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MODELS 

 

by Alice Elizabeth Ball 

 

 

We live in a world of human-induced rapid environmental change, where the frequency of 

extinctions and resulting loss in biodiversity has reached levels associated with a mass 

extinction event. At the same time, technological developments in computing have facilitated 

the growth of highly complex, mechanistic models across all scientific fields. The challenge 

for conservation biologists is then to develop models that can predict how organisms respond 

to conservation measures and increasing anthropogenic pressures. Here I explore the potential 

and limitations for conservation applications of spatially-explicit mechanistic models of 

habitat selection, by developing a simulation applicable to large felids. I demonstrate that 

initial choice of resolution may bias the parameterisation process of spatially-explicit models, 

when applied to spatially-explicit empirical data. I use mechanistic models to address two 

current problems in conservation biology: (a) efficient calculation of movement metrics from 

telemetry data, tested with a virtual ecology approach; and (b) accounting for interacting 

influences on populations, quantified with a model that controls for confounding variables. I 

identify the major caveats to accurately predicting the complex behaviour of large-bodied 

animals. The spatially-explicit mechanistic models developed here, and applied to real-world 

problems, demonstrate the potential of these types of simulation for confronting otherwise 

impossible questions in diverse areas of conservation biology. 
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The aim of this chapter is to provide the reader with the necessary background knowledge to 

understand the methodologies used in this thesis, and to place it in the wider context of 

conservation issues currently being tackled with modelling approaches. Section 2.1 

summarises the use of agent-based models in ecology. Section 2.2 then discusses the 

optimisation and parameterisation of agent-based models, and addresses potential issues with 

the development of highly mechanistic, spatially-explicit models. Section 2.3 provides an 

overview of the use of mechanistic models for studies in virtual ecology, and then goes on to 

describe an issue that agent-based models can address with a virtual-ecology approach: the 

calculation of metrics from telemetry data. Finally, section 2.4 details the rise of human-

induced rapid environmental change, and highlights the role of agent-based models in 

conservation. The chapter concludes by defining the overall aims of the thesis to address 

specific aspects of these themes in the context of current knowledge gaps. 

 

1.1 Agent-based modelling in ecology 
Population models aid researchers in understanding how ecological systems react and adapt 

to Human-Induced Rapid Environmental Change (HIREC; Evans et al., 2013a; Sih et al., 

2016). Such models complement empirical data by highlighting data gaps, generating 

hypotheses, and predicting alternative futures (Soetaert and Herman, 2008). 

 

1.1.1 What is a model?  

Ecological systems are often difficult to control and replicate due to both their innate 

stochasticity (Hillborn and Mangel, 1997) and large spatial-temporal scales (Hilborn and 

Mangel, 1997). Connectivity studies, which often study movement corridors for large 

mammalian species, are normally concerned with the large-scale movements of threatened 

species that we know little about. Moreover, ethics may limit studies on species threatened 

with extinction, or on human interactions with ecosystems. As a result of these issues, it may 

not be feasible to answer the questions we have on ecology using solely empirical studies. 

Researchers in this field can use models in order to identify hypotheses that can then be tested 

with empirical methods (Soetaert and Herman, 2008). By calibrating and comparing such 

models against data, we can discover which of these models best represents reality, referred 

to as being the ‘best fit’, and which is therefore most likely to provide an accurate 
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representation with which to address the research question. However, it is important to note 

that, due to their abstract nature, models will always differ from reality in some way (Soetaert 

and Herman, 2008).  

Recent developments in mechanistic, process-based models have incorporated a high 

level of complexity (Singer et al., 2016; Synes et al., 2016), reflecting a change in mindset 

from the more simplistic models that were previously favoured (Evans et al., 2014). Evans et 

al. (2013b) have argued that simpler models often have less predictive power than complex 

models, and that over-simplified models risk incorrect predictions by ignoring key ecological 

processes. In comparison, mechanistic models aim for as much of a realistic depiction of 

individual choices and interactions as possible (Singer et al., 2016). The growing prominence 

of these more complex models in the literature was termed “next-generation modelling” by 

Grimm and Berger (2016), who identified their essential elements as structural realism, 

emergence, and predictions. 	

 

1.1.2 Complexity theory  

Complex systems are those that exhibit emergent behaviour at the system level as a result of 

local-level interactions between individual elements (Marques and Pain, 2000; Jacobsen, 

2001). Examples of emergent behaviour include bird flocking formations, the collective 

behaviour of ant colonies, and the global behaviour of markets (Resnick, 1994). Such 

complex systems are viewed as being more than “the sum of their parts” (Grimm et al., 

2005), and one can rarely predict how their emergent, sometimes unintuitive, behaviour 

arises from their simple components, with such macro-level behaviour often being the result 

of positive feedback mechanisms, randomness, and critical thresholds (Resnick, 1994). 

Indeed, as the system is a product of both components and interactions, and as these are 

dynamic and changing through time, it is difficult – if not impossible – to reduce them to a 

set of simple analytical equations (Grimm et al., 2005). It has also been suggested that the 

emergent behaviour of complex systems is the opposite of chaos, as macro-level order 

emerges from disorder at the local-level (Farmer and Packard, 1986).  

Another important characteristic of complex systems is that they are self-organised. In 

bird flocks, for example, there is no central “leader” that organizes the flock, in the same way 

that there is no lead ant who administrates the complex bridge-building of foraging workers. 
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Instead, the flock and the bridges created by these animals are macro-level dynamics that 

occur without deliberate management, and without a driving environmental “seed” (Todd, 

1994; Marques and Pain, 2000). This lack of a central organisational force is why such 

systems are often described as being “decentralised” (Resnick, 1994). 

 

1.1.3 Agent-based models  

Agent-based models (ABMs), also called individual-based models (IBMs; DeAngelis and 

Grimm, 2014), are mechanistic models that represent a population of individuals as a set of 

agents, allowing system-level behaviour to emerge from individual variability, adaptation, 

and local-level interactions with other agents (Bonabeau et al., 2003; Grimm et al., 2006). 

These properties are significant for the behaviour of real-world systems, but are usually 

overlooked in analytical studies that assume all individuals are identical and do not change 

(Grimm et al., 2006).  

Another feature of ABMs that is particularly pertinent to ecological simulation is that 

they can represent complicated life cycles. In contrast, analytical models tend to assume a 

very simplified life cycle, which has severe implications for the model’s ability to correctly 

simulate the study population (Uchmanski and Grimm, 1996). 

ABMs are appropriate for investigating decentralised complex systems, such as those 

encountered in ecology. By modelling individual-level rules rather than attempting to impose 

the system-level behaviour as a central controller, the system-level behaviour that results 

from the decisions and interactions of individual agents constitutes an emergent phenomenon. 

The inherent flexibility of ABMs allows users to investigate any system where individual-

level rules are thought to result in system-level behaviour, with their mechanistic focus 

allowing predictions about how systems will react to change (Evans et al., 2013a; Stillman et 

al., 2015; Singer et al., 2016). Hence, ABMs incorporate all three essential elements of next-

generation modelling.  

Due to the above, ABMs have been adopted by a myriad of academic disciplines, and 

have become particularly commonplace in the field of ecology (Grimm et al., 2005). 

Ecology-based ABMs have been used to explore a wide range of topics, such as flocking 

behaviour (Reynolds, 1978), re-introduction of species (Gusset et al., 2009; Kramer-Schadt et 
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al., 2004; Bar-David et al., 2008), dispersal (Palmer et al., 2011; Graf et al., 2007; Gustafson 

and Gardener, 1996; Gardner and Gustafson, 2004; Imong et al., 2014), foraging (Sibly et al., 

2013; Turner et al., 1993), identification of animal corridors (Dickson et al., 2005; Watkins et 

al., 2015; Pe’er et al., 2005; Nabe-Nielsen et al., 2010; Kanagaraj et al., 2013), and ecological 

risk assessments for various species (Matsinos et al., 1994; Wiegand et al., 1998). 

As the use of ABMs in ecology has increased, researchers have developed a number 

of specific methods and toolsets for developing them, such as “evaludation” (Augusiak et al., 

2014) and TRACE (Grimm et al., 2014). One notable example is the Overview, Design 

Concepts, and Development (ODD) procedure presented by Grimm et al., (2006). This is a 

formalised and structured description of ABMs that aims to provide a standard practice 

framework in which to design and develop models. The method of pattern-oriented modelling 

has also been put forward as a way of aiding in model design and calibration when creating 

models based on real-world patterns (Grimm et al., 2005; Grimm and Railsback, 2012). In a 

similar vein, Van der Vaart et al. (2015) used Approximate Bayesian Computation (ABC; 

Hartig et al., 2012) in order to aid the parameterisation and validation of models. 

 

1.1.4 Examples of ABMs in Ecology 

A stochastic movement simulation (SMS) is a class of individual-based model developed by 

Palmer et al. (2011). This model is similar to a least-cost path model, in that the environment 

comprises a grid of squares, with a cost value associated with each square. These models do 

not assume that individuals have complete knowledge of the study area, and individuals have 

two parameters: a direction bias and a perceptual range. The direction bias allows individuals 

to follow roughly the same heading, unless a very high cost square interferes with this, with 

the strength of this bias dictating the preference for staying on the same path. The perceptual 

range is the range of squares that the individual can assess around them. It should be noted 

that a perceptual range that includes the whole map would result in similar findings to a least-

cost path model. In reality, most individuals would have a relatively small perceptual range, 

therefore SMS may provide a more accurate approximation of preferred corridors.  

Aben et al. (2014) used an SMS model to predict movement behaviour of two species 

of forest bird within a tropical matrix, and evaluated this using telemetry data. They found 

that the model was able to predict bird movement behaviour relatively accurately. However, 
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SMS models are simple models, based on two parameters and a cost surface, and although 

this solves some of the problems associated with least-cost path models, it still constitutes a 

very simplified representation of reality. Although they can accommodate for inter-individual 

variation and stochasicity, one can only represent inter-specific interactions as a static 

characteristic of a grid square. This ignores the spatially-explicit and dynamic nature of the 

interactions in real ecosystems.  

HexSim is a spatially-explicit individual-based model that uses a grid of hexagonal 

cells (Schumaker et al., 2014). It derives from the PATCH model (Schumaker, 1998), which 

appear in over 30 publications (Stronen et al., 2012). HexSim allows individuals to create 

territories (Schumaker et al., 2014). These territories consist of a selection of cells, the 

quantity and choice of which depends on the characteristics of that cell in terms of resources 

and suitability. Individuals within a territory may reproduce. Offspring disperse a certain 

distance of cells. Floaters, those who were unable to form a territory in their patch, may also 

disperse. HexSim is useful for modelling the dispersal of individuals who must have a 

territory to breed. HexSim can take survival, reproduction, movement, resource acquisition, 

and species interactions into account (Schumaker et al., 2014). However, as territories are 

static once formed, it may not be as useful for species whose home ranges change over time. 

In addition, it does not consider the effect of home-range-level movement of resident 

individuals on dispersing individuals.  

FunCon is a spatially-explicit individual-based model that differentiates between 

different types of movement (dispersal and short-range movements within home-range), 

different methods of moving through matrix (random walk or gap crossing), and different 

reactions to the presence of habitat edges (Pe’er et al., 2011). Pe’er et al. (2011) showed that 

considering these differences influenced the results of their study, as did the choice of 

connectivity measure. However, it is notable that this model does not consider population 

dynamics, demographic processes, or the effect of local interactions. Furthermore, although it 

did account for different methods of movement, the movement type given a particular 

parameter was predisposed rather than emerging from individual-level rules, such as 

requirement for food or mates. 

The final example of a spatially-explicit IBM is J-walk. This model simulates animal 

dispersal in relation to landscape heterogeneity, amount of prey, predation risk, and energy 

requirements (Gardner and Gustafson, 2004). As with previous models, it runs on a grid-
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based platform. The movement algorithm has four steps: defining the direction of movement, 

calculating a random angle that curves the direction of movement, calculation of probability 

of moving into a neighbouring cell from habitat characteristics, and a random choice of 

movement based on those probabilities (Gardner and Gustafson, 2004). The movement 

decision rule, energy reserves of an individual at that point in time, and surrounding habitat 

types shape the movement of that individual. This is a complex model that considers 

metabolic requirements of individuals, as well as the risk of predation. However, land cover 

type defines the amount of prey, and although Gardner and Gustfason (2004) outlined six 

different rules for predation in their J-walk model, these interactions were also homogeneous 

over certain land cover types.  

 

1.2 Optimisation and parameterisation of agent-based models 
1.2.1 Choice of model resolution for spatially-explicit ABMs 

Spatially-explicit agent-based models are particularly useful for evaluating how a species of 

conservation concern will respond to alternative management options. They typically base 

agents on a real population of animals that react to real-world environments rather than 

hypothetical or ideal environments. Environmental data generally comes from GIS or remote 

sensing, including altitude, categories of land cover, or distance to relevant features.  

Optimizing the resolution of spatially explicit models, which is determined by the 

choice of grain size, remains an outstanding issue, with broad scale patterns of animal 

behaviour perhaps suiting a coarse resolution across a large area (Nezer et al., 2017). Kramer-

Schadt et al. (2004), for example, used a grain size of 1×1 km to investigate the spread and 

dispersal of lynx across the entirety of Germany. In contrast, fine-scale movement decisions 

of individuals in a local area would suit a finer resolution. High resolution models allow us to 

examine how individuals interact with small or thin features, such as watering holes, river 

systems, or trail networks (Nezer et al., 2017). Fine-scale movement decisions determine how 

resident individuals move around their home range, and the movement paths of dispersing 

individuals. Even for long-distance dispersal, an individual’s path through the environment 

depends on fine-scale movement choices (Ahearn et al., 2017). Features that do not appear on 

coarser-resolution maps may form barriers to movement, resulting in real-world behaviour 

not predicted by coarse-grain maps (Nezer et al., 2017). Trail networks or river systems can 
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enhance mobility or funnel individuals in particular directions (Latham et al., 2011; 

Whittington et al., 2011; Abrahms et al., 2015). Accurate evaluations of conservation 

initiatives require understanding how fine-scale features affect movement decisions. High-

resolution models can complement coarser-grain models by providing insight on area-specific 

movement patterns. Coarse-grain models can then incorporate results from high-resolution 

movement models to build the full picture across a larger area. 

We conducted a mini-review in order to determine the resolutions of agent-based or 

individual-based models of large-bodied carnivore movement behaviour. We limited the 

search to the genus Panthera, pumas, wolves, and bears. The search criteria yielded 116 

returns on Web of Science. We narrowed these returns down to 15 studies that applied an 

agent-based or individual-based model of large-bodied carnivore movement behaviour to a 

named area. Of these, the average cell size was 1206 × 1206 m, ranging from 100 × 100 m to 

10 × 10 km. None of these models had sufficient resolution to consider influences of fine-

scale features such as trails or river systems, despite evidence that they do shape movement 

behaviours (Harmsen et al., 2009).  

 

1.2.2 Parameterisation of spatially-explicit ABMs 

Using empirical data to parameterise spatial mechanistic models increases the model’s 

credibility in predicting responses to experimental scenarios, such as the response of a large 

mammal to increased deforestation. Pattern-oriented modelling uses real-world patterns to 

create and parameterise models with the aim of accurately replicating real-world patterns, and 

therefore aid in model design and calibration (Grimm et al., 2005; Grimm and Railsback, 

2012). Approximate Bayesian Computation (ABC; Hartig et al., 2012) can facilitate the 

parameterisation of complex models (Van der Vaart et al., 2015). To parameterise models 

using ABC, researchers run the model with a large number of different sets of parameter 

values, and then isolate the set, or sets, of parameter values that best fit empirical data. For 

both of these techniques, the emphasis is on parameterising and building models that fit 

empirical data so as to increase the credibility of results from future studies that use the 

model. 

 Ground-truthing of movement algorithms requires spatial data from empirical 

studies. For example, Watkins et al. (2015) used results from empirical camera-trap studies to 

validate their movement model. To our knowledge, this study represents the only validation 
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of a fine-scale ecological mechanistic model of mammalian movement against empirical data. 

Nevertheless, as we move into an era of next-generation modelling, it is likely that an 

increasing number of researchers will follow the example of Watkins et al. (2015) by 

attempting to ground-truth their movement models against spatial empirical data. These data 

may include summary statistics from radiotelemetry, occupancy, and camera-trap studies, all 

comprising observations taken at particular points in time and space. If we replicate these 

studies using a grid-based model, each of these points become the size of an individual cell. 

As an example, in a model with a spatial resolution of 100 × 100 m, each camera trap would 

cover an area of 100 × 100 m. Thus, summary statistics of virtual spatial studies may depend 

on the initial choice of spatial resolution. If we use these summary statistics as spatial patterns 

to parameterise and validate the spatial components of our model, our choice of movement 

algorithm may also depend on our initial choice of resolution. An argument for the use of 

complex mechanistic models is that their focus on mechanisms and processes allow them to 

exhibit greater predictability, as an agent’s reaction to a situation is the result of behavioural 

algorithms. However, if the choice of algorithm depends on the choice of resolution, it calls 

into question the ability of the model to reflect reality as opposed to providing merely a 

reasonable fit to current data at a certain resolution. This may result in the introduction of 

conflicting models for the same species producing different answers to the same question, 

which would only serve to confuse the issues that such models are intended to inform, as well 

as reducing credibility in spatial models. Alternatively, researchers may decide to use best-fit 

parameter values or sensitivity analysis to draw conclusions about animal behaviour, as in 

Imron et al. (2012). However, if the choice of parameter values depends on the resolution of 

the model, inferences about animal behaviour based on those parameters will also depend on 

model resolution. Both modellers and empiricists require a greater understanding of how 

choice of resolution can affect the parameterisation process in order to draw appropriate 

conclusions from model outputs and identify potential sources of bias. 

 

1.2.3 Conclusions 

Mechanistic ABMs represent individuals as a set of interacting agents and allow real-world 

patterns to emerge from those interactions. Their predictive ability means that they will prove 

to be particularly important in analysing the impact of HIREC. Spatially-explicit ABMs are 

useful for evaluating the effectiveness of spatial conservation measures, such as wildlife 

corridors, and recent models use spatial data to parameterise mechanistic movement models. 
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As we move into a new generation of modelling, it is likely that more researchers will follow 

this example. However, parameterisation using spatial metrics may depend on the choice of 

resolution for the model. If so, spatial models may create a biased picture of animal 

behaviour, with low predictive power. We believe it is imperative to evaluate potential biases 

that may arise from parameterisation of mechanistic model using spatial metrics. In chapter 2, 

we investigate how initial choice of resolution affects parameterisation of spatially-explicit 

models. 

 

1.3 Virtual ecology for developing empirical methodology 
1.3.1 Virtual ecology 

Virtual ecology uses simulation models to replicate empirical studies in-silico (Zurell et al., 

2010). As experiments are conducted in a model with a known population, one can compare 

the result of the in-silico study with real-world data, thereby evaluating the effectiveness of 

this approach. Zurell et al (2010) list the two main applications of virtual ecology as 1) 

testing and improving sampling schemes and methods, and 2) testing and comparing models. 

Researchers have used virtual ecology in order to evaluate the conceptualisation and 

implementation of species distribution models (Miller, 2014), assess sampling designs 

(Albert et al, 2010; Ficetola et al., 2014; Lyashevska et al., 2016), and create risk maps where 

species-specific data are scarce (Osawa et al., 2016). 	Rodrigues and Coelho (2016) used 

simulated data in order to determine whether different capture methods were able to 

accurately capture male:female ratios. They found that differences in movement patterns and 

detectability between males and females resulted in biased sex ratio estimates. 

Agent-based models treat populations as a collection of individuals that are driven by 

bottom-level rules. These basal individual-level rules and simple interactions then result in 

the kind of complex system-level behaviour discussed above. Furthermore, they represent a 

new method of modelling populations of species that we can use to compare density 

estimators, without relying on the same assumptions of those estimators. Due to the 

flexibility of agent-based models, we can capture heterogeneous home range size and shape, 

and movement patterns that differ from those assumed. By calibrating these models against 

empirical data, we can verify that the movement rules are representative of the species in 

question, and then use the modelled population to assess the effectiveness of telemetry study 
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design and estimators. The complexity that one can include in these models may enable an 

assessment with a more realistic set of simulated data. 

In the next section, we discuss two ecological metrics that we will evaluate using 

virtual ecology: step length for estimating animal movement, and minimum convex polygon 

for estimating home-range size. 

 

1.3.2 Calculation of spatial metrics from telemetry data 

1.3.2.1 Telemetry 

Animal movement behaviours have been a key area of research in conservation biology for 

over 20 years (DeMars et al., 2013). Descriptions of animal movement can contribute to 

understanding how species utilise fragmented habitats and how they perceive risk (Morris, 

2003). Patterns of movement determine the distribution of species, the transmission of 

disease, routes for animal migration, and responses to anthropogenic actions (Bradshaw et al., 

2007; Beyer et al., 2013; Hosseini et al., 2006; Morris, 2003). Analyses of such patterns may 

augment our understanding of metapopulation dynamics, species persistence, and the effect 

of conservation measures (Schooley and Wiens, 2004; Loarie et al., 2009; Pittman et al., 

2014; Jenks et al., 2015). Hence, conservation biologists may use knowledge of animal 

movement to develop effective strategies for conservation (Jenks et al., 2015). 

 Telemetry data allow researchers to understand movement by capturing individuals in 

space and time, and constitutes an active area of research (Kays et al., 2011; Ward and Raim, 

2011). Researchers may use telemetry datasets to quantify metrics of movement at a variety 

of different scales, thereby identifying mechanisms such as scale-dependent foraging 

decisions and optimal searching behaviour (Bradshaw et al., 2007). Sources of telemetry data 

include: VHF radiotelemetry tags; fixed-position PIT tag detection arrays (Tew and 

MacDonald, 1994; Armstrong et al., 1996; Lucas et al., 1999), which use close-range 

proximity detection to detect locations (Harbicht et al., 2017); acoustic telemetry transmitters; 

and Global Positioning System (GPS) telemetry tags, which use satellites to obtain location 

data (Dana, 1989).  

 Studies on telemetry conventionally use Very High Frequency (VHF) radio-telemetry 

to provide location data. Radio antennae in fixed positions receive VHF signals and record 
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the locations of tagged individuals (Harbicht et al., 2017). Modern amendments to VHF tags 

have made them smaller and cheaper than GPS tags (Harbicht et al., 2017). Nevertheless, 

conventional telemetry depends on factors such as personnel availability, field accessibility, 

light conditions, and local weather (Dussault et al., 2001). 

Global Positioning System (GPS) was introduced by the U.S. Department of Defense 

as a satellite-based radio-navigation system (Dana, 1989). GPS trackers receive signals from 

at least three satellites and, by calculating the time taken for the signal to reach the sensor, 

computes latitude and longitude for that position (Bradshaw et al., 2007). Signals coming 

from three satellites allow for the computation of a 2D location, whereas signals from four 

satellites can determine the sensor’s location in 3D space (Dana, 1989). The main advantage 

of GPS over VHF is that it can automate tracking and provide consistent, intense sampling 

for one radio-collar. In this manner, GPS technology has allowed researchers to collect a high 

abundance of accurate, fine-scale data on animal movement (Mills et al., 2006; Kie et al., 

2010; Tomkiewicz et al., 2010). GPS is unaffected by weather conditions, which improves on 

traditional VHF radiotelemetry technology (Girard et al., 2002), although GPS tags are more 

expensive, which limits the number of individuals that the study can track (Otis and White, 

1999; Harbricht et al., 2017).  

Researchers have used telemetry data in order to develop their understanding in a 

number of areas, including studies on how animals respond to barriers on movement (Riley et 

al., 2006; Shepard et al., 2008), density estimation (for example, Soisalo and Cavalcanti, 

2006), development of resource selection functions (for example, Johnson et al., 2004), and 

predator-prey relationships (Sevodkin et al., 2017). Munro et al. (2006), for example, used 

radio-telemetry data to understand seasonal food habits and activity patterns for grizzly bears 

in Canada. Hopcraft et al. (2016) used a long-term telemetry study to examine how hunting 

opportunities determine the distribution of lions in the Serengeti.  

Although, data from telemetry studies have many uses, study design and data 

interpretation require considerable care. When designing telemetry studies, researchers must 

address a trade-off between the intensity of the sampling regime and the duration of the study 

(Kolodzinski et al., 2010). As the time interval between fixes on locations - hereafter referred 

to as the “fix interval” – increases, the study misses more intervening locations. This can lead 

to errors in calculations of space-use metrics.  Multiple studies have found that long fix 

intervals underestimate both the distance travelled and the home-range area, as they miss 
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tortuous movement and extreme points (Otis and White, 1999; Mills et al., 2006; Kolodzinksi 

et al., 2010). As an example, Kolodzinski et al. (2010) found that calculations of the 

minimum convex polygon (MCP) encompassing locations from telemetry with fix intervals 

of eight to twelve hours underestimated homes range by at least 50%. Furthermore, telemetry 

devices suffer from type II errors. In some cases, the success rate of fixes can be as low as 

13% (Frair et al., 2004). This would change a sampling regime that takes location fixes every 

2 hours to one that only samples locations every 16 hours, with implications for the accuracy 

of metrics.  

 

1.3.2.2 Examples of spatial metrics calculated from telemetry data 

Step length is the distance covered by a tagged individual between telemetry fixes. We can 

use it to calculate other metrics, such as cumulative distance covered over a study period and 

the average speed of individuals. Many movement models use step length and turning angles 

as parameters to simulate individual movement (Turchin, 1998). Telemetry provides the data 

to parameterise these models, which researchers may then use to draw conclusions about 

animal movement (Jerde and Visscher, 2005; Beyer et al., 2013; DeMars et al., 2013). 

Researchers have used step length in autocorrelation functions in order to investigate 

movement patterns (Boyce et al., 2010). As an example, Jenks et al. (2015) used 

autocorrelation functions and cluster analysis in order to compare the movement of a golden 

jackal and a dhole. Thus, it is important that researchers can obtain accurate estimates of step 

length so as to reduce bias in models used at later levels of abstraction. 

The home range of an animal is the area that an individual uses regularly during 

quotidian activities such as foraging or hunting (Burt, 1943). Knowledge of the size of home 

ranges informs the construction of conservation measures by allowing the estimation of space 

required for that conservation measure to be successful. Telemetry data are often used to 

determine home range size and boundary (Otis and White, 1999). Calculations of home range 

using telemetry data commonly use either kernel analyses or minimum convex polygon 

(MCP) (Kolodzinski et al., 2010), both of which depend on the sampling regime used to 

collect telemetry data, with the latter being more sensitive than the former to the intensity of 

the sampling regime (Kolodzinski et al., 2010). As stakeholders use home range to indicate 
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how much habitat a species requires, it is imperative that estimates are accurate, or at least 

that managers have a clear understanding of the strength and direction of potential bias. 

 

1.3.3 Conclusions 

Researchers can use empirical or simulated data to assess the effectiveness of study designs. 

Simulated data have the advantage of comparing a known “truth” against the results of 

simulated studies. This is the virtual ecologist approach. We suggest using a high-resolution 

mechanistic model that incorporates movement decisions in order to evaluate the accuracy of 

calculations for step length and MCP from telemetry data. These methodologies have caveats 

and trade-offs that warrant further investigation. ABMs have particular potential in virtual 

ecology as they model the behaviour of agents based on simple rules and allow patterns to 

emerge. In chapter 3, we use an ABM to define the relationship between fix interval and error 

using known values for step length and MCP. We can use this definition to develop a 

methodology for correcting biases in step length and MCP calculation. 

 

1.4 Mechanistic models in conservation 
At the turn of the millennium, extinction rates were between 1000 – 10,000 times the 

background rate (Rosser and Mainka, 2002), and this is likely to get worse, with many future 

scenarios projecting further high rates of extinction and habitat loss during the course of this 

century (Secretariat of the Convention on Biological Diversity, 2010). There exists great 

uncertainty concerning both the total number of species on Earth and extinction rates 

(Monastersky, 2014). Current extinction rate estimates, representative percentages of the 

proportion of species becoming extinct per annum, range from 0.01 – 0.7% (Monastersky, 

2014). At the higher end of this estimate, a sixth mass extinction of species, an event 

categorised by the loss of 75% of species on Earth, could occur by 2200 (Monastersky, 

2014). Such an event is likely to be exacerbated due to a phenomenon known as co-

extinction, or extinction cascades, whereby the interactions between species mean that when 

one species is lost, others that depend on its existence may also become extinct (Dunn et al., 

2009). Furthermore, the ‘ecosystem services’ that are provided by wildlife and which can be 
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beneficial to humans, such as pollination and coastal protection, may disappear as 

biodiversity decreases globally (Mace et al., 2012; Worm et al., 2006). 

Butchart et al. (2010) used 31 indicators to assess the progress towards international 

biodiversity conservation targets set for 2010. Although there were some successes locally, 

they found that biodiversity generally decreased, with various pressures that contribute to 

biodiversity loss increasing over the past four decades. The Convention of Biological 

Diversity (CBD) laid out the Aichi Biodiversity Targets for 2020, which are a set of twenty 

targets, divided into five strategic goals, the main focus of which is on the conservation of 

biodiversity and ecosystem services and the promotion of sustainable living. In 2014, the 

CBD released the Global Biodiversity Outlook 4, which assessed the progress of the 2020 

targets. Although the response to biodiversity loss has increased notably, the pressures on 

biodiversity are still worsening, and in general the targets are unlikely to be met by 2020 

(Secretariat of the Convention on Biological Diversity, 2014; Tittensor et al., 2014). 

As human populations continue to grow in density and in economic development, 

ecological systems experience increasing pressure from human-induced rapid environmental 

change (HIREC; Fahrig, 2003; Parmesan, 2006; Sih, 2013). The projection of a potential 

sixth mass extinction (Monastersky, 2014), combined with a growing knowledge of the 

benefits that humans gain from biodiversity (Mace et al., 2012), means that conservation 

actions to protect the world’s most vulnerable species are increasingly important.  

 Agent-based models use agent-level rules to simulate the emergence of population 

dynamics. They have the potential to offer insights into conservation actions and strategies 

where empirical experiments are impossible or unethical. These kind of population models 

help scientists to understand how ecological systems react and adapt to HIREC (Evans et al., 

2013a; Sih et al., 2016). They complement empirical data by highlighting data gaps, 

generating hypotheses, and predicting alternative futures.  

Spatially explicit mechanistic models are particularly useful for evaluating how a 

species of conservation concern will respond to alternative management options. They 

typically structure the agents on real animals in populations that react to real-world 

environments rather than hypothetical or idealized environments (DeAngelis and Yurek, 

2017).  For example, the spatially-explicit population model of Watkins et al. (2015) was 

designed to simulate jaguar movements across the Central Belize Corridor, connecting the 
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Selva Maya forest block in the north of Belize to the Mayan Mountain forest block in the 

south (Figueroa, 2013). They found that jaguars in protected areas had higher fitness in terms 

of fecundity, energy reserves, age and life expectancy than those outside the reserves. 

Population models of such species are of particular importance due to both the role of 

apex predators in ecosystem regulation and maintenance (Kelly, 2003; Watkins et al., 2015) 

and the way in which HIREC has led to a global decrease in range for the majority of large 

carnivores (Parmesan, 2006; Sih, 2013; Wolf and Ripple, 2017). Indeed, 77% of predators 

with a body mass greater than 15 kg are suffering population declines, and 61% have an 

IUCN status of either vulnerable, endangered, or critically endangered. (Ripple et al., 2014). 

Important factors in the vulnerability of large predators to HIREC include their large body 

size, low densities, and large home ranges (Cardillo et al., 2004; Marshall et al., 2015). The 

decrease in large-bodied predators has led to the global disruption and degreadation of 

ecosystems and processes (Estes et al., 2011; Ripple et al., 2014). These declines could even 

impact local cultures, due to the way in which large predators have cultural significance as 

important symbols in cultures worldwide (Di Minin et al., 2016). 

The next three sub-sections will focus on three threats of particular concern to 

predator conservation: deforestation, wildmeat hunting, and direct persecution in response to 

livestock depredation. Chapter 5 will involve developing a model to evaluate their interacting 

effects. 

 

1.4.1 Deforestation 

Anthropogenic land-use change is one of the drivers of biodiversity loss. Many predict that 

land-use change will have the biggest effect on biodiversity this century, with climate change 

and nitrogen deposition also having large effects (Sala et al., 2000). Humans have converted 

40-50% of the global ice-free land surface into agricultural or urban terrain (Chapin et al., 

2000). Activities associated with agriculture may be responsible for 70% of projected 

biodiversity loss in terrestrial taxa (Secretariat of the Convention on Biological Diversity, 

2014).  The resultant habitat loss and fragmentation, the change of configuration of a 

landscape, are major drivers of biodiversity loss (McGarigal and Cushman, 2002; Fahrig, 

2003).   
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The effects of fragmentation include reduced gene flow between populations, which 

may then lead to a decrease in effective population size and lower adaptive fitness due to 

factors such as inbreeding (MacArthur and Wilson, 1967; Soulé and Mills, 1998). This 

isolation of populations accompanies other effects of fragmentation, such as edge effects, 

invasions and increased anthropogenic use of the forest due to better access (Marsh, 2003), 

which may interact with other threats to species, including over-exploitation of ecosystems, 

and fires (Laurance et al., 2002). The extent and character of these effects are not uniform, 

and vary by organism, as well as by habitat type and environment (Haila, 2002). Furthermore, 

studies have been known to confound fragmentation and habitat loss. Fahrig (2003), for 

example, found that habitat loss had more of an impact on biodiversity than fragmentation 

when decoupled from each other. 

Land-use change is associated with massive deforestation, and anthropogenic land-use 

change or natural causes destroyed around 130,000 km2 of forest between the years 2000 and 

2010, with South America and Africa suffering the largest net loss of forest habitat 

(Secretariat of the Convention on Biological Diversity, 2010). A study on deforestation in the 

Amazon, conducted over three decades, found that up to 1,200 km2 of conservation land were 

logged per year (Asner et al., 2005). Although good logging practices reduce both 

environmental damage and costs, destructive and illegal logging is still very common in the 

tropics (Putz et al., 2000), resulting in habitat loss and fragmentation. Indeed, illegal logging, 

drug trafficking and agricultural development represent the main causes of high deforestation 

rates in Mesoamerica (Wultsch et al., 2016). Although some predators are able to inhabit 

unprotected areas (Boron et al., 2016), contact with agricultural areas increases the risk of 

livestock depredation and persecution as pests. These issues have a significant impact upon 

large-bodied mammals, which often have large home ranges. Female jaguars, for example, 

have been estimated to require patches of at least 180 km2 of primary forest to meet their 

space requirements (de la Torre et al., 2017). Such species therefore often find themselves in 

competition with humans for space and food, as well as being victims of human 

encroachment (Urquiza-Haas et al., 2009).  

A metapopulation is a set of populations connected by gene flow. The rescue effect 

hypothesis proposes that immigration between these populations may reduce the probability 

of extinction of individual populations, and allow re-establishment of locally extinct 

populations (Gonzalez et al., 1998; Tewksbury et al., 2002). A lack of gene flow between 
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populations can lead to extinction risk as a result of inbreeding and local stochasticity, 

especially when these isolated populations are small (Swift and Hannon, 2010). The viability 

of a metapopulation does not depend on habitat loss alone, but also on the spatial distribution 

of habitat (Ewers and Didham, 2006). As an example, Coulon et al. (2004) found that roe 

deer tended to stick to areas of woodland during dispersal, which meant that habitat 

connectivity strongly affected the gene flow between populations.  

Corridors, in the context of habitat fragmentation, are sections of habitat that connect 

separate patches (Tewksbury et al., 2002).  The advantages and disadvantages of man-made 

wildlife corridors are summarized in Table 1, below. 

 

Table 1. The advantages and disadvantages of man-made wildlife corridors for use in 

increasing habitat connectivity. 

Advantages Disadvantages 

Corridors may improve genetic 

diversity (Petracca et al., 2013). 

The structural design of corridors may have important 

effects on their effectiveness (Sieving et al., 2000). 

Corridors may allow the re-

colonisation of extinct populations in 

the metapopulation by the “rescue 

effect” (e.g., Gonzalez et al., 1998). 

Corridors may aid the spread of disease, invasive 

species and environmental disturbances, such as 

wildfires (Simberloff and Cox, 1987). 

Corridors may facilitate large-scale 

migrations in the wake of climate 

change (Ewers and Didham, 2006). 

It may be more economically viable to use alternative 

conservation measures, such as moving species 

manually between habitat fragments (Simberloff and 

Cox, 1987) or simply increasing amount of protected 

area. 

Corridors may benefit associated 

plant species through increased 

pollination and seed dispersal (e.g., 

Tewkesbury et al., 2002). 

Corridors are logistically-complicated long-term 

projects, requiring negotiation with stakeholders and 

substantial funding (Salom-Pérez et al., 2010). 
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Beier and Noss (1998) assessed previous studies on corridors and found that none of them 

had properly investigated the benefits of corridors correctly, with many lacking proper 

experimental procedures. This meant that many corridors set up before and during this period 

in time were created without any adequate scientific consensus, and based on pure intuition 

(Tewksbury et al., 2002; Gilbert-Norton et al., 2010). However, recent studies have managed 

to effectively assess the benefits and design flaws of corridors, allowing construction with 

proper scientific backing (Gilbert-Norton et al., 2010). It should be noted, nevertheless, that 

Beier and Noss (1998) emphasised that the few reliable studies they did find pointed towards 

a positive effect of corridors, rather than neutral or detrimental effects. 

 

1.4.2 Wildmeat hunting 

The world is suffering a wildmeat crisis (Ripple et al., 2016), which has already led to 

multiple extinctions (Fa et al., 2002; Milner-Gulland and Bennett, 2003; Darimon et al., 

2015). Wildmeat (often referred to as ‘bushmeat’ on the African continent), is animal protein 

obtained by hunting wild species. In the past few decades, the consumption of wildmeat has 

increased (Milner-Gulland and Bennett, 2003). Land-use change (LUC), the construction of 

roads, commercialisation of hunting and the technological advance in hunting weapon 

technology have all led to the increase in wildmeat hunting (Peres, 2000; Wilkie et al., 2000; 

Milner-Gulland and Bennet, 2003; Wolfe et al., 2005). Wildmeat can contribute a significant 

portion of protein to the diet of people in the tropics (Bennett and Robinson, 2000; Peres, 

2000). In addition to subsistence, wildmeat can provide a role in household income (Beier 

and Noss, 1998; Wilkie and Carpenter, 1999; de Merode et al., 2004).  

The hunting of wild species, whether for subsistence or commercial uses, is 

sometimes a more significant cause of biodiversity loss than deforestation (Redford 1992). 

Indeed, hunting has been responsible for the extinction of 12 species of vertebrate in Vietnam 

over the past five decades (Bennet and Rao, 2002). The result of these local and global 

extinctions is the presence of “empty forests” or “half-empty forests”, where there are no 

outward signs of ecosystem destruction but where defaunation from hunting has left the 

forest devoid of large vertebrates (Redford and Feinsinger, 2001). Most target species are 

large, K-selected mammals, whose low reproductive rates cause them to be more susceptible 

to hunting than smaller r-selected species (Mangel et al., 1996; Peres and Palacios, 2007). 
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Hunting interacts with deforestation and fragmentation to further impact large-bodied 

animals, as larger species are often the first targets for wildmeat hunters (Ripple et al., 2014; 

Ripple et al., 2015). Population declines in large birds and mammals can impact species at 

other trophic levels through trophic cascades, disrupting entire communities (Peres, 2000; 

Andresen and Laurance, 2007; Stoner et al., 2007). 

Wildmeat hunting in Latin America is less frequent than in the already heavily 

defaunated continents of Africa and Asia (Fa and Peres, 2001). Nevertheless, estimates of 

wildmeat hunting in the Brazilian Amazonia reach 165, 000 tons a year (Peres, 2000). In 

numbers of individual animals, this may equate to 23.5 million from multiple taxa (Peres and 

Palacios, 2007). Although the extent and current consequences of wildmeat hunting in the 

Amazon may not be as great as those in Africa, it appears that the wildmeat crisis extends to 

the Neotropics and its people.  

Wildmeat consumption puts apex predators in competition with humans. In Belize, 

for example, 7% of protein-containing meals include meat from one of six wild species 

(Foster et al. 2016). These species are the nine-banded armadillo, paca, collared peccary, 

white-lipped peccary, red brocket deer and white-tailed deer, species that make up large 

proportions of the diets of jaguars and pumas in Belize (Foster et al. 2016). Hence, humans 

are in competition with these large felids, with implications for jaguar and puma abundance, 

and predation by these species on livestock.  

 

1.4.3 Direct persecution of jaguars 

Livestock frequently appear in the diets of in big cats across the globe (Ghouddousi et al., 

2016; Babrgir et al., 2017). Local farmers may opt to poison or shoot big cats in order to 

protect their livestock (Trinkel et al., 2016).  In some areas, direct persecution may represent 

a large proportion of felid mortalities. For example, Trinkel et al. (2016) found that within 

their study period human-wildlife conflict caused almost 50% of lion mortalities on the 

border of Etosha National Park. Subadult males and adult females represented the majority of 

persecuted individuals, and this had second-order effects on the population structure of lion 

prides (Trinkel et al., 2016). Moreover, Tortato et al. (2017) suggest that depredation of large 
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livestock may lead to a greater risk of infanticide due to attraction of multiple individuals to a 

carcass, including females with cubs. 

 Predators may rely on livestock as a food source where stocks of wild ungulates are 

low (Meriggi and Lovari, 1996; Dahle et al., 1998). The findings of Newsome et al. (2016), 

for example, indicated that wolves in Europe may change their diet in response to populations 

of wild prey. Hence, low populations of wild prey may contribute to the depredation of 

livestock (Khorozyan et al., 2015). Nevertheless, livestock present easy targets for wild 

predators as the process of domestication has left them without natural behaviours and agility 

(Linnell et al., 1999). 

 Livestock losses due to big cat depredation affect small economies and livelihoods 

(Inskip and Zimmerman, 2009). As a result, large carnivores are often viewed as pests by 

local people (Babrgir et al., 2017). Attitudes towards large carnivores may depend on level of 

education and knowledge of predators (Mkonyi et al., 2017). A study on Persian leopard 

depredation found that 80% of survey respondents in northern Iran considered leopards a pest 

and 45% supported either legal hunting or culling of the Persian leopard population. Public 

perception and the media may often drive precautionary lethal control of populations 

(Fernández-Gil et al., 2016). For example, Fernández-Gil et al. (2016) found no correlation 

between coverage in the media of damages caused by wolves and the actual damages. 

However, coverage in the media correlated with the level of culling. Thus, although media 

coverage was unrelated to actual damages, it impacted the perception of stakeholders and 

determined measure of control. Furthermore, stakeholders may persecute one species or 

individual for the actions of another, despite the ineffectiveness of this lethal measure 

(Knowlton et al., 1999).  

 Entities involved in lethal control include governments, agencies, or individual 

stakeholders (Wirsing and Ripple, 2010). Nevertheless, the persecution of apex predators has 

raised ethical concerns, given the ecological impact of the removal of large-bodied species 

and the questionable effectiveness of lethal methods (Vucetich and Nelson, 2014; Eklund et 

al., 2017). Poudyal et al. (2016) found that that the number of sheep killed increased by 2.2% 

for each wolf killed, indicating that lethal control of wolves may have undesirable effects. 

Black bears, pumas and wolves have also shown unexpected reactions to lethal control 

(Treves et al., 2010; Peebles et al., 2013; Wielgus and Peebles, 2014). Explanations for these 

effects include source-sink dynamics (Peebles et al., 2013) and social disruption (Borg et al., 
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2015). Lethal intervention may create gaps in communities, allowing smaller predators to 

take the place of large predators (Prugh et al., 2009). Moreover, predators may respond in an 

unintuitive way to lethal control. For example, Knowlton et al. (1999) found that coyotes 

compensated for reductions in population from persecution by increasing their rate of 

reproduction. 

There are two general non-lethal pathways to combatting direct persecution of felids 

as pests. The first is to initiate compensation schemes (for example, Bauer et al., 2017), 

which are motivated by the theory that compensation creates a win-win situation, benefitting 

all stakeholders (Dickman et al., 2011). However, these are only feasible when funding is 

both available and sustainable, and although compensation schemes are a frequently used 

method for reducing human-wildlife conflict (Naughton-Treves et al., 2003; Treves et al., 

2009), they may not be effective (Fernández-Gil et al., 2016). Attitudes towards large 

carnivores may not be linked to depredation events, but to socio-economic factors (Rust et 

al., 2016; Mkonyi et al., 2017). In some areas, negative perceptions of predators may be 

linked to personal safety rather than economic factors (for example, Porfirio et al., 2016), and 

where fear drives negative opinions of predators, compensation schemes are unlikely to prove 

successful. Moreover, compensation may actually create an incentive not to prevent 

depredation events (Bauer et al., 2017). 

A second pathway is improving animal husbandry. Penning and the use of guard dogs 

or donkeys can reduce levels of felid depredation (Ghoddousi et al., 2016). Felids may target 

straggling individuals, hence good veterinary standards may aid in improving herd safety 

(Ghoddousi et al., 2016). Indeed, Treves et al. (2016) found that non-lethal methods of 

protection were more effective than lethal methods, in particular the use of guard dogs and 

‘fladry’, a visual deterrant to predators. Other non-lethal methods include electric or audio 

deterrants (Musiani et al., 2003; Shivik et al., 2003). In Miller et al. (2016), husbandry and 

deterrants proved the most effective measures of control. However, both suffered from high 

variation, in comparison to lethal control, which although on average less effective, had low 

variation. 
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1.4.4 Conclusions 

Deforestation, wildmeat hunting, and direct persecution represent three key anthropogenic 

threats to predators. These three threats also interact with one another, in that deforestation 

increases the availability of previously inaccessible areas to hunters, a reduction in natural 

prey may result in an increased rate of livestock depredation, and deforestation puts predators 

in closer contact with livestock. ABMs are mechanistic, and hence have the potential to 

model the interactions between factors and predict potential behaviour of animals in response 

to HIREC, which disproportionately affects apex predators. They may hence provide insights 

that can augment current conservation research. Despite their promise, none have attempted 

to utilise an ABM to simulate these interacting effects on the movement of large felids. In 

chapter 4, we employ an ABM to investigate how interacting effects affect the movement of 

large felids through a movement corridor. 

 

1.5 Thesis aims 
Highly complex, mechanistic models have the potential to contribute to the conservation of 

species impacted by HIREC. Given the promise of ‘next-generation modelling’ (Grimm and 

Berger, 2016) and the increasing availability of high-powered computing tools, we predict 

that researchers will follow the examples of Watkins et al. (2015) in developing complex, 

spatially explicit mechanistic models of animal movement and habitat choice in a landscape, 

in order to augment current knowledge, and provide mechanisms and evidence for 

predictions. 

 This thesis presents the development of one such complex, mechanistic model, and its 

parameterisation using modern techniques. Our main aim is to employ it as an exemplar for 

evaluating applications and limitations of complex, spatially explicit mechanistic models, in 

order to provide others with both an inspiration for future work and an understanding of 

potential biases. 

Chapter 2 presents a spatially explicit, fine-grain ABM of jaguar movements within 

the Cockscomb Basin Wildlife Sanctuary in Belize. The ABM includes gender-specific 

interactions between jaguar agents and fine-scale features such as trails, river systems and 

cell-specific slopes in hilly terrain. I calibrate the model using real-world patterns from 

empirical camera-trap and telemetry data, in accordance with pattern-oriented calibration 
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(Grimm and Railsback, 2012). In doing so, I reveal a caveat of parameterisation using spatial 

point data, whereby the selection of best-fit parameter values then depends on the original 

choice of resolution. The next two chapters demonstrate two different applications of the 

high-resolution model: (a) to develop and evaluate a new empirical method of measuring 

animal movement from GPS data, using a virtual ecology approach (Zurell et al., 2016); (b) 

to evaluate the effects of interacting threats on jaguars in a manmade wildlife corridor. 

Chapter 3 uses the model developed in chapter 2 to evaluate the reducing accuracy of 

spatial metrics derived from telemetry data as fix intervals increase. I use results from the 

simulation to introduce a method for correcting for bias caused by long fix intervals. I show 

that the mechanistic model was essential to evaluating and developing this empirical 

methodology.  

Large felids are under threat from deforestation, wildmeat hunting, and direct 

persecution due to livestock depredation. They require large areas of forest for their home 

range and, although often able to live in agricultural environments, this puts them into contact 

with livestock, increasing the risk of livestock depredation. Deforestation enables hunters to 

have greater access to new hunting grounds. Moreover, depletion of prey may cause jaguars 

to look for other prey sources, such as livestock. Thus, the anthropogenic impacts interact in a 

manner that is difficult to quantify in reality due to the presence of other confounding factors. 

In chapter 4, I employ the high-resolution model I developed in chapter 2 to evaluate the 

effects of interacting factors (deforestation, wildmeat hunting, and direct persecution) on 

large-felid movement across a corridor area in Belize. To the best of my knowledge, this 

represents the first mechanistic model to evaluate the effect of interacting anthropogenic 

threats on a felid population. 

The applications to real-world problems developed in this thesis have demonstrated 

the utility of complex, mechanistic models in different areas of conservation biology. In 

chapter 5 I synthesise these results by presenting limitations of the model and outlining 

potential future work. Although I identify caveats that influence the predictive ability of some 

spatially-explicit models, I remain hopeful that advancements in computing will overcome 

some of the current hurdles to creating complex models.  
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Abstract 

Agent-based models allow population-level processes to emerge from individual-level 

behaviours. They will play a major role in next-generation mechanistic modelling of 

organismal responses to human-induced rapid environmental change. Choice of resolution 

remains an outstanding issue for these models. Although fine-grain models can represent 

fine-scale point and line features, such as trails and rivers, they require large amounts of 

computing power. More fundamentally, the choice of resolution influences the values of 

output parameters estimated by the in-silico experiments, which researchers may then use to 

validate their models or to inform virtual- or field-ecology studies. We developed and 

validated an agent-based model of fine-scale movement decisions by jaguars (Panthera 

onca), based on camera trap and radio tracking data from a wildlife reserve in Belize. We 

used the model to investigate the effect of resolution on model outputs from in-silico 

experiments. All summary statistics depended on resolution. Models with coarser resolutions 

had double the number of detections by virtual camera-traps and a higher number of virtual 

captures of individuals than models with finer resolutions, and they overestimated minimum 

convex polygon sizes of territories. Best-fit parameter values for the models differed when 

calculated using different resolutions. Thus, the resolution dictated how agents used their 

home ranges and interacted with one another. We caution against drawing inferences that 

depend on model resolution, when researchers apply outputs from agent-based models to real 

scenarios. The dependence of the model on choice of resolution raises questions about the 

ability of spatially-explicit mechanistic models to truly replicate species behaviour, and hence 

to predict how species will react to our changing world. 

Key words: animal movement; fine-grain; model validation; pattern-oriented modelling; 

radiotelemetry  
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2.1 Introduction 
As human populations continue to grow in both density and economic development, 

ecological systems experience increasing pressure from human-induced rapid environmental 

change (HIREC) (Fahrig, 2003; Parmesan, 2006; Sih, 2013). Deforestation and human 

encroachment disproportionately impacts large-bodied mammals, which often have large 

home ranges that bring them into competition with humans for space and food (Urquiza-

Haas et al., 2009). Population models help scientists to understand how ecological systems 

react and adapt to HIREC (Evans et al., 2013a; Sih et al., 2016). They complement 

empirical data by highlighting data gaps, generating hypotheses, and predicting alternative 

futures. Recent developments in mechanistic, process-based models have incorporated a 

high level of complexity (Singer et al., 2016; Synes et al., 2016), reflecting a change in 

mind-set from the previously favoured simpler models (Evans et al., 2014). Evans et al. 

(2013b) have argued that simpler models often have less predictive power than complex 

models, and that over-simplified models risk incorrect predictions by ignoring key 

ecological processes. In contrast, mechanistic models aim for a realistic depiction of 

individual choices and interactions (Singer et al., 2016). Grimm and Berger (2016) coined 

the term “next-generation modelling” in describing the proliferation of these models. In 

doing so, they identified their essential elements as structural realism, emergence, and 

predictions. Here, we investigate the issues that modellers may encounter when attempting 

to parameterise spatially-explicit mechanistic models using empirical data.  

Spatially explicit mechanistic models are particularly useful for evaluating how a 

species of conservation concern will respond to alternative management options. They 

typically structure the agents on real animals in populations that react to real-world 

environments rather than hypothetical or idealized environments (DeAngelis and Yurek, 

2017). Watkins et al. (2015), for example, modelled a specific jaguar population in Belize in 

order to assess how different landscape scenarios would affect jaguar movement through a 

corridor area. Two components of spatially-explicit ecological models are the environment, 

which modellers most commonly represent using a grid of cells, and the agents, which 

navigate the grid using a movement algorithm. Examples of algorithms include random 

correlated walks and diffusion models of movement (Beyer et al., 2013; Bernal-Escobar et 

al., 2015). The choice of movement algorithm in a spatial model determines how agents 

respond to their environment, and therefore, how they will respond to experimental scenarios. 

If stakeholders use the results of the model to inform their decisions, the choice of movement 
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algorithm may impact on the decisions of those stakeholders; and hence on the conservation 

of a species or ecosystem. 

Optimizing the resolution of spatially explicit models remains an outstanding issue for 

agent-based models (ABMs). The resolution is determined by the choice of grain size, and 

the optimum size depends on the scenario under consideration. Broad scale patterns of animal 

behaviour may suit a coarse resolution across a large area (Nezer et al., 2017). Kramer-

Schadt et al. (2004), for example, used a grain size of 1×1 km to investigate the spread and 

dispersal of lynx across Germany. A finer resolution may better suit fine-scale movement 

decisions of individuals in a local area. High-resolution models allow us to examine how 

individuals interact with small, thin, or linear features; such as watering holes, habitat 

boundaries, river systems or trail networks (Nezer et al., 2017). Trail networks or river 

systems can enhance mobility or funnel individuals in particular directions (Abrahms et al., 

2015; Latham et al., 2011; Whittington et al., 2011). The choice of spatial resolution for the 

model depends either on the question the model wishes to address or on the spatial resolution 

of available environmental data, which generally come from GIS or remote sensing; 

including altitude, categories of land cover, or distance to relevant features. Hence, choice of 

resolution often occurs at an early stage of modelling. 

Using empirical data to parameterise spatial mechanistic models increases credibility 

in that model’s ability to predict responses to experimental scenarios; such as the response of 

a large mammal to increased deforestation. Pattern-oriented modelling uses real-world 

patterns to create and parameterise models with the aim of accurately replicating real-world 

patterns, and therefore aid in model design and calibration (Grimm et al., 2005; Grimm and 

Railsback, 2012). Approximate Bayesian Computation (ABC; Hartig et al., 2012) aids the 

parameterisation and validation of complex models (Van der Vaart et al., 2015). To 

parameterise models using ABC, researchers run the model with a large number of different 

sets of parameter values, and then isolate the set, or sets, of parameter values that best fit 

empirical data. For both of these techniques, the emphasis is on parameterising and building 

models that fit empirical data so as to increase the credibility of results from future studies 

that use the model.  

 Ground-truthing of movement algorithms requires spatial data from empirical 

studies. For example, Watkins et al. (2015) used results from empirical camera-trap studies to 

validate their movement model. To our knowledge, this study represents the only validation 

of an ecological mechanistic model of mammalian movement against empirical data. 

Nevertheless, as we move into an era of next-generation modelling, it is likely that an 
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increasing number of researchers will follow the example of Watkins et al. (2015) by 

attempting to ground-truth their movement models against spatial empirical data. These data 

may include summary statistics from radiotelemetry, occupancy, and camera-trap studies, all 

comprising observations taken at particular points in time and space. If we replicate these 

studies using a grid-based model, each of these points become the size of an individual cell. 

As an example, in a model with a spatial resolution of 100 × 100 m, each camera trap would 

sample an unfeasibly large area of 100 × 100 m. Thus, summary statistics of virtual spatial 

studies may depend on the initial choice of spatial resolution. If we use these summary 

statistics as spatial patterns to parameterise and validate the spatial components of our model, 

our choice of movement algorithm may also depend on our initial choice of resolution. An 

argument for the use of complex mechanistic models is that their focus on mechanisms and 

processes allow them to exhibit greater predictability, as an agent’s reaction to a situation is 

the result of behavioural algorithms. However, if the choice of algorithm depends on the 

choice of resolution, it calls into question the ability of that model to reflect reality rather than 

merely being a good-enough fit to current data at a certain resolution. This may result in the 

introduction of conflicting models for the same species producing different answers to the 

same question, which would only serve to confuse the issues that such models are intended to 

inform, as well as reducing credibility in spatial models. Alternatively, researchers may 

decide to use best-fit parameter values or sensitivity analysis to draw conclusions about 

animal behaviour; as in Imron et al. (2012). However, if the choice of parameter values 

depends on the resolution of the model, inferences about animal behaviour based on those 

parameters will also depend on model resolution. Both modellers and empiricists require a 

greater understanding of how choice of resolution can affect the parameterisation process in 

order to draw appropriate conclusions from model outputs and identify potential sources of 

bias. 

Despite the increasing importance of spatially-explicit ABMs in conservation biology, 

no study has yet investigated the dependence of the parameterisation process on the choice of 

spatial resolution for models. Our aim is to use an ABM to investigate how changing 

resolution affects a) model fit to empirical data given a predetermined set of parameter 

values, and b) which parameter values best fit empirical data. To this end, we developed a 

spatially-explicit ABM of jaguar movements through the Cockscomb Basin Wildlife 

Sanctuary in Belize. We based our model on the ABM presented in Watkins et al. (2015), 

which includes gender-specific interactions between agents and their environment. We 

restructured the model to accommodate fine-scale features to the modelled environment, 
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including trail and river systems, and cell-specific slopes, in order to evaluate the effect of 

resolution on movement models for animals that navigate using environmental cues.  

In accordance with the principles of pattern-oriented calibration (Grimm and 

Railsback, 2012), we calibrated the movement model at a spatial resolution of 40 × 40 m 

using real-world patterns from empirical camera-trap and telemetry data. We ran the model at 

each of three resolutions using the parameter values derived from calibration: 40m × 40 m, 

100 × 100 m, and 200 × 200 m. We investigated the influence of resolution on model outputs 

for five summary statistics: number of detections during each camera-trap study; absolute 

number of different male/female individuals caught on camera; size of male/female minimum 

convex polygon (MCP). 

 

2.2 Methods 
2.2.1 Study site 

Belize covers a mainland area of 21,800 km2 (Lands and Survey Department, 2015; United 

Nations Development Program, 2015). It has the highest percentage of forest cover of any 

country in mainland Central America, at 61% (FAO, 2010), with current or candidate 

protected areas taking up 43% of its mainland (Foster et al. 2016). 

The study area of Cockscomb Basin Wildlife Sanctuary (CBWS, 425 km2) lies in the 

south of the country (Figure 1). Its position in the Mayan mountains makes the terrain in 

CBWS hilly and rugged. The land-cover types in CBWS are lowland broad-leaved moist 

forest, sub-montane broad-leaved moist forest, and shrub-land. CBWS supports sympatric 

populations of jaguars and pumas (Harmsen et al., 2009; Harmsen et al., 2011).  

 



Chapter 2. Effects of model resolution   

 41	

 
 
Figure 1. The location of the study site, Cockscomb Basin Wildlife Sanctuary (CBWS), within 

Belize.  

 

 

2.2.2 Study species 

Jaguar density estimates in CBWS vary from 3.5 to 11.0 adults per 100 km2, suggesting a 

high density compared to other areas across the range (Harmsen et al., 2010a). Jaguars prey 

mostly on medium-sized mammals (Harmsen et al., 2011). Armadillos make up 50% of 

jaguar diet in CBWS (Foster et al., 2010), and their high availability may contribute to the 

high densities of jaguars in the reserve (Foster et al., 2010). 
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2.2.3 Empirical data 

The telemetry data tracked two male jaguars over 226 and 376 days, and one male puma over 

320 days. We used these data to estimate home ranges by minimum convex polygon. We 

estimated measurements for female minimum convex polygon by dividing male MCPs by 

2.5, an approximation of the dividend between average male MCP and average female MCP 

in both Figueroa (2013) and Rabinowitz and Nottingham (1986). Annual MCP for male and 

female jaguars in Figueroa (2013) was 257 km2 and 111 km2, respectively. Minimum home 

ranges for male and female jaguars in Rabinowitz and Nottingham (1986) were 28 km2 and 

10 km2, respectively. Hence, we approximated female home range by dividing our calculated 

home range for male jaguars by 2.5. The camera-trap data covered once-yearly surveys in 

CBWS from 2011 to 2015, each lasting ~3 months during the dry season. Unique pelt 

patterns allowed identification of individual jaguars (Silver et al., 2004). These data yielded 

detection frequencies and numbers of individuals of each sex, per camera, and in total within 

CBWS. 

 

2.2.4 The model 

We used Python to write the simulation model, and a combination of Python and R for data 

handling and statistical analysis. Appendix I describes the Overview, Design concepts, and 

Details (ODD; Grimm et al., 2006) for the model. For each set of parameter values, the model 

ran for 21,900 time steps, each simulating 12 min and totalling a 6-month period. Figure 3 

shows a flow chart of the full model.  

 

2.2.4.1 Background grid 

The simulation model ran on a grid of cells, each representing 40 × 40 m. Each cell stored the 

following attributes: cell identity, x coordinate, y coordinate, terrain type, slope, distance to 

water, distance to trail, altitude, camera identity, jaguar occupant identity, female jaguar 

pheromone level, male jaguar pheromone level, the last female jaguar on the cell, the last 

male jaguar on the cell, neighbouring cells and attributes of cell graphics. 
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Information on terrain came from GIS data by Meerman (2011). We used the ArcMap 

tool Euclidean Distance to calculate distance to river and distance to trail, and the Slope tool 

to calculate slope from altitude data. We converted all terrain files to raster files, where 

necessary, and then to ASCII files. Panthera Belize provided GIS files for camera stations 

within CBWS. We converted the camera station GIS file to an ASCII file. The model read all 

ASCII files at the beginning of each replicate. Terrain- and camera-related attributes were 

static throughout each replicate. 

Agents within the model used a proxy for pheromones to represent the various ways 

in which jaguars communicate with each other, including scent marking, scrapes, and 

vocalisations (Harmsen et al., 2010b). 

 

2.2.4.2 Agents 

The model initiated a new population of agents at the beginning of each replicate (Figure 2). 

It assigned initial agent locations, at random, from a selection of all cells within CBWS. 
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Figure 2. Process for each replicate. The model creates two output files, one representing a 

virtual telemetry study and the other a virtual camera-trap study. 

 

Agents represented jaguars within the model. Each agent had the following attributes: 

identity, location, graphics attributes (colour, shape and size of agent in graphical 

representation), gender, current direction, and the agent’s last position. 

The agents had an equal chance of being male or female. Identity, graphics, and 

gender remained static throughout the replicate. Current direction, location, and the agent’s 

last position changed as the time steps progressed. Directional persistence, the likelihood of 

an agent maintaining its current direction, differed between genders. The model did not 

incorporate birth and death as the simulation ran for too short a timescale to warrant its 

inclusion. 

At the beginning of each time step, each agent placed pheromones on their current 

cell. The program then entered the Move function, Re-entry function, and lastly, the Decay 

pheromones function (Figure 3). After these functions, the model decayed pheromone levels 

in all cells and wrote data to output files. 
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Figure 3. Flowchart for each time step. Squares contain process commands and diamonds 

contain conditional if statements.  

 

2.2.4.3 Move function 

For each agent within CBWS, the Move function (Figure 4) created a random probability 

between 0 and 1. If this did not exceed a pre-set probability of random movement, the agent 

randomly selected one of the eight neighbouring cells for its next cell. Otherwise, the model 

created another random probability between 0 and 1. If this did not exceed a pre-set 

probability of directional persistence, the agent continued moving in the same direction it had 

moved previously. If an agent did not move randomly, or in the same direction as previously, 

the model calculated the gender-specific cost values of all neighbouring cells. The cost value 

was calculated as per Equation (1), which represents cost calculation for male agents (𝐶"), 

and Equation (2), which represents cost calculation for female agents (𝐶$).  
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𝐶" = 𝑃ℎ" + 𝐶𝐹𝑀 +𝑀𝐷𝑊 ∙ 𝑑𝑊 + 	𝑀𝐷𝑇 ∙ 𝑑𝑇 +𝑀𝑆 ∙ 𝑆 + 	𝑀𝐴 ∙ 𝐴 +𝑀𝑇𝑟 

(1) 

𝐶$ = 𝑃ℎ$ + 𝐶𝑀𝐹 + 𝐹𝐷𝑊 ∙ 𝑑𝑊 + 	𝐹𝐷𝑇 ∙ 𝑑𝑇 + 𝐹𝑆 ∙ 𝑆 + 	𝐹𝐴 ∙ 𝐴 + 𝐹𝑇𝑟 

(2) 

 

Table 1 contains the definitions for the majority of parameters in Equations 1 and 2. PhM is 

total pheromone placed by male agents in the cell. PhF is total pheromone placed by female 

agents in the cell. dW is the distance between the cell and a water feature. dT is the distance 

between the cell and a trail. S is the slope associated with the cell. A is the altitude associated 

with the cell. The gender-specific values MTr and FTr were only included in the equation 

when an agent was located on a trail square. CFM was only included in the cost calculation 

for male agents (Equation 1) if the amount of female pheromone associated with the cell was 

greater than 0. Similarly, CMF was only included in the cost calculation for female agents 

(Equation 2) if the amount of male pheromone associated with the cell was greater than 0. 

The agent then chose the least-cost neighbouring cell. Once the agent selected a cell, the 

model removed the agent from the cell occupancy list and changed the x and y coordinates of 

the agent. Graphical information also changed to reflect the new location. 
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Figure 4. The process for the move. The model chooses whether to move in a random direction, 

move in the same direction or move based on habitat attributes. If it uses habitat attributes, it 

calculates the chosen square based on gender-specific costs. Squares contain model commands 

and diamond shapes contain if statements.  

 

2.2.4.4 Re-entry function 

If a resident was outside the boundaries of CBWS, the model entered a Re-entry function. 

The model created a selection of cells consisting of the last non-null cell the agent stepped on 

and any border cells within 250 m of that last cell. The model selected one of these cells at 

random and moved the agent to this cell. 
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2.2.5 Raw data format 

The model stored data in two text files, one representing a virtual camera-trap study and one 

representing a virtual telemetry study. It wrote to these files at the end of each time step.  

If an agent was in the same cell as a camera-trap, the model wrote the camera 

location, replicate number, time step, coordinates and agent gender to the file.  

The model wrote each agent’s location and attributes to the telemetry file. The 

telemetry file also included information on the time step and replicate number. 

 

2.2.6 Validation 

We used Latin Hypercube Sampling to select 2500 parameter sets (Carnell, 2016). We ran 

each of these parameter sets using a combination of the Iridis supercomputer at the University 

of Southampton, 2 desktop computers and 1 laptop. One replicate of the model took 

approximately 4 hours to run.  

We sampled the virtual telemetry data to points occurring every simulated 24 hours, in 

order to match the empirical data. For each model, we calculated the following: number of 

detections during each camera-trap study; absolute number of different male individuals 

caught on camera; absolute number of different female individuals caught on camera; male 

minimum convex polygon (MCP) size; female MCP size. 

We used absolute values for number of males, number of females, male MCP and female 

MCP. MCP data came from the virtual telemetry study, so did not depend on camera-trap 

success rate. We assumed that the cameras would eventually catch every male or female 

resident individual in the area, hence a perfect camera-trap rate would not bias the absolute 

male or female values.	

	

2.2.7 Summary statistics as a function of resolution 

We selected a set of parameter values for the model using a resolution of 40 × 40 m. The set 

of parameter values was the set that had the best fit to empirical data out of 2500 sets of 

parameter values. 
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We ran the model with the selected set of parameter values for 50 replicates at 

resolutions of 40 × 40 m, 100 × 100 m, and 200 × 200 m. The choice of resolutions derived 

from both the resolution of the GIS data (40 × 40 m) and the size of the study area. The 

higher resolutions represented approximately double, and then quadruple, the size of the 

resolution of the GIS data. Any resolutions in excess of 300 × 300 m would have resulted in a 

crowded grid, given the relatively small study area and the number of agents within the grid. 

The sample of resolutions was limited to three due to the time taken to run through the set of 

parameter values for each.  

We calculated summary statistics from each of the models and used the non-

parametric Kruskal-Wallis test in order to investigate the dependency of simulated summary 

statistics on the model resolution. 

 

2.2.8 Parameter values as a function of resolution 

We ran the model again for each of the 2500 sets of parameter values for both 100 × 100 m 

and 200 × 200 m resolutions, and chose the set of parameter values that best fit summary 

statistics from empirical data. We normalised each parameter value by dividing by the mean 

from parameter values calculated for the three resolutions and plotted them for comparison 

between resolutions. 

 

 

2.3 Results 
2.3.1 Selection of parameter values for model at 40 × 40 m resolution 

We parameterised the first model using a 40 × 40 m resolution (Table 1). The model included 

attraction of male and female agents to agents of the opposite gender (CFM and CMF). The 

best-fit parameter values obtained from parameterisation against empirical data determined 

that agents in the model moved in a random direction for approximately half the time-steps, 

that male agents were more likely to move in a constant direction than female agents and that 

female agents avoided trail cells, whereas male agents preferentially chose trail cells. 
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Table 1. Input parameters for the ABM, showing the range of values tested, and the values that 

fitted best to the empirical data. 

Parameter Abbreviation Range Best-fit 

(a) Pheromone-related, determining interactions amongst individuals 

Population size Po 1 to 100 50 

Pheromone placed by agent each 
turn 

Ph 0.00 to 100.00 77.00 

Pheromone decay rate PhD 0.80 to 1.00 0.92 

Cost of females to males CFM -50.00 to 50.00 -39.00 

Cost of males to females CMF -50.00 to 50.00 -1.00 

(b) Movement, determining type of algorithm for choosing next cell 

Probability of random movement R 0.00 to 1.00 0.46 

Male probability of directional 
persistence 

MDP 0.00 to 1.00 0.62 

Female probability of directional 
persistence 

FDP 0.00 to 1.00 0.16 

(c) Environmental parameters, determining interactions with the abiotic environment 

Male distance to water multiplier MDW -1.00 to 1.00 -0.18 

Female distance to water multiplier FDW -1.00 to 1.00 -0.06 

Male distance to trail multiplier MDT -1.00 to 1.00 0.39 

Female distance to trail multiplier FDT -1.00 to 1.00 0.05 

Male trail square cost MTr -50.00 to 50.00 -6.00 

Female trail square cost FTr -50.00 to 50.00 14.00 

Male slope multiplier MS -5.00 to 5.00 2.51 

Female slope multiplier FS -5.00 to 5.00 3.00 

Male altitude multiplier MA -1.00 to 1.00 0.47 

Female altitude multiplier FA -1.00 to 1.00 0.48 
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Summary statistics from the model runs using 40 × 40 m cells were broadly similar to 

summary statistics from empirical studies (Table 2). Although output values for summary 

statistics from the model were feasible, the model failed to capture the empirical level of 

difference between males and females. Moreover, the average number of detections in the 

model was approximately three times less than the average from empirical studies.  

Figueroa (2013) calculated much larger MCPs than the empirical MCPs used for 

comparison in this study. However, his study was conducted in the corridor area of Belize, 

which incorporated large open areas, rather than within a reserve. This explains the 

discrepancy between empirical MCPs. Figueroa (2013) used data from 6 male jaguars and 1 

female jaguar. The female MCP calculated from simulation data is more similar to the 

Figueroa data than our empirical data. The male MCP calculated from simulation data is 

more similar to our empirical data than the Figueroa empirical data. As MCP data are broadly 

similar to both sets of empirical data rather than being several orders of magnitude higher or 

lower than the empirical datasets, the Figueroa data provide further evidence that the model 

represents a good enough approximation of empirical patterns to use for further analysis. 

  
Table 2. Comparison between summary statistics from empirical camera-trap and telemetry 

studies in CBWS and outputs from the best-fit ABM of jaguar movement. The table includes MCP 

values calculated in Figueroa (2013). 

Summary statistic Empirical Empirical 
(Figueroa, 2013) 

Model 

Number of male 
agents captured 

16.4 +/- 0.87 n/a 14.5 +/- 0.3 

Number of female 
agents captured 

9.6 +/- 1.8 n/a 14.84 +/- 0.3 

Male minimum convex 
polygon size 

147.6 +/- 11.7 km2 257 +/- 48.8 km2 125.7 +/- 0.6 km2 

Female minimum 
convex polygon size 

57.0 +/- 11.1 km2 111 +/- 0.0 km2 97.4 +/- 0.7 km2 

Number of detections 334.8 +/- 89.1 n/a 119.36 +/- 1.0 

 

 

The empirical data for number of male individuals captured had a narrow distribution, 

which lay within the distribution for modelled data, but not within the interquartile range 
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(Figure 5a). Distributions for male MCP size (Figure 5c) and number of detections (Figure 

5e) from the model lay within distributions for corresponding empirical data, despite the 

difference in average number of detections between empirical and model data. Lower values 

for number of female individuals captured lay within the interquartile range for number of 

female individuals captured in empirical studies (Figure 5b). Female MCP size showed the 

greatest difference between model and empirical data, with none of the values from the 

model lying within the distribution from empirical data (Figure 5d). None of the summary 

statistics from the model had distributions that aligned well with empirical data.  

Nevertheless, the results were consistent amongst model runs and the model values were of 

similar orders of magnitude to empirical data, which allowed us to use the model for further 

analysis. 

 

 



Chapter 2. Effects of model resolution   

 53	

 
Figure 5. Summary statistics from empirical and modelled data. 
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2.3.2 Summary statistic outputs as a function of resolution 

All summary statistics from model runs depended on resolution of the model (Figure 6).  

There was an almost twofold difference between number of detections for models using a 40 

× 40 m resolution and models using a 200 × 200 m resolution. Female minimum convex 

polygon sizes for models using 200 × 200 m cells were approximately 1.5 times the size of 

those from models using 40 × 40 m cells. Models using a resolution of 40 × 40 m generally 

had smaller ranges and smaller values. Models at every resolution underestimated the number 

of detections during camera-trap studies (Figure 6e). The 40 × 40 m resolution model most 

accurately simulated female jaguar movement (Figures 6b and 6d). Empirical values for 

number of male individuals captured and male minimum convex polygon size lay between 

the results from the 40 × 40 m and 100 × 100 m models. Changing resolution appeared to 

have little effect on the ability of the model to capture male and female differences in 

summary statistic values.   
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Figure 6. Summary statistics as a function of cell size. H and p values are from K-S tests for each 

relationship. 
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In our coarse-grain model (200 × 200 m), each section of trail covered a width of 200 

m. This increased the amount of trail available to the agents within the area. Virtual camera-

traps were each able to cover areas of 200 × 200 m, something impossible in most empirical 

studies. This increased the number of detection incidents in coarser resolution models and 

allowed them to capture a greater number of agents. 

Coarse-grain models had greater MCP sizes for both male and female agents. For 

empirical data, we calculate MCP using points within a landscape (Figure 7a). If an agent in a 

grid-based model moves to similar locations within the model, we include entire grid squares 

in the MCP calculation. This results from the fact that the model cannot pinpoint where an 

agent has stepped within a grid square when it moves into the square (Figure 7b). As the 

grain of the model becomes coarser, the grid squares that we include as points in MCP 

calculation become larger, inflating MCP estimates (Figure 7c). In the most extreme example 

in Figure 7, changing resolution from 50 × 50 m (Figure 7b) to 200 × 200 m (Figure 7d) 

inflates MCP estimates by 33%. 
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Figure 7. MCP size as a function of grid cell size: a) MCP = 3.2 km2 control MCP calculation with 

no grid cells, b) MCP = 3.6 km2 calculated using a grid of 50 × 50 m cells, c) MCP = 4.0 km2 

using a grid of 100 × 100 m2, d) MCP = 4.8 km2 calculated from a model using a grid of 200 × 

200 m cells. 

 

2.3.3 Resolution determines model behaviour 

Values of model parameters selected using the parameterisation process depended on choice 

of resolution (Figure 8). The cost of female agents to males (CFM) and the cost of male 

agents to females (CMF) differed broadly when using the parameterisation process for 

different resolutions. In both the 40 × 40 m and 200 × 200 m models, male agents were 

strongly attracted to female pheromone. For the 100 × 100 m model in contrast, male agents 

strongly avoided female agents. This resulted in models with very different movement 

processes, depending on which resolution we selected initially. The cost of male agents to 

a b

c d
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female agents differed less, although female agents were attracted to male agents in the 40 × 

40 m model, while avoiding them in the 100 × 100 m and 200 × 200 m model. In the 40 × 40 

m model, males strongly avoided water sources, but were attracted to them in the 100 × 100 

m and 200 × 200 m models. Male agents in both the 40 × 40 m and 100 × 100 m models 

avoided trails; particularly in the latter case. However, in the 200 × 200 m model, they 

appeared to be strongly attracted to trail squares. Likewise, female agents were attracted to 

trail for the 40 × 40 m model, but avoided trail for the 100 × 100 m model. Male agents were 

attracted to high altitude areas in the 40 × 40 m model, but avoided them in the 100 × 100 m 

and 200 × 200 m models. In short, varying the initial resolution of the model results in very 

different movement processes. 

 

 

 

 

 
Figure 8. Normalised parameter values selected by the parameterisation process for three 

different resolutions. See Table 1 for definitions of abbreviations. 
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Probabilities of random movement and directional persistence selected using the 

parameterisation process depended on resolution of the model (Table 3). The probability of 

random movement was 36% for the 100 × 100 m model and 54% for the 200 × 200 m model. 

Thus, there was 1.5 times more random movement within the 200 × 200 m model than in the 

100 × 100 m model. This resulted in every agent in the 200 × 200 m model taking 3,942 more 

random steps than the agents in the 100 × 100 m model. Female agents in the 40 × 40 m 

model continued in the same direction 9% of the time, taking into account the probability of 

random movement. Female agents in the 100 × 100 m model continued in the same direction 

23% of the time. Hence, female agents in the 100 × 100 m model chose to move in the same 

direction as the previous step 2.6 times more often than female agents in the 40 × 40 m 

model. Likewise, male agents in the 100 × 100 m model chose to move in the same direction 

1.8 times more frequently than male agents in the 200 × 200 m model. Thus, the 

parameterisation process yielded different parameter values for best-fit models depending on 

resolution, which resulted in very different mechanistic models for animal movement, despite 

using the same empirical data. The movement processes that best fit the empirical data 

depended on the resolution of the model.  
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Table 3. Parameter values selected from parameterisation process for the same model at three 

resolutions. 

Parameter 40 × 40 m 100 × 100 m 200 × 200 m 

(a) Pheromone-related, determining interactions amongst individuals 

Population size 50 36 54 

Pheromone placed by agent each 
turn 

77.00 83.46 50.46 

Pheromone decay rate 0.92 0.85 0.88 

Cost of females to males -39.00 38.54 -34.04 

Cost of males to females -1.00 16.74 24.37 

(b) Movement, determining type of algorithm for choosing next cell 

Probability of random movement 0.46 0.36 0.54 

Male probability of directional 
persistence 

0.62 0.95 0.74 

Female probability of directional 
persistence 

0.16 0.36 0.47 

(c) Environmental parameters, determining interactions with the abiotic environment 

Male distance to water multiplier -0.18 0.07 0.29 

Female distance to water multiplier -0.06 -0.07 -0.33 

Male distance to trail multiplier 0.39 0.36 -0.22 

Female distance to trail multiplier 0.05 -0.39 0.04 

Male trail square cost -6.00 -21.78 19.33 

Female trail square cost 14.00 -11.07 -19.40 

Male slope multiplier 2.51 2.06 3.90 

Female slope multiplier 3.00 0.45 0.25 

Male altitude multiplier 0.47 0.40 0.45 

Female altitude multiplier 0.48 -0.45 -0.43 
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2.4 Discussion 
In this study, we have demonstrated that changing the resolution of a model can affect its fit 

to empirical data. We found that all chosen summary statistics depended on model resolution, 

and that parameterising the model under three different resolutions using spatial statistics 

from point data resulted in three very different movement algorithms. Spatial statistics, such 

as telemetry and camera-trapping data, are often the only empirical data available to 

researchers studying large and elusive species. Our results have direct implications for the 

development of simulation models for these species, and therefore on their conservation, and 

they suggest implications for all single species ABMs. 

Next-generation ecological models will incorporate enough realism to predict the 

effects of future HIREC on ecological systems (Grimm and Berger, 2016). Mechanistic 

models have the potential to predict responses to environmental change as they model a 

process, and allow responses to emerge from that process (Stillman et al., 2015). If we use 

our models to test a future scenario of human-induced environmental change, how will their 

results differ? Consider a scenario of potential deforestation. Agents that display more 

random movement, or who persist in the same direction more often, may react less to the 

presence of environmental cues than other agents, and would therefore appear less affected 

by loss of pristine habitat. Likewise, when deforestation leads to construction of trails in an 

area that was previously inaccessible, which of these models would capture the correct 

interaction between agents and trail? The reaction could either be canalisation or avoidance, 

depending on which resolution we chose while parameterising our model. The results of 

future studies using this model will depend on the processes and behaviour used in the final 

model, and hence on the initial choice of resolution. If selection of specific movement 

algorithms relies on the spatial resolution of the model, the movement algorithms may not 

actually capture the behaviour of the species. When we run the model with a scenario in order 

to investigate the effect of future HIREC on our agents, the agents may not react in a similar 

fashion to our study species. Moreover, models parameterised with different resolutions may 

produce very different predictions. If modellers offer contrary predictions to the same 

situation, this may only work to fuel the divide between modellers and empiricists (Jeltsch et 

al., 2013). 

Parameter choice may depend on model resolution when modellers use fine-scale 

empirical data to parameterise their model (e.g., Watkins et al., 2015). Camera-trap studies 

and radiotelemetry studies rely on point data. When in an environment with poor visibility, 
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such as a rainforest, each empirical camera-trap can cover an area far less than 40 × 40 m. 

The grain of the available empirical data is therefore finer than the finest resolution we used 

in our study. We caution that researchers cannot change the model resolution once they have 

decided on a parameter set, or re-parameterise the model if they wish to change the 

resolution, without also re-evaluating the fit of the new model to empirical patterns. 

Both virtual camera-trap and radiotelemetry summary statistics depended on the 

choice of resolution. Models with fine resolutions can represent point or line features, such as 

trails or river systems (Nezer et al., 2017), that influence how animals select movement paths 

through the landscape (Abrams et al., 2016). When animals move through their landscape, 

their movement paths form a line feature. Any factors in the model that depend on movement 

paths will hence depend on the resolution of the model. As an example, if we want to 

investigate how often two agents living in the same vicinity interact, the results of our model 

may depend on the paths the agents take through their landscape. If we used a model with a 

large cell size, the agents would have coarser movement paths, and hence, may interact more 

often than if we were to use a model with a small cell size. Questions of this sort may 

necessitate running the experiment under multiple resolutions in order to evaluate the 

sensitivity of results to model resolution. 

Researchers often draw inferences about species behaviour from the output values of 

the parameterisation process. For example, some studies have used the results from 

sensitivity analyses of parameter values (e.g. mortality) to draw conclusions about the 

behaviour of species or groups (Kanagaraj et al., 2013; Imron et al., 2012). In our study, we 

could have concluded that the difference between males and females in directional 

persistence values indicated that male and female jaguars show different levels of patrolling 

behaviour. While this may be true, the difference in directional persistence parameters could 

result from resolution bias. The directional persistence values that best fit empirical data 

when using a 40 × 40 m model resolution may be different from those that best fit empirical 

data when we use a finer or coarser grain.  We must therefore treat any conclusions that we 

draw from model parameterisation with caution.  

Virtual ecology focuses on recreating empirical experiments in-silico, often with the 

aim of considering alternative empirical methodologies (Zurell et al., 2010). Rodrigues and 

Coelho (2016), for example, used a mechanistic simulation model in order to assess how 

different movement patterns and detectability between male and female agents affected 

estimates of sex ratio from both active and passive capture methods. Our study shows that 

virtual ecology studies need to investigate the potential for bias due to choice of resolution, in 
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order to draw conclusions that can inform empirical study. Consideration of potential bias is 

especially important when attempting to recreate fine-grain spatial experimental data, such as 

camera-trap or radiotelemetry data. 

Although direct parameterisation is the best solution to the problem of resolution-

dependent predictions, often the species we wish to model are elusive, and little is known 

about their behaviour in the wild. Choice of resolution often becomes fixed at an early stage 

in model development, as a function of the study aims, the available environmental data, and 

the computing power required to run the model. In these cases, we advise conducting 

robustness analysis (Grimm and Berger, 2016) by running the model under different 

resolutions to investigate whether changing spatial resolution breaks the model. Any 

parameter values that vary significantly between one resolution and the next may not be 

important for model fit, or may be indicative of bias caused by the scaling up of point data to 

grid cells.  

We have shown that spatial statistics that use point data result in biased 

approximations. It may be better to focus on qualitative rather than quantitative patterns 

(Jakoby et al., 2014), or a mixture of qualitative patterns and ratios; such as the level of 

overlap between home ranges or the ratio between male and female home ranges, for 

example. Where data on species are lacking, it may be advisable to run the scenarios under 

multiple possible movement algorithms or address only a hypothetical species with a certain 

movement algorithm. 

The scientific world has yet to obtain a full understanding of what drives animal 

movement decisions. It is highly likely that decisions derive from multiple cues (Sih et al., 

2016). The future of ecological modelling lies in complex mechanistic models that 

incorporate fine-scale movement decisions, models of dispersal, genetics, demographics and 

models of human activity at the small- and large-scale in order to provide predictions on 

organism response to HIREC (Sih et al., 2016). ABMs parameterised using empirical data 

will likely become increasingly popular and useful tools for the conservation of elusive 

mammals. Empirical data for these species will continue to come from point data, such as 

camera-trap and radiotelemetry data. If model parameter sets depend on the resolution of the 

model, we must ask whether spatially-explicit mechanistic models do accurately replicate the 

behaviour of a species. This has implications for the ability of spatially-explicit models to 

predict how ecological systems adapt to change, which is one of the three essential elements 

of next generation modelling (Grimm and Berger, 2016).  With mechanistic movement 
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modelling still in its infancy, it is imperative to bring out potential biases in the methodology 

in the early stages of what will doubtless become an important and insightful discipline.   
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2.5 Appendix I. Overview, Design concepts and Details 
Appendix I follows the protocol of Overview, Design concepts and Details suggested by 

Grimm et al (2006). 

 

2.5.1 Purpose 

The model simulated fine-scale movement decisions of jaguars in Cockscomb Basin Wildlife 

Sanctuary (CBWS), Belize. Our purpose was to capture the movement of resident agents 

around their home-ranges and use pattern-oriented calibration in order to parametrise the 

model. We present the parameterisation and validation here. We then use this model to 

investigate the effect of resolution choice on model fit and validation. We seek to use this 

model in order to undertake further theoretical experiments on jaguar responses to 

anthropogenic impacts. 

 

2.5.2 State Variables and Scales 

The model background consisted of 1071 × 750 grid cells. Each grid cell represented an area 

comprising 40m × 40m. This grid includes “Null” cells that lay outside CBWS. The area of 

CBWS comprises a modelled 425 km2. GIS data (Meerman, 2011) informed data on static 

aspects of the cells: habitat type, distance to river, distance to trail, altitude, slope, presence of 

camera-trap and camera-trap ID. We used results from in-silico camera-trap and telemetry 

experiments to validate the model. The agents occupied a single cell at a time. The model 

allocated each agent with a gender, identity, location and graphics information. At the 

beginning of each time step, the agent would deposit an amount of “pheromone”. Pheromone 

represented the ability of agent to signal to each other. In reality, jaguars communicate using 

scrape markings, scent markings and vocal calls. The model stored pheromone levels as a 

feature of grid cells. Pheromone levels were gender-specific. 

We ran the model through a series of parameter sets. Each replicate consisted of 

21,900 time steps that represented 6 months. Each time step equated to 12 minutes.  
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2.5.3 Process overview and scheduling 

At the beginning of each parameter set run, the model created the background grid and set 

staticcell attributes: terrain type, distance to river, distance to trail, altitude, slope, coordinates 

and graphics information. The model then ran through replicates. 

At the beginning of each replicate the model created output files and initialised a 

population of agents. The agents had an equal chance of being male and female. All agents 

created at the beginning of the simulation were “resident” agents. After initialisation, the 

model ran through a series of time steps.  

The model placed an amount of pheromone at the beginning of each time step. It then 

looped through all agents. If an agent was in CBWS, the agent would undergo the move 

function. If an agent was a “resident” and outside CBWS, it would undergo the re-entry 

function. At the end of the time step, the model would write to output files and decay 

pheromone levels. The model continuously updated all information on cell pheromone levels 

and jaguar locations.  

 

2.5.4 Design concepts 

2.5.4.1 Emergence 

Agent home ranges emerged from the communication between agents via pheromone levels. 

The constant decay and placement of pheromone allowed home ranges to be dynamic.  

 

2.5.4.2 Adaptation 

Agents chose the least-cost neighbouring cell based on cell attributes. These attributes were 

both dynamic (for example, distance to river) and dynamic (pheromone levels). The 

parameter sets each had specific values for how an agent responded to each of the cell 

attributes. 

 

3.5.4.3 Fitness 

The model did not include mortality or fecundity, however this model represents a base 

model for future investigations of how movement decisions affect mortality and dispersal in a 

human-influenced environment. 
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2.5.4.4 Sensing 

All agents could access information on neighbouring cell attributes. This information 

included environmental attributes (terrain type, distance to river, distance to trail, altitude and 

slope) and agent-related attributes (amount of male pheromone, amount of female 

pheromone, jaguar occupancy). The agent did not access camera-related cell data. Each cell 

had eight neighbours, representing north, north-east, east, south-east, south, south-west, west, 

north-west and north cells.  

 

2.5.4.5 Interaction 

Agents interacted using pheromone. Pheromone was gender-specific. Gender-specific 

parameters dictated how agents respond to same-gender, opposite-gender and own 

pheromone. Agents responded to pheromone levels by having an increased or reduced cost 

proportional to the amount of pheromone. Hence, pheromone resulted in avoidance or 

attraction to the same- and opposite genders, dependent on the parameter set. 

 

2.5.4.6 Stochasticity 

The model included parameters for probability of random movement, and probability of 

directional persistence. Hence, an agent could move in a random direction, in the same 

direction as previously or in a direction dictated by cost of neighbouring cells. The 

probability of these movement types depended on the parameter values and random number 

generation. The model allocated gender based on a 50% chance of being male or female. 

 

2.5.4.7 Observation 

The model used the Python package Tkinter for graphical representation during testing. The 

graphics provided information on environmental attributes and gender-specific pheromone 

levels in each cell, and agent movements around the grid. 

 

2.5.5 Initialisation 

The model reset all landscape and agent attributes at the beginning of a new parameter set. At 

the end of each replicate, the cell pheromone-related attributes reset. The model removed all 
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agent and created a new population. The number of agents in the new population depended 

on the value of the population parameter. Agents could then establish new home ranges. 

 

2.5.6 Submodels 

2.5.6.1 Pheromone placement 

At the beginning of each time step, each agent placed an amount of pheromone in its current 

cell equal to the pheromone placement parameter value. This allowed agents to communicate 

with each other. 

 

2.5.6.2 Move 

The function ran through each agent in the population, provided the agent was within the 

CBWS area. It first created a random probability. If this did not exceed a pre-set probability 

of random movement, the agent selected a random neighbouring cell as its next cell. There 

were eight neighbouring cells for each cell. This cell may be outside CBWS. If the agent did 

not undertake random movement, the model created another random probability. If this did 

not exceed a pre-set probability of directional persistence, the agent continued moving in the 

same direction it had moved previously. If an agent did not move randomly or in the same 

direction as previously, the model calculated the gender-specific cost values of all 

neighbouring cells. The agent chose the least cost neighbouring cell. Once the agent selected 

a cell, the model removed the agent from the cell occupancy list and changed the x and y 

coordinates of the agent. Graphics information also changed. 

 

2.5.6.3 Re-entry 

If an agent was a “resident” and outside the boundaries of CBWS, the model entered a re-

entry function. The program created a random probability. If this did not exceed a pre-set 

probability of re-entry, the model created a selection of cells consisting of the last non-null 

cell the agent stepped on and any “border cells” within 250m of that last cell. The model 

selected one of these cells at random and moved the agent to this cell. 
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2.5.6.4 Pheromone decay 

At the end of each time step, the model decayed pheromone levels in all cells by a multiplier 

equal to the pheromone decay parameter. 

 

2.5.6.5 Take photo 

At the end of each time step, if an agent was present on a cell with a camera, that cell object 

would write the following to an output file: time, agent ID, location, camera type and gender 

of agent. 
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Abstract 

The calculation of accurate movement metrics from telemetry data has consequences both for 

modellers, who incorporate metrics as parameters in their models, and managers who 

consider metrics in the development of conservation strategies.  Despite recent advances 

using GPS satellites, a trade-off exists between fix interval (the number of hours between 

fixes) and the length of a telemetry study set by the battery life of telemetry devices. 

Although studies have shown that longer fix intervals result in greater errors when calculating 

metrics, none have attempted to provide a standard method for correcting movement metrics 

derived from telemetry data. Here we use a mechanistic model to demonstrate a method for 

correcting estimates of movement metrics, by employing a combination of subsampling and 

non-linear regression to define the relationship between fix interval and estimate for two 

metrics: step length and MCP. We repeat this for six different movement models, including a 

random movement model and five models representing agent ‘choice’ with varying levels of 

directional persistence to determine whether movement type affects the accuracy of the 

method. At a fix interval of 2 hours, the estimated step length was 25% less than the actual 

step length. The correction method reduced this error to 14.5%. By tailoring the method to 

movement types, we further reduced the error to 11% for some simulations. Fix intervals of 2 

hours had an error in MCP estimation of approximately 50%. The correction method did not 

improve estimates of MCP when generalising an equation across all movement types. 

Tailoring the correction method to different movement types generally increased the accuracy 

of estimates, with a minimum error of 4%. The correction method we present here is 

particularly useful where researchers cannot narrow the fix interval in their study due to 

either research requirements or the interference of terrain with telemetry signal.  

Key words: agent-based model; virtual ecology 
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3.1 Introduction 
Movement of animals has been a key area of research in conservation biology for over 20 

years (DeMars et al., 2013). Patterns of movement determine the distribution of species, the 

transmission of disease, routes for animal migration, and responses to anthropogenic actions 

(Morris, 2003; Hosseini et al., 2006; Bradshaw et al., 2007; Beyer et al., 2013). Analyses of 

such patterns may augment our understanding of metapopulation dynamics, species 

persistence and the effect of conservation measures (Schooley and Wiens, 2004; Loarie et al., 

2009; Pittman et al., 2014; Jenks et al., 2015). Studying patterns of movement can therefore 

contribute to the conservation of endangered and threatened species. 

 Telemetry data allow researchers to understand movement by capturing individuals in 

space and time. Sources of telemetry data include VHF radiotelemetry tags, fixed-position 

PIT tag detection arrays (Tew and MacDonald, 1994; Armstrong et al., 1996; Lucas et al., 

1999), which detect locations by close-range proximity detection (Harbicht et al., 2017), 

acoustic telemetry transmitters, and Global Positioning System (GPS) telemetry tags, which 

use satellites to obtain location data (Dana, 1989). GPS technology, in particular, has allowed 

researchers to collect a high abundance of accurate, fine-scale data on animal movement 

(Mills et al., 2006; Kie et al., 2010; Tomkiewicz et al., 2010). GPS is unaffected by weather 

conditions, which improves on traditional VHF radiotelemetry technology (Girard et al., 

2002), although GPS tags are more expensive, which limits the number of individuals that the 

study can track (Otis and White, 1999; Harbricht et al., 2017). Researchers have employed 

telemetry data to in order to develop their understanding in a number of areas, including 

studies on how animals respond to barriers to movement (Riley et al., 2006; Shepard et al., 

2008), density estimation (for example, Soisalo and Cavalcanti, 2006), development of 

resource selection functions (for example, Johnson et al., 2004), and predator-prey 

relationships (Sevodkin et al., 2017). In this paper, we will focus on two of the many outputs 

from telemetry data, namely step length and size of home range in order to offer methods to 

correct for bias caused by fix interval for two metrics that are frequently exploited in further 

conservation research. 

 Step length is the distance covered by a tagged individual between two sequential 

telemetry fixes. Knowing the value of step length allows calculation of other metrics, such as 

cumulative distance covered over a study period and the average speed of individuals. Many 

movement models incorporate step length and turning angles as parameters to simulate 

individual movement (Turchin, 1998). Telemetry provides the data to parameterise the 
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models that researchers then use to make inferences about animal movement (Jerde and 

Visscher, 2005; Beyer et al., 2013; DeMars et al., 2013). Researchers have included step 

length in autocorrelation functions in order to investigate movement patterns (Boyce et al., 

2010). For example, Jenks et al. (2015) used autocorrelation functions and cluster analysis in 

order to compare the movement of a golden jackal and a dhole. Thus, it is important that 

researchers can obtain accurate estimates of step length so as to reduce bias in models at later 

levels of abstraction. 

 A home range of an animal is the area that an individual inhabits regularly, during 

activities such as foraging (Burt, 1943). Knowledge of the size of home ranges informs the 

construction of conservation measures by allowing the estimation of space required for that 

conservation measure to be successful. Telemetry data is often employed to determine home 

range size and boundary (Otis and White, 1999). Calculation of home range using telemetry 

data commonly employ either kernel analyses or minimum convex polygon (MCP) 

(Kolodzinski et al., 2010). Both kernel and MCP calculation depend on the sampling regime 

applied to collect telemetry data, with the latter being more sensitive than the former to the 

intensity of the sampling regime (Kolodzinski et al., 2010). As stakeholders use home range 

to indicate how much habitat a species requires, it is imperative that estimates are accurate, or 

at least that managers have a clear understanding of the strength and direction of potential 

bias. 

 When designing telemetry studies, researchers must often address a trade-off between 

the intensity of the sampling regime and the duration of the study (Kolodzinski et al., 2010). 

As the time interval between fixes of locations - hereafter referred to as the “fix interval” – 

increases, the study misses more potential locations. This can lead to errors in calculations of 

metrics, such as step length and home range.  Multiple studies have found that long fix 

intervals underestimate both step length and home range, because they miss out tortuous 

movement and extreme points (Otis and White, 1999; Mills et al., 2006; Kolodzinksi et al., 

2010). As an example, Kolodzinski et al. (2010) found that calculations for MCP using 

telemetry with fix intervals of eight to twelve hours underestimated homes range by at least 

50%. Furthermore, telemetry devices suffer from type II errors. In some cases, the success 

rate of fixes can be as low as 13% (Frair et al., 2004). This would change a sampling regime 

that takes location fixes every 2 hours to one that only samples locations every 16 hours, with 

implications for the accuracy of calculation of metrics.   

The effectiveness of sampling methodologies, such as telemetry studies, can be 

investigated by way of virtual ecology. Virtual ecology concerns the replication of empirical 
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studies in-silico using simulation models (Zurell et al., 2010). Studies incorporating virtual 

ecology not only expose the problem, they allow easy quantification of errors and effects of 

mitigation errors. Zurell et al. (2010) list the two main applications of virtual ecology as 1) 

testing and improving sampling schemes and methods, and 2) testing and comparing models. 

As experiments are conducted in a model with a known population, one can compare the 

result of such an in-silico study with the real-world data, thereby evaluating the effectiveness 

of this approach.  Indeed, researchers have exploited virtual ecology for a number of 

purposes, such as evaluating the conceptualisation and implementation of species distribution 

models (Miller, 2014), assessing sampling designs (Albert et al., 2010; Ficetola et al., 2014; 

Lyashevska et al., 2016), and creating risk maps where species-specific data are scarce 

(Osawa et al., 2016).  

Recent extensions of mechanistic, process-based models have incorporated a high 

level of complexity (Singer et al., 2016; Synes et al., 2016), reflecting a change in mind-set 

from the previously favoured simpler models (Evans et al., 2014). These mechanistic models 

aim for a realistic depiction of individual choices and interactions (Singer et al., 2016). More 

complex mechanistic models allow researchers to further explore virtual ecology questions 

using realistic simulations of animal behaviour, so as to investigate the interacting effects of 

animal behaviour and study methodology in greater detail. Hence, they have the potential to 

offer new and exciting insights into study design. 

Numerous studies have investigated the effects of time between fixes and 

measurement error on the accuracy of telemetry data (Di Orio et al., 2003; Frair et al., 2004; 

D’Eon et al., 2005; Jerde and Visscher, 2005). However, none have attempted to provide a 

standard methodology for correcting estimates of metrics calculated from telemetry data. By 

using a mechanistic model with a known value for ‘step length’, we can identify percentage 

errors for fix intervals using different movement types in order to quantify the accuracy of the 

correction methodology. Given that the level of tortuosity in the movement path may affect 

the relationship between fix interval and the accuracy of metrics (Mills et al., 2006), we can 

additionally investigate how movement style affects accuracy. Models of different patterns 

tend to include only two varieties of movement style: short, torturous steps or long, straight 

steps (e.g. Beyer et al., 2013). True movement patterns, however, will have more complexity, 

with various levels of directional persistence (preference to move in the same direction as the 

previous step) and fine-scale habitat selection, such as avoidance or attraction to trails and 

rivers. Models that assume movement models based on ideal gas movement or Monte Carlo 
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random walks (Rowcliffe et al., 2008; Howe et al., 2017; Nakashima et al., 2018) fail to 

account for fine-scale habitat selection. They may thus be less suited to organisms that 

inhabit dense forest and move principally along trails. To our knowledge, no studies have 

employed simulation models that are able to incorporate fine-scale habitat selection in 

analyses of telemetry data. 

Our aim is to use an agent-based model (ABM) to develop a method for correcting 

estimates of movement metrics derived from telemetry data. The method defines the 

relationship between fix interval and estimates for six different movement types using 

nonlinear regression. In order to achieve this, we modified a spatially-explicit ABM of jaguar 

movements through Cockscomb Basin Wildlife Sanctuary in Belize, so as to simulate six 

movement types: a random walk, a least-cost walk using fine-scale features to calculate cost, 

and four models that used a least-cost walk with varying levels of directional persistence. We 

based the model on the ABM presented in Watkins et al. (2015), which includes interactions 

between agents and their environment.  We constructed the model on similar mechanistic 

principles of pheromone-based movement to those described in Watkins et al. (2015), 

however restructured the model to accommodate responses to fine-scale terrain, and gender-

specific responses to both pheromone and terrain. The fine-scale terrain features simulated in 

the model included trails and river systems, representing features that are known to affect the 

movement of large felids (Harmsen et al., 2009). Our model did not incorporate birth and 

death dynamics as the simulated period was short, hence we assumed that birth and death 

dynamics would have little effect on the outcome of the model.  We ran in-silico telemetry 

studies with fix intervals ranging from 2 hours to 48 hours and from these studies we derived 

step length and MCP for multiple sampling regimes. We selected MCP as opposed to kernel 

in order to avoid potential bias from choice of the smoothing parameter h in kernel 

calculation (Calenge, 2015). We applied nonlinear regression in order to characterise the 

relationship between fix interval and accuracy of these metrics for the six movement types. 

 

3.2 Methods 
3.2.1 The model 

Chapter 2 details the study site, study species and algorithm for the model (Parts 2.2.1, 2.2.2 

and 2.2.4, respectively). We handled data and statistical analysis using a combination of 

Python and R. The simulation model in this study ran on a grid of cells, each representing 
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240 × 240 m. We used this coarser resolution due to the time taken to run the model for a 

large set of movement patterns. Moreover, a finer resolution was not required to answer the 

study question for this particular chapter.  For each set of parameter values, the model ran for 

17,520 time steps, simulating 2 years at 1 simulated hour per time step. Table 1 provides a list 

of parameters for the movement model using a least-cost path algorithm to select movement 

paths. All other movements include either wholly random movement, or a combination of 

directional persistence and least-cost path to define movement rules.  

 

Table 1. Input parameters for the ABM using least-cost path choice-based movement algorithm. 

Parameter Abbreviation Value 

(a) Pheromone-related, determining interactions amongst individuals 

Population size Po 50 

Pheromone placed by agent each 
turn 

Ph 77.00 

Pheromone decay rate PhD 0.92 

Cost of females to males CFM -39.00 

Cost of males to females CMF -1.00 

(b) Parameters determining interactions with the abiotic environment 

Male distance to water multiplier MDW -0.18 

Female distance to water multiplier FDW -0.06 

Male distance to trail multiplier MDT 0.39 

Female distance to trail multiplier FDT 0.05 

Male trail square cost MTr -6.00 

Female trail square cost FTr 14.00 

Male slope multiplier MS 2.51 

Female slope multiplier FS 3.00 

Male altitude multiplier MA 0.47 

Female altitude multiplier FA 0.48 
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3.2.2 Raw data format 

The model stored data in one text file, representing a virtual telemetry study. It wrote to this 

file at the end of each time step. The model wrote each agent’s location and attributes to the 

telemetry file. The telemetry file also included information on the time step and replicate 

number. 

 

3.2.3 Data analysis 

We ran the simulation model 72 times for each of the six movement types using a 

combination of the Iridis supercomputer at the University of Southampton, 1 desktop 

computer and 1 laptop. One replicate of the simulation model took approximately 4 hours to 

run.   

We calculated step length and MCP within the simulation model for each run using 

custom-built Python files for a fix interval of 1 hour, which represented our control 

(henceforth ‘actual’) value for each run, and for a test fix interval, which was between 2 and 

48 hours. We scaled all step lengths down to a step length for 1 hour and found the difference 

between calculated values and control values for each run. We used the difference in metrics 

to calculate percentage errors at different fix intervals.  

For all values, we tested three possible regression models for the relationship between 

error in metric between simulation runs and fix interval used for the simulation. We tested 

regression models by fitting parameters using the nonlinear least squares (nls) function in the 

R library stats. We then calculated the correlation between predicted y values from the 

regression model and actual y values from the difference between the simulation model at 

different fix intervals, which provided a rough estimate of goodness of fit. We used the 

correlation (cor) function in the R library stats to calculate the correlation. Although the 

correlation between the list of predicted y values and the list of actual y values is not a perfect 

measure of goodness of fit, it allowed comparison between the different nonlinear regression 

models in absence of the usual goodness-of-fit measures associated with linear regression 

models (for example, R2). The dependent variable was defined as the difference between the 

estimated metrics, and the independent variable was defined as the fix-interval length.  Once 
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we had selected the equation that best characterised the relationship between fix interval and 

difference in metric for both step length and MCP, we used the nlsList package in the R 

library nlme (Pinheiro et al., 2017) to calculate the different parameter values for the equation 

corresponding to the regression model. 

After defining the relationship between estimate and fix interval, we calculated a 

corrected estimate for the metrics by substituting x = 0 into the equation for the nonlinear 

regression. We repeated nonlinear regression for each movement type and calculated 

movement-specific corrected estimates. 

 

3.3 Results 
3.3.1 Step length 

As the length of fix intervals increased, the difference between the estimated and actual step 

length increased (Table 2). Estimated step length decreased sharply at shorter fix intervals 

and then appeared to level out at longer fix intervals. A 2-hour fix interval had estimates for 

step length that were approximately 75% the size of the actual step length. Fix intervals of 10 

hours and 30 hours resulted in estimates for step length that were respectively ~35% and 20% 

the size of the actual step length. 
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Table 2. Estimated values with percentage errors for different fix intervals. Actual value for step 

length is 240 m. 

Fix 
interval 

(hrs) 

Estimated 
step length 

(m) 

Percentage error 
(%) 

Difference between 
actual and estimated 

step length (m) 

2 178 25.8 62 

4 128 46.7 112 

6  105 56.2 135 

8 91 62.1 149 

10 81 66.3 159 

12 75 68.8 165 

14 69 71.3 171 

16 65 72.9 175 

18 61 74.6 179 

20 58 75.8 182 

22 55 77.1 185 

24 53 77.9 187 

26 50 79.2 190 

28 49 79.6 191 

30 47 80.4 193 

 

 

The regression model that best characterised the relationship between the estimated step 

length and fix interval had a goodness of fit of 0.891 (Table 3).  We can estimate a corrected 

step length by inserting x = 0 into the equation, which represents a minimum fix interval. The 

resulting estimate for step length is 205 m. This estimate has a percentage error of 14.5%, 

which nearly halves the percentage error at a fix interval of 2 hours. Thus, we achieve close 

to double the accuracy of estimation by employing a combination of subsampling and non-

linear regression. 
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Table 3. Models for the relationship between time-lag and estimated step-length with best-fit 

parameters and goodness of fit for the model. 

Model Best-fit parameter values Goodness of fit 

𝑦 =
𝑎

(𝑏 + 𝑥)
 a = 1640, b = 8 0.891 

𝑦 =
𝑎

(𝑏 + 𝑥9)
 a = 55100, b = 442 0.799 

𝑦 = 	𝑎 𝑥: + 𝑏  a = -115, b = 274 0.862 

 

  

Upon visual inspection of the data, it appears that the relationship between fix interval 

and the error in step length depends on movement type (Figure 1). The lines are in the 

roughly the same sequence as the proportion of directional persistence in the simulation 

model, whereby simulations incorporating random movement and 20% directional 

persistence reach a higher asymptote than simulations incorporating lower levels of 

directional persistence. It may therefore be possible to improve the fit of the regression model 

(Table 3) by tailoring parameter values to the movement type. 
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Figure 1. The relationship between time-lag and error (in metres) in step length for six movement 

algorithms. ‘DP’ stands for directional persistence. The error represents the difference between 

the actual step length and the estimated step length. 

 

We calculated movement-specific values for a and b (Table 4). As directional 

persistence increased, the values of both a and b increased. The parameter a shifts the graph 

to the right, indicating that for simulations incorporating higher levels of directional 

persistence differences in estimated step length began to occur at longer fix intervals than 

when simulations incorporated low levels of directional persistence. Where fix interval was 

short, the low probability of tortuous movement in simulations with high directional 

persistence increased the accuracy of estimates for step length. The parameter b determines 

the steepness of the curve. The best-fit regression models of fix interval and estimated step 

length for simulations incorporating high levels of directional persistence therefore had 

steeper inclines than those incorporating lower levels of directional persistence. 
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Accounting for movement type increased the accuracy of estimate for most movement 

types. The exceptions to this were the least-cost walk algorithm, which had a similar 

corrected estimate, and the random movement algorithm, for which the corrected estimate 

was far lower. The maximum error from movement-specific regression models was 21%, 

which represents 80% of the error in estimated step length using 2-hour fix intervals. The 

minimum error was 11%, less than half the error of estimates using 2-hour fix intervals. 

 
Table 4. Best-fit parameter values for different movement algorithms for a model representing the 

relationship between time-lag and estimated step length. ‘DP’ stands for directional persistence. 

 

Movement 
type 

Best-fit 
value for a 

Best-fit value 
for b 

Goodness 
of fit 

Corrected 
estimate (m) 

Percentage 
error (%) 

Least-cost walk 1099 5.4 0.97 204 15 

Random walk + 
20% DP 1322 6.2 0.98 213 11 

Random walk + 
40% DP  1623 7.7 0.98 211 12 

Random walk + 
60% DP 2092 9.9 0.99 211 12 

Random walk + 
80% DP 2946 14.0 0.98 210 13 

Random walk 1001 5.3 0.98 189 21 

 

 

 

3.3.2 Minimum convex polygon (MCP) 

As the length of fix intervals increased, the difference between the actual and estimated MCP 

increased (Table 5). As with step length, estimated MCP decreased sharply at shorter fix 

intervals and then appeared to level out at longer fix intervals. A 2-hour fix interval had 

estimates for MCP that were approximately 50% of actual MCP. Fix intervals of 12 hours 

and 30 hours resulted in estimates for MCP that were respectively ~10% and 6% the size of 

the actual step length.  
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Table 5. Estimated values with percentage errors for different fix intervals. Arithmetic mean for 

the actual value for MCP is 254 +/- 4.2 km2. 

Fix 
interval 

(hrs) 

Estimated 
MCP (km2) 

Percentage error 
(%) 

Difference between 
actual and estimated 

MCP (km2) 

2 131 48.4 123 

4 69 72.8 185 

6  48 81.1 206 

8 38 85.0 216 

10 31 87.8 223 

12 27 89.4 227 

14 25 90.2 229 

16 23 90.9 231 

18 21 91.7 233 

20 20 92.1 234 

22 18 92.9 236 

24 17 93.3 237 

26 17 93.3 237 

28 16 93.7 238 

30 15 94.1 239 

 

 

The regression model that best characterised the relationship between fix interval and 

the difference between actual and estimated MCP had a goodness of fit of 0.767 (Table 6). 

The models for MCP generally had lower goodness of fit than models for step length, 

indicating a more complex relationship for the time-lag bias of MCP. We can estimate a 

corrected MCP by inserting x = 0 into the equation. The resulting estimate for MCP is 370 

km2. This estimate has a percentage error of 46%, which is similar to the percentage error at a 

fix interval of 2 hours. Hence, we were unable to correct our estimate using subsampling and 

nonlinear regression.  
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Table 6. Models for the relationship between time-lag and estimated MCP, with best-fit 

parameters and goodness of fit for the model. 

Model Best-fit parameter values Goodness of fit 

𝑦 =
𝑎

(𝑏 + 𝑥)
 a = 370, b = 1 0.767 

𝑦 = 𝑎. 𝑙𝑛 𝑥 + 	𝑏 a= -28, b = 110 0.688 

𝑦 =
𝑎

(𝑏 + 𝑥9)
 a=4294, b = 33 0.744 

 

 

The inclusion of directional persistence in the simulations again appears to affect the 

relationship between fix interval and error in MCP, however the patterns are less clear than 

those for step length (Figure 2). Simulations employing a random movement algorithm or 

low levels of directional persistence are higher on the graph, indicating higher levels of error, 

than simulations employing high levels of directional persistence. The simulation utilising a 

least-cost choice algorithm has a different curve to the others, increasing rapidly at the start 

and reaching an asymptote at short fix intervals.  
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Figure 2. The relationship between time-lag and error (in metres) in MCP for six movement 

algorithms. ‘DP’ stands for directional persistence. The error represents the difference between 

the actual step length and the estimated step length. 

 

We calculated movement-specific values for a and b (Table 7). There is no obvious 

pattern in values for a and b as directional persistence increases. Moreover, the corrected 

results are more mixed than those for step length. Overall, tailoring the results to movement 

type increased the accuracy of corrected estimates. Corrections for simulations that 

incorporated low levels of directional persistence decreased percentage error from estimates 

taken at 2-hour fix intervals by 80-90%. However, corrections for simulations that 

incorporated 60% directional persistence had a greater error than estimates taken at a 2-hour 

fix interval. There may be an equation that better explains the interaction between fix interval 
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and MCP estimate for simulations employing 60% directional persistence. Fitting a more 

appropriate equation may go some way to solving the discrepancy between the results for 

these particular simulations and the other simulations. 

 
Table 7. Best-fit parameter values for different movement algorithms for a model representing the 

relationship between time-lag and estimated MCP. ‘DP’ stands for directional persistence. 

 

Movement 
type 

Best-fit 
value for a 

Best-fit value 
for b 

Goodness 
of fit 

Corrected 
estimate (m) 

Percentage 
error (%) 

Least-cost walk 357 1.1 0.82 324 28 

Random walk + 
20% DP 381 1.4 0.77 272 7 

Random walk + 
40% DP  364 1.5 0.84 243 4 

Random walk + 
60% DP 382 0.95 0.82 402 58 

Random walk + 
80% DP 478 2.4 0.82 199 22 

Random walk 284 1.0 0.84 284 12 

 

 

 

3.4 Discussion 
In this study, we employed an agent-based model to investigate how fix interval increases the 

error between estimated and actual values for metrics derived from telemetry data. Agent-

based models provide users with an in-silico environment where they can set known values 

for metrics of interest to allow their comparison with estimated values. We corrected 

estimates for two metrics by subsampling the data and defining an equation that best 

described the relationship between fix interval and estimate. By characterising the 

relationship, we can utilise percentage errors at certain fix intervals to identify a fix interval 

suitable for future studies, with a given threshold of acceptable error. The next stage in this 

process is to evaluate whether empirical studies can repeat this methodology for real 

ecosystems, and therefore whether the combination of subsampling and non-linear regression 
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should become a standard method for correcting calculations from telemetry data. It is 

important that researchers account for bias in their calculation of home range and step length 

estimates so that models and strategies that include estimates for these metrics are as accurate 

and reliable as possible. 

 The final methodology, which we present to other authors for standard use in 

telemetry studies, is described below. To follow the method, researchers require data on the 

locations of a particular individual, and temporal metadata for the data points. Obtaining 

meaningful results from the method requires sampled fix intervals to be shorter than the fix 

interval at which the graph reaches its asymptote. 

1. Subsample data to represent a range of fix intervals; 

2. Calculate movement metrics at different fix intervals; 

3. Use regression, non-linear or otherwise, to define the relationship between fix 

interval and the estimate for a metric; 

4. Find a corrected estimate by inserting x = 0 into the equation. 

We demonstrated how correcting the step length metric greatly reduced its error. The 

results for the MCP metric were more mixed, however accounting for the specific movement 

algorithm used greatly increased the accuracy of corrected estimates. 

 We showed that fix interval caused errors in step length up to 80% of actual values. 

Our findings agree with the findings of Mills et al. (2006) that long fix intervals result in 

underestimation of movement distance when individuals move in tortuous paths. The trend in 

increasing error with step length echoed that of Mills et al. (2006), who noted sharp increase 

in error of step length at initial fix interval increases followed by an asymptote. The authors 

referred to this as ‘logistic decay’ in the value of their metric. Logistic decay may arise due to 

the natural limit on amount of error. As the error can never be greater than the actual step 

length, the relationship between error and fix interval must therefore be asymptotic, 

characterised by a steep slope that becomes gradually less extreme. 

Researchers may parameterise movement models with estimates for step length 

(Beyer et al., 2013). Applications for movement models include investigation of habitat 

selection (Turchin, 1998; Johnson et al., 2002; Morales and Ellner, 2002; Forester et al., 

2007) and foraging behaviour (Weimerskirch et al., 2002). Findings from these models may 

then contribute to strategies for conservation management. If potential error of estimates is as 

much as 85% bias in step length, stakeholders utilising these models may develop 
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inappropriate or insufficient plans for conservation action. Given the various uses of step 

length, and the potential consequences of using incorrect data where models inform 

conservation actions, it is imperative that researchers understand and highlight potential 

caveats in their calculations. 

 Error in estimates for MCP also increased as fix interval increased, however the 

pattern was more difficult to characterise than that for step length. This led to greater 

difficulty when applying correction factors for the MCP. There may have been an equation or 

pattern that was more appropriate for characterising the relationship between error in MCP 

and fix interval, which would have resulted in more appropriate correction factors. 

Furthermore, different movement models may have required wholly different equations. This 

would also have improved the accuracy of correction factors for particular movement models. 

The general pattern of increase in error with fix interval agrees with the pattern found by 

Kolodzinski et al. (2010), and by Mills et al. (2006), of significant biases from low-intensity 

sampling of location data. Home range calculations allow stakeholders to understand how 

animals select and utilise habitat, and thus may contribute to design of reserves and areas of 

conservation (Jenks et al., 2015). Here we selected MCP due to its practicality for a large 

sample size of replicates, however kernel analyses represent an alternate method for home 

range calculation (Girard et al., 2002; Mills et al., 2006). Although low-intensity sampling 

does affect estimates of home range from kernel analyses, the estimates are less sensitive to 

sampling rate than estimates of MCP (Boulanger and White, 1990; Kenward, 2001; Mills et 

al., 2006). We therefore recommend using kernel analyses rather than MCP to estimate home 

range, especially where the interval between fixes is large. 

 Our studies are consistent with the findings of previous authors (Mills et al., 2006. 

Kolodzinski et al., 2010) that fix interval affects the accuracy of metrics derived from 

location data. Our study expanded their findings by identifying a method for correcting 

metric estimation. We agree with their recommendations that the shortest fix interval possible 

should be chosen when conducting telemetry studies, especially where researchers suspect 

tortuous movement patterns indicative of foraging behaviour. However, there is a trade-off 

between length of fix interval and length of study, as sampling at short intervals reduces the 

lifetime of batteries in transmitters (Mills et al., 2006). Furthermore, even when intervals are 

set at relatively short periods of time, sampled fix intervals may be substantially longer. Fix 

intervals in conventional telemetry depend on weather conditions, accessibility of study sites 

and availability of personnel (Girard et al., 2002). GPS technology has increased both 

precision and accuracy of fixes, however the success of fixes still depends on terrain and 
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cover (Frair et al., 2004). This may further bias results by disproportionately affecting fixes in 

areas of heavy canopy. It is in these scenarios that authors may use subsampling and non-

linear regression to correct estimates. 

 One limitation of our study was that it didn’t capture the trade-off between fix interval 

and study length. In this study, an increase in fix interval resulted in an increase in error of 

MCP estimation. However, an increase in fix interval would result in longer lengths of study, 

which was not incorporated in this chapter as the simulation runs were limited to a constant 

length of time. A greater study length would allow greater coverage of the study area, despite 

the increased fix intervals. Hence, this may remove the error associated with increased fix 

interval. Furthermore, a longer study length would better account for seasonal changes and 

annual changes. Therefore, an increase in fix interval may actually result in a more accurate 

calculation of MCP by enabling longer study periods. Nevertheless, shorter study lengths 

with shorter fix intervals may capture ‘brief but long-distance forays’ (Frair et al., 2010). The 

prioritisation of study length over fix interval, or vice versa, is linked to how authors define a 

home range in time and space: whether they discount short forays as outliers and whether 

they time-bound home ranges that may move from one season to the next. We recommend 

that authors consider the trade-off and its implications in detail before deciding on the 

methodology for their study. 

 Understanding the nature and underlying mechanisms of animal movement enables 

researchers to predict responses to anthropogenic change, identify metapopulation dynamics, 

and investigate the transmission of disease through a population (Bradshaw et al., 2007). It 

remains a key area of research in ecology (Beyer et al., 2013; DeMars et al., 2013). Many 

species of conservation concern are elusive and span large areas. Telemetry represents one of 

the most commonly utilised methods for sampling animal locations, providing large datasets 

that one can exploit to determine behaviour and parameterise predictive models (Jenks et al., 

2015). Despite the biases we present here, telemetry will continue to augment knowledge and 

understanding of wildlife (Harbicht et al., 2017). By demonstrating how fix interval may 

increase the error associated with metrics derived from movement data, we hope to highlight 

caveats, provide a method to correct for error, and to corroborate the warnings of previous 

authors that fix intervals should be kept as short as possible in order to prevent large 

inaccuracies and bias.  

We can use virtual ecology as a tool to help us understand the effectiveness of 

empirical methodologies (Zurell et al., 2010). Using mechanistic models in virtual ecology 

studies, we can highlight biases and caution against certain interpretations that researchers 
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may draw from current methods. The limitations of virtual ecology depend on the model we 

select for a virtual ecology study. It is important that we capture the behaviour required to 

evaluate the methodology under study. Agent-based models are mechanistic rules-based 

models that allow behaviour patterns to emerge from the bottom upwards, making them well-

suited to virtual ecology studies. Methods that do not work well in the model will likely not 

work in reality (Zurell et al., 2010). Thus, we caution against telemetry studies that trade 

shorter fixed intervals for a longer study duration, especially where these telemetry studies 

will inform conservation management or parameterise movement models.   
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Abstract 

Apex predators play a vital role in ecosystem maintenance and function, yet they have 

suffered disproportionately from human-induced rapid environment change (HIREC). Recent 

advances in computing have facilitated the creation of complex, mechanistic models that 

simulate movement, and can help predict animal behaviour in response to HIREC. We 

develop a mechanistic model of predator movement within a wildlife corridor to investigate 

the responses of agents, representing jaguars, to three anthropogenic effects: deforestation, 

wildmeat hunting, and persecution in response to livestock depredation. Probability of a 

depredation event, and resultant persecution, was a key factor in both the number of agent 

deaths and number of agents traversing the corridor. The estimated depredation probability 

rose almost eight-fold when depredation and deforestation had interacting effects. However, 

the interaction effect was less pronounced when forest thinning caused the deforestation as 

opposed to land conversion. The relationship between the simulated anthropogenic stressors 

and the number of agents crossing the corridor area was less obvious than the relationship 

between anthropogenic stressors and agent deaths. The best-fit model for number of agents 

crossing the corridor included both deforestation and probability of depredation. Neither the 

best-fit model for number of agent deaths nor the best-fit model for number of agents 

crossing the corridor included the probability of a wildmeat hunting event occurring. The 

number of agents crossing the corridor area depended on the number of agent deaths, 

indicating the emergence of an ecological sink within the model.  The model has 

demonstrated the utility of complex, mechanistic models in conservation and has highlighted 

areas for future research. 

 

Key words: agent-based model; bushmeat; human-wildlife conflict; landscape configuration  
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4.1 Introduction 
Apex predators are important for ecosystem regulation and maintenance (Kelly, 2003; 

Watkins et al., 2015). However, human-induced rapid environmental change (HIREC) has 

led to a global decrease in range for the majority of large carnivores (Parmesan, 2006; Sih, 

2013; Wolf and Ripple, 2017). Land-use change and human encroachment place humans and 

wildlife in close proximity, resulting in conflict as they compete for food and space (Urquiza-

Haas et al., 2009). Advances in computing have allowed the development of complex 

mechanistic models that simulate animal behaviour, and attempts to predict how wild 

populations respond to HIREC (Singer et al., 2016; Synes et al., 2016). Here, we use a 

mechanistic model to investigate the dependencies of agents representing solitary carnivores 

on three interacting anthropogenic factors: deforestation, wildmeat hunting by humans, and 

livestock depredation that results in persecution by farmers. 

Anthropogenic land-use change is one of the principal drivers of biodiversity loss 

(Sala et al., 2000). Humans have converted 40 - 50% of the global ice-free land surface into 

agricultural or urban terrain (Chapin et al., 2000). Activities associated with agriculture may 

be responsible for 70% of projected biodiversity loss in terrestrial taxa (Secretariat of the 

Convention on Biological Diversity, 2014). Land-use change is associated with massive 

deforestation. Anthropogenic land-use change or natural causes destroyed around 130,000 

km2 of forest between the years 2000 and 2010, with South America and Africa suffering the 

largest net loss of forest habitat (Secretariat of the Convention on Biological Diversity, 2010). 

Deforestation disproportionately impacts large-bodied predators as they require large home 

ranges (Urquiza-Haas et al., 2009). For example, de la Torre et al. (2017) suggested that 

female jaguars require patches of at least 180 km2 of primary forest to meet their space 

requirements. Although some predators are able to inhabit unprotected areas (Boron et al., 

2016), contact with agricultural regions increases the risk of livestock depredation and 

persecution as pests. 

Unsustainable hunting of wildmeat significantly threatens many wild mammal 

species, including large predator species that hunters do not target (Ripple et al., 2016). 

Hunting has been responsible for the extinction of 12 species of vertebrate in Vietnam over 

the past five decades (Bennet and Rao, 2002). Most target species are large, K-selected 

mammals, whose low reproductive rates cause them to be more susceptible to hunting than 

smaller r-selected species (Mangel et al., 1996; Peres and Palacios, 2007). Hunting interacts 

with deforestation and fragmentation to further impact large-bodied animals, as larger species 
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are often the first targets for wildmeat hunters (MacDonald et al., 2011; Ripple et al., 2014; 

Ripple et al., 2015). Population declines in large mammals can also impact on species at other 

trophic levels through trophic cascades, thereby disrupting entire communities (Peres, 2000; 

Osuri et al., 2016; Peres et al., 2016). Wildmeat hunting may result in competition between 

humans and large carnivores for food. In Belize, for example, 7% of protein-containing meals 

include meat from one of six wild species (Foster et al., 2016). These species are the nine-

banded armadillo, paca, collared peccary, white-lipped peccary, red brocket deer and white-

tailed deer: species that make up large proportions of jaguar and puma diets in Belize (Foster 

et al., 2016). Thus, humans in Belize put themselves in competition with large felids, with 

implications for predator abundance.  

Livestock frequently appear in large-felid diets across the globe (Ghoddousi et al., 

2016; Babrgir et al., 2017).  Livestock losses due to large-felid depredation affect small 

economies and livelihoods (Inskip and Zimmermann, 2009). As a result, many stakeholders 

view large carnivores as pests (Babrgir et al., 2017), with local farmers potentially opting to 

poison or shoot large felids in order to protect their livestock (Treves et al., 2016; Trinkel et 

al., 2016). Lethal prevention is the main method of pest control for management of 

populations of large carnivores (Treves et al., 2009). For felids, direct persecution may 

represent a large proportion of mortalities in some areas. For example, Trinkel et al. (2016) 

found that within their study period, human-wildlife conflict caused almost 50% of lion 

mortalities on the border of Etosha National Park. Sub-adult males and adult females 

represented the majority of persecuted individuals, and this had second-order effects on the 

population structure of lion prides (Trinkel et al., 2016). However, non-lethal methods can 

present a more effective form of pest control than lethal methods (Treves et al., 2016). 

Moreover, wildmeat hunting and deforestation may augment the deleterious effects of direct 

persecution where deforestation places wildlife in closer proximity to humans and where 

hunting depletes the preferred prey of large predators (Ripple et al., 2014; Khorozyan et al., 

2015; Ghoddousi et al., 2016). 

Deforestation, direct persecution and wildmeat hunting have interacting effects. Land-

use change (LUC), the construction of roads, commercialisation of hunting and the 

technological advance in hunting weapon technology have all led to the increase in wildmeat 

hunting (Peres, 2000; Wilkie et al., 2000; Milner-Gulland and Bennet, 2003; Wolfe et al., 

2005). Inhabiting non-protected areas puts large carnivores into contact with livestock, 

increasing the risk of livestock depredation. Moreover, depletion of prey may cause jaguars 
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to look for other prey sources, such as livestock. Previous studies have used mechanistic 

models to investigate the effects of manmade activities on carnivore populations (Kanagaraj 

et al., 2013; Watkins et al., 2015), but focus solely on the effect of landscape configuration. 

Direct persecution arising from livestock depredation and hunting may interact with 

landscape configuration, resulting in unintuitive effects undetectable in models that only 

account for deforestation. To implement suitable conservation policy, decision makers 

require an understanding of how multiple key threats interact to impact on the behaviour of 

large carnivores. Identifying how factors interact will help predict how large carnivores will 

respond to future HIREC. Identifying and quantifying interacting effects requires 

independently-replicated response measures across balanced combinations of levels often not 

available in the field. The difficulty in obtaining these conditions has meant that none have 

attempted to quantify the interacting effects of different anthropogenic threats on large felids. 

Virtual ecology provides an environment where modellers can explicitly control all variables, 

thereby facilitating the quantification of interactions that are otherwise unquantifiable without 

considerable bias.  

Here, we use a high-resolution agent-based model of fine-scale felid movement 

decisions, developed in Ball et al. (Chapter 3), to evaluate the effects of interacting factors on 

agent movement across a corridor area in Belize. The model incorporates agent avoidance of 

hunted forest, persecution of agents in response to depredation events, and five deforestation 

scenarios. The deforestation scenarios represent differences in both forest loss and forest 

configuration (Fahrig, 2003). We evaluate interactions between the factors by investigating 

all three using one model. To our knowledge, there exists no other mechanistic model that 

evaluates the interacting effects of multiple anthropogenic impacts on large-bodied predators. 

 

4.2 Methods 
4.2.1 Study site 

Belize covers a mainland area of 21,800 km2 (Lands and Survey Department, 2015; 

United Nations Development Program, 2015). At 61%, it has the highest percentage of forest 

cover of any country in mainland Central America (FAO, 2010), with current or candidate 

protected areas taking up 43% of its mainland (Foster et al., 2016). 

The Central Belize Corridor is a Darwin Initiative project that sought to secure a tract 

of land across the centre of Belize for use as a wildlife corridor, preserving a link along the 
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Mesoamerican corridor network at this particular latitude (Watkins et al., 2015). Other 

objectives included improving the monitoring of the jaguar populations in the area, increasing 

awareness and education, and encouraging sustainable harvesting of species. Threats to 

jaguars in this area are the central Belize highway, human hunting, fire and land conversion 

(Watkins et al., 2015). The result of this initiative has been the establishment of the first 

wildlife corridor in Belize, with support and recognition from the Belize government. It 

consists of 872 km2 of forest, and connects the north and south forest blocks of Belize, 

forming part of the Mesoamerican corridor. 

The study area consists of the 598 km2 area comprising the full extent of the Central 

Belize Corridor. The corridor area consists mostly of broadleaf forest with some lowland 

savannah and agricultural areas. Although forest cover remains high in Belize, it has become 

partitioned into northern and southern blocks that converge to a single connecting strip of 

forest just 20 km wide and bisected by the Western Highway, the country’s busiest trunk 

road. Without the corridor to protect this narrow strip from encroaching urbanisation and 

multinational agricultural ventures, Belize’s southern and northern borders would no longer 

be linked by contiguous forest, and the isolated southern forest which currently supports up to 

8 jaguars per 100 km2 would not sustain viable populations of large cats (Foster et al., 2010). 

This would break the integrity of the Mesoamerican Biological Corridor, containing 106 

critically endangered species, as no other connection exists between northerly and southerly 

forests at this latitude anywhere from the Atlantic to the Pacific. 

Figueroa (2013) estimated the Belizean jaguar population at 446 – 754 individuals. 

However, the actual number probably lies towards the lower end of this range (Figueroa, 

2013), with 276 – 531 of these inhabiting the networks of protected areas, 211 – 462 in the 

southern block, and 65 – 69 in the northern block (Figueroa, 2013). Half of all forest in 

Belize lies outside protected areas (Figueroa, 2013), and these areas contain the remaining 

170 – 223 jaguars (Figueroa, 2013). The population of jaguars in the north-east of the country 

is unlikely to be viable in the long-term (Figueroa, 2013). The Western highway separates the 

two blocks of protected area networks (Figueroa, 2013). Although some mammals such as 

jaguars, pumas and tapirs cross highway barriers, white-lipped peccaries may no longer cross 

this road (Figueroa, 2013). 
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4.2.2 The base model 

Here we use the agent-based model validated in Ball et al. (Chapter 2). Appendix I describes 

the model in full, with an Overview, Design Concepts, and Details document (Grimm et al., 

2006). The model ran on a grid of 40 × 40 m squares, covering the entirety of the Central 

Belize Corridor. The Central Belize Corridor contains urban areas and bodies of water. 

Agents could not enter either of these areas in the model. Table 1 includes a list of parameters 

for the model. 

 The model contained an indefinite number of agents. Despite the reduction in realism 

associated with this assumption, the simplification allowed us to focus on the interacting 

effects without confounding the findings with complicated birth and death dynamics. The 

inclusion of realistic birth and death dynamics could have destabilised the model, and would 

have required more computing power to run. As a consequence, the number of deaths and 

number of crossings could increase indefinitely to unrealistic values, whereas in reality they 

would have reached an asymptote as the population of jaguars fell. We advise that readers 

consider this limitation when interpreting the results from the simulation model. 
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Table 1. Input parameter values for the ABM. 

Parameter Abbreviation Value 

(a) Pheromone-related, determining interactions amongst individuals 

Population size Po 42 

Pheromone placed by agent each 
turn 

Ph 77.00 

Pheromone decay rate PhD 0.92 

Cost of females to males CFM -39.00 

Cost of males to females CMF -1.00 

(b) Movement, determining type of algorithm for choosing next cell 

Probability of random movement R 0.46 

Male probability of directional 
persistence 

MDP 0.62 

Female probability of directional 
persistence 

FDP 0.16 

(c) Environmental parameters, determining interactions with the abiotic 
environment 

Male distance to water multiplier MDW -0.18 

Female distance to water multiplier FDW -0.06 

Male distance to trail multiplier MDT 0.39 

Female distance to trail multiplier FDT 0.05 

Male trail square cost MTr -6.00 

Female trail square cost FTr 14.00 

Male slope multiplier MS 2.51 

Female slope multiplier FS 3.00 

Male altitude multiplier MA 0.47 

Female altitude multiplier FA 0.48 

Cost of woodland  W 1.00 

Cost of lowland savannah S 1.00 

Cost of agricultural land A 40.00 
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4.2.3 Anthropogenic impacts 

4.2.3.1 Deforestation 

We used the Create Random Raster function in GIS to create 4 deforestation scenarios for the 

study site (Figure 1a-d). 2 deforestation scenarios represented conversion of broadleaf forest 

to agriculture. For conversion, we removed multiple 1000 × 1000 m blocks of forest, 

amounting to a total of 33% (Figures 1a) and 66% (Figures 1c) of broadleaf forest in the 

region. The remaining 2 scenarios for each study site modelled forest thinning. We 

represented thinning by removing multiple smaller blocks (100 m × 100 m) of forest. The 

two thinning scenarios for each study site removed 33% (Figures 1b) and 66% (Figures 1d) 

of forest. Deforestation scenarios were static across replicates. 
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Figure 1. Deforestation scenarios for the model of the Central Belize Corridor. Colours represent 

habitat types, of forest (green), savannah (pink), agriculture (yellow), urban (red), open water 

(blue). Scenarios of land conversion in (a) and (c) and forest thinning in (b) and (d) involve 33% 

deforestation ((a) and (b)), or 67% deforestation ((c) and (d)), relative to the control scenario in 

(e) with no change from the current distribution of habitat. 

 

a) b)

c) d)

e)
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4.2.3.2 Wildmeat hunting 

A recent study by Soofi et al. (2018) provided evidence for the theory that wildmeat hunting 

in forests may lead to the depredation of livestock by large carnivores. We incorporated this 

into the simulation model by creating a sub-model of wildmeat hunting that included a cost 

associated with humans. The cost forces jaguar agents into the agriculture areas of the map, 

representing depredation of livestock in response to wildmeat hunting in areas of forest. The 

human hunting sub-model depended on three parameters: cost of hunting to jaguars, 

maximum time of cost effectiveness, and chance of a hunting event. We parameterised cost 

of hunting to jaguars to cause jaguars to choose agricultural areas over forested areas when 

the forested area was hunted and set the maximum time of cost effectiveness to one modelled 

day. Every cell had a human cost and time since hunting attribute. The human cost attribute 

was static and equated to the cost to jaguars of humans hunting their prey. The model created 

a random number for each forest cell every time step. If that number was less than or equal to 

the chance of a hunting event, the function set the time since hunting attribute to 0, with this 

time since hunting attribute increasing by an increment of one every time step. For any one 

instance, if the time since hunting attribute was above the maximum time of cost 

effectiveness, the individual would not include human cost in cost calculation. Otherwise, if 

the time since hunting was lower than the maximum time of cost effectiveness, the individual 

would use this cost in neighbouring cell cost calculations. 

 
Table 2. Input parameter values for the wildmeat hunting sub-model. 

Parameter Abbreviation Value 

Human cost H 50.00 

Time since hunting TSH 24.00 

 

4.2.3.3 Persecution by farmers 

The persecution sub-model ran on three parameters: the probability of the jaguars killing 

livestock, the probability of a jaguar dying on an agriculture cell, and the maximum time after 

an agriculture cell losing livestock that jaguars would die on agricultural cells. We ran 

sensitivity analysis on the probability of death and the maximum time of persecution 
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following a depredation event to assess how these parameters affected the dependent 

variables. 

 

4.2.4 Statistical analysis 

We ran the full model for 1000 runs, consisting of 200 runs for each depredation scenario. 

We identified sets of parameter values for each run using Latin Hypercube Sampling 

(Carnell, 2018). Each simulation ran for 219,000 time steps, representing 5 years. We 

initialised the model with 6 individuals. We calculated number of individuals using figures 

from Figueroa (2013). 

For each replicate, we calculated the number of agent deaths, and the number of 

agents leaving the corridor by a cell on the opposite side to that which they entered. The latter 

parameter represented an agent crossing the corridor area. When an agent died or left the 

corridor, another agent appeared at the edge of the model to replace the agent that had left the 

model.  

We ran general linear models using a Poisson error to investigate whether agent deaths 

and number of individuals crossing the corridor depended on deforestation scenario, chance 

of a hunting event, and the probability of jaguars killing livestock. A lower probability of 

depredation event corresponded to farmers taking further measures to protect livestock. The 

dependent variables were counts: number of agent deaths and number of agents crossing the 

corridor area. The independent variables were deforestation scenario, probability of a human 

hunting event, and probability of a depredation event. We examined residual plots visually to 

test the assumptions of the general linear models. We employed the Akaike’s information 

criterion (AIC) value of the statistical model to determine which statistical model best fit the 

data. 

We ran sensitivity analyses on any parameters that we had not validated in previous 

studies (see Chapter 3) and could not determine from known empirical studies. The two 

parameters that met this criterion were the probability of death and the persecution period 

following a depredation event. We conducted sensitivity analyses so that we could quantify 

the potential bias of the selected parameter values. 
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4.3 Results 
4.3.1 Anthropogenic effects on number of jaguar deaths 

For the response of number of deaths, the best-fit regression model included deforestation 

scenario and probability of a depredation event (Table 3; Figure 2).  The AIC for the best-fit 

regression model was 12466 (∆AIC = 0). The model that included the probability of hunting 

to the model as an additive effect had a ∆AIC of 1. The model that included both probability 

of hunting and the interaction between probability of hunting and the other effects had a 

∆AIC of 16. This indicated that including probability of hunting had no beneficial effect on 

the fit of the model. An additive regression model including deforestation scenario and 

probability of depredation, but no interaction, had the second lowest AIC for models that did 

not include the probability of hunting (∆AIC = 535). 

 The result was 5 possible regression lines (Figure 2), one for each deforestation 

scenario. The generalised equation for the regression lines is given below in Equation 1. Y 

represents the number of deaths, 𝛼 is the intercept where probability of depredation is equal 

to 0. The value of 𝛼 is dependent on the deforestation scenario used. For example, if it is the 

control deforestation scenario then the value would be 11, or 47 (11 + 36) for deforestation 

scenario A. X is the probability of depredation. β is the slope associated with a particular 

deforestation scenario (see Table 3), be that deforestation scenarios A-D or the control 

scenario. 

 

𝑌 = 𝛼 + 	𝛽𝑋 

(1) 

 

 Coefficient estimates for the slope of the regression line were relatively high (Table 

3), however this was due to the independent variable for depredation ranging from 0 to 1. 

Therefore, an increase by 1 unit on the x-axis represented an extreme scenario, thus 

explaining the high estimates for slope. Standard errors associated with the coefficient 

estimates were generally high compared to the coefficient estimates for the regression slope, 

resulting in low F- and high p-values. The majority of statistically significant regression 

equations were associated with the probability of a depredation event, whether alone as a 

single variable or as part of the interaction with deforestation scenario. 
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Table 3. Estimates, F-values and p-values for coefficients from the best-fit regression model for 

number of agent deaths. Coefficient estimates represent the intercept of the linear regression line 

for the control deforestation scenario, estimate for the increment the number of deaths increases 

by for the categorical independent variables (deforestation scenario), and estimate of the slope of 

the regression line for the continuous independent variables. As depredation is assigned a value 

between 0 and 1, the value at x = 1 would be the highest possible number of deaths. F-values 

are calculated using the value of the estimate compared to its standard error (the higher the 

standard error in proportion to the estimate, the lower the F-value). p-values are determined from 

the F-value and sample size. 

Coefficient Estimate F-value p-value 

Control intercept 11 +/- 17 0.65 0.51 

Probability of a depredation 
event (Control deforestation 
scenario) 

2196 +/- 600 3.66 < 0.001 

Deforestation scenario A 36 +/- 25 1.46 0.14 

Deforestation scenario B 3 +/- 25 0.13 0.90 

Deforestation scenario C 45 +/- 25 1.82 0.07 

Deforestation scenario D 14 +/- 25 0.58 0.56 

Interaction: probability of 
depredation and deforestation 
scenario A  

15862 +/ 848 18.7 < 0.001 

Interaction: probability of 
depredation and deforestation 
scenario B 

18 +/- 848 0.02 0.98 

Interaction: probability of 
depredation and deforestation 
scenario C 

15916 +/- 848 18.8 < 0.001 

Interaction: probability of 
depredation and deforestation 
scenario D 

10509 +/- 848 12.4 < 0.001 

 

 

Overall, number of jaguar deaths rose with depredation rate but not with the 

probability of a hunting event, although the control scenario and deforestation scenario B 

(forest thinning) did not suffer as large a death rate as other scenarios. Deforestation 

scenarios A and C, which simulated a 33% and a 66% loss, respectively, with forest removed 
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in 1000 m  ×  1000 m segments, had similar rates of increase in number of deaths with 

probability of depredation event (Figure 2). Deforestation scenario D, which represented 66% 

forest loss by thinning, did not have the same rate of increase as scenarios that modelled 

removal of forest for agriculture. Nevertheless, the relationship between probability of 

depredation and number of agent deaths was far more pronounced than the same relationship 

for deforestation scenario B. For thinning scenarios, there was a 570-fold increase in 

coefficients for the interaction of deforestation scenario and probability of depredation 

between the scenario with 33% forest loss and the scenario with 66% forest loss. Hence, 

although forest loss through thinning appeared to result in a lower number of deaths than 

forest removal through agriculture, effect sizes increased more rapidly with amount of forest 

loss. It is unclear from just these two thinning scenarios whether a similar increase in effect 

size would continue with greater forest loss, however it is interesting to note that forest loss 

through removal did not have a similar rate of increase. 

Deforestation scenario A simulated deforestation through the removal of large blocks 

of forest, whereas deforestation scenario B simulated forest loss through the removal of 

smaller blocks of forest. At 33% forest loss, scenarios of forest thinning had a similar number 

of agent deaths to the control scenario. However, at 66% the results were similar to scenarios 

with larger segments. Deforestation using larger segments resulted in a more heterogeneous 

configuration on a landscape scale but a more homogeneous configuration locally. For a 

scenario with large segments, once an agent was in an area of agriculture, it is more likely 

that they would be stranded in that agricultural area. Agents in an agriculture cell in scenario 

B were more likely to be in close proximity to a forest cell, and therefore closer to refuge. As 

agents in the model preferentially chose forest cells, agents were hence less likely to spend as 

much time in agricultural cells, reducing the overall number of deaths. 

 Number of agent deaths depended less on the probability of a hunting event than the 

probability of a depredation scenario, and it did not appear in the best-fit regression model. 

The number of agent deaths did not depend on probability of human hunting event (F 1, 999 = -

0.78, p = 0.44). The model design predicated that incidents of human hunting only occurred 

in forest cells and increased the cost value of a cell to a level where it became preferable for 

agents to move to agricultural cells. By decreasing the amount of forest available to agents, 

deforestation scenarios prevented agents from locating forest cells free of human hunting 

pressure. Thus, one would expect deforestation to intensify the effect of human hunting on 

the number of agent deaths during the course of the model. However, this wasn’t apparent in 

the model results. This could be due to the indirect relationship between hunting and deaths – 
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agents would have to depredate livestock and then move through agricultural squares for a 

short while after the event – or due to the stochastic nature of the movement model. It could 

also result from agents moving to neighbouring areas of woodblock rather than agricultural 

squares, or from agents quickly locating an area of undisturbed woodblock once on an 

agricultural square. 

 

 
 

Figure 2. Number of agent deaths as a function of deforestation scenario and probability of a 

depredation event occurring. 

 

We ran sensitivity analyses at an intermediate probability of depredation (0.25) on the 

probability of death given a previous depredation event and the period of time for which 

farmers persecute agents following a depredation event (Figure 3). The number of jaguar 
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deaths during the simulation did not depend on the interaction between the probability of 

death and the length of a persecution period following a depredation event (F2,96 = -0.3, p = 

0.74; Figure 3). The number of jaguar deaths during the simulation depended on the 

probability of death when stepping on a square where they could be persecuted (F1, 97 = 14.9, 

p < 0.001). The dependency was strong and roughly linear, demonstrating that, despite the 

stochasticity and complexity in the model, the probability of death affected the number of 

deaths in an expected way.  The number of jaguar deaths did not depend on the length of the 

persecution period following a depredation event (F1, 97 = 0.7, p = 0.46). 

 
Figure 3. Sensitivity analysis: number of agent deaths as a function of probability of death and 

persecution period following a depredation event. 
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4.3.2 Anthropogenic effects on number of corridor crossings 

 
Figure 4. Number of agent crossings as a function of probability of depredation event occurring 

and probability of a human hunting event occurring. 

 

The effect of anthropogenic activities on the number of corridor crossings made by 

agents is much less clear than their effect on number of agent deaths (Figure 4). No 

systematic pattern appears along either of the gradients. Moreover, there is no systematic 

pattern between deforestation scenarios (Table 4). This could perhaps point to other 

dependencies, or to the randomness of the movement model. 

For the number of agents crossing the corridor, the model with the lowest AIC 

included probability of a depredation event, the deforestation scenario, and the interaction 

between depredation and deforestation scenario (Table 4). It did not include the probability of 

a human hunting event. The AIC for the best-fit regression model was 10579 (∆AIC = 0). An 
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additive regression model including deforestation scenario and probability of depredation, but 

no interaction, had the second lowest AIC (∆AIC = 7). All other models had ∆AIC values 

greater than 21. As with the number of deaths (section 5.3.1), including the probability of 

hunting in the regression model had no beneficial effect on the fit of the model to the data. 

The generalised equation for the regression lines is given below in Equation 2. Y 

represents the number of crossings. 𝛼 is the intercept. 𝛼 depends on the deforestation 

scenario. Hence, 𝛼 is 66 for the control deforestation scenario and 68 for deforestation 

scenario B (calculated by adding the coefficient estimate for the deforestation scenarios to the 

intercept value for the control scenario). X is the probability of depredation. β is the slope 

associated with a particular deforestation scenario (see Table 4), be that deforestation 

scenarios A-D or the control scenario. 

 

𝑌 = 𝛼 + 	𝛽𝑋 

(2) 

 

Coefficient estimates for the slope of the regression line were generally lower than for 

the number of deaths (Table 4). Moreover, the standard errors associated with the coefficient 

estimates for the slopes were relatively high, resulting in generally low F-values and high p-

values. The exceptions to this were the interaction between depredation and deforestation 

scenario A and the interaction between depredation and deforestation scenario D. Both had 

steep gradients, resulting in sharp rise in number of crossings with an increase in depredation 

probability given the deforestation scenario. 
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Table 4. Estimates, F-values and p-values for coefficients from the best-fit regression model for 

number of agent corridor crossings. Coefficient estimates represent the intercept of the linear 

regression line for the control deforestation scenario, estimate for the increment the number of 

deaths increases by for the categorical independent variables (deforestation scenario), and 

estimate of the slope of the regression line for the continuous independent variables. F-values 

are calculated using the value of the estimate compared to its standard error (the higher the 

standard error in proportion to the estimate, the lower the F-value). p-values are determined from 

the F-value and sample size. 

Coefficient Estimate F-value p-value 

Control intercept 66 +/- 7 9.85 < 0.001 

Probability of a depredation 
event (Control deforestation 
scenario) 

-86 +/- 233 -0.37 0.71 

Deforestation scenario A -4 +/- 10 -0.44 0.66 

Deforestation scenario B  2 +/- 10  0.19 0.85 

Deforestation scenario C 6 +/- 10 0.68 0.50 

Deforestation scenario D -15 +/- 10 -1.56 0.12 

Interaction: probability of 
depredation and deforestation 
scenario A  

969 +/- 330 2.93 0.003 

Interaction: probability of 
depredation and deforestation 
scenario B 

75 +/- 331  0.23 0.82 

Interaction: probability of 
depredation and deforestation 
scenario C 

370 +/- 330 1.12 0.26 

Interaction: probability of 
depredation and deforestation 
scenario D 

871 +/- 330 2.64 0.009 

 

  

Number of agents crossing the corridor depended on the interaction between 

deforestation scenario and the probability of a depredation event. The effect was most 

pronounced for deforestation scenarios A and D, but was also relatively strong for scenario C 
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(Table 4).  The interaction between probability of depredation event and deforestation caused 

an approximately 15-fold increase in number of corridor crossings for deforestation scenario 

A.  

The number of corridor crossings depended on the probability of death (F1, 97 = -2.5, p 

= 0.02; Figure 5) and the persecution period following a depredation event (F1, 97 = -2.0, p = 

0.05) as additive effects, with no interaction between them (F2,94 = 1.6, p = 0.12) 

 
Figure 5. Sensitivity analysis: number of agent crossings as a function of probability of death and 

the length of a persecution period. 

 

Best-fit models for number of crossings and number of agent deaths included the 
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These three factors indicate that there may be a relationship between the number of agent 

deaths and the number of agent crossings. Number of crossings depended on number of agent 

deaths (F1, 999 = 6.8, p < 0.001). Number of crossings did not depend on the interaction 

between number of agent deaths and deforestation scenario (maximum F1, 999 = 1.1, p = 0.29). 

The relationship between number of deaths and number of crossings was stronger than that 
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between the probability of a depredation event and the number of crossings. Thus, home 

ranges of other agents limited the number of crossings. As the number of agent deaths 

increased, the number of agents that could make their way through the corridor increased. 

Nevertheless, the number of agent deaths was far greater than the number of agent crossings. 

Hence, although agent deaths increased the mobility of agents throughout the corridor, given 

a finite population, the effects of depredation and deforestation would have a more negative 

than positive relationship on the agent population. 

 

 

4.4 Discussion 
In this study, we have shown that the number of agent deaths depends on the interacting 

effects of depredation and deforestation, with agent deaths responding more strongly to 

depredation where deforestation occurred as the removal of large blocks of woodland rather 

than as forest thinning (Figure 2). An agent-based model allowed us to model the reaction of 

individual agents as emergent behaviour from pre-defined behaviour rules. To extend the 

study, we should identify evidence of these patterns in real ecosystems by quantifying the 

number of large-felid deaths as a result of lethal control by livestock owners, and comparing 

over different configurations of deforestation. Identifying evidence of these patterns would 

allow us to validate the findings of the model. However, the challenge for replicating the 

findings in empirical studies comes from the inability to find study sites where the number of 

confounding variables is minimal. The inherent difficulty in ground-truthing the findings 

demonstrates the importance of models in ecology for identifying patterns in scenarios where 

confounding variables would bias otherwise results. 

We reduced the complexity of the simulation in order to observe the interactions in 

absence of other population dynamics, which may have destabilised the model and 

overcomplicated the insights drawn from the model. Simplification of population dynamics 

means that the reader must not interpret these findings as patterns that would be reflected in 

the real world, as population dynamics would interact with anthropogenic effects to produce 

potentially converse results. Nevertheless, simplification of births, deaths, immigration and 

emigration of individuals prevented uncertainty arising as to whether the number of agents in 

the system could be attributed to the interactive effect of anthropogenic factors or to 

stochasticity in population dynamics. Our intention, therefore, was not to recreate the 

intricacies of reality, but to isolate anthropogenic effects and push them to extreme values in 
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order to investigate how they interacted over a range of values, identifying a definite causal 

pattern in death rate arising from anthropogenic factors. Despite the simplifying assumptions 

made when creating the model, our study indicates that depredation may represent a key 

factor in large carnivore conservation, and that removal of large tracts of land may be more 

damaging than forest thinning, given the same amount of forest.  

The number of corridor crossings depended on the number of agent deaths. This suggests 

that the modelled home ranges of other agents limited the mobility of agents. Our findings 

therefore support those of Watkins et al. (2015) from a much simpler model of habitat-

dependent population dynamics in the Central Belize Corridor, who found that jaguar 

territories could block the passage of other jaguars through a corridor of sufficient width to 

contain a territory. Moreover, although connectivity of populations is important for processes 

such as gene flow (Coulon et al., 2004) and metapopulation dynamics (Hanksi, 1999), 

individuals immigrating into an area with a high probability of death constitutes an ecological 

sink (Chen et al., 2008; Heinrichs et al., 2016). Our findings not only support the idea that the 

Central Belize Corridor could become an ecological sink (Watkins et al., 2015), they refine 

previous conclusions by exploring and quantifying human-agent interactions, thereby 

identifying conditions that could enhance the sink effect.  

Depredation had the most pronounced influence on the number of agent deaths, with 

agent deaths increasing as depredation rate increased. Moreover, the influence of depredation 

depended on the rate of deforestation. The effect of depredation on agent deaths is no 

surprise, given the direct link in the model between persecution and the probability of an 

agent dying. The simplified choice of immigration model allowed us to focus on the 

interactive effects of the anthropogenic parameters without including potentially destabilizing 

population dynamics. Furthermore, the simplifying assumption of an indefinite population of 

agents resulted in a constant increase in number of deaths, whereas in reality the number of 

deaths would reach an asymptote given a known population. Nevertheless, links do exist in 

the real world between depredation of livestock and the use of retaliatory force by 

stakeholders (Babrgir et al., 2017). The interaction between deforestation scenario and the 

influence of depredation on agent deaths is more surprising and warrants further study. 

Hence, the model indicates the importance of reducing the possibility of depredation and calls 

for a comparison of levels of lethal control across different forest configurations.  

Our model included an indefinite number of agents in order to reduce the instability 

caused by adding birth and death dynamics to an already-complex model, and also to allow 

us to focus solely on the interacting effects, pushing the effects to extremes to investigate the 
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interactions between the two independent variables. Given a finite population, the number of 

crossings would reduce over time with number of agent deaths as fewer animals would be 

available to immigrate into the area. In reality, the rate of depredation would decrease due to 

a reduction in individuals within an area, leading to a lower number of deaths. Moreover, a 

finite population would be unable to continuously fill voids left by dead individuals. Crossing 

corridors would thus remain open in some areas of the corridor. The lack of realism 

associated with this assumption must be considered when interpreting the results of our study. 

The model did not capture precautionary lethal control of populations driven by public 

perception and the media (Fernández-Gil et al., 2016), or situations where stakeholders 

persecuted one species or individual for the actions of another (Knowlton et al., 1999). It is 

likely that inclusion of non-retaliatory lethal control would reduce the strength of relationship 

between depredation and agent deaths. It would also likely cause a sharp increase in agent 

deaths and, consequently, in number of agent crossings. Attitudes towards large carnivores 

may not be linked to depredation events, but to socio-economic factors (Rust et al., 2016; 

Mkonyi et al., 2017). We advise that future models investigate the interacting effects of 

public opinion, poverty, level of education, and number of depredation events on the number 

of agent deaths in a region. 

The model demonstrated that scenarios of forest loss that removed larger segments 

suffered a higher number of agent deaths. Our study agrees with accepted knowledge that 

habitat loss can reduce species richness and has contributed to the reduction in the number of 

large carnivores worldwide (Fahrig, 2003; Urquiza-Haas et al., 2009). However, the effect of 

habitat fragmentation on ecosystems is an ongoing area of research (Villard and Metzger, 

2014). Results from the model indicated that an environment that is more homogeneous on a 

local scale offered no refuge for agents in large expanses of agriculture, resulting in a high 

number of deaths. Large carnivores often have high mortality at the edge of reserves and 

national parks (Balme et al., 2010), however edges that create a locally heterogeneous 

configuration may offer refugia and cover for large carnivores. Regardless, our model 

indicates that at higher rates of forest loss, the benefits provided by the locally heterogeneous 

configuration disappear. Large mammals usually do not inhabit small fragments (Michalski 

and Peres, 2007) and at higher rates of forest loss, locally homogeneous configurations may 

prove more beneficial to the population than locally heterogeneous configurations.  

Number of agent deaths did not depend on wildmeat hunting in the model. This could be 

due to the large effects of both depredation and deforestation distorting the effect of wildmeat 

hunting, or to the stochastic nature of the model. The world is suffering a wildmeat crisis 
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(Ripple et al., 2016) and this has led to multiple extinctions (Fa et al., 2002; Milner-Gulland 

and Bennett, 2003; Darimont et al., 2015) The extinctions in the literature, however, tend to 

concentrate on hunted species. Here, we have focused on competition between humans and 

large carnivores. We modelled avoidance of hunted areas, which represented both avoidance 

of humans in general (Packer et al., 2013) and avoidance of areas with fewer prey. The 

knockdown effect of wildmeat hunting of prey species is a complicated process, and likely 

could not be captured fully by the model. For instance, the model selected cells at random 

when selecting hunted cells. In reality, hunters would cover the entire area rather than one 

particular 40 x 40 m square, hence an element of spatial autocorrelation exists that the model 

did not include. We suggest that future studies attempt to isolate only wildmeat hunting in 

order to accurately evaluate its effect on large carnivores. 

Our model has demonstrated the ability of spatially-explicit models to investigate 

interactive anthropogenic effects on simulated populations by isolating the effects, thereby 

simplifying the interpretation of results and identifying patterns that can directly be attributed 

to anthropogenic factors. Nevertheless, limitations of computing power necessitated the 

prioritisation of aspects of the system we wished to model, resulting in simplifying 

assumptions. The example here is the assumption of an indefinite population of agents. 

However, many agree that mechanistic modelling represents the future of ecological 

modelling, with the creation of fine-scale movement models that can capture species 

dispersal, genetics, demographics and anthropogenic activity to provide predictions on 

ecosystem response to HIREC (Sih et al., 2016). As computer speeds and capabilities grow, 

mechanistic models will be able to incorporate a greater level of realism. Our model has 

drawn attention to future areas of study: the incorporation of socio-economic drivers and 

public opinion in models of persecution for depredation; investigation of how the effects of 

configuration on large mammals change with overall forest loss; isolation of human hunting 

as a single independent variable. We must answer these questions. With computer power ever 

increasing, next-generation modelling (Grimm and Berger, 2016) may offer part of the 

solution to these questions and an increased understanding of how anthropogenic activities 

will continue to impact large carnivores. 
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4.5 Appendix I. Overview, Design concepts and Details 
Appendix I follows the protocol of Overview, Design concepts and Details suggested by 

Grimm et al (2006). 

 

4.5.1 Purpose 

The model simulated small-scale movement decisions of jaguars in the Central Belize 

Corridor, Belize. Our purpose was to investigate the movements of jaguars in response to 

anthropogenic change. 

 

4.5.2 State variables and scales 

The model background consisted of 1000 × 900 grid cells. Each grid cell represented an area 

comprising 40 × 40 m. This grid includes “Null” cells that lay outside the park. The park 

consists of a modelled 598 km2. GIS data (Meerman, 2011) informed data on static aspects of 

the cells: habitat type, distance to river, distance to trail, altitude, and slope. The agents 

occupied a single cell at a time. The model allocated each individual with a gender, 

transient/resident status, identity, location and graphics information. At the beginning of each 

timestep, the agent would deposit an amount of “pheromone”. Pheromone represented the 

ability of agent to signal to each other. In reality, jaguars communicate using scrape 

markings, scent markings and vocal calls. The model stored pheromone levels as a feature of 

grid cells. Pheromone levels were gender-specific. Each replicate consisted of 219,000 

timesteps that represented 5 years. Each timestep equated to 12 minutes.  

 

 

4.5.3 Process overview and scheduling 

At the beginning of each parameter set run, the model created the background grid and set 

static cell attributes: terrain type, distance to river, distance to trail, altitude, slope, 

coordinates and graphics information. The model then ran through replicates. 

 

At the beginning of each replicate the model created output files and initialised a population 

of agents. The agents had an equal chance of being male and female. All agents created at the 



Chapter 4. Anthropogenic impacts  

 119	

beginning of the simulation were “resident” agents. After initialisation, the model ran through 

a series of timesteps.  

 

The model placed an amount of pheromone at the beginning of each timestep. It then looped 

through all individuals. If an individual was in the park area, the individual would undergo 

the move function. If an individual was a “resident” and outside the park the, it would 

undergo the re-entry function. After movement of “resident” individuals, the model went into 

an immigration function, which created new “transient” individuals. At the end of the 

timestep, the model would write to output files and decay pheromone levels. The model 

continuously updated all information on cell pheromone levels and jaguar locations.  

 

4.5.4 Design concepts 

4.5.4.1 Emergence 

Individual home ranges emerged from the communication between agents via pheromone 

levels. The constant decay and placement of pheromone allowed home ranges to be dynamic.  

 

4.5.4.2 Adaptation 

Agents chose the least-cost neighbouring cell based on cell attributes. These attributes were 

both dynamic (for example, distance to river) and dynamic (pheromone levels). The 

parameter sets each had specific values for how an agent responded to each of the cell 

attributes. 

 

4.5.4.3 Fitness 

The model did not include mortality or fecundity, however this model represents a base 

model for future investigations of how movement decisions affect mortality and dispersal in a 

human-influenced environment. 

 

4.5.4.4 Sensing 

All agents could access information on neighbouring cell attributes. This information 

included environmental attributes (terrain type, distance to river, distance to trail, altitude and 

slope) and agent-related attributes (amount of male pheromone, amount of female 
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pheromone, jaguar occupancy). The agent did not access camera-related cell data. Each cell 

had eight neighbours, representing north, north-east, east, south-east, south, south-west, west, 

north-west and north cells.  

 

4.5.4.5 Interaction 

Agents interacted using pheromone. Pheromone was gender-specific. Gender-specific 

parameters dictated how agents respond to same-gender, opposite-gender and own 

pheromone. Agents responded to pheromone levels by having an increased or reduced cost 

proportional to the amount of pheromone. Hence, pheromone resulted in avoidance or 

attraction to the same- and opposite genders, dependent on the parameter set. 

 

4.5.4.6 Stochasticity 

The model included parameters for probability of random movement, and probability of 

directional persistence. Hence, an agent could move in a random direction, in the same 

direction as previously or in a direction dictated by cost of neighbouring cells. The 

probability of these movement types depended on the parameter values and random number 

generation. The model allocated gender based on a 50% chance of being male or female. 

 

4.5.4.7 Observation 

The model used the Python package Tkinter for graphical representation during testing. The 

graphics provided information on environmental attributes and gender-specific pheromone 

levels in each cell, and individual movements around the grid. 

 

4.5.5 Initialisation 

The model reset all landscape and agent attributes at the beginning of a new parameter set. At 

the end of each replicate, the cell pheromone-related attributes reset. The model removed all 

individual and created a new population. The number of individuals in the new population 

depended on the value of the population parameter. Agents could then establish new home 

ranges. 
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4.5.6 Submodels 

4.5.6.1 Pheromone placement 

At the beginning of each timestep, each individual placed an amount of pheromone in its 

current cell equal to the pheromone placement parameter value. This allowed agents to 

communicate with each other. 

 

4.5.6.2 Move 

The function ran through each individual in the population, provided the individual was 

within the CBC area. It first created a random number. If this random number was less than 

or equal to the probability of random movement, the individual selected a random 

neighbouring cell as its next cell. There were eight neighbouring cells for each cell. This cell 

may be outside the park. If the individual did not undertake random movement, the model 

created another random number. If this random number was less than or equal to the 

probability of directional persistence (DP), the individual continued moving in the same 

direction it had moved previously. If an individual did not move randomly or in the same 

direction as previously, the model calculated the gender-specific cost values of all 

neighbouring cells. The individual chose the least cost neighbouring cell. Once the individual 

selected a cell, the model removed the individual from the cell occupancy list and changed 

the x and y coordinates of the individual. Graphics information also changed. 

 

4.5.6.3 Re-entry 

If an individual was a “resident” and outside park boundaries, the model entered a re-entry 

function. The program created a random number. If this number was less than or equal to the 

chance of re-entry, the model created a selection of cells consisting of the last non-null cell 

the individual stepped on and any “border cells” within 250 m of that last cell. The model 

selected one of these cells at random and moved the individual to this cell. 
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4.5.6.4 Immigration 

If a model created a random number less than or equal to the probability of immigration, the 

program entered the immigration function. The immigration function created a new 

individual of class “transient”. The transient individual had an equal chance of being male or 

female. The model chose the initial location at random from all border cells. 

 

4.5.6.5 Pheromone decay 

At the end of each timestep, the model decayed pheromone levels in all cells by a multiplier 

equal to the pheromone decay parameter. 

 

4.5.6.6 Wildmeat hunting 

The human hunting sub-model depended on three parameters: cost of hunting to jaguars, 

maximum time of cost effectiveness, and chance of a hunting event. We parameterised cost 

of hunting to jaguars to cause jaguars to choose agricultural areas over forested areas when 

the forested area was hunted and set the maximum time of cost effectiveness to one modelled 

day. Every cell had a human cost and time since hunting attribute. The human cost attribute 

was static and equated to the cost of hunting to jaguars. The model created a random number 

for each forest cell every timestep. If that number was less than or equal to the chance of a 

hunting event, the function set the time since hunting attribute to 0, with this time since 

hunting attribute increasing by an increment of one every timestep. For any one instance, if 

the time since hunting attribute was above the maximum time of cost effectiveness, the 

individual would not include human cost in cost calculation. Otherwise, if the time since 

hunting was lower than the maximum time of cost effectiveness, the individual would use 

this cost in neighbouring cell cost calculations. 

 

4.5.6.7 Persecution by farmers 

The persecution sub-model ran on three parameters: the probability of the jaguars killing 

livestock, the probability of a jaguar dying on an agriculture cell, and the maximum time after 

an agriculture cell losing livestock that jaguars would die on agricultural cells. We ran 

sensitivity analysis on the probability of death and the maximum time of persecution 
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following a depredation event to assess how these parameters affected the dependent 

variables. 
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5.1. Introduction 
Grimm and Berger (2016) coined the term ‘next-generation modelling’ to describe the 

complex, mechanistic models that they predict will become increasingly important in 

ecological research. They cite the three key features of ‘next-generation’ models, as structural 

realism, emergence, and predictions. High-powered computers, accompanied with methods 

such as cloud and distributed computing, offer the potential to create fine-scale models that 

incorporate high levels of complexity. Whether or not we now have enough computing power 

to capture the complexity involved in real ecological structures is up for debate. Nevertheless, 

it is likely that there will be further development of the kind of complex movement models 

seen in Watkins et al. (2015). They simulated large carnivore responses to anthropogenic 

effects. The model was spatially explicit, incorporated a least-cost path movement model, and 

included population dynamics. Despite its complexity, the model successfully produced 

results similar to empirical data, which allowed the authors to predict the consequences of 

increased deforestation in a corridor area. 

 With ever-increasing growth in computing capability, it is likely that the use of 

spatially-explicit ABMs will increase, especially those involved in the field of conservation. 

HIREC has left populations of carnivores worldwide in a highly degraded state, with 

populations dropping as much as 77% (Ripple et al., 2014). Some authors have referred to the 

current era as the sixth mass extinction (Monastersky, 2014). Given this gloomy outlook, 

researchers in conservation will seek to innovate and experiment with all tools available to 

them. Furthermore, ecological modellers may be increasingly aware of the struggles faced by 

conservation researchers, and may feel inspired to develop a model that can augment current 

research in this field. 

 It is therefore appropriate to evaluate certain aspects of mechanistic agent-based 

models at this point in time. What are the caveats of creating spatially-explicit ABMs? How 

does one parameterise an ABM using the metrics available from conservation studies? What 

sort of questions in conservation can ABMs be used to answer? This thesis aimed to explore 

these three research questions. 

 

5.2 Parameterisation of spatial models 
Chapter 2 explored the biases that arose from the parameterisation process of the ABM 

presented in this thesis. The movement model required parameterisation with spatial 
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statistics, and in doing so, I found that the final values for parameters depended strongly on 

the initial choice of resolution.  

 Next-generation ecological models can incorporate high levels of realism, and may be 

able to predict the responses of organisms to environmental stressors (Grimm and Berger, 

2016). An ability to predict and model behaviour could prove especially important in studies 

of rare, elusive, large-bodied species, especially where it is difficult – if not impossible – to 

get a full understanding of their patterns of behaviour by conducting empirical experiments in 

the wild (Hillborn and Mangel, 1997; Singer et al., 2016). However, despite the promise of 

models for conservation, the same limitations experienced by empirical studies of elusive 

species also plague modellers, due to the need for empirical data with which to parameterise 

models.  

The parameterisation of models against empirical data is important as it increases the 

credibility of models, and permits the incorporation of added layers of complexity by 

providing a ground-truth in order to validate sub-models. Without the ability to ground-truth 

against empirical data, we are left with highly abstracted models, models that incorporate 

only what we feel to be intuitive or obvious behaviour. Although abstract models can provide 

mechanisms for processes in absence of stochasticity or noise, it is difficult to ascertain quite 

how predictive these models will be (Uchmanski and Grimm, 1996; Evans et al., 2013b). 

Thus, although abstract models are useful in some scenarios, more complex models are often 

better representations of ecological systems (Evans et al., 2013b). 

However, we have demonstrated an issue with parameterising complex models of 

animal movement and choice. Namely, movement is inherently spatial, hence models that 

represent animal movement and habitat choice should be spatially explicit. How then should 

a modeller parameterise a movement model? It would be possible to use parameters such as 

step length or resource selection functions, which are calculated from spatial data, or to use 

the spatial data themselves. The latter includes data from camera-trap and telemetry studies. 

Our study showed that attempting to replicate either form of spatial data in the model resulted 

in parameterisation being sensitive to the resolution of the model.  While it may be possible 

to mitigate this resolution issue by using simple descriptive statistics rather than attempting to 

quantify exact values (Jakoby et al., 2014), it may be difficult to justify this choice to 

members of an academic culture that are accustomed to making decisions based on levels of 

significance. 

If the choice of parameter values depends on the choice of resolution, one cannot 

declare with certainty that a model replicates the behaviour of the organisms it attempts to 
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simulate. If models cannot replicate behaviour, then they contradict Grimm and Berger’s 

(2016) final feature of next-generation models: prediction. If the parameter values differ to 

the extent that mechanisms for movement vary depending on resolution, then which set of 

parameter values will truly capture the way organisms respond to environmental change? 

Modellers may be tempted to remove complexity by only including parameters that they 

know to be true, or for which they have a good idea of starting values for priors (for use in 

ABC, as per van der Vaart et al., 2015). Here again, researchers choose to abstract the model 

rather than find parameter values that tell them something they did not know beforehand. 

Indeed, without long-term data on how species do actually respond to environmental change, 

we cannot validate the predictive ability of our model. 

The issues and limitations discussed in chapter 2 are important to note from the start. 

However, despite these, it may still be possible to develop a model that incorporates enough 

complexity to realistically replicate the movement of complex, large-bodied organisms. To 

achieve this aim and develop a model with predictive ability, we must overcome a range of 

challenges. First, we must continue to develop and improve empirical methodologies for 

sampling the spatial patterns in the movement of elusive, large-bodied species. Not only will 

this contribute to empirical literature on the species, it will also provide more data for 

parameterisation of complex models. Second, we must find a way to quantify the validity of 

spatially-explicit models that is not dependent on the resolution of the model. Third, we must 

continue to take advantage of modern advancements in computing, distributed computing in 

particular, in order to add the level of complexity required to study complex organisms. 

  

5.3 Models for use in virtual ecology 
Chapter 3 explored an application of the ABM in a virtual ecology study to evaluate 

methodologies frequently used to study rare and elusive species. We introduced a method for 

correcting metrics calculated from telemetry data and quantified its effectiveness by using a 

simulation model with a known ‘actual’ value for the metrics. Virtual ecology allows 

researchers to assess the effectiveness of the empirical methodology and quantify the effect 

of potential biases (Zurell et al., 2010). In-silico populations allow modellers to run virtual 

experiments with known values for parameters under investigation. ABMs are particularly 

useful in virtual ecology, as they simulate populations as a collection of agents that move 

according to certain rules and attributes. Hence, one avenue for the utilisation of ABMs in 
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conservation is the virtual assessment of the effectiveness of methodologies used in 

conservation biology. 

The study investigated the effect of fix intervals on the difference between estimated 

and actual values for two metrics derived from telemetry data: step length and MCP. The 

study showed that, for both metrics, error increased with fix intervals. At low fix intervals, 

the error rose steeply, reaching an asymptote at larger fix intervals. The steep increase in 

error was more pronounced for models that incorporated a lower rate of directional 

persistence, as larger fix intervals were unable to account for short, torturous movements. 

Finally, it was possible to correct the results of this model by using the known relationship 

between fix interval and error as a correction factor. If this pattern can be replicated in reality, 

then researchers could develop a metric for correcting statistics calculated using telemetry 

data, given a known fix interval. Moreover, they could sub-sample from their own data to 

find a model that explains increase in error with fix interval, and use this model to correct 

metrics, where necessary. 

 Strategies for conservation do not often use step length directly, but step lengths do 

often inform models of animal movement, which may then augment knowledge of species 

(Boyce et al., 2010; chapter 4). If researchers use metrics at different levels of abstraction, 

they must be corrected so that they align to the researcher’s requirements. In contrast with 

step length, home range measurements - such as MCP - often directly inform conservation 

strategy by determining how much space a population requires, and hence how large reserves 

and corridors should be (Otis and White, 1999). Chapter 3 showed that it is possible to 

correct step length and MCP for certain movement models. 

 The ABM presented in chapter 3 was able to replicate findings of potential bias from 

previous studies, and extend that knowledge by incorporating varieties of movement patterns 

and environmental configurations. Both of these variables would be almost impossible to 

replicate in empirical studies. The findings presented in these chapters therefore provide 

insight into how sampling systems, movement type, and environmental factors affect 

common methodologies used in conservation biology. This chapter thus illustrated one route 

to employing ABMs to influence the field of conservation biology. 
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5.4 Simulation of responses to HIREC  
Chapter 4 explored another use for ABMs in conservation biology. Here, we simulated the 

responses of agents to anthropogenic factors by varying the intensity of those factors, before 

investigating how the number of agent deaths and number of agent crossings depended on 

them. This model extended the work of Watkins et al. (2015) by incorporating multiple types 

of human activity in order to examine the potential for interactions between them. The results 

from this model demonstrated that depredation is a key predictor of agent death, that 

landscape configuration is important for the survival of agents, and that the number of 

crossings depended on number of deaths, indicating the replication of an ecological sink 

within the model.  

 This model cannot predict for certain how carnivores will react in the face of HIREC 

(Sih et al., 2016). Any model that wishes to predict this would require dynamic values for 

avoidance, and movement models that change as individuals learn how to move in a human-

defined landscape. This model was therefore presented in more abstract terms, assessing how 

‘agents’ responded to simulated effects. Within this model, it was possible to intensify 

anthropogenic factors to extreme values, and determine how each factor individually 

contributed to the responses of agents, as well as how they interacted. As the only factors that 

changed were the independent variables, it was not necessary to worry about noise or 

stochasticity from confounding effects, such as changes in level of poverty, the introduction 

of new conservation measures, or the effects of politics, the media and local economics. 

Hence, it was possible to create an experiment that isolated the distinct effects of HIREC, and 

in doing so, found some conclusions that warrant further study. 

 

 

5.5 Limitations 
The base model that underpinned the three results chapters was limited mostly by the 

availability of computing power and empirical data. The dearth of computing power only 

permitted parameterisation using a small sample of parameter values (~2000). Latin 

Hypercube Sampling mitigated for this constraint by selecting a representative set of 

parameter values, but the model was unlikely to converge precisely on its optimum parameter 

values. Nevertheless, the parameter values were able to replicate jaguar behaviour with 

enough accuracy to apply them to the research questions in the data chapters.  
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Despite the large amount of camera-trap data available from CBWS, the data from 

telemetry studies only included three individuals, all of which were male. This necessitated 

using a conversion factor to calculate the MCP size for female jaguars. The conversion factor 

was based on empirical data detailing MCPs of male and female jaguars, hence I have 

confidence that the conversion factor represented the ratio between male and female MCPs. 

 When transferring the model to a different area, a corridor area in this example, values 

for parameters that determined movement remained constant. Though we used this model as 

an abstract evaluation of anthropogenic factors, values for movement parameters in a corridor 

area may differ from those for a reserve. Although the values of movement parameters may 

change between areas, the effect on model results was likely to be minimal and the 

assumption of similar behaviour based on empirical data was easier than using a model that 

we had not validated against empirical data. Differences in behaviour between CBWS and the 

corridor area represents a future area of study, as an extension to our current work. 

 A further limitation was the re-entry function that allowed individuals to remain 

outside the study area for a short amount of time before re-entering at a nearby square. This 

assumes that all individuals were resident within study areas, rather than dispersing 

individuals that passed through. It also assumed that any areas occupied outside the study 

area were small compared to the section of the study area occupied by the individuals. 

Although this may be true for CBWS, it is likely to be less true for the corridor area. Despite 

these inaccuracies, incorporating a more complex model of re-entry and movement outside 

the study area would have taken up valuable computational resources and over-complicated 

an already complex model, for possibly very little benefit. Future extensions could consider 

the effect of both the re-entry function and areas outside the study area.  

 Finally, the model incorporated fine-scale habitat choice and interactions between 

individuals in detail, but did not include population dynamics, such as birth and mating, or 

attributes related to social dynamics, such as hierarchy and territoriality. The simulated period 

was short enough that it was reasonable to consider the simulation as a snapshot of a 

population of predators. Although the model incorporated males and females as separate 

entities, all males and females had equal status within the model, and similar levels of 

territoriality with members of the same gender. In reality, males may exhibit greater levels of 

territoriality than females, and social hierarchies may be important for utilisation of space 

within a given area. The addition of complex population dynamics and hierarchy would have 

necessitated more computing power. I elected to run more replicates at a finer resolution, 
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rather than incorporating additional processes that could have destabilised the model and 

confounded the effects I wished to investigate. 

 

5.6 Future work 
Future work in the modelling domain will seek to innovate methods for quantifying the 

validity of spatially-explicit movement models without depending on the resolution of that 

model. In the meantime, researchers should aim to parameterise spatially-explicit movement 

models using only descriptive patterns (Jakoby et al., 2014). This is a large problem, and 

perhaps requires the use of a correction factor, similar to the one presented in chapter 3, in 

order to identify truer values for simulated spatial statistics. 

 A second challenge raised by chapter 2 is the requirement for larger amounts of 

empirical data in order to parameterise models. Modellers can contribute to this by using the 

virtual ecologist approach that I utilised in chapter 3 to improve and assess empirical 

techniques. 

 The final challenge raised by chapter 2 was the continued use of new and innovative 

technologies for use in modelling. These technologies include techniques often used for the 

analysis of big data, such as distributed and cloud-based technologies. Cloud-based 

technologies allow users to rent computing power without purchasing physical machines. 

Researchers pay for these machines only for as long as they need them. This would allow 

researchers to obtain greater amounts of computing power without spending money on 

expensive computers. Such a technique would have greatly reduced the limitation imposed on 

this project by lack of computing availability. 

 Chapter 3 introduced a potential method for correcting metrics calculated using 

telemetry data. Next steps for this project would include investigating real-world patterns to 

see if they aligned with the patterns we identified for step length and MCP, and creating a 

correction factor or method of calculating a correction factor. If the patterns do not align, we 

may advise investigating the ability of non-linear interpolation to correct these parameters 

instead. For this, researchers could sub-sample their telemetry data to identify the relationship 

between fix interval and error, then correct back to shorter fix intervals using that pattern. 

 Chapter 4 raised two important considerations that merit further investigation. Firstly, 

the effect of landscape configuration on agent deaths, and its interaction with depredation. 

Secondly, whether empirical or simulated, is how the number of deaths affected number of 

crossings. What would break this pattern? Under what conditions is this true? 
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 Finally, one could extend the work presented in chapter 4 by including limited 

hunting seasons, where hunting effort was not constant throughout the entire year. We could 

also use dynamic scenarios for deforestation, comparing a scenario where deforestation 

occurs over time to one where deforestation is static. A more complex extension would 

include social, political, and economic dynamics that affect levels of depredation, rather than 

depredation resulting only from a depredation event. 

 

5.7 Concluding statements 
This thesis has explored applications of spatially-explicit ABMs and analysed caveats in the 

utility. It has concluded that before we can create truly predictive ABMs that stakeholders 

can use to reliably inform conservation strategy, a number of serious challenges must be met. 

Despite this, the work presented here has demonstrated the utility of a spatially-explicit ABM 

for three purposes, purposes that mostly focus on mechanisms behind processes rather than 

directly predicting effects. In doing so, this thesis has drawn interesting conclusions and 

highlighted areas for future work. Though the true utility of ABMs in conservation has yet to 

be fully demonstrated, the three examples presented here suggest potential pathways for 

models to inform and augment empirical studies. 
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