Theocharous, E., Fox, N.P., Barker-snook, I., Niclòs, R., Garcia Santos, V., Minnett, P.J., Göttsche, F. M., Poutier, L., Morgan, N., Nightingale, T., Wimmer, W., Høyer, J., Zhang, K., Yang, M., Guan, L., Arbelo, M. and Donlon, C.J. (2019) The 2016 CEOS infrared radiometer comparison: Part II: Laboratory comparison of radiation thermometers. Journal of Atmospheric and Oceanic Technology, 36, 1079-1092. (doi:10.1175/JTECH-D-18-0032.1).
Abstract
To ensure confidence, measurements carried out by imaging radiometers mounted on satellites require robust validation using ‘fiducial quality’ measurements of the same ‘in-situ’ parameter. For surface temperature measurements this is optimally carried out by radiometers measuring radiation emitted in the infrared region of the spectrum, co-located to that of a satellite overpass. For ocean surface temperatures the radiometers are usually on-board ships to sample large areas but for Land and Ice they are typically deployed at defined geographical sites. It is of course critical that the validation measurements and associated instrumentation are internationally consistent and traceable to international standards. The Committee on Earth Observation Satellites (CEOS) facilitates this process and over the last two decades has organised a series of comparisons, initially to develop and share best practise, but now to assess metrological uncertainties and degree of consistency of all the participants. The fourth CEOS comparison of validation instrumentation: blackbodies and infrared radiometers, was held at the National Physical Laboratory (NPL) during June and July 2016 sponsored by the European Space Agency (ESA). The 2016 campaign was completed over a period of three weeks and included not only laboratory based measurements but also representative measurements carried out in field conditions, over land and water. This paper is one of a series and reports the results obtained when radiometers participating in this comparison were used to measure the radiance temperature of the NPL ammonia heat-pipe blackbody during the 2016 comparison activities i.e. an assessment of radiometer performance compared to international standards. This comparison showed that the differences between the participating radiometer readings and the corresponding temperature of the reference blackbody were within the uncertainty of the measurements but there were a few exception, particularly for a reference blackbody temperature of -30 °C. Reasons which give rise to the discrepancies observed at the low blackbody temperatures were identified.
More information
Identifiers
Catalogue record
Export record
Altmetrics
Contributors
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.