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A rapid ultrasonication synthesis was demonstrated to synthesise BiOBrxI1-x solid solution visible-light-

responsive photocatalysts, which displayed strong deviations of crystal and band structures 

from Vegard’s law.  
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Research Highlights 

 A rapid ultrasonication synthesis was adopted to prepare BiOBrxI1-x solid solutions; 

 Lattice parameters of the BiOBrxI1-x solid solutions strongly deviate from Vegard’s law; 

 The nonlinear dependence of bandgaps on Br/I ratio are clarified;  

 Tuning I/Br ratios can tune both the VBM and CBM of the BiOBrxI1-x solid solutions; 

 The Bi-rich BiOBrxI1-x solid solutions are superior to BiOBr in photodegradation of RhB  

 

Abstract 

A series of visible-light-responsive BiOBrxI1-x solid solutions were prepared by a rapid and 

efficient ultrasonication synthesis and applied in photodegradation of Rhodamine B in aqueous 

solution. The detailed characterisations showed that the lattice parameters and their band 

structures of the BiOBrxI1-x solid solutions significantly deviated from the well-established 

Vegard’s law for solid solution materials. The Mulliken electronegativity and valence band XPS 

analyses revealed that the substitution of Br by less electronegative iodine can simultaneously 

modulate the edges of conductance and valence band of the BiOBr, leading to nonlinear 

dependence of bandgap (Eg) on the halogen anion concentrations. Although the solid solution 

displayed superior RhB photodegration activity to BiOI, only Br-rich BiOBrxI1-x solid solutions 

(x>0.5) were more active than BiOBr and BiOI, with the optimal one is BiOBr0.75I0.25. The Br-

dependence of bandstructure and photocatalytic activity for the BiOBrxI1-x solid solutions as well 

as their rate-limiting radical species were also clarified based on experimental and theoretical 

analyses.     

KEYWORDS BiOBrxI1-x, solid solution, band edges, visible light photocatalysis 

 

1. Introduction  
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As one of the promising technologies with great potentials for energy and environment 

sustainability, solar-driven photocatalysis stringently requires effective semiconductor 

photocatalysts of broad absorption to visible-light, significant reactivity and remarkable stability 

under sunlight illumination [1-6]. Although exploring novel photocatalysts with stable crystal 

structures is appealing and exciting, tuning the electronic band structure of existing stable 

photocatalysts without significant change of crystallographic polymorph is a rather reliable and 

simple approach to tailoring their function. This is because the band gap (Eg) determines light 

absorption and the most effective photocatalytic active species on the photocatalyst originate 

from the photogenerated charge carriers on the band edges: electrons at the conduction band 

minimum (VBM) and/or photogenerated holes at valence band maximum (CBM)[7]. 

 

So far, the most stable and widely applied photocatalyst is still TiO2, which can only be activated 

by UV light. In order to promote the visible-light absorption of TiO2, a variety of methodologies 

have been attempted extensively and successfully, including impurity doping and surface 

decoration to form either multiple-semiconductor junctions (heterojunctions or homojunctions) or 

metal/semiconductor Mott-Schottky junctions.[8-10] However, the precise modulation of 

electronic structure of TiO2 and its derived photocatalysts (eg. perovskite titanate [11, 12]) 

encounters outstanding problems, such as tedious and costly preparation processes, 

detrimental stability or significant recombination of photogenerated charge carriers. [13]    

 

As a class of V-VI-VII compound semiconductors, the bismuth oxyhalides (BiOX, X=Cl, Br, I) 

have recently emerged as efficient and stable photocatalysts for the photodegradation of 

various organic dyes [14, 15]  and the generation of solar fuels [7]. Moreover, the unique 

lamellar structures of BiOXs enable fine tuning their band structures by host of multiple halide 

anions to form solid solution photocatalysts [16, 17]. However, the variations of crystallography 
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and bandstructure due to the coexistence of multiple halides, in particular the dependence of 

band edges on the halide anions, necessitate in-depth investigation.  

 

Here we report the band structure-controlled BiOBrxI1-x solid solutions prepared via a rapid 

ultrasonication synthesis method in aqueous media. The as-synthesised BiOBrxI1-x samples 

exhibit composition-dependent optical properties and activity in visible-light photodegradation of 

RhB, which are correlated with their band structures.  

 

2. Experimental  

2.1 Synthesis of BiOBrxI1-x solid solutions 

Bi(NO3)3·5H2O was first dissolved in 50 mL aqueous solution containing 5 mL acetic acid under 

magnetic stirring. The Bi(NO3)3 aqueous solution was poured into 50 mL of KX solution 

containing stoichiometric amount of KX (KBr and/or KI) and remained under ultrasonication (2 

kHz) for 0.5 h. The color of the precipitate changes from off-white to orange in line with the Br/I 

molar ratios. The collected precipitates were washed with distilled water and ethanol before 

drying overnight in an oven maintaining at 80 °C. 

2.2 Characterisations of BiOBrxI1-x 

Powder X-ray diffraction (XRD) measurements of all the prepared samples were performed 

on a PANalytical X’Pert PRO diffractometer in Bragg-Brentano geometry using 

monochromatised Cu Kα1 (λ=0.15418 nm) radiation under 45 kV, 40 mA, and scanning over 5° 

to 60° two-theta range. Pawley analysis of the resulting diffraction data was performed using the 

TOPAS Academic software package[18]. UV-vis diffuse reflectance spectra were recorded on a 

Varian Cary 5000 UV-visible-NIR spectrometer with a scan rate of 600 nm·min-1. Scanning 

electron microscopy was performed on a Jeol JSM 5600 SEM with an accelerating voltage of 

4.0 kV at the University of St Andrews, UK.  
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X-ray photoemission spectroscopy (XPS) measurements were recorded on a Scienta ESCA300 

XPS spectrometer at the National Centre for Electron Spectroscopy and Surface Analysis 

(NCESS), Daresbury Laboratory, UK. X-rays of energy hv=1486.6 eV was using a 

monochromatic rotating anode Al-Kα source and a charge neutraliser. The ejected 

photoelectrons were analysed by a 300 mm mean-radius spherical-sector electron energy 

analyser with 0.8 mm slits at a pass energy of 150 eV. The effective instrumental resolution is 

0.45 eV, as derived from the Gaussian deconvolution of the analyser broadening and the 

natural line width of the X-ray source (0.27 eV). All the binding energies were referenced to the 

C 1s peak at 284.5 eV of the adventitious surface carbon. Core level of Bi 4f, Br 3d, I 3d, C 1s 

and Valence Band Maximum (VBM) were identified individually. The VB edge potential of a 

semiconductor at the point of zero charge can be expressed empirically via Mulliken 

electronegativity theory.[19] 

2.3 Photocatalytic reaction  

The photocatalytic activities of the BiOBrxI1-x materials were evaluated by decomposing RhB 

under visible light irradiation. The optical system used for the photocatalytic reaction consisted 

of an overhead 300 W Xenon lamp (PLS-SXE 300, Beijing TrustTech) equipped with a UV 

cutoff filter (UVCUT 400, Beijing TrustTech), which was attached to the lamp source to remove 

all incoming wavelengths shorter than 400 nm to ensure irradiation with visible light only. In 

each experiment, reaction suspensions were prepared by adding 0.1 g of photocatalysts to 100 

mL of RhB in aqueous solution (20 mg/L). Prior to irradiation, the suspensions were stirred in 

the dark for 1 hour to ensure the establishment of adsorption–desorption equilibrium of the dye 

on the catalysts’ surfaces. During the irradiation process, approximately 3 mL of suspension 

was collected at 10 minute intervals and then centrifuged (14000 rpm, 4 minutes) to remove the 

photocatalyst particles. The collected supernatant solutions were analysed by a Perkin-Elmer 

Lambda 750S UV-visible spectrophotometer. The characteristic absorbance of RhB at 553 nm 

was used to determine the concentration of RhB because the absorbance is a linear function of 

ACCEPTED M
ANUSCRIP

T



6 
 

RhB concentration. Hence, the photocatalytic activity of the BiOBrxI1-x photocataysts can be 

assessed by comparing the adsorption–desorption equilibrium concentrations (C0) of RhB 

before irradiation and the temporal concentration (C). 

3. Results and Discussions 

3.1 Crystalline phase 
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Figure 1. XRD patterns of BiOBrxI1-x
 materials (a) and the plots of experimental and fitted (by 

Vegard law) lattice parameters of (b) a, (c) c and (d) unit cell volume versus Br concentration 

 

The XRD patterns of as-synthesised BiOBr and BiOI (for x=1.0 and x=0.0) (Figure 1a) well 

agree with the BiOBr (JCPDS 73-2061) and BiOI (JCPDS 01-0445) crystals in tetragonal phase 

and P4/nmm space group [9, 20]. The characteristic peaks gradually shift to smaller angles as 
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increasing iodine concentration, which is due to the larger ionic radius of iodine (2.20 Å) than 

bromide (1.96 Å). The gradual shifts of the XRD peaks and the symmetric peak shapes suggest 

that the as-synthesised BiOBrxI1-x samples are solid solutions rather than the mixtures of BiOBr 

and BiOI [16, 20, 21]. The increase of iodine concentration in the BiOBrxI1-x solid solutions also 

leads to gradual increases of crystalline lattice parameters (a, c and unit cell volume) (Table 1). 

Such expansions in lattice parameters further confirm that the iodine was successfully 

incorporated into BiOBr lattice.[22] In binary metal solid solutions, the unlimited mutual solubility 

can be formed when the difference in their ionic radii is within 15%, whist such rule can be 

extended to the general case of solid solutions with larger or smaller radius deviation for specific 

system[23]. For the BiOBrxI1-x materials, the difference between the Br and I ionic radii (Br=1.95, 

I=2.20Å) is approximately 12%, hence they can form stable solid solutions.  

Table 1. Lattice parameters, electronegativity χ, band gap energy Eg (in eV), energy positions of 

band edges (EVBM and ECBM, in eV), and reaction kinetics of the BiOBrxI1-x materials 

x a (Å) c (Å) a/c V (Å3) χ (eV) Eg a EVBM ECBM 
kRhB (min-

1·g-1)b 

1.000 3.9294(2) 8.1154(5) 0.484 125.3033 6.1739 2.653 3.00 0.347 0.0928 

0.875 3.9356(3) 8.2854(9) 0.475 128.3321 6.1441 2.005 2.648 0.643 0.1100 

0.750 3.9437(6) 8.489(2) 0.465 132.0275 6.1145 1.942 2.588 0.646 0.1500 

0.625 3.9533(7) 8.690(7) 0.455 135.8124 6.0850 1.839 2.508 0.669 0.1070 

0.500 3.9606(5) 8.8248(2) 0.449 138.4289 6.0556 1.809 2.463 0.654 0.0559 

0.375 3.9662(4) 8.915(1) 0.445 140.2396 6.0264 1.762 2.411 0.649 0.0833 

0.250 3.9759(3) 9.0250(9) 0.441 142.6652 5.9973 1.757 2.378 0.621 0.0802 

0.125 3.9895(5) 9.119(1) 0.438 145.139 5.9684 1.752 2.346 0.594 0.0201 

0.000 3.9995(1) 9.1669(4) 0.436 146.6337 5.9396 1.698 2.289 0.591 0.0104 

a Eg was derived from Eg=1239.8/λg, where λg is the absorption edge in the UV-vis spectrum. The EVBM 

and ECBM are estimated using Mulliken electronegativity method[16].  
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b Reaction kinetics were derived from kt = -ln(C/C0)  

 

As for perfect solid solution (A1-xBx) the lattice parameters follow Vegard’s rule in theory[24], as 

expressed as eq. 1:   

t(x) = tA (1 - x) + xtB = tA + x(tB – tA)           ………….(1) 

where tA and tB are respective to the lattice parameters of end members A and B. [24] In the 

present work, A and B are BiOBr and BiOI, respectively. As plotted in Fig.1 b and c, the 

increase of I- concentration in the BiOBrxI1-x causes  almost linear increase in the experimental a 

lattice parameter (slightly negative deviation with slope of ~0.07), while the increase in the c 

parameter is much larger than the Vegard-c values (in two larger slopes). The more significant 

lattice deviation from Vegard’s law along crystal z crystal axis is reasonable, [24] because the 

inter-layered halide anions interact with the [Bi2O2]2+ slabs in weak Van de Waal’s force. The 

Van de Waal’s force is sensitive to X- radius and exerts less influential to the covalent Bi-O 

bonding that determines a lattice parameter. It is notable that the expansion of the c parameter 

appears to follow two linear trends: the c parameters increase faster as decreasing x, then slow 

down as further increasing iodine concentration, and the maximum deviation observed at x=0.5. 

As a consequence, the unit cell volumes (V = a2c) of the BiOBrxI1-x solid solution photocatalysts 

also deviate from theoretical values (Fig.1 d), indicating the crystal structure of the solid 

solutions distorted from tetragonal phases, with greatest deviation at x=0.5. The (hk0) 

reflections in the diffraction data are very sharp, while l≠0 reflections show significant 

broadening in the intermediate x values, indicating a degree of compositional variation in the 

materials. 

 

3.2 Optical property  
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Figure 2. The Br/I ratio dependence of UV-Vis absorption spectra (a) and bandgaps (b) of the 

BiOBrxI1-x solid solutions 

 

When increasing structural I- concentration of the BiOBrxI1-x samples, as shown in the diffuse 

reflectance spectra in Fig. 2a, their absorption edges significantly redshift from 440 nm for 

BiOBr to 670 nm of BiOI, which is consistent with their gradual colour evolution (photos inserted 

in Fig.2a). The sharp adsorption edges of the BiOBrxI1-x samples reveal they are due to  band 

gap transition rather than midgap absorption because the midgap transitions ought to be tailed 

spectra.[25] The bandgaps of pure BiOBr and BiOI samples are well consistent with the Eg 

reported previously.[16, 20] Moreover, as increasing iodine concentration (x decreasing), the 

band gap energies (Eg) of the BiOBrxI1-x solid solutions nonlinearly decrease from 2.81 eV of 

BiOBr and 1.85 eV of BiOI (Fig.2b), which indicates the dependence of bandgap on halide 

concentration is nonlinear and highly dependent on the iodine concentration. The detailed 

analysis of band structure dependence on iodine concentration is discussed in section 3.5.   

 

3.3 Morphology 

(a) 
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Figure 3. SEM images of (a) BiOBr, (b) BiOBr0.5I0.5, (c) BiOBr0.875I0.125, and (d) BiOI 

 

The morphologies of the as-synthesised BiOBrxI1-x solid solutions are shown in Fig. 3a~d, where 

once can see that all the samples consist of flake-like particles, with particle size gradually 

increasing from 200 to 500 nm as iodine concentration increasing. There is no obvious 

difference between the BiOBr and BiOI thin flakes, and their thickness is approximately 100 nm. 

Therefore, the composition-dependent photocatalytic performance (see section 3.6) of the solid 

solution samples should not be originated from the morphology of the BiOBrxI1-x samples.  

 

3.4 Surface Elemental Composition 
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Figure 4. XPS spectra of (a) Bi 4f, (b) O 1s, (c) Br 3d, (d) I 3d of the BiOBrxI1-x samples where 

x=1, 0.875, 0.75, 0.5, 0.125, and 0 

 

The surface elemental composition and element valence states for the BiOBrxI1-x samples were 

identified by high-resolution X-ray photoelectron spectroscopy (XPS) (Fig. 4a–d). In the Bi 4f 

XPS spectra (Fig. 4a), the two strong peaks located at binding energies (B.E.) of 164.1 and 

158.7 eV are due to characteristic Bi 4f5/2 and 4f7/2 core level emissions of Bi3+ cations in the 

BiOBrxI1-x solid solutions.[26] With increasing I- concentration, the Bi 4f5/2 and 4f7/2 peaks 

systematically red shift, suggesting the interlayer iodine anions enrich the electronic density of 

Bi-O bonds. This inference is verified by the O 1s XPS spectra (Fig. 4b) where the red shifts of 

the O1s for the BiOBrxI1-x solid solutions are notable as compared to those of the pure BiOBr. 

Red-shifts of characteristic core level binding energies of Br- are also remarkable for BiOBrxI1-x 
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solid solutions, as shown in the Br 3d XPS spectra in Fig. 4c. The red shifts observed in binding 

energy for Bi, O, and Br in the BiOBrxI1-x samples, corresponding to increased core electron 

density, were thought to arise from the electron-donating effects from iodine anions. The 

inference is reasonable as considering the lower electronegativity (2.66) of iodine than Br (2.96), 

which is verified by the gradual blue-shifts of the 3d XPS peaks of iodine (Fig. 4d) when 

decreasing the iodine concentration (ie. Increasing x). Meanwhile, the intensity of the 3d XPS 

peaks of iodine (Fig. 4d) increases while the Br 3d XPS decreases (Fig. 4c) as decreasing the 

amount of I- in the BiOBrxI1-x compound. Moreover, for the BiOBr and BiOI samples, the state of 

the art DFT simulations revealed the conduction bands (CB) are mainly composed of Bi 6p and 

the valence bands (VB) of Br 4p and iodine 5p orbitals[7, 14], respectively. Therefore, electronic 

donation effects from iodine in the BiOBrxI1-x samples are expected to revise the band edges of 

the samples, which are discussed further below.   

 

3.5 Band structures 

3.5.1 The Valence Band Maximum (VBM) Measured by XPS  

Because the band edges are crucial to determining their redox ability, it is necessary to explore 

the dependence of band edges (CBM and VBM) on x and the compound electronegativity [7]. 

The VBM energies of the BiOBrxI1-x samples can be determined by valence band XPS, as 

presented in Fig.5. Their fermi levels were corrected by work function of gold and the relative 

VBM energy positions are determined by tangent of XPS edges to inceptions on the binding 

energy axis. VBM energies of the BiOBrxI1-x samples vary from 1.3 eV (of BiOI) to 2.3 eV (of 

BiOBr) as increases x from 0 to 1. Since the work function of gold (5.3 eV) is 0.8 eV more 

positive than standard electrode potential of reverse hydrogen electrode (RHE, 4.5 eV versus 

vacuum), the VBM positions obtained from VB XPS correspond to 2.1 to 3.1 eV in RHE scale, 

which is very close to those calculated using Mulliken electronegativity method (see section 

3.5.2). Moreover, the measured VBM of BiOBr is deeper than that of BiOI, reflecting the VBM 
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position is highly dependent on the electronegativity of constituent halogen anions, agreeing 

with previous DFT simulations.[27]   
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Figure 5. The corrected valence band XPS spectra of the BiOBrxI1-x samples 

 

On the other hand, as shown in Fig. 5, increasing iodine concentration (reducing x) in BiOBrxI1-x 

solid solutions results in red shift of VBM. The red shift of VBM is significant even with a small 

portion of iodine substitution of Br can greatly lift the VBM position to more electronegative. 

Because of the small difference of VBM energies between the VBM XPS measurements and 

the calculated from Mulliken electronegativity method, the CBM energies were calculated to 

correlate band edges and the halogen elements,[7, 28] as discussed in 3.5.2.   

 

3.5.2 The dependence of band edges on Br/I concentration 

For a semiconductor, its electronic levels in the valence band are occupied and the levels in the 

conduction band are empty. The Mulliken electronegativity method has been widely applied to 

estimate the band edges of semiconductor with adequate theoretical foundation for rapidly 

grabbing the characteristics of band structure for a given Eg and sample composition. This 

method presumes the energy of the valence band edge of the bulk material, EVBM, is a measure 

of the ionisation potential ( I ) referring to vacuum potential energy of zero. The conduction band 
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edge energy, ECBM, is a measure of the electron affinity, A, of the compound. The Fermi level is 

the absolute electronegativity, -χ, of a semiconductor.[21] The relationship between the Eg and 

electronegativity can be expressed by equation 2~3: 

ECBM = -A = |χ| - 0.5 Eg = χ - Ee - 0.5 Eg …………(2) 

EVBM = -I = |χ| + 0.5 Eg = χ - Ee + 0.5 Eg …………(3) 

Where χ of a compound can be expressed via the geometric mean of the absolute 

electronegativity of the constituent atoms, and the electronegativity of individual atom is defined 

as the arithmetic mean of the atomic electron affinity (A) and the first ionisation energy (I). For 

instance, the electronegativity of Bi (χBi) and BiOBr0.75I0.25 sample (χBiOBr0.75I0.25) can be calculated 

via eq. 4-5:   

χBi = (IBi+ABi)/2                                 ………..(4) 

χBiOBr0.75I0.25 = (χBi*χO*χBr
0.75*χI

0.25)1/3 ………..(5) 

where Ee is the energy of free electrons on the hydrogen scale (~4.5 eV), and Eg is the band 

gap energy of the semiconductor.[16]  

 

The calculated energy levels of VBM and CBM are listed in Table 1, from which one can clearly 

see the dependence of band edges on Br ratio, x. As decreasing x or increasing amount of 

iodine concentration, the ECBM becomes more positive (less reductive) whist the EVBM potentials 

more negative (shift up, less oxidative). Moreover, it is notable the low iodine concentration 

causes more significant shifts of VBM and CBM simultaneously, agreeing to VB XPS results. 

Apparently, the structural iodine is not only lift up VBM but also bring down the CBM.  
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Figure 6. Visible-light (≥ 400 nm) photodegradation of RhB (20 ppm aqueous solution) on the 

BiOBrxI1-x samples (a), and comparison between solid solution and mechanical mixtures (b).  

 

Fig. 6a shows the temporal RhB concentration changes on the BiOBrxI1-x catalysts under visible 

light illumination, revealing their photocatalytic activity depends on their halogen concentrations. 

A slight increase of iodine concentration in the BiOBrxI1-x solid solutions at high Br concentration 

(x>0.75) can promote photocatalytic activity, though the activity is impaired as further increasing 

iodine concentration (i.e. reducing x). From the activity curves, the reaction kinetic rate 

constants (k) of the BiOBrxI1-x solid solutions were calculated through -kt = ln (C/C0) and listed in 

Table 1.  

 

Both the temporal photocatalytic activity and the kinetic constants indicate that the apparent 

photocatalytic activity of the BiOBrxI1-x catalysts decreases follow the sequence: BiOBr0.75I0.25 > 

BiOBr0.875I0.125 ≈ BiOBr0.625I0.375 > BiOBr > BiOBr0.375I0.625 > BiOBr0.25I0.75 > BiOBr0.5I0.5 > 

BiOBr0.125I0.875 > BiOI. The BiOBr0.75I0.25 sample of relatively small Eg and positive VBM 

displayed the highest photocatalytic activity under visible light irradiation.  In addition, compared 

to BiOI (Eg ~1.8 eV [21]), BiOBr (Eg ~2.8 eV [29]) possesses larger Eg but higher photocatalytic 

activity because of its more positive VBM. The above photocatalytic activity results suggest that 
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both the Eg and bandstructure, in particular the VBM positions, determines the RhB 

photodegradation activity of the BiOBrxI1-x solid solution photocatalysts.  

Furthermore, as shown in Fig.6b, the RhB photodegradation activity of BiOBr0.75I0.25 is observed 

of higher activity than the physically mixed catalysts containing BiOBr and BiOI in molar ratio of 

0.75:0.25, verifying the effectiveness of forming a solid solution for promoting photocatalytic 

activity. We suppose that the solid solution catalysts takes the advantages of the fine-tuned 

electronic band structure (Eg and band edges), whereas the low activity of the mixed 

photocatalyst of BiOBr and BiOI acted independently without synergism. The latter is not a Z-

scheme catalyst because no charge shuttle agent was applied in our experiments.[27] 

 

4. Discussion 

4.1 Dependence of bandstructure on compound electronegativity  

The above results revealed that introducing more electronegative iodine (χI=2.66) into BiOBr 

successfully decreases the compound electronegativity of resultant solid solution BiOBrxI1-x and 

changes their band structures (Eg, VBM and CBM). It is reasonable that substitution of X anions 

in BiOX can modulate the VBM because the VBMs of BiOBr and BiOI are composed of O 2p 

and X np hybrid orbitals [7, 14]. X np orbitals are the main components of BiOX VBM, thus the X 

element of low-electronegativity occupy the VBM top and play core roles to modulate VBM 

electron behaviour. As for the contributions of X elements to CBM of the BiOBrxI1-x solid 

solutions, previous DFT simulation results of BiOBr and BiOI suggest that their CBMs are 

mainly composed of Bi 6p orbitals and the direct contribution from X elements is negligible [7, 

17]. Therefore, the addition of iodine into BiOBr matrix modulates the CBM via perturbing the 

electronic configuration of [Bi2O2]2+ slab, in particular that of bismuth cations. This inference is 

confirmed by red shits of core level XPS spectra of Bi and O (see section 3.5).  
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Calculated using the Mulliken electronegativity method, the energy band diagrams presented in 

Fig.7A clearly indicate that the formation of BiOBrxI1-x solid solutions can well tune the 

bandstructure, both the Eg and energy band edges (CBM and VBM), via adjusting Br/I 

concentration. However, the method cannot clarify the exact band composition of CBM and 

VBM and the orbital contributions from the compositional halogen elements. The in-depth 

investigation for the detailed influences of iodine on the bandstructures of the BiOBrxI1-x solid 

solutions are undertaking, using recently established methodology combining DFT and 

photoelectrochemical characterisations[7].  

 

4. 2 Correlation photocatalysis with bandstructure  

There have always been contradictions between the enhanced visible-light absorption and the 

redox capability.[13] Jia and co-workers demonstrated that 3D-structured BiOBrxI1-x (0<x<1) 

samples possessed higher photocatalytic activities than pristine BiOBr (x=1) and BiOI (x=0), 

with the highest photocatalytic activity observed on BiOBr0.6I0.4 [22]. Their 3D BiOBr displayed 

the weakest photocatalytic activity although it possessed highest surface area and the 3D BiOI 

displayed the second worst activity despite its strongest visible light absorption. The authors 

attributed those activity behaviour to synergism between surface area, porosity and band 

structures (smaller Eg and VBM positions), but it is ambiguous in identifying the predominant 

factor in photocatalytic reaction. 

 

In our research, the samples are of very similar morphologies and comparable surface areas, 

enabling us to clarify the influences of bandstructure on their photocatalytic activity. The 

photocatalysis is a complex process involving bandgap-limited excitation, effective charge 

carrier transfer (separation, transport and recombination) and surface redox reactions [1], while 

it was argued the light absorption and surface area of the photocatalyst are dominant factors for 

the photocatalytic reaction[30]. This argument inspired us to plot Eg and kinetic constants of 
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BiOBrxI1-x (0≤x≤1) samples versus the x value. As presented in Fig 2b, it seems there is no 

direct linear correlation between Eg and photocatalytic reaction rates on the BiOBrxI1-x (0≤x≤1) 

samples.  

1 0.875 0.75 0.625 0.5 0.375 0.25 0.125 0

3.0

2.5

2.0

1.5

1.0

0.5

0.0

OH/OH- (+1.99 eV)

VB

BiOI

P
o
te

n
ti
a
l 
v
s
 N

H
E

 (
e
V

) 
a
t 
p
H

=
0

BiOBr

O2/H2O (+1.23 eV)

O2+e-  O2
- (-0.046 eV)

H/H2 (0.0 eV)

CB

BiV/BiIII (+1.593 eV)

x

(A)

1.00 0.75 0.50 0.25 0.00

0.00

0.05

0.10

0.15

0.20

0.25

0.30

k
 n

o
rm

a
lis

e
d

 w
it
h
 b

a
n

d
 s

tr
u

c
tu

re
s

x value of BiOBrxI1-x

 k/Eg

 k/VBM

 k/CBM

 k

 k/Eg+k/VBM

(B)

 

Figure 7 Band positions (A) and the normalisation of kinetic constants with bandstructure 

energies of the BiOBrxI1-x solid solutions 

 

As widely applied in the DFT simulation, single electron model was assumed for simplifying the 

analysis of complex sequential processes. Taking the similar assumption, the photocatalytic 

decolourisation of RhB can be looked as a complex process embracing elementary processes 

of light excitation, effective charge carriers (depending on separation, transfer, transport and 

recombination) and surface redox reactions. The individual processes will have their own kinetic 

activation energy: excitation is determined by Eg, effective charge due to CBM or VBM, and 

surface reaction due to the surface adsorption amount determined surface geometry for specific 

adsorbent. The SEM results suggested the samples are in similar morphology, so the surface 

geometric factor could be negligible. Applying the above assumption, as shown in Fig.7b, we 

can further normalise the kinetic constants with the Eg and band edges of the BiOBrxI1-x (0≤x≤1) 

samples to investigate the sensitivity of k (apparent kinetic constants) over the bandgap and 

band edges.  
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From Fig.7b one can see that the kinetic constant curve is almost overlapping with the curve of 

the summed k/Eg and k/EVBM, suggesting the k values are probably related to the synergism of 

VBM and light absorption which is determined by bandgap (both Eg value and transition mode 

of excitons). It is notable that the k ~ x curve fully overlaps with the sum curve of (k/Eg+k/VBM) 

when x≤0.5, implying that the light absorption and VBM dominate photocatalytic activity. This is 

reasonable because their light absorption (beyond 650 nm) can cover the whole spectrum of 

RhB and thus screen the dye-sensitisation effects. As x>0.5, the sum curve is lower than the k 

curve, suggesting there is another factor affecting their reaction rates. We suppose it would be 

the dye-sensitisation effects, which is reasonable as the light absorption of these photocatalysts 

cannot fully cove the RhB spectrum. This inference is supported by that the greater x leads to 

larger difference of the (k/Eg+k/VBM) sum curve from the k curve, where photocatalysts light 

absorption differs from RhB spectrum greatly.  

 

Moreover, the k/CBM is much higher than k curve that could rule out the CBM dominating RhB 

photodegradation. The curves of k/Eg and k/EVBM take the similar trend of the k curve and the 

k/EVBM showed the lowest value, which probably indicates the photocatalytic reaction rate is 

more determined by the VBM position. The large difference between k/ECBM for the x>0.625 

suggests both the CBM or dye sensitisation contributes to the photocatalytic reaction on those 

catalysts. The discussion of Fig.7b well agree with the experimental analyses of rate-limiting 

steps as previously reported for BiOX photocatalysts [7, 9, 16, 26].  

   

In the sensitivity analysis, we ignored the contributions of recombination of charge carriers and 

surface reaction, which is reasonable because the previous experimental study suggested the 

recombination is not a key factor and the surface chemical reaction is ultrafast [7]. Moreover, 

the k/Eg may reasonably reflect the dependence on light absorption that is also influenced by 
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the RhB spectrum, while the k/VBM may reflect how the oxidation power of VBM holes affect k.  

Although the above discussions regarding the dependence of k on the Eg and VBM are 

interesting and consistent with the photocatalytic phenomena on our BiOBrxI1-x samples, the 

science behind the mathematical treatment is not rigid because we cannot rule out the 

treatment is just a coincidence herein. Although the reaction kinetics was resonated according 

to Arrhenius theory (supporting information), such kinetic sensitivity analysis method needs to 

be further explored and verified by sampling from more different solid solution photocatalyst 

systems. We presented the sensitivity analysis here in order to inspire further theoretical 

research in the scientific community. 

 

4.3 The rate-limiting active species 

It is important to correlate the photocatalysis with photogenerated active species at energy 

levels of band edges in the photocatalytic reaction system. The calculated VBM potentials of all 

the BiOBrxI1-x samples are located far below the standard redox potential of •OH/OH- (1.99 eV), 

suggesting that the photogenerated hole at VBM is more oxidative than hydroxyl radical. 

However, the photogenerated h+ could not oxidise OH- to generate the •OH radicals because of 

the stronger adsorption and the more negative reduction potentials of RhB.  

 

The CBM potential of the BiOBrxI1-x samples is not strong enough to reduce the O2 into the 

superoxygen radical (∙O2
-) via the photoexcited electrons, because the electrochemical potential 

for single electron reduction of oxygen is -0.046 eV.[31] The electrons may be leading to the 

reduction of Bi cations within the structure or reduction of dissolved oxygen because of the more 

preferential potentials of O2/H2O, BiIII/Bi0 (0.5 eV vs NHE) and BiV/BiIII [32].  

 

The above discussions suggest that it is theoretically reasonable that the photodegradation of 

RhB is mainly due to the photogenerated h+ rather than photogenerated •OH or ∙O2
- radicals on 
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the BiOBrxI1-x samples. Therefore, the present research suggests the formation of hetero-

halogen BiOX is an effective strategy to tune band structures and photocatalytic activity.  

 

5 Conclusion 

A series of BiOBrxI1-x solid solutions with a controlled band structure were successfully 

synthesised by an effective and rapid one-step ultrasonication method. The samples were well 

characterised with XRD, UV-Vis-DRS, SEM and XPS techniques. The incorporation of iodine 

into BiOBr to form BiOBrxI1-x solid solutions can cause significant crystal distortion and strong 

deviation of lattice parameters from Vegard’s law, with more significant deviation of lattice 

parameter c. The band gaps of the BiOBrxI1-x solid solutions nonlinearly decrease as increasing 

the iodine concentration, because the incorporation of more electronegative iodine can not only 

lift the VBM but also bring down CBM positions as demonstrated in the band energy diagram. 

The iodine substitutions of Br within x=0.875~0.75 dramatically reduce bandgap though further 

increasing iodine concentration influences bandstructure less significantly.  

 

The RhB photodegradation activity declines in the order of BiOBr0.75I0.25 > BiOBr0.875I0.125 ≈ 

BiOBr0.625I0.375 > BiOBr > BiOBr0.375I0.625 > BiOBr0.25I0.75 > BiOBr0.5I0.5 > BiOBr0.125I0.875 > BiOI. The 

sensitivity analysis suggests visible-light photocatalytic activity on the BiOBrxI1-x solid solutions 

not only depending on the bandgap but also the VBM potentials. The Mulliken electronegativity 

analysis allows to conclude that the photogenerated holes on VBM are the rate-limiting species 

of the photocatalytic reaction. The optimised BiOBr0.75I0.25 photocatalyst is superior to the 

mechanically mixed catalysts with BiOBr/BiOI molar ration at 0.75/0.25 and same catalyst 

loading, verifying the effectiveness to design solid solution photocatalysts.  
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