Field, James, Berry, Sam, Smith, Devin, Gates, James and Smith, Peter (2018) Improving the functionality of a laser writing system using software. Research Software Engineers Conference, University of Birmingham, United Kingdom. 03 Sep 2018.
Abstract
Laser writing is a method of fabricating ‘pipes’ inside glass that confine light, known as optical waveguides. This confinement allows interactions between individual photons to be controlled, an important feature for quantum optics experiments. For such experiments, the total optical loss in the system should be below 1.7dB[1]; minimising the total loss in these structures is very important for scalability. Waveguides can be created by translating a photosensitive glass sample under a focussed laser at a precise speed. 2D structures allow spatial control of how photons interact. Additionally periodic structures known as Bragg gratings cause light within a narrow predefined wavelength range to be reflected, allowing filtering and trapping of light.
Creating devices of a high enough standard to be useful requires a great deal of computational control. Currently this consists of a PC uploading code to an FPGA, which is connected to an air-bearing stage, which moves samples through a fixed laser beam. Complex coordinate transforms are difficult to implement and test in the current system due its use of AeroBasic (a CNC language modified from G-Code); as a result this work follows an upgrade to control the system using a custom library written in C++.
Full text not available from this repository.
More information
Identifiers
Catalogue record
Export record
Contributors
University divisions
- Current Faculties > Faculty of Engineering and Physical Sciences > Zepler Institute for Photonics and Nanoelectronics > Nanophotonics Group > Photonic Systems Circuits and Sensors Group
Zepler Institute for Photonics and Nanoelectronics > Nanophotonics Group > Photonic Systems Circuits and Sensors Group - Faculties (pre 2018 reorg) > Faculty of Physical Sciences and Engineering (pre 2018 reorg) > Optoelectronics Research Centre (pre 2018 reorg)
Current Faculties > Faculty of Engineering and Physical Sciences > Zepler Institute for Photonics and Nanoelectronics > Optoelectronics Research Centre (pre 2018 reorg)
Zepler Institute for Photonics and Nanoelectronics > Optoelectronics Research Centre (pre 2018 reorg)
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.