
UNIVERSITY OF SOUTHAMPTON

FACULTY OF SOCIAL, HUMAN AND MATHMATICAL SCIENCES

Mathematical Sciences

Statistical Analysis of Data from Experiments Subject to Restricted

Randomisation

by

Sadiah Aljeddani

Thesis submitted for the degree of Doctor of Philosophy

July 2018

mailto:sma1n13@soton.ac.uk




UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF SOCIAL, HUMAN AND MATHMATICAL SCIENCES

Mathematical Sciences

Doctor of Philosophy

STATISTICAL ANALYSIS OF DATA FROM EXPERIMENTS SUBJECT TO

RESTRICTED RANDOMISATION

by Sadiah Aljeddani

The selection of the best subset of variables, which will have a strong effect on an outcome

of interest, is fundamental when avoiding overfitting in statistical modelling. However,

when there are many variables, it is computationally difficult to find this best subset.

The difficulties of variable selection would be more complex when designs are with re-

stricted randomisation. This work aims to fill the gap of variable selection and model

estimation for data from experiments subject to restricted randomisation by developing

new methods for variable selection and model estimation using frequentist analysis and

Bayesian analysis for experiments subject to restricted randomisation. Frequentist and

Bayesian analysis methods are used to carry out a comparative study with respect to

their performance in variable selection and model estimation. As a representative of

frequentist analysis, the Penalised Generalised Least Square (PGLS) estimator is used

in which a single shrinkage parameter is applied to all regression effects. Furthermore,

as two different strata in split-plot design are existed, the PGLS approach is extended to

perform variable selection and model estimation simultaneously in the context of split-

plot design. The Penalised Generalised Least Squares for Split-Plot Design estimator

(PGLS-SPD) is utilized, in which two shrinkage parameters are applied, one for the

subplot effects and the other for the whole-plot effects. As a representative of Bayesian

analysis, the Stochastic Search Variable Selection (SSVS) technique is used. This per-

forms variable selection and model estimation simultaneously where the variance of all

active factors will be sampled from one posterior distribution. As two different strata in

split-plot design are existed, the SSVS approach to perform Bayesian variable selection

is extended for the analysis of data from restricted randomised experiments by intro-

ducing the Stochastic Search Variable Selection for Split-Plot Design (SSVS-SPD) in

which the variances of the active subplot and whole-plot factors are sampled from two

different posterior distributions. The usefulness of frequentist and Bayesian approaches

are demonstrated using two practical examples, and their properties are studied in simu-

lation studies. The result of the comparative study of frequentist analysis and Bayesian

analysis supports the utilization of SSVS-SPD method for the statistical analysis of data

from experiments subject to restricted randomisation.
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Chapter 1

Introduction

Two fundamental goals in statistical learning are to ensure high prediction accuracy,

and to discover significant variables. One can select a model from a set of candidate

models by analysing their data in such away as to balance the two previous goals. En-

suring the selected model has the highest prediction accuracy will allow the model to

be used for future prediction. Parallel to this, selecting the simplest model by avoid-

ing uninformative variables, which often do not influence the response variable, is also

crucial to enhance scientific analysis. By removing the non-informative or non-active

variables, the predictive ability of models can be improved and parsimoniously describe

the relationship between the informative, or active variables and the response variable.

Variable selection issue refers to obtaining an adequate subset of variables for the model.

The subject of variable selection in linear regression analysis is a remarkable subject.

The experimenter initially may be uncertain about the most influential structure of the

model. It might be unclear that whether all of the variables should be included to the

model or if only some of them have significant effects on the response variable. There-

fore, variable selection procedure builds a regression model with appropriate subset of

variables. In the literature, many variable selection methods have been proposed. A

general review of some of these methods has been provided in this chapter.

The aim of this project is to develop both a frequentist methodology and a Bayesian

methodology for selecting the active variables for data produced by experiments with

1
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restricted randomisation, where the split-plot design is a particular example of such ex-

periments. Furthermore, we aim to carry out a comparison between frequentist analysis

and Bayesian analysis with respect to variable selection and model estimation.

In Section 1.1 of this chapter, an introduction to the design of experiments will be

provided. Motivating examples underlying this work will be discussed in Section 1.2.

The model which has been used to analyse results from split-plot experiments will be

introduced in Section 1.3. In Section 1.4, introduction to frequentist variable selection

methods will be discussed. Also, an introduction to Bayesian variable selection methods

will be given in Section 1.5. Finally, in Section 1.6, an overview of this work will be

provided.

1.1 The Design of Experiments

This section introduces designed experiments and experiments with restricted randomi-

sation. “An experiment is a planned intervention undertaken to observe the effects of

one or more explanatory variables, often called “factors”, on a response variable” (Peck

et al., 2015). The basic goal of the experiment is to find out the relation between the

explanatory and response variables. A “treatment” is a combination of values for the

explanatory variables. Also, “an individual or a group of individuals used in the ex-

periment can be defined as an experimental unit” (Peck et al., 2015). Moreover, what

constitutes the experimental unit is determined by how the treatments are assigned.

The design of an experiment is the overall plan for conducting an experiment where a

good design minimises ambiguity in the interpretation of the results (Peck et al., 2015).

Responses from the same experimental units can vary considerably. Obviously, varia-

tions can occur if the same experimental unit is experimented on using different values

for the variables. However, even if the same values are used for the variables, variations

can be produced by a large number of unknown sources, such as extraneous factors re-

lated to the environment, and variations in the experimental material. Such variability

is unavoidable and inherent in the very process of experimentation, and is referred to as

experimental error.
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1.1.1 Completely Randomised Design and Restricted Randomised De-

sign

Assigning the treatments or factors to be tested to the experimental units is technically

known as randomisation, and it reduces the possibility of systematic error. Randomisa-

tion allows each treatment or factor in a study to have an equal chance of being in any

experimental unit. It also ensures that the experimenter is not biased or partial in any

way towards assigning treatments. However, this is not always possible, and hence we

have to consider experiments with restricted randomisation. An experiment where all

the treatments can be randomised completely by chance without restriction is referred

to as a completely randomised design (CRD). In many industrial experiments, randomi-

sation of the experimental units must be restricted to produce the expected assignment

according to economical and time issues. For example, the experimenter may want to

constrain the change of factor level during the experiment. In the following section, we

introduce the split-plot design as an example of the restricted randomised design.

1.1.2 Split-Plot Design

According to Jones and Nachtsheim (2009), a split-plot experiment is a blocked experi-

ment, where the blocks themselves serve as experimental units for a subset of the factors.

Thus, there are two levels of experimental units. The blocks are referred to as whole

plots, while the experimental units within blocks are called split plots, split units, or

subplots. Corresponding to the two levels of experimental units are two levels of ran-

domisation. One randomisation is conducted to determine the assignment of block-level

treatments to whole plots. Then, as always in a blocked experiment, a randomisation of

treatments to split-plot experimental units occurs within each block or whole plot.

The split-plot design was firstly invented by Fisher (1925) for a field experiment. A split-

plot design involves two or more factors (for example A and B), but the experimental

units receiving factor A will be of a different size than those receiving factor B. Factor A

becomes a “whole-plot” factor, with its levels randomly assigned to some larger exper-

imental unit (e.g. agricultural plots); levels of factor B are randomly assigned to some
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smaller experimental unit within the whole plots (e.g., plants within plots). Three good

examples of split-plot designs can be found in the article: “How to Recognize a Split

Plot Experiment” (Kowalski and Potcner, 2003). In the statistical analysis of split-plot

designs, the presence of two different sizes of strata must be taken into account. This

leads to correlated observations within same plot.

There has been a lot of interest in experiments run in split-plot or other multistra-

tum structures, they are discussed by authors such as Fisher (1925), Anbari and Lucas

(1994), Miller (1997), and Jones and Nachtsheim (2009). The split-plot experiments

have some factors which are more difficult to set than others. Hard-to-set (whole-plot)

factors are blocked and are held constant, while the easy-to-set (subplot) factors can

vary within the whole-plots. “All information on the whole-plot factors appears in the

main plot stratum, so inferences on their effects depend mainly on the variance between

main plots, whereas most information on the subplot factors and their interactions with

the whole-plot factors appears in the subplot stratum, so inferences on their effects de-

pend mainly on the variance between subplots” (Gilmour and Goos, 2009). In split-plot

designs, observations belonging to the same whole-plot are correlated because of the

restriction on the randomisation. For model estimation in this case, generalised least

squares, and not ordinary least squares, should be used, and two variance components

must be estimated (Goos, 2012). Further discussion on the mixed effects models for

split-plot designs is given in Section 1.3.

1.2 Motivating Examples

Two examples motivated this work, the wind tunnel experiment and the freeze-dried

coffee experiment. This section introduces these two motivating examples.

1.2.1 The Wind Tunnel Experiment

The design and the response variable for the first motivating example can be found in

Simpson et al. (2004). The aim of Simpson et al’s paper is the design and analysis of the

wind tunnel experiment. The process of automobile wind tunnel testing has the primary
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Figure 1.1: 1997 Chevrolet Monte Carlo Winston Cup car (Simpson et al., 2004)

objective of characterising aerodynamic performance and developing improvements. The

four relevant factors, as given by Simpson et al. (2004), are changes in yaw angle, changes

in front ride height, changes in rear ride height, and the changes in grill tape in the

NASCAR Winston Cup Chevrolet Monte Carlo stock car Figure 1.1. Four responses

are of interest; y1 (coefficient of lift-front), y2 (coefficient of lift-rear), y3 (coefficient of

drag), and y4 (lift over drag ratio). As (Simpson et al., 2004) studied the impacts of

the experimental variables on the coefficient of drag y3, we will discuss the analysis for

y3 by our approaches in this work to be compared with their analysis. The purpose

of this experiment was to determine the impact of changes in yaw angle, ride height,

and grille tape on the coefficients of lift and drag of the car. The magnitude of the

interactions and quadratic effects are also of great interest, and are therefore included,

along with the main effects, in the model. Details of these four responses and four

factors in this experiment are given in Table 1.1 and Table 1.2 respectively. During

the experiment, the tunnel had to be closed to make changes to the ride heights of

each wheel. This time-consuming process necessitated experimentation with restrictions

on randomisation, where the two ride height factors were hard-to-change. The two

remaining factors, yaw angle and grille tape, were fairly easily changed because yaw

angle is electronically automated and grille tape only requires covering or uncovering all

or part of the cooling inlet with duct tape.

In this experiment, there were two randomisations, randomly selecting front ride height
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Table 1.1: Wind tunnel car test responses

Response Notation Notes

Coefficient of lift-front y1 Measured to indicate downforce over the front axle
Coefficient of lift-rear y2 Measured to indicate downforce over the rear axle

Coefficient of drag y3 Measured to indicate the way the car passes through the surrounding air
Lift over drag ratio y4 Measured to indicate the ratio of downforce to drag

Table 1.2: Wind tunnel car test factors

Factor (label) Type Low level Center level High level
-1 0 1

Front ride height Hard-to-change (w1) −0.5 in 0 in +0.5 in
Rear ride height Hard-to-change (w2) −1.0 in 0 in +1.0 in

Yaw angle Easy-to-change (s1) −3.0◦ −1.0◦ +1.0◦

Grille tape coverage Easy-to-change (s2) 0% 50% 100%

and rear ride height of the car and then randomly running the factor combinations in

yaw angle and grille tape. This approach resulted in two error terms, one associated

with the ride height factors and the other associated with the yaw angle and grille tape

factors, as well as interactions between the ride height factors and yaw angle/grill tape.

This experiment was therefore a split-plot design experiment, where the front and rear

ride height were whole plot factors, and yaw angle and grille tape were subplot factors.

As in Table 1.2, the four experimental variables are denoted by w1, w2, s1, and s2.

These were each included at three levels. The design of this experiment is shown in

Table 1.3.

1.2.2 The Freeze-Dried Coffee Experiment

The experiment was described by Gilmour and Trinca (2000), to investigate the effects

of several process factors on the retention of volatile compound in the freeze-drying of

coffee. This experiment aimed to study the aroma retention in the freeze-drying of the

coffee. Each experimental run involved four steps:

• preparation of the coffee solution;

• addition of the maker volatile compounds;

• the freeze-drying;

• analysis of volatile compounds.
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Run WP s1 s2 w1 w2 y3

1 8 0 0 -1 -1 0.382
2 8 1 -1 -1 -1 0.380
3 8 -1 -1 -1 -1 0.402
4 8 1 1 -1 -1 0.369
5 8 -1 1 -1 -1 0.394

6 2 1 -1 -1 1 0.393
7 2 -1 1 -1 1 0.41
8 2 -1 -1 -1 1 0.419
9 2 1 1 -1 1 0.386
10 2 0 0 -1 1 0.400

11 3 1 -1 1 1 0.414
12 3 0 0 1 1 0.421
13 3 1 1 1 1 0.405
14 3 -1 -1 1 1 0.435
15 3 -1 1 1 1 0.428

16 5 0 0 1 -1 0.400
17 5 1 1 1 -1 0.383
18 5 -1 -1 1 -1 0.418
19 5 -1 1 1 -1 0.408
20 5 1 -1 1 -1 0.399

21 7 1 -1 0 0 0.394
22 7 0 0 0 0 0.401
23 7 -1 -1 0 0 0.420
24 7 1 1 0 0 0.384
25 7 -1 1 0 0 0.409

26 6 0 0 1 1 0.419
27 6 -1 -1 1 1 0.436
28 6 -1 1 1 1 0.426
29 6 1 1 1 1 0.403
30 6 1 -1 1 1 0.412

31 4 -1 -1 -1 1 0.420
32 4 -1 1 -1 1 0.412
33 4 1 1 -1 1 0.387
34 4 1 -1 -1 1 0.394
35 4 0 0 -1 1 0.404

36 9 1 1 -1 -1 0.365
37 9 0 0 -1 -1 0.383
38 9 -1 1 -1 -1 0.391
39 9 1 -1 -1 -1 0.382
40 9 -1 -1 -1 -1 0.400

41 1 1 1 1 -1 0.385
42 1 1 -1 1 -1 0.398
43 1 0 0 1 -1 0.401
44 1 -1 -1 1 -1 0.416
45 1 -1 1 1 -1 0.409

Table 1.3: The design of the wind tunnel experiment. The WP is short for the
“whole plot”.
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Table 1.4: Freeze dried coffee experiment factors

Factor (label) Type Low level Center level High level
-1 0 1

Pressure Hard-to-change (w) 30 50 70
Temperature Easy-to-change (s1) 25 35 45
Solids content Easy-to-change (s2) 0.1 0.2 0.3
Slab thickness Easy-to-change (s3) 1.0 1.5 2.0
Freezing rate Easy-to-change (s4) Slow* Medium* Fast*

Slow*: 18 hours at 18◦C and 6 hours at -35◦C.
Medium*: 6 hours at 18◦C and 18 hours at -35◦C.
Fast*: 24 hours at -35◦C.

This experiment was explained in more detail by Gilmour and Trinca (2000) and Gilmour

and Goos (2009). Five factors were studied, the pressure in the drying chamber (w),

the heating temperature (s1), the initial solids content in the coffee solution (s2), the

thickness of the slab freeze-dried (s3), and the freezing rate (s4). Each factor was in-

cluded at three levels, as shown in Table 1.4. For the freezing rate (s4), the linear term

estimates the difference between fast and slow freezing rate and the quadratic term es-

timates the difference between the average response for the fast and slow freezing rate

and the response from the medium freezing rate. The pressure was controlled manu-

ally by a needle valve, which is a very time-consuming process, and the experimenters

preferred to run all treatment combinations at each level of the pressure. Having only

three main whole plots each with a specific level of the pressure would not allow a clear

estimate of the whole plot variance. Therefore, a replication was performed for the three

main units yielded in six main units each containing five runs to be able to estimate the

variance of the pressure unit random effect. The design of this experiment is shown in

Table 1.5. The four responses from this experiment are the drying rate (y1), benzalde-

hyde (y2), 4-ethylbenzaldehyde (y3), and 2-methoxy-4-methylphenol (y4) retained after

freeze-drying. In this work, we discuss the analysis for drying rate y1 by our approaches

to be compared with the analysis of y1 in Gilmour and Goos (2009).

1.3 Model and Analysis

The model for the split-plot experiments in Section 1.1.2 includes two types of er-

rors; whole-plot random errors and subplot random errors. Hence, linear mixed models

(LMM) are used to analyse responses from the split-plot experiments.
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Run WP w s1 s2 s3 s4 y1

1 1 1 0 0 0 1 66.000
2 1 1 0 0 1 0 66.094
3 1 1 -1 0 0 0 57.848
4 1 1 0 0 0 0 66.000
5 1 1 0 1 0 0 51.871

6 2 0 0 0 0 0 70.884
7 2 0 -1 1 -1 1 56.763
8 2 0 1 1 1 -1 62.423
9 2 0 1 -1 -1 -1 83.570
10 2 0 -1 -1 1 1 65.191

11 3 -1 0 0 0 0 71.379
12 3 -1 1 1 1 1 97.931
13 3 -1 -1 1 -1 -1 54.947
14 3 -1 -1 -1 1 -1 61.704
15 3 -1 1 -1 -1 1 80.410

16 4 1 0 0 -1 0 66.934
17 4 1 1 0 0 0 79.220
18 4 1 0 0 0 -1 65.203
19 4 1 0 -1 0 0 73.835
20 4 1 0 0 0 0 67.941

21 5 -1 0 0 0 0 69.184
22 5 -1 1 1 -1 1 85.379
23 5 -1 1 -1 1 -1 74.300
24 5 -1 -1 1 1 -1 50.360
25 5 -1 -1 -1 -1 1 60.266

26 6 0 1 -1 1 1 89.160
27 6 0 0 0 0 0 68.500
28 6 0 1 1 -1 -1 75.570
29 6 0 -1 1 1 1 56.470
30 6 0 -1 -1 -1 -1 68.388

Table 1.5: The design of the freeze-dried coffee experiment. The WP is short
for the “whole plot”.

1.3.1 Linear Mixed Model for Analysing the Split-Plot Experiments

Linear mixed effects models (LMMs) introduce correlations between observations through

the use of random effects. This leads to the use of generalised least squares (GLS) estima-

tion, combined with restricted maximum likelihood estimation (REML) of the variance

components as will be discussed in Section 1.3.2. This type of analysis is used by most

design of experiments textbooks that deal with split-plot designs.

In matrix notation, the model corresponding to a split-plot design is written as

Y = Xβ + Zγ + ε, (1.1)
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where Y is n × 1 vector of observations on the response of interest, X is the n × p

model design matrix containing the polynomial expansions of the m factor levels at the

n experimental runs, β is the p× 1 vector of unknown fixed parameters, Z is an n× b

random design matrix which represents the allocation of the runs to whole plot, and

whose (i, j)th element is one where the ith observation belongs to the jth whole plot,

and zero otherwise. If the runs of the experiment are grouped per whole-plot, then Z is

of the form

Z = diag[1k1 ,1k2 , . . . ,1kb ],

where 1k is a k vector of ones, and k1, k2, . . . , kb are the blocks sizes.

The random effects of the b whole-plots are contained within the b× 1 vector γ, and the

random errors are contained within the n × 1 vector ε. It is assumed that γ and ε are

independent and normally distributed, i.e. Cov (γ, ε) = 0b×n, where 0b×n is the b× n

matrix of zeros. Hence, γ ∼ N(0b, σ
2
γIb), and ε ∼ N(0n, σ

2
ε In), where 0b and 0n are the

b and n column vectors of zeros respectively, and Ib and In are the b−dimensional and

n−dimensional identity matrices respectively.

Under these assumptions, Y is a normally distributed random variable with mean

E(Y) = Xβ, and the variance-covariance matrix of the response Y can be written

as

V = Var(Y) = Var(Xβ + Zγ + ε)

= Var(Zγ) + Var(ε)

= ZVar(γ)Z′ + σ2ε In

= σ2γZZ′ + σ2ε In.
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V can be given as a block diagonal,

V =



V1 0 . . . 0

0 V2 . . . 0

...
. . .

. . .
...

0 . . . 0 Vb


,

where

Vi = σ2ε Iki + σ2γ1ki1
′
ki
,

and

Vi =



σ2ε + σ2γ σ2γ . . . σ2γ

σ2γ σ2ε + σ2γ . . . σ2γ
...

. . .
. . .

...

σ2γ . . . σ2γ σ2ε + σ2γ


.

As a result, the variance-covariance matrix Vi of all observations within one whole-

plot is compound symmetric: the main diagonal of the matrix contains the variances of

the observations, while the off-diagonal elements are covariances. However, Vi can be

rewritten as

Vi = σ2ε (Iki×ki +
σ2γ
σ2ε

1ki1
′
ki

),

= σ2ε (In + ηZZ′),

where η = σ2γ/σ
2
ε is a measure for the extent to which observations within the same

whole-plot are correlated. The larger this variance ratio, the stronger observations within

the same whole-plot are correlated.
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1.3.2 Likelihood Inference for the Split-Plot Model

When the random error terms as well as the group effects are normally distributed,

the maximum likelihood estimate of the unknown model parameter β in (1.1) is the

generalised least squares (GLS) estimate. Detecting the estimator β̂ of β, requires to

minimise

(y−Xβ)′V−1(y−Xβ) = y′V−1y− 2β′X′V−1y + β′X′V−1Xβ (1.2)

with respect to β, which is tantamount to detecting β̂, so that

(X′V−1X)β̂ = X′V−1y.

Therefore, the generalised least squares (GLS) estimator of β is

β̂ = (X′V−1X)−1X′V−1Y, (1.3)

and the variance-covariance matrix of the estimators is given by

Var(β̂) = Var

(
(X′V−1X)−1(X′V−1Y)

)
= (X′V−1X)−1X′V−1Var(Y)

(
(X′V−1X)−1X′V−1

)′
= (X′V−1X)−1X′V−1VV−1X(X′V−1X)−1

= (X′V−1X)−1(X′V−1X)(X′V−1X)−1

= (X′V−1X)−1. (1.4)

Often, the variances σ2γ and σ2ε are not known and therefore, (1.3) and (1.4) cannot

be used directly. Instead, the estimates of the variance components, σ̂2γ and σ̂2ε , are

substituted in the GLS estimator (1.3), yielding

β̂ = (X′V̂
−1

X)−1X′V̂
−1

Y, (1.5)
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where

V̂ = σ̂2ε In + σ̂2γZZ′. (1.6)

In that case, the variance-covariance matrix (1.4) can be approximated by

Var(β̂) = (X′V̂
−1

X)−1. (1.7)

The generalised least square (GLS) estimator is unbiased, meaning that E(β̂) = β, and

is equal to the maximum likelihood estimator (MLE). The likelihood function defined as

it is the joint probability density function for the observed data examined as a function

of the parameters. Hence, the likelihood function for Y in (1.1) is

L(β|Y) = (2π)−n/2|V|−1/2exp
[
− 1

2
(Y−Xβ)′V−1(Y−Xβ)

]
, (1.8)

where π is a constant which does not depend on β. The maximum likelihood estimator

(MLE) is the estimator that maximises the likelihood function, which is tantamount to

detecting the β̂ as

∂

∂β
L(β̂|Y) = 0, (1.9)

which is equal to

∂

∂β
lnL(β̂|Y) = 0, (1.10)

where lnL(β̂|Y) is the log likelihood function. As (1.2) is proportionate to log of (1.8),

the GLS estimator in (1.3) is the result of (1.9) and (1.10).

Moreover, V can be estimated when observed data is obtained. In this work, we used

the Restricted Maximum Likelihood (REML) estimator to estimate V. According to

Matthews (2015),“ REML requires the transformation of the response to remove the

influence of the other model parameters followed by the maximisation of the likelihood

for these transformed responses”. The likelihood in REML includes knowledge about

the variance components yet does not include knowledge about the fixed effects (Corbeil

and Searle, 1976).
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The restricted maximum likelihood (REML) used to estimate σ2ε and σ2γ is

lREML(σ2ε , σ
2
γ ; Y) = −1

2
ln|V| − 1

2
ln|X′V−1X| − 1

2
(Y−Xβ̂)′V−1(Y−Xβ̂),

where β̂ is defined in (1.5). The restricted log-likelihood lREML(σ2ε , σ
2
γ ; Y) is minimised

with respect to the variance components σ2ε and σ2γ to obtain an unbiased estimate for

the the variance components. In this work, REML is minimised by using the function

‘fmincon‘ in Matlab.

The work by Gilmour and Goos (2009) that explained the weakness of likelihood anal-

ysis for non-orthogonal and small designs must be mentioned. They concluded that the

likelihood methods are based mainly on asymptotic results which require a large num-

ber of whole-plot units. Therefore, for split-plot experiments and for non-orthogonal

structures, the likelihood methods require large numbers of whole-plot units to allow

enough degrees of freedom to estimate the variance random effect σ̂2γ . For orthogonal

split-plot structures, the number of whole-plot units does not strongly affect the esti-

mated variance components. In this work, the two different experiments in Section 1.2.1

and Section 1.2.2 are examined, the wind tunnel experiment with n = 45 observations

and 9 whole-plot units, and the freeze-dried coffee experiment with n = 30 observations

and 6 whole-plot units.

1.4 Introduction to Frequentist Variable Selection Meth-

ods

The traditional model selection such as backward elimination, forward selection and

stepwise selection have been utilized for long time to select a subset of linear model

variables. However, the traditional model selection methods have some drawbacks and

more effective methods have been discussed in literature (Hastie et al., 2009). In variable

selection methods, we give attention to the cohesion in variable selection and producing

easy to interpret model.
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1.4.1 Subset Selection

One of the traditional variable selection methods is the best subset regression. In the

subsets regression, we fit all the available models up to a certain size, and the best model

will be selected with respect to some model selection criteria. The model selection criteria

will be explained in Section 2.3. There are many types of subset selection methods, for

example, forward selection, backward elimination, and stepwise selection.

• Forward selection

Forward selection starts with an empty set, and adds one variable at a time. The

most significant variable, meaning its corresponding p−value is below α significance

level, will be added to the model. The main disadvantage of this procedure is that

the addition of a new variable at each step may change the state of significance of

the old variables which were already included in previous steps.

• Backward elimination

Backward elimination starts with the full model, then the least significant variable,

which corresponds to the highest p-value above a significance level α, will be

dropped. The reduced models in each step are re-fitted by following the rule of

significance level until all remaining variables are statistically significant meaning

the corresponding variable has a p−value ≤ α.

• Stepwise selection

Stepwise selection allows movements in either direction, dropping or adding vari-

ables at different steps. The process is one of alternations between choosing the

least significant variable which has the highest p−value and for a given signifi-

cance level α to drop and then re-considering all variables including those vari-

ables dropped previously (except the one that was dropped most recently) for

re-introduction into the model.

However, these traditional approaches have some drawbacks as they are unstable in the

sense that small changes in the data can result in completely different estimates. Also,

they can be computationally cumbersome if there are a large number of predictors, as
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these methods require the estimation of a large number of models (Hastie et al., 2009).

In this work, backward elimination has been used as an example of the classical subset

variable selection as the intention is to compare the models selected by classical subset

variable selection methods and by the shrinkage model selection methods described in

the next section.

1.4.2 Penalised Generalised Least Squares (PGLS)

To overcome the drawbacks in the classical approaches of variable selection, Hoerl and

Kennard (1970) and Breiman et al. (1996) proposed regression modelling by regularisa-

tion technique. This technique prevents over fitting by restricting the model, typically

to reduce its complexity. The regularisation methods are based on shrinkage penalties,

where penalty functions are added to the residual sum of squares or subtracted from the

log-likelihood, and minimisation or maximisation of penalised functions with respect to

coefficients yields penalised likelihood estimators. The shrinkage penalty method can

be explained as there is a penalty for any non-zero estimate of the parameters when we

minimise the sum of the squared residuals. Thus, the penalty will shrink the size of the

estimated coefficients towards zero. It places a constraint on the size of the regression

coefficients (Fan and Li, 2001; Hastie et al., 2009). Shrinkage methods do not explicitly

select variables, instead they minimise the sum of the squared residuals by applying a

penalty on the size of the estimated coefficients. They have the advantage of selecting

variables and estimating the coefficients simultaneously. The advantage of shrinkage

methods is that their use often improve the prediction accuracy and helps with the se-

lection of a more parsimonious model, though there is a trade-off between bias and the

variance of the final model (see Tibshirani, 1996; Efron et al., 2004).

Based on the size of the estimated coefficients, the penalised estimates might be only

shrunk in size while in the case of small estimated coefficients, it is more likely the pe-

nalised estimates will be set to zero. Hence, the choice of the shrinkage parameter λ

is sensitive and important. Unlike traditional subset selection, penalised regression is a

continuous process as it shrinks the size of the coefficients and yields stable models with

low prediction errors. However, as some shrinkage penalty functions shrink the size of
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the coefficients towards zero and not explicitly zero in the case of large size of estimated

coefficients or the case of very small amount of shrinkage parameter λ, the resulting

models in such case suffer from complexity and over fitting.

For linear mixed models, the penalised generalised least squares estimates has been

discussed by Li and Lin (2003), it can be found by minimising

QPGLS(β) =
1

2n
(Y−Xβ)′V−1(Y−Xβ) +

d∑
j=1

pλ(| βj |), (1.11)

with respect to β, where V̂ = σ̂2ε In + σ̂2γZZ′, and d is the number of the model coeffi-

cients β. The expression pλ(.) is a penalty function and λ is an unknown strictly positive

thresholding parameter, which is often selected using information selection criteria as in

Section 2.3.

Well-known methods from this family are ridge regression (Hoerl and Kennard, 1970)

with L2 penalty pλ(| β |) = λ | β |2, bridge regression (Frank and Friedman, 1993) with

Lq penalty pλ(| β |) = λ | β |q for q > 0, and LASSO (Tibshirani, 1996, 1997) with

L1 penalty pλ(| β |) = λ | β |. Note that LASSO and ridge regression are special cases

of bridge regression with q = 1 and 2 respectively. Fan and Li (2001) developed the

smoothly clipped absolute deviation penalty (SCAD). Many other penalty functions in

the literature have been proposed, but in this work, some of the most popular functions

are used as will be shown in Chapter 2.

1.5 Introduction to Bayesian Variable Selection Methods

An important task in regression building is to determine which variables should be

included in the model. Such a method represents the fact that there are small coefficients

close to zero on one hand and larger coefficients on the other hand. The priors can be

built as a combination of two distributions, a narrow normal distribution centred at

zero with a small variance called a “spike”, and the other with a flat normal distribution

with a large variance to spread over a wide range of parameter values called a “slab”.

This type of priors are called “Spike-and-Slab” priors (see Figure 1.2). These priors are



18 Chapter 1 Introduction

−40 −20 0 20 40

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

Spike and Slab

x

D
en

si
ty

Figure 1.2: Gaussian mixture prior for β

beneficial for purposes of variable selection because they permit the classification of the

regression coefficients into two groups: one group of large, significant effects, and the

other group with small, negligible effects.

1.5.1 Stochastic Search Variable Selection (SSVS)

George and McCulloch (1993, 1997) proposed a Bayesian variable selection approach

for linear models. Their procedure, called Stochastic Search Variable Selection (SSVS),

entails the specification of a hierarchical Bayes mixture prior in Section 4.3 that uses

the data to assign larger posterior probability to the more promising models. The SSVS

is based on building the entire regression setup in a hierarchical Bayes normal mixture

model in which latent variables are used to identify subset choices. With this procedure,

the promising subsets of variables can be recognised as those with higher posterior prob-

ability. According to George and McCulloch (1997), the SSVS uses the Gibbs sampler

to simulate a sample from the posterior distribution. Because high probability models
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are more likely to appear quickly, the Gibbs sampler can sometimes identify such models

with relatively short runs.

In this work, we apply the SSVS to linear mixed models following Tan and Wu (2013).

The difference between our implementation and Tan and Wu (2013) is that we use

MCMC to sample from the posterior distributions while their study numerically inte-

grates β and σ2 from the joint posterior distribution of all parameters. They used the

normal-inverse gamma prior for those parameters. They were able to do the integration

step because they used Gaussian quadrature algorithms to compute the integration.

1.6 Overview

In this work, the analysis of data from split-plot designs has been examined. In particu-

lar, a frequentist approach via penalised regression is proposed, so that model selection

and parameter estimation can be performed simultaneously when responses from a split-

plot experiment are analysed using a linear mixed effects model. The performance of

the frequentist approach via penalised regression is compared to the performance of the

Bayesian approach via Bayesian variable selection methods. Chapter 2 will describe the

frequentist variable selection methods by introducing backward elimination and shrink-

age methods. Chapter 3 will present the main results from frequentist analysis. Chapter

4 will discuss Bayesian variable selection for split-plot design. Chapter 5 will present

the numerical results from the Bayesian approach, and compares the analysis of the fre-

quentist approach to the analysis of the Bayesian approach. Chapter 6 will summarise

the discussion and concludes the thesis with suggestions for future work.





Chapter 2

Frequentist Analysis Methods for

Response from Split-Plot

Experiments

Experimenters very often would like to know the factors that impact the response vari-

ables in their experiment for quality and economic purposes. Model selection is critical

for an accurate analysis and model interpretation. In the literature, many model selec-

tion methods have been proposed. We have provided a general review of some of these

methods. As explained in Section 1.3.1, the linear mixed models (LMMs) are used to

analyse responses from split-plot experiments. There are many prior works on mixed pe-

nalised regression models. For example, the work by Schelldorfer et al. (2011) proposed

an L1 penalised estimation procedure for high-dimensional linear mixed-effects models.

Their aim is to estimate the fixed and random effects parameters as well as the variance

components. Their main findings are theoretical results concerning consistency of their

proposed estimators. Moreover, the work by Bondell et al. (2010) proposed a methodol-

ogy to jointly select the fixed and random effects in linear mixed-effects models. Their

aim is to identify the significant predictors which correspond to both the fixed and ran-

dom effects components in a linear mixed-effects models. They apply their method by

using a modified Cholesky decomposition.They constrain an Expectation-Maximisation

algorithm on a penalised joint log-likelihood with an adaptive penalty to select and to

21
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estimate both fixed and random effects. Another example is the work by Ibrahim et al.

(2011). They use a novel re-parametrisation to re-formulate the selection of mixed ef-

fects into the problem of grouped variable selection in models with missing data. They

use the penalised likelihood methods to select both fixed and random effects. Their

aim is to develop a simultaneous fixed and random effects selection procedure based on

the SCAD and Adaptive LASSO (ALASSO) penalties for application to longitudinal

models and mixed effects models. They apply the Expectation-Maximisation algorithm

to simultaneously optimise the penalised likelihood function and estimate the penalty

parameters.

Compared to the large body of literature on variable selection procedures using the fre-

quentist analysis, we make a novel contributions in this thesis. Our work is motivated

by the split-plot design as we have two different strata. To adapt the issue of having

two different strata, we split the penalty function into two parts, and we apply a shrink-

age parameter for subplot effects term different than the shrinkage parameter for the

whole-plot effects term. Mylona and Goos (2011) introduced the idea of the PGLS-SPD.

In this work, we improve the performance of the PGLS-SPD by using different penalty

functions and different methods of choosing the shrinkage parameter. The PGLS-SPD

reduces the Type I and II error rates as well as it reduces the prediction error of the

model for data from split-plot designs compare to the PGLS that applies one penalty

function for all factors.

2.1 Penalised Generalised Least Squares for Split-Plot De-

sign (PGLS-SPD)

The penalised regression in (1.11) is a good approach if we want to apply equal sized

penalties for all factor effects. According to Jones and Nachtsheim (2009),“A split-plot

experiment is a blocked experiment, where the blocks themselves serve as experimental

units for a subset of the factors. Thus, there are two levels of experimental units. The

blocks are referred to as whole plots, while the experimental units within blocks are

called subplots”. Therefore, different effect sizes for the two strata are to be expected.



Chapter 2 Frequentist Analysis Methods for Response from Split-Plot Experiments 23

We expect bigger differences between these larger whole plots, naturally leading to larger

whole-plot effects. Hence, the PGLS in (1.11) is modified by using two shrinkage penal-

ties, as one will be applied for the subplot effect factors and the other will be applied

for the whole-plot effect factors. Therefore, the penalty function pλ(.) in (1.11) will

be split into two penalty functions, pλw(.) and pλs(.). The pλw(.) includes the penalty

parameter which will be applied to the whole-plot effect factors while the pλs(.) includes

the penalty parameter which will be applied to the subplot effect factors. The penalised

generalised least squares estimates for split-plot design are obtained by minimising

QPGLS(β) =
1

2n
(Y−Xβ)′V̂

−1
(Y−Xβ) +

dw∑
j=1

pλw(| βj |) +

d∑
j=dw+1

pλs(| βj |), (2.1)

with respect to β, where V̂ = σ̂2ε In+σ̂2γZZ′, and dw denotes the number of the whole-plot

model coefficients, β1, . . . , βdw which represents these whole-plot factor effects. Further-

more, βdw+1, . . . , βd represent the subplot factor effects. Moreover, pλw(.) and pλs(.) are

the shrinkage penalty functions which will be applied to the whole-plot factor effects

and subplot factor effects respectively. Both λw and λs are unknown positive shrinkage

parameters, which can be selected by several selection methods presented in Section

2.3. In this thesis, we improved the performance of the PGLS-SPD by using different

shrinkage tuning parameter and different model selection penalty function.

In this chapter, Section 2.2.1 will discuss the computational algorithm for the Penalised

Generalised Least Square (PGLS) estimator in which one shrinkage tuning parameter

is applied. Also, Section 2.2.2 will discuss the computational algorithm for Penalised

Generalised Least Square for Split-Plot Design (PGLS-SPD) estimator in which two

shrinkage parameters are applied. One shrinkage tuning parameter is for subplot effect

factors and the other is for whole-plot effect factors. The selection of the shrinkage

tuning parameters will be explained in Section 2.3. Moreover, Sections 2.4 to 2.9 will

discuss the model selection methods that are used in this work. A discussion of this

chapter will be provided in Section 2.10.



24 Chapter 2 Frequentist Analysis Methods for Response from Split-Plot Experiments

2.2 Frequentist Variable Selection Algorithms

In this section, we introduce the computational algorithms which we use in the frequen-

tist analysis for variable selection using the PGLS, and the PGLS-SPD. We should stan-

dardise the variables when our regression model involves interaction terms and quadratic

terms. Although these types of terms may provide useful information about the rela-

tionship between the response and the variables, they produce an excessive amount of

multicollinearity. Multicollinearity refers to variables that are correlated with other vari-

ables in the model. This increases the variance of the coefficient estimates and makes the

estimates very sensitive to minor changes in the model. The result is that the coefficient

estimates are unstable and difficult to interpret.

Mansfield and Helms (1982) discussed several indications of the multicollinearity prob-

lem such as high correlation between pairs of independent variables, statistically non

significant regression coefficients on significant variables, and the extreme effects of the

changes of sign or magnitude of regression coefficients when an independent variable

is included or excluded. Therefore, we standardise our variables before the analysis as

this would reduce multicollinearity and the associated problems that are caused by the

higher-order terms.

2.2.1 Penalised Generalised Least Square (PGLS) Algorithm

1. Let β(0) be the generalised least squares estimator β̂GLS as in (1.5), for the full

model, a model fitted by all the variables in the experiment, and σ̂2ε , σ̂
2
γ be the

REML estimates of the variance components for this model.

2. (a) Set a grid for λ with l values λ1, λ2, . . . , λl for each grid.

(b) For i = 1, 2, . . . , l of the grid, use λi to estimate the model parameters of the

corresponding tuning.

(c) For i = 1, 2, . . . , l of the grid, choose λi that minimises cAIC(λi) and BIC(λi)

for λ as defined in Section 2.3.

(d) Return λ.
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3. (a) Set β(0) as the GLS estimator and λ given from the previous loop.

(b) We set the SE(β̂) as our proposed threshold to find out if the estimates

are statistically significant or not, where SE(β̂) =

√
Var(β̂) in (1.7) is the

standard error of β̂. Thus, we set values of |β̂| ≤ SE(β̂) equal to zero.

(c) All other (non-zero) coefficients are jointly updated using

β̂
(1)

=
{

X′V̂
−1

X + W(0)
}−1

X′V̂
−1

Y,

where β̂
(1)

is the vector of all non-zero coefficients, and W(0) is a penalty

matrix for the initial values β̂
(0)

which it can be defined as

W(0) = diag

{
p′λ(|β̂(0)1 |)
|β̂(0)1 |

, . . . ,
p′λ(|β̂(0)d∗ |)
|β̂(0)d∗ |

}
,

where the d∗ is the total number of non-zero model coefficients.

(d) Any elements of β̂
(1)

that are |β̂| ≤ SE(β̂) are set to zero and the non-zero

coefficients are jointly updated along with the matrix W(0).

(e) Steps (c) to (d) are repeated until convergence takes place and no more factors

can be removed.

4. Denote β̂ the final estimates of the non-zero model coefficients and Ŵ the corre-

sponding estimated W penalty matrix.

The covariance of the non-zero parameter estimates can then be obtained from the

sandwich formula (Li and Lin, 2003):

ĉov(β̂) = (X′V̂
−1

X + Ŵ)−1X′V̂
−1

X(X′V̂
−1

X + Ŵ)−1

The non-significant coefficients will be replaced with zero indicating that the their asso-

ciated variables are non-significant.
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2.2.2 Penalised Generalised Least Square for Split-plot design (PGLS-

SPD) Algorithm

1. Let β(0) be the generalised least squares estimator β̂GLS as in (1.5), for the full

model, a model fitted with all the variables in the experiment, and σ̂2ε , σ̂
2
γ be the

REML estimates of the variance components for this model.

2. (a) Set two similar grids for λs and λw such that λsl = λwl for l values λ1, λ2, . . . , λl

for each grid.

(b) For i = 1, 2, . . . , l from λs grid, and for k = 1, 2, . . . , l from λw grid, use λi

and λk to estimate the model parameters of the corresponding tuning.

(c) Choose λi and λk that minimises cAIC and BIC for both λs and λw as defined

in Section 2.3.

(d) Return λs and λw.

3. (a) Set β(0) as the GLS estimator and λs and λw given from the previous loop.

(b) We set the SE(β̂) as our proposed threshold to find out if the estimates

are statistically significant or not, where SE(β̂) =

√
Var(β̂) in (1.7) is the

standard error of β̂. Thus, we set values of |β̂| ≤ SE(β̂) equal to zero.

(c) All other (non-zero) coefficients are jointly updated using

β̂
(1)

=
{

X′V̂
−1

X + W(0)
}−1

X′V̂
−1

Y,

where β̂
(1)

is the vector of all non-zero coefficients, and W(0) is a penalty ma-

trix for the initial values β̂
(0)

and it can be defined as W(0)= diag (W
(0)
w ,W

(0)
s )

where

W(0)
w = diag

p′λw(|β̂(0)1 |)

|β̂(0)1 |
, . . . ,

p′λw(|β̂(0)d∗w
|)

|β̂(0)d∗w
|

 ,
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corresponds to the whole-plot effects and d∗w is the number of non-zero model

coefficients that corresponds to the whole-plot effects. And

W(0)
s = diag

p
′
λs

(|β̂(0)dw+1
|)

|β̂(0)dw+1|
, . . . ,

p′λs(|β̂
(0)
d∗ |)

|β̂(0)d∗ |

 ,

corresponds to the sub-plot effects, and the d∗ is the total number of non-zero

model coefficients.

(d) Any elements of β̂
(1)

that are |β̂| ≤ SE(β̂) are set to zero and the non-zero

coefficients are jointly updated along with the matrix W(0).

(e) Steps (c) to (d) are repeated until convergence takes place and no more factors

can be removed.

4. Denote β̂ the final estimates of the non-zero model coefficients and Ŵ the corre-

sponding estimated W penalty matrix.

The covariance of the non-zero parameter estimates can then be obtained from the

sandwich formula (Li and Lin, 2003):

ĉov(β̂) = (X′V̂
−1

X + Ŵ)−1X′V̂
−1

X(X′V̂
−1

X + Ŵ)−1

The non-significant coefficients will be replaced with zero indicating that the their asso-

ciated variables are non-significant.

2.3 Selection of Shrinkage Tuning Parameter

This section illustrates the selection of the shrinkage parameters, λ, λw and λs. In the

literature, there is no fixed formula to select the tuning parameter, as this depends on

the data themselves. In this work, a grid for λ from 0 to 3 was set, and two similar grids

were set for λw and λs from 0 to 3 each. The precise grid of values is (0, 0.2, 0.4, 0.6,

0.8, 1, 1.2, 1.4, 1.6, 1.8, 2, 2.2, 2.4, 2.6, 2.8, 3). The tuning parameters selected using

several information selection criteria.

The maximised log-likelihood for the model fitted to a split-plot design discussed in
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Sections 1.3.1 and 1.3.2 is

lnL̂ = −n
2

ln(2π)− 1

2
ln|V̂| − 1

2
(y−Xβ̂)′V̂

−1
(y−Xβ̂), (2.2)

where β̂ and V̂ are as in (1.5) and (1.6) respectively.

Let K = 1 + pt + vc, such that pt is the number of the active fixed parameters in the

fitted penalised least squares model (Wahba, 1980). The pt can then be computed as

pt = tr
[
X{X′V̂−1X + Ŵ}−1X′V̂−1

]
, where Ŵ is a penalty matrix (Li and Lin, 2003)

and is computed in Section 2.2. The vc is the number of variance components that are

used in fitting the penalised model. The following information selection criteria can be

used in selecting the shrinkage parameters λ, λw and λs.

1. Corrected Akaike Information Criterion (cAIC) is given by Sugiura (1978) and

Hurvich and Tsai (1989),

cAIC = −2lnL̂+
2Kn

n−K − 1
.

In the context of regression, several researchers e.g., Sugiura (1978); Hurvich and

Tsai (1989); and Anderson and Burnham (1999) have suggested using a corrected

version (cAIC) which applies a slightly heavier penalty that depends on K and n.

2. Bayesian Information Criterion (BIC) is given by Schwarz et al. (1978),

BIC = −2lnL̂+K ln n.

BIC provides a different balance between lack of fit and complexity. BIC penalises

larger models more heavily due to dependency on n and so will tend to prefer

smaller models.
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2.4 Backward Elimination

We did the generalised least square estimator using the backward elimination to compare

with other methods. Backward elimination starts with the full model, and eliminates

one variable at a time based on the Wald (Wa) test statistic. The Wald test statistic

is suitable to compare nested models when the variance covariance matrix changes after

each drop. We estimate the variance components σ2ε and σ2γ by REML using the full

model, so we deal with the Wald test statistic as the variance components are known.

We used the Wald test statistic at 5% significance level, and we compare nested models

through the process of backward elimination.

Assuming that y is normally distributed and the variance components are known, we

test the hypothesis:

H0 : βi = 0 vs H1 : βi 6= 0

The Wald (Wa) test statistic will follow an F distribution with 1 and r degrees of

freedom.

Wa =
β̂i

2

σ2ii
∼ F(1,r)

where σ2ii is the (i, i)th element of Var(β̂). The degrees of freedom in a statistical

calculation represent how many values involved in a calculation that have the freedom

to vary. The degrees of freedom can be defined as they are equal to the number of

independent observations minus the number of parameters (Toothaker and Miller, 1996).

The degrees of freedom could be calculated to guarantee the statistical accuracy of tests

statistics such as chi-square tests, t-tests and F-tests. Often, these tests are utilized to

make a comparison between the observed data with the data that could be expected to

be achieved according to a particular hypothesis.

We want to show that under the above null hypothesis, the distribution of the Wald

test statistic is approximately F distribution for our sample sizes. Therefore, for the

designs that we have, we will simulate 1000 datasets from the null model and generate

the empirical distribution of the test statistic. Then we compare the 1000 realisations

of the test statistic to F distribution. We note that the whole-plot factors cannot be

approximated well if their associated critical values of F-test statistic have the subplot
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degrees of freedom. In contrast, the whole-plot factors have good approximations to F

distribution if we used degrees of freedom for the critical value of F-test statistic for

whole-plot fixed effects.

We used different degrees of freedom for the critical value of F-test statistic, for the

subplot fixed effects than the degrees of freedom for the critical value of F-test statistic,

for the whole-plot fixed effects, to have good approximations for both the subplot and

the whole-plot factors. We give examples of the advantage of this variation for whole-

plot factors in the degrees of freedom as in Figure 2.1 and Figure 2.2.

Also, we keep the degrees of freedom fixed through the process of backward elimination

as the variance components are estimated once, using the full model. The degrees of

freedom for subplots rs are, rs = n − ps − pw − rw − 1. Where n is the number of

observations, ps is the number of subplot fixed effects, pw is the number of whole-plot

fixed effects, rw are the degrees of freedom used for whole-plot variance. Moreover, the

degrees of freedom for whole-plots rw are, rw = nw − pw − 1. Where nw is the number

of whole plots or blocks, pw is the number of whole-plot fixed effects. For example, in

this work we studied two examples:

• In the wind tunnel experiment, we have n = 45 observations within 9 blocks. We

have ps = 8, pw = 4, and rw = 4. Therefore, the Wald (Wa ) test statistic for

subplot effect factors follows F(1,rs), where rs = 28. Also, we have nw = 9 and

pw = 4. Therefore, the Wald (Wa ) test statistic for whole-plot effect factors

follows F(1,rw), where rw = 4.

• In the freeze-dried coffee experiment, we have n = 30 observations within 6 blocks.

We have ps = 18, pw = 2, and rw = 3. Therefore, the Wald (Wa ) test statistic

for subplot effect factors follows F(1,rs), where rs = 6. Also, we have nw = 6

and pw = 2. Therefore, the Wald (Wa ) test statistic for whole-plot effect factors

follows F(1,rw), where rw = 3.
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Wind Tunnel Experiment
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Figure 2.1: 19 quantile for w2 and w1w2 against F(1,28) and F(1,4) in the wind
tunnel experiment.



32 Chapter 2 Frequentist Analysis Methods for Response from Split-Plot Experiments

Freeze-Dried Coffee Experiment
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Figure 2.2: 19 quantile for w1 against F(1,6) and F(1,3) in the freeze-dried coffee
experiment.

2.5 Least Absolute Shrinkage and Selection Operator Penalty

(LASSO)

According to Tibshirani (1996, 1997), LASSO minimises the residual sum of squares

subject to the sum of the absolute value of the coefficients being less than a constant.

Thus, this constraint tends to produce some coefficients are exactly zero and shrinks the

other coefficients toward zero. Recall the PGLS in (1.11), the penalty term by LASSO

is,

pλ(β) = λ

d∑
j=1

(| βj |),

and recall the PGLS-SPD in (2.1), the penalty terms by LASSO are,

pλw(β) = λw

dw∑
j=1

(| βj |) and pλs(β) = λs

d∑
j=dw+1

(| βj |).
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Here λ, λw, and λs ≥ 0 are complexity parameters that control the amount of shrinkage:

the larger the value of λ, λw, and λs, the greater the amount of shrinkage. The LASSO

penalty shrinks small coefficients to zero and hence results in a sparse representation of

the solution. However, estimation of large coefficients may suffer from substantial bias

if the chosen shrinkage parameter is too big, whereas the model may not be sufficiently

sparse if the chosen shrinkage parameter is too small (Tibshirani, 1996, 1997). The

LASSO shrinkage causes the estimates of the non-zero coefficients to be biased towards

zero, and not statistically consistent (as the sample size grows, the estimates do not

converge to the true values). The LASSO continuously shrinks the coefficients toward

0 as the shrinkage parameter increases, and some coefficients are shrunk exactly to 0 if

the shrinkage parameter is sufficiently large.

2.6 Adaptive LASSO Penalty (ALASSO)

Despite the advantage of LASSO, it has some limitations. In the situation of high di-

mensional data in which N << p, LASSO can at most select N variables. Also, in

the situations where we have correlated variables, LASSO will select only one variable

from a group of correlated variables. In addition, Tibshirani (1996, 1997) discussed the

case of N >> p as it is found that for correlated variables, ridge regression proposed by

Hoerl and Kennard (1970) in Section 1.4.2 has better prediction accuracy than LASSO.

Though the ridge regression does not enforce non significant effects to be zero, but rather

minimises their effects on the response variable. Moreover, LASSO is not an oracle pro-

cedure as indicated by Zou (2006).

The oracle properties of an estimator are discussed by Fan and Li (2001). They in-

volve the unbiasedness (to avoid unnecessary bias for non-zero parameters), the sparsity

(non-informative variable coefficients are estimated as zeros to reduce the model com-

plexity), and the continuity. Zou (2006) proposed the Adaptive LASSO (ALASSO) as

an alternative approach to improve the LASSO with respect to obtaining consistency in

variable selection and prediction accuracy. ALASSO is based on using a weighted L1,

the LASSO penalty with weight determined by an initial estimator.
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Recall the PGLS in (1.11), the penalty term by ALASSO is,

pλ(β) = λ

d∑
j=1

ŵgj |βj |,

and recall the PGLS-SPD in (2.1), the penalty terms by ALASSO are,

pλw(β) = λw

dw∑
j=1

ŵgj |βj | and pλs(β) = λs

d∑
j=dw+1

ŵgj |βj |.

The vector of the weights ŵg = (ŵg1, ŵg2, . . . , ŵgd)
′ are the adaptive data-driven weights,

where ŵgj , j = 1, . . . , d can be constructed by ŵgj = (β̂
(0)
j )−ψ, where ψ is a positive

constant and β̂
(0)

is β̂GLS (Zou, 2006).

To construct the adaptive weights ŵg, Zou (2006) suggested to pick a ψ > 0. In this

work, we set ψ = 0.5 as this choice was according our simulation study. We found that

this choice provided the lowest Type I and II error rates among the choices that have

been investigated during our research process.

2.7 Smoothly Clipped Absolute Deviation Penalty (SCAD)

Fan (1997) and Fan and Li (2001) developed a new penalty function name the Smoothly

Clipped Absolute Deviation (SCAD) penalty for variable selection in linear models,

which cleverly avoids excessive penalties on large coefficients and enjoys the oracle prop-

erties. The SCAD penalty is symmetric, continuous on (0,∞) and singular at the origin.

Fan and Li (2001) showed that under certain regular conditions, the SCAD penalised

estimators perform as well as the oracle procedures; in other word, zero coefficients are

estimated as zero with probability tending to 1, and non-zero coefficients are estimated

as well as if the correct model was known. Recall the PGLS in (1.11), the penalty term

by SCAD is,

pλ(β) =


λ|β| if 0 ≤ |β| < λ,

(α2−1)λ2−(|β|−αλ)2
2(α−1) if λ ≤ |β| < αλ,

(α+1)λ2

2 if |β| ≥ αλ,
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and recall the PGLS-SPD in (2.1), the penalty terms by SCAD are,

pλw(β) =


λw|β| if 0 ≤ |β| < λw,

(α2−1)λ2w−(|β|−αλw)2
2(α−1) if λw ≤ |β| < αλw,

(α+1)λ2w
2 if |β| ≥ αλw,

and

pλs(β) =


λs|β| if 0 ≤ |β| < λs,

(α2−1)λ2s−(|β|−αλs)2
2(α−1) if λs ≤ |β| < αλs,

(α+1)λ2s
2 if |β| ≥ αλs,

where λ, λw, λs and α are tuning parameters to be determined. For the tuning param-

eter α, Fan (1997) and Fan and Li (2001) demonstrated that α = 3.7 works well in

practice for most models because this value gave a satisfactory performance in variety of

variable selection problems. The LASSO shrinkage causes the estimates of the non-zero

coefficients to be biased towards zero, and in general they are not consistent. The SCAD

applies the LASSO for small coefficients in the first branch. The second branch of the

SCAD function would reduce the amount of shrinkage for larger values of coefficients.

The last branch of the SCAD function would deal with very large coefficients where not

excessive penalisation will be applied for this branch. Unlike the LASSO, the SCAD

penalty function gives the best performance in selecting significant variables without

creating excessive biases in linear models (Fan and Li, 2001).

2.8 Elastic Net Penalty (EN)

Zou and Hastie (2005) proposed a new regularisation technique that used when there

are unknown groups of multicollinear predictors. Recall the PGLS in (1.11), the penalty

term by EN is,

pλ(β) = λ
[
(1− α)|β|1 + α |β|2

]
,
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and recall the PGLS-SPD in (2.1), the penalty terms by EN are,

pλw(β) = λw
[
(1− α)|β|1 + α |β|2

]
,

and

pλs(β) = λs
[
(1− α)|β|1 + α |β|2

]
,

where |β|1 =
∑d

j=1 |βj | represents the LASSO penalty, |β|2 =
∑d

j=1 βj
2 represents the

ridge regression penalty, and α ∈ [0, 1). The elastic net estimator can be interpreted

as a stabilised version of the LASSO. The EN penalty function is a singular (without

first derivative) at 0 and strictly convex for all α > 0, thus having the characteristics

of both the LASSO and ridge regression (Zou and Hastie, 2005; Zou and Zhang, 2009).

We set three values of α = 0.1, 0.01, and 0.001 as in Zou and Hastie (2005). The

information criteria which will be used to select the shrinkage tuning parameter will

also be used to select one of the values of α which minimises the selection criteria.

According to Zou and Zhang (2009), the LASSO part performs an automatic variable

selection while the ridge regression stabilizes the solution paths and hence improves the

prediction. They state that in orthogonal designs where the LASSO is shown to be

optimal, the EN automatically reduces to the LASSO. However, when the correlations

among the predictors become high, the EN can significantly improve the prediction

accuracy of the LASSO. Also, Zou and Hastie (2005) state that the EN simultaneously

does automatic variable selection and continuous shrinkage, and it can select groups of

correlated variables.

2.9 Least Angle Regression Selection (LARS)

The LARS algorithm has been described in Efron et al. (2004). Let X is the n×p design

matrix for p factors. LARS builds up estimates µ̂ = Xβ̂ of the response where β̂ is the

generalised least square estimate of the vector of coefficients. Yue (2010) summarised

the LARS algorithm as follows

1. The algorithm starts at µ̂0 = 0 and locate all coefficients to zero.
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2. Find the variable, x1, which is most correlated with the response.

3. Fit the model using the generalised least square estimator in the direction of x1 (or

u1, the unit vector along x1) until another variable, say x2, has similar correlation

with the recent residual as x1 does.

4. At this step, the LARS estimate is updated to µ̂1 = µ̂0 + γ̂1u1, where γ̂1 can

be chosen such that the recent residual y − µ̂1 halves the angle between the two

variables x1 and x2.

5. Rather than continuing along x1, LARS progresses in the direction of u2, the unit

bisector of the two variables x1 and x2, until a third variable x3 gains its way into

the most correlated set.

6. The LARS estimate then will be upgraded to µ̂2 = µ̂1 + γ̂2u2, where γ̂2 is selected

so that the recent residual y − µ̂2 has similar angles with x1, x2, and x3.

7. After that, LARS progresses along u3, the equiangular unit vector, i.e. along the

least angle direction, until a fourth variable enters, etc. LARS builds up estimates

in each step by adding one variable to the model, therefore, only p steps are

required for the full set, where p is the number of variables.

As we deal with mixed effect models, we can weight our data as X∗ =
√

CX and

Y∗ =
√

CY, where C = V−1, and apply the lars function in the lars package in

R. However, in this work, we modify the Gram matrix G = X′V−1X to calculate the

generalised least square estimator (GLS) in the lars function in Matlab.

2.10 Discussion

This chapter discussed the theoretical framework of the frequentist analysis using the

PGLS and PGLS-SPD. It provided the steps of the computational algorithm for the vari-

able selection by PGLS in Section 2.2.1 and by PGLS-SPD in Section 2.2.2. The PGLS

approach utilises one shrinkage parameter for all factor effects whereas the PGLS-SPD

approach utilises two shrinkage parameters as one for the subplot effect factors and the
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other for whole-plot effect factors. The two shrinkage parameters in PGLS-SPD may

have the same grid; however, different values for the two shrinkage parameters would be

selected by the information criteria. This extension in PGLS-SPD was applied to adapt

the issue of the restricted randomisation as it yields two different strata for split-plot

design. The backward elimination was presented as an example of the classical model

selection methods. Also, some shrinkage methods involving LASSO, ALASSO, SCAD,

EN, and LARS were described.

In Chapter 3, we will summarise the results of the implementation for both the PGLS

in (1.11) and the PGLS-SPD in (2.1) on the data for the wind tunnel experiment and

the freeze-dried coffee experiment. Moreover, we will show how the performance of the

PGLS-SPD overcomes the performance of PGLS with respect to variable selection and

parameter estimation.



Chapter 3

Application of the Frequentist

Methods for Response from

Split-Plot Experiments

This chapter is a practical demonstration of the analyses described in Chapter 2. It

provides a comparison between penalised generalised least squares (PGLS) in (1.11)

and penalised generalised least squares for split-plot experiments (PGLS-SPD) in (2.1).

The numerical results will be summarised for both motivating examples explained in

Sections 1.2.1 and 1.2.2. The focus is on two different designs of split-plot experiments.

In the first example, the wind tunnel experiment, the used design is an orthogonal (see

Figure 3.1 and Figure 3.2). In the second example, the freeze-dried coffee experiment,

the used design is clearly non-orthogonal (see Figure 3.3 and Figure 3.4). The graphs

show the correlation coefficients for each pair of variables. The correlation that we have

is the scaled inner-product between columns in the design matrix. The performance

of PGLS and PGLS-SPD using these two different types of designs have been studied.

Section 3.1 will represent the results from the real dataset from both experiments, while

the simulation results will be summarised in Section 3.2. This chapter concludes with

a short discussion and comparison of PGLS, PGLS-SPD, backward elimination, and

LARS selection methods.

39



40
Chapter 3 Application of the Frequentist Methods for Response from Split-Plot

Experiments

s
1

s
2

w
1

w
2

s
1
s

2

s
1
w

1

s
1
w

2

s
2
w

1

s
2
w

2

w
1
w

2

s
12

w
12

s
1

s
2

w
1

w
2

s
1
s

2

s
1
w

1

s
1
w

2

s
2
w

1

s
2
w

2

w
1
w

2

s
1

2

w
1

2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 3.1: Heat map of column correlation matrix for the quadratic model in Section
3.1.1 of the wind tunnel experiment.

3.1 Practical Examples

The real datasets for the wind tunnel experiment and the freeze-dried coffee experiment

have been used to apply the PGLS, PGLS-SPD, backward elimination, and LARS ap-

proaches for each experiment. The estimated coefficients were obtained as well as the

standard errors. The selected tuning parameters in each experiment were also displayed.

The estimated variance components using REML have been reported as well.

Using the quadratic model for the wind tunnel experiment and the full quadratic model

for the freeze-dried coffee experiment in Sections 3.1.1 and 3.1.2, Figure 3.1 to Figure 3.4

have been produced. The quadratic model for the wind tunnel experiment involves four

main effects (w1, w2, s1, s2), six two-factor interaction effects (s1s2, s1w1, s1w2, s2w1,

s2w2, w1w2), and two quadratic effects (w2
1, s

2
1). Also, the full quadratic model for the

freeze-dried coffee experiment involves five main effects (w,s1, s2, s3, s4), 10 two-factor
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Figure 3.2: Column correlation matrix for the quadratic model in Section 3.1.1 of the
wind tunnel experiment displayed by the values of the correlation coefficients.

interaction effects (ws1, ws2, ws3, ws4, s1s2, s1s3, s1s4, s2s3, s2s4, s3s4), and five

quadratic effects (w2, s21, s
2
2, s

2
3, s

2
4).

3.1.1 Analysis of the Wind Tunnel Experiment

The wind tunnel experiment has been discussed in Section 1.2.1. In this section, the

results of applying the PGLS, PGLS-SPD, backward elimination, and LARS for this

data has been discussed. The maximal model is the quadratic model as in Section 3.1.

In this design, w2
1 and w2

2 are fully correlated with each other. The s21 and s22 are also

fully correlated with each other. Therefore, only one of the quadratic whole-plot effects

and only one of the quadratic subplot effects could be estimated as in Section 3.1. The

estimates of the 12 parameters of the quadratic model have been obtained using four

different penalty functions for the PGLS and PGLS-SPD, as well as using the LARS

and backward elimination as described in Sections 2.4 to 2.9.

Table 3.1 and Table 3.2 present the estimated coefficients and standard errors by two
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Figure 3.3: Heat map of column correlation matrix for the full quadratic model in
Section 3.1.2 of the freeze-dried coffee experiment.

different shrinkage tuning parameter selection criteria, i.e. cAIC and BIC, as in Section

2.3, for y3 displayed in Table 1.3. In Table 3.1, the model subset selection by backward

elimination and LARS, are displayed for comparison. Moreover, the estimated coeffi-

cients with their p−values from Simpson et al. (2004) are presented. In their work, they

compared the analysis for y3 with the quadratic model using the completely randomised

design and the split-plot design. We report their results from the split-plot design to

compare it with our results. They estimated the parameters of the quadratic model

using the generalised least squares.

Table 3.3 then presents the selected tuning parameters for the wind tunnel experiment

by both PGLS and PGLS-SPD. The REML has been used to estimate the variance

components from the full quadratic model. We found that both σ̂2ε and σ̂2γ equal to

1.0000 × 10−5. The value 1.0000 × 10−5 is the lower bound that we assumed in the
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Figure 3.4: Column correlation matrix for the full quadratic model in Section 3.1.2 of
the freeze-dried coffee experiment displayed by the values of the correlation coefficients.

function fmincon of Matlab. Table 3.1, Table 3.2 and Table 3.3, indicate that the se-

lected tuning parameters by cAIC and BIC in both PGLS and PGLS-SPD have the same

values. This resulted in providing the same final model with nine variables considered

to be significant for both the PGLS and the PGLS-SPD and by all penalty functions

in this experiment due to the similarity in the amount of shrinkage. Furthermore, the

estimated coefficients as well as the standard errors are identical for all methods. This is

because of the small variance of the response and of the experimental design properties

which was used for the wind tunnel experiment. The design is orthogonal, so the model

parameters can be estimated independently.

A comparison between the penalised methods, backward elimination and LARS showed

that backward yielded four main variables while the LARS yielded seven variables con-

sidered to be significant. The extra two variables which were included by PGLS and

PGLS-SPD are s1w1 and s1w2. We note that these two variables have a little effect with

a standard error equal to a half of their estimated size, which makes the standard errors
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for these estimates quite large compared to their size effects. The PGLS and PGLS-SPD

prefer to keep these two variables in the final model. By increasing the values of the

tuning parameters, extra shrinkage amount has been applied to other variables (i.e. s1,

s2, w1, and s21). However, the results are reported using grids from 0 to 3 as (0, 0.2, 0.4,

0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2, 2.2, 2.4, 2.6, 2.8, 3) for λ, λs, and λw.
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Information criteria cAIC BIC

Method λ λs λw λ λs λw
LASSO 3 3 3 3 3 3

ALASSO0.5 0 0 0 0 0 0
SCAD 2.8 2.8 2.8 2.8 2.8 2.8

EN 3 3 3 3 3 3

Table 3.3: The selected tuning parameters λ from PGLS and (λs, λw) from
PGLS-SPD for the wind tunnel experiment.

3.1.2 Analysis of the Freeze-Dried Coffee experiment

The freeze-dried coffee experiment was introduced in Section 1.2.2. In this section, the

results of applying the PGLS, PGLS-SPD, backward elimination, and LARS for this

data are summarised. The maximal model is the full quadratic model as in Section 3.1.

The estimates of the 20 parameters of the full quadratic model have been obtained using

four different penalty functions for the PGLS and PGLS-SPD, as well as using LARS

and the backward elimination as described in Sections 2.4 to 2.9.

Table 3.4 and Table 3.5 present the estimated coefficients and their standard errors us-

ing two different shrinkage tuning parameter selection criteria, i.e. cAIC and BIC as

in Section 2.3, for y1 displayed in Table 1.5. The model subset selection by backward

elimination and the LARS, are also displayed for comparison. Moreover, the estimated

coefficients with their p−values from Gilmour and Goos (2009) are presented to compare

with our results. In their work, they carried out REML-GLS analysis for y1 with the

full model using the R lme function.

Table 3.6 presents the selected tuning parameters for the freeze-dried coffee experiment

by both PGLS and PGLS-SPD. REML has been used to estimate the variance compo-

nents for the response, y1, as σ̂2ε is 5.8457 and σ̂2γ is 1.0000 × 10−5. The experimental

design used in the freeze-dried coffee experiment is non-orthogonal as shown in Fig-

ure 3.3 and Figure 3.4, and has four variables varied within the whole plots. Table 3.6

shows that the selected tuning parameters by cAIC is larger than the selected tuning

parameters by BIC. This resulted in final models with an extra one variable by BIC

(e.g. the subplot factor ws4 in all penalty functions) more than the final models by

cAIC in both PGLS and PGLS-SPD by ALASSO0.5 and SCAD. Moreover, the subplot

factor ws4 has been included in the final model by LASSO and EN in which the cAIC
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cAIC BIC

LASSO ALASSO0.5 SCAD EN LASSO ALASSO0.5 SCAD EN Backward LARS Original paper

βw -2.1874 -2.3123 -2.21561 -2.3060 -2.3823 -2.4468 -2.3735 -2.3735 -2.8639 -2.5771 -2.5021
(0.4951) (0.5096) (0.5417) (0.5291) (0.5291) (0.5096) (0.5728) (0.5290) (0.6483) (0.6261) (0.0439)

βs1 10.1782 10.7517 10.8903 10.2342 10.2516 10.5002 10.6284 10.2096 10.8903 10.8903 10.4748
(0.5875) (0.6202) (0.6228) (0.6014) (0.5898) (0.6140) (0.6175) (0.5898) (0.6834) (0.6261) (0)

βs2 -4.4176 -4.7988 -5.0763 -4.6146 -4.47749 -4.9667 -5.1815 -4.7427 -5.4188 -5.1321 -5.1321
(0.5804) (0.6496) (0.6793) (0.6139) (0.6119) (0.6496) (0.6761) (0.6115) (0.6834) (0.7229) (0.0003)

βs3 0 0 0 0 0 0 0 0 0 0 0
(-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-)

βs4 2.5214 3.1381 3.0495 2.6054 2.7556 3.0018 3.0018 2.7410 3.3947 3.3947 3.0201
(0.5234) (0.5633) (0.5865) (0.5653) (0.5832) (0.6152) (0.6398) (0.5831) (0.6834) (0.6261) (0.0070)

βws1 0 0 0 0 0 0 0 0 0 0 0
(-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-)

βws2 -3.5703 -4.1675 -4.6797 -3.8356 -4.0574 -4.3543 -4.6928 -4.0105 -5.4049 -4.5446 -4.5446
(0.7205) (0.8508) (0.9037) (0.8113) (0.8412) (0.8508) (0.9745) (0.8400) (0.9169) (0.0844) (0.0047)

βws3 0 0 0 0 -0.9967 0 0 -0.9983 0 0 0
(-) (-) (-) (-) (0.5936) (-) (-) (0.5940) (-) (-) (-)

βws4 -1.4509 0 0 -1.5558 -1.9974 -1.4401 -1.1788 -2.0161 0 0 0
(0.5260) (-) (-) (0.6416) (0.7478) (0.5835) (0.6284) (0.7493) (-) (-) (-)

βs1s2 1.1283 1.5138 1.3449 1.2439 1.2109 1.3493 1.4274 1.2032 1.9295 1.9295 0
(0.4441) (0.4315) (0.4777) (0.5118) (0.5307) (0.4315) (0.5602) (0.5301) (0.7249) (0.6640) (-)

βs1s3 0 0 0 0 0 0 0 0 0 0 0
(-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-)

βs1s4 1.4638 1.2106 1.0156 1.5242 1.5287 1.4105 1.3778 1.5214 0 1.5775 0
(0.4880) (0.3578) (0.3928) (0.5472) (0.5646) (0.5188) (0.5811) (0.5647) (-) (0.7341) (-)

βs2s3 0 0 0 0 0 0 0 0 0 0 0
(-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-)

βs2s4 2.4477 2.5669 2.4114 2.5817 2.4177 2.7314 2.8746 2.4090 2.8861 2.8861 2.5554
(0.5329) (0.5592) (0.5922) (0.5479) (0.5737) (0.5592) (0.6155) (0.5735) (0.7249) (0.6640) (0.0132)

βs3s4 2.9522 2.9656 2.6535 3.0369 3.0884 3.104 3.1984 3.1033 3.0911 3.2345 3.0856
(0.5677) (0.6106) (0.6432) (0.6085) (0.6109) (0.6106) (0.6107) (0.6117) (0.7249) (0.7341) (0.0075)

βw2 0 0 0 0 0 0 0 0 0 0 0
(-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-)

βs21 0 0 0 0 0 0 0 0 0 0 0

(-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-)

βs22 0 0 0 0 0 0 0 0 0 0 0

(-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-)

βs23 0 0 0 0 0 0 0 0 0 0 0

(-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-)

βs24 0 0 0 0 0 0 0 0 0 0 0

(-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-)

Table 3.4: Estimated coefficients and standard errors (in parentheses) for the
freeze-dried coffee experiment for y1 by PGLS. ALASSO0.5 is the ALASSO
with ψ = 0.5. The last column is the estimated coefficients and p−values (in
parentheses) from Gilmour and Goos (2009).

was used to select the tuning parameter. This was the same for both the PGLS and

PGLS-SPD as the selected tuning parameters λ and λs were the same as in Table 3.6.

The difference between PGLS and PGLS-SPD appears in the subplot factor ws3 as it

was included in the PGLS to the final model by LASSO and EN in which the BIC used

to select the tuning parameters whereas PGLS-SPD removed this factor for all functions

and all selection criteria. A comparison between the penalised methods, backward elim-

ination and LARS showed that the ALASSO0.5 and the SCAD in which the cAIC was

used to select the tuning parameters have almost similar performance to the backward

elimination and LARS as they resulted in a final model with eight and nine variables

respectively considered to be significant by both PGLS and PGLS-SPD.
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cAIC BIC

LASSO ALASSO0.5 SCAD EN LASSO ALASSO0.5 SCAD EN

βw -2.2524 -2.5541 -2.23606 -2.3060 -2.3823 -2.5726 -2.3765 -2.4407
(0.5110) (0.5902) (0.5430) (0.5291) (0.5291) (0.5888) (0.5366) (0.5438)

βs1 10.1782 10.7517 10.8903 10.2342 10.2516 10.5002 10.6284 10.2096
(0.5875) (0.6202) (0.6261) (0.6014) (0.5898) (0.6140) (0.6198) (0.5898)

βs2 -4.4176 -4.8016 -5.0726 -4.6146 -4.47749 -4.9671 -5.1796 -4.7427
(0.5804) (0.6496) (0.6747) (0.6139) (0.6119) (0.6608) (0.6928) (0.6115)

βs3 0 0 0 0 0 0 0 0
(-) (-) (-) (-) (-) (-) (-) (-)

βs4 2.5214 3.1381 3.0495 2.6054 2.7556 2.7783 3.0018 2.7410
(0.5234) (0.5633) (0.5508) (0.5653) (0.5832) (0.5885) (0.6398) (0.5831)

βws1 0 0 0 0 0 0 0 0
(-) (-) (-) (-) (-) (-) (-) (-)

βws2 -3.5703 -4.1755 -4.6704 -3.8356 -4.0574 -4.3556 -4.6873 -4.0105
(0.7204) (0.8504) (0.9037) (0.8113) (0.8412) (0.9261) (1.0219) (0.8399)

βws3 0 0 0 0 0 0 0 0
(-) (-) (-) (-) (-) (-) (-) (-)

βws4 -1.4509 0 0 -1.5558 -1.9974 -1.4401 -1.1788 -2.0161
(0.5260) (-) (-) (0.6416) (0.7478) (0.5835) (0.6390) (0.7493)

βs1s2 1.1283 1.5138 1.3450 1.2439 1.2109 1.3493 1.4274 1.2032
(0.4441) (0.4315) (0.4356) (0.5118) (0.5307) (0.4886) (0.5596) (0.5301)

βs1s3 0 0 0 0 0 0 0 0
(-) (-) (-) (-) (-) (-) (-) (-)

βs1s4 1.4638 1.2106 1.0156 1.5242 1.5287 1.4105 1.3778 1.5214
(0.4880) (0.3578) (0.3928) (0.5472) (0.5646) (0.5188) (0.5811) (0.5647)

βs2s3 0 0 0 0 0 0 0 0
(-) (-) (-) (-) (-) (-) (-) (-)

βs2s4 2.4477 2.5669 2.4114 2.5817 2.4177 2.7314 2.8746 2.4090
(0.5329) (0.5592) (0.5365) (0.5679) (0.5737) (0.5942) (0.6370) (0.5735)

βs3s4 2.9585 3.0271 2.7153 3.0369 3.0884 3.1362 3.1487 3.1033
(0.5688) (0.6174) (0.5841) (0.6085) (0.6109) (0.6528) (0.7032) (0.6117)

βw2 0 0 0 0 0 0 0 0
(-) (-) (-) (-) (-) (-) (-) (-)

βs21 0 0 0 0 0 0 0 0

(-) (-) (-) (-) (-) (-) (-) (-)

βs22 0 0 0 0 0 0 0 0

(-) (-) (-) (-) (-) (-) (-) (-)

βs23 0 0 0 0 0 0 0 0

(-) (-) (-) (-) (-) (-) (-) (-)

βs24 0 0 0 0 0 0 0 0

(-) (-) (-) (-) (-) (-) (-) (-)

Table 3.5: Estimated coefficients and standard errors (in parentheses) for the
freeze-dried coffee experiment for y1 by PGLS-SPD. ALASSO0.5 is the ALASSO
with ψ = 0.5.
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Information criteria cAIC BIC

Method λ λs λw λ λs λw
LASSO 1.2 1.2 1.0 0.6 0.6 0.6

ALASSO0.5 2.8 2.8 0.6 1.2 1.4 0.2
SCAD 1.6 1.6 1.2 0.8 0.8 1.2

EN 0.6 0.8 0.8 0.6 0.6 0.4

Table 3.6: The selected tuning parameters λ from PGLS and (λs, λw) from
PGLS-SPD for the freeze-dried coffee experiment.

3.2 Simulation Study

To examine our methods, we need to run simulation studies in order to find out how the

resulting model will be compared to the true model which used in the simulation. In the

simulation, we set σ2ε + σ2γ = 10, grids for λ, λs, and λw from 0 to 3 as (0, 0.2, 0.4, 0.6,

0.8, 1, 1.2, 1.4, 1.6, 1.8, 2, 2.2, 2.4, 2.6, 2.8, 3), and the variance components ratio to two

different levels, η = 1 and 10. Similar values for η have been used for the analysis of data

from many blocked and split-plot experiments (see, for instance, Letsinger et al. (1996)

and Gilmour and Trinca (2000)). We generate 1000 datasets using the design structure

from both motivating experiments in Table 1.3 for the wind tunnel design and Table 1.5

for the freeze-dried coffee design, and given the assumed true model as given in Sections

3.2.1 and 3.2.2 respectively. We compare the performance of the LASSO, ALASSO0.5,

SCAD, EN, backward elimination, and LARS by PGLS and PGLS-SPD. We focus on

the properties of the estimated models by investigating the following properties:

1. consistency in variable selection (frequency in selecting the active/ non-active vari-

able), and

2. prediction performance.

For point 1, at 5% significant level, we report Type I error rate (an effect that is truly

not significant but the corresponding procedure estimate indicates that it is significant).

We also report Type II error rate (an effect that is truly present but the corresponding

procedure estimate indicates that it is not significant).

For point 2, following Fan and Li (2001) and Ibrahim et al. (2011), prediction accuracy
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is measured by computing the mean-squared error for each penalised estimate β̂λ as,

ME(β̂λ) = (Xβ̂λ −Xβ)′(Xβ̂λ −Xβ).

The relative model error (RME) is the ratio of the model error of the penalised estimates

to the model error for the GLS estimates of the fixed effects,

RME =
ME(β̂λ)

ME(β̂GLS)
,

where β̂GLS in (1.5) is the generalised least squares estimator of β. The median of the

relative model error (MRME) over 1000 simulated data sets were reported for each

example. MRME values greater than one indicate that the PGLS and PGLS-SPD

estimates perform worse than the GLS estimates, values near to one indicate that the

PGLS and PGLS-SPD estimates performs in a similar way to the GLS estimates, values

less than one indicate that the PGLS and PGLS-SPD estimates performs better than

the GLS estimates.

3.2.1 Simulation Study Using the Design of the Wind Tunnel Experi-

ment

A simulation study was performed to examine the performance of the PGLS and PGLS-

SPD estimates and compare them to the traditional model selection methods. Using

the design of the wind tunnel experiment from Table 1.3, the response variable was

generated given the true model

E(Y) = 4w1 + 2s2 − 4w1w2 + 2w1s2 + 6w2
1 + 4s21.

In this experiment, six active variables (w1, s2, w1w2, w1s2, w
2
1 and s21) and six non-active

variables (s1, w2, s1s2, s1w1, s1w2 and s2w2) were assumed. We assumed this model as

we would like to check a model with variety of factor types. Figure 3.5, Figure 3.6

and Figure 3.7 present the performance of PGLS and PGLS-SPD at η = 1 whereas
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Figure 3.8, Figure 3.9 and Figure 3.10 present the performance of PGLS and PGLS-

SPD at η = 10, by cAIC and BIC for all functions in Sections 2.4 to 2.9. The left side

of the figures displays the Type II error rate while the right side presents the Type I

error rate. For details about Type I and II error rates, see Table A.1 to Table A.4 in

Appendix A.

With respect to the Type I error rate at both η = 1 and η = 10, Figure 3.5 to Figure 3.10

along with Table A.1 and Table A.2 in Appendix A show that backward elimination and

LARS achieved the lowest Type I error rate compared to PGLS and PGLS-SPD though

backward elimination at η = 1 had the best performance. Comparing PGLS to PGLS-

SPD revealed that PGLS-SPD yielded a lower Type I error rate than PGLS with respect

to the subplot factors. The function ALASSO0.5 had the lowest Type I error rate in

both PGLS and PGLS-SPD.

We can explain the advantages of the PGLS-SPD in reducing the Type I error rate

for the subplot factors over the PGLS from Figure 3.11 and Figure 3.12. Figure 3.11

presents the frequency of selected the shrinkage parameters λ for the PGLS, and λs

and λw for PGLS-SPD at η = 1 by ALASSO0.5. The first row shows the frequency

of selected shrinkage parameters by the selection criterion cAIC. Also, the second row

shows the frequency of selected shrinkage parameters by the selection criterion BIC. The

λs which was chosen by BIC (Figure 3.11 (e)) selects a variety of values of λ (small and

large) values, and rarely selects zero. This indicates that the non significant subplot

factors are more likely to be penalised more than the whole-plot factors. This results in

a lower Type I error rate for subplot factors by PGLS-SPD. The cAIC in Figure 3.11

(b) selected small values of λs and at some models, selected zero. This makes the BIC

penalised the subplot factors more than cAIC and resulted in Type I error rates by BIC

which are often lower than those by cAIC.

With respect to λw, it must be noted that both cAIC and BIC chose zero or very close

to zero values for λw resulting in not penalising the whole-plot effects. This increased

the Type I error rate for the non significant whole-plot factor w2. Having one shrinkage

parameter λ which was chosen by cAIC (Figure 3.11 (a)) and by BIC (Figure 3.11 (d))

resulted in having zero values of λ on some models which increased the Type I error rate

for both subplot and whole-plot factors. We conclude that by introducing two shrinkage
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parameters λs and λw in the PGLS-SPD, the PGLS-SPD resulted in a considerable

reduction in the Type I error rate compared to the Type I error rate by PGLS.

A similar analysis can be provided from Figure 3.12 in which η = 10. The figure

confirms the advantage of the PGLS-SPD at η = 10 as discussed above. For example,

λs which was chosen by cAIC (Figure 3.12 (b)) and by BIC (Figure 3.12 (e)) tends to

be assigned larger values than the λ which was chosen by cAIC (Figure 3.12 (a)) and

by BIC (Figure 3.12 (d)), this also resulted in a reduction of the Type I error rate for

subplot factors. Furthermore, we note the λw which was chosen by cAIC (Figure 3.12

(c)) and by BIC (Figure 3.12 (f)) does not encourage to the penalisation of the whole-

plot factors as this results in a high Type I error rate for w2.

Regarding the Type II error rate, at η = 1 and η = 10 in Figure 3.5 to Figure 3.10

along with Table A.3 and Table A.4 in Appendix A, it can be seen that apart from w2
1,

all factors have been identified as active terms by all methods. Focusing on w2
1, PGLS

and PGLS-SPD resulted in a lower Type II error rate than with backward elimination

and LARS. In a screening experiments, detecting active variables is very important for

investigator. Apart from the quadratic whole-plot effect factor, the LARS and PGLS-

SPD provide good alternatives to detect the active variables.

With respect to the Median Relative Model Error (MRME) discussed in Section 3.2,

it can be seen from Figure 3.13 that the ALASSO0.5 at Figure 3.13 (a) η = 1 followed

by the ALASSO0.5 at Figure 3.13 (b) η = 10 achieved the lowest MRME among the

penalised methods. This indicates that the estimated coefficients with ALASSO0.5 are

better at η = 1 than the estimated coefficients with GLS, and are similar at η = 10 to

the estimates with GLS. Similar to the ALASSO0.5, we find the backward and LARS

in Figure 3.13 (c) at η = 10 has similar estimates to the GLS estimator. The LASSO

and EN at Figure 3.13 (a) η = 1 and Figure 3.13 (b) η = 10 as well as the SCAD at

Figure 3.13 (a) η = 1 had close estimates to GLS estimator though the lowest MRME

for them was at Figure 3.13 (a) η = 1. With respect to SCAD, PGLS-SPD using BIC

had the lowest MRME for this function.
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(a) LASSO
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Figure 3.5: Type I and II error rates for the wind tunnel design by LASSO and
ALASSO0.5 at η = 1.
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(c) SCAD
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(d) EN
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Figure 3.6: Type I and II error rates for the wind tunnel design by SCAD and
EN at η = 1.
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(e) Backward and LARS
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Figure 3.7: Type I and II error rates for the wind tunnel design by Backward
and LARS at η = 1.
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(b) ALASSO0.5
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Figure 3.8: Type I and II error rates for the wind tunnel design by LASSO and
ALASSO0.5 at η = 10.
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(c) SCAD
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(d) EN
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Figure 3.9: Type I and II error rates for the wind tunnel design by SCAD and
EN at η = 10.
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(e) Backward and LARS
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Figure 3.10: Type I and II error rates for the wind tunnel design by Backward
and LARS at η = 10.
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3.2.2 Simulation Study Using the Design of the Freeze-Dried Coffee

Experiment

A simulation study was performed to examine the performance of the PGLS and PGLS-

SPD estimates and compare them to the traditional model selection methods. Using the

design of the freeze-dried coffee experiment from Table 1.5, the response variable was

generated given the true model

E(Y) = 4w + 4s1 − 3s2 + 2s3 − 4ws1 + 3ws2 − ws3 + 4s1s2 + 3s1s3 + 2s1s4 + s2s4

+ 4w2 + 2s21 − s22 + 2s24

In this experiment, 15 active variables (w, s1, s2, s3, ws1, ws2, ws3, s1s2, s1s3, s1s4,

s2s4, w
2, s21, s

2
2, and s24) and five non-active variables (s4, ws4, s2s3, s3s4, and s23) were

assumed. We assumed this model as we would like to study a challenging model for

this design. This simulation represents the most challenge case as the design is non-

orthogonal with six whole plots. The aim was to detect 15 active variable in a model

with 20 variables in total. The quadratic terms in this design were very hard to detect

by all methods. There were considerable correlations between the variables in this model

(see Figure 3.3 and Figure 3.4).

Figure 3.14, Figure 3.15, and Figure 3.16 present the performance of PGLS and PGLS-

SPD at η = 1 whereas Figure 3.17, Figure 3.18, and Figure 3.19 present the performance

of PGLS and PGLS-SPD at η = 10, by cAIC and BIC for all functions in Sections 2.4

to 2.9. The left side of the figures displays the Type II error rate while the right side

presents the Type I error rate. For details about Type I and II error rates, see Table B.1

and Table B.4 in Appendix B.

With respect to the Type I error rate, from Table B.1 and Table B.2 as well as Figure 3.14

to Figure 3.19, it can be seen that the Type I error has a rate larger than 0.05 by all

methods. However, s2s3 achieved a Type I error rate of 0.05 using ALASSO0.5 for PGLS

and PGLS-SPD at η = 1. This was the lowest value among all methods. Moreover,

backward elimination and LARS provided lower Type I error rates than the PGLS and

PGLS-SPD. This is similar to the analysis of the simulation of the wind tunnel design.

The frequency of selected the shrinkage parameters in Figure 3.20 and Figure 3.21 plays
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Figure 3.13: Median relative model error (MRME) for the wind tunnel design.

a role in increasing the Type I error rate for the PGLS and PGLS-SPD. For example,

in Figure 3.20 at η = 1, we note that the selected λ by cAIC (Figure 3.20 (a)) and

the selected λs by cAIC (Figure 3.20 (b)) tends to be assigned small values and, for

some models, to be zero. This results in the inclusion of subplot factors by PGLS and

PGLS-SPD. The assumed non active terms are all subplot factors; thus, the PGLS and

PGLS-SPD recorded a high Type I error rate when they were included in the model.

Moreover, in Figure 3.21 at η = 10, we present the selected λs by cAIC ( Figure 3.21

(b)) and by BIC (Figure 3.21 (e)). The cAIC tends to select large values more frequently

than the BIC. This resulted in the Type I error rate for EN by cAIC being lower than
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the Type I error rate for EN by BIC at η = 10. Overall, in a comparison between PGLS

and the PGLS-SPD, the PGLS-SPD has a lower Type I error rate than the PGLS.

With respect to the Type II error rate at η = 1, Table B.3 in Appendix B and Figure 3.14

to Figure 3.16 show that it is hard to detect the quadratic factors and some of the

interaction factors because this design is non-orthogonal. It can be noted that the

LARS overcome the PGLS-SPD with respect to the main effect factors. However, the

EN recorded the lowest Type II error rate for subplot factors. This can be explained

using Figure 3.20 and Figure 3.21. For example, the selected λs by cAIC (Figure 3.20

(b)) and the selected λs by BIC (Figure 3.20 (e)) are more frequently leaving the subplot

factors without penalisation in some models. This results in a better detection of the

active subplot factors by PGLS-SPD using EN than by PGLS using EN for some factors

(e.g. s3, ws2 and ws3). This performance of selecting the λs encourages the methods to

include the subplot factors which results in a high Type I error rate and a low Type II

error rate. The main whole-plot factor w recorded a Type II error rate of 0.05 for both

EN-BIC and LASSO-BIC in which the PGLS-SPD approach was applied. Due to the

lack of the number of whole plots, it is difficult to detect w and w2.

Table B.4 in Appendix B and Figure 3.17 to Figure 3.19 show that increasing η to 10,

causes the σ2γ to become 10 times larger than σ2ε . Therefore, the subplot factors are more

likely to be included to the model. This is true for most of the (main and interaction)

subplot factors as the Type II error rate is zero for all of the subplot factors except for

ws3 and s2s4. However, s2s4 recorded a Type II error rate of 0.02 which is still under

control. Although it is hard to detect w and w2 as explained above and the high Type

II error rate by both PGLS and PGLS-SPD, it can be observed that the PGLS-SPD

reduced the Type II error rate compared to the PGLS.

Figure 3.22 shows the MRME values of all methods at different settings compared to

the the GLS estimator as in Section 3.2. From Figure 3.22 (a) at η = 1 and Figure 3.22

(b) at η = 10, the cAIC for all methods provided a higher MRME than BIC. This

indicates the estimates by BIC are closer to the GLS estimator than the cAIC. The

EN, ALASSO0.5 , LASSO at Figure 3.22 (a) η = 1 and at Figure 3.22 (b) η = 10 by

PGLS-SPD using the BIC has similar estimates to the GLS. The backward elimination

and LARS in Figure 3.22 (c) have MRME values worse than the GLS estimator.
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Figure 3.14: Type I and II error rates for the freeze-dried coffee design by
LASSO and ALASSO0.5 at η = 1.
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(c) SCAD
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Figure 3.15: Type I and II error rates for the freeze-dried coffeee design by
SCAD and EN at η = 1.
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(e) Backward and LARS
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Figure 3.16: Type I and II error rates for the freeze-dried coffee design by
Backward and LARS at η = 1.
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Figure 3.17: Type I and II error rates for the freeze-dried coffee design by
LASSO and ALASSO0.5 at η = 10.
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(c) SCAD
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Figure 3.18: Type I and II error rates for the freeze-dried coffee design by SCAD
and EN at η = 10.
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(e) Backward and LARS
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Figure 3.19: Type I and II error rates for the freeze-dried coffee design by
Backward and LARS at η = 10.
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3.3 Discussion

In this chapter, the theoretical approach described in Section 2.2 using the PGLS es-

timator in Section 2.2.1 and PGLS-SPD estimator in Section 2.2.2 was applied to two

industrial experiments. Four different sorts of penalty functions in relation to the PGLS

and PGLS-SPD approaches were investigated. The features of the design were found

to affect the performance of the PGLS and PGLS-SPD as well as the trade off between

Type I and II error rate. For example, in non-orthogonal designs and with few main

stratum as in the design of the freeze-dried coffee experiment, REML showed its weak-

ness in estimating the variance of the random effects as discussed in Section 1.3. This

indeed affected the point estimates of the fixed effects by the PGLS and PGLS-SPD.

The analysis from the real-life experiments showed that for an orthogonal design such as

in the wind tunnel experiment, the backward elimination and LARS tend to end up with

simpler models than the PGLS and PGLS-SPD. On the other hand, for non-orthogonal

design such as in the freeze-dried coffee experiment, for both PGLS and PGLS-SPD and

by applying the ALASSO0.5, SCAD, and EN in which the cAIC was used to select the

tuning parameters had almost similar final models to the backward and LARS.

The analysis from the simulation study which used an orthogonal design from the wind

tunnel experiment showed that backward elimination followed by LARS could control

the Type I error rate at both η = 1 and 10 better than PGLS and PGLS-SPD. With

regard to the Type II error rate, apart from the quadratic whole-plot factor w2
1, all

methods succeeded in controlling the Type II error rate to be less than 0.05 for all

factors. However, PGLS-SPD using the EN at η = 1 and using the SCAD at η = 10

controlled the quadratic whole-plot factor w2
1 better than other methods (see Table A.3

and Table A.4 in Appendix A for more details).

The analysis from the simulation study which used the non-orthogonal design from the

freeze-dried coffee experiment showed that all methods failed in controlling Type I error

rate under 0.05. Moreover, the Backward yields the lowest Type I error rate. After

that, the LARS which overcomes the PGLS-SPD method. However, the ALASSO0.5 by

PGLS at η = 1 had the lowest Type I error rate. Although the backward elimination
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Figure 3.22: Median relative model error (MRME) for the freeze-dried coffee
design.

seemed to have the lowest Type I error rate at η = 10, the SCAD overcomes the back-

ward elimination at some factors. For example, s23 has the lowest Type II error rate

using SCAD by PGLS and PGLS-SPD in which the cAIC was used to select the tuning

parameter (see Table B.1 and Table B.2 in Appendix B for more details). On the other

hand, the Type II error rate was hard to control by both PGLS and PGLS-SPD mainly

for the quadratic effect factors and some of the interaction effect factors. Apart from

these effect factors, LARS overcomes the PGLS-SPD with respect to the main effect

factors in some cases. Also, we note the PGLS-SPD using the EN had the lowest Type
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II error rate among other methods at η = 1 and 10.

Also, in a small and a non-orthogonal split-plot design such as the freeze-dried coffee

design, both the PGLS and PGLS-SPD yielded a higher prediction error for most of

the methods than the orthogonal design in the simulation by the wind tunnel design

as can be seen in Figure 3.13 and Figure 3.22. Furthermore, the PGLS-SPD at both

simulations had lower MRME than the PGLS at both η = 1 and η = 10. To sum up,

the simulation studies recommend the use of the LARS and the PGLS-SPD to detect

the active effect factors for both an orthogonal and non-orthogonal split-plot designs.





Chapter 4

Bayesian Analysis Methods for

Responses from Split-Plot

Experiments

This chapter discusses Bayesian variable selection methods for split-plot designs. Bayesian

methods are important approaches due to their ability to quantify uncertainty. In such

an approach, prior distributions that represent subjective beliefs about parameters are

assigned to the regression coefficients. By applying Bayes’ rule, prior beliefs are updated

by the data and transformed into posterior distributions, on which all inference is based.

As reviewed by Tang et al. (2016), Mitchell and Beauchamp (1988) introduced Bayesian

variable selection via spike-and-slab prior distributions. The spike prior that they used

was a probability mass at zero to remove the non-significant variables. Their slab is

the uniform distribution with a large symmetric range in order to keep the significant

variables. Following their work, many priors were proposed to implement the spike-and-

slab property. George and McCulloch (1993) proposed the Stochastic Search Variable

Selection (SSVS) in which the coefficients are sampled from a mixture of two normal

distributions with different variances. The spike part is the distribution with a small

variance while the slab part is the distribution with a much larger variance. Also, Geweke

(1996) proposed positive mass at zero for the spike part and a normal distribution for

the slab part. In addition, Tan and Wu (2013) proposed a Bayesian approach for model

77
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selection in fractionated split-plot experiments with application to robust-parameter de-

sign. In their work, they extend the SSVS algorithm of George and McCulloch (1997)

to account for the split-plot error structure. They derive an expression for the poste-

rior probability of a model that requires computation of, at most, two unidimensional

integrals, and employ this quantity for model selection. They were able to integrate out

the coefficients and the variance components from the joint posterior distribution of all

parameters because they use the conjugate normal-inverse gamma prior for these pa-

rameters. The integrals are computed with Gaussian quadrature, and Global and Local

search algorithms to find models with high posterior probabilities. More recently, the

work by Matthews (2015) applied the SSVS algorithm to select variables from a multi-

variate linear mixed model in which the response is a n ×m matrix for n observations

and m response vectors.

The novel contribution of this thesis to Bayesian variable selection is motivated by a

very specific experimental design of data from experiments subject to restricted ran-

domisation. In this work, we use the split-plot design as an example for the restricted

randomisation experiments. We have two different levels of the experimental units one

for the whole plots and the other for the subplots in the split-plot design; see, for exam-

ple, Jones and Nachtsheim (2009). To address this issue, we adapt the SSVS algorithm

in which we sample the subplot coefficients using a mixture of normal posterior dis-

tributions with a slab variance different from the slab variance which will be used in

the mixture normal posterior distributions for the whole-plot coefficients. This method

reduces Type I and II error rates as well as reducing the prediction error for split-plot

design rather than applying the SSVS algorithm in which all coefficients will be sampled

from a mixture of normal posterior distributions with one slab variance.

4.1 Motivation and Aim of Work

In the previous chapters, we found that one major disadvantage of the frequentist meth-

ods analysis of the split-plot experiments is the high rates of Type I error. The frequentist

analysis is dependent on the estimates of the variance components, yet these estimates

cannot be precisely calculated because of the deficiency of the degrees of freedom for the
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random effects in the split-plot design. This issue was discussed by Gilmour and Goos

(2009). Introducing a prior distribution for the variance components in the linear mixed

model provides additional some information to overcome the problem of the variance

estimation. In this chapter, the analysis of two split-plot experiments will be presented

in order to compare the analysis of the Bayesian approach with the frequentist approach.

Section 4.2 will introduce the Bayesian methodology that we used in this work. Section

4.3 will explain the hierarchical mixture model for variable selection. In Section 4.4,

we will adapt the SSVS method to fit data from split-plot designs by introducing the

Stochastic Search Variable Selection for Split-Plot Design (SSVS-SPD). In Section 4.5,

we will explain the computational algorithm used in the Bayesian variable selection.

Finally, Section 4.6 will provide a discussion of this chapter.

4.2 The Bayesian Methodology

In Section 4.2.1, we will describe the Bayesian framework. In Section 4.2.2, we will

discuss the Monte Carlo Markov Chain (MCMC) methods.

4.2.1 Bayesian Framework

The essential philosophy behind Bayesian inference is to update a prior distribution for

an unidentified parameter to a posterior distribution by Bayes’ theorem. Bayes’ theorem

can be used to estimate the conditional distributions. While the frequentist approach

treats the parameters as unknown and fixed, the Bayesian approach regards them as

random variables. We can define the prior distribution p(θ) as the probability density

(or mass) function which reflects our beliefs about θ in the parameter space Θ. For given

data y = (y1, y2, ..., yn)′, the likelihood function f(y|θ) can then be defined given the

parameter θ for the data y. Also, we can define the posterior density (or mass) function

p(θ|y1, y2, ..., yn) which represents our updated belief about θ given the observed data

y.
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Using Bayes theorem, the posterior density of θ given y is:

p(θ|y) =
f(y|θ)p(θ)∫

Θ f(y|θ)p(θ)dθ
. (4.1)

Bayesian inference continues from this distribution. The denominator of equation (4.1)

is the marginal likelihood of y, and it often does not need to be calculated because it is

independent of θ. Bayes’ rule can then be written as:

p(θ|y) ∝ f(y|θ)p(θ). (4.2)

Equation (4.2) defines the unnormalised posterior density. The posterior then is propor-

tional to the likelihood × the prior. For more details on Bayesian inference, see Gelman

et al. (2014) and O’Hagan and Forster (2004).

A prior distribution can be selected based on past information or experimental practice.

It can be informative or uninformative. The informative distribution is given numerical

information to estimate the parameter of concern. The uninformative reflects equilib-

rium among outcomes when weak information about the parameter is presented. There

are two types of uninformative priors: proper prior and improper prior. The density

for proper prior distribution integrates to 1 whereas the integral of the density for an

improper distribution is not finite. If the prior integrates to any positive finite value, it

is called an unnormalised density and can be renormalised- multiplied by a constant- to

integrate to 1 (Gelman et al., 2014; O’Hagan and Forster, 2004).

We say that the prior p(θ) is a conjugate prior for the likelihood function if its con-

ditional posterior p(θ|y) belongs to the same parametric family as p(θ). In practice,

conjugate priors are broadly used due to their computational properties as they make

the calculation of the conditional posterior easier, and yield a standard form of the

posterior. However, in several implementations, we are unable to use a conjugate prior

(e.g., if one wants to use a reference prior which inserts the smallest amount of indi-

vidual belief into the analysis). But most frequently, a Bayesian will have a personal

belief about the problem that cannot be expressed in terms of a convenient conjugate

prior. Consequently, we cannot compute the posterior distribution in a standard form

(Gelman et al., 2014; O’Hagan and Forster, 2004).
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4.2.2 Markov Chain Monte Carlo (MCMC) Methods

Markov Chain Monte Carlo simulation is a general method based on drawing values of

the θ from approximate distributions, and then correcting those draws to better ap-

proximate the target posterior distribution p(θ|y) (Gelman et al., 2014; O’Hagan and

Forster, 2004; Gilks et al., 1995) . A Markov chain can be defined as a sequence of

random variables θ1,θ2, ... for which for any iteration t, the distribution of θt depends

only on the most recent value θt−1 (Gelman et al., 2014; O’Hagan and Forster, 2004;

Gilks et al., 1995). A Markov chain is generated by sampling θt ∼ p(θ|θt−1). This p is

called the transition kernel of the Markov chain. Therefore, θt depends only on θt−1,

not on θ0,θ1, ...,θt−2.

As t → ∞, the sampling from Markov chain converges to the posterior for the right

choice of transition kernel p(θ|y). Thus, we should run the simulation long enough so

that the distribution of the current draws is close enough to p(θ|y).

4.2.2.1 Metropolis-Hastings Sampling

Metropolis-Hastings sampling was proposed by Metropolis et al. (1953) and Hastings

(1970). The theory of this sampling is based on rejection sampling. The acceptance-

rejection method is a technique of getting samples from a distribution with an unknown

form. The Metropolis-Hastings algorithm is a common expression for a family of Markov

chain simulation methods. We will illustrate how the Gibbs sampler is also a special

case of Metropolis-Hastings sampling.

It is worth describing the Metropolis algorithm first, then broadening it to discuss the

Metropolis-Hastings algorithm. Let p(θ|y) be the conditional posterior distribution

where we want to sample from. Let θt be the current parameter value, and let π(θ)

be the proposal density. The proposal density is much like a conventional transition

operator for a Markov chain, the proposal distribution depends only on the previous

state in the chain. However, the transition operator for the Metropolis algorithm has
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a additional step that assesses whether or not the target distribution has a sufficiently

large density near the proposed state to warrant accepting the chain. The Metropolis

algorithm for sampling θt for t = 1, 2, ... is given as follows:

1. Sample a proposal θt+1
∗ from proposal distribution π(θ) at time t, πt(θ

t+1
∗ |θt). In

the Metropolis (but not the Metropolis-Hastings algorithm), the proposal distri-

bution must be symmetric, fulfilling the condition πt(θa|θb) = πt(θb|θa) for all

θa,θb and t. An example of choices of symmetric proposals includes Gaussian

distribution or Uniform distribution centred at the current state of the chain. The

algorithms using Gaussian distribution as a proposal are called “Random-walk

Metropolis algorithm”.

2. Calculate the ratio of the densities,

r =
p(θt+1
∗ |y)

p(θt|y)
, (4.3)

where we do not need the normalising constant to calculate this ratio.

3. Calculate the acceptance probability α(θt,θt+1
∗ ) = min(r, 1).

4. Sample u from U(0, 1).

5. Set

θt+1 =


θt+1
∗ if u < α

θt otherwise

.

The Metropolis-Hastings algorithm generalises the basic Metropolis algorithm in two

approaches. First, the proposal distribution need no longer be symmetric. Second, the

ratio r in step (2) becomes

r =
p(θt+1
∗ |y)π(θt|θt+1

∗ )

p(θt|y)π(θt+1
∗ |θt)

. (4.4)

When we use the prior distribution π(θ) as a proposal distribution, the proposal dis-

tribution is not conditional on the current value of θ. Then the acceptance probability



Chapter 4 Bayesian Analysis Methods for Responses from Split-Plot Experiments 83

equals

α(θt,θt+1
∗ ) = min

{
1,
p(y|θt+1

∗ )

p(y|θt)

}
,

where p(y|θ) is the likelihood function of the parameter θ. The acceptance rate in this

case is very high, so this may affect the efficiency of sampling. However, it works for

some examples, and the experimenter always needs to check the efficiency of MCMC

sampling.

The choice of the proposal distribution is not unique. A good proposal distribution

should maintain the acceptance rate of the proposal in a reasonable range. Gelman et al.

(2014, p. 605) suggested an acceptance rate value of 0.44 (in one dimension sampling)

and 0.23 if more than one parameter is being updated. The choice of the proposal

distribution is crucial in Metropolis-Hastings. The most common Metropolis-Hastings

algorithms are Random-walk Metropolis-Hastings algorithms.

4.2.2.2 Gibbs Sampling

A Gibbs sampler is the simplest of the Markov chain simulation algorithms, and it is

used to sample from the conditional conjugate models, where we can directly sample

from each conditional posterior (Gelman et al., 2014; O’Hagan and Forster, 2004). It is

rare to find all the conditional posteriors in a model in known forms. One may find some

conditional posterior distributions that are possible to directly sample from. Further-

more, one may find some of the conditional posteriors that cannot be straightforwardly

sampled from. Therefore, the procedure for this issue is to update the parameters one

at a time with the Gibbs sampler used where possible, and one-dimensional Metropolis

updating where necessary. This process is called the Metropolis-Hastings within Gibbs

sampling and will be used in this work.

The Gibbs sampling involves a proposal from the full conditional distribution which al-

ways has a Metropolis-Hastings ratio of 1, i.e., the proposal is always accepted. Accord-

ing to Gelman et al. (2014), at step j of the iteration t, we can update θj conditional on

all other elements of θ = (θ1, θ2, ..., θp)
′, j = 1, 2, ..., p where p is the number of unknown

parameters. The proposal density in Gibbs sampling is the conditional distribution of

the current parameter, θtj , hence π(θtj) = p(θtj |θ
t
−j ,y), where θt−j is the current value
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for the other elements of θ = (θ1, θ2, ..., θp)
′, and j = 1, 2, ..., p.

The acceptance probability in step 3 of Metropolis-Hastings sampling when the proposal

density is the conditional distribution is

α
(
θtj ,θ

t+1
j∗

)
= min

{
1,
p(θt+1

j∗ |θ
t
−j ,y) p(θtj |θt−j ,y)

p(θtj |θt−j ,y) p(θt+1
j∗ |θ

t
−j ,y)

}
= 1.

Thus, every proposed sample from the conditional distribution is accepted. The Gibbs

sampling algorithm at each iteration can be processed then to sample from p(θtj |θ
t
−j ,y),

so

θt1 ∼ p(θ1|θt−12 , θt−13 , ..., θt−1p ,y)

θt2 ∼ p(θ2|θt1, θt−13 , ..., θt−1p ,y)

...

θtp ∼ p(θp|θt1, θt2, ..., θtp−1,y).

4.2.2.3 Inference and Assessing Convergence

There are good reviews of MCMC convergence diagnostics; see, for example, Cowles

and Carlin (1996), Brooks and Roberts (1998), and Sinharay (2003). The fundamental

role of the MCMC algorithm is to generate Markov chains whose stationary distribu-

tion is the same as the target distribution. We need to evaluate whether the Markov

chains in MCMC algorithms converge to their stationary distribution or not. Thus, if

the iterations have not proceeded for long enough, the simulations might not symbolize

the target distribution. Even when simulations have reached approximate convergence,

early iterations still reflect the starting approximation rather than the target distribu-

tion (Gelman et al., 2014; Sinharay, 2003).

Trace plots plot the values of the parameters sampled using Markov chains against the

iteration number, and use a line to join the values for successive samples. The trace

plot demonstrates the history of a parameter value across iteration t of the chain. If the

chain is stationary, it should not be revealing any long-term trends. The average value

of the chain should be approximately flat. If the trace plot shows a clear pattern (e.g.,
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always increasing or always decreasing) such a plot indicates that the MCMC algorithm

may not have converged.

Also, we can determine the level of autocorrelation in each chain by the AutoCorrelation

Function (ACF) plot. The ACF plots show the diagnostic calculation of the autocorre-

lation between iterative samples against different lags where lag is a function of time.

It tells us how much information is offered in the Markov chain. For example, sampling

1000 iterations from a highly-correlated Markov chain yields less information about the

stationary distribution than we would obtain from 1000 samples independently drawn

from the stationary distribution. Also, highly autocorrelated parameter values require a

large number of iterations to be able to traverse the whole sample space of the parame-

ter. It is worth comparing the ACF plots to the trace plots because it helps to interpret

the trace plots. For example, a chain traversing the sample space very slowly could be a

result of high autocorrelation. We also throw away some iterations at the beginning of

an MCMC run, so the chain has a chance to burn in when enter a high probability region.

4.3 A Hierarchical Mixture Model for Variable Selection

The linear mixed model fitted to data from a split-plot experiment with n responses is

y ∼ N(β01n + Xβ,V), (4.5)

where y is n× 1 vector of random responses, β0 is the intercept, 1n is a n× 1 vector of

ones, X is the n × p model matrix without the column of the intercept, β is the p × 1

vector of fixed effect parameters and V is

V = σ2ε (In +
σ2γ
σ2ε

ZZ′),
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where Z is the random effect design matrix. As ρ =
σ2
γ

σ2 , and σ2 = σ2ε + σ2γ , then V can

be written as

V = σ2(1− ρ)
(
In +

ρ

1− ρ
ZZ′

)
. (4.6)

We need to find the highest posterior probability of an indicator vector ν = (ν1, ν2, ...νp)

such that

νj =


0 if βj = 0

1 if βj 6= 0

,

for j = 1, 2, ...p. When νj = 1 the term is assumed to be active and will be included

in the model, and when νj = 0 the term is assumed to be non-active and will not be

included in the model.

Following George and McCulloch (1997), and Tan and Wu (2013), we assume that

β|σ2,ν, c ∼ N(0p, σ
2Dν,c), where ν is the indicator vector, c is the prior variance of the

slab distribution, and Dν,c is a diagonal matrix with the jth diagonal element cI(νj =

1)+dI(νj = 0), j = 1, ..., p. The parameters σ2,ν and c will be given prior distributions,

and the parameter d is assumed to be a small fixed non-negative number because we want

the spike distribution to have a smaller variance than the slab distribution. Formally

the prior construction of β is the following:

βj |σ2, νj , c ∼ (1− νj)N(0, dσ2) + νjN(0, cσ2).

For every coefficient βj , a Bernoulli variable νj is defined taking values 1 and 0 with

probability of inclusion ω, as p(νj = 1) = ω and p(νj = 0) = (1 − ω). Often, νj ’s are

taken as independent Bernoulli (ω) random variables, where 0 < ω < 1. It is common to

fix ω in the normal mixture, however, we shall deal with ω as a parameter to investigate

different values of ω, and sample it from the Beta distribution as it will be explained in

Section 4.3.2.5.
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4.3.1 Prior Distributions

Following the prior distributions used by Tan and Wu (2013), we assume that the prior

distribution for the fixed effects is β ∼ N(0, σ2Dν,c)

p(β|σ2,ν, c) ∝ |σ2Dν,c|−1/2exp
(
− 1

2
β′(σ2Dν,c)

−1β
)
.

The prior distribution for the total variance is σ2 ∼ IG(a, b),

p(σ2) ∝ (σ2)−a−1exp
(
− b

σ2

)
.

For this work, we used a = 0 and b = 0 following Tan and Wu (2013) as this yields the

common non-informative prior for σ2. This prior is improper, however we will sample

from the posterior distribution, which should be a proper gamma distribution.

The prior distribution for the correlation parameter is ρ ∼ Beta(a′, b′) with shape pa-

rameters a′, b′ > 0. We consider a′ = b′ = 2.5 following Gilmour and Goos (2009).

According to Gilmour and Goos (2009), “ A Beta(a′, b′) prior distribution for a correla-

tion parameter can be interpreted as indicating a prior point estimate of a′/(a′+b′), this

prior information being worth a′ + b′ observations”. Our prior was selected to be cen-

tred at 2.5/(2.5 + 2.5) = 0.5 and to be worth five observations. For an experiment with

a′ + b′ observations, the posterior distribution would give equal weight to the prior and

the likelihood (Gilmour and Goos, 2009). In relation to our two examples, in the wind

tunnel experiment, we have 45 observations, meaning our prior is worth 1/7th of the

weight of the likelihood. In the freeze dried-coffee experiment, we have 30 observations,

meaning our prior worth 1/6th of the likelihood. The prior density for ρ is

p(ρ) ∝ ρ(a′−1)(1− ρ)(b
′−1).

The prior distribution for the elements of the indicator vector is νj ∼ Bernoulli(ω),

p(νj) =


ω if νj = 1

1− ω if νj = 0

,
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where ω is the prior probability that βj is active following Tan and Wu (2013). The

prior distribution for the elements of the probability of inclusion is ω ∼ Beta(c0, d0),

p(ω) ∝ ω(c0−1) (1− ω)(d0−1).

Tan and Wu (2013) set ω = 0.25. However, we select c0 and d0 such that the prior of

ω has a mode = 0.25. The choice of c0 = 2 and d0 = 4 results in a prior with a mode

= 0.25 and the upper cumulative percentile at 5% equals 0.66. Meaning a 5% chance

the observations have a pdf ≥ 0.66.

In our simulation study, this choice of c0 and d0 is suitable for the wind tunnel experiment

because this experiment uses an orthogonal design in which we estimate truly 6 active

variables from a true model of 12 variables as the assumed model in Section 5.2.1.

However, in the freeze-dried coffee experiment, this option of c0 and d0 does not allow

us to detect the active effects. This is because this experiment uses a non orthogonal

design in which we estimate truly 15 active variables from a true model of 20 variables

as the assumed model in Section 5.2.2. Thus, we select c0 and d0 such that the prior

of ω has a mode = 0.50 following Gilmour and Goos (2009) in which they analysed

this dataset. For the freeze-dried coffee experiment, we assumed c0 = 2 and d0 = 2 as

this yields in a prior of ω with a mode = 0.50. This is because this choice of c0 and d0

yields in upper cumulative percentile at 5% equals to 0.86, meaning a 5% chance the

observations have a pdf ≥ 0.86.

The prior distribution for the slab variance c is a discrete uniform prior distribution

with support points T = {1/4, 9/16,1, 4, 9, 16, 25} as given by Tan and Wu (2013).

They found that large values of c tend to favor sparse models with large effects and in

this case small effects will be missed. On the other hand, small values of c tend to favor

less sparse models. Moreover, very small values of c tend to favor sparse models again.

They select the support points in T such that it covers small and large values of c. The

prior distribution for c is

p(c) =


1
7 if c ∈ T

0 otherwise

.
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4.3.2 Full Conditional Distributions

We use the prior distributions presented in Section 4.3.1 to derive the full conditional

distributions.

4.3.2.1 The Conditional Distribution for β

The likelihood of the data depends on β, so we can derive the conditional distribution

for β using the prior distribution β|σ2,ν, c ∼ N(0p, σ
2Dν,c) and the likelihood for the

model (1.1)

L(y|β) ∝ |V|−1/2exp
[
− 1

2
(y−Xβ)′V−1(y−Xβ)

]
.

Note that we standardise both X and y so the fixed effect vector β does not include the

intercept. The conditional distribution for β can be expressed as:

p(β|ν, σ2, c, ω, ρ,y) ∝p(y|β,ν, σ2, c, ω, ρ) p(β|σ2,ν, c)

∝ |V|−1/2exp
[
− 1

2
(y−Xβ)′V−1(y−Xβ)

]
× |σ2Dν,c|−1/2

exp
(
− 1

2
β′(σ2Dν,c)

−1β
)

∝ |V|−1/2|σ2Dν,c|−1/2exp
[
− 1

2

(
β′(σ2Dν,c)

−1β
)

− 1

2

(
y′V−1y− y′V−1Xβ − β′X′V−1y + β′X′V−1Xβ

)]
∝ |V|−1/2|σ2Dν,c|−1/2exp

[
− 1

2
β′
(

(σ2Dν,c)
−1 + X′V−1X

)
β
]

exp
[
− 1

2
(−y′V−1X)β

]
exp
[
− 1

2
β′(−X′V−1y)

]
∝ |V|−1/2|σ2Dν,c|−1/2exp

[
− 1

2
β′
(

(σ2Dν,c)
−1 + X′V−1X)

)
β
]

exp
[1

2
(y′V−1X)β +

1

2
β′(X′V−1y)

]
∝ |V|−1/2|σ2Dν,c|−1/2exp

[
− 1

2
β′
(

(σ2Dν,c)
−1 + X′V−1X)

)
β

+ β′(X′V−1y)
]
.

The key to deriving the joint posterior distribution is to rewrite the expression in the

exponential part in a more convenient form. This can happen by using the multivariate
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completion of squares:

U′AU−2U′α = (U−A−1α)′A(U−A−1α)−α′A−1α,

where A is a symmetric positive definite (hence invertible) matrix. We assume U = β,

A = (σ2Dν,c)
−1 + X′V−1X, and α = X′V−1y.

The conditional distribution for β can be written as:

p(β|ν, σ2, c, ω, ρ,y) ∝ |V|−1/2|σ2Dν,c|−1/2exp
[
− 1

2
β′
(

(σ2Dν,c)
−1 + X′V−1X

)
β − 2β′(X′V−1y)

]
∝ |V|−1/2|σ2Dν,c|−1/2exp

[[
β −

(
(σ2Dν,c)

−1 + X′V−1X
)−1

(X′V−1y)
]′

[
(σ2Dν,c)

−1 + X′V−1X
][
β −

(
(σ2Dν,c)

−1 + X′V−1X
)−1

(X′V−1y)
]]

∝ exp
[
− 1

2
(β − β∗)

′D−1∗ (β − β∗)
]
.

Thus, we can sample β from the conditional posterior N (β∗,D∗), where

β∗ =
(

(σ2Dν,c)
−1 + X′V−1X

)−1
(XV−1y), and D∗ =

(
(σ2Dν,c)

−1 + X′V−1X
)−1

.

(4.7)

4.3.2.2 The Conditional Distribution for ρ

The likelihood of the data depends on ρ, so the conditional distribution for ρ can be

derived by

p(ρ|β,ν, σ2, c, ω,y) ∝ p(y|β,ν, σ2, c, ω, ρ) p(ρ)

∝ |V|−1/2exp
[
− 1

2
(y−Xβ)′V−1(y−Xβ)

]
× ρ(a′−1)(1− ρ)(b

′−1).

We note here that the likelihood depends on ρ through V as in (4.6), so we can express

V as a function of ρ,

V = σ2 (1− ρ) (In +
ρ

1− ρ
ZZ′).

The conditional distribution for ρ is a non-standard distribution that cannot be sampled

directly. Therefore, we use the Metropolis-Hastings (M-H) rejection sampling. As ex-

plained in Section 4.2.2.1, our correlation parameter is ρ ∈ (0, 1], and has a prior β(a′, b′).
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We apply the Random-Walk Metropolis-Hastings algorithm, and select a proposal dis-

tribution of log-normal distribution for the variance ratio η where η = f(ρ) = ρ
1−ρ with

a mean equal to the current value of ηt at iteration t and variance s2. The choice of

s2 affects the jumping rule in the random walk proposal distribution. As we have one

parameter to be updated in the random walk algorithm which is ρ, we follow Gelman

et al. (2014) and Gelman et al. (1996) to set s2 = g2Σ. The most efficient jump has a

scale g ≈ 2.4/
√
h where h is the number of parameters which will be updated. In this

work, we set g = 2.4 and h = 1 following Gelman et al. (1996), and we set Σ = 100 as

this yields an appropriate acceptance rate associated with the independent sampler of

the ACF plot. Thus, η ∈ (0,∞) and

g(η) =
1

η
√

2πs2
exp
[
− 1

2s2
(ln η − ηt)2

]
We can use η = ρ

1−ρ as a transformation function between η and ρ as ρ = η
1+η and the

Jacobian function of ρ is J(ρ) = dη
dρ = 1

(1−ρ)2 .

We draw a proposal value η∗ from a log-normal(ηt, s2) distribution, and the probability

of accepting or rejecting η∗ is the minimum of 1 and the ratio r where r is

r =
p(ρ∗|all)

p(ρt|all)
× q(ηt|η∗)
q(η∗|ηt)

,

which is equivalent to

r =
p(ρ∗|all)

p(ρt|all)
× q(ρt|ρ∗)J(ρt)

q(ρ∗|ρt)J(ρ∗)
.

Our proposal ratio is

q(ηt|η∗)
q(η∗|ηt)

=
η∗exp

[
− 1

2s2
(ln ηt − η∗)2

]
ηtexp

[
− 1

2s2
(ln η∗ − ηt)2

] ,
which is equivalent to

q(ρt|ρ∗)J(ρt)

q(ρ∗|ρt)J(ρ∗)
=

( ρ∗
1−ρ∗ ) exp

[
− 1

s2

(
ln( ρt

1−ρt )− ( ρ∗
1−ρ∗ )

)2]× | 1
(1−ρt)2 |

( ρt

1−ρt ) exp
[
− 1

s2

(
ln( ρ∗

1−ρ∗ )− ( ρt

1−ρt )
)2]× | 1

(1−ρ∗)2 |
.
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The ratio r can be expressed as

r =
|V(ρ∗)|−1/2exp

[
− 1

2(y−Xβ)′V(ρ∗)
−1(y−Xβ)

]
× (ρ∗)

(a′−1)(1− ρ∗)(b
′−1)

|V(ρt)|−1/2exp
[
− 1

2(y−Xβ)′V(ρt)−1(y−Xβ)
]
× (ρt)(a′−1)(1− ρt)(b′−1)

×
ρ∗(1− ρt)exp

[
− 1

s2

(
ln( ρt

1−ρt )− ( ρ∗
1−ρ∗ )

)2] |(1− ρt)−2|
ρt(1− ρ∗)exp

[
− 1

s2

(
ln( ρ∗

1−ρ∗ )− ( ρt

1−ρt )
)2] |(1− ρ∗)−2| .

(4.8)

Where V(ρ∗) = σ2 (1− ρ∗) (In + ρ∗
1−ρ∗ZZ′), and V(ρt) = σ2 (1− ρt) (In + ρt

1−ρtZZ′).

4.3.2.3 The Conditional Distribution for σ2

The likelihood of the data depends on σ2, so we can express the conditional distribution

of σ2 as

p(σ2|β, ρ,ν, c, ω,y) ∝ p(y|β,ν, σ2, c, ω, ρ) p(σ2)

∝ |V|−1/2exp
[
− 1

2
(y−Xβ)′V−1(y−Xβ)

]
× (σ2)−a−1exp

(
− b

σ2
)
.

We know that V = σ2 (1− ρ) (In + ρ
1−ρZZ′), so the conditional posterior for σ2 can be

written as

p(σ2|y, ...) ∝ |(1− ρ) σ2(In +
ρ

1− ρ
ZZ′)|−1/2(σ2)−a−1 × exp

(
− b

σ2
)

exp
[
− 1

2
(y−Xβ)′

(
(1− ρ) σ2 (In +

ρ

1− ρ
ZZ′)

)−1
(y−Xβ)

]
∝ (σ2)−(a+

n
2
)−1exp

(
− 1

σ2

[(y−Xβ)′
(

(1− ρ)(In + ρ
1−ρZZ′)

)−1
(y−Xβ)

2
+ b
])
.

This is the inverse gamma distribution with a shape parameter a∗ and a scale parameter

b∗ such that

a∗ = a+
n

2
, and b∗ =

(y−Xβ)′
(

(1− ρ)(In + ρ
1−ρZZ′)

)−1
(y−Xβ)

2
+ b. (4.9)
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4.3.2.4 The Conditional Distribution for ν

The indicator vector can be drawn conditionally on the regressor coefficient and com-

putation of the marginal likelihood is not required. The prior probabilities for νj are

p(νj) =


ω if νj = 1

1− ω if νj = 0

,

where ω is the prior probability that βj is active. The joint conditional posterior distri-

bution for ν has mass function

p(ν|β,y) ∝ p(y|β,ν) p(β,ν)

= p(y|β) p(β,ν)

∝ p(β,ν)

= p(β|ν) p(ν).

The conditional density for β given ν is

p(β|ν) ∝ |σ2diag
[
cI(νj = 1) + dI(νj = 0)

]
|−1/2

× exp
[
− 1

2
β′
(
σ2diag

[
cI(νj = 1) + dI(νj = 0)

])−1
β
]
.

The conditional distribution for the jth component given νj is

p(βj |νj) ∝ |σ2
[
cI(νj = 1) + dI(νj = 0)

]
|−1/2

× exp
[
−

β2j

2σ2
[
cI(νj = 1) + dI(νj = 0)

]].
The conditional posterior probabilities for νj are therefore

p(νj = 1|βj ,y) = p(νj = 1) p(βj |νj = 1)

∝ ω |c σ2|−1/2exp
[
−

β2j
2 c σ2

]
,

(4.10)
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and

p(νj = 0|βj ,y) = p(νj = 0) p(βj |νj = 0)

∝ (1− ω) |d σ2|−1/2exp
[
−

β2j
2 d σ2

]
.

(4.10)

4.3.2.5 The Conditional Distribution for ω

The probability of inclusion ω can be drawn conditionally on the indicator and compu-

tation of the marginal likelihood is not required. Hence the conditional distribution for

ω is

p(ω|ν, σ2, c,β, ρ,y) ∝ p(y|ω,ν, σ2, c,β, ρ) p(ω,ν, σ2, c,β, ρ)

= p(y|ν, σ2, c,β, ρ) p(ω,ν)

∝ p(ω,ν)

= p(ν|ω) p(ω)

∝ ω
∑p
j=1 νj (1− ω)p−

∑p
j=1 νj × ω(c0−1)(1− ω)(d0−1)

∝ ωc0+
∑p
j=1 νj−1(1− ω)p−

∑p
j=1 νj+d0−1.

Hence,

ω|ν ∼ Beta
(
c0 +

p∑
j=1

νj , p−
p∑
j=1

νj + d0

)
, where p−

p∑
j=1

νj =

p∑
j=1

I(νj = 0). (4.11)

4.3.2.6 The Conditional Distribution for c

The prior distribution for c is a discrete uniform distribution with support points T =

{1/4, 9/16,1, 4, 9, 16, 25}, and it can be drawn conditionally on the regressor coefficient.

The computation of the marginal likelihood is not required. Hence, the conditional
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distribution for c

p(c|β, σ2,ν, ω, ρ,y) ∝ p(y|β, σ2,ν, c) p(β,ν, σ2, c)

= p(y|β, σ2) p(β,ν, σ2, c)

∝ p(β, σ2,ν, c)

= p(β|σ2,ν, c) p(c)

∝ 1

7
|σ2diag

[
cI(νj = 1) + dI(νj = 0)

]
|−1/2

× exp
[
− 1

2
β′
(
σ2diag

[
cI(νj = 1) + dI(νj = 0)

])−1
β
]

∝ 1

7

[ p∏
j=1

[
cI(νj = 1) + dI(νj = 0)

]]−1/2
× exp

[
− 1

2c
(β′I∑

j νj=1β)
]
× exp

[
− 1

2d
(β′I∑

j νj=0β)
]

∝ 1

7
c
−

∑p
j=1

νj

2 +
1

7
d
−

∑p
j=1

(1−νj)
2 × exp

[
− 1

2c
(β′I∑

j νj=1β)
]

× exp
[
− 1

2d
(β′I∑

j νj=0β)
]

∝ 1

7
c
−

∑p
j=1

νj

2 × exp
[
− 1

2c
(β′I∑

j νj=1β)
]

∝ 1

7
c
−

∑p
j=1

νj

2 × exp
[
− 1

2c
(β′β)

]
.

Therefore,

p(c|y, ...) ∝


1
7c
−

∑p
j=1

νj

2 × exp
[
− 1

2c(β
′β)
]

if c ∈ T

0 otherwise

.

Then, the posterior probabilities of the conditional distribution p(c|y, ...) are

p(c =
1

4
|y, ...) ∝ 1

7

(1

4

)−∑p
j=1

νj

2 × exp
[
− 1

2
(
1
4

)(β′β)
]
,

p(c =
9

16
|y, ...) ∝ 1

7

( 9

16

)−∑p
j=1

νj

2 × exp
[
− 1

2
(

9
16

)(β′β)
]
,

p(c = 1|y, ...) ∝ 1

7

(
1
)−∑p

j=1
νj

2 × exp
[
− 1

2
(
1
)(β′β)

]
,



96 Chapter 4 Bayesian Analysis Methods for Responses from Split-Plot Experiments

p(c = 4|y, ...) ∝ 1

7

(
4
)−∑p

j=1
νj

2 × exp
[
− 1

2
(
4
)(β′β)

]
,

p(c = 9|y, ...) ∝ 1

7

(
9
)−∑p

j=1
νj

2 × exp
[
− 1

2
(
9
)(β′β)

]
,

p(c = 16|y, ...) ∝ 1

7

(
16
)−∑p

j=1
νj

2 × exp
[
− 1

2
(
16
)(β′β)

]
,

and

p(c = 25|y, ...) ∝ 1

7

(
25
)−∑p

j=1
νj

2 × exp
[
− 1

2
(
25
)(β′β)

]
.

The conditional posterior p(c|y, ...) can be written as

p(c|y, ...) =


c−

∑p
j=1

νj
2 exp[−β′β

2c
]∑

c∈T c
−

∑p
j=1

νj
2 exp[−β′β

2c
]

if c ∈ T

0 otherwise

. (4.12)

4.4 Stochastic Search Variable Selection for Split-Plot De-

sign (SSVS-SPD)

We adapt the SSVS for the analysis of data from split-plot designs by taking into ac-

count the two types of factors, i.e. the whole-plot factors and the subplot factors which

expected to have different effect sizes for the two strata in split-plot design (Jones and

Nachtsheim, 2009) . This approach can be reported as the Stochastic Search Variable

Selection for Split-Plot Design (SSVS-SPD). While the SSVS samples all parameters

from one slab variance posterior distribution, the SSVS-SPD samples the whole-plot

parameters and the subplot parameters from two different slab variance posterior dis-

tributions given that the whole-plot and the subplot effects might have different sizes.

The computational algorithms for both SSVS and SSVS-SPD will be given in Sections

4.5.1 and 4.5.2 respectively.
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4.5 Bayesian Variable Selection Algorithms

In this section, we introduce the computational algorithms which we use in the Bayesian

analysis for variable selection using the SSVS, and the SSVS-SPD. In this work, we

choose an asymmetric proposal distribution, the log-normal density. We apply the

Metropolis-Hastings algorithms to sample the variance ratio η where η = f(ρ) = ρ
1−ρ ,

and ρ is the correlation parameter. This is because of the fact that in our experiments,

observations from different subplots within the same wholeplot are positively correlated

as ρ =
σ2
γ

σ2
ε+σ

2
γ
; also observations from different wholeplots are independent (Tan and Wu,

2013).

4.5.1 The Stochastic Search Variable Selection (SSVS) Algorithm

We process the MCMC estimation of the parameters β, ρ, σ2,ν, ω, and c. We use the

priors of all these parameters as in Section 4.3.1. The following Metropolis-Hastings

within Gibbs sampling algorithm can be implemented. Let y be the n × 1 vector of

random responses, X is the n × p model matrix without the column of the intercept,

β is the p × 1 vector of fixed effect parameters, where p is the number of fixed effect

parameters that need to be estimated. We set initial values for the parameters as

β(0) = 1p, ν
(0) = 1p, ρ

(0) = 0.5, σ2(0) = 20, c(0) = 1, ω(0) = 0.5, d = 0.001. Starting at

the tth iteration such that t = 1, 2, ..., its where its = 10000, and setting j = 1, 2, ..., p,

the sampling algorithm is:

1. For j = 1, 2, ..., p, sample ν
(t)
j of the indicator vector ν(t) using (4.10) for β

(t−1)
j ,

c(t−1), σ2(t−1), and ω(t−1).

2. Sample the mixture weight ω(t) using (4.11) for ν(t).

3. Sample the regressor coefficients β(t) using (4.7) for X, y, V(t−1), D(t−1), c(t−1),

ν(t), and σ2(t−1).

4. Sample the total variance σ2(t) using (4.9) for X, y, Z, β(t), and ρ(t−1).

5. (a) Sample ρ
(t)
∗ from β(a′, b′).

(b) Calculate α(t) using (4.8) for X, y, V(ρ
(t)
∗ ), V(ρ(t−1)), and β(t).
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(c) Sample u(t) from U(0, 1).

(d) If α(t) > u(t), then set ρ(t) = ρ
(t)
∗ , otherwise set ρ(t) = ρ(t−1).

6. Sample c(t) from the set T with probability mass function given in (4.12) for β(t),

and ν(t).

4.5.2 The Stochastic Search Variable Selection for Split-Plot Design

(SSVS-SPD) Algorithm

While the SSVS samples all parameters from one slab variance posterior distribution,

the SSVS-SPD samples the whole-plot parameters and the subplot parameters from two

different slab variance posterior distributions. We use the same priors as in the SSVS

for all the parameters of interest as in Section 4.3.1. Basically, the SSVS-SPD can be

seen as running the SSVS twice in one process, one for subplot factors and the other

one for whole-plot factors. The algorithm can be explained as follows:

We process the MCMC estimation of the parameters β, ρ, σ2,ν, ω, and c. The following

Metropolis-Hastings within Gibbs sampling algorithm can be implemented. Let y be

the n×1 vector of random responses, X is the n×p model matrix without the column of

the intercept, X.S is the n×ps model matrix for subplot factors where ps is the number

of subplot fixed effect parameters.

Also, X.W is the n × pw model matrix for whole-plot factors where pw is the number

of whole-plot fixed effect parameters. The β = (βs,βw) is the p × 1 vector of fixed

effect parameters, where p is the number of fixed effect parameters that need to be

estimated, βs is the ps × 1 subplot effect parameters, and βw is the pw × 1 whole-plot

effect parameters.

We set initial values for the parameters as β
(0)
s = 1ps , β

(0)
w = 1pw . The initial values

for the indicator vectors for the subplot factor νs and the whole-plot factor νw are

νs
(0) = 1ps and νw

(0) = 1pw. Also, ρ(0) = 0.5, σ2(0) = 20, and d = 0.001. The initial

values for the slab variance for the subplot factors cs and for the slab variance for the

whole-plot factors cw are c
(0)
s = c

(0)
w = 1. Finally, the initial weights for the subplot

factors ωs and for the whole-plot factors ωw are ω
(0)
s = ω

(0)
w = 0.5.
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Starting at the tth iteration such that t = 1, 2, ..., its where its = 10000, and setting

j = 1, 2, ..., ps and k = 1, 2, ..., pw, the sampling algorithm is:

1. For j = 1, 2, ..., ps, and k = 1, 2, ..., pw sample ν
(t)
sj and ν

(t)
wk of the indicator vectors

ν
(t)
s and ν

(t)
w using (4.10) for β

(t−1)
sj , β

(t−1)
wk , c

(t−1)
s , c

(t−1)
w , σ2(t−1), ω

(t−1)
s , and ω

(t−1)
w .

2. Allocate ν(t) = (ν
(t)
s ,ν

(t)
w ).

3. Sample the mixture weights ω
(t)
s and ω

(t)
w using (4.11) for ν

(t)
s and ν

(t)
w .

4. Allocate ω(t) = (ω
(t)
s , ω

(t)
w ).

5. Sample the regressor coefficients β
(t)
s and β

(t)
w using (4.7) for X, y, V(t−1), D

(t−1)
s ,D

(t−1)
w ,

c
(t−1)
s , c

(t−1)
w , ν

(t)
s , ν

(t)
w , and σ2(t−1). Where the Ds is a diagonal matrix with the

jth diagonal element c
(t−1)
s I(νsj = 1) + dI(νsj = 0), and Dw is a diagonal matrix

with the kth diagonal element c
(t−1)
w I(νwk = 1) + dI(νwk = 0).

6. Allocate β(t) = (β
(t)
s ,β

(t)
w ) and D(t) = diag(D

(t)
s ,D

(t)
w ).

7. Sample the total variance σ2(t) using (4.9) for X, y, Z, β(t), and ρ(t−1).

8. (a) Sample ρ
(t)
∗ from β(a, b).

(b) Calculate α(t) using (4.8) for X, y, V(ρ
(t)
∗ ), V(ρ(t−1)), and β(t).

(c) Sample u(t) from U(0, 1).

(d) If α(t) > u(t), then set ρ(t) = ρ
(t)
∗ , otherwise set ρ(t) = ρ(t−1).

9. Sample c
(t)
s and c

(t)
w from the set T with probability mass function given in (4.12)

for β
(t)
s , β

(t)
w , ν

(t)
s and ν

(t)
w .

10. Allocate c(t) = (c
(t)
s , c

(t)
w ).

4.6 Discussion

This chapter discussed Bayesian variable selection methods for models from split-plot de-

signs using samples from Metropolis-Hastings within Gibbs sampling algorithm. Bayesian

variable selection is easy to implement due to the improvement in computing via MCMC

sampling. In Section 4.2, we described the Bayesian methodology by introducing the
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Bayesian framework, and explaining Markov Chain Monte Carlo (MCMC) sampling.

The Metropolis-Hastings within Gibbs sampling in Section 4.2.2 was used to draw de-

pendent samples from the full conditional distributions which were explained in Section

4.3.2. We assumed a mixture normal distribution as a prior for the fixed effect parame-

ters. We jointly sampled the indicator vector and the fixed effect parameters within our

sampler. In Section 4.5.1, we discussed the computational algorithm for the Stochastic

Search Variable Selection (SSVS) in linear mixed models. We extended the computa-

tional algorithm of SSVS to fit models from split-plot design by introducing the algo-

rithm of the Stochastic Search Variable Selection for Split-plot Design (SSVS-SPD) in

Section 4.5.2. The key difference between the SSVS and the SSVS-SPD is that, instead

of introducing one slab variance prior distribution (c) in SSVS, we introduced two slab

variance prior distributions, one for subplot factors (cs) and the other for whole-plot

factors (cw). The motivation of this extension is that we have two different levels of the

experimental units one for the whole plots and the other for subplots in the split-plot

design; see, for example, Jones and Nachtsheim (2009). The slab prior distributions

cs and cw are assumed to have the same prior in this work; however, they might have

different posterior distributions. In the next chapter, we will show how this extension

in SSVS-SPD improved the variable selection for models in split-plot design.



Chapter 5

Application of the Bayesian

Methods for Variable Selection

from Split-Plot Experiments

This chapter is a practical demonstration of the methods described in Chapter 4. It

demonstrates the usefulness of Bayesian variable selection for split-plot experiments.

We will summarise the numerical results for both motivating examples explained in

Section 1.2.1 and Section 1.2.2. We focus on two different split-plot experiments. In

the first example, the wind tunnel experiment, the design used is an orthogonal (see

Figure 3.1 and Figure 3.2). In the second example, the freeze-dried coffee experiment,

the design used is clearly non-orthogonal (see Figure 3.3 and Figure 3.4). We will study

the performance of our approach using these two different types of designs. In Section

5.1, we will present the results from the real dataset from both experiments, while the

simulation results will be summarised in Section 5.2. In Section 5.3, we will provide a

comparison of the frequentist and Bayesian methods. Finally, Section 5.4 will provide a

discussion of this chapter.

101
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5.1 Practical Examples

The real datasets for the wind tunnel experiment and the freeze-dried coffee experi-

ment have been used to apply the Bayesian variable selection approach. The quadratic

model for the wind tunnel experiment involves four main variables (w1, w2, s1, s2), six of

two-factor interaction variables (s1s2, s1w1, s1w2, s2w1, s2w2, w1w2), and two quadratic

variables (w2
1, s

2
1). Also, the full quadratic model for the freeze-dried coffee experiment

involves five main variables (w,s1, s2, s3, s4), 10 of two-factor interaction variables (ws1,

ws2, ws3, ws4, s1s2, s1s3, s1s4, s2s3, s2s4, s3s4), and five quadratic variables (w2, s21,

s22, s
2
3, s

2
4).

We used the prior distributions in Section 4.3.1. Following Barbieri et al. (2004), in a

Bayesian framework the final model could be the median probability model consisting of

those variables whose posterior inclusion probability p (νj = 1|y) ≥ 0.5. The posterior

probability of parameter βj , j = 1, . . . , p, being active is approximated by

its∑
q=1

ν
(q)
j

its
, (5.1)

where νj
(q) is νj sampled at iteration q = 1, . . . , its of the Metropolis-Hastings within

Gibbs sampling algorithm.

5.1.1 Analysis of the Wind Tunnel Experiment

The wind tunnel experiment has been discussed in Section 1.2.1. In this section, we

summarise the results of applying the Bayesian variable selection for these data. Our

maximal model is the quadratic model. In this design w2
1 and w2

2 are fully correlated to

each other. The s21 and s22 are also fully correlated to each other. Therefore, only one

of the quadratic whole-plot effects and only one of the quadratic subplot effects could

be estimated. We use this model as we would like to study a challenging case where

we include second-order factors. In Table 5.1, the estimates of the 12 parameters of

the quadratic model have been reported using the Stochastic Search Variable Selection

(SSVS) and Stochastic Search Variable Selection for Split-plot Design (SSVS-SPD) ex-

plained in Sections 4.5.1 and 4.5.2 for response y3 which is displayed in Table 1.3.
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Figure 5.1 shows a comparison between the (a) SSVS and (b) SSVS-SPD with respect

to the resulting approximate posterior probability for the wind tunnel experiment. The

four main parameters βs1 , βs2 , βw1 , and βw2 have the highest posterior probability of

being active by both SSVS and SSVS-SPD. This indicates that the four associated vari-

ables to these terms play a significant role in this experiment. Followed by these terms,

we find that the parameter βs2w2 has an approximate posterior probability of about

0.70 by both SSVS and SSVS-SPD. Moreover, the SSVS tends to consider the βs21 to be

significant at an approximate posterior probability of 0.60 while the SSVS-SPD yielded

an approximate posterior probability of about 0.50. The last term which has an approx-

imate posterior probability of 0.50 by both SSVS and SSVS-SPD is βs1s2 . The Bayesian

analysis for the real data of the wind tunnel experiment yielded seven significant vari-

ables which is similar to the resulting final model by Simpson et al. (2004). The rest

of the terms seem to have a low approximate posterior probability of being active by

both SSVS and SSVS-SPD which is a similar analysis of the frequentist methods that

were used in Chapter 3. In summary, with respect to the final model from the Bayesian

methods, it seems that the variables s1, s2, w1, w2 followed by s2w2 would have the most

significant role in this experiment. In addition, compared to the frequentist analysis in

Chapter 3, we found that there is agreement between the frequentist and the Bayesian

analysis with regard to including those five variables to the final model.

Table 5.1 represents the posterior means of the coefficients and standard deviations by

both the SSVS and SSVS-SPD methods for the wind tunnel experiment. Table 5.2 shows

the posterior mean of the correlation ρ̂ and the posterior mean of the total variance σ̂2

for both SSVS and SSVS-SPD methods in the wind tuunel experiment. Figure E.1 and

Figure E.2 in Appendix E show (a) the trace and (b) the ACF plots for the Markov

chain using the Metropolis-Hastings within Gibbs sampling algorithm used by SSVS

and SSVS-SPD to sample β. The trace plots show that 10000 iterations are enough to

achieve a reasonable approximation to the posterior model probability as the sampling of

the chains converge to the posterior distribution. Furthermore, the ACF plots indicate

an independent sampling for βj , j = 1, . . . , 12. Also, Figure E.3 and Figure E.4 repre-

sent (a) the trace and (b) the ACF plots for the Markov chain formed by sampling the

correlation ρ and the total variance σ2 by both SSVS and SSVS-SPD. The trace plots in



104
Chapter 5 Application of the Bayesian Methods for Variable Selection from Split-Plot

Experiments

SSVS SSVS-SPD

βs1 -0.0112 -0.0112
(0.0003) (0.0003)

βs2 -0.0047 -0.0047
(0.0003) (0.0003)

βw1 0.0063 0.0068
(0.0009) (0.0011)

βw2 0.0066 0.0071
(0.0009) (0.0009)

βs1s2 -0.0002 -0.0002
(0.0002) (0.0002)

βs1w1 0.0002 0.0002
(0.0002) (0.0002)

βs1w2 -0.0001 -0.0001
(0.0002) (0.0002)

βs2w1 0.0001 0.0001
(0.0001) (0.0001)

βs2w2 0.0005 0.0005
(0.0004) (0.0004)

βw1w2 0.0001 0.0001
(0.0005) (0.0004)

βs21 0.0006 0.0005

(0.0004) (0.0004)

βw2
1

0.0001 0.0001

(0.0010) (0.0010)

Table 5.1: Posterior means of the coefficients and standard deviations (in paren-
thesis) for the wind tunnel experiment.

Method σ̂2 ρ̂

SSVS 0.000010 0.65

SSVS-SPD 0.000009 0.59

Table 5.2: Posterior means of σ̂2 and ρ̂ by the SSVS and SSVS-SPD for the
wind tunnel experiment.

Figure E.3 and Figure E.4 for both ρ and σ2 shows that sampling of the chains converge

to the posterior distribution. The ACF plot for the σ2 represents independently-drawn

sampling for both SSVS and SSVS-SPD. Finally, the ACF plot for the correlation in

Figure E.3 and Figure E.4 does display some high correlation at small lags, however,

the autocorrelation decays quickly for larger lags.



Chapter 5 Application of the Bayesian Methods for Variable Selection from Split-Plot
Experiments 105

(a) SSVS (b) SSVS-SPD
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Figure 5.1: Approximate posterior probability for the wind tunnel design.

5.1.2 Analysis of the Freeze-Dried Coffee Experiment

The freeze-dried coffee experiment has been discussed in Section 1.2.2. In this section,

we summarise the results of applying the Bayesian variable selection for this data. Our

maximal model is the full quadratic model. In Table 5.3, the estimates of the 20 param-

eters of the quadratic model have been reported using the Stochastic Search Variable

Selection (SSVS) and Stochastic Search Variable Selection for Split-plot Design (SSVS-

SPD) explained in Sections 4.5.1 and 4.5.2 for response y1 which is displayed in Table 1.5.

Figure 5.2 shows a comparison between the (a) SSVS and (b) SSVS-SPD with respect

to the resulting approximate posterior probability for the freeze-dried coffee experiment.

The four parameters βs1 , βs2 , βs4 , and βws2 have the highest posterior probability of

being active by both SSVS and SSVS-SPD. This indicates that the four associated vari-

ables to these terms play a significant role in this experiment. Followed by these terms,

we find that the parameters βs2s4 and βs3s4 have a lower, but still high, approximate

posterior probability of around 0.90 by SSVS-SPD for both terms, yet the term βs3s4

has an approximate posterior probability of around 0.80 by SSVS. Furthermore, for both

SSVS and SSVS-SPD, the terms βw, βws4 , βs1s2 , and βs1s4 have an approximate posterior

probability of between (0.50−0.60). The SSVS-SPD preferred to include an extra term,

which is βws3 , with a probability of 0.60 being active.
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The Bayesian analysis for the real data of the freeze-dried coffee experiment yielded 10

significant variables by SSVS and 11 significant variables by SSVS-SPD which is sim-

ilar to the resulting final model by Gilmour and Goos (2009). The rest of the terms

seem to have a low approximate posterior probability of being active by both SSVS and

SSVS-SPD which is similar to the analysis of the frequentist methods used in Chapter

3 as nine significant variables have been included in the final model (see Table 3.4 and

Table 3.5). In summary, with respect to the final model from a Bayesian methods, it

seems that the variables s1, s2, s4, ws2 followed by s2s4 would have the most significant

role in this experiment. In addition, compared to the frequentist analysis in Chapter

3, we found that there is agreement between the frequentist and the Bayesian analysis

with regard to including those five variables in the final model.

Table 5.3 represents the posterior means of the coefficients and standard deviations by

both the SSVS and SSVS-SPD methods for the freeze-dried coffee experiment. Also,

Table 5.4 shows the posterior means of the correlation ρ̂ and the posterior means of

the total variance σ̂2 for both SSVS and SSVS-SPD methods in the freeze-dried coffee

experiment. Figure E.5, Figure E.6, Figure E.7 and Figure E.8 in Appendix E show

(a) the trace and (b) the ACF plots for the Markov chain using Metropolis-Hastings

within Gibbs sampling algorithm used by SSVS and SSVS-SPD to sample β. Similar to

the wind tunnel experiment, the trace plots showed that 10000 iterations are enough to

achieve a reasonable approximation to the posterior model probability as the sampling

from the chains converge to the posterior distribution. The ACF plots show some in-

dependent sampling (e.g. βw2) and some dependence at small lags but decays at large

lags (e.g. βs22). Also, Figure E.9 and Figure E.10 in Appendix E represent (a) the trace

and (b) the ACF plots for the Markov chain formed by sampling the correlation ρ and

the total variance σ2 by both SSVS and SSVS-SPD. The trace plots in Figure E.9 and

Figure E.10 for both ρ and σ2 are saturated and summarised good converges. The ACF

plot for σ2 represents a decay for large lags for both SSVS and SSVS-SPD. Finally, the

ACF plot for the correlation in Figure E.9 and Figure E.10 does display some correlated

sampling at small lags, however, the autocorrelation decays early at around lag 10.

From the previous discussions in Section 5.1.1 and Section 5.1.2 , we note that there is

not a big difference between the analysis by frequentist methods and Bayesian methods



Chapter 5 Application of the Bayesian Methods for Variable Selection from Split-Plot
Experiments 107

SSVS SSVS-SPD

βw -1.2247 -1.1074
(1.5384) (1.4115)

βs1 10.1046 10.0486
(0.9915) (0.9542)

βs2 -5.0055 -4.9870
(1.0319) (0.9761)

βs3 -0.0816 -0.1133
(0.4042) (0.4502)

βs4 2.8448 2.8581
(1.0636) (0.9252)

βws1 -0.0361 -0.0139
(0.8407) (0.8979)

βws2 -4.8085 -4.6960
(1.7409) (1.6248)

βws3 -0.7308 -0.9598
(1.1883) (1.2380)

βws4 -1.7546 -2.0428
(1.888) (1.7676)

βs1s2 0.8963 1.0214
(0.9923) (0.9661)

βs1s3 0.0717 0.0662
(0.3759) (0.3562)

βs1s4 0.8160 1.0397
(1.0819) (1.1101)

βs2s3 -0.2744 -0.3590
(0.6353) (0.6668)

βs2s4 2.4827 2.4893
(1.0126) (0.9760)

βs3s4 2.1795 2.2888
(1.3949) (1.3142)

βw2 -0.1510 -0.1727
(1.4810) (1.4487)

βs21 0.9158 1.0733

(1.4810) (1.5771)

βs22 -0.8341 -0.9861

(0.9464) (1.5265)

βs23 0.2128 0.2864

(0.9464) (1.1276)

βs24 0.0142 0.0271

(0.8999) (0.9634)

Table 5.3: Posterior means of the coefficients and standard deviations (in paren-
theses) for the freeze-dried coffee experiment.
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(a) SSVS
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(b) SSVS-SPD
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Figure 5.2: Approximate posterior probability for the freeze-dried coffee design.
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Method σ̂2 ρ̂

SSVS 16.6 0.41

SSVS-SPD 16.7 0.40

Table 5.4: Posterior means of σ̂2 and ρ̂ by the SSVS and SSVS-SPD for the
freeze-dried coffee experiment.

with respect to the variable selection in the real data examples. We note the differences

on the estimated effect sizes and their standard-deviations between the frequentist and

the Bayesian methods. This is because in the Bayesian methods the results are sensitive

to the choice of the prior distributions. A comparison between the frequentist and the

Bayesian methods will be addressed in more details in Section 5.3.

Table 5.1 and Table 5.3 show the posterior means of the parameters. Our assumption

of the prior for the probability of inclusion affects the sampling of the parameters. For

example, the effect sizes and standard-deviations for the parameters who have high

approximated posterior probability are slightly lower than the effect sizes and standard-

deviations of the active parameters in the frequentist analysis. The choice of the prior

of the probability of inclusions play a significant role in this variation between the two

analysis. For example, in the wind tunnel experiment, the prior of ω has a mode =

0.25 yields 7 variables that have approximate posterior probability above 0.50. While,

in the freeze dried-coffee experiment, the prior of ω has a mode = 0.50 which yields

10 variables by SSVS and 11 variables by SSVS-SPD that have approximate posterior

probability above 0.50. Moreover, if the approximated probability of the parameter in

Figure 5.1 and Figure 5.2 is low, then there is a spike in the marginal posterior densities

for the associated parameter. We do not expect to have zero effect size for the non active

parameters because the estimated posterior density for the non active parameters are

concentrated around zero as the spike is a normal distribution with a small variance, see

Figure 5.6 and Figure 5.9.

5.2 Simulation Study

We performed a simulation study by generating 1000 datasets, where each dataset would

run for 10000 iterations using MCMC, and the SSVS and the SSVS-SPD would be
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applied at two levels of η = 1 and 10. We assume that σ2ε + σ2γ = 10. Thus, the true

value of σ2 is 10. Also, the true value of ρ is 0.5 at η = 1 while the true value at η = 10

of ρ is 0.9. We used the same model as in Section 3.2.1 for the simulation that used

the design of the wind tunnel. Also, we used the same model as in Section 3.2.2 for the

simulation that used the design of the freeze-dried coffee.

As we are keen on variable selection, we shall calculate the Type I error rate which tells

us how the methods identify the non-active effects, and the Type II error rate which tells

us how the methods identify the active effects. In this simulation, we follow Barbieri

et al. (2004) to define the Type I and II error rates using the indicator vector ν and

the approximate posterior probability from (5.1). If the true variable is active but the

algorithm yielded a corresponding approximation posterior probability of less than 0.5,

this variable would then have a Type II error rate. Also, if the true variable is non-

active but the algorithm yielded a corresponding approximation posterior probability

larger than or equal to 0.5, this variable would then have Type I error rate. We are also

keen to find out the precision of the point estimates by SSVS and SSVS-SPD. This can

be measured by calculating the median relative model error (MRME) for the estimates

of the SSVS and the SSVS-SPD as explained in Section 3.2.

5.2.1 Simulation Study Using the Design of the Wind Tunnel Experi-

ment

We performed a simulation study to examine the performance of the SSVS and SSVS-

SPD methods. Using the design of the wind tunnel experiment from Table 1.3, we

generated the response given the true model as

E(Y) = 4w1 + 2s2 − 4w1w2 + 2w1s2 + 6w2
1 + 4s21.

Type I and II error rates are displayed in Figure 5.3 , for two settings of (a) η = 1 and

(b) η = 10. The left side of the figures display the Type II error rate while the right

side represents the Type I error rate. Also, the slab posterior distributions for SSVS

and SSVS-SPD are displayed in Figure 5.4. The details of the Type I and II error rates

are presented in Table C.1 and Table C.2 in Appendix C.
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In this experiment, we assume six active variables (s2, w1, s2w1, w1w2, s
2
1 and w2

1) and six

non-active variables (s1, w2, s1s2, s1w1, s1w2 and s2w2). For both η = 1 and η = 10, by

comparing the SSVS to the SSVS-SPD, we note that five active variables (s2, w1, s2w1, w1w2,

s21) have been identified with low Type II error rates (see Table C.2 in Appendix C).

However, the quadratic whole-plot variable w2
1 was more likely to be estimated as non-

active by an error rate of 0.2 using both SSVS and SSVS-SPD. The SSVS-SPD recorded

slightly lower Type II error rate of w2
1 than the SSVS.

In addition, the advantage of the SSVS-SPD is clear as it represents a lower Type I error

rate than the SSVS for both subplot and whole-plot variables. This can be explained by

looking at the slab posterior distribution in Figure 5.4. At η = 1 in the first row, we note

the slab posterior of the whole-plot parameters at (c) cw have a similar slab posterior of

the SSVS shown in (a) c which are a variety of small and large values. This gives the

opportunity of the slab posterior of subplot parameters at (b) cs to pick the small values

more frequently. It indicates that the subplot’s factors by SSVS-SPD are more likely

to be sampled from a distribution of small variance. This allows the subplot factors

to have a lower Type I error rate by SSVS-SPD than the SSVS. Tan and Wu (2013)

explained how the slab posterior would affect the detection of small and large effects.

They state that large values of c tend to favor sparse models with large effects. Also,

small values of c tend to favor less sparse models. However, very small values of c would

again favor sparse models because the Bayesian model does not support the hypothesis

of a true model with larger effects than
√
cσ, where σ is the standard deviation of the

total variance σ2.

Apart from w2, the non-active terms have been detected with lower Type I error rate

at η = 10 than at η = 1 for both SSVS and SSVS-SPD. Similar performance of the slab

posterior distribution of SSVS and SSVS-SPD for η = 10 is shown in the second row of

Figure 5.4.

From the Median Relative Model Error (MRME) in Figure 5.5 (a), we note that there is

not a considerable difference between the MRME of the models by SSVS and the MRME

of the models by SSVS-SPD. At both η = 1 and η = 10, both SSVS and SSVS-SPD

show that the estimated models have a slightly higher prediction error than the esti-

mated model by the Generalised Least Square (GLS) estimator. We found that although
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Method η σ̂2 ρ̂

SSVS 1 11.7 0.51
10 7.40 0.77

SSVS-SPD 1 11.8 0.50
10 7.30 0.76

Table 5.5: Posterior means of σ̂2 and ρ̂ by the SSVS and SSVS-SPD from the
simulation by using the design of the wind tunnel experiment.
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Figure 5.3: Type I and II error rates for the wind tunnel design.

the inclusion probability of large effects is high, the estimated coefficients are slightly

smaller than the true coefficient value. Also, the SSVS and SSVS-SPD tend to sample

the non-significant terms from a distribution with a small variance. This implies that

true zero effects, although they have lower and non-considerable probability of inclusion,

have small estimates and are not explicitly zero. Figure 5.6 displays the Boxplots for

the coefficient estimates as we see the non-active variables have small estimates and not

exactly zero by both the SSVS and SSVS-SPD. This indeed makes the MRME of the

SSVS and the SSVS-SPD slightly higher than the MRME of the GLS estimator.
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Figure 5.4: The slab posterior distributions for the wind tunnel design at η = 1
in the first row and η = 10 in the second row.
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Figure 5.6: Box plots of the posterior means of the coefficients for the wind
tunnel design at η = 10.

5.2.2 Simulation Study Using the Design of the Freeze-Dried Coffee

Experiment

We performed a simulation study to examine the performance of the SSVS and SSVS-

SPD methods. Using the design of the freeze-dried coffee experiment from Table 1.5, we

generate the response giving the true model as

E(Y) = 4w + 4s1 − 3s2 + 2s3 − 4ws1 + 3ws2 − ws3 + 4s1s2 + 3s1s3 + 2s1s4 + s2s4

+ 4w2 + 2s21 − s22 + 2s24

Type I and II error rates are displayed Figure 5.7, for two settings of (a) η = 1 and (b)

η = 10. Type II error rates are displayed in the left side of the figure while the Type I

error rates are shown in the right side. Also, the slab posterior distributions for SSVS

and SSVS-SPD are displayed in Figure 5.8. The details of the Type I and II error rates

are presented in Table D.1 and Table D.2 in Appendix D. In this experiment, we assume

15 active variables (w, s1, s2, s3, ws1, ws2, ws3, s1s2, s1s3, s1s4, s2s4, w
2, s21, s

2
2, and

s24) and five non-active variables (s4, ws4, s2s3, s3s4, and s23).

At η = 1, both methods found difficulties in detecting the quadratic effect terms and

some interaction effect terms (e.g. s2s4 and s22). This design is non-orthogonal and
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considerable correlations between variables exist (see Figure 3.3 and Figure 3.3). The

non-orthogonality of this design does not help the SSVS and the SSVS-SPD to detect

the active terms precisely at η = 1 in which the σ2ε = σ2γ . On the other hand, at η = 10

in which the σ2ε < σ2γ , the subplot’s factors are better included in the model recorded

as small or zero Type II error rates by both SSVS and SSVS-SPD. Tan and Wu (2013)

stated the same result for correlated data from the split-plot design. For example, from

Figure 5.7 (b) and Table D.2 in Appendix D, most of the subplot (main and interaction)

effects have a zero Type II error rate.

With respect to the Type I error rate, at both η = 1 and η = 10, both SSVS and SSVS-

SPD fail in controlling it at a significance level of 5%. However, we note the benefit of

SSVS-SPD as it decreases the Type I error rate for all non-active terms in contrast to

the SSVS, similar to the analysis of the simulation from the wind tunnel design. We

conclude that having two different slab posterior distributions in the SSVS-SPD allowed

a reduction of the Type I error rates for both subplot and whole-plot effect terms. Fig-

ure 5.8 (b) shows that the subplots are more likely to be sampled from a distribution

with a small variance as this causes the reduction in Type I error rates for the subplot

terms. We note that due to the non-orthogonality of the design and the assumed true

model which is very challenging, both the Type I and II error rate is higher than the

rates of the simulation study by the wind tunnel design.

The analysis of the Median Relative Model Error (MRME) in Figure 5.5 (b) for both

SSVS and SSVS-SPD using the freeze-dried coffee design is similar to the analysis of the

(MRME) in Figure 5.5 (a) for the wind tunnel design. Figure 5.9 displays the Boxplots

for the coefficients estimates for the freeze-dried coffee design as this explains the high

MRME since the true zero effects have been estimated as small values by SSVS and

SSVS-SPD and not exactly zero.
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Figure 5.7: Type I and II error rates for the freeze-dried coffee design.
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Figure 5.8: The slab posterior distributions for the freeze-dried coffee design at
η = 1 in the first row and η = 10 in the second row.
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Figure 5.9: Box plots of posterior means of the coefficients for the freeze-dried
coffee design at η = 1.
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Method η σ̂2 ρ̂

SSVS 1 11.2 0.50
10 10.6 0.70

SSVS-SPD 1 11.0 0.49
10 11.0 0.70

Table 5.6: Posterior means of σ̂2 and ρ̂ by the SSVS and SSVS-SPD from the
simulation by using the design of the freeze-dried coffee experiment.

5.3 Comparison of the Frequentist and the Bayesian

methods

In this work, we used the frequentist analysis by applying the Penalised Generalised

Least Square (PGLS) in (1.11) and the Penalised Generalised Least Square for Split-

Plot Design (PGLS-SPD) in (2.1) to two different examples from industrial settings in

which a split-plot design is used. We selected the wind tunnel experiment in Section 1.2.1

to present the case of an orthogonal design whereas the freeze-dried coffee experiment in

Section 1.2.2 was chosen to present the case of a non-orthogonal design. In Chapter 3, in

a comparison between the PGLS and the PGLS-SPD, we reported the improvement of

variable selection and parameter estimation for both examples by using the PGLS-SPD

as this method reduces both Type I and II error rates compared to the PGLS method.

In addition, the LARS performs a very good performance by having lower Type I error

rate than the PGLS and PGLS-SPD. LARS also yields almost similar Type II error rate

to the PGLS and the PGLS-SPD. We note that the backward yields the lowest Type I

error rate among all methods, however has higher Type II error rates than all methods.

There is a trade off between Type I and Type II error rates for all methods.

Also, the PGLS-SPD provides lower MRME than the PGLS. However, in general, de-

tecting the non active effect factors by both PGLS and PGLS-SPD was not achieved,

for both the design from the wind tunnel experiments (see Table A.1 and Table A.2 in

Appendix A) and for the design from the freeze-dried coffee experiment (see Table B.1

and Table B.2 in Appendix B).

To solve the issue of the high Type I error rate, we applied the Bayesian approach using

Bayesian variable selection methods as in Chapters 4 and 5. We used the Stochastic

Search Variable Selection (SSVS) applied by Tan and Wu (2013), yet we used the Markov
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Chain Monte Carlo (MCMC) sampler from the full conditional distribution instead of

the numerical integration of β and σ2 that was used in Tan and Wu (2013). Further-

more, we adapted the SSVS to fit data from split-plot designs and we introduced the

Stochastic Search Variable Selection for Split-Plot Design (SSVS-SPD). In Chapter 5, we

presented the results of the SSVS and the SSVS-SPD with respect to variable selection

and model prediction error. In the example of an orthogonal design, we note that the

high rate of Type I error which we found in the frequentist approach has been reduced

by the Bayesian approach. This is due to the advantage of mixture normal distribution

and the choice of the spike variance which allows us to identify the non active effect

factors. Comparing Table A.1 and Table A.2 in Appendix A to Table C.1 in Appendix

C, we found a remarkable reduction in Type I error rate for the wind tunnel design by

the Bayesian approach. Although Bayesian methods recorded lower Type I error rate

than the frequentist methods, LARS detect w2 better than SSVS and SSVS-SPD at

η = 10. In addition to the reduction of Type I error rates, by comparing Table A.3 and

Table A.4 in Appendix A to Table C.2 in Appendix C, we found that Bayesian methods,

particularly the SSVS-SPD, overcome the problem of frequentist methods in having high

Type II error rates for w2
1. More specifically, in a comparison between the SSVS and the

SSVS-SPD, we note that our extended Bayesian approach SSVS-SPD method provides

a lower Type I error rate at η = 1 and η = 10 than the SSVS method (see Table C.1 in

Appendix C).

On the other hand, in the example of non-orthogonal design, by comparing Table B.1

and Table B.2 in Appendix B to Table D.1 in Appendix D, we found that the frequen-

tist approach identified non-active effect factors better than the Bayesian approach. In

particular, the LARS method detects the non active effect factors better than the SSVS

and SSVS-SPD methods. However, the Bayesian approach provided lower Type II error

rates than the frequentist approach. Also, apart from the quadratic effect factors, LARS

overcomes all methods with respect to Type II error rate. This is noticeable when com-

paring Table B.3 and Table B.4 in Appendix B to Table D.2 in Appendix D.

We note the design structure affects the performance of the frequentist and the Bayesian

approaches. In orthogonal designs, we recommend a Bayesian analysis to identify active

effect factors. Apart from the whole-plot non active effect factors which were detected
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better by LARS, Bayesian analysis is recommended for identifying non active effect fac-

tors as well. Furthermore, for non-orthogonal designs, if we are keen to detect the active

effect factors as in screening experiments, we recommend the use of Bayesian analysis

and mainly the SSVS-SPD if the design used is a split-plot design. However, LARS

overcomes the SSVS-SPD in detecting the non active effect factors.

5.4 Discussion

In this chapter, we discussed the implementation of Stochastic Search Variable Selection

(SSVS) and the Stochastic Search Variable Selection for Split-plot Design (SSVS-SPD)

to two different examples from split-plot experiments. We introduced the results of the

real datasets for the wind tunnel experiment in Section 5.1.1, and the results of the real

datasets for the freeze-dried coffee experiment in Section 5.1.2. Both the SSVS and the

SSVS-SPD agreed to consider the four main variables s1, s2, w1, and w2 as the most

significant variables in the wind tunnel experiment. Moreover, the SSVS and SSVS-SPD

agreed to consider four variables s1, s2, s4, and ws4 to be the most significant variables

in the freeze-dried coffee experiment. It is worth mentioning that these selected vari-

ables in both experiments have also been selected by the frequentist analysis in Chapter

3 which also agreed with analysis by Simpson et al. (2004) for the wind tunnel experi-

ment and by Gilmour and Goos (2009) for the freeze-dried coffee experiment. In more

detail, with respect to the wind tunnel experiment, Bayesian methods select the same

set of variables as in the original paper though both s1s2 and s21 have a probability

of inclusion that equals 0.50. Furthermore, with respect to the freeze-dried coffee ex-

periment, Bayesian methods select the same set of variables as in the original paper

though Bayesian methods added three extra variables. They are s1s4 with a probability

of inclusion that equals 0.50 and both s1s2 and ws4 with a probability of inclusion that

equals 0.60. The assessment of MCMC sampling shows good convergences for β, σ2,

and ρ for both experiments.

Two simulation studies generating 1000 datasets have been approached using the wind

tunnel design in Section 5.2.1, and by using the freeze-dried coffee design in Section

5.2.2. Both SSVS and SSVS-SPD were successful in identifying five active variables
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from the assumed six true active variables in the simulation by using the design of the

wind tunnel experiment. The most challenging analysis was in the simulation using the

design of the freeze-dried coffee experiment. This is because we tried to detect 15 active

variables in a small and non-orthogonal design using a model of 20 variables. However,

the case of η = 10 resulted in including most of the active subplot factors because in

that case σ2ε is less than the σ2γ which yields a remarkable low Type II error rate in this

case for the subplot factors.

The frequentist approach using the PGLS-SPD by ALASSO0.5 provided a lower predic-

tion error than the Bayesian approach for the wind tunnel example. The frequentist

approach by BIC for the freeze-dried coffee example has a similar prediction error to

the Bayesian approach. However, we do not expect the Bayesian approach to have a

better prediction error than the frequentist approach. This is because in the Bayesian

approach, we sample the non-active effects from a normal distribution with a small vari-

ance. This results in non-significant effects having very small estimates but not exactly

zero. This increases the differences between the resulting model and the true model. On

the other hand, we find in the frequentist approach, with a proper choice of shrinkage

parameter, non-active variables are estimated to be zero exactly (see for example the

ALASSO0.5 in the wind tunnel example).

In Section 5.3, we provided a comparison of the frequentist analysis and the Bayesian

analysis methods, and we showed how the LARS and the SSVS-SPD method surpasses

the other methods with respect to variable selection. In summary, from this work, we

note that both SSVS-SPD and LARS have advantages and disadvantages. However,

the LARS overcomes Bayesian methods with respect to Type I error rate. Also, apart

from the quadratic effect factors, LARS overcomes the Bayesian methods with respect

to Type II error rate.





Chapter 6

Conclusion and Future Work

6.1 Conclusion

The focus of this thesis is the analysis of data from split-plot experiments using moti-

vating examples from industrial environment. In Chapter 1, we presented the details of

the two motivating examples that used in this work. We also provided an introduction

of the frequentist variable selection and the Bayesian variable selection.

In Chapter 2, we introduced the computational algorithm of the Penalised Generalised

Least Squares (PGLS) in which we apply one shrinkage penalty to all factors. Also, we

discussed the computational algorithm of the Penalised Generalised Least Squares for

Split-Plot Design (PGLS-SPD) in which we apply two shrinkage penalties for subplot

factors and whole-plot factors. We explained that the motivation of the extension in

PGLS-SPD is that we have two different strata in split-plot design. Another reason is

that we found that even when the two shrinkage parameters are being selected the same

grid of values, the information criteria tend to select different values of the shrinkage

parameter for subplot factors and whole-plot factors.

In Chapter 3, we analysed data from two real-life experiments, and we have done two

simulation studies in which we have compared different variable selection methods. The

main finding from our analysis for both examples, is that Backward yields the lowest

Type I error rate. After that, the LARS as it overcomes the PGLS-SPD method. More-

over, the active quadratic whole-plot effect factor was hardly to detect by all methods.

123
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Apart from that, the LARS yields similar Type II error rate to the PGLS-SPD for the

wind tunnel example. For the freeze-dried coffee example, the LARS overcomes the

PGLS-SPD with respect to the main effect factors. However, in screening experiments

where the main aim is to identify the active effect factors, the LARS and the PGLS-SPD

offer good alternatives to the traditional methods. In addition, we recommend to use

the ALASSO0.5 for analysing data from orthogonal split-plot designs whereas the EN

can be utilised for non-orthogonal split-plot designs.

In Chapter 4, we described the a Metropolis-Hastings within Gibbs sampling algorithm,

which generates dependent samples from the posterior distribution of the parameters in

linear mixed models. We explained the hierarchical mixture model for variable selec-

tion and discussed the full conditional distributions. Also, we discussed the Stochastic

Search Variable Selection (SSVS) and its adapted version Stochastic Search Variable

Selection for Split-Plot Design (SSVS-SPD). We also explained that the motivation of

this extension in SSVS-SPD is that we have two different strata in split-plot design.

Also, because we found that although we use the same prior distribution for the slab

variance of the subplot factors and whole-plot factors, different posterior distributions

of the slab variance will be used to sample the subplot and whole-plot effects.

In Chapter 5, with respect to Bayesian methods, we found that the SSVS-SPD detects

the active and non-active effect factors with lower error rate than the SSVS. We pro-

vided a comparison between the performance of the frequentist analysis and the Bayesian

analysis with regard the variable selection and the model prediction error. The LARS

and the SSVS-SPD overcome the other methods with respect to variable selection. In

conclusion, we note that both SSVS-SPD and LARS have pros and cons. However, the

LARS overcomes SSVS-SPD with respect to Type I error rate. Also, apart from the

quadratic effect factors, LARS overcomes SSVS-SPD with respect to Type II error rate.

6.2 Future Work

Possible extensions to the work in this thesis are discussed as in Sections 6.2.1 and 6.2.2.
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6.2.1 Extension of the Frequentist Analysis Approach

• The usefulness of other choices for the shrinkage parameters based on the Akaike

Information Criterion (AIC) (Akaike, 1973) and the Generalised Cross Validation

(GCV) (Wahba, 1980) could be investigated in selecting the shrinkage parameters.

• Extend the Penalised Generalised Least Square for Split-Plot Design (PGLS-SPD)

to more restricted randomised designs. For example, the Split-Split-Plot Design

which has three different types of factors. One can investigate the application of

Penalised Generalised Least Square for the Split-Split-Plot Design (PGLS-SSPD)

by minimising

QPGLS(β) =
1

2
(Y−Xβ)′V̂

−1
(Y−Xβ) +

dw∑
j=1

pλw(| βj |) +

ds∑
j=dw+1

pλs(| βj |)+

d∑
j=ds+1

pλss(| βj |),

with respect to β. In the above formula, dw denotes the number of the whole-

plot model coefficients, β1, . . . , βdw represent these whole-plot coefficients, the

βdw+1, . . . , βs are the subplot coefficients, and the βds+1, . . . , βd are the sub-subplot

coefficients. Also, pλw(.), pλs(.), and pλss(.) are the shrinkage penalty functions

which will be applied to the whole-plot factor effects, subplot factor effects, sub-

subplot factor effects respectively. All λw, λs, and λss are unknown positive shrink-

age parameters, which can be chosen by several selection methods as in Section

2.3. In Split-Split-Plot design, there are more hierarchical stages, the small units

in Split-Plot design are splitted further into split-split-plot observational units. In

such case the experimental design contains the whole-plot error, split-plot error

and the split-split-plot error in which 3 variance components need to be estimated.

6.2.2 Extension of the Bayesian Analysis Approach

• Further investigation can be drawn using another prior distribution which pro-

vide variable selection such as Bayesian LASSO. Tibshirani (1996) suggested that
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LASSO estimates can be interpreted as posterior mode estimates when the regres-

sion parameters have independent and identical Laplace (i.e., double-exponential)

priors. Bayesian LASSO was introduced by Park and Casella (2008). Bayesian

LASSO was proposed for linear models, hence it needs to be adopted to linear

mixed model to fit data from a split-plot design. For linear model, the conditional

Laplacian prior for β is

π(β|σ2) =
d∏
j=1

λ

2σ
exp
{
− λ|βj |/σ

}
.

for λ ≥ 0 and σ2 is the response variance and needs an appropriate prior to

estimate it.

• In the Stochastic Search Variable Selection, we introduced mixture of normal den-

sity for both spike and slab distributions in which the spike has a small variance

while the slab has larger variance. One can replace the spike prior with a point

mass at zero (Dirac spike) and can keep the slab to be normal distribution. The

probability of Dirac spike is a discrete random variable which is exactly equal to

zero. By considering the Dirac spike, the indicator vector νj , total variance σ2,

and slab variance c, one can use a prior for β from

p(βj |νj) = (1− νj)pspike(βj) + νjpslab(βj).

where pslab(βj) = N(0, cσ2), and pspike(β) = I0(βj). The non significant coefficients

hence will be set to zero.
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Appendix A Type I and II error rates by PGLS and PGLS-SPD for the wind tunnel

design.

True non-active variable s1 w2 s1s2 s1w1 s1w2 s2w2

Method Criteria 0 0 0 0 0 0

PGLS

LASSO cAIC 0.178 0.250 0.242 0.180 0.248 0.216
BIC 0.170 0.242 0.222 0.148 0.224 0.208

ALASSO0.5 cAIC 0.100 0.198 0.166 0.110 0.132 0.162
BIC 0.104 0.198 0.142 0.096 0.116 0.136

SCAD cAIC 0.132 0.230 0.194 0.136 0.160 0.186
BIC 0.112 0.198 0.170 0.112 0.140 0.160

EN cAIC 0.178 0.258 0.242 0.176 0.248 0.220
BIC 0.178 0.246 0.222 0.156 0.232 0.208

PGLS-SPD

LASSO cAIC 0.128 0.262 0.202 0.132 0.168 0.176
BIC 0.108 0.254 0.162 0.112 0.144 0.156

ALASSO0.5 cAIC 0.076 0.214 0.114 0.076 0.112 0.124
BIC 0.056 0.198 0.098 0.060 0.096 0.108

SCAD cAIC 0.128 0.230 0.182 0.120 0.148 0.168
BIC 0.104 0.210 0.138 0.104 0.132 0.144

EN cAIC 0.162 0.286 0.218 0.164 0.204 0.196
BIC 0.146 0.282 0.210 0.132 0.180 0.180

Backward 0.050 0.069 0.048 0.045 0.036 0.063

LARS 0.044 0.174 0.074 0.036 0.072 0.088

Table A.1: Type I error rate for the wind tunnel design at η = 1 for the PGLS
and PGLS-SPD. ALASSO0.5 is the ALASSO with ψ = 0.5.

True non-active variable s1 w2 s1s2 s1w1 s1w2 s2w2

Method Criteria 0 0 0 0 0 0

PGLS

LASSO cAIC 0.248 0.260 0.304 0.236 0.284 0.272
BIC 0.228 0.240 0.288 0.228 0.264 0.260

ALASSO0.5 cAIC 0.152 0.200 0.192 0.120 0.164 0.168
BIC 0.124 0.196 0.168 0.120 0.156 0.164

SCAD cAIC 0.192 0.208 0.264 0.204 0.248 0.240
BIC 0.188 0.196 0.252 0.192 0.240 0.224

EN cAIC 0.256 0.264 0.308 0.240 0.288 0.276
BIC 0.236 0.248 0.296 0.228 0.268 0.260

PGLS-SPD

LASSO cAIC 0.156 0.272 0.216 0.140 0.200 0.180
BIC 0.152 0.256 0.208 0.132 0.196 0.176

ALASSO0.5 cAIC 0.104 0.208 0.140 0.096 0.128 0.144
BIC 0.104 0.200 0.136 0.092 0.128 0.144

SCAD cAIC 0.164 0.228 0.220 0.140 0.208 0.192
BIC 0.164 0.208 0.220 0.136 0.204 0.180

EN cAIC 0.184 0.312 0.236 0.188 0.236 0.204
BIC 0.172 0.292 0.228 0.164 0.224 0.192

Backward 0.055 0.077 0.048 0.041 0.043 0.059

LARS 0.044 0.184 0.076 0.036 0.072 0.088

Table A.2: Type I error rate for the wind tunnel design at η = 10 for the PGLS
and PGLS-SPD. ALASSO0.5 is the ALASSO with ψ = 0.5.
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True active variable s2 w1 s2w1 w1w2 s21 w2
1

Method Criteria 2 4 2 -4 4 6

PGLS

LASSO cAIC 0 0 0 0 0 0.290
BIC 0 0.008 0 0 0 0.326

ALASSO0.5 cAIC 0 0.004 0 0 0 0.282
BIC 0 0.008 0 0 0 0.318

SCAD cAIC 0 0.008 0 0 0 0.218
BIC 0 0.012 0 0 0 0.278

EN cAIC 0 0 0 0 0 0.288
BIC 0 0.008 0 0 0 0.330

PGLS-SPD

LASSO cAIC 0 0 0 0 0 0.208
BIC 0 0 0 0 0 0.232

ALASSO0.5 cAIC 0 0.004 0 0 0 0.234
BIC 0 0.008 0 0 0 0.282

SCAD cAIC 0 0.008 0 0 0 0.214
BIC 0 0.008 0 0 0 0.262

EN cAIC 0 0 0 0 0 0.200
BIC 0 0 0 0 0 0.224

Backward 0.001 0.036 0.002 0.039 0.003 0.507

LARS 0.004 0.012 0.006 0 0 0.294

Table A.3: Type II error rate for the wind tunnel design at η = 1 for the PGLS
and PGLS-SPD. ALASSO0.5 is the ALASSO with ψ = 0.5.

True active variable s2 w1 s2w1 w1w2 s21 w2
1

Method Criteria 2 4 2 -4 4 6

PGLS

LASSO cAIC 0 0.020 0 0.004 0 0.428
BIC 0 0.032 0 0.016 0 0.452

ALASSO0.5 cAIC 0 0.032 0 0.012 0 0.432
BIC 0 0.048 0 0.024 0 0.472

SCAD cAIC 0 0.044 0 0.020 0 0.324
BIC 0 0.052 0 0.020 0 0.360

EN cAIC 0 0.020 0 0.004 0 0.432
BIC 0 0.032 0 0.016 0 0.452

PGLS-SPD

LASSO cAIC 0 0.020 0 0.004 0 0.356
BIC 0 0.020 0 0.004 0 0.392

ALASSO0.5 cAIC 0 0.024 0 0.004 0 0.368
BIC 0 0.040 0 0.016 0 0.436

SCAD cAIC 0 0.036 0 0.008 0 0.308
BIC 0 0.036 0 0.016 0 0.336

EN cAIC 0 0.016 0 0.004 0 0.364
BIC 0 0.020 0 0.004 0 0.392

Backward 0 0.120 0 0.123 0 0.630

LARS 0 0.048 0 0.016 0 0.432

Table A.4: Type II error rate for the wind tunnel design at η = 10 for the PGLS
and PGLS-SPD. ALASSO0.5 is the ALASSO with ψ = 0.5.
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Appendix B Type I and II error rates by PGLS and PGLS-SPD for the freeze

dried-coffee design.

True non-active variables Criteria s4 ws4 s2s3 s3s4 s23
Method Criteria 0 0 0 0 0

PGLS

LASSO cAIC 0.116 0.092 0.068 0.168 0.068
BIC 0.188 0.212 0.168 0.280 0.152

ALASSO0.5 cAIC 0.068 0.068 0.052 0.128 0.044
BIC 0.160 0.164 0.120 0.232 0.140

SCAD cAIC 0.104 0.096 0.068 0.140 0.052
BIC 0.164 0.184 0.128 0.224 0.124

EN cAIC 0.116 0.096 0.072 0.168 0.064
BIC 0.188 0.208 0.168 0.272 0.152

PGLS-SPD

LASSO cAIC 0.116 0.080 0.060 0.124 0.056
BIC 0.180 0.188 0.136 0.268 0.148

ALASSO0.5 cAIC 0.072 0.068 0.052 0.104 0.044
BIC 0.144 0.142 0.094 0.204 0.124

SCAD cAIC 0.112 0.088 0.060 0.140 0.044
BIC 0.164 0.180 0.128 0.224 0.124

EN cAIC 0.140 0.140 0.084 0.200 0.072
BIC 0.208 0.224 0.176 0.300 0.164

Backward 0.049 0.085 0.053 0.083 0.068

LARS 0.076 0.104 0.076 0.168 0.092

Table B.1: Type I error rate the freeze dried-coffee design design at η = 1 for
the PGLS and PGLS-SPD. ALASSO0.5 is the ALASSO with ψ = 0.5.

True non-active variables Criteria s4 ws4 s2s3 s3s4 s23
Method Criteria 0 0 0 0 0

PGLS

LASSO cAIC 0.108 0.080 0.068 0.140 0.068
BIC 0.216 0.160 0.176 0.244 0.184

ALASSO0.5 cAIC 0.096 0.092 0.076 0.104 0.084
BIC 0.164 0.148 0.132 0.176 0.148

SCAD cAIC 0.112 0.076 0.072 0.132 0.068
BIC 0.216 0.160 0.152 0.224 0.156

EN cAIC 0.112 0.076 0.064 0.144 0.072
BIC 0.220 0.160 0.172 0.248 0.192

PGLS-SPD

LASSO cAIC 0.108 0.064 0.068 0.112 0.072
BIC 0.196 0.144 0.148 0.216 0.156

ALASSO0.5 cAIC 0.096 0.092 0.076 0.096 0.080
BIC 0.144 0.132 0.108 0.164 0.140

SCAD cAIC 0.116 0.068 0.068 0.116 0.068
BIC 0.192 0.144 0.132 0.212 0.144

EN cAIC 0.136 0.088 0.088 0.144 0.088
BIC 0.224 0.172 0.176 0.240 0.172

Backward 0.070 0.078 0.052 0.058 0.078

LARS 0.072 0.092 0.076 0.088 0.092

Table B.2: Type I error rate the freeze dried-coffee design design at η = 10 for
the PGLS and PGLS-SPD. ALASSO0.5 is the ALASSO with ψ = 0.5.
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Appendix C Type I and II error rates by SSVS and SSVS-SPD for the wind tunnel

design.

True non-active variable s1 w2 s1s2 s1w1 s1w2 s2w2

Method 0 0 0 0 0 0

η = 1 SSVS 0.046 0.090 0.047 0.042 0.040 0.053
SSVS-SPD 0.032 0.071 0.026 0.050 0.032 0.038

η = 10 SSVS 0.010 0.273 0.018 0.018 0.017 0.019
SSVS-SPD 0.024 0.262 0.009 0.006 0.005 0.008

Table C.1: Type I error rates for the wind tunnel design.

True active variable s2 w1 s2w1 w1w2 s21 w2
1

Method 2 4 2 -4 4 6

η = 1 SSVS 0.003 0.003 0.001 0.001 0.003 0.191
SSVS-SPD 0.002 0.004 0.006 0.006 0.007 0.171

η = 10 SSVS 0 0.003 0 0.011 0 0.151
SSVS-SPD 0 0.017 0 0.003 0 0.169

Table C.2: Type II error rates for the wind tunnel design.
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Appendix D Type I and II error rates by SSVS and SSVS-SPD for the freeze

dried-coffee design.

True non-active variables s4 ws4 s2s3 s3s4 s23
Method 0 0 0 0 0

η = 1 SSVS 0.223 0.545 0.213 0.396 0.606
SSVS-SPD 0.134 0.426 0.135 0.268 0.467

η = 10 SSVS 0.175 0.674 0.115 0.354 0.728
SSVS-SPD 0.101 0.589 0.108 0.369 0.688

Table D.1: Type I error rates for the freeze dried-coffee design.
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Figure E.1: Column (a) trace and column (b) ACF plot for the Markov chain
formed by sampling β by SSVS for the wind tunnel design.
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Figure E.2: Column (a) trace and column (b) ACF plot for the Markov chain
formed by sampling β by SSVS-SPD for the wind tunnel design.
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Figure E.3: Column (a) trace and column (b) ACF plot for the Markov chain
formed by sampling the total variance σ2 and the correlation ρ by SSVS for the
wind tunnel design.
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Figure E.4: Column (a) trace and column (b) ACF plot for the Markov chain
formed by sampling the total variance σ2 and the correlation ρ by SSVS-SPD
for the wind tunnel design.
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Figure E.5: Column (a) trace and column (b) ACF plot for the Markov chain
formed by sampling β by SSVS for the freeze dried-coffee design.
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Figure E.6: Column (a) trace and column (b) ACF plot for the Markov chain
formed by sampling β by SSVS for the freeze dried-coffee design.
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Figure E.7: Column (a) trace and column (b) ACF plot for the Markov chain
formed by sampling β by SSVS-SPD for the freeze dried-coffee design.
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Figure E.8: Column (a) trace and column (b) ACF plot for the Markov chain
formed by sampling β by SSVS-SPD for the freeze dried-coffee design.
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Figure E.9: Column (a) trace and column (b) ACF plot for the Markov chain
formed by sampling the total variance σ2 and the correlation ρ by SSVS for the
freeze dried-coffee design.
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Figure E.10: Column (a) trace and column (b) ACF plot for the Markov chain
formed by sampling the total variance σ2 and the correlation ρ by SSVS-SPD
for the freeze dried-coffee design.
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