

Research data for

Temperature-Controlled Asymmetric Transmission of Electromagnetic Waves

Meng Liu,[†] Quan Xu,[†] Xieyu Chen,[†] Eric Plum,^{*,§} Hua Li,[‡] Xueqian Zhang,[†] Caihong Zhang,^{*,‡} Chongwen Zou,[#] Jiaguang Han,^{*,†} and Weili Zhang^{†,‡}

[†]Center for Terahertz waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University and the Key Laboratory of Optoelectronics Information and Technology (Ministry of Education), Tianjin 300072, China.

[§]Centre for Photonic Metamaterials & Optoelectronics Research Centre, Zepler Institute, University of Southampton, Southampton, SO17 1BJ, UK.

[‡]Research Institute of Superconductor Electronics, Nanjing University, Nanjing 210093, China

[#]National Synchrotron Radiation Laboratory, USTC, Hefei 230026, China

[#]School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, USA.

^{*}Email: erp@orc.soton.ac.uk, chzhang@nju.edu.cn, jiaghan@tju.edu.cn

The corresponding manuscript contains all information required to reproduce the simulated and experimental results that it contains. Here, the simulated and experimental results are given by

ResearchData_ThermalAsymTrans.xlsx.

Sheet Fig2: Simulated electromagnetic properties of the metamaterial at room temperature. (b) Co- and cross-polarized spectral response $|T_{xx}|$, $|T_{xy}|$, $|T_{yx}|$, and $|T_{yy}|$ of the metamaterial, where T_{ij} represents the transmission coefficient describing i -polarized transmitted waves resulting from j -polarized illumination of the metamaterial's front. (c) Asymmetric transmission for linearly and circularly polarized incident waves, where '-' and '+' corresponds to the left- and right-handed circularly polarized waves. (d) Polarization ellipse of the transmitted wave at 1.1 THz for x -polarized illumination of the metamaterial's front.

Sheet Fig3: Simulated frequency dependence of co- and cross-polarized transmission amplitudes for x- and y-polarized waves incident on the metamaterial's front with VO₂ conductivity ranging from 10 S/m to 200000 S/m. (a), (b), (c), and (d) correspond to $|T_{xx}|$, $|T_{yx}|$, $|T_{xy}|$, and $|T_{yy}|$ respectively. (e) Frequency dependence of the asymmetric transmission parameter for linearly polarized waves, and (f) transmitted polarization state at 1.1 THz for incident x-polarization.

Sheet Fig4: Measured frequency dependence of co- and cross-polarized transmission amplitudes for x- and y-polarized waves incident on the metamaterial's front at temperatures ranging from 23°C to 87°C. (a), (b), (c), and (d) correspond to $|T_{xx}|$, $|T_{yx}|$, $|T_{xy}|$, and $|T_{yy}|$ respectively. (e) Frequency dependence of the asymmetric transmission parameter for linearly polarized waves, and (f) transmitted polarization state at 1.15 THz for illumination with x-polarized waves.