem. Let H ≤ G be finitely generated groups satisfying:

• 2 ≤ ẽ(G,H) <∞;

• H ≤f CommG(H);

• ∀g ∈ G, if gH is H-finite, then g ∈ CommG(H).

If G contains an H-p.a.i. subset A such that AH = A, then G admits a non-trivial

splitting over a subgroup commensurable with H.



Chapter 2 Relative ends and splittings of groups 69

Proof. When ẽ(G,H) = 2, the theorem was mentioned before to be true, see Lemma

2.9.2 and further comments. Then, consider 3 ≤ ẽ(G,H) < ∞. By Corollary 2.8.4, the

fact that G contains an H-p.a.i. subset A satisfying AH = A gives us that

1 ≤ k = dimF2kerResGH <∞

which implies that

2 ≤ dimF2K = k + 1 <∞.

By Proposition 2.9.8, we can find pairwise disjoint H-l.i.p.a.i. subsets A1, . . . , Ak of

G\H satisfying AiH = Ai, for i = 1, . . . , k. W.l.o.g., we apply Sageev’s construction on

Σ = {gA1, gA
c
1 | g ∈ G} to build a cubing X on which G acts essentially with respect

to the hyperplane JA1 , as in Theorem 2.10.23.

Let {X1, X2} be a distinct pair of elements in Σ. By Proposition 2.9.1, we have that the

pair {X1, X2} is nested. But by Lemma 2.10.8, if V is a vertex in X containing X1, X2

as minimal elements, then (V, {X1, X2}) does not span a square. Therefore, X is a tree

on which G acts without global fixed points transitively on the edges and, by Lemma

2.10.21, H is commensurable to an edge stabiliser. In other words, G splits non-trivially

over a subgroup commensurable with H.
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