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1 Introduction

Internet of Things (IoT) networks of sensors, mobile phones and other smart
devices are providing researchers, practitioners, and end users with an unprece-
dented amount of data to enable new services, inform decisions and create added
value. According to [36] the number of smart phone users was predicted to top
three billion by the end of 2018. Other wearable devices such as watches, eye-
wear, and garments have become increasingly ubiquitous, with a projected 245
million units expected be sold in 2019 alone [22]. In the public sector, smart
cities leverage IoT technologies to design better policies, create efficiencies, and
manage growth sustainably [31]. Urban areas around the world have made sub-
stantial investments to deploy ‘smart connections’ for everything from buses to
street lights to buildings, which fuel data analytics.

While developers have focused on improving sensor accuracy and devising
advanced methods to store, manage and analyse IoT data, public authorities
soon realised that technology is just one, albeit a crucial component of their
smart city strategy, which could help them achieve their wider development
goals and be more responsive towards residents’ needs [35]. A smart city is
hence commonly understood as a people-centric city, delivering services that
matter to citizens and empowering communities and businesses to engage in
decisions that will affect them.

Human involvement enhances technology as well. More than a decade of
development in big data and data science, experts agree that the best solutions
employ a combination of machine and manual processes [9] - for example, a
state-of-the-art machine learning model can handle roughly 80% of a problem,
while approximately 19% of cases require some form of human input, and the
remaining 1% is random [4].

Augmenting technology is particularly helpful to:

1. Provide context to a device measurement, easing the detection of false
positives and outliers. For example, for healthcare applications, consid-
ering biological measures alongside a description of the patient’s activity
at measurement time can be critical for taking the right treatment deci-
sion. In a more abstract sense, people complement devices with their own
sensing capabilities.



2. Produce ground-truth datasets to train machine learning models. Machine
learning techniques require large volumes of training data to be effectively
calibrated. For example, an algorithm cannot recognize cars in traffic cam-
era feeds unless it has enough examples of images with cars, and images
without them. Manual feedback is also useful for verifying that a machine
judgment is correct, especially in scenarios with a low margin of error,
such as self-driving cars.

3. Gather data that is not available through other means. This can be
achieved through citizen sensing, an approach which crowdsources sen-
sor deployment and data collection to city residents, for example through
apps that track locations or other smart devices, or through community
projects, which reach out to residents to encourage them to participate in
specific activities, such as OpenStreetMap.

In this chapter we first introduce crowdsourcing (Section 2) and human-in-
the-loop (Section 3), two related approaches for realising these three use cases
and devise data science pipelines that seamlessly combine machine with human
and collective intelligence. We then discuss two instances of crowdsourcing for
location data: spatial crowdsourcing (Section 4), and citizen sensing (Section 5),
which are particularly relevant in a smart city context.

2 Crowdsourcing

The term crowdsourcing is a portmanteau of the words crowd and outsourcing.
Brabham [3] defines it as a production model that leverages the collective in-
telligence of online communities for specific purposes set forth by a ‘requester’
organisation. Collective intelligence is a capability that “emerges from the col-
laboration, collective efforts, and competition of many individuals and appears
in consensus decision making” [30]. While crowdsourcing predates the digi-
tal age, the hyper-connectivity brought about by the rise of web and internet
technologies has made it possible to mobilise large numbers of people in almost
real-time, prompting the creation of on-demand platforms where people register
to contribute to crowdsourcing projects, often in exchange of a reward.
Broadly speaking, there are two main categories of crowdsourcing activity:
microtask and macrotask crowdsourcing. These can be distinguished based on
task granularity, or the amount of work required for — and by extension, the
complexity of — the task assigned to individual workers [43]. Microtasks are
relatively quick, simple and repeatable activities that can be — and often are
— completed by volunteers in parallel, without the need for specific training or
specialist knowledge [11, 43]. Microtask crowdsourcing is particularly valuable
as a means to combine human and machine intelligence, for example in the
context of improving the performance of algorithms [9]. In contrast, macro-
task crowdsourcing is a much more involved process, with tasks taking many
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hours to complete and requiring specialist knowledge of the context in which
the task is intended [20]. We present here Kaggle as an example of a macrotask
crowdsourcing platform and FigureFight and Eye Wire as examples of microtask
crowdsourcing platforms.

In many areas, crowdsourcing has emerged as a suitable alternative to more
established problem-solving approaches relying on experts. It can generate use-
ful results quickly and at scale, provided it reaches a crowd with relevant skills
and resources, enables them to contribute and coordinate effectively, and con-
siders their motivations [21]. For example, Kaggle? houses a large community
of data science and machine learning enthusiasts. Companies wanting to solve
a problem in this space post it as a competition on Kaggle together with an
evaluation metric and a number of rewards, usually monetary. Members of the
community can participate in the challenge (individually or in teams), and are
encouraged to engage in discussion forums. At the end of the competition, the
winners earn prizes, while the organisation receives a solution to their problem.

Another example is FigureEight,?, which targets the crowdsourcing of shorter,
less complex tasks (called microtasks) that are nevertheless costly for an organ-
isation to undertake with their own resources. For instance, an organisation
wanting to train a machine learning model to recognize bikes in images needs
a sizable amount of ground-truth data in the form of annotated images. In a
similar way to Kaggle, an organisation can upload a dataset of non-annotated
images together with human-readable instructions on what is required for each
image. The task is posted on the platform, where any registered member can
provide answers, with each answer being rewarded with a few cents. To provide
a degree of certainty about the quality of the answers, the platform may ask
different people to annotate the same image, and report the final answer based
on the answer on which most contributors agreed.

Not all crowdsourcing incentives rely on monetary or physical rewards. In
virtual citizen science, projects commonly rely on the intrinsic motivations of
volunteers — their interest in science, altruism and desire to contribute to re-
search. For example, EyeWire? is a VCS project that recruits volunteers to trace
neuron pathways in Magnetic Resconance Imaging scans of the optic nerve [39].
EyeWire uses a range of incentives to recruit and retain volunteers, including
gamification features such as points, badges and leaderboards; integrated discus-
sion features such as an instant messenger chat service; feedback and discussion
sessions with project scientists and regular competition events where volunteers
work together or compete with one another to solve narratives and win in-game
rewards such as bonus points [39, 44]. In terms of crowdsourcing mechanics,
however, VCS projects are similar to other forms of crowdsourcing, with multi-
ple volunteers independently making classifications and a final answer based on
majority voting from volunteers [38].

[30] identified four dimensions of collective intelligence. They can be used
as a checklist for any organisation interested in using crowdsourcing:
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What needs to be done?, and therefore What will people be asked to do?:
[13] classified tasks published on microtask crowdsourcing platforms according
to six types: information finding, verification and validation, interpretation and
analysis of text or figures, content creation, surveying (customer satisfaction or
demographic studies), and content access (e.g., to test a service). There is no
hard constraint about what can be asked, but it is important to be aware of how
difficult it is, how much time it would take on average, and if anything more
than an ordinary PC or a mobile phone is needed for solving it. Macrotask
crowdsourcing has slightly different challenges. While it can be used in any
open-innovation context, practice has shown that it is important to be clear
about the way the solutions are going to be evaluated [28], and consider how
the most promising ones are going to be used.’

Who will do it?: what is the profile of the people that woudl potentially
undertake the task? What skills are required? This is important to ensure
the task is advertised with consideration for the appropriate challenges and
reaches the right audience, just as when hiring a contractor. Crowdsourcing
platforms manage profiles of contributors where they can update the description
of their skillsets and track their performance. This information is available to
organisations, giving them - to a certain extent - the ability to choose the most
appropriate contributors to the task.

Why would someone do it?: in other words, what is the incentive for
someone to do the task? [45] defines a typology of incentives, from financial to
altruistic to reputation to enjoyment. In Kaggle, for instance, people receive
points and badges based on their participation in machine learning challenges,
which can be referred to in the LinkedIn CVs. These are examples of a broader
set of techniques called gamification [41], which use game elements in non-game
contexts to drive participation. How to ensure the quality of the solu-
tions?: sometimes people err when performing microtasks, or deliberately give
random answers to requests to receive rewards more quickly. Strategies to min-
imise the impact of unexpected or malevolent human behaviour are essential to
ensure answer quality. As noted earlier, in the context of more complex macro-
tasks, a clear measure of how answers are evaluated gives the crowd a sense
that they are participating under fair conditions and may increase participation
[14, 53]. [7] presents a comprehensive survey of different quality control mea-
sures in crowdsourcing, separating them into individual assessments, that is,
when an individual rates or evaluates a contribution; group assessments, when
quality is assessed by a vote, peer-review aggregation, or through consensus in a
group of people; and computing assessments when the answers can be checked
automatically.

Once these questions have been answered, an organisation is ready to imple-
ment a workflow such as the one depicted in figure 1. The answers to the What
questions should lead to a clear definition of the problem/task to be proposed,
and to the design and implementation of a tool or interface through which peo-

Shttps://www.forbes.com/sites/ryanholiday/2012/04/16/
what-the-failed-1m-netflix-prize-tells-us-about-business-advice/, retrieved Jan-
uary 14th 2019.
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Figure 1: Workflow to crowdsource a task

ple can contribute. This may mean using existing crowdsourcing platforms,
developing a solution in-house, for example a mobile app, or using social media
and other marketing channels. The answers to the Why questions help define
an appropriate incentive model for attracting contributions. The Who part de-
termines where and when to launch or deploy the task, to which crowd, and how
to execute the assignment of tasks to individual members of the crowd. Assign-
ment can be as simple as simply making the task available to any member of
the crowd, or consider performance on previous tasks, and people’s preferences
and availability. Finally, the How questions assist an organisation in building a
better understanding of how success would be measured for the task and suggest
developing tools and methods to manage quality effectively.

3 Human-in-the-loop

Human-in-the-loop (HITL) refers to a systems architecture which meets the
following one of the criteria:

1. human interaction is a fundamental part of the workflow being imple-
mented - in other words, the process cannot, for technical, legal, ethical or
other reasons, be fully automated. There are many manifestations of this
in IoT, for example smart city control rooms - they display large amounts
of data and complex analyses to aid people to make decisions.

2. there is a case for the creation of a loop between machine output and hu-
man input and vice-versa. For instance, a health monitoring app would



commonly receive measurements from smart wearables alongside user-
defined goals and suggest behavioural changes based on both. The ‘hu-
man’ in HITL refers to the user setting their health targets. The ‘loop’
consists of suggestions generated by a machine learning algorithm which
are assessed by the user.

HITL and crowdsourcing are related, but there are important differences:
crowdsourcing is a distributed problem-solving approach. It can be applied to
computational or autonomous systems, but most forms of manual input assume
that the participants are part of a large, unknown crowd and that they solve
the problem collectively. As such, an important part of a crowdsourcing project
is how to allocate the tasks to participants, and how to validate and aggregate
their contributions. HITL does not necessarily involve decentralisation.

The work of [37] surveys HITL applications for IoT and cyber-physical sys-
tems. It proposes a taxonomy that divides applications based on whether they
rely on human control, where the human either directly controls the system
(e.g, a self-driving car) or supervises it (e.g, control in a factory); or human
monitoring without direct control. The latter can further be classified into:
open-loop and closed-loop applications. Open-loop refers to situations in which
the system does not take any proactive action after collecting the data (e.g. a
healthcare application that reports to medical staff). Closed-loop, by contrast,
is about systems in which results are processed towards a common goal (e.g.,
exercise machines in a gym that monitor the body temperature of the people
exercising, in order to adjust the temperature of the room). Hybrid systems
combine control and monitoring in a single unit.

The first studies of HITL originated in control theory, where a large body of
research has been devoted to human factors in complex systems (see for example
[10]). Typically, humans are modeled as system components that introduce a de-
gree of noise that the system needs to adapt to (e.g, driving-assistance systems),
or as components that need to be given control of the system under certain con-
ditions. The field of human-robot interaction [17] studies scenarios where people
engage with robots, either remotely or in proximity. Robot interactions have
challenges that do not exist with digital systems, such as robot autonomy, in-
formation exchange, and team-work both among robots, and among robots and
people. HITL is also a common pattern in assistive technologies for helping peo-
ple with disabilities, where the main question is how to derive intent from the
sensor measures received from human participants [40]. In the machine learning
community, a lot of attention has been recently put into integrating humans into
the learning process, a technique called interactive machine learning [2], which
builds upon the theoretical foundations of active, preferential, and reinforce-
ment learning, and the theory and practice of HCI to speed up earning cycles
and reduce the involvement of machine learning experts. This is an extension
of the machine learning scenarios introduced in the previous section, where an
undefined crowd, unrelated to the end-users of the classifier, is typically used to
generate a gold standard, without any further interactions or ‘loops’.

The four dimensions discussed in Section 2 apply to this case as well. In



HITL it is less common to seek input from multiple parties for the same task,
a technique used in microtask and macrotask crowdsourcing. Many control
or monitoring scenarios are designed for specific user groups, with their own
motivations. The user often has an intrinsic interest in the system producing
the correct output or a need to control the system. Microtask crowdsourcing
has been used as a source of human input in interactive machine learning [8].
In those cases, participants are rewarded financially, just like for types of tasks
e.g. completing surveys or curating databases. The challenge in HITL is how to
effectively represent and integrate the inputs and outputs of human and machine
components respectively to ensure a smooth operation of the overall system.

Figure 2 depicts a high-level view of the workflow of a human-in-the-loop
application. It is consistent with the class of hybrid IoT applications from the
taxonomy from [37]. Starting with data and sensor inputs, and possibly user
input, collected by the automated part of the system, there is first a machine
processing stage that produces an output. This output needs to be commu-
nicated to the user for verification, and the user needs to have the means to
provide a meaningful output to the machine. For interactive machine learning,
the output may be a simple validation of the classifier result. When crowdsourc-
ing is used, the output would be collected from multiple crowd workers and then
aggregated using automatic inference techniques that compute the most likely
correct answer [7].

4 Spatial crowdsourcing

Sometimes a crowdsourcing task requires the presence at a particular location -
in those cases, we talk about spatial crowdsourcing [55]. The crowd is equipped
with smart devices, or if applicable use their own mobile phones. The goal is
to collect or curate a geospatial dataset in a decentralised and distributed way.
A typical task would be to visit specific locations and take measurements, e.g.
take a picture, or to explore an area looking for items or events of interest which
trigger measurements.

There are several platforms that offer bespoke support for spatial crowd-
sourcing projects, both at the macro and micro levels e.g., taskRabbit,® Gig-
Walk,”) gmission, [5] i-Log [54] etc.

Figure 3 shows a spatial crowdsourcing workflow. Starting from a geospatial
task, the first step that needs to be taken is deciding on the appropriate platform
for the crowd to accomplish the task. For many types of task, existing phones
with an internet connection, camera and sound recording capabilities will suffice.
However, for other scenarios, special devices might be needed, making it impor-
tant to consider how the devices would be distributed to the members of the
crowd and financed. The platform affects the UX design of the task. For devices
that are very specific to one task (e.g. radiation counters), one might consider

Shttps://www.taskrabbit.com/
"http://www.gigwalk.com
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Figure 3: Spatial crowdsourcing workflow

the provision of an accompanying mobile app or website to better interact with
contributors.

The workflow in Figure 3 shares many similarities to the one introduced in
Section 2. The allocation of tasks has specific challenges in spatial crowdsourc-
ing. First, the need to be at a location limits the size of the crowd substantially.
Second, the relative location of the contributor to the location where the tasks
need to be carried out influences the motivation of the contributor. To tackle
these challenges, recent research has aimed at adapting well-known multi-agent
and optimisation algorithms to handle uncertainty in the location of the crowd
and their performance. The work of [48] assumes contributors send their loca-
tions to the server and thereafter the server assigns each of them tasks close by,
with the aim of maximizing the overall number of assigned tasks and minimizing
the effort required. However, unlike robots that can be programmed to stay put
when idle, humans move around when they are waiting for a new task. The
work of [49] addresses this issue by leveraging historical location traces to pre-
dict future spatio-temporal distributions of tasks, which are then used to guide
idle contributors in a way that optimizes the overall allocation. A study by [26]
takes into consideration the performance of individual members of the crowd
and their task acceptance rates. By adding contextual tracking to the devices
used to accomplish the task, a machine learning model is trained to predict both
the likelihood of acceptance and the performance of a task before assigning it.

Spatial crowdsourcing has data privacy implications, which in the European
Union are handled by the General Data Protection Regulation (GDPR). Con-
tributors constantly report their location to the system that allocates tasks to



them. Recent research has made use of a combination of differential privacy
and geo-casting to allow a trusted cellular data provider to generate a Private
Spatial Decomposition (PSD) of contributors’ locations that is passed to the
allocation unit [47]. Tasks are assigned based on the locations reported in the
PSD by geo-casting to the zone with the highest probability of having the re-
quired level of crowd resources. The trade-off lies in the size of the zone to
geo-cast versus the probability of broadcasting to an insufficient number of con-
tributors, or to contributors who are too far away from the required location.
A different approach resorts to obfuscating trajectories and locations based on
global popularity and user preferences [24], following the same rationale as the
randomised response method for handling sensitive questions in surveys, where
the contributor chooses a number of erroneous locations proposed by the system.
Compared to [47], this is more suited for crowdsourcing scenarios in relatively
small areas (such as a university campus).

5 Participatory sensing

Participatory or citizen sensing describes the deployment of networks of mo-
bile and other sensing devices to collect and subsequently share and analyse
data [42]. It is a form of crowdsourcing which focuses on a specific type of ac-
tivity and set of technologies and puts more emphasis on the role of the crowd
and the participatory frameworks, tools and best practice [34].

Specific definitions and manifestations of participatory sensing are varied.
In its original form, the term participatory sensing referred to a form of crowd-
sourced data gathering through the use of sensors and human observations. It
is similar to spatial crowdsourcing, but with the distinction that participants
would focus on gathering data within their local area - places they live, work
and frequently visit [34]. Nevertheless, the field has subsequently grown to de-
scribe a wide variety of processes, both formal and informal. Initiatives vary
from explicit to implicit activities from individual participants [15]. Rather
than requiring formal data gathering processes, data may be gathered from web
2.0 services such as social networks to which individuals have unknowingly or
unintentionally published valuable insights [6]. Sensing also does not neces-
sarily involve semsors in the conventional technical sense, as participants may
personally make observations themselves, with little or no help from technology.

Participatory sensing follows similar principles and approaches to citizen
science, which engages volunteers in scientific research [52]. In fact, Haklay
describes participatory sensing as a form of citizen science in which participant
activity is passive and potentially implicit [34]. This requires a lower level of
engagement from volunteers than some more complex forms of citizen science
where participants have more agency to influence the way the data is collected
and used. There are also differences in the incentives associated with these
activities. Citizen science generally relies on participants’ intrinsic motivations
such as interest in science and altruistic desire to help scientists. It broadly
operates on volunteer rather than paid participation [38]. Monetary rewards in
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citizen science have been demonstrated to be demotivating, encouraging negative
behaviours and raising tensions around adequate rewards for the level of effort
offered by volunteers [44]. The use of gamification is not widely spread, though
some citizen science projects apply it widely [39]. Participatory sensing models
and platforms do not share constraints - the crowd is sometimes financially
motivated and previous studies have shown that such incentives could prove
critical to maintain engagement in the long term [16].

Participatory sensing has been applied to a wide variety of contexts as a
means of gathering data on a larger scale than would be feasible through other
methods. In the context of environmental monitoring, sensor devices and par-
ticipants have proven effective at identifying the presence of pollutants, moni-
toring the activities of potentially damaging corporations and recording species
observations for conservation purposes [12]. Participatory sensing is particularly
suited for contexts in which task assigners wish to understand or simulate the
experiences of individuals within a given location or environment, or to garner
feedback from them [18]. As well as being cost-effective, the more human-
centred approach leads to a social contract that has been associated with more
reliable and timely submission of data [18, 27].

Participatory sensing functions similarly to the spatial crowdsourcing work-
flow demonstrated in Figure 3 [51]. A task is assigned by the assigner and
published to the crowd, who then gather the necessary data, which is sent to
the task assigner. During the quality check process, feedback can be provided
by the assigner in the form of additional incentives and rewards dependent on
the quality of submissions [51]. However, there may be no formal crowd, nor
a pool of workers on whom to draw. If social media is involved as a source of
data, then instead of designing, launching and managing a crowdsourcing task,
the assigner must instead engage in mining to source and aggregate data [50].
The intended usage and nature of the original data must also be considered.
Where data are identified through social networks or other web 2.0 channels,
the task assigner will be unable to influence - or perhaps even identify - the
sensor devices used to gather data. This may influence their ability to use the
data with confidence.

In relation to the Internet of Things, participatory sensing models have been
employed to enable smart-city processes, distributing the data gathering and
technological processes over crowds of residents and visitors to lower the load
placed on any one individual and device [23]. In theory, in a smart cities con-
text, any device could serve as a source of data and the data gathering process
for individuals need not require active engagement. Instead, participants fully
control the sensors and the data which they publish to the wider network, en-
gendering voluntary participation in a similar sense to that suggested within the
context of citizen science [18]. One particular advantage of participatory sensing
is that it can gather data from more ‘opportunistic’ sources [19], expanding on
the scope of existing smart information systems deployed for transport, utilities
and other areas of smart cities [23].

However, participatory sensing is not without its issues. As it relies on hu-
man involvement and voluntary participation, there are no up-front guarantees
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on data coverage and accuracy [23]. Even when participation is implicit or
opportunistic, careful consideration must be given to the specifications of the
sensor devices - for example, the battery life of portable sensors such as mo-
bile and wearable devices - to ensure that volunteers are not discouraged or
prevented from gathering data [32]. Estimating how long the activity would
take to reach critical mass is challenging - incentives are critical to encourage
timely delivery and maximise coverage [25]. Furthermore, recent research has
focused on the ethical and privacy implications of a participatory-fuelled smart
cities approach, balancing the need for live feedback and open sharing of data
for the common good with privacy and security concerns [46]. More broadly,
modelling trust and reputation in participatory sensing data continues to be a
key direction of the research landscape that must be addressed if participatory
sensing data is to be applied not only in smart cities contexts, but in scientific
research and beyond [33].

6 Conclusion

Most advanced IoT solutions today are more than just technology. They lever-
age human and social capital in interesting, effective and ethical ways to en-
hance, extend and oversee technical systems. Participatory sensing comple-
ments digital sensor networks. Citizen science and paid microtask platforms
help create ground truth to train machine learning models. Human-in-the-loop
architectures help design and operate complex systems that bring together peo-
ple and IoT technology, for instance in smart city control rooms or interactive
machine learning.

To leverage human and collective knowledge and creativity, an organisation
should consider fundamental questions around: what will people be asked to
do, what is the most appropriate available audience who could be engaged to
undertake the task, why would they be interested to participate and how would
the results be quality-assured and aggregated for further use. Answers to these
questions are critical to ensure organisations apply crowdsourcing in all its forms
and purposes effectively. This requires expertise in a range of fields, technical
as well as non-technical, and raises particular challenges around the definition
of tools and experiences to maximise the value of manual efforts, the choice of
channels to recruit and communicate with participants, the incentive models
that drive participant behaviour, and the ways outcomes are used in existing
contexts. In addition, crowdsourcing raises important ethical questions around
ownership and fair rewards, in addition to privacy and data protection when
citizens’ data is collected and shared with others.

Within the crowdsourcing paradigm, we described two areas of study that
are particularly useful for IoT scenarios. First there is spatial crowdsourcing,
as a special case where contributors travel to specific locations to perform a
task. Compared to non-spatial crowdsourcing, the main challenge is effective
task allocation, as the effort required of contributors to move around needs to
be accounted for in the incentive model, and the pool of available workers near
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to a particular area may be too small. Second, participatory sensing, which
are widely used in smart cities projects, and can tap into pre-existing citizen
platforms to recruit participants and implement more opportunistic forms of
data collection. In both cases, understanding the motivation and incentives of
the likely participants is key - a wide range of models exist that make their
own assumptions about what would drive ‘the crowd’ to engage, but these as-
sumptions need to be complemented by empirical studies and a readiness to
consider a mix of crowdsourcing forms to maximize outcomes where needed.
For instance, approaches such as [1] and [29] show how different crowdsourcing
platforms, incentives and engagement models could be streamlined into a co-
herent workflow to deliver more complex data collection or analysis objectives
and reduce costs.

With sensible tools and guidance, careful coordination, and fair and rele-
vant incentive models, the power of human and collective intelligence can be
seamlessly integrated into automated processes, to get the best of both worlds.
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