
EFFICIENT RASPBERRY PI IMPLEMENTATION OF A SISO ACTIVE CONTROL SYSTEM
USING PYTHON

Charlie House, Jordan Cheer

Institute of Sound and Vibration Research, University of Southampton

ABSTRACT

Active control systems are used in many applications to re-
duce a disturbance signal with the addition of control sources.
Commonly, these systems are run on dedicated Digital Sig-
nal Processing (DSP) hardware, designed to run such tasks
efficiently and with minimal system latency. Whilst these
dedicated platforms are effective, they can be costly and are
therefore limiting in many applications. This paper presents
a Python implementation of an adaptive Single Input Single
Output (SISO) feedforward active control system, which is
sufficiently efficient to run in realtime on the low-cost Rasp-
berry Pi micro-computing platform. The use of the popular
Python programming language makes the system accessible
to non-experts, and the wide range of modules available for
Python open up significant opportunities for integration with
other systems.

Index Terms— Active Noise Control, Python, Raspberry
Pi, Block-LMS

1. INTRODUCTION

Recent advancements in computer design have resulted in
fairly high-speed processor boards (such as the Raspberry-
Pi) becoming readily available at a very low cost. This has
changed the way computers are seen by society, with many
people now seeing micro-computers as a practical and af-
fordable way of solving every day problems. Increased use
of open-source software sharing sites, such as GitHub, have
enabled novice programmers to readily gain access to high
quality code, allowing them to write more complex software
whilst developing their skills. The combination of these two
developments has caused a birth in ‘smart-home’ tech, with
companies such as Apple [1], Amazon [2], and Google [3] all
developing platforms to allow low-cost consumer electronic
devices to communicate with one another. This phenomena,
known as the Internet-Of-Things (IOT), enables non-experts
to develop custom software and hardware to do all manner
of basic tasks based on other sensors; for example turning
the lights on when someone’s phone GPS senses they are
near their house, or setting the television to mute when they
receive a phone call.

Active control systems are also becoming increasingly
common, with many companies selling low-cost consumer
products incorporating an active element [4, 5]. Currently,
however, there is no simple method to easily incorporate ac-
tive control technology into a network of connected devices
within the home. These systems are usually developed on
costly algorithm-prototyping platforms such as dSPACE [6],
before the production versions are implemented on a dedi-
cated DSP board, such as Field Programmable Gate Array
(FPGA) boards [7, 8]. Whilst there are toolboxes available
to compile MATLAB code onto these boards [9], optimal
performance is usually obtained by manually coding the al-
gorithms in a low-level programming language such as C++
[8].

This paper will investigate an implementation of a single-
channel, single-frequency feedforward active control system
written in Python, and capable of running on a Raspberry-Pi.
Such a system would be very cheap to implement, and the
simplicity of the Python programming language will allow
easy integration with other smart devices or systems. Initially
the Block-FxLMS algorithm will be discussed, and the effect
of frame size on convergence time and computational load
will be investigated. Secondly, the hardware and software re-
quired to develop the active control system will be discussed,
before the performance of the system is analysed.

2. THE BLOCK-FXLMS ALGORITHM

The FxLMS algorithm is an adaptive method used to min-
imise a given error function by adjusting a set of filter weights.
It is commonly used in many Active Control applications,
where the disturbance signal is time variant and therefore a
control signal must be calculated in real-time, based on a
measured error signal. In this case, the reference signal x is
filtered by a set of weights w, which are dynamically adjusted
by the FxLMS algorithm to minimise a given error signal e as
shown in Figure 1 where d is the primary disturbance signal.

The filter coefficients w begin from a pre-determined ini-
tial state (usually all set to 0), and are then updated, at each
sample, by [10]



wx

r

Reference 
Signal

Physical Plant
d

eΣ

+

+
G

Plant Model
LMSG

Fig. 1. A schematic diagram of the adaptive feedforward
FxLMS algorithm.

w(n+ 1) = w(n)− αe(n)r(n) (1)

where e(n) is the error at the current step and x(n) is the
reference signal at the current step.

To execute this algorithm in real-time on a single-sample

DSP board, the controller has one sample period, Ts =
1

fs
seconds to read one sample of error signal from the ADC,
calculate the updated control filter weights, generate the fil-
tered reference signal and then write this signal to the DAC.
This is fairly simple to achieve with low-level programming
languages such as C++, where the code is compiled to effi-
ciently run on a fast processor, however with non-compiled,
and higher level, code such as Python, or when running
the control algorithm on a low-power processor such as the
Raspberry Pi, this is more challenging. For this reason, many
real-time processing tasks work on frames of data rather than
individual samples [11, 12].

With a frame based processing architecture, the proces-
sor reads N samples from the ADC and stores the data in a
buffer. All processing steps are then run on this vector of data,
before each sample is written to the DAC at the correct time
to achieve smooth and continuous playback. While a per sam-
ple based algorithm has Ts seconds in which to carry out the
above tasks, a frame based algorithm has NTs seconds, where
N is the length of the frame, giving the processor an increased
window within which to complete the necessary processing
steps. The Block-FxLMS algorithm is a modification of the
standard FxLMS algorithm outlined above, designed to up-
date the filter weights every N samples. This has significant
advantages in computational cost, however, the controller has
to wait for a longer duration before receiving an updated er-
ror signal, resulting in a slower convergence time. The update
equation for the Block-FxLMS algorithm with a frame-size
of N samples is [12, 13, 14]

w(n+N) = w(n)− α

N

N−1󰁛

i=0

e(i)r(i) (2)

where 1 < i < N is the sample index within the frame.

2.1. Effect of Frame Size

To investigate the effect of the frame size on both the com-
putational load and convergence time, an offline time-domain
model of the Block-FxLMS algorithm has been implemented.
Specifically, a Single-Input-Single-Output (SISO) feedfor-
ward tonal controller, running at fs = 48kHz, with a distur-
bance at 250Hz has been implemented. The plant response
used in the model was defined as the response measured
between a loudspeaker and a microphone in a reverberant
environment at 250Hz. All of the results presented in this
section have been computed using MATLAB R2017a run-
ning on a 2013 MacBook Pro with a dual-core 2.8 GHz Intel
Core i7 processor.

An investigation has initially been conduced into the ef-
fect of the frame size on the computational demand. The
frame size has been increased from 1 sample to 1024 sam-
ples, increasing in powers of 2, and in each case the modelled
Block-FxLMS algorithm has been run for 30sec and the re-
quired CPU-time has been measured. This has been carried
out 10 times for each frame size and the results averaged, to
reduce the influence of processor demand from other unre-
lated tasks. The average compute time is shown in Figure 2
for increasing frame size. From these results it can be seen
that increasing the frame size from 1 to around 128 results in
a significant reduction in the computational load, whilst fur-
ther increases in the frame size offer diminishing returns.

100 200 300 400 500 600 700 800 900 1000
Frame Size

10-3

10-2

10-1

100

C
PU

 T
im

e 
(s

)

Fig. 2. The effect of frame size on the CPU load of the Block-
FxLMS algorithm.

The effect of frame size on the convergence time of the
FxLMS algorithm has also been investigated. The conver-
gence time has been defined as the time taken for the algo-
rithm to achieve a 20 dB reduction in the error signal, and
this has been measured for a range of frame sizes. In each
case, the convergence coefficient α was set to achieve the
fastest possible convergence speed for the given frame size.
The results are presented in Figure 3, with the convergence



time normalised to the convergence time for a frame-size of
1. From these results it can be seen that increasing the frame
size results in a significant increase in the convergence time.

0 200 400 600 800 1000
Frame Size

100

101

102

C
on

ve
rg

en
ce

 T
im

e 
R

el
at

iv
e 

to
 S

ta
nd

ar
d 

LM
S

Fig. 3. The effect of frame size on the convergence time of
the Block-FxLMS algorithm.

From the results presented in Figures 2 and 3, it is clear
that the frame-size can be used to reach a trade-off between
computational load and convergence time. For a particular
hardware setup, it can also be used to achieve the minimum
convergence time whilst ensuring data-overrun errors do not
occur [15]. The frame-size that gives the minimum conver-
gence time whilst providing sufficient computational time can
be found by comparing the results presented in Figure 2 to the
maximum available processing time per frame NTs seconds,
and this is shown in Figure 4. It can be seen for this MAT-
LAB implementation of the Block-FxLMS algorithm, run-
ning on the specific hardware detailed previously, the frame-
size should be at least 512 samples to maintain computational
stability.

100 200 300 400 500 600 700 800 900 1000
Frame Size

10-5

10-4

10-3

10-2

10-1

100

Ti
m

e 
(s

)

Computation Time
Time per Frame

Fig. 4. A comparison between the required computational
time and the available processing time for a range of block
sizes.

3. PYTHON IMPLEMENTATION OF A SISO
FEEDFORWARD CONTROLLER

A real-time implementation of the Block-FxLMS algorithm
discussed above will now be introduced. An adaptive feedfor-
ward single-tone controller is designed, and the performance
of an Active Noise Control system using this controller is
discussed.

A Raspberry-Pi 3B, running the Raspbian Linux dis-
tribution, is connected to a Focusrite 2i4 USB-soundcard
acting as both an ADC and a DAC. The PyAudio package
within Python-3 is used to handle the audio IO tasks, with the
Numpy package being used to implement Equation 2, with
the audio samples being represented as 32bit floating point
values. The control algorithm is run in a callback function;
being called with each frame of input data as shown in Figure
5.

AD Conversion

Error Signal

Control Signal

1

n

DA Conversion

LMS
Callback Function

LMS Callback Function

N-Sample Buffer

Generate Ref. SignalFilter Weights

Filter Ref. Signal

LMS Update

N-Sample Buffer

n

1

Fig. 5. A schematic diagram of the Python implementation of
the Block-FxLMS control algorithm.

The use of a callback function ensures the CPU runs the
control algorithm in a separate processor thread to the main
program. This allows the computational overheads for the
realtime stream (input/output buffers, PortAudio drivers for
the ADC/DAC etc) to run separately to the control algorithm,
increasing computational efficiency and therefore allowing
for reduced frame sizes or increased sampling frequencies.

To investigate the performance of the system discussed
above, an experimental setup has been created in a labora-
tory. A loudspeaker emitting a tone was used as the primary
disturbance, whilst a low-budget microphone and secondary
loudspeaker were connected to the Focursite sound-card and
the Raspberry Pi to form the ANC system, as shown in Figure
6. The system was run at fs = 44.1kHz, with a frame size of
1024 samples. Equation 2 was adapted to include a leakage
term β, as shown in Equation 3, which has been set to a value
of β = 1× 10−4, and provides regularisation to the system to



increase robustness to error.

w(n+N) = (1− βα)w(n)− α

N

N󰁛

i=1

e(i)r(i) (3)

Fig. 6. Experimental laboratory setup.

3.1. Results

The above experimental setup was used to assess the per-
formance of the active control system at 100Hz, 150Hz and
250Hz. In each case, the controller was enabled after 2 sec-
onds, with the error signal being recorded for a further 28s
to measure the convergence. The achieved attenuation in the
error signal at each frequency is presented in Table 1, and the
convergence plots are given in Figure 7, with a dashed line
indicating the time at which the controller was enabled.

Frequency (Hz) Attenuation (dB)
100 21.8
150 13.3
250 30.4

Table 1. Measured attenuation performance of the Active
Control system.

It can be seen from Figure 7 and Table 1 that the con-
troller is able to achieve significant reductions in the error
signal at all frequencies considered, effectively reducing the
disturbance signal to the background noise level in each case,
as expected for a SISO controller.

4. CONCLUSIONS

There is a demand for low-cost simple active noise control
systems to support the growing trend for ‘smart-devices’ and

Fig. 7. Time history of the error signal when the active control
system is run at three different frequencies. The dashed line
indicates the time at which the controller was enabled.

the Internet of Things. The Block-FxLMS algorithm can be
used in this case, which achieves a significant reduction in
the computational demand when compared to the standard
FxLMS algorithm. The Block-FxLMS algorithm has been
discussed, and the effect of frame size on the convergence
time and processor load has been investigated. It was found
that increasing the frame size significantly decreases the
required computation time, but in doing so sacrifices conver-
gence speed.

An efficient implementation of the Block-FxLMS al-
gorithm has been implemented in Python, and a proof-of-
concept system has been created using a Raspberry Pi and
other low-cost hardware. The performance of this system
has been investigated in a laboratory setup, and significant
reductions in the acoustic error signal were achieved.

Whilst the system discussed here is only a single-channel
tonal controller, the software structure outlined in Figure 5
could be adapted relatively easily to utilise multiple error
sensors and control sources, potentially enabling global con-
trol of a soundfield to be achieved [16]. There is also an
interest in implementing a broadband controller, however it
has been noted that the latency of the USB soundcard and the
large-block size needed to run on a Raspberry Pi may make
this non-trivial. A frequency domain implementation of the
Block-FxLMS algorithm may be beneficial in this instance,
as it could achieve reductions in the computational demand
of many orders of magnitude [17, 18, 19].

All python scripts discussed in this paper can be down-
loaded and used free of charge from GitHub at https://
github.com/CharlieHouse/RPi_SISO_ANC.

https://github.com/CharlieHouse/RPi_SISO_ANC


5. REFERENCES

[1] Apple, “Apple HomeKit.” [Online]. Available:
https://www.apple.com/uk/ios/home/

[2] Amazon, “Amazon Alexa.” [Online]. Available:
https://www.amazon.com/b?node=16067214011

[3] Google, “Google Home.” [Online]. Available:
https://store.google.com/gb/product/google{ }home

[4] Bose Corporation, “Bose Noise Cancelling
Headphones.” [Online]. Available:
https://www.bose.co.uk/en{ }gb/products/headphones/
noise{ }cancelling{ }headphones.html

[5] Sony Europe, “Sony Wireless Noise Cancelling
Headphones.” [Online]. Available: https://www.sony.
co.uk/electronics/headband-headphones/wh-1000xm2

[6] DSPACE, “dSPACE Prototyping Systems.” [Online].
Available: https://www.dspace.com/en/inc/home/
products/systems/functp.cfm

[7] C. Dick and F. Harris, “FPGA signal processing using
Sigma-Delta modulation,” IEEE Signal Processing
Magazine, vol. 17, no. 1, pp. 20–35, 2000.

[8] R. Woods, J. McAllister, Y. Yi, and G. Lightbody,
FPGA-based Implementation of Signal Processing
Systems. John Wiley & Sons, 2008.

[9] Z. German-Sallo, “Signal Processing using FPGA
Structures,” Procedia Technology, vol. 12, pp. 112–118,
2014. [Online]. Available: http://linkinghub.elsevier.
com/retrieve/pii/S2212017313006488

[10] S. J. Elliott, Signal Processing for Active Control.
Academic Press, 2001.

[11] Burrus, “Block Implementation of Digital Filters,”
vol. c, 1971.

[12] G. Clark, S. Mitra, and S. Parker, “Block
implementation of adaptive digital filters,” IEEE
Transactions on Circuits and Systems, vol. 28, no. 6,
pp. 584–592, 1981. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=1085018

[13] P. Vikram Kumar, K. Prabhu, and D. Das, “Block
filtered-s least mean square algorithm for active control
of non-linear noise systems,” IET Signal Processing,
vol. 4, no. 2, p. 168, 2010. [Online]. Available:
http://digital-library.theiet.org/content/journals/10.
1049/iet-spr.2008.0157

[14] E. Ferrara, “Fast implementations of LMS adaptive
filters,” IEEE Transactions on Acoustics, Speech, and
Signal Processing, vol. 28, no. 4, pp. 474–475, 1980.
[Online]. Available: http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=1163432

[15] L. Hsieh and S. Wood, “Performance Analysis of Time
Domain Block LMS Algorithms,” IEEE, 1993.

[16] S. C. Douglas, “Fast implementations of the filtered-X
LMS and LMS algorithms for multichannel active
noise control,” IEEE Transactions on Speech and Audio
Processing, vol. 7, no. 4, pp. 454–465, 1999.

[17] D. P. Das, G. Panda, and D. K. Nayak, “Development
of Frequency Domain Block Filtered-s LMS (
FBFSLMS ) Algorithm for Active Noise Control
System,” Spectrum, pp. 289–292, 2006.

[18] M. Chakraborty and R. Shaik, “The block LMS
algorithm and its FFT based fast implementation - New
efficient realization using block floating point
arithmetic,” European Signal Processing Conference,
vol. 2, no. Eusipco, pp. 0–4, 2006.

[19] N. K. Rout, D. P. Das, and G. Panda, “Computationally
efficient algorithm for high sampling-frequency
operation of active noise control,” Mechanical Systems
and Signal Processing, vol. 56, pp. 302–319, 2015.
[Online]. Available:
http://dx.doi.org/10.1016/j.ymssp.2014.10.009

https://www.apple.com/uk/ios/home/
https://www.amazon.com/b?node=16067214011
https://www.sony.co.uk/electronics/headband-headphones/wh-1000xm2
https://www.dspace.com/en/inc/home/products/systems/functp.cfm
http://linkinghub.elsevier.com/retrieve/pii/S2212017313006488
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1085018
http://digital-library.theiet.org/content/journals/10.1049/iet-spr.2008.0157
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1163432
http://dx.doi.org/10.1016/j.ymssp.2014.10.009

