
HOMOTOPY TYPES OF GAUGE GROUPS RELATED TO S3-BUNDLES OVER S4

INGRID MEMBRILLO-SOLIS

Abstract. Let Ml,m be the total space of the S3-bundle over S4 classified by the element lσ +mρ ∈
π4(SO(4)), l,m ∈ Z. In this paper we study the homotopy theory of gauge groups of principal G-bundles
over manifolds Ml,m when G is a simply connected simple compact Lie group such that π6(G) = 0.
That is, G is one of the following groups: SU(n) (n ≥ 4), Sp(n) (n ≥ 2), Spin(n) (n ≥ 5), F4, E6, E7,
E8. If the integral homology ofMl,m is torsion-free, we describe the homotopy type of the gauge groups
over Ml,m as products of recognisable spaces. For any manifold Ml,m with non-torsion-free homology,
we give a p-local homotopy decomposition, for a prime p ≥ 5, of the loop space of the gauge groups.
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1. Introduction and main results

Let Pf → X be a principal G-bundle over X classified by a map f : X → BG. The (unpointed)
gauge group of the bundle, denoted Gf (X), is the group of its bundle automorphisms over X. That is,
an element φ ∈ Gf (X) is a G-equivariant automorphism of Pf lying over the identity map on X. The
subgroup of Gf (X) that fixes one fiber is called the pointed gauge group and it is denoted Gf∗ (X). In
this work we aim to classify, up to homotopy, the gauge groups of principal G-bundles over manifolds
that arise as total spaces of S3-bundles over S4 for G a simply connected simple compact Lie group.

The study of the topology of the gauge groups and their classifying spaces, when G is a Lie group and
X is a compact low dimensional manifold, has played a prominent role in the development of elementary
particle theories in physics and the classification of 4-manifolds. Considerable attention has been paid
in counting the number of homotopy types of gauge groups and their classifying spaces (see for instance
[25, 24, 26, 2]). Crabb and Sutherland proved that if X is connected and G is a compact connected Lie
group, the number of homotopy types of principal G-bundles over X is finite [5]. In [7] Donaldson and
Thomas introduced some ideas to extend the study of gauge theories to analogous situations in higher
dimensions, where some special geometric structures over X are required. It has been shown that certain
compact 7-dimensional manifolds present the desired geometric properties. Moreover, the homotopy type
of some of these manifolds has been described as a connected sum of total spaces of S3-bundles over S4

[4].
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An S3-bundle over S4 is a 7-manifold M with a projection map π : M → S4, such that for all x ∈ S4,
there is a homeomorphism π−1(x) ∼= S3. We can write

S3 i−→M
π−→ S4,

where i is the inclusion of the fibre. All the manifoldsM are compact, closed, orientable and 2-connected.
The group π3(SO(4)) ∼= Z × Z classifies S3-bundles over S4 [23], and the generators of this group are
homomorphisms ρ : S3 → SO(4) and σ : S3 → SO(4) defined so that if q, q′ ∈ S3 then

ρ(q)q′ = q · q′ · q−1,

σ(q)q′ = q · q′,
where x · y represents quaternionic multiplication. Let M = Ml,m be the manifold that arises as the
total space of the S3-bundle over S4 classified by an element lρ+mσ ∈ π3(SO(4)), where l,m ∈ Z. All
the bundles π : Ml,m → S4 with m = 0 admit cross sections. Sometimes the manifolds Ml,0 are referred
to as twisted products and are denoted by S4×̃lS3. The manifolds Ml,m with |m| = 1 are homotopy
equivalent to S7. If |m| ≥ 2, then Ml,m has torsion in homology.

We are interested in the homotopy theory of principal G-bundles over manifoldsMl,m when the group
G is a simply connected simple compact Lie group. Given a pointed space X, we denote by PrinG(X)

the set of isomorphism classes of principal G-bundles over X. In Section 2 it is showed that if π6(G) = 0

then PrinG(Ml,m) = Zm. Here Z0 = Z and Z1 = 0. The simply connected simple compact Lie groups
satisfying the condition π6(G) = 0 are the following: SU(n) (n ≥ 4), Sp(n) (n ≥ 2), Spin(n) (n ≥ 5),
F4, E6, E7 and E8.

Our first main result is to prove that the homotopy type of gauge groups over manifolds Ml,m with
torsion free homology depends on the homotopy type of gauge groups over S4. It is well known that
PrinG(S4) = Z. Let Gk(S4) be the unpointed gauge group over S4 classified by k ∈ Z. Given a map
represented by ξl ∈ π6(S3) ∼= Z12, let Yl be its homotopy cofibre. In Section 4 we prove the following
theorem.

Theorem 1.1. Let G be a simply connected simple compact Lie group such that π6(G) = 0 and let Ml,0

be the total space of an S3-bundle over S4 with a cross section. Let Pk → Ml,0 be a principal G-bundle
classified by k ∈ Z. There is a homotopy equivalence

Gk(Ml,0) ' Gk(S4)×Map∗(Yl, G).

Moreover, if l ≡ 0 (mod 12) there is a homotopy equivalence

Gk(Ml,0) ' Gk(S4)× Ω3G× Ω7G.

Theorem 1.1 implies that the determination of the homotopy type of Gk(Ml,m) is reduced to determ-
ining that of Gk(S4). These gauge groups have been computed for different G. For example, from [27,
Theorem 1.1] we obtain the following corollary. Let (n1, n2) be the greatest common divisor of n1 and
n2.

Corollary 1.2. Suppose M is either S3×S4 or any twisted product S3×̃lS4. Let Pk →M and Pk′ →M

be principal SU(5)-bundles. There is a homotopy equivalence Gk(M) ' Gk′(M), if (120, k) = (120, k′),
when localised rationally or at any prime p.

The proof of Theorem 1.1 relies on the splitting of the homotopy cofibre Cl,m of the projection map.
For the case of manifolds with torsion in homology, it is not clear if analogous splittings exist, however,
we are able to obtain a splitting of ΣCl,m. As such, the results in Theorem 1.3 are stated in terms of
the loop spaces of the gauge groups rather than the gauge groups themselves.

The cofibration Sn m→ Sn → Pn+1(m) induces a fibration

Map∗(P
n+1(m), BG)→ Map∗(S

n, BG)
m∗→ Map∗(S

n, BG),
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where m∗ is the m-th power map. Let ΩnBG{m} denote the space Map∗(P
n+1(m), BG). Let vp(m) be

the p-adic valuation of m at p. If Ml,m has torsion in homology we have the following result.

Theorem 1.3. Let G be a simply connected simple compact Lie group such that π6(G) = 0. Let m > 1

be an integer and p ≥ 5 be a prime. Let Pk →Ml,m be a principal G-bundle classified by k ∈ Zm. There
are p-local homotopy equivalences

(1) G0(Ml,m) '(p) Ω7G×G, if vp(m) = 0;

(2) ΩGk(Ml,m) '(p) Ω8
0G ×Xk, if vp(m) ≥ 1, where there exists a homotopy fibration

Ω4
0G{m} → Xk → ΩG.

Moreover, if vp(m) = r ≥ 1 and pr|k then Xk '(p) ΩG× Ω4
0G{m}.

We conclude this paper with a classification of gauge groups of principal G-bundles over manifolds
Ml,1, which are homotopy equivalent to S7. In Section 5 we prove the following result.

Theorem 1.4. Let G be a simply connected simple compact Lie group and let Pk → S7 and Pk′ → S7

be principal G-bundles. Then

(1) for G = SU(2) ∼= Sp(1) there is a homotopy equivalence Gk(S7) ' Gk′(S7) if and only if (3, k) =

(3, k′);
(2) for G = G2, there is a homotopy equivalence Gk(S7) ' Gk′(S7) when localised rationally or at any

prime if and only if (3, k) = (3, k′);
(3) for G = SU(3), there is a homotopy equivalence Gk(S7) ' Gk′(S7) when localised rationally or at a

prime p ≥ 3 if and only if (3, k) = (3, k′);
(4) otherwise, the gauge group of the unique principal G-bundle decomposes as

G0(S7) ' Ω7G×G.

Remark 1.5. We want to point out that part (1) of Theorem 1.4 contrasts with the results given in
[2, Proposition 2], where it is stated that integrally, if G = S3 all gauge groups over S7 are homotopy
equivalent. Our results show that given two elements k, k′ ∈ [S7, BSU(2)], it is not always true that
Gk(S7) ' Gk′(S7).

Acknowledgements. I would like to thank Shizuo Kaji for many valuable conversations and the an-
onymous referee for suggesting a reformulation of Theorem 1.4 and for making comments which have
helped to improve the clarity of this paper. I would like to give special thanks to Stephen Theriault for
his advice and encouragement during the development of this research. This research project was suppor-
ted by the Mexican National Council for Science and Technology (CONACyT) through the scholarship
313812.

2. Classification of principal G-bundles over Ml,m

All spaces considered in this work have the homotopy type of CW -complexes with non-degenerate
basepoints. For given spaces X and Y, let Map(X,Y ) and Map∗(X,Y ) be the spaces of unpointed and
pointed maps from X to Y, respectively. We endow these spaces with the compact-open topology. The
path components of the corresponding mapping spaces containing the map f are denoted Mapf (X,Y )

and Mapf∗(X,Y ). We denote by 〈X,Y 〉 and [X,Y ] the sets of homotopy classes of unpointed and pointed
maps from X to Y , respectively. Given a map f : X → Y , we denote its homotopy class by the same
letter f . The finite cyclic group of n elements is denoted Zn. The localisation of Z at a prime p is
denoted Z(p).

Let Ml,m be the total space of the S3-bundle over S4, classified by the element

lρ+mσ ∈ π3(SO(4)) ∼= Z× Z,
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where l,m ∈ Z. First observe that since all manifoldsMl,m are 2-connected, we can giveMl,m a minimal
cellular structure

S3 ∪ϕ′ e4 ∪ϕ e7,

where ϕ′ and ϕ are the attaching maps of the 4-cell and the 7-cell, respectively. There are homeomorph-
isms [23] Ml,m

∼= M−l,−m and Ml,m
∼= Ml+m,−m so that from now on we will only consider the case

m ≥ 0. The 4-skeleton M4
l,m of Ml,m is given by the pushout

(2.1) S3 //

ϕ′

��

D4

��

S3 // S3 ∪ϕ′ D4 ∼= M4
l,m

where ϕ′ is degree m map and m is the integer associated to the classifying element lρ+mσ ∈ π4(SO(4))

[12]. If m = 0, then M4
l,m ' S3 ∨ S4, and in this case we have

Ml,0 ' (S3 ∨ S4) ∪ϕ e7,

for ϕ ∈ π6(S3 ∨S4). All the sphere bundles Ml,0
π−→ S4 admit a cross section so that the exact sequences

of the fibre bundles show that the homotopy and homology groups of the manifolds Ml,0 are isomorphic
to those of the total space of the trivial bundle S3×S4. James and Whitehead showed that Ml,0 'Ml′,0

if and only if l ≡ ±l′ (mod 12) [12] .
If m > 0, then the 4-skeleton M4

l,m is the Moore space P 4(m) which is the homotopy cofibre of the
degree m map and satisfies H̃i(P

4(m)) ∼= Zm, if i = 3, and H̃i(P
4(m)) ∼= 0 otherwise. Thus given

Ml,m and Ml,m′ , if m 6= m′ then π3(Ml,m) � π3(Ml,m′), and therefore these spaces are not homotopy
equivalent. A minimal cellular structure for Ml,m is given by

Ml,m ' P 4(m) ∪ϕ e7,

for some ϕ ∈ π6(P 4(m)). In [6] Crowley and Escher classified the homotopy types of manifolds Ml,m for
m > 0. They showed that there is an orientation preserving homotopy equivalence Ml,m 'Ml′,m′ if and
only if m = m′ and l′ ≡ αl (mod (m, 12)) where α2 ≡ 1 (mod (m, 12)). Thus in the case m = 1 we have
P 4(1) ' ∗ and we have

Ml,1 ' S7

for all l ∈ Z.
We make use of the Serre spectral sequence to obtain information on the properties of the projection

maps π : Ml,m → S4 .

Lemma 2.1. The map π∗ : H4(S4) → H4(Ml,m) is an isomorphism if m = 0, reduction modulo m if
m > 0 and, in particular, the constant map if m = 1.

Proof. Consider the Serre spectral sequence of the sphere bundle

S3 // Ml,m
π
// S4

which converges to H∗(Ml,m), and let y3 and x4 be suitable generators of H3(S3) ∼= Z and H4(S4) ∼= Z
respectively. Then the Ep,q2 page in the spectral sequence has the following form.

3 y3 y3x4

0 1 x4

0 4

Thus we have that Ep,q2 = Ep,q4 = Hp(S3) ⊗Hq(S4), and for dimensional reasons there is at most one
non-trivial differential, namely d4(y3) = mx4. This implies the result. �
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In order to obtain a classification of the principal G-bundles over Ml,m, when m 6= 1, it is necessary
to obtain information on the homotopy cofibre of the inclusion of the bottom cell

(2.2) S3 i
// Ml,m

q
// Dl,m.

Lemma 2.2. There is a homotopy equivalence

Dl,m ' S4 ∨ S7

and the homotopy equivalence can be chosen so that the composite

Ml,m
q−→ Dl,m

'−→ S4 ∨ S7 pinch−−−→ S4

is homotopic to the projection π : Ml,m → S4.

Proof. Since π3(S4) ∼= 0, the projection Ml,m
π−→ S4 has a homotopy extension π̃

(2.3) S3 i
// Ml,m

q
//

π

��

Dl,m

π̃
{{

S4.

Observe that the cofibre Dl,m can be built as a CW -complex with one 7-cell attached to a 4-sphere.
Thus Dl,m fits into the following cofibration sequence

(2.4) S6 θ
// S4

g
// Dl,m

b
// S7,

where g is the inclusion, θ ∈ π6(S4) ∼= Z2 and b is the connecting map. Let Ml,m be a manifold with
m = 0. Then the map π : Ml,0 → S4 has a cross section S4 → Ml,0. Therefore, by the homotopy
commutativity of (2.3), the map π̃ also has a right homotopy inverse. Now suppose m > 1. The map
S4 g→ Dl,m is the inclusion of the bottom cell and induces an isomorphism g∗ : H4(Dl,m)

∼=−→ H4(S4) ∼= Z.
Consider the commutative diagram:

(2.5) H4(Ml,m) H4(Dl,m).
q∗
oo

H4(S4)

π∗

OO

π̃∗

88

By Lemma 2.1, π∗ is reduction mod m. From (2.5) we obtain the following composite

π∗ : Z π̃∗
// Z

q∗
// Zm,

which is reduction mod m. Thus π̃∗ = ±1 (mod m). Consider the homotopy commutative diagram

(2.6) S3 m
//

ξ

��

S3 // P 4(m)
q′
//

j

��

S4

π′

��

ΩS4 δ
// S3 // Ml,m

π
// S4

where the top row is a cofibration sequence and the bottom row is a fibration sequence. The connecting
map δ induces multiplication by m in cohomology. From the left square we obtain that ξ is the inclusion
of the bottom cell. By the Peterson-Stein formula the adjoint of the map ξ is homotopic to π′. Therefore
π′ is a homotopy equivalence. This implies that π̃ has a right homotopy inverse. Therefore for all m 6= 1,
the composite S4 g−→ Dl,m

π̃→ S4 is a homotopy equivalence. There is a coaction σ : Dl,m → Dl,m ∨ S7

such that the composite Dl,m
σ−→ Dl,m ∨S7 pinch−−−→ S7 is homotopic to the connecting map b in (2.4), and
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the composite Dl,m
σ−→ Dl,m ∨ S7 pinch−−−→ Dl,m is a homotopy equivalence. Since π̃ has a right homotopy

inverse, the composite

(2.7) θ : Dl,m
σ−→ Dl,m ∨ S7 π̃∨1−−−→ S4 ∨ S7

is a homotopy equivalence. Also the diagram

(2.8) Dl,m
σ
// Dl,m ∨ S7 π̃∨1

//

pinch

��

S4 ∨ S7

pinch

��

Dl,m
π̃

// S4

homotopy commutes. Therefore by (2.3) the composite M q−→ Dl,m
θ−→ S4 ∨S7 pinch−−−→ S4 is homotopic to

π.
�

Given a compact connected topological space X and a topological group G, let PrinG(X) be the
set of isomorphism classes of principal G-bundles over X. It is well-known that there is a one-to-one
correspondence between PrinG(X) and 〈X,BG〉, where BG is the classifying space of G. The evaluation
fibration

Map∗(Ml,m, BG)→ Map(Ml,m, BG)
ev−→ BG

induces an exact sequence of homotopy sets

π1(BG)
∂−→ [Ml,m, BG]→ 〈Ml,m, BG〉

ev∗−−→ π0(BG).

The induced map ev∗ is trivial as BG is connected, and the coset space of ∂(π1(BG)) coincides with
the orbit space of the action of π1(BG) ∼= π0(G) on [Ml,m, BG]. Since all groups G considered in this
work are connected, this action is trivial, which implies that there is a bijection between [Ml,m, BG] and
〈Ml,m, BG〉. We compute the sets [Ml,m, BG] for those manifolds with m 6= 1. We restrict to the case
when π6(G) = 0, that is, when G is one of the following groups: SU(n) (n ≥ 4), Sp(n) (n ≥ 2), F4, E6,
E7 or E8.

Proposition 2.3. Let G be a simply connected simple compact Lie group such that π6(G) ∼= 0.

(1) If m = 0 then [Ml,m, BG] = Z;
(2) if m ≥ 2 then [Ml,m, BG] = Zm.

Moreover, the projection Ml,m
π→ S4 induces a map

π∗ : [S4, BG]→ [Ml,m, BG]

which is a bijection if m = 0 and a surjection if m ≥ 2.

Proof. For any simply connected simple compact Lie group G there are isomorphisms [11]

(2.9) π3(BG) ∼= π2(G) ∼= 0.

Let f : Ml,m → BG be a map. By (2.9) the composite S3 ↪→ Ml,m
f→ BG is nullhomotopic. Using

Lemma 2.2 there is a homotopy commutative diagram

(2.10) S3 i
// Ml,m

a
//

f

��

S4 ∨ S7 δ
//

f̃zz

S4 Σi
// ΣMl,m

BG
6



where a is the composite Ml,m
q−→ Dl,m

'−→ S4 ∨ S7, the top row is a cofibration sequence and f̃ :

S4 ∨S7 → BG is an extension of f . Therefore, applying the functor [−, BG] to the cofibration sequence
in (2.10) we obtain an exact sequence of homotopy sets

(2.11) [S4, BG]
δ∗
// [S4 ∨ S7, BG]

a∗
// [Ml,m, BG] // 0

Z Z.

Let ψ′ : S4 ∨ S7 → S4 ∨ S7 ∨ S4 be the coaction of S4 on S4 ∨ S7 in the cofibration sequence in (2.10).
The homotopy set [Ml,m, BG] might not be a group. Therefore, we will use the action

(ψ′)∗ : [S4, BG]× [S4 ∨ S7, BG]→ [S4 ∨ S7, BG],

induced by ψ′, to compute [Ml,m, BG].

Let M4
l,m be the 4-skeleton of Ml,m. Then M4

l,m ' S3 ∨ S4 or M4
l,m ' P 4(m). In either case, M4

l,m is
a co-H-space. From the exact sequence induced by the attaching map of the 4-cell,

(2.12) S3 m
// S3 // M4

l,m
// S4,

we obtain an exact sequence of groups

(2.13) [S4, BG]
m∗
// [S4, BG] // [M4

l,m, BG] // 0

where π4(BG) ∼= π3(G) ∼= Z and m∗ : Z → Z is multiplication by m. The coaction ψ : S4 → S4 ∨ S4

associated to the cofibration (2.12) induces an action of homotopy sets

ψ∗ : [S4, BG]× [S4, BG]→ [S4, BG].

Exactness of (2.13) implies that [M4
l,m, BG] = Zm. By construction, the orbits under the action ψ∗

are equal to the cosets of the image of m∗. The map S3 i−→ Ml,m factors through the 4-skeleton M4
l,m.

Therefore we have a homotopy cofibration diagram

(2.14) S3 // M4
l,m

//

��

S4 m
//

i1

��

S4

S3 i
// Ml,m

a
// S4 ∨ S7 δ

// S4

where i1 : S4 → S4 ∨ S7 is the inclusion of the first factor into the wedge. From (2.14) we obtain a
homotopy commutative diagram as follows

(2.15) S4
ψ

//

i1

��

S4 ∨ S4

i1∨1
��

S4 ∨ S7
ψ′
// S4 ∨ S7 ∨ S4.

Applying the functor [−, BG] we obtain a commutative diagram of homotopy groups

(2.16) π4(BG)× π7(BG)× π4(BG)
(ψ′)∗

//

i∗1×1
��

π4(BG)× π7(BG)

i∗1
��

π4(BG)× π4(BG)
ψ∗

// π4(BG).

Now assume π7(BG) ∼= π6(G) ∼= 0. The vertical arrows in (2.16) are isomorphisms implying that
(ψ′)∗ = ψ∗. Since (ψ′)∗ = ψ∗, [Ml,m, BG] = Z if m = 0, and [Ml,m, BG] = Zm if m > 1.

Finally, we analyse the induced map π∗ : [Ml,m, BG]→ [S4, BG]. By Lemma 2.2 the composite

Ml,m
q−→ Dl,m

'−→ S4 ∨ S7 pinch−−−→ S4
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is homotopic to the projection π : Ml,m → S4. Consider the commutative diagram

(2.17) [Ml,m, BG] [S4, BG]× [S7, BG]
a∗
oo

[S4, BG]

p1

66

π∗

OO

where the map p1 is the projection onto the first factor. From (2.11) we get that a∗ is an isomorphism
if m = 0 and a surjection if m > 1. Therefore, by the commutativity of (2.17), the induced map
π∗ : [Ml,m, BG]→ [S4, BG] is an isomorphism if m = 0, and a surjection if m > 1. �

Now letm = 1. From the homotopy classification of the manifoldsMl,m, the spacesMl,1 are homotopy
equivalent to S7. Therefore we obtain

[Ml,1, BG] = [S7, BG] = π7(BG) ∼= π6(G).

From this and Proposition 2.3 we obtain a classification of principal G-bundles over manifolds Ml,m that
holds for most of the simply connected simple compact Lie groups. Using the notation Z0 = Z and
Z1 = 0 we now state our result for the classification of principal G-bundles over Ml,m.

Corollary 2.4. Let G be a simply connected simple compact Lie group such that π6(G) = 0. There is a
one-to-one correspondence

PrinG(Ml,m)
1−1−−→ Zm.

�

3. Homotopy types of ΣMl,m

In this section we discuss the homotopy types of ΣMl,m, the suspensions of the manifolds Ml,m. The
description of ΣMl,m will be needed later to obtain homotopy decompositions of the gauge groups.

We start with a general result regarding the suspension of total spaces of Sn−1-bundles over Sn that
have cross sections. Let Xn be the n-skeleton of X. Let 1X be the identity map on X.

Lemma 3.1. Let π : X → Sn be an Sn−1-bundle over Sn, n ≥ 3, with a cross section. Then Xn '
Sn−1 ∨ Sn and there is a homotopy equivalence

ΣX ' ΣY ∨ Sn+1,

where Y is the homotopy cofibre of the composite S2n−2 ϕ−→ Sn−1 ∨ Sn pinch−−−→ Sn−1. Here the map
ϕ : S2n−2 → Sn−1 ∨ Sn is the attaching map of the top cell of X.

Proof. The topological space X is homotopy equivalent to a CW -complex with the following cellular
structure

Sn−1 ∪ en ∪ϕ e2n−1,

where ϕ is the attaching map of the top cell. There is a homotopy commutative diagram

(3.1) Sn−1 �
�

// Xn
q
//� _

��

Sn

Sn−1 �
�

// X
π
// Sn

where the top row is the cofibration sequence induced by the inclusion of the bottom cell into the n-
skeleton, the bottom row is the fibration sequence of the sphere bundle, and q is the quotient map. Since
Xn = X2n−2 by connectivity, the map q also has a right homotopy inverse, implying that there is a
homotopy equivalence Xn ' Sn−1 ∨ Sn.
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Now consider the cofibration sequence induced by the attaching map S2n−2 ϕ−→ Sn ∨ Sn−1:

(3.2) S2n−2
ϕ
// Sn−1 ∨ Sn i

// X
ρ
// S2n−1

Σϕ
// Sn ∨ Sn+1 Σi

// ΣX,

where i is the inclusion and ρ is the pinch map to the (2n − 1)-cell. By the Hilton-Milnor Theorem
[10, 17] there is an isomorphism

π2n−2(Sn−1 ∨ Sn) ∼= π2n−2(S2n−2)× π2n−2(Sn)× π2n−2(Sn−1).

Thus ϕ ∈ π2n−2(Sn−1 ∨ Sn) can be expressed as

(3.3) ϕ = t[1Sn−1 , 1Sn ] + α+ β

Here the Whitehead product [1Sn−1 , 1Sn ] factors through a generator of π2n−2(S2n−2) and t ∈ Z; for
any α ∈ π2n−2(Sn−1) and β ∈ π2n−2(Sn), let α and β be the elements of π2n−2(Sn−1 ∨ Sn) which are
represented by the maps

α : S2n−2 α→ Sn−1 ↪→ Sn−1 ∨ Sn

and

β : S2n−2 β→ Sn ↪→ Sn−1 ∨ Sn.

Consider the diagram

S2n−2
ϕ
//

β
&&

Sn ∨ Sn−1 i
//

p1

��

X

π

��

Sn Sn

The triangle homotopy commutes by definition of ϕ and β, and the square homotopy commutes by the
commutativity of right square in (3.1). Thus β ' π ◦ i ◦ ϕ, but i ◦ ϕ is nullhomotopic since i and ϕ

are consecutive maps in a cofibration. Hence β is nullhomotopic and therefore so is β. Hence (3.3) is
reduced to

ϕ = t[1Sn−1 , 1Sn ] + α.

After suspension we have Σϕ = Σα since Σ[1Sn−1 , 1Sn ] ' ∗. Let Y be the homotopy cofibre of the
map α : S2n−2 → Sn−1. Thus if Σα ' ∗ then Σϕ ' ∗. Therefore the map Σi in (3.2) has a left homotopy
inverse, and ΣX ' S2n ∨ Sn ∨ Sn+1. If instead Σα is not nullhomotopic, then Σϕ 6' ∗. Consider the
following part of the homotopy cofibration sequence (3.2)

S2n−1
Σϕ
// Sn+1 ∨ Sn Σi

// ΣX.

Thus Σϕ = Σα = j ◦ Σα, where j : Sn −→ Sn ∨ Sn+1 is the inclusion into the wedge. Therefore
ΣX ' ΣY ∨ Sn+1, where Y is defined by the cofibration sequence

S2n−2 α−→ Sn−1 −→ Y,

for α ∈ π2n−2(Sn−1). �

Let S6 ϕ−→ S3 ∨ S4 be the attaching map of the top cell of the manifold Ml,0.

Proposition 3.2. There is a homotopy equivalence

ΣMl,0 ' ΣYl ∨ S5,

where Yl is the homotopy cofibre of the composite S6 ϕ−→ S3 ∨ S4 p1−→ S3. Further, if l′ ≡ ±l (mod 12)

there is a homotopy equivalence ΣMl,0 ' ΣMl′,0. In particular

ΣMl,0 ' S8 ∨ S4 ∨ S5,

if l ≡ 0 (mod 12).
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Proof. There is a cofibration sequence

(3.4) S6
ϕ
// S3 ∨ S4 // Ml,0.

where ϕ is the attaching map of the top cell. We can write the attaching map ϕ as

ϕ = [ι3, ι4] + tlν
′.

Here [ι3, ι4] is the Whitehead product of the identiy maps of S3 and S4 and the map tlν′ is the composite

S6 tlν
′

−−→ S3 ↪→ S3 ∨ S4, where ν′ is a generator of π6(S3) ∼= Z12 [28] and tl ∈ Z12. Since the map
π : Ml,0 → S4 has a section, by Lemma 3.1 there is a homotopy equivalence

(3.5) ΣMl,0 ' ΣYl,0 ∨ S5,

where ΣYl,0 is the homotopy cofibre of the composite S7 Σϕ−−→ S4 ∨ S5 pinch−−−→ S4. The map Σϕ is

homotopic to the composite S7 tlΣν
′

−−−→ S4 ↪→ S4 ∨ S5, where the element Σν′ generates a subgroup of
order 12 in π7(S4) [28].

Set Yl := Yl,0. The J-homomorphism J : π3(SO(3))→ π6(S3) which send, l to tl, is an epimorphism
[12]. Observe that two spaces ΣYl, ΣYl′ are homotopy equivalent if and only if there is a homotopy
equivalence θ : S4 → S4 such that

θ∗(tlΣν
′) = tl′Σν

′,

where θ∗ is the automorphism of π7(S4) induced by θ. Any self-equivalence of S4 is homotopic to ±1S4 .

Since, tl, tl′ ∈ Z12, we have that ΣYl ' ΣYl′ if and only if l′ ≡ ±l (mod 12). Thus if l′ ≡ ±l′ (mod 12)

then ΣMl,0 ' ΣMl′,0. In particularM0,0 = S3×S4 and Σ(S4×S3) ' S8∨S5∨S4. Identifying summands
in (3.5) we have that Y0,0 ' S8∨S4 and therefore there is a homotopy equivalence ΣMl,0 ' S8∨S5∨S4

if l ≡ 0 (mod 12). �

In order to obtain results on the gauge groups over manifolds Ml,m with torsion in homology we will
require p-localisations of nilpotent spaces in the sense of [9]. A connected CW -complex is nilpotent if
π1(X) is nilpotent and acts nilpotently on πn(X) for all n ≥ 2. In particular, if X is simply connected
then it is nilpotent. Let X and Y be connected CW -complexes. By [9, Corollary 2.6], given a map
f : X → Y , if Y is nilpotent and X is finite then the path components Mapf (X,Y ) and Mapf∗(X,Y ) are
nilpotent, and these mapping spaces admit p-localisations, (Mapf (X,Y ))(p) and (Mapf∗(X,Y ))(p), for p a
prime. Moreover (Mapf∗(X,Y ))(p) ' Mapf∗(X(p), Y(p)). In our case, we will make use of p-localisations of
simply connected finite spaces X homotopy equivalent to CW -complexes. We will also need to localise
the mapping spaces Mapf (X,BG) and Mapf∗(X,BG) which is possible to do since we restrict to Lie
groups G with nilpotent classifying spaces BG. We define the p-localisation of the n-th loop space of a
nilpotent space Y , at a prime p, as follows

(ΩnY )(p) := Ωn(Y(p)).

Thus given a map f : X → BG, where X is a finite connected complex and G is a simply connected
simple compact Lie group, we define the p-localisation of ΩnMapf (X,Y ) as follows

(ΩnMapf (X,BG))(p) := Ωn((Mapf (X,BG))(p)).

To keep the notation simple, in the following discussions we will avoid using the subscript (p) when
referring to local spaces. We denote by X '(p) Y a (p-local) homotopy equivalence between the p-local
spaces X and Y .

The cofibration sequence Sn m−→ Sn → Pn+1(m) induces a fibration sequence

Map∗(P
n+1(m), BG)→ Map∗(S

n, BG)
m∗→ Map∗(S

n, BG),

where m∗ is the m-th power map. Let ΩnBG{m} denote the space Map∗(P
n+1(m), BG). Let vp(m) be

the p-adic valuation of m at p.
10



Proposition 3.3. Let Ml,m be the total space of an S3-bundle over S4 with m ≥ 2. Localising at p ≥ 5

there exists a p-local homotopy equivalence

ΣMl,m '(p) P
5(pr) ∨ S8,

where r = vp(m).

Proof. There exists a cofibration sequence

(3.6) S6
ϕ
// P 4(m)

i
// Ml,m

ρ
// S7

Σϕ
// P 5(m)

Σi
// ΣMl,m,

where ϕ is the attaching map of the top cell, i is the inclusion and ρ is the pinch map. Now suppose
that all spaces are localised at a prime p ≥ 5 with r = vp(m). Consider the cofibration sequence

(3.7) S3 m
// S3

q
// P 4(m).

We have two cases to analyse: r = 0 and r ≥ 1. If r = 0 then the degree map m is invertible in Z(p), so
the map m is a homotopy equivalence in the cofibration sequence (3.7), and therefore P 4(m) ' ∗. From
(3.6) we can see that the attaching map ϕ is nullhomotopic and therefore Ml,m '(p) S

7. Moreover, we
can write P 5(1) = P 5(p0) ' ∗. Hence there is a homotopy equivalence ΣMl,m '(p) P

5(pr)∨S8 for r = 0.
If r ≥ 1 then the degree map m is not invertible. Localising at p we obtain P 4(m) '(p) P

4(pr). In
[22] Sasao computed the homotopy group π6(P 4(m)). He showed that integrally

π6(P 4(m)) ∼=


Z(m,12) ⊕ Zm if v2(m) = 0,

Z(m,12)/2 ⊕ Z2m ⊕ Z2 if 1 ≤ v2(m) ≤ 2,

Z(m,12) ⊕ Zm ⊕ Z2 if v2(m) ≥ 3.

In all above cases, localising at p ≥ 5 we obtain

π6(P 4(m)) ∼= Zpr .

We give an alternative construction of a p-local generator of π6(P 4(m)) to that given by Sasao. Let
σ̄ ∈ π6(P 4(m)) ∼= Zpr be a generator. We can write the attaching map of the top cell as ϕ = t · σ̄ with
t ∈ Zpr . Notice that if Σϕ ' ∗ then Σi has a left homotopy inverse, implying ΣMl,m ' P 4(pr)∨S8. We
claim that the generator σ̄ suspends trivially.

Let ν : P 4(pr) → P 4(pr) be the identity map. Since ν is a suspension there is a Whitehead product
[ν, ν] : ΣP 3(pr) ∧ P 3(pr)→ P 4(pr). There is a homotopy equivalence [3]

ΣP 3(pr) ∧ P 3(pr) '(p) P
7(pr) ∨ P 6(pr).

This homotopy equivalence precomposed with the inclusion of P 7(pr) into the wedge determines a map
[̂ν, ν] : P 7(pr)→ P 4(pr). By a result of Cohen, Moore and Neisendorfer [3], there is a p-local homotopy
equivalence

(3.8) φ : S3{pr} × ΩA → ΩP 4(pr)

where A =
∨∞
k=0 P

4+2k+3(pr) and Sn{pr} denotes the homotopy fibre of the degree map pr : Sn → Sn.
This homotopy equivalence is constructed so that the restriction of φ to ΩP 7(pr) is homotopic to Ω[̂ν, ν].

Using (3.8) we get

π6(P 4(pr)) ∼= π5(ΩP 4(pr)) ∼= π5(S3{pr})⊕ π5(ΩA).

Notice that there is a homotopy fibration given by

ΩS3 −→ S3{pr} −→ S3.

As 2 and 3 are inverted we have π5(S3) = 0 and π5(ΩS3) ∼= π6(S3) = 0 and therefore π5(S3{pr}) = 0.
Now π5(ΩA) ∼= π6(A) ∼= π6(P 7(pr)) ∼= Zpr , where the last two isomorphisms are given by the high
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connectivity of the factors in the wedge defining A and the Hurewicz isomorphism, respectively. Thus a
generator σ̄ of π6(P 4(pr)) is represented by the map

σ̄ : S6 ↪→ P 7(pr)
[̂ν,ν]−→ P 4(pr).

Since [̂ν, ν] factors through the Whitehead product [ν, ν], which suspends trivially, we obtain Σσ̄ ' ∗, as
claimed. �

4. Homotopy decompositions of gauge groups

In this section we give homotopy decompositions of the gauge groups over Ml,m for which m 6= 1.
We split our results in two cases: manifolds Ml,m with torsion-free homology and manifolds Ml,m with
non-torsion-free homology.

Let Pf → X be a principal G-bundle with classifying map f : X → BG. Recall that the (unpointed)
gauge group of the bundle, denoted Gf (X), is the group of its bundle automorphisms. That is, an element
φ ∈ Gf (X) is a G-equivariant automorphism of Pf lying over the identity map on X. The subgroup
of Gf (X) that fixes one fiber is the pointed gauge group and it is denoted Gf∗ (X). Let BGf (X) be the
classifying space of Gf (X). From [8] or [1] there are homotopy equivalences

(4.1) BGf (X) ' Mapf (X,BG),

(4.2) BGf∗ (X) ' Mapf∗(X,BG),

and after looping these homotopy equivalences we obtain

(4.3) Gf (X) ' ΩMapf (X,BG),

(4.4) Gf∗ (X) ' ΩMapf∗(X,BG).

We will make use of the equivalences (4.1)-(4.4) to obtain homotopy decompositions of the gauge
groups. Following our discussion on localisation of nilpotent spaces (see Section 3), we define the p-
localisation of the gauge groups Gf (X) and Gf∗ (X) as (Gf (X))(p) := Ω((BGf (X))(p)) and (Gf∗ (X))(p) :=

Ω((BGf∗ (X))(p)).

We specialise to gauge groups of principal G-bundles over Ml,m, where Ml,m is the total space of a
sphere bundle with classifying map lρ+mσ ∈ π3(SO(4)), l,m ∈ Z, and G is a simply connected simple
compact Lie group with π6(G) ∼= 0. By Corollary 2.4 there are set isomorphisms

PrinG(Ml,m)
∼=−→ [Ml,m, BG]

∼=−→ Zm.

Let Gk(Ml,m) be the gauge group of the principal G-bundle over Ml,m classified by k ∈ Zm =

[Ml,m, BG]. By Proposition 2.3, the projection π : Ml,m → S4 induces a map π∗ : [S4, BG]→ [Ml,m, BG]

which is a bijection if m = 0 and a surjection if m ≥ 2.

4.1. Torsion-free case. Let Ml,m be a manifold with torsion-free homology and Ml,m 6' S7. Thus in
this case m = 0 and the bundle Ml,0 → S4 has a cross section. The following lemma will be crucial to
identify the spaces that appear in the homotopy decompositions of the gauge groups.

Lemma 4.1. There is a homotopy commutative diagram of cofibrations

(4.5) ∗ //

��

S7
� _

��

S7

γ

��

// ∗

��

Ml,0
// S4 ∨ S7 δ

//

pinch

��

S4 //

��

ΣMl,0

Ml,0
π

// S4 // Cl,0 // ΣMl,0
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which defines the space Cl,0 and the maps γ and δ. Furthermore there is a homotopy equivalence Cl,0
'−→

ΣYl.

Proof. In general, by Lemma 2.2 given a manifold Ml,m there is a homotopy commutative diagram

(4.6) S3 i
// Ml,m

//

π

��

S4 ∨ S7

pinch
zz

S4

Now let m = 0. Using (4.6) we can generate a homotopy commutative diagram as the one stated in
the proposition, where each column and row is a cofibration sequence. Here γ ∈ π7(S4) ∼= Z × Z12 is a
map making the middle upper square of diagram (4.5) commute, which defines the space Cl,0. From the
exact sequence induced by the top row in (4.6)

(4.7) H4(S4)
δ∗
// H4(S4 ∨ S7)

q∗
// H4(Ml,m) // 0

Z Z Zm

we conclude that δ restricted to S4 is the degree m map so that Z0 = Z. Let s : S4 →Ml,0 be a section
of the projection map π. Since π ◦ s = 1S4 , then Σπ ◦ Σs ' 1S5 . Therefore the map

ψ : S5 ∨ Cl,0
Σs+b−−−→ ΣMl,0,

where b is the connecting map of the cofibration induced by the projection π, is a homotopy equivalence.
By Proposition 3.2 there is a homotopy equivalence

(4.8) θ : ΣMl,0
'−→ S5 ∨ ΣYl,

where Yl is the homotopy cofibre of a map tlΣν′ ∈ π7(S4) and tl depends linearly on l. Let hl = tlΣν
′.

The suspension of the attaching map generates a homotopy commutative diagram of cofibrations

(4.9) ∗ //

��

S5

��

S5

Σs

��

S7
Σϕ
// S5 ∨ S4 //

pinch

��

ΣMl,0

c

��

S7
hl

// S4 // ΣYl

which defines the map c. The homotopy commutative diagram of cofibrations

(4.10) ∗ //

��

Cl,0

b

��

Cl,0

��

S5 Σs
// ΣMl,0

c
//

Σπ

��

ΣYl

��
S5 '

// S5 // ∗

shows that there is a homotopy equivalence Cl,0
'−→ ΣYl,0. �

By Proposition 2.3, the projection map induces a bijection between path components

(4.11) π∗ : [S4, BG] = π0(Map∗(S
4, BG))→ [Ml,m, BG] = π0(Map∗(Ml,m, BG)).

Moreover, the projection map π induces the following fibration sequences
13



Map∗(ΣYl, BG)→ Map∗(S
4, BG)

π∗−→Map∗(Ml,0, BG),

F kl,0 → Mapk∗(S
4, BG)

π∗k−→Mapk∗(Ml,0, BG),

where π∗k is the restriction of π∗ to the k-th component and F kl,0 is the corresponding homotopy fibre.
Using the bottom row in the commutative diagram of Lemma 4.1 we obtain the following fibration
sequence for k = 0

Map∗(ΣYl, BG)→ Map0
∗(S

4, BG)
π∗0−→Map0

∗(Ml,0, BG),

where we can identify Map∗(ΣYl, BG) ' Map∗(Yl, G).

Next we state a general result on the homotopy types of the spaces F kl,0.

Lemma 4.2. Let G be a simply connected simple compact Lie group with π6(G) = 0. Let F kl,0 be the
homotopy fibre of π∗k : Mapk∗(S

4, BG)→ Mapk∗(Ml,0, BG). There are homotopy equivalences

F kl,0 ' Map∗(Yl, G), for all k ∈ Z.

Proof. The inclusion of the bottom cell into Ml,m induces a fibration sequence

(4.12) Map∗(S
4 ∨ S7, BG)

q∗−→ Map∗(Ml,0, BG)
i∗−→ Map∗(S

3, BG)

Applying the functor Map∗(−, BG) to the diagram in Lemma 4.1, we can fit the fibration sequence (4.12)
into a homotopy commutative diagram

(4.13) Map∗(ΣYl, BG) //

��

Map∗(S
4, BG)

γ∗
//

(0+γ)∗

��

Map∗(S
7, BG)

Map∗(S
4, BG)

i∗
//

π∗

��

Map∗(S
4, BG)×Map∗(S

7, BG)
p∗2
//

q∗

��

Map∗(S
7, BG)

��
Map∗(Ml,0, BG) Map∗(Ml,0, BG)

i∗

��

// ∗

Map∗(S
3, BG)

where rows and columns are fibrations. Here we have identified Map∗(S
4 ∨ S7, BG) with

Map∗(S
4, BG)×Map∗(S

7, BG),

so that p∗2 is the projection and i∗ is the inclusion. Notice that the map q∗ induces a bijection between
path components as i∗ does since π6(G) = 0. For every k ∈ Z there is a homotopy equivalence between
the path components θk : Ω4

0BG → Ω4
kBG defined by ω 7→ µ ◦ (ω × k0) ◦ ∆, where µ is a homotopy

multiplication in Ω4BG, ∆ is the diagonal map and k0 is a choice of base point in Ω4
kBG. Thus there is

a homotopy commutative diagram

(4.14) Map∗(ΣYl, BG) //

��

Ω4BG
γ∗

//

(0+γ)∗

��

Ω7BG

Ω4
0BG

i∗
//

θk

��

Ω4
0BG× Ω7BG

p2
∗
//

θk×1
��

Ω7BG

Ω4
kBG

i∗
// Ω4

kBG× Ω7BG
p2
∗
// Ω7BG
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Therefore, by the homotopy commutativity of (4.14), the restriction of q∗ in (4.13) to the k-th component
generates a homotopy commutative diagram

(4.15) Map∗(ΣYl, BG) //

��

Ω4BG
γ∗

//

(θk×1)◦(0+γ)∗

��

Ω7BG

Ω4
kBG

i∗
//

π∗

��

Ω4
kBG× Ω7BG

p2
∗
//

q∗

��

Ω7BG

��
Mapk∗(Ml,m, BG) Mapk∗(Ml,m, BG) // ∗

where each row and column is a fibration sequence. This shows that there are homotopy equivalences

F kl,0 ' Map∗(ΣYl, BG) ' Map∗(Yl,ΩBG) ' Map∗(Yl, G)

for all k ∈ Z. �

If Y is anH-group, or ifX is a co-H-group, then all the path components of Map∗(X,Y ) are homotopy
equivalent. So for instance, if m = 1, then Ml,1 ' S7. In this case for any k, k′ ∈ [Ml,1, BG], the path
components Mapk∗(Ml,1, BG) and Mapk

′

∗ (Ml,1, BG) are homotopy equivalent and, as a consequence, so
are the pointed gauge groups. When Ml,m is not homotopy equivalent to S7, it is not known if the path
components of Map∗(Ml,m, BG) have the same homotopy type. We prove a result on the homotopy
types of the pointed gauge groups over manifolds Ml,m with torsion-free homology and m = 0.

Theorem 4.3. Let G be a simply connected simple compact Lie group with π6(G) ∼= 0. Let Ml,0 be
the total space of an S3-bundle over S4 with a cross section. Then for all k ∈ Z there is a homotopy
equivalence

Gk∗ (Ml,0) ' Ω4G×Map∗(Yl, G).

In particular, if l ≡ 0 (mod 12) then there is a homotopy equivalence

Gk∗ (Ml,0) ' Ω4G× Ω3G× Ω7G.

Proof. Let Ml,0 be a manifold with a cross section. Let Gk∗ (Ml,0) be the gauge group of the principal
G-bundle over Ml,m classified by k ∈ Z. By Lemma 4.2 there is a fibration sequence

(4.16) Map∗(Yl, G)→ Mapk∗(S
4, BG)

π∗k−→Mapk∗(Ml,m, BG).

Extend the fibration sequence to the left. Consider the following part of the fibration

(4.17) ΩMap0
∗(S

4, BG) ' ΩMapk∗(S
4, BG)

Ωπ∗k
// ΩMapk∗(Ml,m, BG) // Map∗(Yl, G).

Let s : Ml,m → S4 be a cross section, that is, a map such that the diagram

(4.18) S4 s
// Ml,m

π

��

S4

commutes. Applying the functor Map∗(−, BG) to the diagram (4.18) we obtain the following homotopy
commutative diagram

(4.19) Map∗(S
4, BG) Map∗(Ml,m, BG)

s∗
oo

Map∗(S
4, BG).

π∗

OO
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Take k-th components to get a similar diagram, so s∗k is a right homotopy inverse of π∗k. Thus after
looping there is a homotopy equivalence

ΩMapk∗(Ml,0, BG) ' ΩMap0
∗(S

4, BG)×Map∗(Yl, G).

We can identify ΩMap0
∗(S

4, BG) ' Ω4G and Gk∗ (Ml,m) ' ΩMapk∗(Ml,m, BG). Putting things together
we obtain

Gk∗ (Ml,0) ' Ω4G×Map∗(Yl, G).

Finally, by Proposition 3.2 when l ≡ 0 (mod 12) we have ΣYl ' S4 ∨ S8 and therefore we get

Gk∗ (Ml,0) ' Ω4G× Ω3G× Ω7G. �

We can use Theorem 4.3 to compute homotopy groups of the pointed gauge groups.

Corollary 4.4. For all k ∈ Z and for all n ≥ 0 there are isomorphisms

πn(Gk∗ (Ml,0)) ∼= πn+4(G)⊕ πn(Map∗(Yl, G)).

Further, if l ≡ 0 (mod 12) then

πn(Gk∗ (Ml,0)) ∼= πn+4(G)⊕ πn+3(G)⊕ πn+7(G).

�

Corollary 4.4 shows that homotopy groups of Gk∗ (Ml,0) can be obtained using information of the
homotopy groups of the structure group G of the principal bundles.

Now we look at the evaluation map to obtain a homotopy decomposition of the unpointed gauge
groups. The restriction of evaluation map to the k-th component defines a fibration sequence

(4.20) ΩMapk(Ml,m, BG) −→ G
∂k

−→ Mapk∗(Ml,m, BG) −→ Mapk(Ml,m, BG)
evk−→ BG

where ∂k is the connecting map. Thus the gauge group Gk(Ml,m) ' ΩMapk(Ml,m, BG) appears as the
homotopy fibre of the connecting map ∂k. Hence, it is expected that the properties of ∂k determine the
homotopy type of the gauge groups over the manifolds Ml,m.

By Proposition 2.3, if m = 0 the projectionMl,0
π−→ S4 induces an bijection between path components

of Map(Ml,0, BG) and those of Map(S4, BG). Therefore, the evaluation map induces a commutative
diagram

(4.21) G
φk
// Mapk∗(S

4, BG) //

π∗k
��

Mapk(S4, BG)
evk

//

π∗k
��

BG

G
∂k
// Mapk∗(Ml,0, BG) // Mapk(Ml,0, BG)

evk
// BG

which defines the map φk. We write ΩMapk(S4, BG) ' Gk(S4).

Proof of Theorem 1.1. We argue along the lines of [25]. Consider the restriction of the map

π∗ : Map∗(S
4, BG)→ Map∗(Ml,m, BG)

to the k-th component. By Lemma 4.2 there is a fibration sequence

(4.22) ΩMapk∗(Ml,0, BG)
δ∗−→ Map∗(Yl, G)→ Mapk∗(S

4, BG)
π∗k−→Mapk∗(Ml,0, BG).
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We identify Mapk∗(Ml,0, BG) ' Gk∗ (Ml,m). The left square in (4.21) along with (4.22) induce the following
homotopy commutative diagram

(4.23) ∗ //

��

Gk∗ (Ml,0)

��

Gk∗ (Ml,0)

δ∗

��

Gk(S4) // Gk(Ml,0)
h

//

��

Map∗(Yl, G)

��

Gk(S4) //

��

G
φk

//

∂k

��

Mapk∗(S
4, BG)

π∗k
��

∗ // Mapk∗(Ml,0, BG) Mapk∗(Ml,0, BG)

which defines the map h.
By Theorem 4.3 the map δ∗ has a right homotopy inverse which implies that the map h also has a

right homotopy inverse. The group structure on Gk(Ml,0) allows to multiply to obtain a composite

Gk(S4)×Map∗(ΣYl, BG)→ Gk(Ml,0)× Gk(Ml,0)→ Gk(Ml,0),

which is a homotopy equivalence.
If l ≡ 0 (mod 12) then by Lemma 4.2

Map∗(ΣYl, BG) ' Ω3G× Ω7G.

as required. �

Remark 4.5. The evaluation fibration induces exact sequences of homotopy groups

(4.24) · · · → πn(Gk∗ (Ml,0))
i∗−→ πn(Gk(Ml,0))

ev∗−−→ πn(G)→ · · ·

for all k ∈ Z. Given a simply connected simple compact Lie group we have πn(G) = 0 for n ≤ 2, which
implies that the map i∗ is an isomorphism for n ≤ 2. We can use these isomorphisms and Corollary 4.4
to compute the path components of unpointed gauge groups Gk(Ml,m). For example, for the manifolds
Ml,0 such that l ≡ 0 (mod 12), we compute the path components of the gauge groups using information
of the homotopy groups of Lie groups as given in [11]:

π0(Gk(Ml,0)) =


Z× Z× Z G = Spin(8)

Z× Z× Z2 G = Sp(n)(n ≥ 2), Spin(5)

Z× Z G = SU(n)(n ≥ 4), Spin(m)(m = 6, 7 or m ≥ 9)

Z G = F4, E6, E7, E8.

4.2. Non-torsion-free case. Now we focus on the case of gauge groups of principal G-bundles over
manifolds Ml,m for m ≥ 2, which have non-torsion-free homology. To obtain homotopy decompositions
it will be required that spaces are localised at a prime p ≥ 5. In this case we will obtain results for the
loop spaces of the gauge groups, ΩGk(Ml,m). As in the torsion-free case, the following lemma will be
required to identify the spaces that appear in the homotopy decomposition of the gauge groups.
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Lemma 4.6. There is a homotopy commutative diagram of cofibrations

(4.25) ∗ //

��

S7
� _

��

S7

γ

��

// ∗

��

// S8

��

S8

Σγ

��

Ml,m

g
// S4 ∨ S7 δ

//

pinch

��

S4 //

��

ΣMl,m
// S5 ∨ S8 Σδ

//

��

S5

��

Ml,m
π

// S4
q
// Cl,m // ΣMl,m

// S5
Σq

// ΣCl,m

which defines the space Cl,0 and the maps γ and δ. Furthermore, the map S5 Σq−−→ ΣCl,m is identified
with the composite

S5 m−→ S5 ↪→ ΣCl,m

and after localisation at p ≥ 5 there are homotopy equivalences

ΣCl,m '(p) S
5 ∨ S9.

Proof. Arguing along the lines of Lemma 4.1 there is a homotopy commutative diagram

(4.26) Ml,m
//

π

��

S4 ∨ S7

pinch
zz

S4

that we can extend to obtain a homotopy commutative diagram as shown in (4.25). Thus δ = β + γ

where β ∈ π4(S4) and γ ∈ π7(S4) ∼= Z × Z12. Using the long exact sequence that the middle row of
(4.25) induces in homology, we can see that β is the degree m map. Thus we can identify the map Σq

with the composite
S5 m−→ S5 ↪→ ΣCl,m.

The homotopy group π8(S5) becomes trivial after localisation at a prime p ≥ 5 [28]. Since ΣCl,m is
the homotopy cofibre of the map Σγ ∈ π8(S5), after localisation at a prime p ≥ 5 there is a homotopy
equivalence

ΣCl,m '(p) S
5 ∨ S9. �

By Proposition 2.3, the projection map induces a surjection between path components

(4.27) π∗ : [S4, BG] = π0(Map∗(S
4, BG))→ [Ml,m, BG] = π0(Map∗(Ml,m, BG)).

Moreover, the projection map induces the following fibration sequences

Map∗(ΣCl,m, BG)→ Map∗(S
4, BG)

π∗−→Map∗(Ml,m, BG),

F kl,m → Mapk̄∗(S
4, BG)

π∗k−→Mapk∗(Ml,m, BG),

where π∗k is the restriction of π∗ to the k-th component and F kl,m is the corresponding homotopy fibre.
More precisely, if m ≥ 2 then Map(Ml,m, BG) has m components and π∗ sends the k̄-th component of
Map(S4, BG) to the k-th component of Map(Ml,m, BG), where k is the reduction mod m of k̄.

Lemma 4.7. After localisation at a prime p ≥ 5, there is a fibration sequence

Ω9BG× Ω5BG
∗×m∗−−−−→ Ω5BG

π∗k−−→ ΩMap∗k(Ml,m, BG),

where m∗ is the m-th power map, and the map πk∗ is identified with the composite

ΩMap0
∗(S

4, BG)
Ωθk−−→ ΩMapk∗(S

4, BG)
Ωπ∗k−−−→ ΩMapk∗(Ml,m, BG),

where Ωθk is a homotopy equivalence.
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Proof. Applying the functor Map∗(−, BG) to the diagram in Lemma 4.25, we obtain a homotopy com-
mutative diagram of fibrations

(4.28) Map∗(Cl,m, BG) //

q∗

��

Map∗(S
4, BG)

γ∗
//

(m+γ)∗

��

Map∗(S
7, BG)

Map∗(S
4, BG) //

π∗

��

Map∗(S
4 ∨ S7, BG)

p2
∗
//

g∗

��

Map∗(S
7, BG)

��
Map∗(Ml,m, BG) Map∗(Ml,m, BG)

i∗

��

// ∗

Map∗(S
3, BG).

We can identify Map∗(S
4 ∨ S7, BG) with Map∗(S

4, BG) × Map∗(S
7, BG). The following diagram is

obtained by restricting the map i∗ to the k-th path component and composing with the map

θk × 1 : Ω4
0BG× Ω7BG→ Ω4

kBG× Ω7BG,

where θk is the homotopy equivalence given by ω 7→ µ ◦ (ω × k0) ◦∆ for fixed k0 ∈ Ω4
kBG, and 1 is the

identity map on Ω7BG:

(4.29) Map∗(Cl,m, BG) //

��

Ω4BG
γ∗

//

(θk×1)◦(m+γ)∗

��

Ω7BG

⊔
i∈Z Ω4

im+kBG
//

π∗k
��

(
⊔
i∈Z Ω4

im+kBG)× Ω7BG
p2
∗
//

g∗k
��

Ω7BG

��
Mapk∗(Ml,m, BG) Mapk∗(Ml,m, BG) // ∗

Here all rows and the middle and right columns, and hence the left column, are fibrations. Note that since
the projection map g∗ : Map∗(S

4, BG) → Map∗(Ml,m, BG) induces a surjection in path components,
the homotopy fibre of i∗ restricted to the k-th component is not path connected. Choose a basepoint
k̃ : Ml,0 → BG in

⊔
i∈Z Ω4

im+kBG. Then after looping we get

Ω(
⊔
i∈Z

Ω4
im+kBG) = Ω(Ω4

k̃
BG),

and also

Ω(
⊔
i∈Z

Ω4
im+kBG)× Ω7BG) = Ω(Ω4

k̃
BG× Ω7BG),

where Ω4
k̃
BG is the path component containing the map k̃. Observe that this result holds integrally.

Applying the functor Ω(−) to the previous diagram, we obtain the following homotopy commutative
diagram

(4.30) ΩMap0
∗(Cl,m, BG) //

q̃∗k
��

Ω5BG
Ωγ∗

//

Ω(m+γ)∗

��

Ω8BG

Ω5BG //

π∗k

��

Ω5BG× Ω8BG
p∗2
//

Ωg∗k
��

Ω8BG

��
ΩMapk∗(Ml,m, BG) ΩMapk∗(Ml,m, BG) // ∗
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where we have identified already Ω(Ω7BG) with Ω8BG, and Ω(Ω4
kBG) with Ω(Ω4

0BG) ' Ω(Ω4BG) '
Ω5BG for all k. Take adjoints in the diagram (4.30). The adjoint of Ωγ∗ is homotopic to (Σγ)∗.
Localising at a prime p ≥ 5 and using Lemma 4.6 we obtain a string of homotopy equivalences

ΩMap0
∗(Cl,m, BG) ' Map∗(ΣCl,m, BG) '(p) Ω9BG× Ω5BG,

and q̃∗k ' ∗ ×m∗, where m∗ is the m-th power map. �

Now we give results on the homotopy decomposition of the pointed gauge groups. Recall that for any
space X, the cofibration sequence Sn k−→ Sn → Pn+1(k) induces the following fibration sequence

Map∗(P
n+1(k), X)→ ΩnX

k∗−→ ΩnX,

where k∗ is the k-th power map. Let ΩnG{k} := Map∗(P
n+1(k), BG). The following is a result on the

pointed gauge groups.

Theorem 4.8. Let G be a simply connected simple compact Lie group with π6(G) = 0. Let Ml,m be the
total space of an S3-bundle over S4 such that m ≥ 2. Localising at a prime p ≥ 5 there are homotopy
equivalences

G0
∗(Ml,m) '(p) Ω3G{pr} × Ω7G,

and for all k ∈ Zm
ΩGk∗ (Ml,m) '(p) Ω4G{pr} × Ω8G,

where r = vp(m) is the valuation of m at p.

Proof. Observe that since Map∗(Ml,m, BG) is a pointed space with base point the constant map ∗ :

Ml,m → BG, there is a homotopy equivalence ΩMap0
∗(Ml,m, BG) ' Ω(Map∗(Ml,m, BG)). Localise at a

prime p ≥ 5 and let vp(m) = r. By Proposition 3.3, there is a homotopy equivalence

ΣMl,m '(p) P
5(pr) ∨ S8.

Thus we obtain a string of homotopy equivalences

ΩMap0
∗(Ml,m, BG) '(p) Ω(Map∗(Ml,m, BG)) '(p) Map∗(ΣMl,m, BG) '(p) Map∗(P

5(pr) ∨ S8, BG).

Taking adjoints we obtain

Map∗(P
5(pr) ∨ S8, BG) '(p) Map∗(P

4(pr) ∨ S7, G) '(p) Map∗(P
4(pr), G)×Map∗(S

7, G).

Since G0
∗(Ml,m) '(p) ΩMap0

∗(Ml,m, BG), we get G0
∗(Ml,m) '(p) Ω3G{pr} × Ω7G.

Now let Gk∗ (Ml,m) be a gauge group with k 6= 0. By Lemma 4.7 there is a fibration sequence

Ω9BG× Ω5BG
∗×m∗−−−−→ Ω5BG

π∗k−−→ ΩMapk∗(Ml,m, BG),

where m∗ is the m-th power map, and the map π∗k is identified with the composite

ΩMap0
∗(S

4, BG)
Ωθk−−→ ΩMapk∗(S

4, BG)
Ωπ∗k−−−→ ΩMapk∗(Ml,m, BG),

where θk : Ω4
0BG→ Ω4

kBG is a homotopy equivalence. Note that the homotopy fibre of the map ∗×m∗

is homotopy equivalent to Ω2Mapk∗(Ml,m, BG), which can be identified with the loop space of the pointed
gauge group, ΩGk∗ (Ml,m). Now identifying Ω5

0BG with ∗×Ω5
0BG it is straightforward to check that there

is a homotopy equivalence
ΩGk∗ (Ml,m) '(p) Ω4G{pr} × Ω8G,

as required. �

Given a nilpotent space X, let (πm(X))(p) be the localisation of the homotopy group πm(X) at a
prime p. Using the theory of homotopy groups with coefficient (see [20, Chapter 1]) and Theorem 4.8
we can compute the homotopy groups πn((G0

∗(Ml,m))(p)) and πn((ΩGk∗ (Ml,m))(p)). For n + j ≥ 2, let
πn+j(G;Zpr ) = [Pn+j(pr), G].
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Corollary 4.9. Let p ≥ 5 be a prime and vp(m) = r. For every n ≥ 0 there are isomorphisms

(1) πn((Gk∗ (Ml,m))(p)) ∼= πn+3(G;Zpr )⊕ (πn+7(G))(p), for k = 0;
(2) πn((ΩGk∗ (Ml,m))(p)) ∼= πn+4(G;Zpr )⊕ (πn+8(G))(p), for all k ∈ Zm. �

Now by Proposition 2.3, Ml,m
π−→ S4 induces a surjection π∗ : [S4, BG] → [Ml,m, BG] if m > 1.

Therefore, by the naturality of the evaluation map, we obtain a commutative diagram

(4.31) ΩG
Ωφk

// ΩMapk∗(S
4, BG) //

π∗k
��

ΩMapk(S4, BG)
evk

//

π∗k
��

G

ΩG
Ω∂k

// ΩMapk∗(Ml,m, BG) // ΩMapk(Ml,m, BG)
evk
// G

which defines the map Ωφk. Recall that if m ≥ 2 then Map(Ml,m, BG) has m components and

Map(S4, BG)
π∗k−→ Map(Ml,m, BG)

sends the k̄-th component of Map(S4, BG) to the k̄-th component of Map(Ml,m, BG), where k is the
mod m reduction of k̄.

Proof of Theorem 1.3. Localise all spaces at a prime p ≥ 5, so that π6(G) ∼= 0 for any simply connected
simple compact Lie group. Suppose that vp(m) = 0. Then M4

l,m = P 4(m) ' ∗ and therefore Ml,m ' S7.

Thus in this case there is only one principal G-bundle over Ml,m up to isomorphism, namely, the trivial
bundle. Since the map ev0 in (4.20) has a section and this is a principal fibration we obtain a p-local
homotopy equivalence

G0(Ml,m) '(p) Ω7G×G.

Now suppose that vp(m) ≥ 1. By Theorem 4.8, there is a homotopy equivalence

ΩGk∗ (Ml,m) '(p) Ω8G× Ω4G{m}.

Moreover, by Lemma 4.7 there is a fibration sequence

(4.32) Ω8G× Ω4G{m} δ∗
// Ω8G× Ω4G

∗×m∗
// Ω4G

πk
∗
// ΩMapk∗(Ml,m, BG) ' Gk∗ (Ml,m).

Here we identify Ω5BG with Ω4G and Ω9BG× Ω5BG with Ω8G× Ω4G. This implies that δ∗ ' 1× j,
where j is the inclusion map. The left-hand side square of the homotopy commutative diagram (4.31)
shows that the bottom square of the diagram (4.33) homotopy commutes. The whole diagram (4.33) is
generated taking fibres along the maps Ωφk, Ω∂k and π∗k, which defines the map h.

(4.33)

∗ //

��

Ω8G× Ω4G{m}

j′

��

Ω8G× Ω4G{m}

1×j
��

ΩGk(S4) // ΩGk(Ml,m)
h

//

��

Ω8G× Ω4G

∗×m∗

��

ΩGk(S4) //

��

ΩG
Ωφk

//

Ω∂k

��

Ω4G

π∗k
��

∗ // ΩMapk∗(Ml,m, BG) ΩMapk∗(Ml,m, BG)

Let h̄ be the composite

ΩGk(Ml,m)
h
// Ω8G× Ω4G

p1
// Ω8G,
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where p1 is the projection onto the first factor. The top square of (4.33) shows that h̄ has a right
homotopy inverse. Let Xk be the homotopy fibre of the map h̄. Then there is a homotopy equivalence

(4.34) ΩGk(Ml,m) '(p) Xk × Ω9BG.

Finally from (4.33) and (4.34) there exists a homotopy pullback square

Ω4G{m}

��

Ω4G{m}

��

ΩGk(S4) // Xk
//

��

Ω4G

m∗

��

ΩGk(S4) // ΩG
Ωφk

// Ω4G.

Let r = vp(m) and let q∗ be the connecting map of the fibration sequence

Ω3G{m} → Ω3G
m∗−−→ Ω3G.

Observe that after localisation q∗ ◦ Ωφk ' q∗ ◦ Ωφk
′
if k ≡ k′ (mod pr). It follows that if pr divides k

then q∗ ◦ Ωφk is nullhomotopic, and the map Ωφk lifts through m∗. Therefore, by the properties of the
pullback there is a map ζ : ΩG→ Xk which is a homotopy section. Thus in this case we have a splitting
Xk '(p) ΩG× Ω4G{m}. �

Remark 4.10. As in the torsion-free case, the inclusion of the pointed gauge group Gk∗ (Ml,m) ↪→ Gk(Ml,m)

induces isomorphisms πn(Gk∗ (Ml,0))
i∗−→ πn(Gk(Ml,0)) if n ≤ 2. Using Corollary 4.9 and the exact

sequence (see [20, Chapter 1])

(4.35) 0→ πn+3(G)⊗ Zpr → πn+3(G;Z)→ Tor(πn+2(G),Zpr )→ 0

we compute the path components of the p-localisations of G0(Ml,m) at p ≥ 5

π0((G0(Ml,m))(p)) =


Zpr × Z(p) × Z(p) G = Spin(8)

Zpr × Z(p) G = Sp(n)(n ≥ 2), SU(n)(n ≥ 4),

Spin(m)(m = 5, 6, 7 or m ≥ 9)

Zpr G = F4, E6, E7, E8.

Notice that if k 6= 0, we cannot compute π0((Gk(Ml,m))(p)) with our results.

5. Counting homotopy types of gauge groups over S7

In this section we discuss the classification of the homotopy types of the gauge groups over manifolds
Ml,m for m = 1. As all manifolds Ml,1 are homotopy equivalent to S7, the following results will be
expressed in terms of S7. The set PrinG(S7) of isomorphism classes of principal G-bundles over S7 is in
one-to-one correspondence with the set 〈S7, BG〉. Observe that, by connectivity of G, 〈S7, BG〉 = π6(G).

In Table 1 we collect information on the homotopy groups π6(G). Here G∗ is any of the simply connected
simple compact Lie groups not isomorphic to SU(3), G2 or SU(2) ∼= Sp(1).

G SU(2) SU(3) G2 G∗

π6(G) Z12 Z6 Z3 0
Table 1. Homotopy groups π6(G) of simply connected simple compact Lie groups G.
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Let Pk → S7 be a principal G-bundle classified by the map kε, where ε is a generator of the group
π6(G) and k ∈ Z|π6(G)|.We have seen already that as S7 is a co-H-space, there are homotopy equivalences

Mapk∗(S
7, BG) ' Map0

∗(S
7, BG),

which implies that there exist homotopy equivalences

Gk∗ (S7) ' G0
∗(S

7),

for all k ∈ π6(G). In what follows we discuss the results on the homotopy classification of the unpointed
gauge groups over S7.

Consider the fibration sequence

(5.1) Gk(S7) // G
∂̄k

// Mapk∗(S
7, BG) // Mapk(S7, BG)

ev
// BG

where ev is the evaluation map. In [15] Lang showed that the adjoint of the connecting map ∂̄k of the
evaluation fibration is a Whitehead product. Since there is a homotopy equivalence

Map∗(S
7, BG) ' Map∗(S

6, G),

we restate the result of Lang in terms of Samelson products.

Lemma 5.1 (Lang [15]). Let G be a simply connected simple compact Lie Group. The adjoint S6∧G ∂k−→
G of the composite

∂k : G
∂̄k

−→ Mapk∗(S
6, G)

'−→ Map0
∗(S

6, G)

is homotopic to the Samelson product 〈kε, 1G〉. �

It is clear that the order of ∂k is bounded by both the number of principal G-bundles and the order
of [Σ6G,G]. There is a general result proved by Theriault [24, Lemma 3.1], that can be used to get
information on the p-local homotopy types of the gauge groups. Let Y be an H-space with a homotopy
inverse, let k : Y → Y be the k-th power map, and let Fk be the homotopy fibre of the map k ◦ f , where
f : X → Y is a map of finite order m.

Lemma 5.2 (Theriault [24]). Let X be a space and Y be an H-space with a homotopy inverse. Suppose
there is a map X f→ Y of finite order m. If (m, k) = (m, k′) then Fk and Fk′ are homotopy equivalent
when localised rationally or at any prime. �

Now we are ready to give the proof on the classification of gauge groups on manifolds homotopy
equivalent to S7.

Proof of Theorem 1.4. Let ε be a generator of π6(G). Given a principal G-bundle over S7 classified
by an element kε ∈ π6(G), we identify the gauge group Gk(S7) and its classifying space BGk(S7) with
ΩMapk(S7, BG) and Mapk(S7, BG), respectively.

(1) Let G = SU(2). We identify the Lie group SU(2) with the unit quaternions S3. By Lemma
5.1, the adjoint ∂k of the connecting map ∂k is homotopic to the Samelson product 〈kε, ι3〉, where
ι3 : S3 → S3 is the identity map on S3. Observe that

〈kε, ι3〉 ∈ [Σ6G,G] = [Σ6S3, S3] ∼= π9(S3).

According to [28], π9(S3) ∼= Z3, and so the order of ∂k is at most 3. From the evaluation fibration

Ω6
0S

3 ' Mapk∗(S
7, BS3)

i
// Mapk(S7, BS3)

ev
// BS3
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we obtain the following commutative diagram

(5.2) π3(S3) //

∂k &&

π3(Ω6
0S

3) //

∼=
��

π3(Mapk(S7, BS3)) // 0,

[S6 ∧ S3, S3]

55

where ∂k(f) = 〈kε, f〉 for any f ∈ π3(S3) ∼= Z. Thus π3(Mapk(S7, BS3)) is isomorphic to the
cokernel of ∂k. Linearity of the Samelson product implies that 〈kε, ι3〉 ' k〈ε, ι3〉. Thus we only have
to determine the order of 〈ε, ι3〉, that is, the order of the adjoint of ∂1.

Notice that if Gk(S7) ' Gk′(S7) then πn(Gk(S7)) ∼= πn(Gk′(S7)) for all n ≥ 0. In particular, from
(5.2) we obtain

π2(Gk(S7)) ∼= π3(Gk(S7)) ∼= π3(Gk
′
(S7)) ∼= π2(Gk

′
(S7)).

The Samelson product 〈ι3, ι3〉 ∈ π6(S3) is a generator of π6(S3) ∼= Z12 [21]. Hence, the adjoint
of the map ∂1 is homotopic to the iterated commutator map 〈〈ι3, ι3〉, ι3〉 ∈ π9(S3) ∼= Z3. According
to [13, Theorem 2], SU(2) ∼= S3 localised at p = 3 is nilpotent of class 3. This implies that,
integrally, ∂1 ' 〈〈ι3, ι3〉, ι3〉 is essential and it is a generator of π9(S3). Let B = BS3 = HP∞ and
γ = 〈〈ι3, ι3〉, ι3〉. Since the map γ is a generator of π3(Ω7B) ∼= π9(S3) ∼= Z3, there are homotopy
commutative diagrams

(5.3) Gk(S7) //

'

��

S3
kγ

// Ω7B

h

��

Gk′(S7) // S3
k′γ

// Ω7B

if and only if (3, k) = (3, k′), where h : Ω7B → Ω7B is either the identity or the homotopy equivalence
defined by the rule x 7→ x−1.

(2) Let G = G2 and let ι : S3 ↪→ G2 be a generator of π3(G2). The map 〈ι, ι〉 represents a generator of
π6(G2) [18]. Thus we have ∂1 ' 〈〈ι, ι〉, 1G2〉 : S6 ∧G2 −→ G2. Consider the following composite

θ : S6 ∧ S3 1∧ι
// S6 ∧G2

〈〈ι,ι〉,1G2
〉
// G2.

Thus θ = 〈〈ι, ι〉, ι〉. We claim that θ is not nullhomotopic. Localise at p = 3. According to [11,
Chapter 19], there exists a p-local homotopy fibration

S3 ↪→ G2 −→ S11.

Thus by connectivity the map induced by the inclusion of the bottom cell into G2 induces a homo-
morphism i∗ : πm(S3)→ πm(G2) which is an isomorphism for m ≤ 9. By our previous argument, the
map 〈〈ι3, ι3, 〉, ι3〉 ∈ π9(S3) is essential at p = 3. Therefore the map θ has order 3. Thus θ generates
π9(G2) ∼= Z3. By definition, θ is the restriction of ∂1 to S6 ∧S3 ⊂ S6 ∧G2. Thus localising at 3, the
order of ∂1 is divisible by 3. Now, from Proposition 2.3 we know that PrinG2

(S7) = π6(G2) ∼= Z3.
Thus, as there are 3 isomorphism classes of principal G2-bundles over S7, the order of the map ∂1 is
at most 3. The upper and the lower bounds of the order of ∂1 coincide. Therefore the order of the
connecting map ∂1 is 3. Using an exact sequence as in (5.2) and the homotopy groups of spheres we
obtain an exact sequence

Z
∂k
// Z3

i∗
// π3(Mapk(S7, BG2)) // 0.

Therefore |coker∂k| = (3, k). Thus if π3(Mapk(S7, BG2)) ∼= π3(Mapk
′
(S7, BG2)) then (3, k) =

(3, k′).
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Finally a simple application of Lemma 5.2 shows that localised rationally or at any prime Gk(S7) '
Gk′(S7) whenever (3, k) = (3, k′) and G = G2.

(3) Suppose all spaces are localised at a prime p ≥ 3. We can get an upper bound on the order of ∂1

at a prime p ≥ 3 as follows. Integrally, the attaching map of the 5-cell in SU(3) has order 2 [19].
Therefore, after localising at p ≥ 3, there exist p-local homotopy equivalences

SU(3) ' S3 × S5

Σ6SU(3) ' S9 ∨ S11 ∨ S14

Using the previous equivalences we obtain

[Σ6SU(3), SU(3)] = [S9 ∨ S11 ∨ S14, S3 × S5]

= π9(S3 × S5)⊕ π11(S3 × S5)⊕ π14(S3 × S5)

From the homotopy groups of the spheres [28] we obtain [Σ6SU(3), SU(3)] ∼= Z2
3 ⊕ Z7. Let β be

the order of ∂1 ∈ [Σ6SU(3), SU(3)]. Then β divides |Z2
3 ⊕ Z7| = 63. We also have that β ≤

|PrinSU(3)(S
7)| = 6. Therefore the order of ∂1 localised at a prime p ≥ 3 is at most 3.

Localised at p = 3, the composite ι : S3 ↪→ SU(3) is a generator of π3(SU(3)). Let 〈ι, ι〉 be a
generator of π6(S3) ∼= π6(SU(3)) ∼= Z3. Consider the composite

S9 ∼= S6 ∧ S3 1∧ι
// S6 ∧ SU(3)

〈〈ι,ι〉,1SU(3)〉
// SU(3).

The element 〈〈ι, ι〉, ι〉 is non-trivial in π9(SU(3)) ∼= Z3. Therefore localised at p = 3 the map
〈〈ι, ι〉, ι〉 has order 3. Thus using an exact sequence as in (5.2), we see that if Gk(S7) ' Gk′(S7) then
(3, k) = (3, k′). Finally, applying Lemma 5.2 we complete the proof of (2).

(4) If G 6= SU(2), SU(3), G2 or Sp(1), then π7(BG) ∼= 0. Thus there is a single principal G-bundle over
S7 which must be the trivial bundle, implying that the map ∂1 is nullhomotopic. Therefore the
principal fibration

ΩMap∗(S
7, BG)→ G0(S7)→ G

splits and G0(S7) ' Ω7G×G. �

Remark 5.3. In [14], A. Kono obtained an integral classification of the homotopy types of SU(2)-gauge
groups over S4 by using information on the p-local homotopy types of the gauge groups for all primes
p along with fracture theorems for nilpotent spaces (see [16, Chapter 13]). In the case of SU(3) gauge
groups over S7, arguing along the lines of [14] it would be also possible to upgrade Theorem 1.4 for
G = SU(3) to an integral statement, if the order of the the connecting map ∂1 at p = 2 was known.
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