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Abstract
Purpose MYC transcription factor has critical roles in cell growth, proliferation, metabolism, differentiation, transformation 
and angiogenesis. MYC overexpression is seen in about 15% of breast cancers and linked to aggressive phenotypes. MYC 
overexpression also induces oxidative stress and replication stress in cells. ATM signalling and ATR-mediated signalling 
are critical for MYC-induced DNA damage response. Whether ATM and ATR expressions influence clinical outcomes in 
MYC overexpressed breast cancers is unknown.
Methods We investigated ATM, ATR and MYC at the transcriptional level [Molecular Taxonomy of Breast Cancer Inter-
national Consortium cohort (n = 1950)] and at the protein level in the Nottingham series comprising 1650 breast tumours. 
We correlated ATM, ATR and MYC expressions to clinicopathological features and survival outcomes.
Results In MYC over expressed tumours, high ATR or low ATM levels were associated with aggressive breast cancer fea-
tures such as higher tumour grade, de-differentiation, pleomorphism, high mitotic index, high-risk Nottingham Prognostic 
Index, triple negative and basal-like breast cancers (all adjusted p values < 0.05). Tumours with low ATM or high ATR levels 
in conjunction with MYC overexpression also have worse overall breast cancer-specific survival (BCSS) (p value < 0.05).
Conclusions We conclude that ATR/ATM-directed stratification and personalisation of therapy may be feasible in MYC 
overexpressed breast cancer.
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Background

The c-MYC transcription factor has critical roles in cell 
growth, proliferation, metabolism, differentiation, transfor-
mation and angiogenesis. Overexpression of c-MYC (hence-
forth MYC) is frequently observed in several solid tumours 
implying a critical role in tumorigenesis and progression. 
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In addition, MYC overexpression is linked to resistance to 
chemotherapy and radiotherapy [5, 12, 15, 17, 19, 27, 35, 
37]. In breast cancers, MYC gene amplification (15%), MYC 
mRNA overexpression (22–35%) and MYC protein overex-
pression (40%) have been reported. MYC overexpression has 
been linked to specific subtypes of aggressive breast cancers 
[7, 16, 21, 38].

Overexpression of MYC and resultant oncogenic stress 
can induce DNA damage and impact genomic stability. 
MYC-induced oxidative stress leads to oxidative DNA 
base damage [6]. In addition, MYC overexpression can also 
promote replication stress in cells [17]. Ataxia telangiec-
tasia-mutated kinase (ATM) and ataxia telangiectasia and 
Rad3-related kinase (ATR) are critical for c-MYC-induced 
DNA damage response [18, 24, 32]. ATR is activated and 
recruited to sites of single-stranded (ss) double-stranded (ds) 
DNA damage, during nucleotide excision repair, at resected 
double-strand breaks and stalled replication forks. Activated 
ATR in turn phosphorylates Chk1 at  Ser345 and  Ser317, as 
well as several other target proteins involved in DNA repair 
and cell cycle progression [18, 24, 32]. ATM kinase is acti-
vated in response to DNA damage [34]. A key substrate of 
ATM is Chk2 whose phosphorylation at Thr68 results in 
activation and phosphorylation of a several proteins involved 
in DNA repair, recombination, cell cycle progression and 
apoptosis [34].

In the current study, we comprehensive investigated 
ATM, ATR and MYC expressions at the transcriptional 
levels (n = 1950) and at the protein level (n = 1650) breast 
tumours. We show that ATM and ATR levels have clinico-
pathological, predictive and prognostic significance in MYC 
overexpressed breast cancer.

Methods

Tissue culture and western blotting

Cell lines were purchased from American Type Culture 
Collection (ATCC, Manassas, USA). MDA-MB-231 and 
MDA-MB-468 cells were cultured in minimum essential 
amino acids medium supplemented with 1% L-glutamine 
and 1% non-essential amino acids. T47D cells were cul-
tured in Dulbecco’s Modified Eagle’s medium. MCF-7 
cells were grown in RPMI medium. All media were sup-
plemented with 10% FBS and 1% penicillin streptomycin. 
Protein samples were prepared by lysing cells in RIPA buffer 
(Sigma–Aldrich) containing protease inhibitor (Sigma) and 
phosphatase inhibitor cocktail 1 and 2 (Sigma). Samples 
were run on SDS-PAGE gel (4–12%) bis-tris. Antibodies 
used were anti-MYC antibody (abcam, clone 9E10), ATM 
antibody (abcam clone Y170) and ATR antibody (cell sig-
nalling cat.no 2790S). Protein detection and quantification 

were determined by scanning the membranes on Licor-
Odyssey’s Scanner (Licor, Biosciences) at the predefined 
intensity fluorescence.

MYC, ATM and ATR  mRNA expressions in breast 
cancer

MYC, ATM and ATR  mRNA expressions were investigated 
in METABRIC (Molecular Taxonomy of Breast Cancer 
International Consortium) cohort. The METABRIC study 
protocol, detailing the molecular profiling methodology in a 
cohort of 1977 breast cancer samples is described by Curtis 
et al. [14]. Patient demographics are summarised in Sup-
plementary Table S1 of supporting information. ER-positive 
and/or lymph node-negative patients did not receive adju-
vant chemotherapy. ER-negative and/or lymph node-positive 
patients received adjuvant chemotherapy. For this cohort, 
the mRNA expression was hybridised to Illumina HT-12 v3 
platform (Bead Arrays), and the data were pre-processed and 
normalised as described previously. Samples were classified 
into the intrinsic subtypes based on the PAM50 gene list. A 
description of the normalisation, segmentation and statisti-
cal analyses was previously described [14]. Real-time RT-
qPCR was performed on the ABI Prism 7900HT sequence 
detection system (Applied Biosystems) using SYBR1 Green 
reporter. All the samples were analysed as triplicates. The 
Chi-square test was used for testing association between cat-
egorical variables, and a multivariate Cox model was fitted 
to the data using as endpoint breast cancer-specific death. 
X-tile (Version 3.6.1) was used to identify a cut-off in gene 
expression values such that the resulting subgroups had sig-
nificantly different survival courses.

MYC, ATM and ATR protein expressions in breast 
cancer

The study was performed in a consecutive series of 1650 
patients with primary invasive breast carcinomas who were 
diagnosed between 1986 and 1999 and entered into the Not-
tingham Tenovus Primary Breast Carcinoma series. Patient 
demographics are summarised in Supplementary Table S2. 
This is a well-characterised series of patients with long-term 
follow-up that have been investigated in a wide range of 
biomarker studies [1, 2, 21]. All patients were treated in a 
uniform way in a single institution with standard surgery 
(mastectomy or wide local excision), followed by Radio-
therapy. Prior to 1989, patients did not receive systemic 
adjuvant treatment (AT). After 1989, AT was scheduled 
based on prognostic and predictive factor status, including 
Nottingham Prognostic Index (NPI), oestrogen receptor-α 
(ER-α) status, and menopausal status. Patients with NPI 
scores of < 3.4 (low risk) did not receive AT. In pre-
menopausal patients with NPI scores of ≥ 3.4 (high risk), 
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classical Cyclophosphamide, Methotrexate, and 5-Fluo-
rouracil (CMF), chemotherapy was given; patients with 
ER-α-positive tumours were also offered endocrine therapy. 
Postmenopausal patients with NPI scores of ≥ 3.4 and ER-α 
positivity were offered endocrine therapy, while ER-α-
negative patients received classical CMF chemotherapy. 
Median follow-up was 111 months (range 1–233 months). 
Survival data, including breast cancer-specific survival 
(BCSS), disease-free survival (DFS), and development of 
loco-regional and distant metastases (DM), were maintained 
on a prospective basis. DFS was defined as the number of 
months from diagnosis to the occurrence of local recur-
rence, local lymph node (LN) relapse or DM relapse. Breast 
cancer-specific survival (BCSS) was defined as the number 
of months from diagnosis to the occurrence of BC-related 
death. Local recurrence-free survival (LRS) was defined 
as the number of months from diagnosis to the occurrence 
of local recurrence. DM-free survival was defined as the 
number of months from diagnosis to the occurrence of DM 
relapse. Survival was censored if the patient was still alive 
at the time of analysis, lost to follow-up, or died from other 
causes.

Tumour Marker Prognostic Studies (REMARK) crite-
ria, recommended by McShane et al. [28], were followed 
throughout this study. Ethical approval was obtained from 
the Nottingham Research Ethics Committee (C202313).

Tissue microarrays (TMAs) 
and immunohistochemistry (IHC)

Tumours were arrayed in tissue microarrays (TMAs) con-
structed with 0.6 mm cores sampled from the periphery of 
the tumours. The TMAs were immunohistochemically pro-
filed for MYC, ATM and ATR and other biological antibod-
ies as previously described [1, 2, 21]. Immunohistochemi-
cal staining was performed using the Thermo Scientific 
Shandon Sequenza chamber system (REF: 72110017), in 
combination with the Novolink Max Polymer Detection 
System (RE7280-K: 1250 tests), and the Leica Bond Pri-
mary Antibody Diluent (AR9352), each used according to 
the manufacturer’s instructions (Leica Microsystems). Leica 
Autostainer XL machine was used to dewax and rehydrate 
the slides. Pre-treatment antigen retrieval was performed 
on the TMA sections using sodium citrate buffer (pH 6.0) 
and heated for 20 min at 95 °C in a microwave (Whirpool 
JT359 Jet Chef 1000W). A set of slides were incubated for 
18 h at 4 °C with the primary mouse monoclonal anti-ATM 
antibody, clone Y170 (Ab32420, Abcam, Cambridge, UK), 
at a dilution of 1:100. A set of slides were incubated for 
18 h at 4 °C with the primary mouse monoclonal anti-ATR 
antibody, clone 1E9 (H00000545-M03, Novus Biologi-
cals, Cambridge, UK), at a dilution of 1:20. A set of slides 
were incubated for 45 min at 4 °C with mouse monoclonal 

primary antibody for c-MYC (Clone 9E100; Abcam Ltd) at 
a dilution of 1: 100.

Evaluation of immune staining

Whole field inspection of the core was scored and intensities 
of nuclear staining were grouped as follows: 0 = no staining, 
1 = weak staining, 2 = moderate staining, 3 = strong staining. 
The percentage of each category was estimated (0–100%). 
H-score (range 0–300) was calculated by multiplying inten-
sity of staining and percentage staining. X-tile (version 
3.6.1, Yale University, USA) was used to identify a cut-off 
for ATM protein expression. The percentage of positive cells 
was used, with a cut-off of < 25% cells being classed as 
low, and ≥ 25% as high for ATM protein level. X-tile (ver-
sion 3.6.1, Yale University, USA) was used to identify a 
cut-off for protein expression. H-score of ≥ 60 was taken as 
the cut-off for high ATR expression. Assessment of MYC 
staining was estimated subjectively on intensity correspond-
ing to negative, weak, moderate and strong nuclear and/or 
cytoplasmic staining. Dichotomisation of c-MYC protein 
expression was based on the mean resulting in negative/
weak (MYC negative) and moderate/strong (MYC positive) 
groups, which were selected prior to analysis.

Statistical analysis

Data analysis was performed using SPSS (SPSS, version 
17 Chicago, IL). Where appropriate, Pearson’s Chi-square, 
Fisher’s exact, Student’s t and ANOVA one-way tests were 
used. Cumulative survival probabilities were estimated using 
the Kaplan–Meier method, and differences between survival 
rates were tested for significance using the log-rank test. 
Multivariate analysis for survival was performed using the 
Cox proportional hazard model. The proportional hazards 
assumption was tested using standard log–log plots. Hazard 
ratios (HR) and 95% confidence intervals (95% CI) were 
estimated for each variable. All tests were two-sided with 
a 95% CI and a p value < 0.05 considered significant. For 
multiple comparisons, p values were adjusted according to 
Benjamini–Hochberg method [23].

Results

We initially performed western blots in a panel of breast 
cancer cell lines to confirm the specificity of antibodies for 
IHC in the current study. As shown in Fig. 1a, the antibodies 
tested were not only specific but also demonstrated a spec-
trum of protein expression levels across various breast can-
cer cell lines (Supplementary Fig. S1). We then proceeded 
to investigate MYC, ATR and ATM protein levels in clinical 
breast carcinoma samples.
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High ATR promotes aggressive phenotypes in MYC 
overexpressed breast cancers

A total of 793 tumours were suitable for ATR and MYC 
protein co-expression analyses (Fig. 1b). Tumours with 
high MYC and high ATR expressions were significantly 
associated with vascular invasion, higher tumour grade, 
pleomorphism, high mitotic index and high-risk Notting-
ham Prognostic Index (NPI) (all adjusted p values ≤ 0.01) 
(Table 1).

At the transcriptomic level (Table 2), tumours with 
high MYC mRNA and high ATR  mRNA expression were 
also associated with higher tumour grade, high-risk Not-
tingham Prognostic Index (NPI), ER−, PR−, Genefu 
subtype (ER−/Her-2−), triple negative and PAM50.
Basal phenotypes (all adjusted p values ≤ 0.01). Interest-
ingly, Genufu subtype (ER+/HER-2−/low proliferation), 

Her-2+, PAM50.Her-2 subtype and PAM50.Luminal A 
subtype were more common in tumours with low MYC 
mRNA and low ATR  mRNA expressions (all adjusted p 
values ≤ 0.01).

We then investigated the prognostic significance of 
MYC-ATR co-expression in breast cancers. In the whole 
cohort, as shown in Fig. 1c, f, patients with MYC overex-
pressed tumours and high ATR protein or mRNA expres-
sion had a worse overall breast cancer-specific survival 
(BCSS) (p < 0.001). In ER + breast cancer, similarly, MYC 
overexpressed tumours with high ATR levels are associ-
ated with worse survival (p < 0.001) (Fig. 1d) including in 
patients who received endocrine therapy (Supplementary 
Figs. S2B and S2F). In ER- tumours, MYC overexpressed 
tumours with high ATR protein levels had the worst sur-
vival (Fig. 2e). Together the data show that MYC-ATR co-
expression has prognostic significance in breast cancers.

Fig. 1  a Western blot of c-MYC, ATM and ATR expressions in breast cancer cell lines. b Microphotograph of MYC-negative and MYC-positive 
breast cancers. c–h Kaplan–Meier curves showing BCSS in MYC and ATR co-expression at protein and mRNA levels
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Table 1  ATR and MYC protein co-expression in Sporadic Breast Cancer

Bold statistically significant; NPI Nottingham Prognostic Index, GPG Good Prognosis Group, MPG Moderate Prognosis Group, PPG Poor 
Prognosis Group, HER2 human epidermal growth factor 2, ER oestrogen receptor, PR progesterone receptor
*Adjusted P value—Benjamini and Hochberg false discovery rate
a Grade as defined by Nottingham Grading System

Variable ATR and MYC protein co-expression p value Adjusted p value*

MYC−/ATR− MYC−/ATR+ MYC+/ATR− MYC+/ATR+

N (%) N (%) N (%) N (%)

Tumour size (cm)
 ≤ 2.0 115 (50.0) 59 (38.1) 110 (49.1) 73 (39.7) 0.03 0.053
 > 2.0 115 (50.0) 96 (61.9) 114 (50.9) 111 (60.3)

Vascular invasion
 Negative 166 (72.5) 94 (60.6) 152 (68.8) 106 (57.6) 0.005 0.013
 Positive 63 (27.5) 61 (39.4) 69 (31.2) 78 (42.4)

Tumour  gradea

 G1 48 (20.9) 18 (11.8) 40 (17.9) 15 (8.2) 0.001 0.004
 G2 78 (33.9) 42 (27.4) 70 (31.4) 51 (27.9)
 G3 104 (45.2) 93 (60.8) 113 (50.7) 117 (63.9)

Tumour type
 Ductal (incl mixed) 192 (83.6) 134 (86.4) 195 (87.1) 169 (91.8) 0.076 0.121
 Lobular 20 (8.7) 15 (9.7) 13 (5.8) 7 (3.8)
 Medullary-like 7 (3.0) 0 (0.0) 10 (4.5) 6 (3.3)
 Miscellaneous 1 (0.4) 0 (0.0) 0 (0.0) 0 (0.0)
 Special type 10 (4.3) 6 (3.9) 6 (2.6) 2 (1.1)

Tubules
 1 14 (6.4) 5 (3.2) 9 (4.3) 5 (2.7) 0.583 0.717
 2 75 (34.4) 48 (31.4) 72 (34.1) 65 (35.5)
 3 129 (59.2) 100 (65.4) 130 (61.6) 113 (61.8)

Pleomorphism
 1 2 (0.9) 1 (0.6) 6 (2.9) 1 (0.5) 0.003 0.0096
 2 93 (42.7) 61 (39.9) 78 (37.3) 47 (25.7)
 3 123 (56.4) 91 (59.5) 125 (59.8) 135 (73.8)

Mitosis
 1 92 (42.2) 40 (26.2) 66 (31.3) 38 (20.8) 0.00012 0.00064
 2 36 (16.5) 21 (13.7) 40 (18.9) 35 (19.1)
 3 90 (41.3) 92 (60.1) 105 (49.8) 110 (60.1)

NPI group
 GPG 79 (34.3) 35 (22.6) 71 (31.7) 33 (17.9) < 0.00001 < 0.00001
 MPG 128 (55.7) 83 (53.5) 125 (55.8) 96 (52.2)
 PPG 23 (10.0) 37 (23.9) 28 (12.5) 55 (29.9)

ER status
 Negative 63 (27.4) 38 (24.5) 58 (26.2) 51 (27.7) 0.908 0.968
 Positive 167 (72.6) 117 (75.5) 163 (73.8) 133 (72.3)

PR status
 Negative 105 (45.9) 64 (42.4) 98 (44.7) 77 (42.3) 0.864 0.987
 Positive 124 (54.1) 87 (57.6) 121 (55.3) 105 (57.7)

HER2 status
 Negative 187 (82.7) 122 (81.3) 194 (87.0) 151 (82.5) 0.437 0.582
 Positive 39 (17.3) 28 (18.7) 29 (13.0) 32 (17.5)

Triple negative
 Non-triple negative 188 (82.5) 132 (86.8) 175 (79.5) 144 (78.3) 0.183 0.266
 Triple negative 40 (17.5) 20 (13.2) 45 (20.5) 40 (21.7)

Basal phenotype
 Negative 175 (76.8) 121 (78.1) 149 (66.8) 127 (69.0) 0.027 0.054
 Positive 53 (23.2) 34 (21.9) 74 (33.2) 57 (31.0)
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Table 2  ATR and MYC mRNA co-expression in sporadic breast cancer

Bold statistically significant; NPI Nottingham Prognostic Index, HER2 human epidermal growth factor 2, ER oestrogen receptor, PR progester-
one receptor
*Adjusted P value—Benjamini and Hochberg false discovery rate
a Grade as defined by Nottingham Grading System

Variable ATR  and MYC mRNA co-expression p value Adjusted p value*

MYC−/ATR− MYC−/ATR+ MYC+/ATR− MYC+/ATR+

N (%) N (%) N (%) N (%)

Tumour size (cm)
 T 1a+b(1.0) 58 (4.5) 24 (5.6) 9 (4.6) 1 (2.2) 0.333 0.428
 T 1c(> 1.0–2.0) 527 (40.9) 156 (36.6) 64 (32.5) 19 (42.2)
 T2 (> 2.0–5) 648 (50.3) 220 (51.6) 111 (56.3) 22 (48.9)
 T3 (> 5) 56 (4.3) 26 (6.1) 13 (6.6) 3 (6.7)

Lymph node stage
 Negative 686 (52.8) 232 (54.1) 91 (46.4) 26 (56.5) 0.612 0.718
 Positive (1–3) 210 (16.2) 65 (15.2) 34 (17.3) 5 (10.9)
 Positive (> 3) 404 (31.1) 132 (30.8) 71 (36.2) 15 (32.6)

Gradea

 G1 120 (9.7) 37 (9.0) 11 (5.6) 1 (2.3) 0.00018 0.00048
 G2 524 (42.2) 176 (42.9) 57 (29.2) 13 (30.2)
 G3 597 (48.1) 197 (48.0) 127 (65.1) 29 (67.4)

NPI
 ≤ 3.4 274 (22.2) 84 (20.7) 25 (13.2) 5 (11.9) 0.016 0.0288
 > 3.4 958 (77.8) 322 (79.3) 165 (86.8) 37 (88.1)

HER 2 overexpression
 No 1119(85.9) 382 (88.8) 187 (94.0) 44 (95.7) 0.003 0.00675
 Yes 183 (14.1) 48 (11.2) 12 (6.0) 2 (4.3)

ER
 Negative 270 (20.7) 92 (21.4) 84 (42.2) 24 (52.2) < 0.00001 < 0.00001
 Positive 1032(79.3) 338 (78.6) 115 (57.8) 22 (47.8)

PR
 Negative 597 (45.9) 194 (45.1) 116 (58.3) 29 (63.0) 0.001 0.00245
 Positive 705 (54.1) 236 (54.9) 83 (41.7) 17 (37.0)

Triple negative
 No 1137(87.3) 371 (86.3) 126 (63.3) 26 (56.5) < 0.00001 < 0.00001
 Yes 165 (12.7) 59 (13.7) 73 (36.7) 20 (43.5)

Genefu subtype
 ER−/Her-2 negative 77 (11.5) 30 (14.6) 35 (32.4) 8 (57.1) < 0.00001 < 0.00001
 ER+/Her-2 negative/high proliferation 231 (34.6) 87 (42.4) 45 (41.7) 3 (21.4) 0.083 0.124
 ER+/Her-2 negative/low proliferation 280 (42.0) 65 (31.7) 21 (19.4) 2 (14.3) 0.00001 0.00002
 Her-2 positive 79 (11.8) 23 (11.2) 7 (6.5) 1 (7.1) 0.401 0.492

PAM50 subtype
 PAM50.Her2 166 (14.2) 66 (16.4) 6 (3.7) 0 (0.0) 0.00005 0.000156
 PAM50.Basal 173 (14.8) 54 (13.4) 77 (47.0) 26 (74.3) < 0.00001 < 0.00001
 PAM50.LumA 509 (43.5) 166 (41.2) 38 (23.2) 2 (5.7) < 0.00001 < 0.00001
 PAM50.LumB 322 (27.5) 117 (29.0) 43 (26.2) 7 (20.0) 0.663 0.745
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Low ATM promotes aggressive phenotypes in MYC 
overexpressed breast cancers

A total of 696 tumours were suitable for ATM and MYC 
protein expression analyses (Fig. 1b) (Table 3). Tumours 
with high MYC and low ATM expressions were significantly 
associated with higher tumour grade, tumour type, pleomor-
phism, high mitotic index, ER−, PR−, triple negative, basal 
phenotypes and high-risk Nottingham Prognostic Index 
(NPI) (all adjusted p values ≤ 0.001).

At the transcriptomic level (Table  4), tumours with 
high MYC mRNA and low ATM mRNA expressions had 
increased tumour size, ER− and PR− tumours (all adjusted 
p values ≤ 0.01). Interestingly, Genufu subtype (ER+/HER-
2−/low proliferation) and PAM50.Luminal A subtype were 
common in tumours with low MYC mRNA and high ATM 
mRNA expressions all adjusted p values ≤ 0.01). Her-2+ 
and PAM50.Her-2 subtypes were more common in tumours 
with low MYC mRNA and low ATM mRNA expressions 
(all adjusted p values ≤ 0.01). Whereas triple negative, Gen-
efu subtype (ER−/Her-2−), PAM50.Basal were frequently 
expressing in tumours with high MYC mRNA and high ATM 
mRNA expressions (all adjusted p values ≤ 0.01).

We then investigated the prognostic significance of MYC-
ATM co-expression in breast cancers. In the whole cohort, 
as shown in Fig. 2a, d, patients with MYC overexpressed 
tumours with low ATM protein or mRNA expression 
had worse overall breast cancer-specific survival (BCSS) 
(p < 0.001). In ER+ breast cancer, similarly, MYC overex-
pressed tumours with low ATM levels were associated with 
worse survival (p < 0.001) (Fig. 2b, e) including in patients 
who received endocrine therapy (Supplementary Figs. S3B 
and S3F). In ER− tumours that received no chemotherapy, 
MYC overexpressed tumours with low ATM protein levels 
had the worst survival (Supplementary Fig. S3C). Whereas 
at the mRNA level, ER− tumours that received chemo-
therapy have poor survival (p = 0.028) (Supplementary Fig. 
S3H). Together, our data show that MYC-ATM co-expres-
sion has prognostic significance in breast cancers.

Discussion

Oxidative and oncogenic stresses in MYC overexpressed 
tumours will induce DNA damage. The DNA damage 
signalling proteins, ATR and ATM, are critical for the 

Fig. 2  Kaplan–Meier curves showing BCSS in MYC and ATM co-expression at protein and mRNA levels
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Table 3  ATM and MYC protein co-expression in sporadic breast cancer

Bold statistically significant; NPI Nottingham Prognostic Index, GPG Good Prognosis Group, MPG Moderate Prognosis Group, PPG Poor 
Prognosis Group, HER2 Human epidermal growth factor 2, ER oestrogen receptor, PR progesterone receptor; Basal-like: ER−, HER2− and 
positive expression of either CK5/6, CK14, or EGFR; Triple negative: ER−/PR−/HER2−
*Adjusted p value—Benjamini and Hochberg false discovery rate
a Grade as defined by Nottingham Grading System

Variable ATM and MYC protein co-expression p value Adjusted p value*

MYC−/ATM− MYC−/ATM+ MYC+/ATM− MYC+/ATM+

N (%) N (%) N (%) N (%)

Tumour size (cm)
 ≤ 2.0 93 (45.8) 77 (54.2) 66 (41.0) 96 (50.5) 0.101 1.616
 > 2.0 110 (54.2) 65 (45.8) 95 (59.0) 94 (49.5)

Vascular invasion
 Negative 127 (62.9) 112 (78.9) 103 (64.0) 129 (68.3) 0.01 0.013
 Positive 75 (37.1) 30 (21.1) 58 (36.0) 60 (31.7)

Tumour  gradea

 G1 23 (11.3) 39 (27.2) 9 (5.6) 41 (21.7) < 0.00001 < 0.00001
 G2 61 (30.0) 54 (37.8) 48 (29.8) 60 (31.7)
 G3 119 (58.6) 50 (35.0) 104 (64.6) 88 (46.6)

Tumour type
 Ductal (incl mixed) 172 (84.7) 117 (82.4) 140 (87.0) 169 (89.0) 0.023 0.028
 Lobular 17 (8.5) 18 (12.7) 10 (6.2) 9 (4.7)
 Medullary-like 7 (3.4) 0 (0.0) 9 (5.6) 8 (4.2)
 Special type 7 (3.4) 7 (4.9) 2 (1.2) 4 (2.1)

Tubules
 1 9 (4.5) 10 (7.1) 5 (3.1) 6 (3.2) 0.00016 0.00028
 2 49 (24.6) 57 (40.7) 45 (28.7) 83 (44.9)
 3 141 (70.9) 73 (52.2) 107 (68.2) 96 (51.9)

Pleomorphism
 1 4 (2.0) 4 (2.8) 1 (0.7) 6 (3.3) 0.00007 0.00015
 2 69 (34.7) 74 (52.9) 41 (26.1) 73 (39.9)
 3 126 (66.3) 62 (44.3) 115 (73.2) 104 (56.8)

Mitosis
 1 58 (29.1) 75 (53.6) 29 (18.5) 62 (33.5) < 0.00001 < 0.00001
 2 35 (17.6) 17 (12.1) 28 (17.8) 42 (22.7)
 3 106 (53.3) 48 (34.3) 100 (63.7) 81 (43.8)

NPI group
 GPG 48 (23.7) 59 (41.6) 28 (17.4) 65 (34.2) < 0.00001 0.00001
 MPG 118 (58.1) 76 (53.5) 97 (60.2) 100 (52.6)
 PPG 37 (18.2) 7 (4.9) 36 (22.4) 25 (13.2)

ER status
 Negative 69 (33.8) 23 (16.1) 59 (36.6) 40 (21.1) 0.00002 0.00007
 Positive 135 (66.2) 120 (83.9) 102 (63.4) 150 (78.9)

PR status
 Negative 100 (49.8) 41 (29.1) 83 (51.6) 65 (34.4) 0.00001 0.00006
 Positive 101 (50.2) 100 (70.9) 78 (48.4) 124 (65.6)

HER2 status
 Negative 163 (81.5) 127 (91.4) 136 (85.0) 158 (83.2) 0.081 0.086
 Positive 37 (18.5) 12 (8.6) 24 (15.0) 32 (16.8)

Triple negative
 Non-triple negative 159 (79.1) 124 (87.3) 112 (69.6) 165 (86.8) 0.00007 0.00015
 Triple negative 42 (20.9) 18 (12.7) 49 (30.4) 25(13.2)

Basal phenotype
 Negative 160 (79.6) 110 (78.6) 107 (66.5) 131 (68.9) 0.008 0.0116
 Positive 41 (20.3) 30 (21.4) 54 (33.5) 59 (30.1)
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Table 4  ATM and MYC mRNA co-expression in sporadic breast cancer

Bold statistically significant; NPI Nottingham Prognostic Index, HER2 Human epidermal growth factor 2, ER oestrogen receptor, PR progester-
one receptor
*Adjusted p value—Benjamini and Hochberg false discovery rate
a Grade as defined by Nottingham Grading System

Variable ATM and MYC mRNA co-expression p value Adjusted p value*

MYC−/ATM− MYC−/ATM+ MYC+/ATM− MYC+/ATM+

N (%) N (%) N (%) N (%)

Tumour size (cm)
 T 1a+b(1.0) 6 (3.3) 76 (5.0) 3 (16.7) 7 (3.1) 0.00038 0.0009
 T 1c(> 1.0–2.0) 72 (39.3) 611 (39.9) 2 (11.1) 81 (36.2)
 T2 (> 2.0–5) 89 (48.6) 779 (50.8) 9 (50.0) 124 (55.4)
 T3 (> 5) 16 (8.7) 66 (4.3) 4 (22.2) 12 (5.4)

Lymph node stage
 Negative 98 (53.0) 820 (53.1) 9 (50.0) 108 (48.2) 0.803
 Positive (1–3) 32 (17.3) 243 (15.7) 2 (11.1) 37 (16.5)
 Positive (> 3) 55 (29.7) 481 (31.2) 7 (38.9) 79 (35.3)

Gradea

 G1 20 (11.2) 137 (9.3) 0 (0.0) 12 (5.4) 0.00006 0.0002
 G2 73 (40.8) 627 (4.6) 8 (47.1) 62 (28.1)
 G3 86 (48.0) 708 (48.1) 9 (52.9) 147 (66.5)

NPI
 ≤ 3.4 36 (20.3) 322 (22.0) 3 (17.6) 27 (12.6) 0.016 0.0288
 > 3.4 141 (79.7) 1139 (78.0) 14 (82.4) 188 (87.4)

HER 2 overexpression
 No 157 (84.9) 1344 (86.9) 17 (94.4) 214 (94.3) 0.007 0.01
 Yes 28 (15.1) 203 (13.1) 1 (5.6) 13 (5.7)

ER
 Negative 39 (21.1) 323 (20.9) 6 (33.3) 102 (44.9) < 0.00001 < 0.00001
 Positive 146 (78.9) 1224 (79.1) 12 (66.7) 125 (55.1)

PR
 Negative 76 (41.1) 715 (46.2) 14 (77.8) 131 (57.7) 0.00016 0.0004
 Positive 109 (58.9) 832 (53.8) 4 (22.2) 96 (42.3)

Triple negative
 No 162 (87.6) 1346 (87.0) 13 (72.2) 139 (61.2) < 0.00001 < 0.00001
 Yes 23 (12.4) 201 (13.0) 5 (27.8) 88 (38.8)

Genefu subtype
 ER−/Her-2 negative 12 (12.9) 95 (12.2) 2 (25.0) 41 (36.0) < 0.00001 < 0.00001
 ER+/Her-2 negative/high proliferation 33 (35.5) 285 (36.6) 3 (37.5) 45 (39.5) 0.933 25.191
 ER+/Her-2 negative/low proliferation 34 (36.6) 311 (39.9) 2 (25.0) 21 (18.4) 0.00015 0.0004
 Her-2 positive 14 (15.1) 88 (11.3) 1 (12.5) 7 (6.1) 0.224 0.288

PAM50 subtype
 PAM50.Her2 31 (18.3) 201 (14.3) 1 (7.1) 5 (2.7) 0.00004 0.0001
 PAM50.Basal 23 (13.6) 204 (14.5) 6 (42.9) 97 (52.4) < 0.00001 < 0.00001
 PAM50.LumA 67 (39.6) 608 (43.3) 2 (14.3) 38 (20.5) < 0.00001 < 0.00001
 PAM50.LumB 48 (28.4) 391 (27.8) 5 (35.7) 45 (24.3) 0.67 0.7865



 Breast Cancer Research and Treatment

1 3

maintenance of genomic instability [6, 15]. Although MYC 
amplification promotes aggressive breast cancer pheno-
type [7, 16, 21, 38], whether ATR and ATM expressions 
influence pathology and clinical outcomes in MYC overex-
pressed breast cancers is unknown.

MYC promotes cellular proliferation by several mecha-
nisms, including by promoting replication and transcrip-
tional response [5, 15, 17]. However, MYC overexpres-
sion also induces replication stress [17]. Activation of 
ATR-mediated signalling is a key compensatory response 
to mitigate replication stress in MYC overexpressed 
tumours [6]. Therefore, ATR overexpression in MYC 
overexpressed tumours will be expected to promote pro-
liferation and aggressive phenotypes. In the current study, 
we provide the first clinical evidence that high ATR in 
MYC overexpressed tumours is associated with aggres-
sive cancer and poor survival. Although direct targeting 
MYC for cancer therapy has been challenging [9, 26], the 
clinical data shown here would suggest that ATR-Chk1 
pathway targeting could be an alternative anti-cancer 
approach in MYC-amplified breast cancers. A previous 
preclinical study investigating the role of Chk1 expres-
sion in MYC amplified tumours has in fact shown that its 
blockade resulted in caspase-depended apoptosis of the 
MYC-overexpressing tumours cells both in vitro and in 
murine models of B-cell lymphoma [22]. MYC is a well-
known ER-regulated gene and its overexpression is linked 
to resistance to endocrine therapy [7, 8, 21, 33, 36, 39]. In 
addition, MYC is frequently overexpressed during progres-
sion and distant relapse of ER+ breast cancers and predicts 
poor outcome following adjuvant endocrine treatment [21, 
29]. In another study, MYC expression was up-regulated in 
aromatase inhibitor-resistant breast cancer cells and reduc-
tion of MYC expression significantly decreased cell prolif-
eration in breast cancer cell lines [8]. In the current study, 
high ATR in MYC overexpressed tumours was linked to 
poor survival particularly in patients who received endo-
crine therapy providing further evidence for ATR as a pre-
dictive factor in MYC overexpressed ER+ breast cancers. 
As ATR inhibition is a promising anti-cancer approach 
[18, 24], whether combining ATR inhibitor with endocrine 
therapy in MYC amplified tumours will be clinically rel-
evant will be an interesting area for future investigation.

Proficient ATM-mediated pathways act as robust anti-
cancer barriers [3, 4, 10, 11, 13]. In contrast, ATM defi-
ciency either in the germ-line or due to epigenetic mecha-
nisms is well known to increase cancer risk and promote 
breast cancers [3, 4, 10, 11, 13]. For example, ATM has 
been shown to promote apoptosis and suppress tumorigen-
esis in response to MYC [31]. Therefore, ATM deficiency 
in MYC overexpressed breast cancer will be expected to 
promote aggressive breast cancers. As expected, in con-
trast to ATR, we observed that low ATM was linked to 

aggressive phenotypes in MYC overexpressed breast 
cancers, including in ER+ tumours. PARP [20] or ATR 
inhibition [25, 30] can induce synthetic lethality in ATM-
deficient haematological malignancies. Therefore, it will 
be important to evaluate if a similar approach could be 
employed to personalise therapy in ATM-deficient MYC 
overexpressed breast cancers.

In conclusion, we provide strong clinical evidence that 
ATM signalling and ATR signalling can influence clin-
icopathological features and survival outcomes in patients 
with MYC overexpressed breast cancer.
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