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We live in a world of human-induced rapid environmental change, where the frequency of
extinctions and resulting loss in biodiversity has reached levels associated with a mass
extinction event. At the same time, technological developments in computing have facilitated
the growth of highly complex, mechanistic models across all scientific fields. The challenge
for conservation biologists is then to develop models that can predict how organisms respond
to conservation measures and increasing anthropogenic pressures. Here I explore the potential
and limitations for conservation applications of spatially-explicit mechanistic models of
habitat selection, by developing a simulation applicable to large felids. I demonstrate that
initial choice of resolution may bias the parameterisation process of spatially-explicit models,
when applied to spatially-explicit empirical data. I use mechanistic models to address two
current problems in conservation biology: (a) efficient calculation of movement metrics from
telemetry data, tested with a virtual ecology approach; and (b) accounting for interacting
influences on populations, quantified with a model that controls for confounding variables. I
identify the major caveats to accurately predicting the complex behaviour of large-bodied
animals. The spatially-explicit mechanistic models developed here, and applied to real-world
problems, demonstrate the potential of these types of simulation for confronting otherwise

impossible questions in diverse areas of conservation biology.
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Abbreviations and Definitions

ABC Approximate Bayesian Computation

ABM Agent-Based Model

AIC Akaike’s Information Criterion

ASCII American Standard Code for Information Interchange
CBWS Cockscomb Basin Wildlife Sanctuary

GIS Geographic Information Systems

GPS Global Positioning System

HIREC Human-Induced Rapid Environmental Change
IBM Individual-Based Model

LHS Latin Hypercube Sampling

MCP Minimum Convex Polygon

SMS Stochastic Movement Simulator

Agent. A modelled entity, whose behaviour is determined by a set of distinct rules.
Bushmeat. Synonym for ‘wildmeat’. Meat for eventual consumption that humans obtain
from the wild, as opposed to meat from agriculture. This word is more commonly utilised
when referring to wildmeat consumption in Africa.

Corridor. A patch or number of patches of ‘habitat’ that facilitate movement of organisms
through ‘matrix’. Can be natural or man-made.

Deforestation. The act of removal of forest, either by natural or man-made means.
Depredation. The act of a predator attacking prey.

Home range. An area that an animal, or group of animals, regularly inhabits.

Wildmeat. Synonym for ‘bushmeat’, used when referring to areas outside of Africa.
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Chapter 1. Introduction

The aim of this chapter is to provide the reader with the necessary background knowledge to
understand the methodologies used in this thesis, and to place it in the wider context of
conservation issues currently being tackled with modelling approaches. Section 2.1
summarises the use of agent-based models in ecology. Section 2.2 then discusses the
optimisation and parameterisation of agent-based models, and addresses potential issues with
the development of highly mechanistic, spatially-explicit models. Section 2.3 provides an
overview of the use of mechanistic models for studies in virtual ecology, and then goes on to
describe an issue that agent-based models can address with a virtual-ecology approach: the
calculation of metrics from telemetry data. Finally, section 2.4 details the rise of human-
induced rapid environmental change, and highlights the role of agent-based models in
conservation. The chapter concludes by defining the overall aims of the thesis to address

specific aspects of these themes in the context of current knowledge gaps.

1.1 Agent-based modelling in ecology

Population models aid researchers in understanding how ecological systems react and adapt
to Human-Induced Rapid Environmental Change (HIREC; Evans et al., 2013a; Sih et al.,
2016). Such models complement empirical data by highlighting data gaps, generating
hypotheses, and predicting alternative futures (Soetaert and Herman, 2008).

1.1.1 What is a model?

Ecological systems are often difficult to control and replicate due to both their innate
stochasticity (Hillborn and Mangel, 1997) and large spatial-temporal scales (Hilborn and
Mangel, 1997). Connectivity studies, which often study movement corridors for large
mammalian species, are normally concerned with the large-scale movements of threatened
species that we know little about. Moreover, ethics may limit studies on species threatened
with extinction, or on human interactions with ecosystems. As a result of these issues, it may
not be feasible to answer the questions we have on ecology using solely empirical studies.
Researchers in this field can use models in order to identify hypotheses that can then be tested
with empirical methods (Soetaert and Herman, 2008). By calibrating and comparing such
models against data, we can discover which of these models best represents reality, referred

to as being the ‘best fit’, and which is therefore most likely to provide an accurate
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representation with which to address the research question. However, it is important to note
that, due to their abstract nature, models will always differ from reality in some way (Soetaert

and Herman, 2008).

Recent developments in mechanistic, process-based models have incorporated a high
level of complexity (Singer et al., 2016; Synes et al., 2016), reflecting a change in mindset
from the more simplistic models that were previously favoured (Evans et al., 2014). Evans et
al. (2013b) have argued that simpler models often have less predictive power than complex
models, and that over-simplified models risk incorrect predictions by ignoring key ecological
processes. In comparison, mechanistic models aim for as much of a realistic depiction of
individual choices and interactions as possible (Singer et al., 2016). The growing prominence
of these more complex models in the literature was termed “next-generation modelling” by
Grimm and Berger (2016), who identified their essential elements as structural realism,

emergence, and predictions.

1.1.2 Complexity theory

Complex systems are those that exhibit emergent behaviour at the system level as a result of
local-level interactions between individual elements (Marques and Pain, 2000; Jacobsen,
2001). Examples of emergent behaviour include bird flocking formations, the collective
behaviour of ant colonies, and the global behaviour of markets (Resnick, 1994). Such
complex systems are viewed as being more than “the sum of their parts” (Grimm et al.,
2005), and one can rarely predict how their emergent, sometimes unintuitive, behaviour
arises from their simple components, with such macro-level behaviour often being the result
of positive feedback mechanisms, randomness, and critical thresholds (Resnick, 1994).
Indeed, as the system is a product of both components and interactions, and as these are
dynamic and changing through time, it is difficult — if not impossible — to reduce them to a
set of simple analytical equations (Grimm et al., 2005). It has also been suggested that the
emergent behaviour of complex systems is the opposite of chaos, as macro-level order

emerges from disorder at the local-level (Farmer and Packard, 1986).

Another important characteristic of complex systems is that they are self-organised. In
bird flocks, for example, there is no central “leader” that organizes the flock, in the same way

that there is no lead ant who administrates the complex bridge-building of foraging workers.
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Instead, the flock and the bridges created by these animals are macro-level dynamics that
occur without deliberate management, and without a driving environmental “seed” (Todd,
1994; Marques and Pain, 2000). This lack of a central organisational force is why such

systems are often described as being “decentralised” (Resnick, 1994).

1.1.3 Agent-based models

Agent-based models (ABMs), also called individual-based models (IBMs; DeAngelis and
Grimm, 2014), are mechanistic models that represent a population of individuals as a set of
agents, allowing system-level behaviour to emerge from individual variability, adaptation,
and local-level interactions with other agents (Bonabeau et al., 2003; Grimm et al., 2006).
These properties are significant for the behaviour of real-world systems, but are usually

overlooked in analytical studies that assume all individuals are identical and do not change

(Grimm et al., 2006).

Another feature of ABMs that is particularly pertinent to ecological simulation is that
they can represent complicated life cycles. In contrast, analytical models tend to assume a
very simplified life cycle, which has severe implications for the model’s ability to correctly

simulate the study population (Uchmanski and Grimm, 1996).

ABMs are appropriate for investigating decentralised complex systems, such as those
encountered in ecology. By modelling individual-level rules rather than attempting to impose
the system-level behaviour as a central controller, the system-level behaviour that results
from the decisions and interactions of individual agents constitutes an emergent phenomenon.
The inherent flexibility of ABMs allows users to investigate any system where individual-
level rules are thought to result in system-level behaviour, with their mechanistic focus
allowing predictions about how systems will react to change (Evans et al., 2013a; Stillman et
al., 2015; Singer et al., 2016). Hence, ABMs incorporate all three essential elements of next-

generation modelling.

Due to the above, ABMs have been adopted by a myriad of academic disciplines, and
have become particularly commonplace in the field of ecology (Grimm et al., 2005).
Ecology-based ABMs have been used to explore a wide range of topics, such as flocking

behaviour (Reynolds, 1978), re-introduction of species (Gusset et al., 2009; Kramer-Schadt et
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al., 2004; Bar-David et al., 2008), dispersal (Palmer et al., 2011; Graf et al., 2007; Gustafson

and Gardener, 1996; Gardner and Gustafson, 2004; Imong et al., 2014), foraging (Sibly et al.,
2013; Turner et al., 1993), identification of animal corridors (Dickson et al., 2005; Watkins et
al., 2015; Pe’er et al., 2005; Nabe-Nielsen et al., 2010; Kanagaraj et al., 2013), and ecological

risk assessments for various species (Matsinos et al., 1994; Wiegand et al., 1998).

As the use of ABMs in ecology has increased, researchers have developed a number
of specific methods and toolsets for developing them, such as “evaludation” (Augusiak et al.,
2014) and TRACE (Grimm et al., 2014). One notable example is the Overview, Design
Concepts, and Development (ODD) procedure presented by Grimm et al., (2006). This is a
formalised and structured description of ABMs that aims to provide a standard practice
framework in which to design and develop models. The method of pattern-oriented modelling
has also been put forward as a way of aiding in model design and calibration when creating
models based on real-world patterns (Grimm et al., 2005; Grimm and Railsback, 2012). In a
similar vein, Van der Vaart et al. (2015) used Approximate Bayesian Computation (ABC;

Hartig et al., 2012) in order to aid the parameterisation and validation of models.

1.1.4 Examples of ABMs in Ecology

A stochastic movement simulation (SMS) is a class of individual-based model developed by
Palmer et al. (2011). This model is similar to a least-cost path model, in that the environment
comprises a grid of squares, with a cost value associated with each square. These models do
not assume that individuals have complete knowledge of the study area, and individuals have
two parameters: a direction bias and a perceptual range. The direction bias allows individuals
to follow roughly the same heading, unless a very high cost square interferes with this, with
the strength of this bias dictating the preference for staying on the same path. The perceptual
range is the range of squares that the individual can assess around them. It should be noted
that a perceptual range that includes the whole map would result in similar findings to a least-
cost path model. In reality, most individuals would have a relatively small perceptual range,

therefore SMS may provide a more accurate approximation of preferred corridors.

Aben et al. (2014) used an SMS model to predict movement behaviour of two species
of forest bird within a tropical matrix, and evaluated this using telemetry data. They found

that the model was able to predict bird movement behaviour relatively accurately. However,
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SMS models are simple models, based on two parameters and a cost surface, and although
this solves some of the problems associated with least-cost path models, it still constitutes a
very simplified representation of reality. Although they can accommodate for inter-individual
variation and stochasicity, one can only represent inter-specific interactions as a static
characteristic of a grid square. This ignores the spatially-explicit and dynamic nature of the

interactions in real ecosystems.

HexSim is a spatially-explicit individual-based model that uses a grid of hexagonal
cells (Schumaker et al., 2014). It derives from the PATCH model (Schumaker, 1998), which
appear in over 30 publications (Stronen et al., 2012). HexSim allows individuals to create
territories (Schumaker et al., 2014). These territories consist of a selection of cells, the
quantity and choice of which depends on the characteristics of that cell in terms of resources
and suitability. Individuals within a territory may reproduce. Offspring disperse a certain
distance of cells. Floaters, those who were unable to form a territory in their patch, may also
disperse. HexSim is useful for modelling the dispersal of individuals who must have a
territory to breed. HexSim can take survival, reproduction, movement, resource acquisition,
and species interactions into account (Schumaker et al., 2014). However, as territories are
static once formed, it may not be as useful for species whose home ranges change over time.
In addition, it does not consider the effect of home-range-level movement of resident

individuals on dispersing individuals.

FunCon is a spatially-explicit individual-based model that differentiates between
different types of movement (dispersal and short-range movements within home-range),
different methods of moving through matrix (random walk or gap crossing), and different
reactions to the presence of habitat edges (Pe’er et al., 2011). Pe’er et al. (2011) showed that
considering these differences influenced the results of their study, as did the choice of
connectivity measure. However, it is notable that this model does not consider population
dynamics, demographic processes, or the effect of local interactions. Furthermore, although it
did account for different methods of movement, the movement type given a particular
parameter was predisposed rather than emerging from individual-level rules, such as

requirement for food or mates.

The final example of a spatially-explicit IBM is J-walk. This model simulates animal
dispersal in relation to landscape heterogeneity, amount of prey, predation risk, and energy

requirements (Gardner and Gustafson, 2004). As with previous models, it runs on a grid-
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based platform. The movement algorithm has four steps: defining the direction of movement,
calculating a random angle that curves the direction of movement, calculation of probability
of moving into a neighbouring cell from habitat characteristics, and a random choice of
movement based on those probabilities (Gardner and Gustafson, 2004). The movement
decision rule, energy reserves of an individual at that point in time, and surrounding habitat
types shape the movement of that individual. This is a complex model that considers
metabolic requirements of individuals, as well as the risk of predation. However, land cover
type defines the amount of prey, and although Gardner and Gustfason (2004) outlined six
different rules for predation in their J-walk model, these interactions were also homogeneous

over certain land cover types.

1.2 Optimisation and parameterisation of agent-based models

1.2.1 Choice of model resolution for spatially-explicit ABMs

Spatially-explicit agent-based models are particularly useful for evaluating how a species of
conservation concern will respond to alternative management options. They typically base
agents on a real population of animals that react to real-world environments rather than
hypothetical or ideal environments. Environmental data generally comes from GIS or remote

sensing, including altitude, categories of land cover, or distance to relevant features.

Optimizing the resolution of spatially explicit models, which is determined by the
choice of grain size, remains an outstanding issue, with broad scale patterns of animal
behaviour perhaps suiting a coarse resolution across a large area (Nezer et al., 2017). Kramer-
Schadt et al. (2004), for example, used a grain size of 1x1 km to investigate the spread and
dispersal of lynx across the entirety of Germany. In contrast, fine-scale movement decisions
of individuals in a local area would suit a finer resolution. High resolution models allow us to
examine how individuals interact with small or thin features, such as watering holes, river
systems, or trail networks (Nezer et al., 2017). Fine-scale movement decisions determine how
resident individuals move around their home range, and the movement paths of dispersing
individuals. Even for long-distance dispersal, an individual’s path through the environment
depends on fine-scale movement choices (Ahearn et al., 2017). Features that do not appear on
coarser-resolution maps may form barriers to movement, resulting in real-world behaviour

not predicted by coarse-grain maps (Nezer et al., 2017). Trail networks or river systems can
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enhance mobility or funnel individuals in particular directions (Latham et al., 2011;
Whittington et al., 2011; Abrahms et al., 2015). Accurate evaluations of conservation
initiatives require understanding how fine-scale features affect movement decisions. High-
resolution models can complement coarser-grain models by providing insight on area-specific
movement patterns. Coarse-grain models can then incorporate results from high-resolution

movement models to build the full picture across a larger area.

We conducted a mini-review in order to determine the resolutions of agent-based or
individual-based models of large-bodied carnivore movement behaviour. We limited the
search to the genus Panthera, pumas, wolves, and bears. The search criteria yielded 116
returns on Web of Science. We narrowed these returns down to 15 studies that applied an
agent-based or individual-based model of large-bodied carnivore movement behaviour to a
named area. Of these, the average cell size was 1206 x 1206 m, ranging from 100 x 100 m to
10 x 10 km. None of these models had sufficient resolution to consider influences of fine-
scale features such as trails or river systems, despite evidence that they do shape movement

behaviours (Harmsen et al., 2009).

1.2.2 Parameterisation of spatially-explicit ABMs

Using empirical data to parameterise spatial mechanistic models increases the model’s
credibility in predicting responses to experimental scenarios, such as the response of a large
mammal to increased deforestation. Pattern-oriented modelling uses real-world patterns to
create and parameterise models with the aim of accurately replicating real-world patterns, and
therefore aid in model design and calibration (Grimm et al., 2005; Grimm and Railsback,
2012). Approximate Bayesian Computation (ABC; Hartig et al., 2012) can facilitate the
parameterisation of complex models (Van der Vaart et al., 2015). To parameterise models
using ABC, researchers run the model with a large number of different sets of parameter
values, and then isolate the set, or sets, of parameter values that best fit empirical data. For
both of these techniques, the emphasis is on parameterising and building models that fit
empirical data so as to increase the credibility of results from future studies that use the
model.

Ground-truthing of movement algorithms requires spatial data from empirical
studies. For example, Watkins et al. (2015) used results from empirical camera-trap studies to

validate their movement model. To our knowledge, this study represents the only validation
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of a fine-scale ecological mechanistic model of mammalian movement against empirical data.
Nevertheless, as we move into an era of next-generation modelling, it is likely that an
increasing number of researchers will follow the example of Watkins et al. (2015) by
attempting to ground-truth their movement models against spatial empirical data. These data
may include summary statistics from radiotelemetry, occupancy, and camera-trap studies, all
comprising observations taken at particular points in time and space. If we replicate these
studies using a grid-based model, each of these points become the size of an individual cell.
As an example, in a model with a spatial resolution of 100 x 100 m, each camera trap would
cover an area of 100 x 100 m. Thus, summary statistics of virtual spatial studies may depend
on the initial choice of spatial resolution. If we use these summary statistics as spatial patterns
to parameterise and validate the spatial components of our model, our choice of movement
algorithm may also depend on our initial choice of resolution. An argument for the use of
complex mechanistic models is that their focus on mechanisms and processes allow them to
exhibit greater predictability, as an agent’s reaction to a situation is the result of behavioural
algorithms. However, if the choice of algorithm depends on the choice of resolution, it calls
into question the ability of the model to reflect reality as opposed to providing merely a
reasonable fit to current data at a certain resolution. This may result in the introduction of
conflicting models for the same species producing different answers to the same question,
which would only serve to confuse the issues that such models are intended to inform, as well
as reducing credibility in spatial models. Alternatively, researchers may decide to use best-fit
parameter values or sensitivity analysis to draw conclusions about animal behaviour, as in
Imron et al. (2012). However, if the choice of parameter values depends on the resolution of
the model, inferences about animal behaviour based on those parameters will also depend on
model resolution. Both modellers and empiricists require a greater understanding of how
choice of resolution can affect the parameterisation process in order to draw appropriate

conclusions from model outputs and identify potential sources of bias.

1.2.3 Conclusions

Mechanistic ABMs represent individuals as a set of interacting agents and allow real-world
patterns to emerge from those interactions. Their predictive ability means that they will prove
to be particularly important in analysing the impact of HIREC. Spatially-explicit ABMs are
useful for evaluating the effectiveness of spatial conservation measures, such as wildlife

corridors, and recent models use spatial data to parameterise mechanistic movement models.
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As we move into a new generation of modelling, it is likely that more researchers will follow
this example. However, parameterisation using spatial metrics may depend on the choice of
resolution for the model. If so, spatial models may create a biased picture of animal
behaviour, with low predictive power. We believe it is imperative to evaluate potential biases
that may arise from parameterisation of mechanistic model using spatial metrics. In chapter 2,
we investigate how initial choice of resolution affects parameterisation of spatially-explicit

models.

1.3 Virtual ecology for developing empirical methodology
1.3.1 Virtual ecology

Virtual ecology uses simulation models to replicate empirical studies in-silico (Zurell et al.,
2010). As experiments are conducted in a model with a known population, one can compare
the result of the in-silico study with real-world data, thereby evaluating the effectiveness of
this approach. Zurell et al (2010) list the two main applications of virtual ecology as 1)
testing and improving sampling schemes and methods, and 2) testing and comparing models.
Researchers have used virtual ecology in order to evaluate the conceptualisation and
implementation of species distribution models (Miller, 2014), assess sampling designs
(Albert et al, 2010; Ficetola et al., 2014; Lyashevska et al., 2016), and create risk maps where
species-specific data are scarce (Osawa et al., 2016). Rodrigues and Coelho (2016) used
simulated data in order to determine whether different capture methods were able to
accurately capture male:female ratios. They found that differences in movement patterns and

detectability between males and females resulted in biased sex ratio estimates.

Agent-based models treat populations as a collection of individuals that are driven by
bottom-level rules. These basal individual-level rules and simple interactions then result in
the kind of complex system-level behaviour discussed above. Furthermore, they represent a
new method of modelling populations of species that we can use to compare density
estimators, without relying on the same assumptions of those estimators. Due to the
flexibility of agent-based models, we can capture heterogeneous home range size and shape,
and movement patterns that differ from those assumed. By calibrating these models against
empirical data, we can verify that the movement rules are representative of the species in

question, and then use the modelled population to assess the effectiveness of telemetry study



Chapter 1. Introduction

design and estimators. The complexity that one can include in these models may enable an

assessment with a more realistic set of simulated data.

In the next section, we discuss two ecological metrics that we will evaluate using
virtual ecology: step length for estimating animal movement, and minimum convex polygon

for estimating home-range size.

1.3.2 Calculation of spatial metrics from telemetry data

1.3.2.1 Telemetry

Animal movement behaviours have been a key area of research in conservation biology for
over 20 years (DeMars et al., 2013). Descriptions of animal movement can contribute to
understanding how species utilise fragmented habitats and how they perceive risk (Morris,
2003). Patterns of movement determine the distribution of species, the transmission of
disease, routes for animal migration, and responses to anthropogenic actions (Bradshaw et al.,
2007; Beyer et al., 2013; Hosseini et al., 2006; Morris, 2003). Analyses of such patterns may
augment our understanding of metapopulation dynamics, species persistence, and the effect
of conservation measures (Schooley and Wiens, 2004; Loarie et al., 2009; Pittman et al.,
2014; Jenks et al., 2015). Hence, conservation biologists may use knowledge of animal

movement to develop effective strategies for conservation (Jenks et al., 2015).

Telemetry data allow researchers to understand movement by capturing individuals in
space and time, and constitutes an active area of research (Kays et al., 2011; Ward and Raim,
2011). Researchers may use telemetry datasets to quantify metrics of movement at a variety
of different scales, thereby identifying mechanisms such as scale-dependent foraging
decisions and optimal searching behaviour (Bradshaw et al., 2007). Sources of telemetry data
include: VHF radiotelemetry tags; fixed-position PIT tag detection arrays (Tew and
MacDonald, 1994; Armstrong et al., 1996; Lucas et al., 1999), which use close-range
proximity detection to detect locations (Harbicht et al., 2017); acoustic telemetry transmitters;
and Global Positioning System (GPS) telemetry tags, which use satellites to obtain location
data (Dana, 1989).

Studies on telemetry conventionally use Very High Frequency (VHF) radio-telemetry

to provide location data. Radio antennae in fixed positions receive VHF signals and record
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the locations of tagged individuals (Harbicht et al., 2017). Modern amendments to VHF tags
have made them smaller and cheaper than GPS tags (Harbicht et al., 2017). Nevertheless,
conventional telemetry depends on factors such as personnel availability, field accessibility,

light conditions, and local weather (Dussault et al., 2001).

Global Positioning System (GPS) was introduced by the U.S. Department of Defense
as a satellite-based radio-navigation system (Dana, 1989). GPS trackers receive signals from
at least three satellites and, by calculating the time taken for the signal to reach the sensor,
computes latitude and longitude for that position (Bradshaw et al., 2007). Signals coming
from three satellites allow for the computation of a 2D location, whereas signals from four
satellites can determine the sensor’s location in 3D space (Dana, 1989). The main advantage
of GPS over VHF is that it can automate tracking and provide consistent, intense sampling
for one radio-collar. In this manner, GPS technology has allowed researchers to collect a high
abundance of accurate, fine-scale data on animal movement (Mills et al., 2006; Kie et al.,
2010; Tomkiewicz et al., 2010). GPS is unaffected by weather conditions, which improves on
traditional VHF radiotelemetry technology (Girard et al., 2002), although GPS tags are more
expensive, which limits the number of individuals that the study can track (Otis and White,

1999; Harbricht et al., 2017).

Researchers have used telemetry data in order to develop their understanding in a
number of areas, including studies on how animals respond to barriers on movement (Riley et
al., 2006; Shepard et al., 2008), density estimation (for example, Soisalo and Cavalcanti,
2006), development of resource selection functions (for example, Johnson et al., 2004), and
predator-prey relationships (Sevodkin et al., 2017). Munro et al. (2006), for example, used
radio-telemetry data to understand seasonal food habits and activity patterns for grizzly bears
in Canada. Hopcraft et al. (2016) used a long-term telemetry study to examine how hunting

opportunities determine the distribution of lions in the Serengeti.

Although, data from telemetry studies have many uses, study design and data
interpretation require considerable care. When designing telemetry studies, researchers must
address a trade-off between the intensity of the sampling regime and the duration of the study
(Kolodzinski et al., 2010). As the time interval between fixes on locations - hereafter referred
to as the “fix interval” — increases, the study misses more intervening locations. This can lead
to errors in calculations of space-use metrics. Multiple studies have found that long fix

intervals underestimate both the distance travelled and the home-range area, as they miss
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tortuous movement and extreme points (Otis and White, 1999; Mills et al., 2006; Kolodzinksi
et al., 2010). As an example, Kolodzinski et al. (2010) found that calculations of the
minimum convex polygon (MCP) encompassing locations from telemetry with fix intervals
of eight to twelve hours underestimated homes range by at least 50%. Furthermore, telemetry
devices suffer from type II errors. In some cases, the success rate of fixes can be as low as
13% (Frair et al., 2004). This would change a sampling regime that takes location fixes every
2 hours to one that only samples locations every 16 hours, with implications for the accuracy

of metrics.

1.3.2.2 Examples of spatial metrics calculated from telemetry data

Step length is the distance covered by a tagged individual between telemetry fixes. We can
use it to calculate other metrics, such as cumulative distance covered over a study period and
the average speed of individuals. Many movement models use step length and turning angles
as parameters to simulate individual movement (Turchin, 1998). Telemetry provides the data
to parameterise these models, which researchers may then use to draw conclusions about
animal movement (Jerde and Visscher, 2005; Beyer et al., 2013; DeMars et al., 2013).
Researchers have used step length in autocorrelation functions in order to investigate
movement patterns (Boyce et al., 2010). As an example, Jenks et al. (2015) used
autocorrelation functions and cluster analysis in order to compare the movement of a golden
jackal and a dhole. Thus, it is important that researchers can obtain accurate estimates of step

length so as to reduce bias in models used at later levels of abstraction.

The home range of an animal is the area that an individual uses regularly during
quotidian activities such as foraging or hunting (Burt, 1943). Knowledge of the size of home
ranges informs the construction of conservation measures by allowing the estimation of space
required for that conservation measure to be successful. Telemetry data are often used to
determine home range size and boundary (Otis and White, 1999). Calculations of home range
using telemetry data commonly use either kernel analyses or minimum convex polygon
(MCP) (Kolodzinski et al., 2010), both of which depend on the sampling regime used to
collect telemetry data, with the latter being more sensitive than the former to the intensity of

the sampling regime (Kolodzinski et al., 2010). As stakeholders use home range to indicate
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how much habitat a species requires, it is imperative that estimates are accurate, or at least

that managers have a clear understanding of the strength and direction of potential bias.

1.3.3 Conclusions

Researchers can use empirical or simulated data to assess the effectiveness of study designs.
Simulated data have the advantage of comparing a known “truth” against the results of
simulated studies. This is the virtual ecologist approach. We suggest using a high-resolution
mechanistic model that incorporates movement decisions in order to evaluate the accuracy of
calculations for step length and MCP from telemetry data. These methodologies have caveats
and trade-offs that warrant further investigation. ABMs have particular potential in virtual
ecology as they model the behaviour of agents based on simple rules and allow patterns to
emerge. In chapter 3, we use an ABM to define the relationship between fix interval and error
using known values for step length and MCP. We can use this definition to develop a

methodology for correcting biases in step length and MCP calculation.

1.4 Mechanistic models in conservation

At the turn of the millennium, extinction rates were between 1000 — 10,000 times the
background rate (Rosser and Mainka, 2002), and this is likely to get worse, with many future
scenarios projecting further high rates of extinction and habitat loss during the course of this
century (Secretariat of the Convention on Biological Diversity, 2010). There exists great
uncertainty concerning both the total number of species on Earth and extinction rates
(Monastersky, 2014). Current extinction rate estimates, representative percentages of the
proportion of species becoming extinct per annum, range from 0.01 — 0.7% (Monastersky,
2014). At the higher end of this estimate, a sixth mass extinction of species, an event
categorised by the loss of 75% of species on Earth, could occur by 2200 (Monastersky,
2014). Such an event is likely to be exacerbated due to a phenomenon known as co-
extinction, or extinction cascades, whereby the interactions between species mean that when
one species is lost, others that depend on its existence may also become extinct (Dunn et al.,

2009). Furthermore, the ‘ecosystem services’ that are provided by wildlife and which can be
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beneficial to humans, such as pollination and coastal protection, may disappear as

biodiversity decreases globally (Mace et al., 2012; Worm et al., 2006).

Butchart et al. (2010) used 31 indicators to assess the progress towards international
biodiversity conservation targets set for 2010. Although there were some successes locally,
they found that biodiversity generally decreased, with various pressures that contribute to
biodiversity loss increasing over the past four decades. The Convention of Biological
Diversity (CBD) laid out the Aichi Biodiversity Targets for 2020, which are a set of twenty
targets, divided into five strategic goals, the main focus of which is on the conservation of
biodiversity and ecosystem services and the promotion of sustainable living. In 2014, the
CBD released the Global Biodiversity Outlook 4, which assessed the progress of the 2020
targets. Although the response to biodiversity loss has increased notably, the pressures on
biodiversity are still worsening, and in general the targets are unlikely to be met by 2020

(Secretariat of the Convention on Biological Diversity, 2014; Tittensor et al., 2014).

As human populations continue to grow in density and in economic development,
ecological systems experience increasing pressure from human-induced rapid environmental
change (HIREC; Fahrig, 2003; Parmesan, 2006; Sih, 2013). The projection of a potential
sixth mass extinction (Monastersky, 2014), combined with a growing knowledge of the
benefits that humans gain from biodiversity (Mace et al., 2012), means that conservation

actions to protect the world’s most vulnerable species are increasingly important.

Agent-based models use agent-level rules to simulate the emergence of population
dynamics. They have the potential to offer insights into conservation actions and strategies
where empirical experiments are impossible or unethical. These kind of population models
help scientists to understand how ecological systems react and adapt to HIREC (Evans et al.,
2013a; Sih et al., 2016). They complement empirical data by highlighting data gaps,

generating hypotheses, and predicting alternative futures.

Spatially explicit mechanistic models are particularly useful for evaluating how a
species of conservation concern will respond to alternative management options. They
typically structure the agents on real animals in populations that react to real-world
environments rather than hypothetical or idealized environments (DeAngelis and Yurek,
2017). For example, the spatially-explicit population model of Watkins et al. (2015) was

designed to simulate jaguar movements across the Central Belize Corridor, connecting the
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Selva Maya forest block in the north of Belize to the Mayan Mountain forest block in the
south (Figueroa, 2013). They found that jaguars in protected areas had higher fitness in terms

of fecundity, energy reserves, age and life expectancy than those outside the reserves.

Population models of such species are of particular importance due to both the role of
apex predators in ecosystem regulation and maintenance (Kelly, 2003; Watkins et al., 2015)
and the way in which HIREC has led to a global decrease in range for the majority of large
carnivores (Parmesan, 2006; Sih, 2013; Wolf and Ripple, 2017). Indeed, 77% of predators
with a body mass greater than 15 kg are suffering population declines, and 61% have an
TUCN status of either vulnerable, endangered, or critically endangered. (Ripple et al., 2014).
Important factors in the vulnerability of large predators to HIREC include their large body
size, low densities, and large home ranges (Cardillo et al., 2004; Marshall et al., 2015). The
decrease in large-bodied predators has led to the global disruption and degreadation of
ecosystems and processes (Estes et al., 2011; Ripple et al., 2014). These declines could even
impact local cultures, due to the way in which large predators have cultural significance as

important symbols in cultures worldwide (Di Minin et al., 2016).

The next three sub-sections will focus on three threats of particular concern to
predator conservation: deforestation, wildmeat hunting, and direct persecution in response to
livestock depredation. Chapter 5 will involve developing a model to evaluate their interacting

effects.

1.4.1 Deforestation

Anthropogenic land-use change is one of the drivers of biodiversity loss. Many predict that
land-use change will have the biggest effect on biodiversity this century, with climate change
and nitrogen deposition also having large effects (Sala et al., 2000). Humans have converted
40-50% of the global ice-free land surface into agricultural or urban terrain (Chapin et al.,
2000). Activities associated with agriculture may be responsible for 70% of projected
biodiversity loss in terrestrial taxa (Secretariat of the Convention on Biological Diversity,
2014). The resultant habitat loss and fragmentation, the change of configuration of a
landscape, are major drivers of biodiversity loss (McGarigal and Cushman, 2002; Fahrig,

2003).
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The effects of fragmentation include reduced gene flow between populations, which
may then lead to a decrease in effective population size and lower adaptive fitness due to
factors such as inbreeding (MacArthur and Wilson, 1967; Soulé and Mills, 1998). This
isolation of populations accompanies other effects of fragmentation, such as edge effects,
invasions and increased anthropogenic use of the forest due to better access (Marsh, 2003),
which may interact with other threats to species, including over-exploitation of ecosystems,
and fires (Laurance et al., 2002). The extent and character of these effects are not uniform,
and vary by organism, as well as by habitat type and environment (Haila, 2002). Furthermore,
studies have been known to confound fragmentation and habitat loss. Fahrig (2003), for
example, found that habitat loss had more of an impact on biodiversity than fragmentation

when decoupled from each other.

Land-use change is associated with massive deforestation, and anthropogenic land-use
change or natural causes destroyed around 130,000 km? of forest between the years 2000 and
2010, with South America and Africa suffering the largest net loss of forest habitat
(Secretariat of the Convention on Biological Diversity, 2010). A study on deforestation in the
Amazon, conducted over three decades, found that up to 1,200 km? of conservation land were
logged per year (Asner et al., 2005). Although good logging practices reduce both
environmental damage and costs, destructive and illegal logging is still very common in the
tropics (Putz et al., 2000), resulting in habitat loss and fragmentation. Indeed, illegal logging,
drug trafficking and agricultural development represent the main causes of high deforestation
rates in Mesoamerica (Wultsch et al., 2016). Although some predators are able to inhabit
unprotected areas (Boron et al., 2016), contact with agricultural areas increases the risk of
livestock depredation and persecution as pests. These issues have a significant impact upon
large-bodied mammals, which often have large home ranges. Female jaguars, for example,
have been estimated to require patches of at least 180 km” of primary forest to meet their
space requirements (de la Torre et al., 2017). Such species therefore often find themselves in
competition with humans for space and food, as well as being victims of human

encroachment (Urquiza-Haas et al., 2009).

A metapopulation is a set of populations connected by gene flow. The rescue effect
hypothesis proposes that immigration between these populations may reduce the probability
of extinction of individual populations, and allow re-establishment of locally extinct

populations (Gonzalez et al., 1998; Tewksbury et al., 2002). A lack of gene flow between
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populations can lead to extinction risk as a result of inbreeding and local stochasticity,
especially when these isolated populations are small (Swift and Hannon, 2010). The viability
of a metapopulation does not depend on habitat loss alone, but also on the spatial distribution
of habitat (Ewers and Didham, 2006). As an example, Coulon et al. (2004) found that roe
deer tended to stick to areas of woodland during dispersal, which meant that habitat

connectivity strongly affected the gene flow between populations.

Corridors, in the context of habitat fragmentation, are sections of habitat that connect
separate patches (Tewksbury et al., 2002). The advantages and disadvantages of man-made

wildlife corridors are summarized in Table 1, below.

Table 1. The advantages and disadvantages of man-made wildlife corridors for use in

increasing habitat connectivity.

Advantages Disadvantages
Corridors may improve genetic The structural design of corridors may have important
diversity (Petracca et al., 2013). effects on their effectiveness (Sieving et al., 2000).
Corridors may allow the re- Corridors may aid the spread of disease, invasive

colonisation of extinct populations in species and environmental disturbances, such as
the metapopulation by the “rescue wildfires (Simberloff and Cox, 1987).

effect” (e.g., Gonzalez et al., 1998).

Corridors may facilitate large-scale It may be more economically viable to use alternative
migrations in the wake of climate conservation measures, such as moving species
change (Ewers and Didham, 2006). manually between habitat fragments (Simberloff and

Cox, 1987) or simply increasing amount of protected

area.
Corridors may benefit associated Corridors are logistically-complicated long-term
plant species through increased projects, requiring negotiation with stakeholders and
pollination and seed dispersal (e.g., substantial funding (Salom-Pérez et al., 2010).

Tewkesbury et al., 2002).
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Beier and Noss (1998) assessed previous studies on corridors and found that none of them
had properly investigated the benefits of corridors correctly, with many lacking proper
experimental procedures. This meant that many corridors set up before and during this period
in time were created without any adequate scientific consensus, and based on pure intuition
(Tewksbury et al., 2002; Gilbert-Norton et al., 2010). However, recent studies have managed
to effectively assess the benefits and design flaws of corridors, allowing construction with
proper scientific backing (Gilbert-Norton et al., 2010). It should be noted, nevertheless, that
Beier and Noss (1998) emphasised that the few reliable studies they did find pointed towards

a positive effect of corridors, rather than neutral or detrimental effects.

1.4.2 Wildmeat hunting

The world is suffering a wildmeat crisis (Ripple et al., 2016), which has already led to
multiple extinctions (Fa et al., 2002; Milner-Gulland and Bennett, 2003; Darimon et al.,
2015). Wildmeat (often referred to as ‘bushmeat’ on the African continent), is animal protein
obtained by hunting wild species. In the past few decades, the consumption of wildmeat has
increased (Milner-Gulland and Bennett, 2003). Land-use change (LUC), the construction of
roads, commercialisation of hunting and the technological advance in hunting weapon
technology have all led to the increase in wildmeat hunting (Peres, 2000; Wilkie et al., 2000;
Milner-Gulland and Bennet, 2003; Wolfe et al., 2005). Wildmeat can contribute a significant
portion of protein to the diet of people in the tropics (Bennett and Robinson, 2000; Peres,
2000). In addition to subsistence, wildmeat can provide a role in household income (Beier

and Noss, 1998; Wilkie and Carpenter, 1999; de Merode et al., 2004).

The hunting of wild species, whether for subsistence or commercial uses, is
sometimes a more significant cause of biodiversity loss than deforestation (Redford 1992).
Indeed, hunting has been responsible for the extinction of 12 species of vertebrate in Vietnam
over the past five decades (Bennet and Rao, 2002). The result of these local and global
extinctions is the presence of “empty forests” or “half-empty forests”, where there are no
outward signs of ecosystem destruction but where defaunation from hunting has left the
forest devoid of large vertebrates (Redford and Feinsinger, 2001). Most target species are
large, K-selected mammals, whose low reproductive rates cause them to be more susceptible

to hunting than smaller r-selected species (Mangel et al., 1996; Peres and Palacios, 2007).
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Hunting interacts with deforestation and fragmentation to further impact large-bodied
animals, as larger species are often the first targets for wildmeat hunters (Ripple et al., 2014;
Ripple et al., 2015). Population declines in large birds and mammals can impact species at
other trophic levels through trophic cascades, disrupting entire communities (Peres, 2000;

Andresen and Laurance, 2007; Stoner et al., 2007).

Wildmeat hunting in Latin America is less frequent than in the already heavily
defaunated continents of Africa and Asia (Fa and Peres, 2001). Nevertheless, estimates of
wildmeat hunting in the Brazilian Amazonia reach 165, 000 tons a year (Peres, 2000). In
numbers of individual animals, this may equate to 23.5 million from multiple taxa (Peres and
Palacios, 2007). Although the extent and current consequences of wildmeat hunting in the
Amazon may not be as great as those in Africa, it appears that the wildmeat crisis extends to

the Neotropics and its people.

Wildmeat consumption puts apex predators in competition with humans. In Belize,
for example, 7% of protein-containing meals include meat from one of six wild species
(Foster et al. 2016). These species are the nine-banded armadillo, paca, collared peccary,
white-lipped peccary, red brocket deer and white-tailed deer, species that make up large
proportions of the diets of jaguars and pumas in Belize (Foster et al. 2016). Hence, humans
are in competition with these large felids, with implications for jaguar and puma abundance,

and predation by these species on livestock.

1.4.3 Direct persecution of jaguars

Livestock frequently appear in the diets of in big cats across the globe (Ghouddousi et al.,
2016; Babrgir et al., 2017). Local farmers may opt to poison or shoot big cats in order to
protect their livestock (Trinkel et al., 2016). In some areas, direct persecution may represent
a large proportion of felid mortalities. For example, Trinkel et al. (2016) found that within
their study period human-wildlife conflict caused almost 50% of lion mortalities on the
border of Etosha National Park. Subadult males and adult females represented the majority of
persecuted individuals, and this had second-order effects on the population structure of lion

prides (Trinkel et al., 2016). Moreover, Tortato et al. (2017) suggest that depredation of large
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livestock may lead to a greater risk of infanticide due to attraction of multiple individuals to a

carcass, including females with cubs.

Predators may rely on livestock as a food source where stocks of wild ungulates are
low (Meriggi and Lovari, 1996; Dahle et al., 1998). The findings of Newsome et al. (2016),
for example, indicated that wolves in Europe may change their diet in response to populations
of wild prey. Hence, low populations of wild prey may contribute to the depredation of
livestock (Khorozyan et al., 2015). Nevertheless, livestock present easy targets for wild
predators as the process of domestication has left them without natural behaviours and agility

(Linnell et al., 1999).

Livestock losses due to big cat depredation affect small economies and livelihoods
(Inskip and Zimmerman, 2009). As a result, large carnivores are often viewed as pests by
local people (Babrgir et al., 2017). Attitudes towards large carnivores may depend on level of
education and knowledge of predators (Mkonyi et al., 2017). A study on Persian leopard
depredation found that 80% of survey respondents in northern Iran considered leopards a pest
and 45% supported either legal hunting or culling of the Persian leopard population. Public
perception and the media may often drive precautionary lethal control of populations
(Fernandez-Gil et al., 2016). For example, Fernandez-Gil et al. (2016) found no correlation
between coverage in the media of damages caused by wolves and the actual damages.
However, coverage in the media correlated with the level of culling. Thus, although media
coverage was unrelated to actual damages, it impacted the perception of stakeholders and
determined measure of control. Furthermore, stakeholders may persecute one species or
individual for the actions of another, despite the ineffectiveness of this lethal measure
(Knowlton et al., 1999).

Entities involved in lethal control include governments, agencies, or individual
stakeholders (Wirsing and Ripple, 2010). Nevertheless, the persecution of apex predators has
raised ethical concerns, given the ecological impact of the removal of large-bodied species
and the questionable effectiveness of lethal methods (Vucetich and Nelson, 2014; Eklund et
al., 2017). Poudyal et al. (2016) found that that the number of sheep killed increased by 2.2%
for each wolf killed, indicating that lethal control of wolves may have undesirable effects.
Black bears, pumas and wolves have also shown unexpected reactions to lethal control
(Treves et al., 2010; Peebles et al., 2013; Wielgus and Peebles, 2014). Explanations for these

effects include source-sink dynamics (Peebles et al., 2013) and social disruption (Borg et al.,
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2015). Lethal intervention may create gaps in communities, allowing smaller predators to
take the place of large predators (Prugh et al., 2009). Moreover, predators may respond in an
unintuitive way to lethal control. For example, Knowlton et al. (1999) found that coyotes
compensated for reductions in population from persecution by increasing their rate of

reproduction.

There are two general non-lethal pathways to combatting direct persecution of felids
as pests. The first is to initiate compensation schemes (for example, Bauer et al., 2017),
which are motivated by the theory that compensation creates a win-win situation, benefitting
all stakeholders (Dickman et al., 2011). However, these are only feasible when funding is
both available and sustainable, and although compensation schemes are a frequently used
method for reducing human-wildlife conflict (Naughton-Treves et al., 2003; Treves et al.,
2009), they may not be effective (Fernandez-Gil et al., 2016). Attitudes towards large
carnivores may not be linked to depredation events, but to socio-economic factors (Rust et
al., 2016; Mkonyi et al., 2017). In some areas, negative perceptions of predators may be
linked to personal safety rather than economic factors (for example, Porfirio et al., 2016), and
where fear drives negative opinions of predators, compensation schemes are unlikely to prove
successful. Moreover, compensation may actually create an incentive not to prevent

depredation events (Bauer et al., 2017).

A second pathway is improving animal husbandry. Penning and the use of guard dogs
or donkeys can reduce levels of felid depredation (Ghoddousi et al., 2016). Felids may target
straggling individuals, hence good veterinary standards may aid in improving herd safety
(Ghoddousi et al., 2016). Indeed, Treves et al. (2016) found that non-lethal methods of
protection were more effective than lethal methods, in particular the use of guard dogs and
‘fladry’, a visual deterrant to predators. Other non-lethal methods include electric or audio
deterrants (Musiani et al., 2003; Shivik et al., 2003). In Miller et al. (2016), husbandry and
deterrants proved the most effective measures of control. However, both suffered from high
variation, in comparison to lethal control, which although on average less effective, had low

variation.
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1.4.4 Conclusions

Deforestation, wildmeat hunting, and direct persecution represent three key anthropogenic
threats to predators. These three threats also interact with one another, in that deforestation
increases the availability of previously inaccessible areas to hunters, a reduction in natural
prey may result in an increased rate of livestock depredation, and deforestation puts predators
in closer contact with livestock. ABMs are mechanistic, and hence have the potential to
model the interactions between factors and predict potential behaviour of animals in response
to HIREC, which disproportionately affects apex predators. They may hence provide insights
that can augment current conservation research. Despite their promise, none have attempted
to utilise an ABM to simulate these interacting effects on the movement of large felids. In
chapter 4, we employ an ABM to investigate how interacting effects affect the movement of

large felids through a movement corridor.

1.5 Thesis aims

Highly complex, mechanistic models have the potential to contribute to the conservation of
species impacted by HIREC. Given the promise of ‘next-generation modelling’ (Grimm and
Berger, 2016) and the increasing availability of high-powered computing tools, we predict
that researchers will follow the examples of Watkins et al. (2015) in developing complex,
spatially explicit mechanistic models of animal movement and habitat choice in a landscape,
in order to augment current knowledge, and provide mechanisms and evidence for
predictions.

This thesis presents the development of one such complex, mechanistic model, and its
parameterisation using modern techniques. Our main aim is to employ it as an exemplar for
evaluating applications and limitations of complex, spatially explicit mechanistic models, in
order to provide others with both an inspiration for future work and an understanding of
potential biases.

Chapter 2 presents a spatially explicit, fine-grain ABM of jaguar movements within
the Cockscomb Basin Wildlife Sanctuary in Belize. The ABM includes gender-specific
interactions between jaguar agents and fine-scale features such as trails, river systems and
cell-specific slopes in hilly terrain. I calibrate the model using real-world patterns from

empirical camera-trap and telemetry data, in accordance with pattern-oriented calibration
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(Grimm and Railsback, 2012). In doing so, I reveal a caveat of parameterisation using spatial
point data, whereby the selection of best-fit parameter values then depends on the original
choice of resolution. The next two chapters demonstrate two different applications of the
high-resolution model: (a) to develop and evaluate a new empirical method of measuring
animal movement from GPS data, using a virtual ecology approach (Zurell et al., 2016); (b)

to evaluate the effects of interacting threats on jaguars in a manmade wildlife corridor.

Chapter 3 uses the model developed in chapter 2 to evaluate the reducing accuracy of
spatial metrics derived from telemetry data as fix intervals increase. I use results from the
simulation to introduce a method for correcting for bias caused by long fix intervals. I show
that the mechanistic model was essential to evaluating and developing this empirical

methodology.

Large felids are under threat from deforestation, wildmeat hunting, and direct
persecution due to livestock depredation. They require large areas of forest for their home
range and, although often able to live in agricultural environments, this puts them into contact
with livestock, increasing the risk of livestock depredation. Deforestation enables hunters to
have greater access to new hunting grounds. Moreover, depletion of prey may cause jaguars
to look for other prey sources, such as livestock. Thus, the anthropogenic impacts interact in a
manner that is difficult to quantify in reality due to the presence of other confounding factors.
In chapter 4, I employ the high-resolution model I developed in chapter 2 to evaluate the
effects of interacting factors (deforestation, wildmeat hunting, and direct persecution) on
large-felid movement across a corridor area in Belize. To the best of my knowledge, this
represents the first mechanistic model to evaluate the effect of interacting anthropogenic
threats on a felid population.

The applications to real-world problems developed in this thesis have demonstrated
the utility of complex, mechanistic models in different areas of conservation biology. In
chapter 5 I synthesise these results by presenting limitations of the model and outlining
potential future work. Although I identify caveats that influence the predictive ability of some
spatially-explicit models, I remain hopeful that advancements in computing will overcome

some of the current hurdles to creating complex models.
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Chapter 2. Effects of model resolution

Abstract

Agent-based models allow population-level processes to emerge from individual-level
behaviours. They will play a major role in next-generation mechanistic modelling of
organismal responses to human-induced rapid environmental change. Choice of resolution
remains an outstanding issue for these models. Although fine-grain models can represent
fine-scale point and line features, such as trails and rivers, they require large amounts of
computing power. More fundamentally, the choice of resolution influences the values of
output parameters estimated by the in-silico experiments, which researchers may then use to
validate their models or to inform virtual- or field-ecology studies. We developed and
validated an agent-based model of fine-scale movement decisions by jaguars (Panthera
onca), based on camera trap and radio tracking data from a wildlife reserve in Belize. We
used the model to investigate the effect of resolution on model outputs from in-silico
experiments. All summary statistics depended on resolution. Models with coarser resolutions
had double the number of detections by virtual camera-traps and a higher number of virtual
captures of individuals than models with finer resolutions, and they overestimated minimum
convex polygon sizes of territories. Best-fit parameter values for the models differed when
calculated using different resolutions. Thus, the resolution dictated how agents used their
home ranges and interacted with one another. We caution against drawing inferences that
depend on model resolution, when researchers apply outputs from agent-based models to real
scenarios. The dependence of the model on choice of resolution raises questions about the
ability of spatially-explicit mechanistic models to truly replicate species behaviour, and hence
to predict how species will react to our changing world.

Key words: animal movement; fine-grain, model validation; pattern-oriented modelling;

radiotelemetry
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2.1 Introduction

As human populations continue to grow in both density and economic development,
ecological systems experience increasing pressure from human-induced rapid environmental
change (HIREC) (Fahrig, 2003; Parmesan, 2006; Sih, 2013). Deforestation and human
encroachment disproportionately impacts large-bodied mammals, which often have large
home ranges that bring them into competition with humans for space and food (Urquiza-
Haas et al., 2009). Population models help scientists to understand how ecological systems
react and adapt to HIREC (Evans et al., 2013a; Sih et al., 2016). They complement
empirical data by highlighting data gaps, generating hypotheses, and predicting alternative
futures. Recent developments in mechanistic, process-based models have incorporated a
high level of complexity (Singer et al., 2016; Synes et al., 2016), reflecting a change in
mind-set from the previously favoured simpler models (Evans et al., 2014). Evans et al.
(2013b) have argued that simpler models often have less predictive power than complex
models, and that over-simplified models risk incorrect predictions by ignoring key
ecological processes. In contrast, mechanistic models aim for a realistic depiction of
individual choices and interactions (Singer et al., 2016). Grimm and Berger (2016) coined
the term “next-generation modelling” in describing the proliferation of these models. In
doing so, they identified their essential elements as structural realism, emergence, and
predictions. Here, we investigate the issues that modellers may encounter when attempting
to parameterise spatially-explicit mechanistic models using empirical data.

Spatially explicit mechanistic models are particularly useful for evaluating how a
species of conservation concern will respond to alternative management options. They
typically structure the agents on real animals in populations that react to real-world
environments rather than hypothetical or idealized environments (DeAngelis and Yurek,
2017). Watkins et al. (2015), for example, modelled a specific jaguar population in Belize in
order to assess how different landscape scenarios would affect jaguar movement through a
corridor area. Two components of spatially-explicit ecological models are the environment,
which modellers most commonly represent using a grid of cells, and the agents, which
navigate the grid using a movement algorithm. Examples of algorithms include random
correlated walks and diffusion models of movement (Beyer et al., 2013; Bernal-Escobar et
al., 2015). The choice of movement algorithm in a spatial model determines how agents
respond to their environment, and therefore, how they will respond to experimental scenarios.

If stakeholders use the results of the model to inform their decisions, the choice of movement
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algorithm may impact on the decisions of those stakeholders; and hence on the conservation
of a species or ecosystem.

Optimizing the resolution of spatially explicit models remains an outstanding issue for
agent-based models (ABMs). The resolution is determined by the choice of grain size, and
the optimum size depends on the scenario under consideration. Broad scale patterns of animal
behaviour may suit a coarse resolution across a large area (Nezer et al., 2017). Kramer-
Schadt et al. (2004), for example, used a grain size of 1x1 km to investigate the spread and
dispersal of lynx across Germany. A finer resolution may better suit fine-scale movement
decisions of individuals in a local area. High-resolution models allow us to examine how
individuals interact with small, thin, or linear features; such as watering holes, habitat
boundaries, river systems or trail networks (Nezer et al., 2017). Trail networks or river
systems can enhance mobility or funnel individuals in particular directions (Abrahms et al.,
2015; Latham et al., 2011; Whittington et al., 2011). The choice of spatial resolution for the
model depends either on the question the model wishes to address or on the spatial resolution
of available environmental data, which generally come from GIS or remote sensing;
including altitude, categories of land cover, or distance to relevant features. Hence, choice of
resolution often occurs at an early stage of modelling.

Using empirical data to parameterise spatial mechanistic models increases credibility
in that model’s ability to predict responses to experimental scenarios; such as the response of
a large mammal to increased deforestation. Pattern-oriented modelling uses real-world
patterns to create and parameterise models with the aim of accurately replicating real-world
patterns, and therefore aid in model design and calibration (Grimm et al., 2005; Grimm and
Railsback, 2012). Approximate Bayesian Computation (ABC; Hartig et al., 2012) aids the
parameterisation and validation of complex models (Van der Vaart et al., 2015). To
parameterise models using ABC, researchers run the model with a large number of different
sets of parameter values, and then isolate the set, or sets, of parameter values that best fit
empirical data. For both of these techniques, the emphasis is on parameterising and building
models that fit empirical data so as to increase the credibility of results from future studies
that use the model.

Ground-truthing of movement algorithms requires spatial data from empirical
studies. For example, Watkins et al. (2015) used results from empirical camera-trap studies to
validate their movement model. To our knowledge, this study represents the only validation
of an ecological mechanistic model of mammalian movement against empirical data.

Nevertheless, as we move into an era of next-generation modelling, it is likely that an
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increasing number of researchers will follow the example of Watkins et al. (2015) by
attempting to ground-truth their movement models against spatial empirical data. These data
may include summary statistics from radiotelemetry, occupancy, and camera-trap studies, all
comprising observations taken at particular points in time and space. If we replicate these
studies using a grid-based model, each of these points become the size of an individual cell.
As an example, in a model with a spatial resolution of 100 x 100 m, each camera trap would
sample an unfeasibly large area of 100 x 100 m. Thus, summary statistics of virtual spatial
studies may depend on the initial choice of spatial resolution. If we use these summary
statistics as spatial patterns to parameterise and validate the spatial components of our model,
our choice of movement algorithm may also depend on our initial choice of resolution. An
argument for the use of complex mechanistic models is that their focus on mechanisms and
processes allow them to exhibit greater predictability, as an agent’s reaction to a situation is
the result of behavioural algorithms. However, if the choice of algorithm depends on the
choice of resolution, it calls into question the ability of that model to reflect reality rather than
merely being a good-enough fit to current data at a certain resolution. This may result in the
introduction of conflicting models for the same species producing different answers to the
same question, which would only serve to confuse the issues that such models are intended to
inform, as well as reducing credibility in spatial models. Alternatively, researchers may
decide to use best-fit parameter values or sensitivity analysis to draw conclusions about
animal behaviour; as in Imron et al. (2012). However, if the choice of parameter values
depends on the resolution of the model, inferences about animal behaviour based on those
parameters will also depend on model resolution. Both modellers and empiricists require a
greater understanding of how choice of resolution can affect the parameterisation process in
order to draw appropriate conclusions from model outputs and identify potential sources of
bias.

Despite the increasing importance of spatially-explicit ABMs in conservation biology,
no study has yet investigated the dependence of the parameterisation process on the choice of
spatial resolution for models. Our aim is to use an ABM to investigate how changing
resolution affects a) model fit to empirical data given a predetermined set of parameter
values, and b) which parameter values best fit empirical data. To this end, we developed a
spatially-explicit ABM of jaguar movements through the Cockscomb Basin Wildlife
Sanctuary in Belize. We based our model on the ABM presented in Watkins et al. (2015),
which includes gender-specific interactions between agents and their environment. We

restructured the model to accommodate fine-scale features to the modelled environment,
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including trail and river systems, and cell-specific slopes, in order to evaluate the effect of
resolution on movement models for animals that navigate using environmental cues.

In accordance with the principles of pattern-oriented calibration (Grimm and
Railsback, 2012), we calibrated the movement model at a spatial resolution of 40 x 40 m
using real-world patterns from empirical camera-trap and telemetry data. We ran the model at
each of three resolutions using the parameter values derived from calibration: 40m x 40 m,
100 x 100 m, and 200 x 200 m. We investigated the influence of resolution on model outputs
for five summary statistics: number of detections during each camera-trap study; absolute
number of different male/female individuals caught on camera; size of male/female minimum

convex polygon (MCP).

2.2 Methods
2.2.1 Study site

Belize covers a mainland area of 21,800 km* (Lands and Survey Department, 2015; United
Nations Development Program, 2015). It has the highest percentage of forest cover of any
country in mainland Central America, at 61% (FAO, 2010), with current or candidate

protected areas taking up 43% of its mainland (Foster et al. 2016).

The study area of Cockscomb Basin Wildlife Sanctuary (CBWS, 425 km?) lies in the
south of the country (Figure 1). Its position in the Mayan mountains makes the terrain in
CBWS hilly and rugged. The land-cover types in CBWS are lowland broad-leaved moist
forest, sub-montane broad-leaved moist forest, and shrub-land. CBWS supports sympatric

populations of jaguars and pumas (Harmsen et al., 2009; Harmsen et al., 2011).
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Figure 1. The location of the study site, Cockscomb Basin Wildlife Sanctuary (CBWS), within

Jaguar density estimates in CBWS vary from 3.5 to 11.0 adults per 100 km?, suggesting a

high density compared to other areas across the range (Harmsen et al., 2010a). Jaguars prey

mostly on medium-sized mammals (Harmsen et al., 2011). Armadillos make up 50% of

jaguar diet in CBWS (Foster et al., 2010), and their high availability may contribute to the

high densities of jaguars in the reserve (Foster et al., 2010).

41



Chapter 2. Effects of model resolution

2.2.3 Empirical data

The telemetry data tracked two male jaguars over 226 and 376 days, and one male puma over
320 days. We used these data to estimate home ranges by minimum convex polygon. We
estimated measurements for female minimum convex polygon by dividing male MCPs by
2.5, an approximation of the dividend between average male MCP and average female MCP
in both Figueroa (2013) and Rabinowitz and Nottingham (1986). Annual MCP for male and
female jaguars in Figueroa (2013) was 257 km? and 111 km?, respectively. Minimum home
ranges for male and female jaguars in Rabinowitz and Nottingham (1986) were 28 km” and
10 km?, respectively. Hence, we approximated female home range by dividing our calculated
home range for male jaguars by 2.5. The camera-trap data covered once-yearly surveys in
CBWS from 2011 to 2015, each lasting ~3 months during the dry season. Unique pelt
patterns allowed identification of individual jaguars (Silver et al., 2004). These data yielded
detection frequencies and numbers of individuals of each sex, per camera, and in total within

CBWS.

2.2.4 The model

We used Python to write the simulation model, and a combination of Python and R for data
handling and statistical analysis. Appendix I describes the Overview, Design concepts, and
Details (ODD; Grimm et al., 2006) for the model. For each set of parameter values, the model
ran for 21,900 time steps, each simulating 12 min and totalling a 6-month period. Figure 3

shows a flow chart of the full model.

2.2.4.1 Background grid

The simulation model ran on a grid of cells, each representing 40 x 40 m. Each cell stored the
following attributes: cell identity, x coordinate, y coordinate, terrain type, slope, distance to
water, distance to trail, altitude, camera identity, jaguar occupant identity, female jaguar
pheromone level, male jaguar pheromone level, the last female jaguar on the cell, the last

male jaguar on the cell, neighbouring cells and attributes of cell graphics.
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Information on terrain came from GIS data by Meerman (2011). We used the ArcMap
tool Euclidean Distance to calculate distance to river and distance to trail, and the Slope tool
to calculate slope from altitude data. We converted all terrain files to raster files, where
necessary, and then to ASCII files. Panthera Belize provided GIS files for camera stations
within CBWS. We converted the camera station GIS file to an ASCII file. The model read all
ASCII files at the beginning of each replicate. Terrain- and camera-related attributes were

static throughout each replicate.

Agents within the model used a proxy for pheromones to represent the various ways
in which jaguars communicate with each other, including scent marking, scrapes, and

vocalisations (Harmsen et al., 2010b).

2.2.4.2 Agents

The model initiated a new population of agents at the beginning of each replicate (Figure 2).

It assigned initial agent locations, at random, from a selection of all cells within CBWS.
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Create output files

Initialise agents

v
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Figure 2. Process for each replicate. The model creates two output files, one representing a

virtual telemetry study and the other a virtual camera-trap study.

Agents represented jaguars within the model. Each agent had the following attributes:
identity, location, graphics attributes (colour, shape and size of agent in graphical

representation), gender, current direction, and the agent’s last position.

The agents had an equal chance of being male or female. Identity, graphics, and
gender remained static throughout the replicate. Current direction, location, and the agent’s
last position changed as the time steps progressed. Directional persistence, the likelihood of
an agent maintaining its current direction, differed between genders. The model did not
incorporate birth and death as the simulation ran for too short a timescale to warrant its

inclusion.

At the beginning of each time step, each agent placed pheromones on their current
cell. The program then entered the Move function, Re-entry function, and lastly, the Decay
pheromones function (Figure 3). After these functions, the model decayed pheromone levels

in all cells and wrote data to output files.
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Figure 3. Flowchart for each time step. Squares contain process commands and diamonds

contain conditional if statements.

2.2.4.3 Move function

For each agent within CBWS, the Move function (Figure 4) created a random probability
between 0 and 1. If this did not exceed a pre-set probability of random movement, the agent
randomly selected one of the eight neighbouring cells for its next cell. Otherwise, the model
created another random probability between 0 and 1. If this did not exceed a pre-set
probability of directional persistence, the agent continued moving in the same direction it had
moved previously. If an agent did not move randomly, or in the same direction as previously,
the model calculated the gender-specific cost values of all neighbouring cells. The cost value
was calculated as per Equation (1), which represents cost calculation for male agents (Cy;),

and Equation (2), which represents cost calculation for female agents (Cr).

45



Chapter 2. Effects of model resolution

Cy = Phy, + CFM + MDW -dW + MDT -dT + MS-S+ MA-A+ MTr

Cr = Phy + CMF + FDW -dW + FDT -dT + FS-S+ FA-A+ FTr

Table 1 contains the definitions for the majority of parameters in Equations 1 and 2. Phj, is
total pheromone placed by male agents in the cell. Phr is total pheromone placed by female
agents in the cell. dW is the distance between the cell and a water feature. dT is the distance
between the cell and a trail. S is the slope associated with the cell. 4 is the altitude associated
with the cell. The gender-specific values M7r and FTr were only included in the equation
when an agent was located on a trail square. CFM was only included in the cost calculation
for male agents (Equation 1) if the amount of female pheromone associated with the cell was
greater than 0. Similarly, CMF was only included in the cost calculation for female agents
(Equation 2) if the amount of male pheromone associated with the cell was greater than 0.
The agent then chose the least-cost neighbouring cell. Once the agent selected a cell, the
model removed the agent from the cell occupancy list and changed the x and y coordinates of

the agent. Graphical information also changed to reflect the new location.
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Figure 4. The process for the move. The model chooses whether to move in a random direction,
move in the same direction or move based on habitat attributes. If it uses habitat attributes, it
calculates the chosen square based on gender-specific costs. Squares contain model commands

and diamond shapes contain if statements.

2.2.4.4 Re-entry function

If a resident was outside the boundaries of CBWS, the model entered a Re-entry function.
The model created a selection of cells consisting of the last non-null cell the agent stepped on
and any border cells within 250 m of that last cell. The model selected one of these cells at

random and moved the agent to this cell.
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2.2.5 Raw data format

The model stored data in two text files, one representing a virtual camera-trap study and one

representing a virtual telemetry study. It wrote to these files at the end of each time step.

If an agent was in the same cell as a camera-trap, the model wrote the camera

location, replicate number, time step, coordinates and agent gender to the file.

The model wrote each agent’s location and attributes to the telemetry file. The

telemetry file also included information on the time step and replicate number.

2.2.6 Validation

We used Latin Hypercube Sampling to select 2500 parameter sets (Carnell, 2016). We ran
each of these parameter sets using a combination of the Iridis supercomputer at the University
of Southampton, 2 desktop computers and 1 laptop. One replicate of the model took
approximately 4 hours to run.

We sampled the virtual telemetry data to points occurring every simulated 24 hours, in
order to match the empirical data. For each model, we calculated the following: number of
detections during each camera-trap study; absolute number of different male individuals
caught on camera; absolute number of different female individuals caught on camera; male
minimum convex polygon (MCP) size; female MCP size.

We used absolute values for number of males, number of females, male MCP and female
MCP. MCP data came from the virtual telemetry study, so did not depend on camera-trap
success rate. We assumed that the cameras would eventually catch every male or female
resident individual in the area, hence a perfect camera-trap rate would not bias the absolute

male or female values.

2.2.7 Summary statistics as a function of resolution

We selected a set of parameter values for the model using a resolution of 40 < 40 m. The set
of parameter values was the set that had the best fit to empirical data out of 2500 sets of

parameter values.
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We ran the model with the selected set of parameter values for 50 replicates at
resolutions of 40 x 40 m, 100 x 100 m, and 200 x 200 m. The choice of resolutions derived
from both the resolution of the GIS data (40 x 40 m) and the size of the study area. The
higher resolutions represented approximately double, and then quadruple, the size of the
resolution of the GIS data. Any resolutions in excess of 300 x 300 m would have resulted in a
crowded grid, given the relatively small study area and the number of agents within the grid.
The sample of resolutions was limited to three due to the time taken to run through the set of
parameter values for each.

We calculated summary statistics from each of the models and used the non-
parametric Kruskal-Wallis test in order to investigate the dependency of simulated summary

statistics on the model resolution.

2.2.8 Parameter values as a function of resolution

We ran the model again for each of the 2500 sets of parameter values for both 100 x 100 m
and 200 x 200 m resolutions, and chose the set of parameter values that best fit summary
statistics from empirical data. We normalised each parameter value by dividing by the mean
from parameter values calculated for the three resolutions and plotted them for comparison

between resolutions.

2.3 Results

2.3.1 Selection of parameter values for model at 40 x 40 m resolution

We parameterised the first model using a 40 x 40 m resolution (Table 1). The model included
attraction of male and female agents to agents of the opposite gender (CFM and CMF). The
best-fit parameter values obtained from parameterisation against empirical data determined
that agents in the model moved in a random direction for approximately half the time-steps,
that male agents were more likely to move in a constant direction than female agents and that

female agents avoided trail cells, whereas male agents preferentially chose trail cells.
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Table 1. Input parameters for the ABM, showing the range of values tested, and the values that

fitted best to the empirical data.

Parameter Abbreviation Range Best-fit

(a) Pheromone-related, determining interactions amongst individuals

Population size Po 1to 100 50
Pheromone placed by agent each Ph 0.00 to 100.00 77.00
turn

Pheromone decay rate PhD 0.80to 1.00 0.92
Cost of females to males CFM -50.00 to 50.00 -39.00
Cost of males to females CMF -50.00 to 50.00 -1.00

(b) Movement, determining type of algorithm for choosing next cell
Probability of random movement R 0.00to 1.00 0.46

Male probability of directional MDP 0.00to 1.00 0.62
persistence

Female probability of directional FDP 0.00to 1.00 0.16
persistence

(c) Environmental parameters, determining interactions with the abiotic environment

Male distance to water multiplier MDW -1.00 to 1.00 -0.18
Female distance to water multiplier FDW -1.00 to 1.00 -0.06
Male distance to trail multiplier MDT -1.00 to 1.00 0.39
Female distance to trail multiplier FDT -1.00 to 1.00 0.05
Male trail square cost MTr -50.00 to 50.00 -6.00
Female trail square cost FTr -50.00 to 50.00 14.00
Male slope multiplier MS -5.00 t0 5.00 2.51
Female slope multiplier FS -5.00 to 5.00 3.00
Male altitude multiplier MA -1.00 to 1.00 0.47
Female altitude multiplier FA -1.00 to 1.00 0.48
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Summary statistics from the model runs using 40 x 40 m cells were broadly similar to
summary statistics from empirical studies (Table 2). Although output values for summary
statistics from the model were feasible, the model failed to capture the empirical level of
difference between males and females. Moreover, the average number of detections in the
model was approximately three times less than the average from empirical studies.

Figueroa (2013) calculated much larger MCPs than the empirical MCPs used for
comparison in this study. However, his study was conducted in the corridor area of Belize,
which incorporated large open areas, rather than within a reserve. This explains the
discrepancy between empirical MCPs. Figueroa (2013) used data from 6 male jaguars and 1
female jaguar. The female MCP calculated from simulation data is more similar to the
Figueroa data than our empirical data. The male MCP calculated from simulation data is
more similar to our empirical data than the Figueroa empirical data. As MCP data are broadly
similar to both sets of empirical data rather than being several orders of magnitude higher or
lower than the empirical datasets, the Figueroa data provide further evidence that the model

represents a good enough approximation of empirical patterns to use for further analysis.

Table 2. Comparison between summary statistics from empirical camera-trap and telemetry
studies in CBWS and outputs from the best-fit ABM of jaguar movement. The table includes MCP

values calculated in Figueroa (2013).

Summary statistic Empirical Empirical Model
(Figueroa, 2013)

Number of male 16.4 +/- 0.87 n/a 14.5 +/- 0.3
agents captured

Number of female 96 +/-1.8 n/a 14.84 +/-0.3
agents captured

Male minimum convex 147.6 +/- 11.7 km? 257 +/- 48.8 km? 125.7 +/- 0.6 km?
polygon size

Female minimum 57.0 +/- 11.1 km? 111 +/- 0.0 km? 97.4 +/- 0.7 km?

convex polygon size

Number of detections 334.8 +/- 89.1 n/a 119.36 +/- 1.0

The empirical data for number of male individuals captured had a narrow distribution,

which lay within the distribution for modelled data, but not within the interquartile range
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(Figure 5a). Distributions for male MCP size (Figure 5¢) and number of detections (Figure
5e) from the model lay within distributions for corresponding empirical data, despite the
difference in average number of detections between empirical and model data. Lower values
for number of female individuals captured lay within the interquartile range for number of
female individuals captured in empirical studies (Figure 5b). Female MCP size showed the
greatest difference between model and empirical data, with none of the values from the
model lying within the distribution from empirical data (Figure 5d). None of the summary
statistics from the model had distributions that aligned well with empirical data.
Nevertheless, the results were consistent amongst model runs and the model values were of
similar orders of magnitude to empirical data, which allowed us to use the model for further

analysis.
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Figure 5. Summary statistics from empirical and modelled data.
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Chapter 2. Effects of model resolution

2.3.2 Summary statistic outputs as a function of resolution

All summary statistics from model runs depended on resolution of the model (Figure 6).
There was an almost twofold difference between number of detections for models using a 40
% 40 m resolution and models using a 200 x 200 m resolution. Female minimum convex
polygon sizes for models using 200 x 200 m cells were approximately 1.5 times the size of
those from models using 40 x 40 m cells. Models using a resolution of 40 x 40 m generally
had smaller ranges and smaller values. Models at every resolution underestimated the number
of detections during camera-trap studies (Figure 6e). The 40 x 40 m resolution model most
accurately simulated female jaguar movement (Figures 6b and 6d). Empirical values for
number of male individuals captured and male minimum convex polygon size lay between
the results from the 40 x 40 m and 100 x 100 m models. Changing resolution appeared to
have little effect on the ability of the model to capture male and female differences in

summary statistic values.
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Chapter 2. Effects of model resolution

In our coarse-grain model (200 x 200 m), each section of trail covered a width of 200
m. This increased the amount of trail available to the agents within the area. Virtual camera-
traps were each able to cover areas of 200 x 200 m, something impossible in most empirical
studies. This increased the number of detection incidents in coarser resolution models and
allowed them to capture a greater number of agents.

Coarse-grain models had greater MCP sizes for both male and female agents. For
empirical data, we calculate MCP using points within a landscape (Figure 7a). If an agent in a
grid-based model moves to similar locations within the model, we include entire grid squares
in the MCP calculation. This results from the fact that the model cannot pinpoint where an
agent has stepped within a grid square when it moves into the square (Figure 7b). As the
grain of the model becomes coarser, the grid squares that we include as points in MCP
calculation become larger, inflating MCP estimates (Figure 7c). In the most extreme example
in Figure 7, changing resolution from 50 x 50 m (Figure 7b) to 200 x 200 m (Figure 7d)
inflates MCP estimates by 33%.
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Figure 7. MCP size as a function of grid cell size: a) MCP = 3.2 km? control MCP calculation with
no grid cells, b) MCP = 3.6 km? calculated using a grid of 50 x 50 m cells, ¢c) MCP =4.0 km?
using a grid of 100 x 100 m?, d) MCP =4.8 km? calculated from a model using a grid of 200 x
200 m cells.

2.3.3 Resolution determines model behaviour

Values of model parameters selected using the parameterisation process depended on choice
of resolution (Figure 8). The cost of female agents to males (CFM) and the cost of male
agents to females (CMF) differed broadly when using the parameterisation process for
different resolutions. In both the 40 x 40 m and 200 x 200 m models, male agents were
strongly attracted to female pheromone. For the 100 x 100 m model in contrast, male agents
strongly avoided female agents. This resulted in models with very different movement

processes, depending on which resolution we selected initially. The cost of male agents to
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female agents differed less, although female agents were attracted to male agents in the 40 x

40 m model, while avoiding them in the 100 x 100 m and 200 x 200 m model. In the 40 x 40

m model, males strongly avoided water sources, but were attracted to them in the 100 x 100

m and 200 x 200 m models. Male agents in both the 40 X 40 m and 100 x 100 m models

avoided trails; particularly in the latter case. However, in the 200 x 200 m model, they

appeared to be strongly attracted to trail squares. Likewise, female agents were attracted to

trail for the 40 x 40 m model, but avoided trail for the 100 x 100 m model. Male agents were

attracted to high altitude areas in the 40 X 40 m model, but avoided them in the 100 x 100 m

and 200 x 200 m models. In short, varying the initial resolution of the model results in very

different movement processes.
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Figure 8. Normalised parameter values selected by the parameterisation process for three

different resolutions. See Table 1 for definitions of abbreviations.
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Chapter 2. Effects of model resolution

Probabilities of random movement and directional persistence selected using the
parameterisation process depended on resolution of the model (Table 3). The probability of
random movement was 36% for the 100 x 100 m model and 54% for the 200 x 200 m model.
Thus, there was 1.5 times more random movement within the 200 x 200 m model than in the
100 x 100 m model. This resulted in every agent in the 200 x 200 m model taking 3,942 more
random steps than the agents in the 100 x 100 m model. Female agents in the 40 X 40 m
model continued in the same direction 9% of the time, taking into account the probability of
random movement. Female agents in the 100 x 100 m model continued in the same direction
23% of the time. Hence, female agents in the 100 X 100 m model chose to move in the same
direction as the previous step 2.6 times more often than female agents in the 40 X 40 m
model. Likewise, male agents in the 100 x 100 m model chose to move in the same direction
1.8 times more frequently than male agents in the 200 x 200 m model. Thus, the
parameterisation process yielded different parameter values for best-fit models depending on
resolution, which resulted in very different mechanistic models for animal movement, despite
using the same empirical data. The movement processes that best fit the empirical data

depended on the resolution of the model.
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Table 3. Parameter values selected from parameterisation process for the same model at three

resolutions.

Parameter 40 x 40 m 100 x 100 m 200 x 200 m

(a) Pheromone-related, determining interactions amongst individuals

Population size 50 36 54
Pheromone placed by agent each 77.00 83.46 50.46
turn

Pheromone decay rate 0.92 0.85 0.88
Cost of females to males -39.00 38.54 -34.04
Cost of males to females -1.00 16.74 2437

(b) Movement, determining type of algorithm for choosing next cell
Probability of random movement 0.46 0.36 0.54

Male probability of directional 0.62 0.95 0.74
persistence

Female probability of directional 0.16 0.36 0.47
persistence

(c) Environmental parameters, determining interactions with the abiotic environment

Male distance to water multiplier -0.18 0.07 0.29
Female distance to water multiplier -0.06 -0.07 -0.33
Male distance to trail multiplier 0.39 0.36 -0.22
Female distance to trail multiplier 0.05 -0.39 0.04
Male trail square cost -6.00 -21.78 19.33
Female trail square cost 14.00 -11.07 -19.40
Male slope multiplier 2.51 2.06 3.90
Female slope multiplier 3.00 0.45 0.25
Male altitude multiplier 0.47 0.40 0.45
Female altitude multiplier 0.48 -0.45 -0.43
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2.4 Discussion

In this study, we have demonstrated that changing the resolution of a model can affect its fit
to empirical data. We found that all chosen summary statistics depended on model resolution,
and that parameterising the model under three different resolutions using spatial statistics
from point data resulted in three very different movement algorithms. Spatial statistics, such
as telemetry and camera-trapping data, are often the only empirical data available to
researchers studying large and elusive species. Our results have direct implications for the
development of simulation models for these species, and therefore on their conservation, and
they suggest implications for all single species ABMs.

Next-generation ecological models will incorporate enough realism to predict the
effects of future HIREC on ecological systems (Grimm and Berger, 2016). Mechanistic
models have the potential to predict responses to environmental change as they model a
process, and allow responses to emerge from that process (Stillman et al., 2015). If we use
our models to test a future scenario of human-induced environmental change, how will their
results differ? Consider a scenario of potential deforestation. Agents that display more
random movement, or who persist in the same direction more often, may react less to the
presence of environmental cues than other agents, and would therefore appear less affected
by loss of pristine habitat. Likewise, when deforestation leads to construction of trails in an
area that was previously inaccessible, which of these models would capture the correct
interaction between agents and trail? The reaction could either be canalisation or avoidance,
depending on which resolution we chose while parameterising our model. The results of
future studies using this model will depend on the processes and behaviour used in the final
model, and hence on the initial choice of resolution. If selection of specific movement
algorithms relies on the spatial resolution of the model, the movement algorithms may not
actually capture the behaviour of the species. When we run the model with a scenario in order
to investigate the effect of future HIREC on our agents, the agents may not react in a similar
fashion to our study species. Moreover, models parameterised with different resolutions may
produce very different predictions. If modellers offer contrary predictions to the same
situation, this may only work to fuel the divide between modellers and empiricists (Jeltsch et
al., 2013).

Parameter choice may depend on model resolution when modellers use fine-scale
empirical data to parameterise their model (e.g., Watkins et al., 2015). Camera-trap studies

and radiotelemetry studies rely on point data. When in an environment with poor visibility,
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such as a rainforest, each empirical camera-trap can cover an area far less than 40 x 40 m.
The grain of the available empirical data is therefore finer than the finest resolution we used
in our study. We caution that researchers cannot change the model resolution once they have
decided on a parameter set, or re-parameterise the model if they wish to change the
resolution, without also re-evaluating the fit of the new model to empirical patterns.

Both virtual camera-trap and radiotelemetry summary statistics depended on the
choice of resolution. Models with fine resolutions can represent point or line features, such as
trails or river systems (Nezer et al., 2017), that influence how animals select movement paths
through the landscape (Abrams et al., 2016). When animals move through their landscape,
their movement paths form a line feature. Any factors in the model that depend on movement
paths will hence depend on the resolution of the model. As an example, if we want to
investigate how often two agents living in the same vicinity interact, the results of our model
may depend on the paths the agents take through their landscape. If we used a model with a
large cell size, the agents would have coarser movement paths, and hence, may interact more
often than if we were to use a model with a small cell size. Questions of this sort may
necessitate running the experiment under multiple resolutions in order to evaluate the
sensitivity of results to model resolution.

Researchers often draw inferences about species behaviour from the output values of
the parameterisation process. For example, some studies have used the results from
sensitivity analyses of parameter values (e.g. mortality) to draw conclusions about the
behaviour of species or groups (Kanagaraj et al., 2013; Imron et al., 2012). In our study, we
could have concluded that the difference between males and females in directional
persistence values indicated that male and female jaguars show different levels of patrolling
behaviour. While this may be true, the difference in directional persistence parameters could
result from resolution bias. The directional persistence values that best fit empirical data
when using a 40 x 40 m model resolution may be different from those that best fit empirical
data when we use a finer or coarser grain. We must therefore treat any conclusions that we
draw from model parameterisation with caution.

Virtual ecology focuses on recreating empirical experiments in-silico, often with the
aim of considering alternative empirical methodologies (Zurell et al., 2010). Rodrigues and
Coelho (2016), for example, used a mechanistic simulation model in order to assess how
different movement patterns and detectability between male and female agents affected
estimates of sex ratio from both active and passive capture methods. Our study shows that

virtual ecology studies need to investigate the potential for bias due to choice of resolution, in
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order to draw conclusions that can inform empirical study. Consideration of potential bias is
especially important when attempting to recreate fine-grain spatial experimental data, such as
camera-trap or radiotelemetry data.

Although direct parameterisation is the best solution to the problem of resolution-
dependent predictions, often the species we wish to model are elusive, and little is known
about their behaviour in the wild. Choice of resolution often becomes fixed at an early stage
in model development, as a function of the study aims, the available environmental data, and
the computing power required to run the model. In these cases, we advise conducting
robustness analysis (Grimm and Berger, 2016) by running the model under different
resolutions to investigate whether changing spatial resolution breaks the model. Any
parameter values that vary significantly between one resolution and the next may not be
important for model fit, or may be indicative of bias caused by the scaling up of point data to
grid cells.

We have shown that spatial statistics that use point data result in biased
approximations. It may be better to focus on qualitative rather than quantitative patterns
(Jakoby et al., 2014), or a mixture of qualitative patterns and ratios; such as the level of
overlap between home ranges or the ratio between male and female home ranges, for
example. Where data on species are lacking, it may be advisable to run the scenarios under
multiple possible movement algorithms or address only a hypothetical species with a certain
movement algorithm.

The scientific world has yet to obtain a full understanding of what drives animal
movement decisions. It is highly likely that decisions derive from multiple cues (Sih et al.,
2016). The future of ecological modelling lies in complex mechanistic models that
incorporate fine-scale movement decisions, models of dispersal, genetics, demographics and
models of human activity at the small- and large-scale in order to provide predictions on
organism response to HIREC (Sih et al., 2016). ABMs parameterised using empirical data
will likely become increasingly popular and useful tools for the conservation of elusive
mammals. Empirical data for these species will continue to come from point data, such as
camera-trap and radiotelemetry data. If model parameter sets depend on the resolution of the
model, we must ask whether spatially-explicit mechanistic models do accurately replicate the
behaviour of a species. This has implications for the ability of spatially-explicit models to
predict how ecological systems adapt to change, which is one of the three essential elements

of next generation modelling (Grimm and Berger, 2016). With mechanistic movement
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modelling still in its infancy, it is imperative to bring out potential biases in the methodology

in the early stages of what will doubtless become an important and insightful discipline.
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2.5 Appendix I. Overview, Design concepts and Details

Appendix I follows the protocol of Overview, Design concepts and Details suggested by
Grimm et al (2006).

2.5.1 Purpose

The model simulated fine-scale movement decisions of jaguars in Cockscomb Basin Wildlife
Sanctuary (CBWS), Belize. Our purpose was to capture the movement of resident agents
around their home-ranges and use pattern-oriented calibration in order to parametrise the
model. We present the parameterisation and validation here. We then use this model to
investigate the effect of resolution choice on model fit and validation. We seek to use this
model in order to undertake further theoretical experiments on jaguar responses to

anthropogenic impacts.

2.5.2 State Variables and Scales

The model background consisted of 1071 x 750 grid cells. Each grid cell represented an area
comprising 40m x 40m. This grid includes “Null” cells that lay outside CBWS. The area of
CBWS comprises a modelled 425 km?”. GIS data (Meerman, 2011) informed data on static
aspects of the cells: habitat type, distance to river, distance to trail, altitude, slope, presence of
camera-trap and camera-trap ID. We used results from in-silico camera-trap and telemetry
experiments to validate the model. The agents occupied a single cell at a time. The model
allocated each agent with a gender, identity, location and graphics information. At the
beginning of each time step, the agent would deposit an amount of “pheromone”. Pheromone
represented the ability of agent to signal to each other. In reality, jaguars communicate using
scrape markings, scent markings and vocal calls. The model stored pheromone levels as a
feature of grid cells. Pheromone levels were gender-specific.

We ran the model through a series of parameter sets. Each replicate consisted of

21,900 time steps that represented 6 months. Each time step equated to 12 minutes.
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2.5.3 Process overview and scheduling

At the beginning of each parameter set run, the model created the background grid and set
staticcell attributes: terrain type, distance to river, distance to trail, altitude, slope, coordinates
and graphics information. The model then ran through replicates.

At the beginning of each replicate the model created output files and initialised a
population of agents. The agents had an equal chance of being male and female. All agents
created at the beginning of the simulation were “resident” agents. After initialisation, the
model ran through a series of time steps.

The model placed an amount of pheromone at the beginning of each time step. It then
looped through all agents. If an agent was in CBWS, the agent would undergo the move
function. If an agent was a “resident” and outside CBWS, it would undergo the re-entry
function. At the end of the time step, the model would write to output files and decay
pheromone levels. The model continuously updated all information on cell pheromone levels

and jaguar locations.

2.5.4 Design concepts

2.5.4.1 Emergence

Agent home ranges emerged from the communication between agents via pheromone levels.

The constant decay and placement of pheromone allowed home ranges to be dynamic.

2.5.4.2 Adaptation

Agents chose the least-cost neighbouring cell based on cell attributes. These attributes were
both dynamic (for example, distance to river) and dynamic (pheromone levels). The
parameter sets each had specific values for how an agent responded to each of the cell

attributes.

3.5.4.3 Fitness

The model did not include mortality or fecundity, however this model represents a base
model for future investigations of how movement decisions affect mortality and dispersal in a

human-influenced environment.
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2.5.4.4 Sensing

All agents could access information on neighbouring cell attributes. This information
included environmental attributes (terrain type, distance to river, distance to trail, altitude and
slope) and agent-related attributes (amount of male pheromone, amount of female
pheromone, jaguar occupancy). The agent did not access camera-related cell data. Each cell
had eight neighbours, representing north, north-east, east, south-east, south, south-west, west,

north-west and north cells.

2.5.4.5 Interaction

Agents interacted using pheromone. Pheromone was gender-specific. Gender-specific
parameters dictated how agents respond to same-gender, opposite-gender and own
pheromone. Agents responded to pheromone levels by having an increased or reduced cost
proportional to the amount of pheromone. Hence, pheromone resulted in avoidance or

attraction to the same- and opposite genders, dependent on the parameter set.

2.5.4.6 Stochasticity

The model included parameters for probability of random movement, and probability of
directional persistence. Hence, an agent could move in a random direction, in the same
direction as previously or in a direction dictated by cost of neighbouring cells. The
probability of these movement types depended on the parameter values and random number

generation. The model allocated gender based on a 50% chance of being male or female.

2.5.4.7 Observation

The model used the Python package Tkinter for graphical representation during testing. The
graphics provided information on environmental attributes and gender-specific pheromone

levels in each cell, and agent movements around the grid.

2.5.5 Initialisation

The model reset all landscape and agent attributes at the beginning of a new parameter set. At

the end of each replicate, the cell pheromone-related attributes reset. The model removed all
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agent and created a new population. The number of agents in the new population depended

on the value of the population parameter. Agents could then establish new home ranges.

2.5.6 Submodels

2.5.6.1 Pheromone placement

At the beginning of each time step, each agent placed an amount of pheromone in its current
cell equal to the pheromone placement parameter value. This allowed agents to communicate

with each other.

2.5.6.2 Move

The function ran through each agent in the population, provided the agent was within the
CBWS area. It first created a random probability. If this did not exceed a pre-set probability
of random movement, the agent selected a random neighbouring cell as its next cell. There
were eight neighbouring cells for each cell. This cell may be outside CBWS. If the agent did
not undertake random movement, the model created another random probability. If this did
not exceed a pre-set probability of directional persistence, the agent continued moving in the
same direction it had moved previously. If an agent did not move randomly or in the same
direction as previously, the model calculated the gender-specific cost values of all
neighbouring cells. The agent chose the least cost neighbouring cell. Once the agent selected
a cell, the model removed the agent from the cell occupancy list and changed the x and y

coordinates of the agent. Graphics information also changed.

2.5.6.3 Re-entry

If an agent was a “resident” and outside the boundaries of CBWS, the model entered a re-
entry function. The program created a random probability. If this did not exceed a pre-set
probability of re-entry, the model created a selection of cells consisting of the last non-null
cell the agent stepped on and any “border cells” within 250m of that last cell. The model

selected one of these cells at random and moved the agent to this cell.
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2.5.6.4 Pheromone decay

At the end of each time step, the model decayed pheromone levels in all cells by a multiplier
equal to the pheromone decay parameter.

2.5.6.5 Take photo

At the end of each time step, if an agent was present on a cell with a camera, that cell object
would write the following to an output file: time, agent ID, location, camera type and gender

of agent.
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Chapter 3. Correcting telemetry metrics

Abstract

The calculation of accurate movement metrics from telemetry data has consequences both for
modellers, who incorporate metrics as parameters in their models, and managers who
consider metrics in the development of conservation strategies. Despite recent advances
using GPS satellites, a trade-off exists between fix interval (the number of hours between
fixes) and the length of a telemetry study set by the battery life of telemetry devices.
Although studies have shown that longer fix intervals result in greater errors when calculating
metrics, none have attempted to provide a standard method for correcting movement metrics
derived from telemetry data. Here we use a mechanistic model to demonstrate a method for
correcting estimates of movement metrics, by employing a combination of subsampling and
non-linear regression to define the relationship between fix interval and estimate for two
metrics: step length and MCP. We repeat this for six different movement models, including a
random movement model and five models representing agent ‘choice’ with varying levels of
directional persistence to determine whether movement type affects the accuracy of the
method. At a fix interval of 2 hours, the estimated step length was 25% less than the actual
step length. The correction method reduced this error to 14.5%. By tailoring the method to
movement types, we further reduced the error to 11% for some simulations. Fix intervals of 2
hours had an error in MCP estimation of approximately 50%. The correction method did not
improve estimates of MCP when generalising an equation across all movement types.
Tailoring the correction method to different movement types generally increased the accuracy
of estimates, with a minimum error of 4%. The correction method we present here is
particularly useful where researchers cannot narrow the fix interval in their study due to

either research requirements or the interference of terrain with telemetry signal.

Key words: agent-based model; virtual ecology
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3.1 Introduction

Movement of animals has been a key area of research in conservation biology for over 20
years (DeMars et al., 2013). Patterns of movement determine the distribution of species, the
transmission of disease, routes for animal migration, and responses to anthropogenic actions
(Morris, 2003; Hosseini et al., 2006; Bradshaw et al., 2007; Beyer et al., 2013). Analyses of
such patterns may augment our understanding of metapopulation dynamics, species
persistence and the effect of conservation measures (Schooley and Wiens, 2004; Loarie et al.,
2009; Pittman et al., 2014; Jenks et al., 2015). Studying patterns of movement can therefore
contribute to the conservation of endangered and threatened species.

Telemetry data allow researchers to understand movement by capturing individuals in
space and time. Sources of telemetry data include VHF radiotelemetry tags, fixed-position
PIT tag detection arrays (Tew and MacDonald, 1994; Armstrong et al., 1996; Lucas et al.,
1999), which detect locations by close-range proximity detection (Harbicht et al., 2017),
acoustic telemetry transmitters, and Global Positioning System (GPS) telemetry tags, which
use satellites to obtain location data (Dana, 1989). GPS technology, in particular, has allowed
researchers to collect a high abundance of accurate, fine-scale data on animal movement
(Mills et al., 2006; Kie et al., 2010; Tomkiewicz et al., 2010). GPS is unaffected by weather
conditions, which improves on traditional VHF radiotelemetry technology (Girard et al.,
2002), although GPS tags are more expensive, which limits the number of individuals that the
study can track (Otis and White, 1999; Harbricht et al., 2017). Researchers have employed
telemetry data to in order to develop their understanding in a number of areas, including
studies on how animals respond to barriers to movement (Riley et al., 2006; Shepard et al.,
2008), density estimation (for example, Soisalo and Cavalcanti, 2006), development of
resource selection functions (for example, Johnson et al., 2004), and predator-prey
relationships (Sevodkin et al., 2017). In this paper, we will focus on two of the many outputs
from telemetry data, namely step length and size of home range in order to offer methods to
correct for bias caused by fix interval for two metrics that are frequently exploited in further
conservation research.

Step length is the distance covered by a tagged individual between two sequential
telemetry fixes. Knowing the value of step length allows calculation of other metrics, such as
cumulative distance covered over a study period and the average speed of individuals. Many
movement models incorporate step length and turning angles as parameters to simulate

individual movement (Turchin, 1998). Telemetry provides the data to parameterise the
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models that researchers then use to make inferences about animal movement (Jerde and
Visscher, 2005; Beyer et al., 2013; DeMars et al., 2013). Researchers have included step
length in autocorrelation functions in order to investigate movement patterns (Boyce et al.,
2010). For example, Jenks et al. (2015) used autocorrelation functions and cluster analysis in
order to compare the movement of a golden jackal and a dhole. Thus, it is important that
researchers can obtain accurate estimates of step length so as to reduce bias in models at later
levels of abstraction.

A home range of an animal is the area that an individual inhabits regularly, during
activities such as foraging (Burt, 1943). Knowledge of the size of home ranges informs the
construction of conservation measures by allowing the estimation of space required for that
conservation measure to be successful. Telemetry data is often employed to determine home
range size and boundary (Otis and White, 1999). Calculation of home range using telemetry
data commonly employ either kernel analyses or minimum convex polygon (MCP)
(Kolodzinski et al., 2010). Both kernel and MCP calculation depend on the sampling regime
applied to collect telemetry data, with the latter being more sensitive than the former to the
intensity of the sampling regime (Kolodzinski et al., 2010). As stakeholders use home range
to indicate how much habitat a species requires, it is imperative that estimates are accurate, or
at least that managers have a clear understanding of the strength and direction of potential
bias.

When designing telemetry studies, researchers must often address a trade-off between
the intensity of the sampling regime and the duration of the study (Kolodzinski et al., 2010).
As the time interval between fixes of locations - hereafter referred to as the “fix interval” —
increases, the study misses more potential locations. This can lead to errors in calculations of
metrics, such as step length and home range. Multiple studies have found that long fix
intervals underestimate both step length and home range, because they miss out tortuous
movement and extreme points (Otis and White, 1999; Mills et al., 2006; Kolodzinksi et al.,
2010). As an example, Kolodzinski et al. (2010) found that calculations for MCP using
telemetry with fix intervals of eight to twelve hours underestimated homes range by at least
50%. Furthermore, telemetry devices suffer from type II errors. In some cases, the success
rate of fixes can be as low as 13% (Frair et al., 2004). This would change a sampling regime
that takes location fixes every 2 hours to one that only samples locations every 16 hours, with
implications for the accuracy of calculation of metrics.

The effectiveness of sampling methodologies, such as telemetry studies, can be

investigated by way of virtual ecology. Virtual ecology concerns the replication of empirical
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studies in-silico using simulation models (Zurell et al., 2010). Studies incorporating virtual
ecology not only expose the problem, they allow easy quantification of errors and effects of
mitigation errors. Zurell et al. (2010) list the two main applications of virtual ecology as 1)
testing and improving sampling schemes and methods, and 2) testing and comparing models.
As experiments are conducted in a model with a known population, one can compare the
result of such an in-silico study with the real-world data, thereby evaluating the effectiveness
of this approach. Indeed, researchers have exploited virtual ecology for a number of
purposes, such as evaluating the conceptualisation and implementation of species distribution
models (Miller, 2014), assessing sampling designs (Albert et al., 2010; Ficetola et al., 2014;
Lyashevska et al., 2016), and creating risk maps where species-specific data are scarce

(Osawa et al., 2016).

Recent extensions of mechanistic, process-based models have incorporated a high
level of complexity (Singer et al., 2016; Synes et al., 2016), reflecting a change in mind-set
from the previously favoured simpler models (Evans et al., 2014). These mechanistic models
aim for a realistic depiction of individual choices and interactions (Singer et al., 2016). More
complex mechanistic models allow researchers to further explore virtual ecology questions
using realistic simulations of animal behaviour, so as to investigate the interacting effects of
animal behaviour and study methodology in greater detail. Hence, they have the potential to

offer new and exciting insights into study design.

Numerous studies have investigated the effects of time between fixes and
measurement error on the accuracy of telemetry data (Di Orio et al., 2003; Frair et al., 2004;
D’Eon et al., 2005; Jerde and Visscher, 2005). However, none have attempted to provide a
standard methodology for correcting estimates of metrics calculated from telemetry data. By
using a mechanistic model with a known value for ‘step length’, we can identify percentage
errors for fix intervals using different movement types in order to quantify the accuracy of the
correction methodology. Given that the level of tortuosity in the movement path may affect
the relationship between fix interval and the accuracy of metrics (Mills et al., 2006), we can
additionally investigate how movement style affects accuracy. Models of different patterns
tend to include only two varieties of movement style: short, torturous steps or long, straight
steps (e.g. Beyer et al., 2013). True movement patterns, however, will have more complexity,
with various levels of directional persistence (preference to move in the same direction as the
previous step) and fine-scale habitat selection, such as avoidance or attraction to trails and

rivers. Models that assume movement models based on ideal gas movement or Monte Carlo
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random walks (Rowcliffe et al., 2008; Howe et al., 2017; Nakashima et al., 2018) fail to
account for fine-scale habitat selection. They may thus be less suited to organisms that
inhabit dense forest and move principally along trails. To our knowledge, no studies have
employed simulation models that are able to incorporate fine-scale habitat selection in
analyses of telemetry data.

Our aim is to use an agent-based model (ABM) to develop a method for correcting
estimates of movement metrics derived from telemetry data. The method defines the
relationship between fix interval and estimates for six different movement types using
nonlinear regression. In order to achieve this, we modified a spatially-explicit ABM of jaguar
movements through Cockscomb Basin Wildlife Sanctuary in Belize, so as to simulate six
movement types: a random walk, a least-cost walk using fine-scale features to calculate cost,
and four models that used a least-cost walk with varying levels of directional persistence. We
based the model on the ABM presented in Watkins et al. (2015), which includes interactions
between agents and their environment. We constructed the model on similar mechanistic
principles of pheromone-based movement to those described in Watkins et al. (2015),
however restructured the model to accommodate responses to fine-scale terrain, and gender-
specific responses to both pheromone and terrain. The fine-scale terrain features simulated in
the model included trails and river systems, representing features that are known to affect the
movement of large felids (Harmsen et al., 2009). Our model did not incorporate birth and
death dynamics as the simulated period was short, hence we assumed that birth and death
dynamics would have little effect on the outcome of the model. We ran in-silico telemetry
studies with fix intervals ranging from 2 hours to 48 hours and from these studies we derived
step length and MCP for multiple sampling regimes. We selected MCP as opposed to kernel
in order to avoid potential bias from choice of the smoothing parameter / in kernel
calculation (Calenge, 2015). We applied nonlinear regression in order to characterise the

relationship between fix interval and accuracy of these metrics for the six movement types.

3.2 Methods
3.2.1 The model

Chapter 2 details the study site, study species and algorithm for the model (Parts 2.2.1, 2.2.2
and 2.2.4, respectively). We handled data and statistical analysis using a combination of

Python and R. The simulation model in this study ran on a grid of cells, each representing
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240 x 240 m. We used this coarser resolution due to the time taken to run the model for a
large set of movement patterns. Moreover, a finer resolution was not required to answer the
study question for this particular chapter. For each set of parameter values, the model ran for
17,520 time steps, simulating 2 years at 1 simulated hour per time step. Table 1 provides a list
of parameters for the movement model using a least-cost path algorithm to select movement
paths. All other movements include either wholly random movement, or a combination of

directional persistence and least-cost path to define movement rules.

Table 1. Input parameters for the ABM using least-cost path choice-based movement algorithm.

Parameter Abbreviation Value

(a) Pheromone-related, determining interactions amongst individuals

Population size Po 50
Pheromone placed by agent each Ph 77.00
turn
Pheromone decay rate PhD 0.92
Cost of females to males CFM -39.00
Cost of males to females CMF -1.00

(b) Parameters determining interactions with the abiotic environment

Male distance to water multiplier MDW -0.18
Female distance to water multiplier FDW -0.06
Male distance to trail multiplier MDT 0.39
Female distance to trail multiplier FDT 0.05
Male trail square cost MTr -6.00

Female trail square cost FTr 14.00

Male slope multiplier MS 2.51

Female slope multiplier FS 3.00

Male altitude multiplier MA 0.47

Female altitude multiplier FA 0.48
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3.2.2 Raw data format

The model stored data in one text file, representing a virtual telemetry study. It wrote to this
file at the end of each time step. The model wrote each agent’s location and attributes to the
telemetry file. The telemetry file also included information on the time step and replicate

number.

3.2.3 Data analysis

We ran the simulation model 72 times for each of the six movement types using a
combination of the Iridis supercomputer at the University of Southampton, 1 desktop
computer and 1 laptop. One replicate of the simulation model took approximately 4 hours to

run.

We calculated step length and MCP within the simulation model for each run using
custom-built Python files for a fix interval of 1 hour, which represented our control
(henceforth ‘actual’) value for each run, and for a test fix interval, which was between 2 and
48 hours. We scaled all step lengths down to a step length for 1 hour and found the difference
between calculated values and control values for each run. We used the difference in metrics

to calculate percentage errors at different fix intervals.

For all values, we tested three possible regression models for the relationship between
error in metric between simulation runs and fix interval used for the simulation. We tested
regression models by fitting parameters using the nonlinear least squares (n/s) function in the
R library stats. We then calculated the correlation between predicted y values from the
regression model and actual y values from the difference between the simulation model at
different fix intervals, which provided a rough estimate of goodness of fit. We used the
correlation (cor) function in the R library stats to calculate the correlation. Although the
correlation between the list of predicted y values and the list of actual y values is not a perfect
measure of goodness of fit, it allowed comparison between the different nonlinear regression
models in absence of the usual goodness-of-fit measures associated with linear regression
models (for example, R?). The dependent variable was defined as the difference between the

estimated metrics, and the independent variable was defined as the fix-interval length. Once
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we had selected the equation that best characterised the relationship between fix interval and
difference in metric for both step length and MCP, we used the n/sList package in the R
library n/me (Pinheiro et al., 2017) to calculate the different parameter values for the equation

corresponding to the regression model.

After defining the relationship between estimate and fix interval, we calculated a
corrected estimate for the metrics by substituting x = 0 into the equation for the nonlinear
regression. We repeated nonlinear regression for each movement type and calculated

movement-specific corrected estimates.

3.3 Results
3.3.1 Step length

As the length of fix intervals increased, the difference between the estimated and actual step
length increased (Table 2). Estimated step length decreased sharply at shorter fix intervals
and then appeared to level out at longer fix intervals. A 2-hour fix interval had estimates for
step length that were approximately 75% the size of the actual step length. Fix intervals of 10
hours and 30 hours resulted in estimates for step length that were respectively ~35% and 20%

the size of the actual step length.
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Table 2. Estimated values with percentage errors for different fix intervals. Actual value for step
length is 240 m.

Fix Estimated Percentage error Difference between
interval step length (%) actual and estimated
(hrs) (m) step length (m)

2 178 25.8 62

4 128 46.7 112

6 105 56.2 135

8 91 62.1 149
10 81 66.3 159
12 75 68.8 165
14 69 71.3 171
16 65 72.9 175
18 61 74.6 179
20 58 75.8 182
22 55 771 185
24 53 77.9 187
26 50 79.2 190
28 49 79.6 191
30 47 80.4 193

The regression model that best characterised the relationship between the estimated step
length and fix interval had a goodness of fit of 0.891 (Table 3). We can estimate a corrected
step length by inserting x = 0 into the equation, which represents a minimum fix interval. The
resulting estimate for step length is 205 m. This estimate has a percentage error of 14.5%,
which nearly halves the percentage error at a fix interval of 2 hours. Thus, we achieve close
to double the accuracy of estimation by employing a combination of subsampling and non-

linear regression.
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Table 3. Models for the relationship between time-lag and estimated step-length with best-fit

parameters and goodness of fit for the model.

Model Best-fit parameter values Goodness of fit
_ a
Y—(b+x) a=1640,b=8 0.891
_ a
y= b + x2) a=55100, b = 442 0.799
y=allx+b a=-115,b =274 0.862

Upon visual inspection of the data, it appears that the relationship between fix interval
and the error in step length depends on movement type (Figure 1). The lines are in the
roughly the same sequence as the proportion of directional persistence in the simulation
model, whereby simulations incorporating random movement and 20% directional
persistence reach a higher asymptote than simulations incorporating lower levels of
directional persistence. It may therefore be possible to improve the fit of the regression model

(Table 3) by tailoring parameter values to the movement type.
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Figure 1. The relationship between time-lag and error (in metres) in step length for six movement
algorithms. ‘DP’ stands for directional persistence. The error represents the difference between

the actual step length and the estimated step length.

We calculated movement-specific values for a and b (Table 4). As directional
persistence increased, the values of both a and b increased. The parameter a shifts the graph
to the right, indicating that for simulations incorporating higher levels of directional
persistence differences in estimated step length began to occur at longer fix intervals than
when simulations incorporated low levels of directional persistence. Where fix interval was
short, the low probability of tortuous movement in simulations with high directional
persistence increased the accuracy of estimates for step length. The parameter b determines
the steepness of the curve. The best-fit regression models of fix interval and estimated step
length for simulations incorporating high levels of directional persistence therefore had

steeper inclines than those incorporating lower levels of directional persistence.
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Accounting for movement type increased the accuracy of estimate for most movement
types. The exceptions to this were the least-cost walk algorithm, which had a similar
corrected estimate, and the random movement algorithm, for which the corrected estimate
was far lower. The maximum error from movement-specific regression models was 21%,
which represents 80% of the error in estimated step length using 2-hour fix intervals. The

minimum error was 11%, less than half the error of estimates using 2-hour fix intervals.
g

Table 4. Best-fit parameter values for different movement algorithms for a model representing the

relationship between time-lag and estimated step length. ‘DP’ stands for directional persistence.

Movement Best-fit Best-fit value Goodness Corrected  Percentage
type value fora for b of fit estimate (m) error (%)
Least-cost walk 1099 54 0.97 204 15
Random walk + 0.98 213 11
20% DP 1322 6.2
Random walk + 0.98 211 12
40% DP 1623 7.7
Random walk + 0.99 211 12
60% DP 2092 9.9
Random walk + 0.98 210 13
80% DP 2946 14.0
Random walk 1001 5.3 0.98 189 21

3.3.2 Minimum convex polygon (MCP)

As the length of fix intervals increased, the difference between the actual and estimated MCP
increased (Table 5). As with step length, estimated MCP decreased sharply at shorter fix
intervals and then appeared to level out at longer fix intervals. A 2-hour fix interval had
estimates for MCP that were approximately 50% of actual MCP. Fix intervals of 12 hours
and 30 hours resulted in estimates for MCP that were respectively ~10% and 6% the size of

the actual step length.
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Table 5. Estimated values with percentage errors for different fix intervals. Arithmetic mean for
the actual value for MCP is 254 +/- 4.2 km?.

Fix Estimated Percentage error Difference between
interval MCP (km?) (%) actual and estimated
(hrs) MCP (km?)

2 131 48.4 123

4 69 72.8 185

6 48 81.1 206

8 38 85.0 216
10 31 87.8 223
12 27 89.4 227
14 25 90.2 229
16 23 90.9 231
18 21 91.7 233
20 20 921 234
22 18 92.9 236
24 17 93.3 237
26 17 93.3 237
28 16 93.7 238
30 15 941 239

The regression model that best characterised the relationship between fix interval and
the difference between actual and estimated MCP had a goodness of fit of 0.767 (Table 6).
The models for MCP generally had lower goodness of fit than models for step length,
indicating a more complex relationship for the time-lag bias of MCP. We can estimate a
corrected MCP by inserting x = 0 into the equation. The resulting estimate for MCP is 370
km?®. This estimate has a percentage error of 46%, which is similar to the percentage error at a
fix interval of 2 hours. Hence, we were unable to correct our estimate using subsampling and

nonlinear regression.
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Table 6. Models for the relationship between time-lag and estimated MCP, with best-fit

parameters and goodness of fit for the model.

Model Best-fit parameter values Goodness of fit
_ a
Y—(b+x) a=370,b=1 0.767
y=a.ln(x)+ b a=-28,b=110 0.688
_ a
y= b + x2) a=4294, b = 33 0.744

The inclusion of directional persistence in the simulations again appears to affect the
relationship between fix interval and error in MCP, however the patterns are less clear than
those for step length (Figure 2). Simulations employing a random movement algorithm or
low levels of directional persistence are higher on the graph, indicating higher levels of error,
than simulations employing high levels of directional persistence. The simulation utilising a
least-cost choice algorithm has a different curve to the others, increasing rapidly at the start

and reaching an asymptote at short fix intervals.
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Figure 2. The relationship between time-lag and error (in metres) in MCP for six movement
algorithms. ‘DP’ stands for directional persistence. The error represents the difference between

the actual step length and the estimated step length.

We calculated movement-specific values for @ and b (Table 7). There is no obvious
pattern in values for a and b as directional persistence increases. Moreover, the corrected
results are more mixed than those for step length. Overall, tailoring the results to movement
type increased the accuracy of corrected estimates. Corrections for simulations that
incorporated low levels of directional persistence decreased percentage error from estimates
taken at 2-hour fix intervals by 80-90%. However, corrections for simulations that
incorporated 60% directional persistence had a greater error than estimates taken at a 2-hour

fix interval. There may be an equation that better explains the interaction between fix interval
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and MCP estimate for simulations employing 60% directional persistence. Fitting a more
appropriate equation may go some way to solving the discrepancy between the results for

these particular simulations and the other simulations.

Table 7. Best-fit parameter values for different movement algorithms for a model representing the

relationship between time-lag and estimated MCP. ‘DP’ stands for directional persistence.

Movement Best-fit Best-fit value Goodness Corrected  Percentage
type value for a for b of fit estimate (m) error (%)
Least-cost walk 357 1.1 0.82 324 28
Random walk + 0.77 272 7
20% DP 381 1.4
Random walk + 0.84 243 4
40% DP 364 1.5
Random walk + 0.82 402 58
60% DP 382 0.95
Random walk + 0.82 199 22
80% DP 478 2.4
Random walk 284 1.0 0.84 284 12

3.4 Discussion

In this study, we employed an agent-based model to investigate how fix interval increases the
error between estimated and actual values for metrics derived from telemetry data. Agent-
based models provide users with an in-silico environment where they can set known values
for metrics of interest to allow their comparison with estimated values. We corrected
estimates for two metrics by subsampling the data and defining an equation that best
described the relationship between fix interval and estimate. By characterising the
relationship, we can utilise percentage errors at certain fix intervals to identify a fix interval
suitable for future studies, with a given threshold of acceptable error. The next stage in this
process is to evaluate whether empirical studies can repeat this methodology for real

ecosystems, and therefore whether the combination of subsampling and non-linear regression
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should become a standard method for correcting calculations from telemetry data. It is
important that researchers account for bias in their calculation of home range and step length
estimates so that models and strategies that include estimates for these metrics are as accurate
and reliable as possible.

The final methodology, which we present to other authors for standard use in
telemetry studies, is described below. To follow the method, researchers require data on the
locations of a particular individual, and temporal metadata for the data points. Obtaining
meaningful results from the method requires sampled fix intervals to be shorter than the fix

interval at which the graph reaches its asymptote.

1. Subsample data to represent a range of fix intervals;
2. Calculate movement metrics at different fix intervals;
3. Use regression, non-linear or otherwise, to define the relationship between fix

interval and the estimate for a metric;
4. Find a corrected estimate by inserting x = 0 into the equation.

We demonstrated how correcting the step length metric greatly reduced its error. The
results for the MCP metric were more mixed, however accounting for the specific movement
algorithm used greatly increased the accuracy of corrected estimates.

We showed that fix interval caused errors in step length up to 80% of actual values.
Our findings agree with the findings of Mills et al. (2006) that long fix intervals result in
underestimation of movement distance when individuals move in tortuous paths. The trend in
increasing error with step length echoed that of Mills et al. (2006), who noted sharp increase
in error of step length at initial fix interval increases followed by an asymptote. The authors
referred to this as ‘logistic decay’ in the value of their metric. Logistic decay may arise due to
the natural limit on amount of error. As the error can never be greater than the actual step
length, the relationship between error and fix interval must therefore be asymptotic,
characterised by a steep slope that becomes gradually less extreme.

Researchers may parameterise movement models with estimates for step length
(Beyer et al., 2013). Applications for movement models include investigation of habitat
selection (Turchin, 1998; Johnson et al., 2002; Morales and Ellner, 2002; Forester et al.,
2007) and foraging behaviour (Weimerskirch et al., 2002). Findings from these models may
then contribute to strategies for conservation management. If potential error of estimates is as

much as 85% bias in step length, stakeholders utilising these models may develop

88



Chapter 3. Correcting telemetry metrics

inappropriate or insufficient plans for conservation action. Given the various uses of step
length, and the potential consequences of using incorrect data where models inform
conservation actions, it is imperative that researchers understand and highlight potential
caveats in their calculations.

Error in estimates for MCP also increased as fix interval increased, however the
pattern was more difficult to characterise than that for step length. This led to greater
difficulty when applying correction factors for the MCP. There may have been an equation or
pattern that was more appropriate for characterising the relationship between error in MCP
and fix interval, which would have resulted in more appropriate correction factors.
Furthermore, different movement models may have required wholly different equations. This
would also have improved the accuracy of correction factors for particular movement models.
The general pattern of increase in error with fix interval agrees with the pattern found by
Kolodzinski et al. (2010), and by Mills et al. (2006), of significant biases from low-intensity
sampling of location data. Home range calculations allow stakeholders to understand how
animals select and utilise habitat, and thus may contribute to design of reserves and areas of
conservation (Jenks et al., 2015). Here we selected MCP due to its practicality for a large
sample size of replicates, however kernel analyses represent an alternate method for home
range calculation (Girard et al., 2002; Mills et al., 2006). Although low-intensity sampling
does affect estimates of home range from kernel analyses, the estimates are less sensitive to
sampling rate than estimates of MCP (Boulanger and White, 1990; Kenward, 2001; Mills et
al., 2006). We therefore recommend using kernel analyses rather than MCP to estimate home
range, especially where the interval between fixes is large.

Our studies are consistent with the findings of previous authors (Mills et al., 2006.
Kolodzinski et al., 2010) that fix interval affects the accuracy of metrics derived from
location data. Our study expanded their findings by identifying a method for correcting
metric estimation. We agree with their recommendations that the shortest fix interval possible
should be chosen when conducting telemetry studies, especially where researchers suspect
tortuous movement patterns indicative of foraging behaviour. However, there is a trade-off
between length of fix interval and length of study, as sampling at short intervals reduces the
lifetime of batteries in transmitters (Mills et al., 2006). Furthermore, even when intervals are
set at relatively short periods of time, sampled fix intervals may be substantially longer. Fix
intervals in conventional telemetry depend on weather conditions, accessibility of study sites
and availability of personnel (Girard et al., 2002). GPS technology has increased both

precision and accuracy of fixes, however the success of fixes still depends on terrain and
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cover (Frair et al., 2004). This may further bias results by disproportionately affecting fixes in
areas of heavy canopy. It is in these scenarios that authors may use subsampling and non-
linear regression to correct estimates.

One limitation of our study was that it didn’t capture the trade-off between fix interval
and study length. In this study, an increase in fix interval resulted in an increase in error of
MCP estimation. However, an increase in fix interval would result in longer lengths of study,
which was not incorporated in this chapter as the simulation runs were limited to a constant
length of time. A greater study length would allow greater coverage of the study area, despite
the increased fix intervals. Hence, this may remove the error associated with increased fix
interval. Furthermore, a longer study length would better account for seasonal changes and
annual changes. Therefore, an increase in fix interval may actually result in a more accurate
calculation of MCP by enabling longer study periods. Nevertheless, shorter study lengths
with shorter fix intervals may capture ‘brief but long-distance forays’ (Frair et al., 2010). The
prioritisation of study length over fix interval, or vice versa, is linked to how authors define a
home range in time and space: whether they discount short forays as outliers and whether
they time-bound home ranges that may move from one season to the next. We recommend
that authors consider the trade-off and its implications in detail before deciding on the
methodology for their study.

Understanding the nature and underlying mechanisms of animal movement enables
researchers to predict responses to anthropogenic change, identify metapopulation dynamics,
and investigate the transmission of disease through a population (Bradshaw et al., 2007). It
remains a key area of research in ecology (Beyer et al., 2013; DeMars et al., 2013). Many
species of conservation concern are elusive and span large areas. Telemetry represents one of
the most commonly utilised methods for sampling animal locations, providing large datasets
that one can exploit to determine behaviour and parameterise predictive models (Jenks et al.,
2015). Despite the biases we present here, telemetry will continue to augment knowledge and
understanding of wildlife (Harbicht et al., 2017). By demonstrating how fix interval may
increase the error associated with metrics derived from movement data, we hope to highlight
caveats, provide a method to correct for error, and to corroborate the warnings of previous
authors that fix intervals should be kept as short as possible in order to prevent large
inaccuracies and bias.

We can use virtual ecology as a tool to help us understand the effectiveness of
empirical methodologies (Zurell et al., 2010). Using mechanistic models in virtual ecology

studies, we can highlight biases and caution against certain interpretations that researchers
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may draw from current methods. The limitations of virtual ecology depend on the model we
select for a virtual ecology study. It is important that we capture the behaviour required to
evaluate the methodology under study. Agent-based models are mechanistic rules-based
models that allow behaviour patterns to emerge from the bottom upwards, making them well-
suited to virtual ecology studies. Methods that do not work well in the model will likely not
work in reality (Zurell et al., 2010). Thus, we caution against telemetry studies that trade
shorter fixed intervals for a longer study duration, especially where these telemetry studies

will inform conservation management or parameterise movement models.
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Abstract

Apex predators play a vital role in ecosystem maintenance and function, yet they have
suffered disproportionately from human-induced rapid environment change (HIREC). Recent
advances in computing have facilitated the creation of complex, mechanistic models that
simulate movement, and can help predict animal behaviour in response to HIREC. We
develop a mechanistic model of predator movement within a wildlife corridor to investigate
the responses of agents, representing jaguars, to three anthropogenic effects: deforestation,
wildmeat hunting, and persecution in response to livestock depredation. Probability of a
depredation event, and resultant persecution, was a key factor in both the number of agent
deaths and number of agents traversing the corridor. The estimated depredation probability
rose almost eight-fold when depredation and deforestation had interacting effects. However,
the interaction effect was less pronounced when forest thinning caused the deforestation as
opposed to land conversion. The relationship between the simulated anthropogenic stressors
and the number of agents crossing the corridor area was less obvious than the relationship
between anthropogenic stressors and agent deaths. The best-fit model for number of agents
crossing the corridor included both deforestation and probability of depredation. Neither the
best-fit model for number of agent deaths nor the best-fit model for number of agents
crossing the corridor included the probability of a wildmeat hunting event occurring. The
number of agents crossing the corridor area depended on the number of agent deaths,
indicating the emergence of an ecological sink within the model. The model has
demonstrated the utility of complex, mechanistic models in conservation and has highlighted

areas for future research.

Key words: agent-based model; bushmeat, human-wildlife conflict; landscape configuration
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4.1 Introduction

Apex predators are important for ecosystem regulation and maintenance (Kelly, 2003;
Watkins et al., 2015). However, human-induced rapid environmental change (HIREC) has
led to a global decrease in range for the majority of large carnivores (Parmesan, 2006; Sih,
2013; Wolf and Ripple, 2017). Land-use change and human encroachment place humans and
wildlife in close proximity, resulting in conflict as they compete for food and space (Urquiza-
Haas et al., 2009). Advances in computing have allowed the development of complex
mechanistic models that simulate animal behaviour, and attempts to predict how wild
populations respond to HIREC (Singer et al., 2016; Synes et al., 2016). Here, we use a
mechanistic model to investigate the dependencies of agents representing solitary carnivores
on three interacting anthropogenic factors: deforestation, wildmeat hunting by humans, and
livestock depredation that results in persecution by farmers.

Anthropogenic land-use change is one of the principal drivers of biodiversity loss
(Sala et al., 2000). Humans have converted 40 - 50% of the global ice-free land surface into
agricultural or urban terrain (Chapin et al., 2000). Activities associated with agriculture may
be responsible for 70% of projected biodiversity loss in terrestrial taxa (Secretariat of the
Convention on Biological Diversity, 2014). Land-use change is associated with massive
deforestation. Anthropogenic land-use change or natural causes destroyed around 130,000
km? of forest between the years 2000 and 2010, with South America and Africa suffering the
largest net loss of forest habitat (Secretariat of the Convention on Biological Diversity, 2010).
Deforestation disproportionately impacts large-bodied predators as they require large home
ranges (Urquiza-Haas et al., 2009). For example, de la Torre et al. (2017) suggested that
female jaguars require patches of at least 180 km” of primary forest to meet their space
requirements. Although some predators are able to inhabit unprotected areas (Boron et al.,
2016), contact with agricultural regions increases the risk of livestock depredation and

persecution as pests.

Unsustainable hunting of wildmeat significantly threatens many wild mammal
species, including large predator species that hunters do not target (Ripple et al., 2016).
Hunting has been responsible for the extinction of 12 species of vertebrate in Vietnam over
the past five decades (Bennet and Rao, 2002). Most target species are large, K-selected
mammals, whose low reproductive rates cause them to be more susceptible to hunting than
smaller r-selected species (Mangel et al., 1996; Peres and Palacios, 2007). Hunting interacts

with deforestation and fragmentation to further impact large-bodied animals, as larger species
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are often the first targets for wildmeat hunters (MacDonald et al., 2011; Ripple et al., 2014;
Ripple et al., 2015). Population declines in large mammals can also impact on species at other
trophic levels through trophic cascades, thereby disrupting entire communities (Peres, 2000;
Osuri et al., 2016; Peres et al., 2016). Wildmeat hunting may result in competition between
humans and large carnivores for food. In Belize, for example, 7% of protein-containing meals
include meat from one of six wild species (Foster et al., 2016). These species are the nine-
banded armadillo, paca, collared peccary, white-lipped peccary, red brocket deer and white-
tailed deer: species that make up large proportions of jaguar and puma diets in Belize (Foster
et al., 2016). Thus, humans in Belize put themselves in competition with large felids, with

implications for predator abundance.

Livestock frequently appear in large-felid diets across the globe (Ghoddousi et al.,
2016; Babrgir et al., 2017). Livestock losses due to large-felid depredation affect small
economies and livelihoods (Inskip and Zimmermann, 2009). As a result, many stakeholders
view large carnivores as pests (Babrgir et al., 2017), with local farmers potentially opting to
poison or shoot large felids in order to protect their livestock (Treves et al., 2016; Trinkel et
al., 2016). Lethal prevention is the main method of pest control for management of
populations of large carnivores (Treves et al., 2009). For felids, direct persecution may
represent a large proportion of mortalities in some areas. For example, Trinkel et al. (2016)
found that within their study period, human-wildlife conflict caused almost 50% of lion
mortalities on the border of Etosha National Park. Sub-adult males and adult females
represented the majority of persecuted individuals, and this had second-order effects on the
population structure of lion prides (Trinkel et al., 2016). However, non-lethal methods can
present a more effective form of pest control than lethal methods (Treves et al., 2016).
Moreover, wildmeat hunting and deforestation may augment the deleterious effects of direct
persecution where deforestation places wildlife in closer proximity to humans and where
hunting depletes the preferred prey of large predators (Ripple et al., 2014; Khorozyan et al.,
2015; Ghoddousi et al., 2016).

Deforestation, direct persecution and wildmeat hunting have interacting effects. Land-
use change (LUC), the construction of roads, commercialisation of hunting and the
technological advance in hunting weapon technology have all led to the increase in wildmeat
hunting (Peres, 2000; Wilkie et al., 2000; Milner-Gulland and Bennet, 2003; Wolfe et al.,
2005). Inhabiting non-protected areas puts large carnivores into contact with livestock,

increasing the risk of livestock depredation. Moreover, depletion of prey may cause jaguars



Chapter 4. Anthropogenic impacts

to look for other prey sources, such as livestock. Previous studies have used mechanistic
models to investigate the effects of manmade activities on carnivore populations (Kanagaraj
et al., 2013; Watkins et al., 2015), but focus solely on the effect of landscape configuration.
Direct persecution arising from livestock depredation and hunting may interact with
landscape configuration, resulting in unintuitive effects undetectable in models that only
account for deforestation. To implement suitable conservation policy, decision makers
require an understanding of how multiple key threats interact to impact on the behaviour of
large carnivores. Identifying how factors interact will help predict how large carnivores will
respond to future HIREC. Identifying and quantifying interacting effects requires
independently-replicated response measures across balanced combinations of levels often not
available in the field. The difficulty in obtaining these conditions has meant that none have
attempted to quantify the interacting effects of different anthropogenic threats on large felids.
Virtual ecology provides an environment where modellers can explicitly control all variables,
thereby facilitating the quantification of interactions that are otherwise unquantifiable without
considerable bias.

Here, we use a high-resolution agent-based model of fine-scale felid movement
decisions, developed in Ball et al. (Chapter 3), to evaluate the effects of interacting factors on
agent movement across a corridor area in Belize. The model incorporates agent avoidance of
hunted forest, persecution of agents in response to depredation events, and five deforestation
scenarios. The deforestation scenarios represent differences in both forest loss and forest
configuration (Fahrig, 2003). We evaluate interactions between the factors by investigating
all three using one model. To our knowledge, there exists no other mechanistic model that

evaluates the interacting effects of multiple anthropogenic impacts on large-bodied predators.

4.2 Methods
4.2.1 Study site

Belize covers a mainland area of 21,800 km? (Lands and Survey Department, 2015;
United Nations Development Program, 2015). At 61%, it has the highest percentage of forest
cover of any country in mainland Central America (FAO, 2010), with current or candidate
protected areas taking up 43% of its mainland (Foster et al., 2016).

The Central Belize Corridor is a Darwin Initiative project that sought to secure a tract

of land across the centre of Belize for use as a wildlife corridor, preserving a link along the
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Mesoamerican corridor network at this particular latitude (Watkins et al., 2015). Other
objectives included improving the monitoring of the jaguar populations in the area, increasing
awareness and education, and encouraging sustainable harvesting of species. Threats to
jaguars in this area are the central Belize highway, human hunting, fire and land conversion
(Watkins et al., 2015). The result of this initiative has been the establishment of the first
wildlife corridor in Belize, with support and recognition from the Belize government. It
consists of 872 km? of forest, and connects the north and south forest blocks of Belize,
forming part of the Mesoamerican corridor.

The study area consists of the 598 km” area comprising the full extent of the Central
Belize Corridor. The corridor area consists mostly of broadleaf forest with some lowland
savannah and agricultural areas. Although forest cover remains high in Belize, it has become
partitioned into northern and southern blocks that converge to a single connecting strip of
forest just 20 km wide and bisected by the Western Highway, the country’s busiest trunk
road. Without the corridor to protect this narrow strip from encroaching urbanisation and
multinational agricultural ventures, Belize’s southern and northern borders would no longer
be linked by contiguous forest, and the isolated southern forest which currently supports up to
8 jaguars per 100 km? would not sustain viable populations of large cats (Foster et al., 2010).
This would break the integrity of the Mesoamerican Biological Corridor, containing 106
critically endangered species, as no other connection exists between northerly and southerly
forests at this latitude anywhere from the Atlantic to the Pacific.

Figueroa (2013) estimated the Belizean jaguar population at 446 — 754 individuals.
However, the actual number probably lies towards the lower end of this range (Figueroa,
2013), with 276 — 531 of these inhabiting the networks of protected areas, 211 — 462 in the
southern block, and 65 — 69 in the northern block (Figueroa, 2013). Half of all forest in
Belize lies outside protected areas (Figueroa, 2013), and these areas contain the remaining
170 — 223 jaguars (Figueroa, 2013). The population of jaguars in the north-east of the country
is unlikely to be viable in the long-term (Figueroa, 2013). The Western highway separates the
two blocks of protected area networks (Figueroa, 2013). Although some mammals such as
jaguars, pumas and tapirs cross highway barriers, white-lipped peccaries may no longer cross

this road (Figueroa, 2013).
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4.2.2 The base model

Here we use the agent-based model validated in Ball et al. (Chapter 2). Appendix I describes
the model in full, with an Overview, Design Concepts, and Details document (Grimm et al.,
2006). The model ran on a grid of 40 x 40 m squares, covering the entirety of the Central
Belize Corridor. The Central Belize Corridor contains urban areas and bodies of water.
Agents could not enter either of these areas in the model. Table 1 includes a list of parameters
for the model.

The model contained an indefinite number of agents. Despite the reduction in realism
associated with this assumption, the simplification allowed us to focus on the interacting
effects without confounding the findings with complicated birth and death dynamics. The
inclusion of realistic birth and death dynamics could have destabilised the model, and would
have required more computing power to run. As a consequence, the number of deaths and
number of crossings could increase indefinitely to unrealistic values, whereas in reality they
would have reached an asymptote as the population of jaguars fell. We advise that readers

consider this limitation when interpreting the results from the simulation model.
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Table 1. Input parameter values for the ABM.

Parameter Abbreviation Value

(a) Pheromone-related, determining interactions amongst individuals

Population size Po 42
Pheromone placed by agent each Ph 77.00
turn

Pheromone decay rate PhD 0.92
Cost of females to males CFM -39.00
Cost of males to females CMF -1.00

(b) Movement, determining type of algorithm for choosing next cell

Probability of random movement R 0.46
Male probability of directional MDP 0.62
persistence
Female probability of directional FDP 0.16
persistence

(c) Environmental parameters, determining interactions with the abiotic
environment

Male distance to water multiplier MDW -0.18
Female distance to water multiplier FDW -0.06
Male distance to trail multiplier MDT 0.39
Female distance to trail multiplier FDT 0.05
Male trail square cost MTr -6.00
Female trail square cost FTr 14.00
Male slope multiplier MS 2.51
Female slope multiplier FS 3.00
Male altitude multiplier MA 0.47
Female altitude multiplier FA 0.48
Cost of woodland w 1.00
Cost of lowland savannah S 1.00

Cost of agricultural land A 40.00
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4.2.3 Anthropogenic impacts

4.2.3.1 Deforestation

We used the Create Random Raster function in GIS to create 4 deforestation scenarios for the
study site (Figure 1a-d). 2 deforestation scenarios represented conversion of broadleaf forest
to agriculture. For conversion, we removed multiple 1000 x 1000 m blocks of forest,
amounting to a total of 33% (Figures 1a) and 66% (Figures 1c) of broadleaf forest in the
region. The remaining 2 scenarios for each study site modelled forest thinning. We
represented thinning by removing multiple smaller blocks (100 m x 100 m) of forest. The
two thinning scenarios for each study site removed 33% (Figures 1b) and 66% (Figures 1d)

of forest. Deforestation scenarios were static across replicates.
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Figure 1. Deforestation scenarios for the model of the Central Belize Corridor. Colours represent
habitat types, of forest (green), savannah (pink), agriculture (yellow), urban (red), open water
(blue). Scenarios of land conversion in (a) and (¢) and forest thinning in (b) and (d) involve 33%
deforestation ((a) and (b)), or 67% deforestation ((c) and (d)), relative to the control scenario in

(e) with no change from the current distribution of habitat.
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4.2.3.2 Wildmeat hunting

A recent study by Soofi et al. (2018) provided evidence for the theory that wildmeat hunting
in forests may lead to the depredation of livestock by large carnivores. We incorporated this
into the simulation model by creating a sub-model of wildmeat hunting that included a cost
associated with humans. The cost forces jaguar agents into the agriculture areas of the map,
representing depredation of livestock in response to wildmeat hunting in areas of forest. The
human hunting sub-model depended on three parameters: cost of hunting to jaguars,
maximum time of cost effectiveness, and chance of a hunting event. We parameterised cost
of hunting to jaguars to cause jaguars to choose agricultural areas over forested areas when
the forested area was hunted and set the maximum time of cost effectiveness to one modelled
day. Every cell had a human cost and time since hunting attribute. The human cost attribute
was static and equated to the cost to jaguars of humans hunting their prey. The model created
a random number for each forest cell every time step. If that number was less than or equal to
the chance of a hunting event, the function set the time since hunting attribute to 0, with this
time since hunting attribute increasing by an increment of one every time step. For any one
instance, if the time since hunting attribute was above the maximum time of cost
effectiveness, the individual would not include human cost in cost calculation. Otherwise, if
the time since hunting was lower than the maximum time of cost effectiveness, the individual

would use this cost in neighbouring cell cost calculations.

Table 2. Input parameter values for the wildmeat hunting sub-model.

Parameter Abbreviation Value
Human cost H 50.00
Time since hunting TSH 24.00

4.2.3.3 Persecution by farmers

The persecution sub-model ran on three parameters: the probability of the jaguars killing
livestock, the probability of a jaguar dying on an agriculture cell, and the maximum time after
an agriculture cell losing livestock that jaguars would die on agricultural cells. We ran

sensitivity analysis on the probability of death and the maximum time of persecution
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following a depredation event to assess how these parameters affected the dependent

variables.

4.2.4 Statistical analysis

We ran the full model for 1000 runs, consisting of 200 runs for each depredation scenario.
We identified sets of parameter values for each run using Latin Hypercube Sampling
(Carnell, 2018). Each simulation ran for 219,000 time steps, representing 5 years. We
initialised the model with 6 individuals. We calculated number of individuals using figures

from Figueroa (2013).

For each replicate, we calculated the number of agent deaths, and the number of
agents leaving the corridor by a cell on the opposite side to that which they entered. The latter
parameter represented an agent crossing the corridor area. When an agent died or left the
corridor, another agent appeared at the edge of the model to replace the agent that had left the

model.

We ran general linear models using a Poisson error to investigate whether agent deaths
and number of individuals crossing the corridor depended on deforestation scenario, chance
of a hunting event, and the probability of jaguars killing livestock. A lower probability of
depredation event corresponded to farmers taking further measures to protect livestock. The
dependent variables were counts: number of agent deaths and number of agents crossing the
corridor area. The independent variables were deforestation scenario, probability of a human
hunting event, and probability of a depredation event. We examined residual plots visually to
test the assumptions of the general linear models. We employed the Akaike’s information
criterion (AIC) value of the statistical model to determine which statistical model best fit the

data.

We ran sensitivity analyses on any parameters that we had not validated in previous
studies (see Chapter 3) and could not determine from known empirical studies. The two
parameters that met this criterion were the probability of death and the persecution period
following a depredation event. We conducted sensitivity analyses so that we could quantify

the potential bias of the selected parameter values.
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4.3 Results

4.3.1 Anthropogenic effects on number of jaguar deaths

For the response of number of deaths, the best-fit regression model included deforestation
scenario and probability of a depredation event (Table 3; Figure 2). The AIC for the best-fit
regression model was 12466 (AAIC = 0). The model that included the probability of hunting
to the model as an additive effect had a AAIC of 1. The model that included both probability
of hunting and the interaction between probability of hunting and the other effects had a
AAIC of 16. This indicated that including probability of hunting had no beneficial effect on
the fit of the model. An additive regression model including deforestation scenario and
probability of depredation, but no interaction, had the second lowest AIC for models that did
not include the probability of hunting (AAIC = 535).

The result was 5 possible regression lines (Figure 2), one for each deforestation
scenario. The generalised equation for the regression lines is given below in Equation 1. Y
represents the number of deaths, « is the intercept where probability of depredation is equal
to 0. The value of a is dependent on the deforestation scenario used. For example, if it is the
control deforestation scenario then the value would be 11, or 47 (11 + 36) for deforestation
scenario A. X is the probability of depredation. £ is the slope associated with a particular
deforestation scenario (see Table 3), be that deforestation scenarios A-D or the control

scenario.

Y=a+ pX
(1)

Coefficient estimates for the slope of the regression line were relatively high (Table
3), however this was due to the independent variable for depredation ranging from 0 to 1.
Therefore, an increase by 1 unit on the x-axis represented an extreme scenario, thus
explaining the high estimates for slope. Standard errors associated with the coefficient
estimates were generally high compared to the coefficient estimates for the regression slope,
resulting in low F- and high p-values. The majority of statistically significant regression
equations were associated with the probability of a depredation event, whether alone as a

single variable or as part of the interaction with deforestation scenario.
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Table 3. Estimates, F-values and p-values for coefficients from the best-fit regression model for
number of agent deaths. Coefficient estimates represent the intercept of the linear regression line
for the control deforestation scenario, estimate for the increment the number of deaths increases
by for the categorical independent variables (deforestation scenario), and estimate of the slope of
the regression line for the continuous independent variables. As depredation is assigned a value
between 0 and 1, the value at x = 1 would be the highest possible number of deaths. F-values
are calculated using the value of the estimate compared to its standard error (the higher the
standard error in proportion to the estimate, the lower the F-value). p-values are determined from

the F-value and sample size.

Coefficient Estimate F-value p-value
Control intercept 11 +/-17 0.65 0.51
Probability of a depredation 2196 +/- 600 3.66 < 0.001
event (Control deforestation

scenario)

Deforestation scenario A 36 +/- 25 1.46 0.14
Deforestation scenario B 3 +/-25 0.13 0.90
Deforestation scenario C 45 +/- 25 1.82 0.07
Deforestation scenario D 14 +/- 25 0.58 0.56
Interaction: probability of 15862 +/ 848 18.7 < 0.001
depredation and deforestation

scenario A

Interaction: probability of 18 +/- 848 0.02 0.98
depredation and deforestation

scenario B

Interaction: probability of 15916 +/- 848 18.8 < 0.001
depredation and deforestation

scenario C

Interaction: probability of 10509 +/- 848 124 < 0.001
depredation and deforestation

scenario D

Overall, number of jaguar deaths rose with depredation rate but not with the
probability of a hunting event, although the control scenario and deforestation scenario B
(forest thinning) did not suffer as large a death rate as other scenarios. Deforestation

scenarios A and C, which simulated a 33% and a 66% loss, respectively, with forest removed
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in 1000 m x 1000 m segments, had similar rates of increase in number of deaths with
probability of depredation event (Figure 2). Deforestation scenario D, which represented 66%
forest loss by thinning, did not have the same rate of increase as scenarios that modelled
removal of forest for agriculture. Nevertheless, the relationship between probability of
depredation and number of agent deaths was far more pronounced than the same relationship
for deforestation scenario B. For thinning scenarios, there was a 570-fold increase in
coefficients for the interaction of deforestation scenario and probability of depredation
between the scenario with 33% forest loss and the scenario with 66% forest loss. Hence,
although forest loss through thinning appeared to result in a lower number of deaths than
forest removal through agriculture, effect sizes increased more rapidly with amount of forest
loss. It is unclear from just these two thinning scenarios whether a similar increase in effect
size would continue with greater forest loss, however it is interesting to note that forest loss
through removal did not have a similar rate of increase.

Deforestation scenario A simulated deforestation through the removal of large blocks
of forest, whereas deforestation scenario B simulated forest loss through the removal of
smaller blocks of forest. At 33% forest loss, scenarios of forest thinning had a similar number
of agent deaths to the control scenario. However, at 66% the results were similar to scenarios
with larger segments. Deforestation using larger segments resulted in a more heterogeneous
configuration on a landscape scale but a more homogeneous configuration locally. For a
scenario with large segments, once an agent was in an area of agriculture, it is more likely
that they would be stranded in that agricultural area. Agents in an agriculture cell in scenario
B were more likely to be in close proximity to a forest cell, and therefore closer to refuge. As
agents in the model preferentially chose forest cells, agents were hence less likely to spend as
much time in agricultural cells, reducing the overall number of deaths.

Number of agent deaths depended less on the probability of a hunting event than the
probability of a depredation scenario, and it did not appear in the best-fit regression model.
The number of agent deaths did not depend on probability of human hunting event (£ | 999 = -
0.78, p = 0.44). The model design predicated that incidents of human hunting only occurred
in forest cells and increased the cost value of a cell to a level where it became preferable for
agents to move to agricultural cells. By decreasing the amount of forest available to agents,
deforestation scenarios prevented agents from locating forest cells free of human hunting
pressure. Thus, one would expect deforestation to intensify the effect of human hunting on
the number of agent deaths during the course of the model. However, this wasn’t apparent in

the model results. This could be due to the indirect relationship between hunting and deaths —
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agents would have to depredate livestock and then move through agricultural squares for a
short while after the event — or due to the stochastic nature of the movement model. It could
also result from agents moving to neighbouring areas of woodblock rather than agricultural
squares, or from agents quickly locating an area of undisturbed woodblock once on an

agricultural square.
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Figure 2. Number of agent deaths as a function of deforestation scenario and probability of a

depredation event occurring.

We ran sensitivity analyses at an intermediate probability of depredation (0.25) on the
probability of death given a previous depredation event and the period of time for which

farmers persecute agents following a depredation event (Figure 3). The number of jaguar
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deaths during the simulation did not depend on the interaction between the probability of
death and the length of a persecution period following a depredation event (F296 =-0.3, p =
0.74; Figure 3). The number of jaguar deaths during the simulation depended on the
probability of death when stepping on a square where they could be persecuted (£, 97 = 14.9,
p <0.001). The dependency was strong and roughly linear, demonstrating that, despite the
stochasticity and complexity in the model, the probability of death affected the number of
deaths in an expected way. The number of jaguar deaths did not depend on the length of the

persecution period following a depredation event (F 97 = 0.7, p = 0.46).
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Figure 3. Sensitivity analysis: number of agent deaths as a function of probability of death and

persecution period following a depredation event.



Chapter 4. Anthropogenic impacts

4.3.2 Anthropogenic effects on number of corridor crossings
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Figure 4. Number of agent crossings as a function of probability of depredation event occurring

and probability of a human hunting event occurring.

The effect of anthropogenic activities on the number of corridor crossings made by
agents is much less clear than their effect on number of agent deaths (Figure 4). No
systematic pattern appears along either of the gradients. Moreover, there is no systematic
pattern between deforestation scenarios (Table 4). This could perhaps point to other
dependencies, or to the randomness of the movement model.

For the number of agents crossing the corridor, the model with the lowest AIC
included probability of a depredation event, the deforestation scenario, and the interaction
between depredation and deforestation scenario (Table 4). It did not include the probability of

a human hunting event. The AIC for the best-fit regression model was 10579 (AAIC = 0). An
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additive regression model including deforestation scenario and probability of depredation, but
no interaction, had the second lowest AIC (AAIC = 7). All other models had AAIC values
greater than 21. As with the number of deaths (section 5.3.1), including the probability of
hunting in the regression model had no beneficial effect on the fit of the model to the data.
The generalised equation for the regression lines is given below in Equation 2. ¥
represents the number of crossings. « is the intercept. @ depends on the deforestation
scenario. Hence, a is 66 for the control deforestation scenario and 68 for deforestation
scenario B (calculated by adding the coefficient estimate for the deforestation scenarios to the
intercept value for the control scenario). X is the probability of depredation. f is the slope
associated with a particular deforestation scenario (see Table 4), be that deforestation

scenarios A-D or the control scenario.

Y=a+ pX
(2)

Coefficient estimates for the slope of the regression line were generally lower than for
the number of deaths (Table 4). Moreover, the standard errors associated with the coefficient
estimates for the slopes were relatively high, resulting in generally low F-values and high p-
values. The exceptions to this were the interaction between depredation and deforestation
scenario A and the interaction between depredation and deforestation scenario D. Both had
steep gradients, resulting in sharp rise in number of crossings with an increase in depredation

probability given the deforestation scenario.
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Table 4. Estimates, F-values and p-values for coefficients from the best-fit regression model for
number of agent corridor crossings. Coefficient estimates represent the intercept of the linear
regression line for the control deforestation scenario, estimate for the increment the number of
deaths increases by for the categorical independent variables (deforestation scenario), and
estimate of the slope of the regression line for the continuous independent variables. F-values
are calculated using the value of the estimate compared to its standard error (the higher the
standard error in proportion to the estimate, the lower the F-value). p-values are determined from

the F-value and sample size.

Coefficient Estimate F-value p-value
Control intercept 66 +/-7 9.85 < 0.001
Probability of a depredation -86 +/- 233 -0.37 0.71
event (Control deforestation

scenario)

Deforestation scenario A -4 +/- 10 -0.44 0.66
Deforestation scenario B 2 +/-10 0.19 0.85
Deforestation scenario C 6 +/-10 0.68 0.50
Deforestation scenario D -15 +/- 10 -1.56 0.12
Interaction: probability of 969 +/- 330 2.93 0.003
depredation and deforestation

scenario A

Interaction: probability of 75 +/- 331 0.23 0.82
depredation and deforestation

scenario B

Interaction: probability of 370 +/- 330 1.12 0.26
depredation and deforestation

scenario C

Interaction: probability of 871 +/- 330 2.64 0.009
depredation and deforestation

scenario D

Number of agents crossing the corridor depended on the interaction between
deforestation scenario and the probability of a depredation event. The effect was most

pronounced for deforestation scenarios A and D, but was also relatively strong for scenario C
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(Table 4). The interaction between probability of depredation event and deforestation caused
an approximately 15-fold increase in number of corridor crossings for deforestation scenario
A.

The number of corridor crossings depended on the probability of death (£, 97 =-2.5,p
= 0.02; Figure 5) and the persecution period following a depredation event (Fj 97 =-2.0, p =
0.05) as additive effects, with no interaction between them (F2.94 = 1.6, p=0.12)
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Figure 5. Sensitivity analysis: number of agent crossings as a function of probability of death and

the length of a persecution period.

Best-fit models for number of crossings and number of agent deaths included the
same independent variables. Number of crossings was highest when the probability of
depredation was high. It was also highest for scenarios A, C and D, with B being the lowest.
These three factors indicate that there may be a relationship between the number of agent
deaths and the number of agent crossings. Number of crossings depended on number of agent
deaths (F1,999 = 6.8, p <0.001). Number of crossings did not depend on the interaction
between number of agent deaths and deforestation scenario (maximum F 999 = 1.1, p = 0.29).

The relationship between number of deaths and number of crossings was stronger than that
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between the probability of a depredation event and the number of crossings. Thus, home
ranges of other agents limited the number of crossings. As the number of agent deaths
increased, the number of agents that could make their way through the corridor increased.
Nevertheless, the number of agent deaths was far greater than the number of agent crossings.
Hence, although agent deaths increased the mobility of agents throughout the corridor, given
a finite population, the effects of depredation and deforestation would have a more negative

than positive relationship on the agent population.

4.4 Discussion

In this study, we have shown that the number of agent deaths depends on the interacting
effects of depredation and deforestation, with agent deaths responding more strongly to
depredation where deforestation occurred as the removal of large blocks of woodland rather
than as forest thinning (Figure 2). An agent-based model allowed us to model the reaction of
individual agents as emergent behaviour from pre-defined behaviour rules. To extend the
study, we should identify evidence of these patterns in real ecosystems by quantifying the
number of large-felid deaths as a result of lethal control by livestock owners, and comparing
over different configurations of deforestation. Identifying evidence of these patterns would
allow us to validate the findings of the model. However, the challenge for replicating the
findings in empirical studies comes from the inability to find study sites where the number of
confounding variables is minimal. The inherent difficulty in ground-truthing the findings
demonstrates the importance of models in ecology for identifying patterns in scenarios where
confounding variables would bias otherwise results.

We reduced the complexity of the simulation in order to observe the interactions in
absence of other population dynamics, which may have destabilised the model and
overcomplicated the insights drawn from the model. Simplification of population dynamics
means that the reader must not interpret these findings as patterns that would be reflected in
the real world, as population dynamics would interact with anthropogenic effects to produce
potentially converse results. Nevertheless, simplification of births, deaths, immigration and
emigration of individuals prevented uncertainty arising as to whether the number of agents in
the system could be attributed to the interactive effect of anthropogenic factors or to
stochasticity in population dynamics. Our intention, therefore, was not to recreate the

intricacies of reality, but to isolate anthropogenic effects and push them to extreme values in
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order to investigate how they interacted over a range of values, identifying a definite causal
pattern in death rate arising from anthropogenic factors. Despite the simplifying assumptions
made when creating the model, our study indicates that depredation may represent a key
factor in large carnivore conservation, and that removal of large tracts of land may be more
damaging than forest thinning, given the same amount of forest.

The number of corridor crossings depended on the number of agent deaths. This suggests
that the modelled home ranges of other agents limited the mobility of agents. Our findings
therefore support those of Watkins et al. (2015) from a much simpler model of habitat-
dependent population dynamics in the Central Belize Corridor, who found that jaguar
territories could block the passage of other jaguars through a corridor of sufficient width to
contain a territory. Moreover, although connectivity of populations is important for processes
such as gene flow (Coulon et al., 2004) and metapopulation dynamics (Hanksi, 1999),
individuals immigrating into an area with a high probability of death constitutes an ecological
sink (Chen et al., 2008; Heinrichs et al., 2016). Our findings not only support the idea that the
Central Belize Corridor could become an ecological sink (Watkins et al., 2015), they refine
previous conclusions by exploring and quantifying human-agent interactions, thereby
identifying conditions that could enhance the sink effect.

Depredation had the most pronounced influence on the number of agent deaths, with
agent deaths increasing as depredation rate increased. Moreover, the influence of depredation
depended on the rate of deforestation. The effect of depredation on agent deaths is no
surprise, given the direct link in the model between persecution and the probability of an
agent dying. The simplified choice of immigration model allowed us to focus on the
interactive effects of the anthropogenic parameters without including potentially destabilizing
population dynamics. Furthermore, the simplifying assumption of an indefinite population of
agents resulted in a constant increase in number of deaths, whereas in reality the number of
deaths would reach an asymptote given a known population. Nevertheless, links do exist in
the real world between depredation of livestock and the use of retaliatory force by
stakeholders (Babrgir et al., 2017). The interaction between deforestation scenario and the
influence of depredation on agent deaths is more surprising and warrants further study.
Hence, the model indicates the importance of reducing the possibility of depredation and calls
for a comparison of levels of lethal control across different forest configurations.

Our model included an indefinite number of agents in order to reduce the instability
caused by adding birth and death dynamics to an already-complex model, and also to allow

us to focus solely on the interacting effects, pushing the effects to extremes to investigate the
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interactions between the two independent variables. Given a finite population, the number of
crossings would reduce over time with number of agent deaths as fewer animals would be
available to immigrate into the area. In reality, the rate of depredation would decrease due to
a reduction in individuals within an area, leading to a lower number of deaths. Moreover, a
finite population would be unable to continuously fill voids left by dead individuals. Crossing
corridors would thus remain open in some areas of the corridor. The lack of realism
associated with this assumption must be considered when interpreting the results of our study.

The model did not capture precautionary lethal control of populations driven by public
perception and the media (Fernandez-Gil et al., 2016), or situations where stakeholders
persecuted one species or individual for the actions of another (Knowlton et al., 1999). It is
likely that inclusion of non-retaliatory lethal control would reduce the strength of relationship
between depredation and agent deaths. It would also likely cause a sharp increase in agent
deaths and, consequently, in number of agent crossings. Attitudes towards large carnivores
may not be linked to depredation events, but to socio-economic factors (Rust et al., 2016;
Mkonyi et al., 2017). We advise that future models investigate the interacting effects of
public opinion, poverty, level of education, and number of depredation events on the number
of agent deaths in a region.

The model demonstrated that scenarios of forest loss that removed larger segments
suffered a higher number of agent deaths. Our study agrees with accepted knowledge that
habitat loss can reduce species richness and has contributed to the reduction in the number of
large carnivores worldwide (Fahrig, 2003; Urquiza-Haas et al., 2009). However, the effect of
habitat fragmentation on ecosystems is an ongoing area of research (Villard and Metzger,
2014). Results from the model indicated that an environment that is more homogeneous on a
local scale offered no refuge for agents in large expanses of agriculture, resulting in a high
number of deaths. Large carnivores often have high mortality at the edge of reserves and
national parks (Balme et al., 2010), however edges that create a locally heterogeneous
configuration may offer refugia and cover for large carnivores. Regardless, our model
indicates that at higher rates of forest loss, the benefits provided by the locally heterogeneous
configuration disappear. Large mammals usually do not inhabit small fragments (Michalski
and Peres, 2007) and at higher rates of forest loss, locally homogeneous configurations may
prove more beneficial to the population than locally heterogeneous configurations.

Number of agent deaths did not depend on wildmeat hunting in the model. This could be
due to the large effects of both depredation and deforestation distorting the effect of wildmeat

hunting, or to the stochastic nature of the model. The world is suffering a wildmeat crisis
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(Ripple et al., 2016) and this has led to multiple extinctions (Fa et al., 2002; Milner-Gulland
and Bennett, 2003; Darimont et al., 2015) The extinctions in the literature, however, tend to
concentrate on hunted species. Here, we have focused on competition between humans and
large carnivores. We modelled avoidance of hunted areas, which represented both avoidance
of humans in general (Packer et al., 2013) and avoidance of areas with fewer prey. The
knockdown effect of wildmeat hunting of prey species is a complicated process, and likely
could not be captured fully by the model. For instance, the model selected cells at random
when selecting hunted cells. In reality, hunters would cover the entire area rather than one
particular 40 x 40 m square, hence an element of spatial autocorrelation exists that the model
did not include. We suggest that future studies attempt to isolate only wildmeat hunting in
order to accurately evaluate its effect on large carnivores.

Our model has demonstrated the ability of spatially-explicit models to investigate
interactive anthropogenic effects on simulated populations by isolating the effects, thereby
simplifying the interpretation of results and identifying patterns that can directly be attributed
to anthropogenic factors. Nevertheless, limitations of computing power necessitated the
prioritisation of aspects of the system we wished to model, resulting in simplifying
assumptions. The example here is the assumption of an indefinite population of agents.
However, many agree that mechanistic modelling represents the future of ecological
modelling, with the creation of fine-scale movement models that can capture species
dispersal, genetics, demographics and anthropogenic activity to provide predictions on
ecosystem response to HIREC (Sih et al., 2016). As computer speeds and capabilities grow,
mechanistic models will be able to incorporate a greater level of realism. Our model has
drawn attention to future areas of study: the incorporation of socio-economic drivers and
public opinion in models of persecution for depredation; investigation of how the effects of
configuration on large mammals change with overall forest loss; isolation of human hunting
as a single independent variable. We must answer these questions. With computer power ever
increasing, next-generation modelling (Grimm and Berger, 2016) may offer part of the
solution to these questions and an increased understanding of how anthropogenic activities

will continue to impact large carnivores.
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4.5 Appendix I. Overview, Design concepts and Details

Appendix I follows the protocol of Overview, Design concepts and Details suggested by
Grimm et al (2006).

4.5.1 Purpose

The model simulated small-scale movement decisions of jaguars in the Central Belize
Corridor, Belize. Our purpose was to investigate the movements of jaguars in response to

anthropogenic change.

4.5.2 State variables and scales

The model background consisted of 1000 x 900 grid cells. Each grid cell represented an area
comprising 40 x 40 m. This grid includes “Null” cells that lay outside the park. The park
consists of a modelled 598 km*. GIS data (Meerman, 2011) informed data on static aspects of
the cells: habitat type, distance to river, distance to trail, altitude, and slope. The agents
occupied a single cell at a time. The model allocated each individual with a gender,
transient/resident status, identity, location and graphics information. At the beginning of each
timestep, the agent would deposit an amount of “pheromone”. Pheromone represented the
ability of agent to signal to each other. In reality, jaguars communicate using scrape
markings, scent markings and vocal calls. The model stored pheromone levels as a feature of
grid cells. Pheromone levels were gender-specific. Each replicate consisted of 219,000

timesteps that represented 5 years. Each timestep equated to 12 minutes.

4.5.3 Process overview and scheduling

At the beginning of each parameter set run, the model created the background grid and set
static cell attributes: terrain type, distance to river, distance to trail, altitude, slope,

coordinates and graphics information. The model then ran through replicates.

At the beginning of each replicate the model created output files and initialised a population

of agents. The agents had an equal chance of being male and female. All agents created at the
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beginning of the simulation were “resident” agents. After initialisation, the model ran through

a series of timesteps.

The model placed an amount of pheromone at the beginning of each timestep. It then looped
through all individuals. If an individual was in the park area, the individual would undergo
the move function. If an individual was a “resident” and outside the park the, it would
undergo the re-entry function. After movement of “resident” individuals, the model went into
an immigration function, which created new “transient” individuals. At the end of the
timestep, the model would write to output files and decay pheromone levels. The model

continuously updated all information on cell pheromone levels and jaguar locations.

4.5.4 Design concepts

4.5.4.1 Emergence

Individual home ranges emerged from the communication between agents via pheromone

levels. The constant decay and placement of pheromone allowed home ranges to be dynamic.

4.5.4.2 Adaptation

Agents chose the least-cost neighbouring cell based on cell attributes. These attributes were
both dynamic (for example, distance to river) and dynamic (pheromone levels). The
parameter sets each had specific values for how an agent responded to each of the cell

attributes.

4.5.4.3 Fitness

The model did not include mortality or fecundity, however this model represents a base
model for future investigations of how movement decisions affect mortality and dispersal in a

human-influenced environment.

4.5.4.4 Sensing

All agents could access information on neighbouring cell attributes. This information
included environmental attributes (terrain type, distance to river, distance to trail, altitude and

slope) and agent-related attributes (amount of male pheromone, amount of female
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pheromone, jaguar occupancy). The agent did not access camera-related cell data. Each cell
had eight neighbours, representing north, north-east, east, south-east, south, south-west, west,

north-west and north cells.

4.5.4.5 Interaction

Agents interacted using pheromone. Pheromone was gender-specific. Gender-specific
parameters dictated how agents respond to same-gender, opposite-gender and own
pheromone. Agents responded to pheromone levels by having an increased or reduced cost
proportional to the amount of pheromone. Hence, pheromone resulted in avoidance or

attraction to the same- and opposite genders, dependent on the parameter set.

4.5.4.6 Stochasticity

The model included parameters for probability of random movement, and probability of
directional persistence. Hence, an agent could move in a random direction, in the same
direction as previously or in a direction dictated by cost of neighbouring cells. The
probability of these movement types depended on the parameter values and random number

generation. The model allocated gender based on a 50% chance of being male or female.

4.5.4.7 Observation

The model used the Python package Tkinter for graphical representation during testing. The
graphics provided information on environmental attributes and gender-specific pheromone

levels in each cell, and individual movements around the grid.

4.5.5 Initialisation

The model reset all landscape and agent attributes at the beginning of a new parameter set. At
the end of each replicate, the cell pheromone-related attributes reset. The model removed all
individual and created a new population. The number of individuals in the new population
depended on the value of the population parameter. Agents could then establish new home

ranges.
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4.5.6 Submodels

4.5.6.1 Pheromone placement

At the beginning of each timestep, each individual placed an amount of pheromone in its
current cell equal to the pheromone placement parameter value. This allowed agents to

communicate with each other.

4.5.6.2 Move

The function ran through each individual in the population, provided the individual was
within the CBC area. It first created a random number. If this random number was less than
or equal to the probability of random movement, the individual selected a random
neighbouring cell as its next cell. There were eight neighbouring cells for each cell. This cell
may be outside the park. If the individual did not undertake random movement, the model
created another random number. If this random number was less than or equal to the
probability of directional persistence (DP), the individual continued moving in the same
direction it had moved previously. If an individual did not move randomly or in the same
direction as previously, the model calculated the gender-specific cost values of all
neighbouring cells. The individual chose the least cost neighbouring cell. Once the individual
selected a cell, the model removed the individual from the cell occupancy list and changed

the x and y coordinates of the individual. Graphics information also changed.

4.5.6.3 Re-entry

If an individual was a “resident” and outside park boundaries, the model entered a re-entry
function. The program created a random number. If this number was less than or equal to the
chance of re-entry, the model created a selection of cells consisting of the last non-null cell
the individual stepped on and any “border cells” within 250 m of that last cell. The model

selected one of these cells at random and moved the individual to this cell.
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4.5.6.4 Immigration

If a model created a random number less than or equal to the probability of immigration, the
program entered the immigration function. The immigration function created a new
individual of class “transient”. The transient individual had an equal chance of being male or

female. The model chose the initial location at random from all border cells.

4.5.6.5 Pheromone decay

At the end of each timestep, the model decayed pheromone levels in all cells by a multiplier

equal to the pheromone decay parameter.

4.5.6.6 Wildmeat hunting

The human hunting sub-model depended on three parameters: cost of hunting to jaguars,
maximum time of cost effectiveness, and chance of a hunting event. We parameterised cost
of hunting to jaguars to cause jaguars to choose agricultural areas over forested areas when
the forested area was hunted and set the maximum time of cost effectiveness to one modelled
day. Every cell had a human cost and time since hunting attribute. The human cost attribute
was static and equated to the cost of hunting to jaguars. The model created a random number
for each forest cell every timestep. If that number was less than or equal to the chance of a
hunting event, the function set the time since hunting attribute to 0, with this time since
hunting attribute increasing by an increment of one every timestep. For any one instance, if
the time since hunting attribute was above the maximum time of cost effectiveness, the
individual would not include human cost in cost calculation. Otherwise, if the time since
hunting was lower than the maximum time of cost effectiveness, the individual would use

this cost in neighbouring cell cost calculations.

4.5.6.7 Persecution by farmers

The persecution sub-model ran on three parameters: the probability of the jaguars killing
livestock, the probability of a jaguar dying on an agriculture cell, and the maximum time after
an agriculture cell losing livestock that jaguars would die on agricultural cells. We ran

sensitivity analysis on the probability of death and the maximum time of persecution
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following a depredation event to assess how these parameters affected the dependent

variables.
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5.1. Introduction

Grimm and Berger (2016) coined the term ‘next-generation modelling’ to describe the
complex, mechanistic models that they predict will become increasingly important in
ecological research. They cite the three key features of ‘next-generation’ models, as structural
realism, emergence, and predictions. High-powered computers, accompanied with methods
such as cloud and distributed computing, offer the potential to create fine-scale models that
incorporate high levels of complexity. Whether or not we now have enough computing power
to capture the complexity involved in real ecological structures is up for debate. Nevertheless,
it is likely that there will be further development of the kind of complex movement models
seen in Watkins et al. (2015). They simulated large carnivore responses to anthropogenic
effects. The model was spatially explicit, incorporated a least-cost path movement model, and
included population dynamics. Despite its complexity, the model successfully produced
results similar to empirical data, which allowed the authors to predict the consequences of
increased deforestation in a corridor area.

With ever-increasing growth in computing capability, it is likely that the use of
spatially-explicit ABMs will increase, especially those involved in the field of conservation.
HIREC has left populations of carnivores worldwide in a highly degraded state, with
populations dropping as much as 77% (Ripple et al., 2014). Some authors have referred to the
current era as the sixth mass extinction (Monastersky, 2014). Given this gloomy outlook,
researchers in conservation will seek to innovate and experiment with all tools available to
them. Furthermore, ecological modellers may be increasingly aware of the struggles faced by
conservation researchers, and may feel inspired to develop a model that can augment current
research in this field.

It is therefore appropriate to evaluate certain aspects of mechanistic agent-based
models at this point in time. What are the caveats of creating spatially-explicit ABMs? How
does one parameterise an ABM using the metrics available from conservation studies? What
sort of questions in conservation can ABMs be used to answer? This thesis aimed to explore

these three research questions.

5.2 Parameterisation of spatial models
Chapter 2 explored the biases that arose from the parameterisation process of the ABM

presented in this thesis. The movement model required parameterisation with spatial
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statistics, and in doing so, I found that the final values for parameters depended strongly on
the initial choice of resolution.

Next-generation ecological models can incorporate high levels of realism, and may be
able to predict the responses of organisms to environmental stressors (Grimm and Berger,
2016). An ability to predict and model behaviour could prove especially important in studies
of rare, elusive, large-bodied species, especially where it is difficult — if not impossible — to
get a full understanding of their patterns of behaviour by conducting empirical experiments in
the wild (Hillborn and Mangel, 1997; Singer et al., 2016). However, despite the promise of
models for conservation, the same limitations experienced by empirical studies of elusive
species also plague modellers, due to the need for empirical data with which to parameterise
models.

The parameterisation of models against empirical data is important as it increases the
credibility of models, and permits the incorporation of added layers of complexity by
providing a ground-truth in order to validate sub-models. Without the ability to ground-truth
against empirical data, we are left with highly abstracted models, models that incorporate
only what we feel to be intuitive or obvious behaviour. Although abstract models can provide
mechanisms for processes in absence of stochasticity or noise, it is difficult to ascertain quite
how predictive these models will be (Uchmanski and Grimm, 1996; Evans et al., 2013b).
Thus, although abstract models are useful in some scenarios, more complex models are often
better representations of ecological systems (Evans et al., 2013b).

However, we have demonstrated an issue with parameterising complex models of
animal movement and choice. Namely, movement is inherently spatial, hence models that
represent animal movement and habitat choice should be spatially explicit. How then should
a modeller parameterise a movement model? It would be possible to use parameters such as
step length or resource selection functions, which are calculated from spatial data, or to use
the spatial data themselves. The latter includes data from camera-trap and telemetry studies.
Our study showed that attempting to replicate either form of spatial data in the model resulted
in parameterisation being sensitive to the resolution of the model. While it may be possible
to mitigate this resolution issue by using simple descriptive statistics rather than attempting to
quantify exact values (Jakoby et al., 2014), it may be difficult to justify this choice to
members of an academic culture that are accustomed to making decisions based on levels of
significance.

If the choice of parameter values depends on the choice of resolution, one cannot

declare with certainty that a model replicates the behaviour of the organisms it attempts to
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simulate. If models cannot replicate behaviour, then they contradict Grimm and Berger’s
(2016) final feature of next-generation models: prediction. If the parameter values differ to
the extent that mechanisms for movement vary depending on resolution, then which set of
parameter values will truly capture the way organisms respond to environmental change?
Modellers may be tempted to remove complexity by only including parameters that they
know to be true, or for which they have a good idea of starting values for priors (for use in
ABC, as per van der Vaart et al., 2015). Here again, researchers choose to abstract the model
rather than find parameter values that tell them something they did not know beforehand.
Indeed, without long-term data on how species do actually respond to environmental change,
we cannot validate the predictive ability of our model.

The issues and limitations discussed in chapter 2 are important to note from the start.
However, despite these, it may still be possible to develop a model that incorporates enough
complexity to realistically replicate the movement of complex, large-bodied organisms. To
achieve this aim and develop a model with predictive ability, we must overcome a range of
challenges. First, we must continue to develop and improve empirical methodologies for
sampling the spatial patterns in the movement of elusive, large-bodied species. Not only will
this contribute to empirical literature on the species, it will also provide more data for
parameterisation of complex models. Second, we must find a way to quantify the validity of
spatially-explicit models that is not dependent on the resolution of the model. Third, we must
continue to take advantage of modern advancements in computing, distributed computing in

particular, in order to add the level of complexity required to study complex organisms.

5.3 Models for use in virtual ecology

Chapter 3 explored an application of the ABM in a virtual ecology study to evaluate
methodologies frequently used to study rare and elusive species. We introduced a method for
correcting metrics calculated from telemetry data and quantified its effectiveness by using a
simulation model with a known ‘actual’ value for the metrics. Virtual ecology allows
researchers to assess the effectiveness of the empirical methodology and quantify the effect
of potential biases (Zurell et al., 2010). In-silico populations allow modellers to run virtual
experiments with known values for parameters under investigation. ABMs are particularly
useful in virtual ecology, as they simulate populations as a collection of agents that move

according to certain rules and attributes. Hence, one avenue for the utilisation of ABMs in
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conservation is the virtual assessment of the effectiveness of methodologies used in
conservation biology.

The study investigated the effect of fix intervals on the difference between estimated
and actual values for two metrics derived from telemetry data: step length and MCP. The
study showed that, for both metrics, error increased with fix intervals. At low fix intervals,
the error rose steeply, reaching an asymptote at larger fix intervals. The steep increase in
error was more pronounced for models that incorporated a lower rate of directional
persistence, as larger fix intervals were unable to account for short, torturous movements.
Finally, it was possible to correct the results of this model by using the known relationship
between fix interval and error as a correction factor. If this pattern can be replicated in reality,
then researchers could develop a metric for correcting statistics calculated using telemetry
data, given a known fix interval. Moreover, they could sub-sample from their own data to
find a model that explains increase in error with fix interval, and use this model to correct
metrics, where necessary.

Strategies for conservation do not often use step length directly, but step lengths do
often inform models of animal movement, which may then augment knowledge of species
(Boyce et al., 2010; chapter 4). If researchers use metrics at different levels of abstraction,
they must be corrected so that they align to the researcher’s requirements. In contrast with
step length, home range measurements - such as MCP - often directly inform conservation
strategy by determining how much space a population requires, and hence how large reserves
and corridors should be (Otis and White, 1999). Chapter 3 showed that it is possible to
correct step length and MCP for certain movement models.

The ABM presented in chapter 3 was able to replicate findings of potential bias from
previous studies, and extend that knowledge by incorporating varieties of movement patterns
and environmental configurations. Both of these variables would be almost impossible to
replicate in empirical studies. The findings presented in these chapters therefore provide
insight into how sampling systems, movement type, and environmental factors affect
common methodologies used in conservation biology. This chapter thus illustrated one route

to employing ABMs to influence the field of conservation biology.
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5.4 Simulation of responses to HIREC

Chapter 4 explored another use for ABMs in conservation biology. Here, we simulated the
responses of agents to anthropogenic factors by varying the intensity of those factors, before
investigating how the number of agent deaths and number of agent crossings depended on
them. This model extended the work of Watkins et al. (2015) by incorporating multiple types
of human activity in order to examine the potential for interactions between them. The results
from this model demonstrated that depredation is a key predictor of agent death, that
landscape configuration is important for the survival of agents, and that the number of
crossings depended on number of deaths, indicating the replication of an ecological sink
within the model.

This model cannot predict for certain how carnivores will react in the face of HIREC
(Sih et al., 2016). Any model that wishes to predict this would require dynamic values for
avoidance, and movement models that change as individuals learn how to move in a human-
defined landscape. This model was therefore presented in more abstract terms, assessing how
‘agents’ responded to simulated effects. Within this model, it was possible to intensify
anthropogenic factors to extreme values, and determine how each factor individually
contributed to the responses of agents, as well as how they interacted. As the only factors that
changed were the independent variables, it was not necessary to worry about noise or
stochasticity from confounding effects, such as changes in level of poverty, the introduction
of new conservation measures, or the effects of politics, the media and local economics.
Hence, it was possible to create an experiment that isolated the distinct effects of HIREC, and

in doing so, found some conclusions that warrant further study.

5.5 Limitations

The base model that underpinned the three results chapters was limited mostly by the
availability of computing power and empirical data. The dearth of computing power only
permitted parameterisation using a small sample of parameter values (~2000). Latin
Hypercube Sampling mitigated for this constraint by selecting a representative set of
parameter values, but the model was unlikely to converge precisely on its optimum parameter
values. Nevertheless, the parameter values were able to replicate jaguar behaviour with

enough accuracy to apply them to the research questions in the data chapters.
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Despite the large amount of camera-trap data available from CBWS, the data from
telemetry studies only included three individuals, all of which were male. This necessitated
using a conversion factor to calculate the MCP size for female jaguars. The conversion factor
was based on empirical data detailing MCPs of male and female jaguars, hence I have
confidence that the conversion factor represented the ratio between male and female MCPs.

When transferring the model to a different area, a corridor area in this example, values
for parameters that determined movement remained constant. Though we used this model as
an abstract evaluation of anthropogenic factors, values for movement parameters in a corridor
area may differ from those for a reserve. Although the values of movement parameters may
change between areas, the effect on model results was likely to be minimal and the
assumption of similar behaviour based on empirical data was easier than using a model that
we had not validated against empirical data. Differences in behaviour between CBWS and the
corridor area represents a future area of study, as an extension to our current work.

A further limitation was the re-entry function that allowed individuals to remain
outside the study area for a short amount of time before re-entering at a nearby square. This
assumes that all individuals were resident within study areas, rather than dispersing
individuals that passed through. It also assumed that any areas occupied outside the study
area were small compared to the section of the study area occupied by the individuals.
Although this may be true for CBWS, it is likely to be less true for the corridor area. Despite
these inaccuracies, incorporating a more complex model of re-entry and movement outside
the study area would have taken up valuable computational resources and over-complicated
an already complex model, for possibly very little benefit. Future extensions could consider
the effect of both the re-entry function and areas outside the study area.

Finally, the model incorporated fine-scale habitat choice and interactions between
individuals in detail, but did not include population dynamics, such as birth and mating, or
attributes related to social dynamics, such as hierarchy and territoriality. The simulated period
was short enough that it was reasonable to consider the simulation as a snapshot of a
population of predators. Although the model incorporated males and females as separate
entities, all males and females had equal status within the model, and similar levels of
territoriality with members of the same gender. In reality, males may exhibit greater levels of
territoriality than females, and social hierarchies may be important for utilisation of space
within a given area. The addition of complex population dynamics and hierarchy would have

necessitated more computing power. I elected to run more replicates at a finer resolution,
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rather than incorporating additional processes that could have destabilised the model and

confounded the effects I wished to investigate.

5.6 Future work

Future work in the modelling domain will seek to innovate methods for quantifying the
validity of spatially-explicit movement models without depending on the resolution of that
model. In the meantime, researchers should aim to parameterise spatially-explicit movement
models using only descriptive patterns (Jakoby et al., 2014). This is a large problem, and
perhaps requires the use of a correction factor, similar to the one presented in chapter 3, in
order to identify truer values for simulated spatial statistics.

A second challenge raised by chapter 2 is the requirement for larger amounts of
empirical data in order to parameterise models. Modellers can contribute to this by using the
virtual ecologist approach that I utilised in chapter 3 to improve and assess empirical
techniques.

The final challenge raised by chapter 2 was the continued use of new and innovative
technologies for use in modelling. These technologies include techniques often used for the
analysis of big data, such as distributed and cloud-based technologies. Cloud-based
technologies allow users to rent computing power without purchasing physical machines.
Researchers pay for these machines only for as long as they need them. This would allow
researchers to obtain greater amounts of computing power without spending money on
expensive computers. Such a technique would have greatly reduced the limitation imposed on
this project by lack of computing availability.

Chapter 3 introduced a potential method for correcting metrics calculated using
telemetry data. Next steps for this project would include investigating real-world patterns to
see if they aligned with the patterns we identified for step length and MCP, and creating a
correction factor or method of calculating a correction factor. If the patterns do not align, we
may advise investigating the ability of non-linear interpolation to correct these parameters
instead. For this, researchers could sub-sample their telemetry data to identify the relationship
between fix interval and error, then correct back to shorter fix intervals using that pattern.

Chapter 4 raised two important considerations that merit further investigation. Firstly,
the effect of landscape configuration on agent deaths, and its interaction with depredation.
Secondly, whether empirical or simulated, is how the number of deaths affected number of

crossings. What would break this pattern? Under what conditions is this true?
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Finally, one could extend the work presented in chapter 4 by including limited
hunting seasons, where hunting effort was not constant throughout the entire year. We could
also use dynamic scenarios for deforestation, comparing a scenario where deforestation
occurs over time to one where deforestation is static. A more complex extension would
include social, political, and economic dynamics that affect levels of depredation, rather than

depredation resulting only from a depredation event.

5.7 Concluding statements

This thesis has explored applications of spatially-explicit ABMs and analysed caveats in the
utility. It has concluded that before we can create truly predictive ABMs that stakeholders
can use to reliably inform conservation strategy, a number of serious challenges must be met.
Despite this, the work presented here has demonstrated the utility of a spatially-explicit ABM
for three purposes, purposes that mostly focus on mechanisms behind processes rather than
directly predicting effects. In doing so, this thesis has drawn interesting conclusions and
highlighted areas for future work. Though the true utility of ABMs in conservation has yet to
be fully demonstrated, the three examples presented here suggest potential pathways for

models to inform and augment empirical studies.
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