
 Lukasiewicz Logics for Cooperative Games

Enrico Marchioni

School of Electronics and Computer Science, University of Southampton, UK

Michael Wooldridge

Department of Computer Science, University of Oxford, UK

Abstract

Coalitional resource games (CRGs) provide a natural abstract framework with which to model
scenarios in which groups of agents cooperate by pooling resources in order to carry out tasks or
achieve individual goals. In this work, we introduce a richer and more general framework, called
 Lukasiewicz resource games (LRG), which is based on many-valued Lukasiewicz logics, whose
formulae make it possible to specify the class of piecewise linear polynomial functions with integer
and rational coefficients on [0, 1]n. The use of Lukasiewicz logics provides a new approach to the
representation of the scenario/situations modelled by CRGs. In LRGs, each agent is endowed
with resources that can be allocated over a set of tasks, where the outcome of a task depends
on the profile of resources that are allocated to it. We specify task outcomes using formulae of
 Lukasiewicz logic. In addition, agents have payoff functions over task outcomes, which are also
specified by Lukasiewicz formulae. After motivating and introducing LRGs, we formalise notions
of coalition structures and the core for LRGs and investigate the non-emptiness of the core both
from a logical and computational perspective. We prove that LRGs are a proper generalisation of
CRGs by showing how any CRG can be translated into a LRG that is strategically equivalent, in
the sense that the former has a non-empty core if and only if so does the latter.

Keywords: Cooperative games, Non-transferable Utility, Lukasiewicz Logics
2010 MSC: 00-01, 99-00

1. Introduction

The past decade has witnessed a substantial growth of interest in issues surrounding the use of
concepts and models from cooperative game theory in computer science generally, and artificial
intelligence in particular – see, e.g., [12] for a detailed survey. Broadly speaking, two main sets of
issues relating to cooperative games have been investigated in the literature: the development of5

representations for cooperative games (and in particular, compact representations); and the devel-
opment of techniques for computing solution concepts such as the core and the Shapley value. This
paper focuses on the former issue. The key problem is that naive representations of cooperative
games require space exponential in the number of players in the game [12]. Two main approaches
have been adopted with respect to compact representations: the development of general repre-10

sentations (such as Ieong and Shoham’s marginal contribution nets [22]), and the development
of game models for specific applications (such as cooperative games interpreted on networks [6]).
One approach to the development of compact representations that has been widely adopted within

Preprint submitted to Elsevier May 23, 2019

the artificial intelligence community generally, but which has had comparatively little impact on
representations for cooperative games, is the use of logic as a representation formalism. Against15

this background, our aims in the present paper are twofold.
First, we introduce a natural and compelling generalisation of the Coalitional Resource Games

(CRGs) model of Wooldridge and Dunne [36]. The basic idea in CRGs is that agents are endowed
with certain resources, and may cooperate with each other by pooling resources to achieve certain
goals. Each agent desires the satisfaction of some goal, and cooperation allows agents to achieve20

goals that could not be achieved if they acted in isolation. Our new model assumes a finite set of
players, each of which is endowed with a set of resources that they may allocate over a set of tasks.
The outcome of each task is dependent on the profile of resources allocated to it by the agents. In
other words, the outcome of a task is the result of how the players decide to allocate their resources.
Each player also has a payoff that depends on those task outcomes, which represents that player’s25

preferences over outcomes. The goal of each agent is then primarily to maximise this payoff, but
also to minimise the costs they incur in doing so.

Second, we show how this model can be succinctly captured using Lukasiewicz logics, whose
formulae make it possible to specify the class of piecewise linear polynomial functions with integer
and rational coefficients on [0, 1]n. Lukasiewicz logics were proposed as a representation language30

for non-cooperative games by Marchioni and Wooldridge [24], who presented Lukasiewicz games as
a generalisation of the classic logic-based Boolean games model of Harrenstein et al. [20]. In con-
ventional Boolean games, each player controls a finite set of propositional variables, and seeks the
satisfaction of a goal, specified as a formula of propositional logic over the total set of propositional
variables in the game. The Lukasiewicz games of Marchioni and Wooldridge generalise Boolean35

games by specifying goals as formulae of some many-valued Lukasiewicz logic, thereby permitting
the definition of a much richer class of utility functions than is possible in Boolean games based
on classical propositional logic. Our present paper can be seen as an extension of this work to
cooperative games.

The work presented within this article provides a mathematical framework through which an40

important class of cooperative games can be given a declarative logical representation using a
formalism that is well-known and widely studied within the knowledge representation community
– viz., Lukasiewicz logic. Using our model, problems related to reasoning about cooperative games
can therefore be reduced to logical reasoning problems, such as satisfiability checking or theorem
proving.45

The remainder of this work is structured as follows.

• In the following section, we summarise the background material on Lukasiewicz logics that
is used throughout the paper.

• In Section 3, we formally introduce Lukasiewicz Resource Games (LRG) as a logic-based
model of cooperative games.50

• In Section 4, we formalise notions of cooperation, coalition structures, and the core, investi-
gate some of their main properties, and give a characterisation of the structure of the core.

• Section 5 introduces the CRG model of Wooldridge and Dunne [36] and shows that finite
 LRGs are a proper generalisation of this model. In particular we show that for every CRG
there exists a finite LRG so that the core of the former is non-empty if and only if so is the55

core of the latter.

2

• In Section 6, we present a number of computational results related to computing the core of
 LRGs.

• We conclude with some final remarks.

2. Lukasiewicz Logics60

Since Lukasiewicz logics are fundamental to our present work, but are not as widely known as the
classical two-valued logic that underpins conventional Boolean games, we begin by summarising
the relevant concepts of Lukasiewicz logics and their related class of functions that will be exten-
sively used in the remainder of the paper. The interested reader can find detailed treatments of
 Lukasiewicz logics and their semantics in [11, 13, 29].65

We begin by defining infinite-valued Lukasiewicz logic L∞. The language of L∞ is built from a
countable set of variables Var = {p1, p2, . . .}, the binary connective “→”, and the truth constant
0 (for falsehood). Further connectives are defined as follows:

¬φ is φ→ 0̄,
1 is ¬0,

φ� ψ is ¬(φ→ ¬ψ),
φ ∧ ψ is φ� (φ→ ψ),
φ ∨ ψ is ((φ→ ψ)→ ψ),
φ⊕ ψ is ¬(¬φ� ¬ψ),
φ↔ ψ is (φ→ ψ)� (ψ → φ),
φ	 ψ is φ� ¬ψ,
d(φ, ψ) is ¬(φ↔ ψ).

We often write nφ as an abbreviation for φ⊕ · · · ⊕ φ︸ ︷︷ ︸
n

, with n > 1.70

A valuation, s, is a mapping s : Var → [0, 1], which assigns to all propositional variables a
value from the real unit interval. The semantics of Lukasiewicz logic is then defined, with a small
abuse of notation, by extending the valuation s to complex formulae. Although strictly speaking
we only need to state the rules for the connective → and the truth-constant 0 (as the remaining
connectives can be defined in terms of these), we present the complete ruleset in the interest of75

clarity:
s(0) = 0

s(φ→ ψ) = min(1− s(φ) + s(ψ), 1)
s(¬φ) = 1− s(φ)
s(1) = 1

s(φ� ψ) = max(0, s(φ) + s(ψ)− 1)
s(φ ∧ ψ) = min(s(φ), s(ψ))
s(φ ∨ ψ) = max(s(φ), s(ψ))
s(φ⊕ ψ) = min(1, s(φ) + s(ψ))
s(φ↔ ψ) = 1− |s(φ)− s(ψ)|
s(φ	 ψ) = max(0, s(φ)− s(ψ))
s(d(φ, ψ)) = |s(φ)− s(ψ)|

3

We say that a formula φ is satisfiable if there exists a valuation s such that s(φ) = 1. Given a
formula φ(p1, . . . , pn) over variables p1, . . . , pn, we let Sat(φ(p1, . . . , pn)) denote the satisfiability
set of φ(p1, . . . , pn), i.e.:80

Sat(φ(p1, . . . , pn)) =
{

(a1, . . . , an) ∈ [0, 1]n
∣∣∣ s(φ(p1, . . . , pn)) = 1, and s(p1) = a1, . . . , s(pn) = an

}
.

As usual, a theory, Γ, is a set of formulae. An evaluation s is a model for Γ if it satisfies every
ψ ∈ Γ. We call a formula φ a tautology if s(φ) = 1 for every valuation s. Note that these notions of
satisfiabilty, satisfiability set, and tautology will be used also for the various other logics introduced
below, with the obvious modifications.

We make use of a number of extensions of L∞:85

• Rational Pavelka logic (RP L∞) is defined from L∞ by adding to the language a constant c for
every rational in [0, 1]. Each constant c is naturally interpreted as its corresponding rational
number, i.e., s(c) = c, for all c ∈ Q ∩ [0, 1].

• Rational Lukasiewicz logic (R L∞) is obtained by expanding the language of L∞ with the
unary connectives δn for each natural number n ≥ 1. Each δn functions as a divisibility90

operator. It has the following interpretation, for all valuations s into [0, 1]:

s(δnφ) =
s(φ)

n
.

In R L∞, it is possible to define new constants whose interpretation corresponds to each
rational number in [0, 1]. For example,

1
n is definable as δn(¬0), and m

n is definable as m(δn(¬0)).

Consequently, while RP L∞ is an extension of L∞, R L∞ is an extension of RP L∞.95

• For each natural number k ≥ 1, the Finite-valued Lukasiewicz logics (Lk) share the same
language as infinite-valued Lukasiewicz logic L∞. In such logics, it is assumed that the
domain of all valuations of each propositional variable is a set of the following form:

Lk =

{
0,

1

k
, . . . ,

k − 1

k
, 1

}
.

The interpretation of the connectives is the same as for L∞, but restricted to Lk, which
is closed under all Lukasiewicz operations. Notice that L1 simply corresponds to classical100

Boolean logic.

• Finite-valued Lukasiewicz logics with constants (Lck) are obtained from each Lk by expanding
the language with constants c for every value c ∈ Lk. We assume that valuation functions s
interpret such constants in the natural way: s(c) = c.

In all finite-valued Lukasiewicz logics (with or without constants) it is possible to define the105

unary connective ∆ as follows:
∆φ is ¬(k(¬φ)).

4

The semantic interpretation of ∆ over Lk is

s(∆φ) =

{
1 s(φ) = 1
0 otherwise.

Thus, a formula of the form ∆φ always evaluates to a Boolean value (i.e., 0 or 1).

Notation 1. We will simply refer to L∞, RP L∞, and R L∞ as infinite Lukasiewicz logics, while
we will refer to Lk and Lck as finite Lukasiewicz logics.110

Let L be any of the logics introduced above. Formally, L is the logic of all tautologies in the
L-language, i.e., of all the L-formulae φ such that s(φ) = 1 for every s in the related class of
valuations.1 So, as an example, Lk, for a fixed k, is the logic of all formulae in the language of
 Lukasiewicz logic that are given value 1 under all valuations into Lk.

As we mentioned above, each Lukasiewicz logic L can be shown to be the logic of a certain115

class of functions: we will now flesh out this observation. Given an L-formula φ(p1, . . . , pn) we
can obviously define a real-valued function fφ(x1, . . . , xn) so that for each assignment s to the
propositional variables p1, . . . , pn,

fφ(s(p1), . . . , s(pn)) = s(φ(p1, . . . , pn)).

The formula φ(p1, . . . , pn) is said to realise the function fφ(x1, . . . , xn).2

The key notion in describing the functions associated with Lukasiewicz formulae is that of a120

McNaughton function.

Definition 1 (McNaughton Function). A function

f : [0, 1]n → [0, 1]

is called a (rational) McNaughton function over [0, 1]n if and only if it satisfies the following
conditions:

1. f is continuous with respect to the natural topology of [0, 1]n;125

2. there are linear polynomials p1, . . . , pk with integer (rational) coefficients,

pi(x1, . . . , xn) = bi +mi1x1 + · · ·+minxn,

such that for each point ~y = (y1, . . . , yn) ∈ [0, 1]n there is an index j ∈ {1, . . . , k} with
f(~y) = pi(~y).

Infinite-valued Lukasiewicz logic and Rational Lukasiewicz logic are the logics whose class of
functions coincides with the whole set of McNaughton and rational McNaughton functions.130

1 All the Lukasiewicz logics we have introduced have a specific axiomatisation, and their axiom systems are
complete w.r.t. to the semantics given here. Giving the precise axiomatisation is beyond the scope of this work. All
the details can be found in [11, 18, 19, 16].

2Notice that whenever variables p1, . . . , pn are explicitly mentioned in a formula, i.e., φ(p1, . . . , pn), we assume
they do actually all occur in φ. Similarly, for its associated function fφ(x1, . . . , xn) we assume that all x1, . . . , xn
occur and so fφ is defined over either [0, 1]n or (Lk)n.

5

Theorem 2 ([27, 18]). A function f : [0, 1]n → [0, 1] is a McNaughton function if and only if it is
the function realised by some L∞-formula φ(p1, . . . , pn).3 A function f : [0, 1]n → [0, 1] is a rational
McNaughton function if and only if it is the function realised by some R L∞-formula φ(p1, . . . , pn).4

It is easy to see that RP L∞ is the logic of all functions obtained by composition of McNaughton
functions and rational constant functions with the Lukasiewicz operations. In other words, every135

function f : [0, 1]n → [0, 1] realised by a RP L∞-formula is such that, for all (x1, . . . , xn) ∈ [0, 1]n

f(x1, . . . , xn) = g(x1, . . . , xn, c1, . . . , cm),

where
g(x1, . . . , xn, x

′
1, . . . , x

′
m)

is a McNaughton function
g : [0, 1]n+m → [0, 1]

and c1, . . . , cm ∈ Q ∩ [0, 1].

As for finite-valued Lukasiewicz logics Lk, it is easy to see that the functions associated with140

their formulae are just the restrictions of McNaughton functions over Lk. So, for instance, the
function associated to a formula φ(p1, . . . , pn) of Lk is obtained by taking the function fφ(p1,...,pn)

over [0, 1]n restricted to (Lk)
n.

In the case of finite-valued Lukasiewicz logics with constants Lck, the functions defined by a
formula are combinations of the restrictions of McNaughton functions over (Lk)

n and the constant145

functions for each c ∈ Lk. Notice that the class of functions definable by Lck-formulae coincides
with the class of all functions f : (Lk)

n → Lk, for every n ≥ 0.5

Notation 2. From now on we will generally refer to the functions associated to the logics introduced
above simply as Lukasiewicz functions.

Definition 3. Any first-order formula in one of the following languages150

L = 〈→, {δn}n>1, 0〉, Lk = 〈→, {c}c∈Lk〉

is called a quantified Lukasiewicz formula (sentence if the formula contains no free variables). A
quantified Lukasiewicz formula is called existential if it contains only existential quantifiers.

It is easy to see that every quantified Lukasiewicz formula has the form

Q1x1 . . . Qnxn Φ(x1, . . . , xn, y1, . . . , ym)

where Φ(x1, . . . , xn, y1, . . . , ym) is a Boolean combination of equalities and strict inequalities in L
or Lk and each Qi is either an existential or universal quantifier.155

3See also [28], [11] and [2].
4See also [2].
5In fact, for any function f : (Lk)n → Lk, we can define a formula realising f as follows:

∨
c1,...,cn∈(Lk)

n

((
n∧
i=1

∆(pi ↔ ci)

)
∧ f(c1, . . . , cn)

)
.

6

Let L and Lk be the following first-order structures

L =
〈

[0, 1],→, {δn}n>1, 0
〉
, Lk =

〈
Lk,→, {c}c∈Lk

〉
where, for all x, y and natural numbers n > 1

x→ y = min(1− x+ y, 1), δnx =
1

n
x.

The following Theorem summarises the complexity of key decision questions associated with
the logics we have discussed, and is used later.

Theorem 4 ([11, 24]). Checking the satisfiability of a Lukasiewicz propositional formula for any160

 Lukasiewicz logic is NP-complete. Checking whether:

1. a quantified Lukasiewicz sentence in L holds over L is in 2-EXPTIME,

2. a quantified Lukasiewicz sentence in Lk holds over Lk is PSPACE-complete,

3. an existential Lukasiewicz sentence in L holds over L is in NP,

4. an existential Lukasiewicz sentence in Lk holds over Lk is NP-complete.165

3. Lukasiewicz Resource Games

We begin by informally introducing Lukasiewicz Resource Games (LRG), the cooperative game
model that we work with throughout the paper, and then go on to show how the model is formalised
using Lukasiewicz logic. The LRGs model is a natural and compelling generalisation of Coalitional
Resource Games, which were introduced in [36], and extended in [15].170

 LRGs are populated by a set of n players. Each player is endowed with a certain amount
of resources and must decide how to allocate these resources across a set of m different tasks.
Usually, there will be constraints on how these resources can be allocated: for example, the most
obvious type of constraint will be that an agent has some bound on the total amount that they can
contribute. The outcome of each task will then be a function of the resources that were allocated to175

that task by the players. Finally, each player receives a payoff, which is a function of the outcomes
of all tasks, and encodes what the player would like the outcomes and their relationships to be.
Ultimately the goal of each agent is to maximise their payoff, and, secondarily, to minimise the
costs they incur in doing so.

A little more formally, let Ag = {A1, . . . , An} be the set of players. A task, τ , is then a function180

τ : Rn → R, where the i’th argument of τ will represent how much player i contributes to the
task. Let Task = {τ1, . . . , τm} denote the set of tasks. A utility function for player i is given by a
function ui : Rm → R, where the j’th argument of ui corresponds to the outcome of the j’th task.
Such a game is played as follows:

1. Each player Ai decides how much to contribute to each task τj . Let αij denote the amount185

that Ai contributes to τj . (As we noted, there will typically be some constraints on the values
αij .)

2. The result of each task τj is then given by τj(α1j , . . . , αnj).

3. Each player Ai then receives utility ui(τ1(α11, . . . , αn1), . . . , τm(α1m, . . . , αnm)).

7

This model is easily seen to generalise many other cooperative game models. For example, it190

can capture coalition structure formation [12], by having 2|Ag| tasks, each one corresponding to a
possible coalition. The value αij can then be interpreted as the amount of effort that Ai devotes
to coalition j.

We emphasise that our model does not impose any specific interpretation on the values that
players contribute to tasks, but nevertheless a natural interpretation is that players are contributing195

resources, in which case a natural constraint is that a player is endowed with some fixed amount
of resources.

We now show how this model is formalised within Lukasiewicz logic. First, let L be a subset
of [0, 1] closed under Lukasiewicz operations. The overall set of tasks is denoted by Task =
{τ1, . . . , τm}; we formally define how these tasks are represented below. Each player Ai controls a200

set
Vari = {pi1, . . . , pim}

of variables, which means that Ai has the unique ability to assign to each variable pij a value
from L: this assignment will indicate the amount of resource allocated by agent Ai to task τj .
Formally, the allocation of resources for a player i to tasks is specified by valuations si from the
set of propositional variables Vari controlled by i into L.205

To represent constraints on how each agent allocates resources, we use Lukasiewicz formulae θi
over the set of variables Vari. The idea is that each player i may only choose valuations for their
variables that satisfy θi. Note that by setting θi to a tautology, we remove any constraints: the
player controlling the variables in θi is free to choose any assignment.

Each task τj has an associated outcome, depending on the resources assigned to it by the agents.210

This outcome is represented by a Lukasiewicz formula

τj(p1j , . . . , pnj)

with associated Lukasiewicz function
fτj : Ln → L.

Thus, fτj (x1j , . . . , xnj) will be a numeric value indicating the outcome of the task τj given the
resource allocation as specified by the variables x1j , . . . , xnj .

The overall payoff a player Ai receives will be a function of the outcomes of all tasks. The215

payoff function for a player Ai is encoded by a Lukasiewicz formula

χi(τ1, . . . , τm)

with associated Lukasiewicz function

fχi : Ln·m → L.

Thus, agent Ai seeks to maximise the value of fχi .
Collecting these components together, we have:

Definition 5 (Lukasiewicz Resource Games). Let L be a Lukasiewicz logic with set of truth-values220

L, and let n,m ∈ N be such that n,m > 0. A Lukasiewicz Resource Game on L is given by a
structure

Γ = 〈Ag,Var,Const,Val,Task,Payoff〉

where

8

1. Ag = {A1, . . . , An} is a set of agents (also referred to as “players”).6

2. Var = {Var1, . . . ,Varn} contains the sets225

Vari = {pi1, . . . , pim}

of propositional variables assigned to each agent Ai, so that the Vari’s are mutually disjoint;

3. Const = {θ1, . . . , θn} is a set of Lukasiewicz formulae, one for each agent Ai, representing
constraints – each formula θi contains only variables over Vari;

4. Val = {Val1, . . . ,Valn} contains the sets Vali, one for each agent Ai, of all valuations si
that Ai can assign to the variables in Vari, i.e.230

Vali = {si : Vari → L | si(θi) = 1}.

5. Task = {τ1, . . . , τm} is a set of Lukasiewicz formulae

τj(p1j , . . . , pnj),

called task formulae, each realising a Lukasiewicz function

fτj (x1j , . . . , xnj).

6. Payoff = {χ1, . . . , χn} is a set of Lukasiewicz formulae

χi(τ1, . . . , τm),

called payoff formulae, each realising a Lukasiewicz function

fχi
(
fτ1 , . . . , fτm

)
.

A game Γ is said to be finite if it is based on a finite-valued Lukasiewicz logic, and infinite otherwise.235

We can now define formally how LRGs are played:

1. each player Ai chooses a valuation si : Vari → L for the variables Vari that the player
controls, which must satisfy the constraint that si(θi) = 1

2. each task τj then has an outcome

fτj (s1(p1j), . . . , sn(pnj))

3. each player Ai receives a payoff of240

fχi
(
fτ1(s1(p11), . . . , sn(pn1)), . . . , fτm(s1(p1m), . . . , sn(pnm))

)
.

We now provide an example of a coalition game that can be formalised in the framework of
 LRGs. Throughout the whole paper we will be using this example to show how the technical
notions we introduce work in the context of LRGs.

6Notice that we will sometimes refer to an agent/player Ai simply as “i”.

9

Example 6. Three children, Charlie, Marcie and Pattie, want to buy ice cream and each have ten
£1 coins to spend. There are four different flavours: chocolate, strawberry, banana, and vanilla.245

The amount of ice cream to be bought depends on how much money is spent on it, up to a maximum
of £10. In other words, each flavour comes in the same limited quantity, and the amount that can
be acquired is proportional to the money allocated to it and cannot exceed £10. Charlie wants
to have as much chocolate as possible and at least as much chocolate as the remaining flavours.
Marcie wants to taste a bit of everything and would then prefer an equal distribution of flavours250

but she also wants to have at least £10 worth of ice cream. Pattie only wants as much chocolate
and strawberry as possible.

The game has the following formalisation obtained by using

L = {0, 1, . . . , 9, 10}

as the set of truth values of finite-valued Lukasiewicz logic L10.7 Let C,M,P be our agents and let
VarC , VarM , and VarP be the sets of variables assigned to each agent, respectively, defined as255

follows:

VarC = {pCc, pCs, pCb, pCv},
VarM = {pMc, pMs, pMb, pMv},
VarP = {pPc, pPs, pPb, pPv}.

So, for example, the amount that Charlie contributes to buying chocolate ice cream is defined by
the value of the variable pCc, while the amount he contributes to buying strawberry ice cream is
given by the value of pCs, and so on.

We require that the resources available to each agent amount to no more than £10. This is260

formalised by constraints θi, for each child Ai:

θi :=
(⊕

j′∈{s,b,v} pij′ → ¬pic
)
∧
(⊕

j′′∈{c,b,v} pij′′ → ¬pis
)
∧(⊕

j′′′∈{c,s,v} pij′′′ → ¬pib
)
∧
(⊕

j′′′′∈{c,b,s} pij′′′′ → ¬piv
)
.

In fact, θi is satisfiable if and only if all its conjuncts are satisfied at the same time, which happens
if and only if the sum of the values allocated to any triple of flavours is less than or equal to the
negation of the value allocated to the fourth one. In other words, for each θi:265

si(θi) = 1 iff si(pis) + si(pib) + si(piv) + si(pic) ≤ 10.

The formulae

τc := pCc ⊕ pMc ⊕ pPc τs := pCs ⊕ pMs ⊕ pPs
τb := pCb ⊕ pMb ⊕ pPb τv := pCv ⊕ pMv ⊕ pPv

7Notice that, for the sake of clarity, we are actually using a set of truth values that is order-isomorphic to the
standard set for L10 {

0,
1

10
, . . . ,

9

10
, 1

}
,

along with the linear transformation of the Lukasiewicz operations over L. Notice that satisfiability for a formula φ
now means the existence of a valuation s such that s(φ)=10.

10

encode the amount of ice cream, for each flavour, obtained depending on the resources invested by
the players. In fact, for each j ∈ {c, b, s, v} and each valuation si with i ∈ {C,M,P},270

fτj = min(sC(pCj) + sM (pMj) + sP (pPj), 10).

The formulae

χC := τc ∧ ((τs ∨ τb ∨ τv)→ τc)

χM :=
(⊕

j∈{c,b,s,v} τj

)
∧ ((τc ↔ τs) ∧ (τs ↔ τb) ∧ (τb ↔ τv))

χP := (τc ∧ τs) ∧ ((τb ∨ τv)→ (τc ∧ τs))

specify each agent’s requirements, i.e.:

fχC = min(fτc ,min(10−max(fτs , fτb , fτv) + fτc , 10)),

fχM = min(min(fτc + fτs + fτb + fτv , 10), 10− |fτc − fτs |, 10− |fτs − fτb |, 10− |fτb − fτv |),
275

fχP = min(min(fτc , fτs),min(10−max(fτb , fτv) + min(fτc , fτs), 10)).

The key idea is that each child wants to get as much satisfaction as possible from their purchase
and this is achieved by maximising the value of the functions defined by the formulae above.

4. Coalitions

As mentioned above, the primary objective of each agent Ai is to maximise the value of their
payoff formula χi. Player Ai can try to achieve this in isolation or by cooperating with other280

agents and forming a coalition. Given a LRG, a coalition C ⊆ Ag is a subset of agents. The
coalition containing all agents (C = Ag) is called the grand coalition.

Given a coalition C, with |C| = n′ and n′ ≤ n, we denote by sC the tuple of valuations

(si′ , si′′ , si′′′ , . . .),

seen as a vector in Ln
′·m. In other words, we see a valuation both as an assignment of values to

the propositional variables of the players and as a tuple of exactly those values. While si refers to285

a specific valuation si : Vari → L for player Ai, si denotes the same valuation seen as a vector.
For a coalition C, every sC is called an allocation. We denote by s−C any allocation of all the
players that are not members of C. By πi(sC) we mean player Ai’s specific allocation si in sC . We
use both (sC , s−C) and s to refer to an allocation of all the players in the game. Given a payoff
function fχi , both fχi(sC , s−C) and fχi(s) denote the outcome of the choice made by all players290

for the given allocation. For a coalition C, SC denotes the set of all allocations for C. When an
allocation sC comprises only rational values, i.e., sC ∈ Qm·|C|, we call it a rational allocation.

Given a LRG Γ, we say that a coalition C is satisfiable if there exists an allocation s =
(s1, . . . , sn) so that fχi(s) = 1 for all i ∈ C. A coalition C is then satisfiable if there exists an
allocation of resources by all players so that all agents in C fully maximise their utility, i.e., each295

player receives the largest possible payoff.
We say a LRG Γ is satisfiable if it admits a non-empty satisfiable coalition. Γ is unsatisfiable if

it is not satisfiable.

11

Example 6 (continued). Going back to our example, it is easy to check that the grand coalition
is not satisfiable. In fact, to satisfy both Pattie and Charlie, the children need to maximise the300

amount of chocolate and strawberry, obtaining £10 of each. Marcie wants an equal distribution of
flavours, but given the others’ requirements this can be achieved only by acquiring £10 of each ice
cream. Then for all the children to be satisfied they must spend a total of £40, which is impossible,
since none of them have more than £10.

If every child was allowed to spend up to £10 for each flavour, not in total, then there would305

exist several possible allocations to make the grand coalition satisfiable. As an example, if every
child paid £4 for each flavour, they would get the maximum amount of ice cream of each type, then
satisfying everybody’s requirements.

The coalition formed by Pattie and Charlie is satisfiable. In fact, if Pattie spends £10 for
strawberry and Charlie £10 for chocolate, they both maximise their respective functions no matter310

what choice Marcie makes. As a consequence, the game is satisfiable.

Satisfiability is quite a general notion and is a result of choices made by all players no matter
what coalition they actually belong to. The fact that a coalition C is satisfiable simply means that
there is an allocation of resources for which all the agents in the coalition maximise their payoff.
There is no guarantee though that those agents that do not belong to C will make that specific315

choice, and a change in their allocation could affect the satisfiability of C. Knowing that a coalition
C is satisfiable then gives us little to no information on whether for each of its members being in C
would be better than joining forces with other players. However, if a game is unsatisfiable, we know
that there is no possible allocation of resources that would satisfy any of the possible non-empty
coalitions.320

4.1. Cooperation Structures

So far, we have been talking about satisfiability for coalitions from an external point of view,
disregarding how they are formed and whether agents prefer to join forces with some players
rather than others to achieve their goals. We now give a precise definition of what it means for
an agent to cooperate successfully with others. For this we introduce the notion of a cooperation325

structure (cf. [15]).

Definition 7 (Cooperation Structure). For any Lukasiewicz Resource Game Γ, let C be a coalition
in Γ and let sC be an allocation for C. Then the structure λ = 〈C, sC〉 is called a cooperation
structure.

Thus, a cooperation structure defines a coalition, together with the resources that the coalition330

collectively allocate to tasks. In other words, a cooperation structure defines a commitment made
by agents to form a coalition and allocate a specific amount of resources. Any cooperation structure
λ = 〈C, sC〉 where sC is a rational allocation is called a a rational cooperation structure.

It is worth pointing out that the set of cooperation structures in a game Γ is closed under
disjoint union. In fact, take λ1 = 〈C1, sC1〉 and λ2 = 〈C2, sC2〉 with C1 ∩ C2 = ∅. The structure335

λ1 ∪· λ2 = 〈C1 ∪ C2, (sC1 , sC2)〉

clearly is a cooperation structure. We will make use of this fact later in the article.
A cooperation structure can be regarded as successful for a player Ai whenever the resources

allocated by its members maximise Ai’s outcome independently from the choices of the external
agents.

12

Definition 8 (Successful Cooperations). We say that a cooperation structure λ = 〈C, sC〉, in a340

 Lukasiewicz Resource Game Γ, is

1. successful for agent Ai, if for all allocations s−C , we have fχi(sC , s−C) = 1.

2. globally successful if it is successful for all agents Ai ∈ C.

The set of successful cooperation structures for agent Ai is denoted by succ(i).

It is possible to define an inclusion relation between cooperation structures as follows. First,345

given coalitions C1 ⊆ C2 and their related allocation sets S1, S2, the projection

πC1 : S2 → S1

is the function sending each allocation sC2 to the allocation sC1 obtained by eliminating the elements
in sC2 that belong to the members of C2 \ C1, respecting the order. For instance, suppose

C1 = {A1, A3} and C2 = {A1, A2, A3, A4}.

The projection πC1 of the tuple (s1, s2, s3, s4) is the tuple (s1, s3).350

We say that for two cooperation structures λ1 = 〈C1, sC1〉 and λ2 = 〈C2, sC2〉,

λ1 v λ2 if and only if C1 ⊆ C2 and πC1(sC2) = sC1 .

The following proposition shows that if a cooperation structure is successful for a player i, the
player incurs no losses if new agents are accepted into the coalition.

Proposition 9. In a Lukasiewicz Resource Game Γ, for any two cooperation structures λ1 =355

〈C1, sC1〉 and λ2 = 〈C2, sC2〉, if λ1 v λ2 and λ1 ∈ succ(i) then λ2 ∈ succ(i).

Proof. If λ1 ∈ succ(i), then for player Ai, fχi(sC1 , s−C1) = 1 for all allocations s−C1 . Since, for all
λ2 w λ1, πC1(sC2) = sC1 , trivially, we have fχi(sC2 , s−C2) = 1 for all s−C2 .

Example 6 (continued). As shown above, the coalition formed by Pattie and Charlie is satisfiable.
In fact, if Pattie spends £10 for strawberry and Charlie £10 for chocolate, then they both maximise360

their respective functions. This can be achieved no matter what Marcie plays. As a consequence,
the cooperation structure λ = 〈{P,C}, (sP , sC)〉 where sP and sC are such that

sP (pPc) = sP (pPb) = sP (pPv) = sC(pCs) = sC(pCs) = sC(pCv) = 0,
sP (pPs) = sC(pCc) = 10,

is globally succesful.
Notice, however, that Charlie alone is successful, while Pattie alone is not. Charlie can simply365

decide to spend £10 for chocolate fully achieving his goal. On the contrary, Pattie must spend her
£10 for strawberry, but needs Charlie (or Marcie) to do the same for chocolate if she wants to
maximise her function.

Marcie can never be part of a cooperation structure that is successful for her unless she involves
both Charlie and Pattie. In fact, while there are cooperations with one of the other children with370

allocations that can maximise her payoff, the cooperation cannot be successful for Marcie, because
the player external to the coalition can always make the distribution of flavours unequal. The
only possible successful cooperation structures for Marcie are those based on the grand coalition.
However, no such cooperation structure is successful for Charlie and Pattie. As seen above, the
grand coalition is not satisfiable, so, if Marcie is in a cooperation structure based on the grand375

coalition that satisfies her formula, at least for Charlie or Pattie (as a matter of fact for both) the
cooperation cannot be successful.

13

4.2. Costs and Preferences

The previous discussion has set out the basic model of cooperation in our framework. However, the
notion of a cooperation structure does not provide an agent with the tools to choose one coalition380

over others. In fact, if what matters is simply to maximise their payoff function, under the concept
of successful cooperation structure, a player can only distinguish which coalitions have an allocation
that makes them successful from those that do not. But recall that a player’s secondary concern
is to minimise the resources they allocate. This idea leads to defining a concept of cost related to
the allocation of resources and is what will make it possible to define a proper notion of preference385

between cooperation structures for the players. First then, we introduce a notion of cost.

Definition 10 (Cost Function). Given a Lukasiewicz Resource Game Γ, for any agent i and
allocation si, the function

costi(si) =
m∑
j=1

si(pij)

is called a cost function.

Notice that, whenever the total amount of resources available to i is 1, then390

costi(si) =

m⊕
j=1

si(pij).

We can now define a notion of preference between cooperation structures. Agents will always
prefer a cooperation structure that is successful for them to those that are not. Whenever a player
must choose between cooperation structures that are successful or between cooperation structures
that are not successful, then, they will always choose those that minimise their costs. More formally,
we have:395

Definition 11 (Preference). In a Lukasiewicz Resource Game Γ, a cooperation structure λ1 is
preferred to λ2 by player i, denoted

λ2 �i λ1

whenever any of the following conditions is satisfied

1. λ1, λ2 ∈ succ(i), and costi(πi(sC1)) ≤ costi(πi(sC2));

2. λ1, λ2 /∈ succ(i), and costi(πi(sC1)) ≤ costi(πi(sC2));400

3. λ1 ∈ succ(i) and λ2 /∈ succ(i).

The relation ≺i is defined in the obvious way.

Given a cooperation structure λ = 〈C, sC〉, we can define a utility function ui for each i ∈ C as
follows:

ui(λ) =

{
m+ 1− costi(πi(sC)) λ ∈ succ(i)
−costi(πi(sC)) otherwise

,

where m is the number of tasks in the game. Notice that for all allocations si, this utility function405

can be used to faithfully represents an agent’s preference between cooperation structures, as shown
below.

14

Proposition 12. In any Lukasiewicz Resource Game Γ, for any two cooperation structures λ1, λ2

and player i,

λ1 ≺i λ2 if and only if ui(λ1) < ui(λ2).410

Proof. We have the following cases to consider:

1. λ1, λ2 ∈ succ(i), and costi(πi(sC1)) > costi(πi(sC2)), if and only if,

ui(λ1) = m+ 1− costi(πi(sC1)) < m+ 1− costi(πi(sC2)) = ui(λ2).

2. λ1, λ2 6∈ succ(i), and costi(πi(sC1)) > costi(πi(sC2)), if and only if,

ui(λ1) = −costi(πi(sC1)) < −costi(πi(sC2)) = ui(λ2).

3. λ2 ∈ succ(i) and λ1 /∈ succ(i), if and only if,

ui(λ1) = −costi(πi(sC1)) < m+ 1− costi(πi(sC2)) = ui(λ2).

415

Whenever a cooperation structure is formed, new agents can join the coalition. Each player in
the original cooperation structure will prefer the new, enlarged structure at least as much as the
old one.

Proposition 13. Given a Lukasiewicz Resource Game Γ, let λ1 = 〈C1, sC1〉 and λ2 = 〈C2, sC2〉 be
cooperation structures such that C1 ∩ C2 = ∅. Then, for all i ∈ Cj, with j ∈ {1, 2},420

λj �i λ1 ∪· λ2.

Proof. Without any loss of generality, suppose that for some player i ∈ C1, λ1 ∪· λ2 ≺i λ1 (the case
for i ∈ C2 is completely analogous). By Definition 11 we have the following cases:

1. If λ1 ∈ succ(i) and λ1 ∪· λ2 /∈ succ(i), then we have a contradiction. In fact, λ1 < λ1 ∪· λ2 and
by Proposition 9, it must be the case that λ1 ∪· λ2 ∈ succ(i).

2. If λ1, λ1 ∪· λ2 ∈ succ(i), or λ1, λ1 ∪· λ2 /∈ succ(i), then425

costi(πi(sC1)) < costi(πi(sC1∪C2)).

By construction πi(sC1∪C2) = πi(sC1 , sC2) = πi(sC1), since i ∈ C1, i.e.: a contradiction.

Example 6 (continued). In our example, Pattie prefers to cooperate with Charlie as long as he
spends £10 on chocolate, i.e. she prefers the cooperation structure 〈{P,C}, (sP , sC)〉 where

sP (pPc) = sP (pPb) = sP (pPv) = sC(pCs) = sC(pCb) = sC(pCv) = 0,
sP (pPs) = sC(pCc) = 10,

430

to 〈{P}, sP 〉 since the former is successful for her, while the latter is not.
We have seen that Marcie can cooperate with Charlie and Pattie, so that, for instance, the

structure 〈{C,M,P}, (sC , sM , sP)〉 where

sM (pMc) = sM (pMb) = sM (pMv) = sM (pMs) = 0,

sC(pCc) = sC(pCs) = 2 sC(pCb) = sC(pCv) = 1,
435

sP (pPc) = sP (pPs) = 1 sP (pPb) = sP (pPv) = 2,

is successful for her. Actually, in this situation, Marcie maximises her payoff and incurs no costs.
Therefore, the above is one of her preferred cooperation structures.

15

4.3. Coalition Structures and the Core

We now introduce the notion of a coalition structure, which formalises the idea of players dividing
into disjoint teams (cf. [15]). We will then formulate a version of the standard cooperative game440

theory concept of the core, and explore some properties of these definitions.

Definition 14 (Coalition Structure). For any given Lukasiewicz Resource Game Γ, a coalition
structure

σ = {λ1, . . . , λw}

is a set of cooperation structures so that the coalitions {C1, . . . , Cw} form a partition of Ag.

A coalition structure is then the outcome of a game Γ, where each player commits to either joining445

forces with others or remaining alone and allocating a certain amount of resources. We denote the
set of coalition structures in a game Γ by cs(Γ).

Given a coalition structure σ,
λσ(i) = 〈Cσ(i), sCσ(i)〉

denotes the cooperation structure in σ of which i is a member. If σ contains only the cooperation
structure with the grand coalition, we call it the grand coalition structure. A coalition structure450

formed by all rational cooperation structures is called rational.

Definition 15 (Stability, Core). In a Lukasiewicz Resource Game Γ, a cooperation structure
λ = 〈C, sC〉 blocks a coalition structure σ if, for all i ∈ C

λσ(i) ≺i λ.

A coalition structure is said to be stable if it is not blocked by any cooperation structure. The set
of all stable coalition structures is called the core of Γ and is denoted by core(Γ).455

Example 6 (continued). The coalition structure{
〈{P,C}, (sP , sC)〉, 〈{M}, sM 〉

}
where

sP (pPs) = 10, sC(pCc) = 10, and sM (pMj) = 0,

for all j ∈ {c, b, s, v} is stable (i.e., Charlie and Pattie join forces, with Charlie spending £10 on
chocolate and Pattie £10 on strawberry, while Marcie is left alone and spends no money at all). In460

fact, Charlie and Pattie form a globally successful cooperation structure, and the only way for them
to be in a cooperation structure they would strictly prefer is to involve Marcie to form the grand
coalition and decrease their costs. In that case though, the costs would increase for Marcie. Also,
Marcie certainly prefers other cooperation structures that are successful for her, as seen above.
However, those cooperations need to be based on the grand coalition, which cannot be successful for465

every player in it, since it is not satisfiable. So the above coalition structure cannot be blocked and
belongs to the core.

16

Definition 16. Let σ = {λ1, . . . , λw} be a coalition structure in a Lukasiewicz Resource Game.
We call union(σ) the set of all coalition structures generated by taking unions of the cooperation
structures in σ, i.e.470

union(σ) =

{
σ′ = {λ′1, . . . , λ′t} | σ, σ′ ∈ cs(Γ), σ = {λ1, . . . , λw},

∀λ′i,∃λ1i , . . . , λti ∈ {λ1, . . . , λw} such that λ′i =
ti⋃
·

j=1i

λj

}
.

The next proposition shows stability is preserved when a new coalition structure is generated
from a stable one by taking unions of its cooperation structures.

Proposition 17. Let σ = {λ1, . . . , λw} ∈ core(Γ) in a Lukasiewicz Resource Game Γ. Then, any
coalition structure υ ∈ union(σ) is such that υ ∈ core(Γ).

Proof. Suppose υ ∈ union(σ) is blocked by some λ∗ = 〈C∗, sC∗〉. Then, for all i ∈ C∗,475

λυ(i) ≺i λ∗,

i.e., player i prefers the cooperation structure λ∗ to the cooperation structure i belongs to in υ.
Now, by definition, one of the following cases holds true:

1. λ∗ ∈ succ(i) and λυ(i) /∈ succ(i). By construction λυ(i) is a disjoint union of cooperation
structures from σ, only one of which, λσ(i), contains i (i.e. λσ(i) v λv(i)). By Proposition 9,
if λυ(i) /∈ succ(i), then λσ(i) /∈ succ(i), so λ∗ ∈ succ(i) and λσ(i) /∈ succ(i).480

2. λ∗, λυ(i) ∈ succ(i) and

costi (πi (sC∗)) < costi

(
πi

(
sCυ(i)

))
.

Again, by construction, λυ(i) is a disjoint union of cooperation structures from σ so that i’s
allocation is the same as the one in λσ(i). This means that

costi (πi (sC∗)) < costi

(
πi

(
sCυ(i)

))
= costi

(
πi

(
sCσ(i)

))
.

3. λ∗, λυ(i) /∈ succ(i) and

costi (πi (sC∗)) < costi

(
πi

(
sCυ(i)

))
.

The case is completely analogous to case (2).485

As a consequence, λ∗ blocks σ, so σ does not belong to the core.

We now want to show that the core of a LRG is non-empty if and only if every stable coalition
structure is generated by stable grand coalition structures. For this, we introduce the notion of
splitting.

Definition 18. Given a stable coalition structure σ in a Lukasiewicz Resource Game, the splitting490

of σ, denoted by split(σ), is the set of all stable coalition structures σ′ such that σ ∈ union(σ′).

17

For example, if

σ = {〈{A1, A2, A3}, (s1, s2, s3)〉, 〈{A4, A5, A6}, (s4, s5, s6)〉}

is stable and so is

σ′ = {〈{A1, A2}, (s1, s2)〉, 〈{A3}, (s3)〉, 〈{A4, A5, A6}, (s4, s5, s6)〉}

then σ′ belongs to the splitting of σ. Clearly, the splitting of a stable coalition structure σ is never495

empty since it contains at least σ itself.
Let sgr(Γ) denote the set of all grand coalition structures in a game Γ that are stable. It

turns out that the every member of the core can be obtained from the splitting of the structures
in sgr(Γ).

Theorem 19. For every Lukasiewicz Resource Game Γ, we have500

core(Γ) =
⋃

σ∈sgr(Γ)

split(σ),

and
|core(Γ)| =

∑
σ∈sgr(Γ)

|split(σ)|.

Proof. The fact that

core(Γ) ⊇
⋃

σ∈sgr(Γ)

split(σ)

is trivial.
Conversely, if the core is non-empty, then it contains at least a stable structure σ. By Proposi-

tion 17, for every σ ∈ core(Γ), union(σ) contains a grand coalition structure σ′, which is stable,505

and trivially, by construction, σ belongs to the splitting of σ′ and so

core(Γ) ⊆
⋃

σ∈sgr(Γ)

split(σ).

Finally, it is easy to see that a stable coalition structure σ cannot belong to the splitting of two
different grand coalition structures. Therefore, each element of the core belongs to the splitting of
exactly one stable grand coalition structure, and, clearly,

|core(Γ)| =
∑

σ∈sgr(Γ)

|split(σ)|.

510

Notice that the sgr(Γ) may be an uncountable set, and, in that case, the core’s cardinality would
be ℵ1, under the continuum hypothesis.

While Theorem 19 gives us some information concerning the structure of the core, it is important
to ask whether there are any games with an empty or a non-empty core. Section 5 will answer the
former question and show the existence of LRGs with an empty core. The following theorem shows515

that there is a class of games whose core is always non-empty. That is the class of unsatisfiable
games whose core has finite cardinality and contains all possible coalition structures where no agent
allocates any resources.

18

Proposition 20. Let Γ be any unsatisfiable Lukasiewicz Resource Game with n players. Then:

1. For every coalition structure σ = {λ1, . . . , λw} with cooperation structures λj = 〈Cj , sCj 〉, we520

have that:

σ ∈ core(Γ) if and only if for all j ∈ {1, . . . , w} and all players i ∈ Cj, costi(πi(sCj)) = 0;

2. |core(Γ)| = Bn, where Bn is the nth Bell number.8

Proof. Γ is unsatisfiable, which means it admits no satisfiable non-empty coalition. So, for every
player i, there are no cooperation structures λ such that λ ∈ succ(i), i.e., for all i, succ(i) = ∅.525

To prove (1), suppose that for some cooperation structure λj = 〈Cj , sCj 〉 in σ and some player
i ∈ Cj ,

costi(πi(sCj)) > 0.

Player i cannot take part in any successful cooperation structure, but they can form their own
individual cooperation structure λ′ =

〈
{i}, s{i}

〉
, where

costi
(
s{i}
)

= 0,

so that530

λj ≺i λ′.

Consequently, σ is not in the core.
Conversely, take any coalition structure σ such that σ 6∈ core(Γ). Then, there exists a cooper-

ation structure λ′ = 〈C ′, sC′〉 blocking σ. Therefore, for all i ∈ C ′

λσ(i) ≺i λ′,

and, since there exists no successful cooperation structure, we have, for all i ∈ C ′

costi(πi(sC′)) < costi(πi(sCσ(i))).

Consequently, there exist some i and some cooperation structure λσ(i) in σ for which535

costi(πi(sCσ(i))) > 0.

This concludes the proof of (1).
To prove (2), notice that the only grand coalition structure σ′ in the core is the one where every

agent assigns 0 to each single variable. The splitting of σ′ contains all coalition structures based
on any possible partition of the set of players. Therefore, there are as many coalition structures in
the core as there are partitions of Ag, whose number corresponds to the nth Bell number Bn.540

Given any LRG Γ, we can associate to it a set of systems of linear inequalities so that at least
one of the systems admits a solution if and only if Γ has non-empty core.

8 The nth Bell number, denoted Bn, [33] is the number of partitions of a set with n elements and is given by the
formula

Bn =
1

e

∞∑
k=0

kn

k!
.

19

Theorem 21. For every Lukasiewicz Resource Game Γ there exists a finite set of systems of linear
inequalities so that at least one system has a solution if and only if core(Γ) 6= ∅.

Proof. We start with a proof for infinite games. Let L be the following first-order structure545

L =
〈

[0, 1],→, {δn}n>1, 0
〉
,

where, for all x, y ∈ [0, 1] and natural number n > 1

x→ y = min(1− x+ y, 1), δnx =
1

n
x.

As shown in [24, Lemma 8.3]9, for every quantifier-free formula Φ in the language

L = 〈→, {δn}n>1, 0〉,

there exists a formula Φ∗ in the language of ordered groups with rational constants

LQ = 〈+,−, <, {c}c∈Q〉

such that
L |= Φ iff R |= Φ∗.

So, for instance, let550

fχi(x̄1, . . . , x̄n) = 1,

where each x̄j is a tuple of variables, be the quantifier-free formula in L defining the set of allocations
that satisfy χi, where fχi is the McNaughton function associated to χi written in the language L.
There exists a formula f∗χi in LQ that defines exactly the same set over the reals.10

Then, let Φcore be the following first-order formula:

d

C∈C(Γ)

(⊔
i∈C

((
(f∗χi(x̄1, . . . , x̄n) = 1) u

(
∃ȳC∀ȳ−C (f∗χi(ȳC , ȳ−C) = 1)⇒ (

∑
x̄i ≤

∑
ȳi)
))
t

((
f∗χi(x̄1, . . . , x̄n) < 1

)
u (∼∃z̄C∀z̄−C (f∗χi(z̄C , z̄−C) = 1) u (

∑
x̄i = 0)

))))
,

555

where:

1. u,t,⇒,∼ denote the classical metalanguage conjunction, disjunction, implication and nega-
tion, respectively.

2. C(Γ) is the set of all possible coalitions C ⊆ Ag.

3. ȳC , z̄C and ȳ−C , z̄−C are the tuples of variables under control of the agents in C and not in560

C, respectively.

9Notice that in [24], this result is proven with respect to the structure〈
[0, 1],⊕,¬, {δn}n>1, 0

〉
,

whose operations are definable from those of L, as shown in Section 2. Conversely, → is definable from ⊕ and ¬,
since for all x ∈ [0, 1], x→ y = ¬x⊕ y.

10Notice that, as shown in [24], f∗χi
can be built from fχi in polynomial time.

20

4. the formulae
f∗χi(x̄1, . . . , x̄n) = 1 and f∗χi(x̄1, . . . , x̄n) < 1

in the language 〈+,−, <, {c}c∈Q〉 define the satisfiability set of the Lukasiewicz function fχi
and its complement, respectively.

5. the formulae565

∃ȳC∀ȳ−C (f∗χi(ȳC , ȳ−C) = 1 and ∼∃z̄C∀z̄−C (f∗χi(z̄C , z̄−C) = 1)

in the language 〈+,−, <, {c}c∈Q〉 encode the fact that there exists and there does not exist
(respectively) an allocation ȳC (z̄C , resp.) such that for all ȳ−C (z̄−C , resp.) the payoff of i
is maximised.

6. the terms ∑
x̄i and

∑
ȳi

define the sum of the variables controlled by player i in the tuples x̄i and ȳi, respectively.570

Φcore is such that{
(s1, . . . , sn) | R |= Φcore(s1, . . . , sn)

}
iff

(
〈Ag, (s1, . . . , sn)〉

)
∈ core(Γ).

In fact, Φcore is satisfied by all tuples (s1, . . . , sn) ∈ Rm·n, such that, for all possible coalitions
C ∈ C(Γ) and at least one agent i ∈ C:

1. fχi(s1, . . . , sn) = 1, i.e. i’s payoff is maximised, and if there exists a joint allocation ȳi making575

the cooperation in C successful for i, then the cost
∑
x̄i for agent i is less than or equal to∑

ȳi,
or

2. fχi(s1, . . . , sn) < 1, i.e. i’s payoff is not maximised, i incurs no cost, i.e.,
∑
x̄i = 0, and there

exists no joint allocation z̄i making the cooperation in C successful for i, i.e.580

∼∃z̄C∀ȳ−C (f∗χi(z̄C , z̄−C)) = 1.

Now, Φcore is a formula in the language of ordered groups with rational constants and so is

equivalent to a quantifier free formula Φfr
core in the same language [24, 25, 21]. Φfr

core can be
rewritten in disjunctive normal form, so that it is equivalent to a disjunction of conjunctions of
linear inequalities, i.e.:

t⊔
i=1

 rl

j=1

pij(x̄1, . . . , x̄n)O0

 ,

where each585

pij(x̄1, . . . , x̄n)O0

is a linear polynomial inequality11 with integer coefficients and O ∈ {<,>,≤,≥}. Therefore, Φfr
core’s

satisfiability is equivalent to the existence of a solution of at least one of the systems

rl

j=1

pij(x̄1, . . . , x̄n)O0.

11Without any loss of generality, we can assume that each polynomial includes occurrences of all variables
x̄1, . . . , x̄n.

21

It then follows that non-emptiness of the core is equivalent to the satisfiability of Φfr
core.

As for finite games, let Lk be the following first-order structure

Lk =
〈
Lk,→, {c}c∈Lk

〉
,

where, for all x, y ∈ Lk590

x→ y = min(1− x+ y, 1).

Following the reasoning of [24, Lemma 8.3], it is easy to show that for every quantifier-free
formula Φ in the language

Lk = 〈→, {c}c∈Lk〉,

there exists a formula Φ∗ in the language

LZ = 〈+,−, <, {Xn}n>2, {c}c∈Z〉

of Presburger Arithmetic (see [25]) with constants for each integer and predicates Xn for the set
of integers divisible by n, such that595

Lk |= Φ iff Z |= Φ∗.

The rest of the proof then follows exactly the above argument for infinite games using the fact that
Presburger Arithmetic admits elimination of quantifiers in the above language.

The following is a trivial consequence of the above theorem, given the fact that every formula in
LQ defines a non-empty set over R if and only if so it does on Q [21].

Corollary 22. The core of a Lukasiewicz Resource Game is non-empty if and only if it contains600

at least a rational coalition structure.

5. Translating Coalitional Resource Games into Finite Lukasiewicz Resource Games

In the introduction, we claimed that, in a precise formal sense, Lukasiewicz Resource Games can be
understood to be a generalisation of the Coalitional Resource Games model (CRG) of Wooldridge
and Dunne [36]. The aim of this section is to make good this claim. We show that any CRG can be605

translated into a finite LRG that is strategically equivalent in that it preserves the non-emptiness
of the core. We start by recalling the definition of a CRG and some of their main properties12,
along with an example. We then show how to build a LRG from an arbitrary CRG. This will then
make it possible to show that there exist LRGs with an empty core, by exploiting a translation of
a CRG game not having any stable coalitions.610

Notation 3. In the rest of this section, when necessary, we will be using the superscripts crg and
lrg to make the context clear for some notions that are similar for both CRGs and LRGs.

12Bear in mind that the concepts and terminology we introduce here are specific to CRGs. Their difference w.r.t.
similar notions for LRGs should be clear from the context.

22

5.1. Coalitional Resource Games

Coalitional Resource Games are models of strategic interaction where each player has a finite set of
goals and is endowed with a finite set of resources. Each agent’s objective is to achieve at least one615

of their goals, and to do this, each agent must contribute a certain quantity of each resource. In
order to do so, players may cooperate by joining forces with others, and while their main objective
is the achievement of some of their goals, their secondary aim is to minimise their costs in doing
so.

More formally, we have:620

Definition 23 (Coalitional Resource Games [36, 15]). A Coalitional Resource Game G is a tuple

G = 〈Ag,Goal,Res,Goal1, . . . ,Goaln, en, req〉

where

1. Ag = {A1, . . . , An} is a set of agents;

2. Goal = {g1, . . . , gm} is a set of possible goals;

3. Res = {r1, . . . , rt} is a set of resources;625

4. for each i ∈ Ag,
Goali = {gi1, . . . , gih} ⊆ Goal

is a set of goals;

5. en : Ag × Res → N is an endowment function, with the intended interpretation that if
en(i, r) = c, then agent i ∈ Ag is endowed with quantity c ∈ N of resource r ∈ Res; and

6. req : Goal × Res → N is a requirement function, with the intended interpretation that if630

req(g, r) = c, then to achieve a goal g ∈ Goal, it is necessary to expend quantity c ∈ N of
resource r ∈ Res.

The above definition comes with the assumption that trying to achieve a goal always requires
the expenditure of at least one unit, i.e.

∀g ∈ Goal, ∃r ∈ Res such that req(g, r) > 0.

The endowment function can be extended to coalitions via the function en : 2Ag ×Res→ N:635

en(C, r) =
∑
i∈C

en(i, r).

Similarly, the requirement function can be extended to sets of goals via the function req : 2Goal ×
Res→ N:

req(Goal′, r) =
∑

g∈Goal′

req(g, r).

With a small abuse of notation, we also use req(Goal′) to denote the total cost of resources that
are required to satisfy the set of goals Goal′:

req(Goal′) =
∑
r∈Res

req(Goal′, r).

23

Definition 24. For any Coalitional Resource Game G, a set of goals Goal′ satisfies agent i if640

Goali ∩Goal′ 6= ∅; Goal′ satisfies a coalition C ⊆ Ag if it satisfies every member of C.
A set of goals Goal′ is feasible for coalition C if that coalition is endowed with sufficient

resources to achieve all the goals in Goal′. We define a function

sf : 2Ag → 22Goal

to return the set of goal sets that both satisfy and are feasible for a given coalition:

sf(C) = {Goal′ ⊆ Goal : Goal′ is feasible for and satisfies C}.

We say that a coalition C is successful if sf(C) 6= ∅. If C is successful, then C is endowed with645

resources to bring about some goal set Goal′ such that Goal′ will satisfy every member of C.13

Example 25 ([15]). Consider the following example. There are four agents Ag = {A1, A2, A3, A4},
with possible goals Goal = {g1, g2, g3, g4}, and three resources Res = {r1, r2, r3}. The goal sets
for each agent are as follows:

Goal1 = {g1} Goal2 = {g2} Goal3 = {g3} G4 = {g4}.

The requirement and endowment functions req and en are defined in the following tables:650

req r1 r2 r3

g1 4 0 1
g2 4 1 0
g3 4 1 0
g4 4 0 2

en r1 r2 r3

A1 8 1 0
A2 8 0 1
A3 8 0 1
A4 4 2 0

As shown in [15], this CRG has an empty core.

We recall now the notions of a cooperation structure, coalition structure and core of CRGs.

Definition 26. Given a Coalitional Resource Game G, a resource vector for agent i is an element

ξi = (αi1, . . . , αit) ∈ Nt

with, for all r ∈ Res, αir ≤ en(i, r). Given a coalition C = {A1, . . . , An′}, a contribution vector655

ξC is a tuple of resource vectors, i.e.

ξC = (ξ1, . . . , ξn′).

A contribution vector indicates the allocation to each specific resource of each player i in the
coalition. Clearly, this contribution must always be less than or equal to i’s endowment for a
particular resource.

13Notice that the notion of being successful for a coalition in a CRG differs from the one of successful cooperation
structure as defined for LRGs.

24

Definition 27. A cooperation structure in a Coalitional Resource Game G is a triple660

λcrg = 〈C,GoalC , ξC〉,

where C ⊆ Ag,GoalC ⊆ Goal and ξC is a contribution vector, such that these components must
satisfy the feasibility constraint that the coalition is endowed with sufficient resources to achieve
the goals it commits to, i.e.:

∀r ∈ Res,
∑
i∈C

αir ≥ req(GoalC , r).

The intended interpretation is that coalition C will cooperate to achieve the set of goals GoalC ,
and that each agent i will contribute resources ξi = (αi1, . . . , αit) towards this joint effort. Given a665

cooperation structure λcrg, we denote by succcrg(λcrg) the set of agents in C that would have some
of their goals satisfied by λcrg.

Definition 28. In a Coalitional Resource Game G, a cost function for agent i with respect to a
resource vector ξi = (αi1, . . . , αit) is defined as the sum of the contribution to each resource, i.e.

costcrg
i (ξi) =

∑
r∈R

αir.

costcrg
i (λcrg) denotes the cost for agent i w.r.t. their contribution vector within coalition C.670

For every agent i it is possible to define a preference relation�crg
i between cooperation structures

as follows.

Definition 29. Given two cooperation structures λcrg
1 , λcrg

2 containing agent i in a Coalitional
Resource Game G, we define

λcrg
2 �crg

i λcrg
1 ,

whenever one of these conditions is satisfied:675

1. i /∈ succcrg(λcrg
1), i /∈ succcrg(λcrg

2), and costcrg
i (λcrg

1) ≤ costcrg
i (λcrg

2).
2. i ∈ succcrg(λcrg

1), i ∈ succcrg(λcrg
2), and costcrg

i (λcrg
1) ≤ costcrg

i (λcrg
2).

3. i ∈ succcrg(λcrg
1) and i /∈ succcrg(λcrg

2).

The relation ≺crg
i is defined in the obvious way.

Observe that the preference relations defined above are quasi-dichotomous: a player prefers680

all cooperation structures that result in their goal being achieved over all those that do not, but
secondarily prefers to minimise costs.

Definition 30. A coalition structure in a Coalitional Resource Game G

σcrg =
{
λcrg

1 , . . . , λcrg
m′
}

is a set of cooperation structures, so that C1, . . . , Cm′ form a partition of Ag, where Ci is the
coalition in the cooperation structure λcrg

i .685

Definition 31. In a Coalitional Resource Game G, we say that a cooperation structure λcrg =
〈C,G′, ξ〉 blocks a coalition structure σcrg if for all i ∈ C

λcrg
σcrg(i) ≺crg

i λcrg,

where λcrg
σcrg(i) is the cooperation structure in σcrg to which i belongs. A coalition structure is stable if

it is not blocked by any cooperation structure. The core of a Coalitional Resource Game corecrg(G)
is the set of all stable coalition structures.690

25

5.2. Translation

We now present our core-preserving translation from CRGs to LRGs. Let

G = 〈Ag,Goal,Res,Goal1, . . . ,Goaln, en, req〉

be a CRG. Let k be the maximum between the total amount of resources required to achieve all
goals and the total amount of resources available to all agents, i.e.:

k = max

(
req(Goal),

∑
r∈Res

en(Ag, r)

)
.

Take the finite valued Lukasiewicz logic with constants Lck, and define the following LRG:695

Γ(G) = 〈Ag,Var,Const,Val,Task,Payoff〉,

where

1. Ag is the same set of agents as in G.

2. Var = {Var1, . . . ,Varn}, where each

Vari = {pr1i , . . . , p
rt
i }

contains one propositional variable per resource r ∈ Res for player i.

3. Const = {θ1, . . . , θn} is a set of Lck-formulae, with700

θi :=
t∧

j=1

p
rj
i → c

rj
i ,

where

c
rj
i =

en(i, rj)

k
.

4. Val = {Val1, . . . ,Valn}, where, for each player i

Vali = {si : Vari → Lk | si(θi) = 1},

i.e., Vali is the set of all valuations of {pr1i , . . . , p
rt
i } such that ∀rj ∈ Res,

si(p
rj
i) · k ≤ en(i, rj).

5. Task = {τ1, . . . , τt} is a set of Lck-formulae such that, for each 1 ≤ j ≤ t,

τj :=
n⊕
i=1

p
rj
i

6. Payoff = {χ1, . . . , χn} is a set of Lck-formulae such that, for each i,705

χi :=
∨

g∈Goali

∆

 t∧
j=1

(
d
rj
g → τj

) ,

where τj ∈ Task, and

d
rj
g =

req(g, rj)

k
.

26

The above construction deserves some clarification. First of all, given any G, Γ(G) is easily
seen to be a LRG on Lck. Every allocation of resources of amount n ∈ N from G is transformed
into an allocation of amount n

k in Γ(G). The choice of k as the maximum of req(Goal) and∑
r∈Res en(Ag, r) is due to the fact that we want to be able to define both the values of the en-710

dowment and requirement functions in G and the sum of these values in a finite-valued Lukasiewicz
logic overcoming the limitation intrinsic to the use of the bounded sum operator ⊕, which behaves
like + only if the sum of its arguments is less than or equal to 1. The choice of k must then be done
to ensure that, for the cases we are interested in, ⊕ functions as the regular addition of natural
numbers.715

Γ(G) is built from the same set of agents as G. Each agent i is in charge of as many propositional
variables as there are resources and is assigned a formula θi that determines how much of these
resources are available to i. So, the set of all possible allocations for an agent i is the set of all
possible valuations si that satisfy θi, meaning that the agent is actually allowed to use only up to
the available amount of each resource. The task formulae τj encode the total quantity of resource720

j allocated by all agents. Finally, the payoff formulae χi encode the fact that player i maximises
their payoff if at least one of their goals is achieved. Each χi is satisfiable if and only if for at least
one goal g ∈ Goali, the combined allocation τj of all players of each resource rj needed to achieve

g is at least as great as the required amount d
rj
g =

req(g,rj)
k .

Definition 32. Given any Coalitional Resource Game G, the structure Γ(G) is called the Lukasiewicz725

resource game defined from G.

In the rest of this section, we will always use G to refer to an arbitrary CRG and Γ(G) to denote
the LRG defined from it.

Example 33. To make the construction clear, we show how the translation of Example 25 works.
A simple calculation shows that req(Goal) = 21 and

∑
r∈Res en(Ag, r) = 33. So we use the logic730

 Lc33 and define the game
〈Ag,Var,Const,Val,Task,Payoff〉

as follows:

1. Ag = {A1, A2, A3, A4}.
2. Var = {Var1,Var2,Var3,Var4}, where, for each i,

Vi = {pr1i , p
r2
i , p

r3
i }.

3. Const = {θ1, θ2, θ3, θ4} is a set of Lc33-formulae, such that735

θ1 :=

(
pr11 →

8

33

)
∧
(
pr21 →

1

33

)
∧
(
pr31 → 0

)
θ2 :=

(
pr12 →

8

33

)
∧
(
pr22 → 0

)
∧
(
pr32 →

1

33

)
θ3 :=

(
pr13 →

8

33

)
∧
(
pr23 → 0

)
∧
(
pr33 →

1

33

)
θ4 :=

(
pr14 →

4

33

)
∧
(
pr24 →

2

33

)
∧
(
pr34 → 0

)
27

4. Val = {Val1,Val2,Val3,Val4}, where, for each player i

Vali = {s : Vari → L33 | s(θi) = 1},

i.e., Vali is the set of all valuations of {pr1i , p
r2
i , p

r3
i } that satisfy θi.740

5. Task = {τ1, τ2, τ3} is a set of Lc33-formulae such that, for each 1 ≤ j ≤ 3,

τj :=

4⊕
i=1

p
rj
i .

6. Payoff = {χ1, χ2, χ3, χ4} is a set of Lc33-formulae such that,

χ1 := ∆

((
4

33
→ τ1

)
∧
(

1

33
→ τ3

))

χ2 := ∆

((
4

33
→ τ1

)
∧
(

1

33
→ τ2

))
χ3 := ∆

((
4

33
→ τ1

)
∧
(

1

33
→ τ2

))
745

χ4 := ∆

((
4

33
→ τ1

)
∧
(

2

33
→ τ3

))
5.3. Correspondence between the Cores

We are now going to show that the core of any CRG is non-empty if and only if so is the core of
its related LRG. In order to do so, we need some preliminary results.

Lemma 34. Let G be any Coalitional Resource Game such that core(G) 6= ∅. Then there exists a
stable coalition structure σcrg = 〈λcrg

1 , . . . , λcrg
n′ 〉 where for each λcrg

j = 〈Cj ,GoalCj , ξCj 〉 one of the750

following conditions holds true:

1. GoalCj ∈ sf(Cj),

2. |Cj | = 1 and sf(Cj) = ∅.

Proof. We have to prove that in any CRG with a non-empty core there always exists a stable
coalition structure such that every cooperation structure in it either has all its members achieving755

some of their goals or it contains only one agent that is not successful.
So, take any stable coalition structure

σcrg = 〈λcrg
1 , . . . , λcrg

n′ 〉

and suppose that for some cooperation structure λcrg
j = 〈Cj ,GoalCj , ξCj 〉, GoalCj 6∈ sf(Cj). By

Definition 24, this means that either GoalCj is not feasible for Cj or it does not satisfy Cj . By
Definition 27, GoalCj must be feasible for Cj and so there must be some agent Ai ∈ Cj for whom760

GoalCj ∩Goali = ∅.

Then, i’s contribution to the coalition must be zero, since σcrg is stable. In fact, if i’s contribution
was positive, i.e., non-zero, then i would always prefer to spend nothing at all, given none of

28

the player’s goals are achieved by being in Cj . This would then mean that i alone would be
able to block σcrg, contradicting our assumption of stability (see also [15, Proposition 5]). So, if
GoalCj 6∈ sf(Cj), there exists some Ai who makes no contribution to λcrg

j and whose goals are not765

in GoalCj . Then, λcrg
j can be split into two cooperation structures

λcrg
j
′
=
〈
Cj \ {Ai},GoalCj , ξCj\{Ai}

〉
λcrg
j
′′

=
〈
{Ai}, ∅,0{Ai}

〉
,

where ξCj\{Ai} is the contribution vector obtained by excluding Ai’s contribution from ξCj , and
0{Ai} is the contribution vector where agent i allocates no resources.

Take now the new coalition structure

σcrg′ = 〈λcrg
1 , . . . , λcrg

j
′
, λcrg

j
′′
, . . . λcrg

n′ 〉

obtained from σcrg by replacing λcrg
j with λcrg

j
′

and λcrg
j
′′
. It is trivial to see that σcrg is, once770

again, stable, since any cooperation structure blocking σcrg′ would have blocked σcrg in the first
place. Consequently, σcrg can be recursively decomposed into a stable coalition structure where
each cooperation structure either contains successful coalitions or it contains one agent who is not
successful and allocates no resources.

Something very similar can be proven for Lukasiewicz resource games defined from a CRG.775

Lemma 35. Let Γ(G) be the Lukasiewicz resource game defined from a Coalitional Resource Game
G. If corelrg(Γ(G)) 6= ∅, then it contains a stable coalition structure

σlrg = 〈λlrg
1 , . . . , λlrg

w 〉,

where each λlrg
j = 〈Cj , sCj 〉 is either globally successful or is such that Cj = {Ai}, for some agent

i, and sCj is 0Ai, i.e., the vector where i allocates no resources.

Proof. Suppose Γ(G)’s core is non-empty and take any stable coalition structure780

σlrg = 〈λlrg
1 , . . . , λlrg

w 〉.

Suppose some λlrg
j is not globally successful. Then there is some agent i not maximising their

payoff function. If this agent allocates any resources to λlrg
j , then the agent can always block

σlrg by forming an individual cooperation structure that is still not successful for i but in which
the agent does not allocate any resources, therefore incurring lower costs. This means that i’s
contribution to λlrg

j must be null, and so λlrg
j can be decomposed into a cooperation structure785

containing two disjoint structures

λlrg
j

′
=
〈
Cj \ {Ai}, πCj\{Ai}(sCj)

〉
, λlrg

j

′′
=
〈
{Ai},0Ai

〉
.

By repeating the process, σlrg can be eventually split into a stable coalition structure σ′lrg containing
cooperations structures where either all their members maximise their payoff or having only one
agent who does not allocate any resources.

We can now show that the concept of a Lukasiewicz resource game properly generalises the790

concept of a CRG.

29

Theorem 36. For any Coalitional Resource Game G, let Γ(G) be the Lukasiewicz resource game
defined from it. Then:

corecrg(G) 6= ∅ iff corelrg(Γ(G)) 6= ∅.

Proof. Suppose corecrg(G) 6= ∅. Then, by Lemma 34, we know that there exists a stable coalition
structure795

σcrg = 〈λcrg
1 , . . . , λcrg

t 〉

where each λcrg
j = 〈Cj ,GoalCj , ξCj 〉 is such that either GoalCj ∈ sf(Cj), or Cj = {Ai}, for some

Ai ∈ Ag, and sf(Cj) = ∅. For each λcrg
j , define the following structure

λlrg
j =

〈
Cj ,

1

k
· ξCj

〉
.

Clearly, each λlrg
j is a well-defined cooperation structure of Γ(G), and, by construction, is such that

either

1. for each i ∈ Cj800

fχi

(
1

k
· ξCj , s−Cj

)
= 1

for all allocations s−C (i.e., λlrg
j is globally successful), or

2. Cj contains only one agent i, λlrg
j is not successful for i, and i allocates no resources.

We claim that the coalition structure

σlrg =
〈
λlrg

1 , . . . , λlrg
t

〉
is stable. Suppose that is not the case, i.e., there exists a cooperation structure λlrg? = 〈C?, sC?〉
that blocks σlrg. This clearly means that for each i ∈ C? and for all s−C?805

fχi (sC? , s−C?) = 1

and one of the following cases holds:

(1) λlrg
σlrg(i)

, λlrg? ∈ succ(i) and

costi (πi (sC?)) < costi

(
πi

(
sC

σlrg(i)

))
,

where πi

(
sC

σlrg(i)

)
is i’s allocation in the cooperation structure λlrg

σlrg(i)
the agent belongs to

in σlrg.

(2) λlrg
σlrg(i)

6∈ succ(i) and λlrg? ∈ succ(i).810

Define from λlrg? the following structure:

λcrg? = 〈C?,Goal?, k · sC?〉 ,

30

where
Goal? =

⋃
i∈C?

Goali,

i.e., Goal? is the set of all goals of the agents in C?. It is clear by construction that all the agents
in λcrg? achieve some of their goals. However λcrg? blocks λcrg, since each i would either achieve
some goals by reducing their costs (1), or achieve some goals where they were unsuccessful in the815

first place (2). This though contradicts our assumption that σcrg is stable. Consequently, σlrg must
be a stable coalition structure and corelrg(Γ(G)) 6= ∅.

To prove the converse, suppose corelrg(Γ(G)) is non-empty. By Lemma 35, we know the core
contains a stable coalition structure

σlrg = 〈λlrg
1 , . . . , λlrg

w 〉,

where each λlrg
j = 〈Cj , sCj 〉 is either globally successful or it only contains one agent not allocating820

any resources.
Define, for each λlrg

j = 〈Cj , sCj 〉, a structure

λcrg
j = 〈Cj ,Goal∗, k · sCj 〉,

where Cj is the same coalition as in λlrg
j and G∗ either is the set of all goals of the agents in Cj ,

if λlrg
j is globally successful, or it corresponds to ∅ otherwise. It is easy to see that each λcrg

j is a

well-defined cooperation structure of G. Moreover, if λlrg
j is globally successful then all the agents825

in λcrg
j achieve some of their goals, while if λlrg

j contains one agent not allocating any resource,
then so does λcrg

j and the agent does not achieve any goal.
We claim that

σcrg = 〈λcrg
1 , . . . , λcrg

w 〉

is a stable coalition of G. Suppose that is not the case, i.e., there exists some cooperation structure

λcrg? = 〈C,Goal?, ξC〉

that blocks σcrg. This means that for every agent i ∈ C,830

λcrg
σcrg(i) ≺

crg
i λcrg?

and i has some of her goals achieved. By an argument similar to the previous case, it is easy to
see that this would contradict our assumption of stability for σlrg.

From the above theorem and the fact that there exist CRGs with an empty core (see Example
25), we obtain the following:

Proposition 37. There exists a Lukasiewicz resource game with an empty core.835

31

6. Complexity

In this section, we present some results about the computational complexity of decision problems
on Lukasiewicz resource games.

Proposition 38. For any Lukasiewicz resource game Γ, checking whether Γ is satisfiable is NP-
complete.840

Proof. First, recall that checking satisfiability of a formula in any Lukasiewicz logic is NP-complete
[11]. For membership, notice that any LRG Γ is satisfiable if and only if, for at least one player i,
their payoff formula χi is satisfiable. In fact, if Γ is satisfiable, there is a non-empty coalition C
and an allocation by all players so that each χi, with i ∈ C, is satisfiable. Conversely, if any χi is
satisfiable there is a valuation s such that s(χi) = 1. This valuation s can be trivially extended845

to an allocation of all players that satisfies χi. So, checking satisfiability for Γ is the same as
checking satisfiability of χi for each player i in the related Lukasiewicz logic, which can be done in
nondeterministic polynomial time.

As for hardness, we show that satisfiability for any Lukasiewicz logic can be reduced in poly-
nomial time to satisfiability of a coalition in a LRG over the same logic. Take any Lukasiewicz850

formula φ(p1, . . . , pm) and define the following LRG

Γ = 〈Ag,Var,Const,Val,Task,Payoff〉,

where

1. Ag = {A1} is a set including only one agent A1.

2. Var = {{p1, . . . , pm}} includes the set of variables of A1.

3. Const = {>}, so player A1 has no constraints.855

4. Val = {Val1} contains the set Val1 of all valuations from {p1, . . . , pm} into L.

5. Task = {τ1, . . . , τm} is a set of Lukasiewicz formulae

τj(pj) := pj .

6. Payoff = {χ1} is a set including the Lukasiewicz formula

χi(τ1, . . . , τm) := φ(p1, . . . , pn).

It is obvious by construction that the one and only (non-empty) coalition C is satisfiable in Γ if
and only if so is φ(p1, . . . , pn).860

We now investigate the complexity of checking whether a rational cooperation structure is
globally successful, and whether any coalition can be made into a globally successful cooperation
structure.

Proposition 39. In a Lukasiewicz resource game Γ, checking whether a rational cooperation struc-
ture λ = 〈C, sC〉 is globally successful is in co-NP.865

Proof. Given a cooperation structure λ = 〈C, sC〉 with sC ∈ Qm·|C|, λ is globally successful if and
only if, for all possible allocations s−C and all players i ∈ C,

fχi(sC , s−C) = 1.

32

Checking the complement of this problem is equivalent to checking whether the set

Yi = {ȳ−C | fχi(sC , ȳ−C) < 1}

is non-empty for some i ∈ C. This is equivalent to checking the validity of the existential
 Lukasiewicz sentence870

∃y−C
⊔
i∈C

(fχi(sC , ȳ−C) < 1) ,

which can be done in non-deterministic polynomial time both for finite and infinite games [24].

Proposition 40. For a Lukasiewicz resource game Γ, checking if for a coalition C there exists an
allocation sC so that λ = 〈C, sC〉 is a globally successful cooperation is in PSPACE if Γ is finite,
and it is in 2-EXPTIME if Γ is infinite.

Proof. Checking if for a coalition C there exists an allocation sC so that λ = 〈C, sC〉 is a globally875

successful cooperation is equivalent to checking if the following sentence holds over L or Lk

∃x̄C∀ȳ−C
l

i∈C
fχi(x̄C , ȳ−C) = 1.

As shown in [24], if Γ is finite, the algorithm to check the validity of the above formula requires
polynomial space, while it requires double exponential time if the game is infinite.

The next proposition studies the complexity of checking if a rational coalition structure belongs
to the core.880

Proposition 41. For a finite Lukasiewicz resource game Γ, checking if a rational coalition structure
σ belongs to core(Γ) is in PSPACE. For an infinite Lukasiewicz resource game Γ, checking if a
rational coalition structure σ belongs to core(Γ) is in co-2-NEXPTIME.

Proof. Suppose Γ is a finite LRG and let σ = {λ1, . . . , λw} be a coalition structure with cooperation
structures λj = 〈Cj , sCj 〉 where each sCj is an allocation vector with values from Lk. Guess a885

cooperation structure λ = 〈C, rC〉, where rC is an allocation vector with values from Lk. For every
i ∈ C:

1. Check if
∀x̄−Cσ(i)

(
fχi(sCσ(i) , x̄−Cσ(i)) = 1

)
u ∀ȳ−C (fχi(rC , ȳ−C) = 1)

holds over Lk and check if

costi(πi(rC)) < costi(πi(sCσ(i)));

else890

2. Check if
∃x̄−Cσ(i)

(
fχi(sCσ(i) , x̄−Cσ(i)) < 1

)
u ∃ȳ−C (fχi(rC , ȳ−C) < 1)

holds over Lk and check if

costi(πi(rC)) < costi(πi(sCσ(i)));

else

33

3. Check if
∃x̄−Cσ(i)

(
fχi(sCσ(i) , x̄−Cσ(i)) < 1

)
u ∀ȳ−C (fχi(rC , ȳ−C) = 1)

holds over Lk.895

It is easy to see that λ blocks σ if for all players in C any of the above cases is true. In fact:

1. if the first case holds then λσ(i), λ ∈ succ(i) and the cost for i in λ is strictly less than the
cost in λσ(i);

2. if the second case holds then λσ(i), λ /∈ succ(i) and the cost for i in λ is strictly less than the
cost in λσ(i);900

3. finally, if the third case holds then λσ(i) /∈ succ(i) and λ ∈ succ(i).

Since checking the validity of a quantified sentence in Lk over Lk is in PSPACE, checking whether
σ belongs to core(Γ) is in co-NPSPACE. Since co-PSPACE is equivalent to PSPACE and, by
Savitch’s Theorem NPSPACE=PSPACE (see [34]), we have that checking whether σ belongs to
core(Γ) is in PSPACE.905

Let Γ be any infinite LRG and let σ = {λ1, . . . , λw} be a coalition structure with rational
cooperation structures λj = 〈Cj , sCj 〉. Guess a rational cooperation structure λ = 〈C, rC〉. The
proof now proceeds exactly as in the finite case. The result then follows from the fact that checking
the validity of an L-sentence over L is in 2-EXPTIME.

To conclude, we study the complexity of checking whether a LRG admits a non-empty core.910

Proposition 42. For a Lukasiewicz resource game Γ, checking core(Γ) 6= ∅ is in 4-EXPTIME if
Γ is finite, 3-EXPTIME if Γ is infinite.

Proof. Given an infinite LRG Γ, let ∃Φcore be the existential closure of the formula Φcore from
Theorem 21, i.e.:

∃x̄1 . . . ∃ x̄n
d

C∈C(Γ)

(⊔
i∈C

((
(f∗χi(x̄1, . . . , x̄n) = 1) u

(
∃ȳC∀ȳ−C (f∗χi(ȳC , ȳ−C) = 1)⇒ (

∑
x̄i ≤

∑
ȳi)
))
t

((
f∗χi(x̄1, . . . , x̄n) < 1

)
u (∼∃z̄C∀z̄−C (f∗χi(z̄C , z̄−C) = 1) u (

∑
x̄i = 0)

))))
.

915

Γ has a non-empty core if and only if ∃Φcore is valid over R.
Now, given Γ, the length of ∃Φcore is exponential in the number of players, since it is built by

taking into account all possible coalitions. As shown in [17], deciding the validity of an arbitrary
quantified formula of length n in the theory of the ordered group of real numbers requires at most
deterministic time 22pn for some fixed constant p > 0. Consequently, checking whether the infinite920

game Γ has a non-empty core requires at most 3-EXPTIME.
The result for finite games follows by a similar argument and the fact that deciding the validity

of an arbitrary quantified formula of length n in the theory of Presburger Arithmetics requires at

most deterministic time 222
pn

, for some fixed constant p > 0 [31].

34

7. Final Remarks925

In this work, we have introduced a symbolic approach to the compact representation of cooperative
games that is a generalisation of the coalitional resource model of Wooldridge and Dunne [36, 15].
Our model makes use of Lukasiewicz logics, which make it possible to specify the class of piecewise
linear polynomial functions with integer and rational coefficients on [0, 1]n and their finite-valued
restrictions. Lukasiewicz formulae are used to encode the outcome of the allocation of resources930

to tasks by players, as well as their constraints on such allocations, and overall payoffs. In this
framework we have defined an appropriate notion of core and investigated some of its logical and
computational properties.

Comparatively little other research has considered the use of logic in cooperative games.
Ågotnes et al [1] developed two modal logics for reasoning about non-transferable utility games.935

For example, in the first of their formalisms, they used operators inspired by Alternating-time
Temporal Logic (ATL) [3], writing for example 〈C〉ω to mean that the coalition C can cooperate
to achieve outcome ω; they augmented these operators with preference operators ω �i ω′ to mean
that agent i prefers outcome ω at least as much as ω′. For this logic they obtained complete-
ness and complexity results, and showed how some standard theorems of cooperative game theory940

could be proved within the logic. A key difference with our work is that, by using Lukasiewicz
logic, we can succinctly express rich utility functions. Closer to our work, Dunne et al [14] con-
sidered cooperative variations of Boolean games. The key difference with our work was the use
of classical (two valued) logics in the specification of player’s goals: as we have already argued,
using Lukasiewicz logics permits much richer utility functions to be specified. Finally, Ieong and945

Shoham’s marginal contribution net scheme makes use of logical formulae within weighted rules
to express characteristic functions for games [22]. Again, the focus is on classical logic, and in
marginal contribution nets, although logic is used within the representation, the weighted rules are
not themselves expressions of a logical object language.

Several questions suggest themselves for future work. For example, in investigating the core,950

we have studied whether a coalition structure is stable against defection. This however does not
address the issue of how a coalition is formed. In our future work then, we plan to study negotiation
protocols for finding coalition structures (see [15]). In addition, we plan to consider whether we
can adapt techniques for theorem proving with Lukasiewicz logics to solving Lukasiewicz resource
games.955

Acknowledgments

Marchioni and Wooldridge acknowledge support from the ERC Advanced Investigator Grant
“RACE” (291528) and the EPSRC Standard Fellowship “Combining Qualitative and Quantita-
tive Reasoning for Logic-based Games” (EP/M009130/1).

[1] T. Ågotnes, W. van der Hoek, and M. Wooldridge. Reasoning about coalitional games. Artificial Intelligence,960

173(1):45–79, 2009.
[2] S. Aguzzoli, S. Bova, B. Gerla. Free algebras and functional representation for fuzzy logics. In Handbook

of Mathematical Fuzzy Logic, Volume II, P. Cintula, P. Hájek, and C. Noguera (Eds.), College Publications,
713–792, 2011.

[3] R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic. Journal of the ACM, 49(5):672–965

713, September 2002.
[4] S. Arora, B. Barak. Computational Complexity. A Modern Approach. Cambridge University Press, Cambridge

UK, 2009.

35

[5] M. Baaz, H. Veith. Quantifier elimination in fuzzy logic, In Computer Science Logic, Lecture Notes in Computer
Science, Springer, Berlin Heidelberg, 399–414, 1999.970

[6] Y. Bachrach and J. S. Rosenschein. Computing the Banzhaf power index in network flow games. In Proceedings
of the Sixth International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS-2007),
pages 335–341, Honolulu, Hawaii, 2007.

[7] J. van Benthem. Logic in Games. MIT Press, 2014.
[8] E. Bonzon, M.-C. Lagasquie-Schiex, J. Lang, and B. Zanuttini. Boolean games revisited. In Proceedings of the975

Seventeenth European Conference on Artificial Intelligence (ECAI-2006), pages 265–269, Riva del Garda, Italy,
2006.

[9] A. R. Bradley, Z. Manna. The Calculus of Computation. Springer-Verlag Berlin Heidelberg, 2007.
[10] N. Bulling, V. Goranko. How to Be Both Rich and Happy: Combining Quantitative and Qualitative Strategic

Reasoning about Multi-Player Games. In Proc. Strategic Reasoning 2013, Rome, April 2013980

[11] R. Cignoli, I. M. L. D’Ottaviano, and D. Mundici. Algebraic Foundations of Many-Valued Reasoning (Trends
in Logic Volume 7). Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000.

[12] G. Chalkiadakis, E. Elkind, and M. Wooldridge. Computational Aspects of Cooperative Game Theory. Morgan
& Claypool, 2011.

[13] A. Di Nola, I. Leustean. Lukasiewicz Logic and MV-Algebras. In Handbook of Mathematical Fuzzy Logic, Volume985

II, P. Cintula, P. Hájek, and C. Noguera (Eds.), College Publications, 2011.
[14] P. E. Dunne, S. Kraus, W. van der Hoek, and M. Wooldridge. Cooperative Boolean games. In Proceedings of

the Seventh International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS-2008),
pages 1015–1022, Estoril, Portugal, 2008.

[15] P. E. Dunne, S. Kraus, E. Manisterski, and M. Wooldridge. Solving coalitional resource games. Artificial990

Intelligence, 174: 20–50, 2010.
[16] F. Esteva, L. Godo, and E. Marchioni E. Fuzzy logics with enriched language. In Handbook of Mathematical

Fuzzy Logic, Volume II, P. Cintula, P. Hájek, and C. Noguera (Eds.), College Publications, 627–712, 2011.
[17] J. Ferrante, C. Rackoff. A decision procedure for the first order theory of real addition with order. SIAM Journal

on Computing, 4(1):69–76, 1975.995

[18] B. Gerla. Many-valued Logics of Continuous t-norms and Their Functional Representation. Ph. D. thesis,
University of Milan, 2001.

[19] Hájek P. Metamathematics of Fuzzy Logic (Trends in Logic Volume 4). Kluwer Academic Publishers: Dordrecht,
The Netherlands, 1998.

[20] P. Harrenstein, W. van der Hoek, J.-J.Ch. Meyer, and C. Witteveen. Boolean games. In Proceedings of the1000

Eighth Conference on Theoretical Aspects of Rationality and Knowledge (TARK VIII), pages 287–298, Siena,
Italy, 2001.

[21] W. Hodges. Model theory, volume 42 of Encyclopaedia of Mathematics and its Applications. Cambridge
University Press, Cambridge, 1993.

[22] S. Ieong and Y. Shoham. Marginal contribution nets: A compact representation scheme for coalitional games.1005

In Proceedings of the Sixth ACM Conference on Electronic Commerce (EC’05), Vancouver, Canada, 2005.
[23] G. Lenzi and E. Marchioni. An algebraic characterization of o-minimal and weakly o-minimal MV-chains.

Journal of Pure and Applied Algebra, 218: 90–100, 2014.
[24] E. Marchioni, M. Wooldridge. Lukasiewicz Games: A Logic-based Approach to Quantitative Strategic Interac-

tions. ACM Transactions on Computational Logic, 16(4): Article 33, 2015.1010

[25] D. Marker. Model theory. An Introduction. Vol. 217 of Graduate Texts in Mathematics. Springer-Verlag, New
York, 2002.

[26] M. Maschler, E. Solan, S. Zamir. Game Theory. Cambridge University Press, 2013.
[27] R. McNaughton. A theorem about infinite-valued sentential logic. Journal of Symbolic Logic, 12(1): 1–13, 1951.
[28] D. Mundici. A constructive proof of McNaughton’s theorem in infinite-valued logic. Journal of Symbolic Logic,1015

59(2): 596–602, 1994.
[29] D. Mundici. Advanced Lukasiewicz Calculus and MV-algebras. Trends in Logic, Vol. 35, Springer, 2011.
[30] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani, Algorithmic Game Theory. Cambridge University

Press, 2007.

[31] D.C. Oppen. A 222
pn

upper bound on the complexity of Presburger arithmetic. Journal of Computer and System1020

Sciences, 16(3): 323–332, 1978.
[32] M.J. Osborne, A. Rubinstein. A Course in Game Theory. MIT Press, 1994.
[33] G. C. Rota. The Number of Partitions of a Set. The American Mathematical Monthly, 71, 498–504, 1964.
[34] M. Sipser. Introduction to the Theory of Computation. Cengage Learning, 2012.

36

[35] M. Wooldridge, P.E. Dunne. On the computational complexity of qualitative coalitional games. Artificial Intel-1025

ligence, 158(1): 27–73, 2004.
[36] M. Wooldridge, P.E. Dunne. On the computational complexity of coalitional resource games. Artificial Intelli-

gence. 170(10): 853–871, 2006.

37

	Introduction
	Łukasiewicz Logics
	Łukasiewicz Resource Games
	Coalitions
	Cooperation Structures
	Costs and Preferences
	Coalition Structures and the Core

	Translating Coalitional Resource Games into Finite Łukasiewicz Resource Games
	Coalitional Resource Games
	Translation
	Correspondence between the Cores

	Complexity
	Final Remarks

