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by Simon Jack Duncan

This thesis deals with multiscale mathematical modelling of water and solute
movement in soil systems, with particular focus on the soil structures that are
formed by agricultural practices. The first mathematical model is developed to
describe water movement in a generalised ridge and furrow soil system, which is
coupled to dynamic surface water infiltration due to ponding. The model is based
on a non-linear Darcy-Richards’ equation in pressure formulation to describe
variably saturated soil. This model is then extended and coupled to an
advective-diffusion equation for solute movement. Using the mathematical model,
we compare water and solute movement in two soil structures: a ridge and furrow
soil and a flat field soil. We highlight scenarios that increase the risk of solute
leaching in both flat field and ridged soils. We also discuss the key factors affecting
solute leaching in these systems. We then focus on the water dynamics in the
regions of soil that contain crops. Using the Darcy-Richards’ equation for water
movement, we apply multiple scale asymptotic homogenisation to derive an
approximate set of equations that captures water movement around crops. We find
the approximate equations to be more computationally efficient by a factor of
O(10%) when compared to the full equations. Extending this idea, we develop a
mathematical model that captures crop growth and its effect on solute movement.
The growth and development of the crops is dependent on the cumulative uptake of
nutrients available to the plant. The soil is modelled as a poroelastic material that is
able to deform due to crop growth. Special attention is paid to the reduction in void
space, change in local volumetric water content and the impact on solute movement
as the crops increase in size. Multiple scale asymptotic homogenisation is used to
derive a set of approximate equations that describe macroscale nutrient movement
and crop growth in the soil. This approach increases computational efficient by a
factor of O(10%) while maintaining a percentage error of < 2%.
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Chapter 1
Introduction

In the year 2016, it was estimated that the total quantity of nitrogen, phosphate and
potash fertilisers applied to soils in the United Kingdom was 136 kg ha™!, covering
18,600,000 ha of agricultural land [1, 2]. This totalled 2,530,000,000 kg of
agricultural fertilisers with an estimated cost of £506,000,000 [1, 2]. Combined
with an estimated 16,000,000 kg of herbicides, fungicides and insecticides applied
to arable grassland [3], the total quantity of solutes applied to soils in the United

Kingdom is substantial.

Although the use of fertilisers and pesticides can aid in generating considerable
improvements to crop yield, excessive use of solutes in arable land is a substantial
problem [4]. Overuse of fertilisers and pesticides can have detrimental effects on
both human health and farmland ecosystems [5]. Excessive use of pesticides in
arable environments can destroy grassland ecosystems by reducing biodiversity [6].
Similarly, overuse of fertilisers can cause accelerated eutrophication due to surface
runoff into water systems, in which increased phytoplankton levels disrupt the
natural balance of the local ecology [7].

In the United Kingdom, farmers have significantly increased crop yields and
production over the 20th century, with crops such as wheat and barley having
increased substantially over the past 50 years [8]. However, this has caused a
wealth of problems within local environments including: a decline in bird
populations, greater gaseous emissions and increased nitrate concentrations in
rivers [9]. The estimated annual external cost to agriculture in the United Kingdom
is approximately £2,343,000,000 [4], where large portions of this is dedicated to
combatting the negative effects of overusing pesticides and fertilisers. The cost to
combat pesticide contamination in drinking water is approximately £120,000,000
[4]. Similarly, the expense to combat the effects of nitrate and phosphorous
leaching into groundwater is approximately £71,000,000 [4].



In the year 2000, grasslands and arable fields in the United Kingdom had developed
a phosphorous surplus of 1000 kg ha™' [10]. Whilst a build up of phosphorous in
soil can be beneficial to crop yields due to its low mobility [11], excessive
concentrations of phosphorous can be severely detrimental to arable environments.
Excessive phosphorous application in the UK has led to considerable increases in
lake sediment phosphorous concentrations [12], causing a substantial increase in
eutrophication. Given that worldwide phosphorous consumption is steadily
increasing [13], and phosphorous resources may run out in as little as 50 years
[14], more efficient use of fertilisers is crucial for sustainable life.

Understanding and maximising the beneficial properties of solutes whilst
minimising any detrimental effects is a difficult problem [15]. The advantages from
solute application in agriculture can benefit consumers, farmers and general society.
However, the specific risks associated with individual solutes may never be fully
understood [16]. As such, there are various aspects of solute use that must be
understood in order to quantitively determine the associated risk.

One aspect of particular importance is the associated risk to solute leaching due to
the surface topography of the soil, which results from different agricultural
practices. Previous studies have found contrasting results, suggesting that different
cultivation techniques can optimise solute leaching [17, 18]. Hence, it is not fully
understood which cultivation method is best to reduce leaching with the current
methodologies and studies. Therefore, it is necessary to develop a new methodology
to determine what influence the surface topography has on solute leaching.

One approach to aid in efficient use of solutes in agriculture is the use of
mathematical modelling. Mathematical modelling of soil systems has been studied
increasingly in recent years [19]. This technique provides the means to study soil
systems and plant-soil interactions, with the benefit of reducing time and resources
compared to standard experimental practices. This allows us to understand the
relationship between crop management practices and yield rates, whilst predicting
the resources required. Combining mathematical modelling with traditional
experiments allows us to efficiently improve our understanding of complex soil
systems [20, 21]. This can lead to further improvements in agricultural practices

and management for greater crop yield while minimising waste of resources.

In this thesis, we aim to develop a range of mathematical models to describe solute
movement in soil. The mathematical models will be constructed to accurately
capture the transport mechanisms of pesticide and nutrient like solutes in different
soil structures that arise due to specific cultivation practices. We aim to determine
how the surface topography of the soil influences the transport of solutes and the
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associated risk to leaching. Furthermore, we also aim to determine how the
presence of crops in soil influences the movement of water and solutes in these
systems. Our models will describe several processes in soil, including but not limited
to: water dynamics, solute transport, surface ponding, plant root uptake and soil
deformation from compaction. We build upon previous mathematical models to
incorporate these addtional soil processes to develop a more complete mathematical
description of the transport mechanisms within soil. A brief summary of the work
conducted in this thesis is given below.

1.1 Layout of the Thesis

A systematic method for modelling simultaneous water and solute movement in soil
will be presented. The remainder of Chapter 1 provides a brief introduction to soil
and cultivation methods for agricultural practices that form different soil structures.
A formal introduction to each of the chapters including a review of the relevant
literature is given in the introduction of each chapter. The mathematical analysis of
soil processes starts from Chapter 2.

In Chapter 2, we construct a mathematical model that describes water movement in
a generalised ridge and furrow soil system using a continuum approach. Special
attention is paid to pond formation on the surface of the soil and root water uptake
in the ridges of the system. The resulting model comprises a coupled system of
partial and ordinary differential equations that describe the mathematical interplay
between water movement, surface ponding and dynamic infiltration. Furthermore,
we validate the model from previous ridge and furrow ponding modelling data, in
which we find a difference of ~ 4%.

In Chapter 3, we extend the water movement and surface ponding model from
Chapter 2 to include solute transport. Using this model, we conduct a case study
comparison of water and solute dynamics in two soil structures: a ridge and furrow
soil, and a flat field soil. We observe that the soil to best reduce solute leaching can
be either the ridge and furrow or flat field soil depending on several factors. We find
that the key factor in determining solute penetration in soil is the time delay
between solute application and rainfall, since the soil surface topology can heavily
influence solute transport in soil.

In Chapter 4, we focus on water dynamics in the regions of soil that contain crops.
Extending the model from Chapter 2, we develop a model that describes the
macroscale movement of water in the plough layer of soil. This is achieved using the
mathematical technique of multiple scale asymptotic homogenisation, where we
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construct an approximate set of equations that captures macroscale water
movement in soil, which is based on the intrinsic microscale soil structure that is
formed in the presence of crops and vegetation.

In Chapter 5, we build on the ideas used in developing the model for water
movement in the crop zones from Chapter 4. We derive a mathematical model that
describes the movement of solutes in soil, in which the soil is treated as a
poroelastic material. We allow crops to grow and freely deform the poroelastic soil,
where the growth of the crops is dependent on the uptake of the solute. Special
attention is paid to the reduction in void space, change in local volumetric water
content and the impact on solute diffusion within the poroelastic soil domain as the
crops increase in size. Then using multiple scale homogenisation we derive a set of
averaged equations that capture macroscale solute movement and crop growth.

Finally, in Chapter 6 we present a summary and the conclusions of the work in this
thesis. Furthermore, we provide a brief discussion of possible future work and
address the questions that arise within the thesis.

Chapters 2 and 3 in this thesis are based on two pieces of published work. These are
‘Duncan, S. et al. Mathematical modelling of water and solute movement in ridge
plant systems with dynamic ponding. European Journal of Soil Science 69, 2
(2018), 265-278’ and ‘Duncan, S. et al. Mathematical modelling of water and solute
movement in ridge versus flat plant systems. European Journal of Soil Science
(2018)’. For reference, these papers can be found at the back of this thesis.

1.2 Soil

Soil is a collection of organic and mineral matter that is created by geological
processes, organisms and climate [22]. As a naturally occurring and vast substance,
there is substantial variation in soil and hence, classification of soil into several key
groups is necessary [23].

There are multiple soil classification methods, examples include: the Winter Rainfall
Acceptance Potential (WRAP) system and the Hydrology of Soil Types (HOST)
classification, which can have up to 29 different classifications of soil types within
the United Kingdom alone [24]. However, soil minerals are typically split into one
of three core categories based on particle size, these being sand, silt and clay [25].
Classification of the three main mineral categories can be seen in Table 1.1 [26, 27].

Sand and silt particles are very similar by mineral composition and only differ based
on their size and quantity in soil [27]. Sand particles are classified as the largest of
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Table 1.1: Soil mineral classification [26, 27].

| Particle | Particle diameter (mm) | No. particles per gram |

Clay < 0.003 4 x 104
Silt 0.003 — 0.06 2 x 107
Sand 0.06 — 2 112 — 89 x 10°

the three types, which provide anchorage for plant roots to establish themselves
[28]. Furthermore, they typically increase the available pore space of the soil
system, allowing for greater quantities of air to circulate throughout.

Silt particles fall in between sand and clay in terms of particle size. Silt particles are
able to retain large quantities of water due to their size, which allows for easy
accessibility to the plants. However, they are typically the most erodible of the three
soil types, which can be a key factor in determining land-use [29].

Clay particles differ from silt and sand particles (other than by particle size) due to
the intense weathering they experience [27]. As such, the chemistry of clay particles
is substantially different to the larger soil minerals. Clay particles have a negative
charge that binds positively charged cations such as, K+, Ca?>" and Cu** to the
mineral surface [30, 31]. This coupled with the large surface area of clay particles
due to their small size, allows clay minerals play an important role in supplying
sufficient nutrients to plants.

Along with the minerals that exist in soil, organic matter can also be a considerable
component of soil. The quantity of organic material in soils can range anywhere
from 0.1% in dry desert soils, to over 50% in organic heavy soils [27]. Organic
matter holds large quantities of nutrients and water that are readily available to
plant roots, providing a vital source of food [32]. In addition to providing
sustenance to plants, organic matter also influences soil structure. Organic matter
causes soil to bind together creating compact soil aggregates, which readily
improves the soil structure and its ability to retain water [33, 34].

The key macroscale properties of soil, i.e., hydraulic conductivity, permeability and
porosity are typically governed by the ratio of the three mineral categories within
the soil. Shown in Figure 1.1 is the United States of America Department of
Agriculture (USDA) soil texture triangle for the classification of 12 different soil
types from the ratio of the three soil minerals clay, silt and sand [35, 36].

One of the key soil properties that is vital for agricultural practices is the hydraulic
conductivity. The hydraulic conductivity of soil is defined as the ability of a given
fluid to move through the pore space of the soil due to gravity [37]. This property of
soil heavily influences the transmission of water, and availability of water to plants.
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Figure 1.1: The United States of America Department of Agriculture (USDA) soil
texture triangle for classification of soil from the three minerals components [35].
Image from Rhodes (2012) [36].

The hydraulic conductivity of soil is related to the soil permeability by linear the
relationship,

K = P9 (1.1)
14

where K [m s7!'] is the hydraulic conductivity, x, [m?] is the saturated permeability,
3
]

p [kg m™”] is the fluid density, i [Pa s| is the fluid viscosity and g [m s~?] is gravity.

Soil permeability describes the ability of the soil to transmit different fluids under
different conditions [37]. The relationship between the soil permeability and the
particle size (see Table 1.1) follows the mean square law «, = c,d;, where d, [m] is
the mean grain size and ¢, [—] is a constant that is dependent on the pore space
configuration [38].

The properties d, and ¢, are closely linked to the porosity of the soil. The porosity of
soil is defined as the volume of pore (void) space per volume of soil [39]. This is an
indirect measure of the connectivity of the soil, i.e., the relationship between the
connection of the pore space throughout the soil, which can be used as a method to



CHAPTER 1. INTRODUCTION 7

classify soil with respect to the pore space and solid matrix connectivity [40].

The porosity of the soil can play an important role in the transport of solutes such as
nutrients or pesticides. The power law relationship between solute diffusion and
porosity takes the form [41],

D = D;¢?S°, (1.2)

where D [m? s™] is the solute diffusion in soil, D; [m? s™!] is the solute diffusion in
free liquid, ¢ | — | is the porosity, S | — | is the saturation, i.e., the volume of water
per volume of void space, and d | — | is the impedance factor that accounts for the
tortuosity of the soil. In equation (1.2) we observe that the diffusion of solutes is
dependent on the porosity of the soil, which will significantly influence solute
movement.

From the soil properties above, we find that the soil type plays a vital role in
defining the mobility and transport of water and solutes in soil, as many of the soil
properties influence one another and contribute to the transport mechanisms within
soil. Hence, accurately capturing the influence of the soil type is vital in the
development of mathematical models to represent soil systems.

1.3 Soil Geometries

In arable farming row production is a widely used practice. Row production refers
to fields that are cultivated to create evenly spaced rows in which seeds are planted,
grown and harvested. A large variety of crops are grown using row production;
examples include maize (Zea mays, L.), pearl millet (Pennisetum glaucum, L.),
soybean (Glycine max, L.), potatoes (Solanum tubersum, L.) and sunflowers
(Helianthus annuus, L.) [42]. There are several cultivation and tillage procedures
that utilise row production methods, however, they are often for different soil
structures and surface topologies. These cultivation methods include but are not
limited to: flat planting [43], ridge planting [44], raised bed planting [45], wide
bed planting [46], furrow planting [47] and plastic covered rainfall harvesting
systems [48]. Shown in Figure 1.2 are cross section schematics of these cultivation
methods.

Several of these cultivation methods utilise a ridge and furrow soil geometry, or a
variant of this structure. Ridge and furrow geometries are created when the soil
surface is adapted to form a periodic series of peaks and troughs across an arable
field. Shown in Figure 1.3 is an example of a ridge and furrow system immediately
after crop sowing (Ordnance Survey grid ref. TG337240).
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Figure 1.2: Examples of different cultivation methods, including flat planting, ridge
planting, wide bed planting, furrow planting and a plastic cover rainfall harvesting
system.

The distinguishing feature of ridge and furrow structures is the surface topography
that is generated from the cultivation process. This uneven surface can alter the
mechanisms and dynamics by which water and solute infiltrate into the soil [44].
Furthermore, this can also affect the distribution of roots within the soil, which can
have an influence on the saturation and nutrient profiles throughout the soil.

The ridge and furrow soil structure is often the preferred crop system compared to
other alternatives [49]. This is due to multiple reasons including, ease of harvesting
[50], assisting with slow seed germination [51], and nutrient replenishment in the
soil [52]. A key advantage of ridge and furrow type structures is that they allow
water to flow across arable fields providing water to the plants whilst preventing
water logging of the root systems [53]. Ridge and furrow structures have also
shown to reduce soil erosion compared to other soil profiles [54]. This is attributed
to the influence of the ridges, which trap soil particles and reduce the effect of wind
damage [55].

Ridge and furrow tillage methods are favourable worldwide across multiple
environments and climates. In North-American climates, ridge and furrow planting
can protect the crop from seasonal (early and late) frosts, regulate weeds and
reduce blight [43]. In European climates, the ridge and furrow structure is
frequently used as it allows the crops to remain dryer during heavy rainfall [56].
Additionally, in east Asian climates the ridge and furrow tillage method has shown
to significantly increase soil moisture and temperature conditions resulting in
greater yields [57]. This makes the ridge and furrow tillage method one of the most
important cultivation practices globally.

Although the ridge and furrow cultivation procedure is often the preferred



Figure 1.3: A ridge and furrow cultivated soil system, located in East Anglia, UK
(Ordnance Survey grid ref. TG337240).

structure, growing evidence suggests that ridge and furrow soil systems may be
vulnerable to solute leaching compared to other tillage methods [18, 58, 59]. This
is often due to irrigation, which acts as a dominant transport mechanism for solute
movement in ridged soils. The European Food Safety Authority (EFSA) have
suggested that ridge and furrow soils can increase leaching six fold when compared
to flat soils [60]. This can cause devastating effects to local groundwater
contamination. Hence, understanding the effects that the ridge and furrow structure
can have on water and solute movement in soil is vital.

Large portions of this thesis are concerned with the mathematical modelling of ridge
and furrow structures and how they influence the movement and transport of water
and solutes throughout the soil. Due to the unique surface topology they exhibit,
they have many advantages but also several drawbacks. We aim to explore the
driving mechanisms for solute movement in this planting system to quantitively
determine the effect this soil geometry has on soil processes and crop growth.






Chapter 2
Water Movement and Ponding Model

In this chapter, we construct a mathematical model that describes the movement of
water in a generalised ridge and furrow soil domain. We focus on two physical
processes: root water uptake and pond formation on the soil surface. The resulting
model comprises of a coupled system of partial and ordinary differential equations
that describe the mathematical interplay between water movement, surface ponding
and dynamic infiltration. We validate the model using previous ridge and furrow
ponding data. We find a difference of ~ 4% using data obtained from the literature.

2.1 Introduction

The ridge and furrow farming method is frequently used in the United Kingdom and
throughout the rest of Europe. However, large areas of Europe experience
substantial rainfall, which can lead to considerable ponding in the furrows of the
soil. This can result in significantly decreased yields for crops such as potatoes [61].
This reduction in yield can be due to bacterial diseases such as blackleg or soft rot,
which are easily transmitted by water logged soil [62, 63]. As such, ponded water
on the surface of the soil is a source of transport for the bacteria, and can also form
a host medium to generate new strains of bacteria [64]. Therefore, understanding
water movement in ridge and furrow soil systems is of critical importance, with
particular focus on the interface between surface and subsurface flow.

One approach that offers significant insight into water movement within soil
systems is mathematical modelling (see the comprehensive review for modelling of
soil processes by Vereecken et al. (2016) [19]). Understanding the mathematical
relationship between soil water movement, surface ponding and infiltration can aid
in decision making for agricultural practices directly. For example, the depth at

11
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which seeds are sown in ridge and furrow systems is a highly debated topic [65].
Several experimental studies find that deeper seed planting leads to faster
emergence, and therefore greater yields [56, 66]. However, contrasting results
suggest shallower planting has been more effective for emergence rates [43, 67].
The difference in findings has been shown to be attributed to the moisture
conditions in soil. The optimal planting depth is simply the one with the best
moisture for growth and emergence [65]. Hence, understanding the time-resolved
saturation profile with the use of mathematical modelling for localised regions
could aid in determining the optimal planting depth to generate maximum yields.

To model water movement in variably saturated soil, a combination of Richards’
equation and Darcy flow are traditionally used [40, 68]. Since we aim to develop a
mathematical model to describe water movement in a ridge and furrow system, the
mathematical description of the soil surface is a key factor. The soil surface plays an
important role describing infiltration of water into the soil, either through rainfall or
via ponding in the furrows of the soil. Hence, the boundary condition on the surface
of the soil representing the surface-subsurface interaction of water is of critical
importance.

The interaction of surface-subsurface flow between a porous material and free liquid
has been studied extensively over the past 50 years, both experimentally and
theoretically. In the 1960’s there was considerable analytic work on the boundary
interface between a saturated porous medium (subject to Darcy flow mechanics)
and stokes flow outside the porous domain [69, 70]. The porous material and the
flow of free liquid were assumed to be connected by pressure gradients and the
normal component of the velocity at the interface. Pressure conditions were then
matched between the two domains to determine analytic and semi-analytic
solutions. However, it was assumed that there was no tangential component of
velocity at the surface of the two domains [71].

Beavers and Joseph (1967) [72] expanded on these original ideas, and introduced a
‘slip’ boundary condition on the porous-free liquid interface, which described the
change in water velocity over the interface between the two domains. They
proposed that the difference between the slip velocity at the surface interface, and
the tangential component of the seepage velocity are proportional to the shear
stress that is transmitted to the porous media [73]. The Beavers and Joseph slip
boundary takes the form,

0.vf = ap;(vVF — vg), 2.1)

where v; [m s~ is the fluid velocity tangential to the surface interface, vy [m s™'] is
the ‘seepage velocity’ in the porous domain tangential to the surface and a;; [m™'] is
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the Beavers and Joseph constant that is determined from the structure of the porous
domain. Shown in Figure 2.1 is a schematic of a velocity profile of a fluid between a
permeable domain and a free domain that is enclosed by an impermeable surface, in
which the Beavers and Joseph condition is used to describe the interface between
the two domains.

Impermeable Surface

Velocity
Profile

Free
Domain

Permeable
Domain

Figure 2.1: A velocity profile of a fluid between a permeable domain and a free
domain that is enclosed by an impermeable surface, where v, is the fluid velocity
tangential to the surface interface, v, is the ‘seepage velocity’ in the porous domain.
Image recreated from Beavers and Joseph (1967) [72].

Several experiments were conducted to test the condition proposed by Beavers and
Joseph. It was found that experimental results of laminar flow with the slip
condition were in accordance with the theoretic results [74, 75]. In addition, it was
found that the boundary condition could also be used to model the flow of gas
between a porous medium and an open domain [76].

Saffman (1971) [77] followed on from the Beavers and Joseph slip condition, in
which the boundary condition was modified. It was found that the seepage velocity
v, was small in comparison to the fluid velocity v;. Saffman proposed that the
seepage velocity v, could be removed as it was redundant.

The work done by Beavers and Joseph [72] and Saffman [77] has been used
frequently to model the continuation between free fluid flow and flow in a porous
medium [78]. However, the ‘slip’ condition is derived under the assumption that the
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porous media is fully saturated. When modelling fluid flow of a porous medium
such as soil, the domain is frequently partially saturated. Hence, the slip boundary
condition is not directly applicable for soil based studies that contain rainfall onto
partially saturated soil.

In specific mathematical modelling studies for groundwater and hydrology, there
are often areas of the domain that are partially saturated, which are modelled using
Richards’ equation. Hence, an alternate approach to the Beavers and Joseph
condition is required to model soil surfaces. Traditional continuum modelling
approaches for describing rainfall infiltration at the soil surface typically fall into
one of three types of boundary conditions. The first of these types is to prescribe a
Dirichlet boundary condition on the soil surface to provide a constant saturation
[79-82]. This condition moderates the filtration rate from the soil surface into the
soil. The second type of boundary condition is a Cauchy or Neumann condition.
This condition provides a consistent water flux into or out of the soil domain

[81, 83]. This flux is typically set to zero in the event of no precipitation, or to a
positive non-zero value to simulate constant infiltration. The final type of boundary
condition involves a mass balance at the soil surface. This typically revolves around
the Penman-Monteith equation [84] or other atmospheric mass balances [85, 86].
These mass balances often explicitly take into account several physical features
including evapotranspiration rate, vapour pressures, mean average daily
temperature and wind speed.

In addition to these three main groups, there have been attempts to hybridise two of
the boundary conditions, by combining a Dirichlet boundary condition with a
Cauchy boundary condition in order to better simulate rainfall on the soil surface
[87]. In this method the flat ground is split into a set of nodes. A Dirichlet boundary
is applied on the nodes that are saturated, and a Cauchy boundary condition of zero
flux is applied on the partially saturated nodes. These mathematical representations
of fluid flow on the soil surface boundary have been used successfully to model 1D
fluid flow in a soil domain. However, these boundary conditions only aim to
represent rainfall. To model other scenarios such as ponding and more complex
approaches are required.

In recent years, there have been several studies on mathematical modelling of soil
surface ponding [88-91]. These studies combined surface and subsurface flow
using an exchange flux between the two domains. This exchange flux is based on
the surface ponding depth on the soil surface. The standard protocol for combing
subsurface flow and surface flow (ponding), is to couple together the mixed form of
Richards’ equation for variably saturated groundwater flow, and the Saint Venant
equations for mass and momentum balance of water movement [89-91].
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However, the Saint Venant equation is only valid for shallow water and gentle
slopes, specifically when the water depth perpendicular to the slope can be
approximated to the absolute depth vertically [89]. Hence, these methods have only
been applied to either flat ground or a constant low gradient slope. The Saint Venant
equation is not necessarily applicable to substantial ponding in ridge and furrow
systems, given the large gradient posed by the ridge and furrow structure [47, 92].

Specific mathematical modelling of water movement in ridge and furrow systems
has been developed in recent years [93-97]. However, often the focus of these
studies is semi-arid soils, in which the ridge and furrow geometry is used as a means
of irrigation. Due to the lack of rainfall in these environments, precipitation and
surface runoff from rainfall is often ignored as furrow irrigation is the main priority.
From the furrow irrigation, several of these models contain pond infiltration for
ridge and furrow structures [82, 86, 94, 97-99]. However, these models typically
describe irrigation and drainage along a furrow (often using the zero-inertia model
for a moving body of water). Additionally, the ridge and furrow geometry is often
approximated as piecewise linear [82, 86, 98, 99].

In this chapter, we develop a mathematical model for water movement in a
generalised ridge and furrow system. We focus on root water uptake and dynamic
ponding in the furrows of the structure due to transient rainfall events. Since we are
concerned with rainfall in a temperate UK environment, we do not consider
irrigation or water movement down the furrows. Instead we focus on the
phenomena taking place in the cross-section of the furrow.

2.2 Theory

In this section we derive a mathematical model for water movement and dynamic
ponding in general ridge and furrow systems. We build the model from first
principles and develop a coupled system of partial differential equations (PDEs) and
ordinary differential equations (ODEs) to capture the water transport in the ridged
system.

2.2.1 Soil Domain

Let A C R? [m?] (shown in Figure 2.2 (a)) be an open bounded subset representing
a generalised ridged soil domain. A has two distinct regions Ay [m?] and A4 [m?]
such that, A = Ay UA4 and Ay N A4 = (0. Here Ay and A4 are the regions of soil
with and without roots respectively.
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Although the mathematical model developed in this chapter is applicable for
general ridge and furrow soils, to construct domains for numerical simulations we
assign a function to describe the surface topology. Due to the symmetry and
periodicity of ridged soils, we approximate the surface A by the periodic function
X : A — R [m] (see Nomenclature section for functional notation),

X = Acos(Biy) + C, (2.2)

where A € R, [m] is the variation in soil depth, B € R, [m™!] is the ridge wave
number, C' € R [m] is the average soil depth and 7, is the spatial coordinate in the
horizontal direction (see Figure 2.2 (a)). The form of (2.2) allows us to describe the
complete soil system with a single half-period of a ridged geometry.
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Figure 2.2: (a): A general ridged soil domain, where A is the total soil domain such
that A = A4 U Ay, where A4 is the region of soil absent roots, A is the region of soil
with roots, dAg is the soil surface boundary, Ay is the base of the domain, dAy is
the boundary adjacent to the ridge, Ay is the boundary adjacent to the furrow and
T1, T, T3 are the three directional components.

(b): The domain used for the numerical simulation in Section 2.3. The curve dAg is
generated using the values A = C' = 0.16 and B = 27 from (2.2).
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2.2.2 Water Movement in Variably Saturated Soil

To describe water movement in ridged soils, we assume there may be regions of soil
that are fully saturated, i.e., directly under the pond, and regions that are partially
saturated. To account for this, we construct a model that can switch between a
partially and a fully saturated soil environment with a moving interface between the
two regions.

For water movement in variably saturated soil, Richards’ equation is typically used
[68]. To derive Richards’ equation, we use the mass conservation law [100], i.e.,

Oipw+V -v=—F, in A® (2.3)

where A = A x (0,00) (where (0, c0) denotes the time domain). Here

¢ : A x [0,00) = [0,1] [ — ] is the soil water fraction, i.e., the volume of water per
volume of void space, v : A x [0,00) — R? [m s~!] is the volume flux of water and
F, : Ay x [0,00) — R [s~'] is the root water uptake. The saturation of A is related to

¢, by the relationship [101],
_ (bw - (br
(b - ¢r 7

where S : A x [0,00) — [0, 1] [ — ] is the relative saturation, i.e., the volume of water

S (2.4)

per volume of void space, ¢, : A x [0,00) — [0,1] [ — ] is the residual water content,
i.e., the water content that cannot be removed due to gravity or the root system, and
¢ : A x[0,00) — [0,1] [ —] is the porosity, i.e., the volume of void space per volume
of soil. Here ¢ = ¢,, + ¢,, where ¢, : A x [0,00) — [0, 1] [ — ] is the soil air fraction,
i.e., the volume of air per volume of void space. We note that typically ¢, < {¢, ¢, }
[101], and hence can be neglected. This leads to the relationship S = ¢,,/¢ [41].
For simplicity, we initially assume ¢ to be constant such that,

p(X)=¢ in A, (2.5)

where x is the spatial component of R3, x := (%, 7o, 3). Substituting S = ¢,,/¢ into
equation (2.3) yields,
$0;S+V -v=—F, in A% (2.6)

We define v using Darcy’s law [102]. This takes the form,

_ Ksk(S)

w

v =

(W% + pgé3> 7 (2.7)

where #(S) : A x [0,00) — [0, 1] [ — ] is the relative soil permeability, /1, € R+ [Pa s]
is the viscosity of water, x, € R-o [m?] is the saturated hydraulic permeability,
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Pw : A x [0,00) — R [Pa] is the soil water pore pressure, p € R, [kg m~?] is the
density of water, g € R-, [m s~?] is the acceleration due to gravity and

é; = (0,0,1) [ — ]. Substituting (2.7) into (2.6) yields the Darcy-Richards’ equation
in mixed form,

Ksk(S)
[

(6m+w@”—ﬂum A=, (2.8)

wﬁzﬁ-{

The function F,, is only defined in the subdomain A, i.e., where roots are present,
and is given by the difference in the soil water pore pressure and the pressure in the
root xylem [41], i.e.,

- M(Pw —py) in Ay X 0,
p, = AP p) i A0 00 2.9)
0 in A x[0,00)

where \. € R5 [Pa~' s7!] is the product of the root surface area density and the
water conductivity of the root cortex and p, € R, [Pa] is the pressure in the root
xylem. We consider the subdomain Ay to be contained in the ridges of the system,
since crops grown in ridge and furrow structures (such as Solanum tuberosum L.)
typically have roots in the plough layer of soil only, i.e., the top 30 cm of soil [103].

We express S as a function of p,, using the van Genuchten relationship [101],

P

where p, : A x [0,00) — R [Pa] is the air pressure, p, € R, [Pa] is the characteristic

—m

(2.10)

suction pressure and m € [0, 1] [ — | is a van Genuchten parameter. We choose to set
pa = 0, such that p,, is defined as the gauge pressure relative to p, [41]. Here we do
not consider the effects from hysteresis, i.e., the changes in the saturation-pressure
relation due to wetting and drying, since we assume that this has a negative effect
on the field scale transport of water.

We define x(S) using a second van Genuchten formula [101],
2
m&zsmh—u—ymw. (2.11)

Combining Richards’ Equation (2.8) with the van Genuchten Equations (2.10) —
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(2.11), we can write the water movement model in terms of p,, only, i.e.,

— D nd )\c ~w — Mr) i ]\OO
p250P0) O0bu _ . {—“S”[S(p“’)] (Vi + pges) }— Bo =) i AT o 19
Opw  OF o 0, in A
where, 1
o L@ @
05(bu) _ (2.13)
OPw pe(1 —m) ’
L %m ~ % 1\ ™ 2
K[S(Puw)] = [( pw) +1 (1— {1— [(_pw) +1} } ) . (219
De De

Az = Ay x (0,00) and A® = Ay x (0, 00).

Richards’ equation is used to describe water movement in partially saturated soil,
ie,0< S(py) < 1. 1f § = 1 singularities are formed, and hence cannot be used to
describe a fully saturated domain. However, we can adapt the system of equations
(2.12) — (2.14) so that they can represent both a saturated and partially saturated
soil by reducing Richards’ equation to saturated Darcy flow in the event of full
saturation, i.e., for p,, > 0. We do this by modifying Equations (2.12) — (2.14) in

) (pw ) apw

two ways. Firstly, for p,, > 0 we eliminate the term ¢~ from Equation (2.12)

by setting dS pw) = 0. Thus, we impose the condition,
050, _Jo for SG.)=1 215
P 250u)  for 0 < S(pu) < 1

To implement (2.15) as a closed-form expression, we use a smoothing
98 (pw)
Opw
the piecewise condition (2.15) while retaining a level of smoothness over a narrow

approximation to the Heaviside function H so that lim;, - = 0. This imitates

transition region about p,, = 0 to aid in calculating a numerical solution. We add the

smoothed Heaviside function Hs(j,,) : A x [0,00) — [0,1] [ -], so that
~ aS( ) apw v Rsﬁ[s(ﬁwﬂ = ~ ~ ~ . 1 0o
[1—Hs(pw)]® O O =V. {T (pr + pge3> —F, in A, (2.16)

where, )
Hs(pw) = 5[1 + tanh(opy, )], (2.17)

85 pw)

and X [Pa] defines the width of transition between and 0 about p,, = 0.

Secondly, the function x[S(p,,)] is required to be constant when p,, > 0. Thus, we
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introduce a second condition,

S— 1 f w > —
K[S(Pu)] = o r ‘ (2.18)

R[S(ﬁw)] fOl’ Pw < _Ct 7

where (; € R [Pa] is a small transition pressure that acts as the interface between
the saturated and partially saturated soil regions. We introduce (2.18) to avoid
discontinuities in the numerical solver when evaluating Equation (2.14). These
discontinuities occur since the numeric solver is often required to evaluate

6 S ~1U 6 S ~”lU . . . .

% . However, H[(sﬁ(p ) is singular at the transition between fully and
v ﬁsz w
. . . 5“[5(1510)] .

partially saturated soil, so that lim;, - 5. = 00 Hence, we introduce (; so
5k[S(0)].

that Gl )]15 never evaluated.

6pw

2.2.3 Soil Surface Boundary Conditions

To form a complete description of the ridge and furrow system, we derive boundary
conditions that are imposed on the edges of A. To represent ponding, which is often
present in ridge and furrow systems [82, 98], we split the boundary dAg [m?] (see
Figure 2.2 (a)) into two distinct regions, separated by the moving interface

o = &o(f) [m]. This is shown in Figure 2.3, where dAr = dAg N[0, 7o(£)) [m?] is the
surface of soil that is not ponded, i.e., where rain penetrates the soil directly, and
dOAp = OAg N [Fo(f),n] [m? is the region on which ponding occurs (where 7 [m] is
the width of A and has the relationship n = 7/B).

On the surface A, we impose a hydrostatic boundary condition [82, 88, 98], so
that directly under the pond we apply the pressure that results from the height of
the water column in the pond above it, i.e.,

Do = pgﬁ(i,f) on OAp x [0,00), (2.19)

where h(%, ) : DAp x [0,00) — Rxo [m] is the depth of the pond.

Precipitation landing on the bare soil dA enters A via a combination of capillary
forces and gravitational effects. Therefore, we implement a Cauchy fluid flux
condition on dAx [104], i.e.,

i - {M (6@0 + pgé3> } — % on 9Agx [0,00), (2.20)

where 11 : R? x [0, 00) — R® [ — | is the unit normal vector pointing outwards of A,
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Figure 2.3: Half of a ridge and furrow period, where dA p is the soil surface on which
ponding occurs, OAr is the soil surface that is not ponded, 7, = 7((t) is the point on
the soil surface dA g where the pond begins, 7 is the width of the half period of ridged
domain, h is the maximum depth of the pond, %(#;) is the curve for the soil surface
OAg and V is the volume of the pond.

& = &(t) = min{qs, I.} [m s~!] is the volume flux of water entering the soil per unit
surface area, §, = ¢,(t) : [0,00) — Rsq [m s7!] is the volume flux of water per unit
area of soil surface, i.e., rainfall, and I, € R [m s™!] is the infiltration capacity of
the soil. In the event of sufficiently heavy rainfall, the quantity of water that can
enter A is limited by I.. Any excess rainfall that exceeds I., i.e., ¢, — I. > 0 is defined
as the surface runoff Ry = Ry(f) : [0,00) — Rso [m? s~!], and is quantified by,

~ Fo(t) () Qd ¢
- 7s(t) — 1. 1+ () dz or ¢, > 1.
N GRS / (462’ gz, il o

0 for ¢ <1,

where ¥(#,) is the generalised curve of dAg, given by (2.2).

To determine the change in pond depth for the boundary conditions imposed on
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OA and OA p, we implement an additional ODE that is coupled to the governing
water movement model (2.16) — (2.18). This connects the volume of water in the
pond V = V(i) : [0,00) — R, [m?], the rate of rainfall ¢,(f), the surface runoff R(f)
and the infiltration flux entering the soil domain from the pond, i.e., the quantity of
water leaving the pond and infiltrating into the soil.

We define the maximum depth of the pond ho(f) : [0, 00) — Rx [m] (see Figure 2.3)
at a given time { to be,

ho(t) = X[Fo(T)] (2.22)
where 7(f) : [0,00) — [0,7] [m] is the 7, co-ordinate at which the pond starts, i.e.,
the partition between dA ; and dAp. It should be noted that for h(f) to have this
definition, the vertical datum 73 = 0 is measured from the base of the soil curve
X(Z) (see Figure 2.3). This allows the hydrostatic boundary condition (2.19) to be

re-written such that,

Pw = pglho(t) — X(£)] on dAp x [0,00), (2.23)
where ho() — X() = h(z,1).
In addition, a length 7 is chosen to represent half a ridge and furrow period (see
Figure 2.3). It follows that for a given pond volume V' (#), Zo(f) is calculated by,
~ - n

V() = ho(f)[n — ()] — / X(%)di. (2.24)

Zo(t)

The change in pond volume V () is defined to be,

dv - . o, i

# = qs(t)[n — Zo(t)] + Ro(t) — / v n|6/~\de, (2.25)
where ¢,(f) - [n — #o(f)] [m® s~!] is the rainfall entering the pond, Ry({) is the surface
runoff and | :Z) @V lpi,dz [m3 s7!] is the quantity of water leaving the pond and
infiltrating into the soil by the boundary condition on dAp [105]. Substituting
(2.24) into (2.25) yields,

%{ﬁo@ﬂn—@o(m- L. >z<:%>df} — G Dl-aulDl+Fold)— [ vl di (226)

where Bo(f) is defined by (2.22). Equation (2.26) describes the change in the
position of Z(t), given the rainfall entering the pond, surface runoff and water
infiltration from the pond into the surrounding soil. To calculate v - 1|, Apo (2.26) is
coupled with (2.16) — (2.18) and the boundary condition (2.23).
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Through successive application of the Leibniz integral rule and the chain rule, for
dio (t)
dt

the generic function x(Z), (2.26) can be expressed explicitly as a function of

b

ie.,

" [o@ G ,  KEG
[, ({ S e e 0,,) -T2 <agpw+pg>}

OAp
(2.27)

Note that for the boundary condition on OAp (2.23) to be active, we impose a
minimum pond depth threshold that must be reached before water leaves the pond
and infiltrates into the soil, i.e.,

Pw = pglho() — X(2)] on 9Ap x [0,00) for x[Eo(f)] > Zmin, (2.28)

where where 7y, [m] is the minimum pond depth. We impose this condition to aid
numerical computation, since a pond that is substantially smaller than the mesh size
can lead to convergence problems. However, we choose the threshold to be
sufficiently small that it has a negligible effect on the numeric results.

2.2.4 Non-surface Boundary Conditions and Initial Conditions
Lateral Boundary Conditions

For the boundaries A and dAy,, we set a zero flux boundary condition due to the

periodicity of A, ie.,

fi- {M (Ww + pgég) } =0 on OAgUOIAw x [0,00). (2.29)

Therefore, there is no lateral water movement into or out of A.
Boundary Condition at the Base of the Soil

For the boundary on dA , we set a Dirichlet boundary condition [93], i.e.,

Pw=po on OAp x [0,00). (2.30)
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This represents a constant saturation level at the base of the domain.

Initial Conditions

For the initial pressure condition p,|;_,, we use the steady state pressure profile, i.e.,
Pulico= Pee(X) in A x { =0}, (2.31)

where p..(X) [Pa] is the steady pressure profile, i.e., when dp,,/0t = 0. Furthermore,
we assume there is no surface ponding present on dAg at i = 0, i.e.,

To(t)|jeo=n for {t=0}, (2.32)

such that the pond depth is Ao (%)|;—o= X[Z0(f)|i=o] = 0.

The system of Equations (2.16) — (2.18), (2.20), (2.27) — (2.32) completes the
description of the coupled water balance in the presence of surface ponding.

2.2.5 Non-dimensionalisation

Here we non-dimensionalise the system of equations (2.16) — (2.18), (2.20), (2.27)
— (2.32). Whilst the final equations we solve are dimensional, we use
non-dimensionalisation to determine the magnitude of influence each parameter
has on the system of equations. We non-dimensionalise with the scaling,

dpn’® | - 3 5
g t, Pw = DePw> X = NX, To = No. (2.33)

X=nx, t=

In (2.33) we use the domain width 7 as the spatial scaling, the ‘effective diffusivity’

‘i’g—“f for the time scaling and the suction characteristic p, as the pressure scaling.

sHrc

This leads to the system of equations,

oS w 0 w o\ —a _c w — Dy i Ay

[1 = Hs(pw)] a(p )% =V {%[S(pw)] (Vpu, + pé3) } b= p) Tn ",
Pw 0 in A%¥

(2.34)

n- {/{[S(pw)] (Vpy, + pes) } =w on O0Ag x[0,00), (2.35)

Pw = plho(t) — x(x)] on JAp x [0,00), (2.36)

n- {K[S(pw)] (Vpy, + pés) } =0 on OJAgUOIAy x[0,00), (2.37)

Pw =Dy on 0OAg x[0,00), (2.38)
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dro(t) | Ox|zo(t)] Ix|wo(t)] o !
dt {77 dxo(t) xleo(t)] - xO(t)W(t)} B [ﬁ /Io(t)nX(x)dx] N

Tl +Roté [ ({a“x)m[ap‘w)](axpw)—n[srpw)](azpwm)}

2o(t) O OAp
5 5 —05
14 (— X(x)> ] )dx, (2.39)
ox
pw’t:OZ Z_?oo in A x {t = 0}, (2.40)
Toli—o= 1, (2.41)
where,
—m—1
m| (=p)™F 41| (pa)T
95 (pw) [
= 2.42
1 fO]f' pw 2 _Ct
KIS (p)] = . 17 1Y :
o) 1| (1-d1- {(—pww—m n 1] for pu<—G
(2.43)
and
—__pgn _ )\cpcﬂwn2 — )\cpr,uwn2 — NHyW
p_ 7pc_—7pr_—7w_ 5
Pe RsPe RsPe RsPe
w S T w R — o
ﬁ():@a@:nﬂ qbqaRO:Iu ¢ 0; Oo:p_ (244)
Pe RsPe RsPe De

2.2.6 Parameter Estimation

Here we estimate the parameters contained in equations (2.34) — (2.43) to
determine the magnitude of influence that each parameter in (2.44) has on the
system of equations. This allows us to identify the key mechanisms that dominate
water movement under surface ponding from heavy rainfall. Since this model has
been constructed for ridge and furrow soils, we assess the parameter values for silt
soils and the plant Solanum tuberosum L., since this crop is frequently grown in silt
soils in ridged systems [106]. Shown in Table 2.1 is a summary of the parameters
used in the non-dimensionalisation estimation.

For silt soils typical saturated permeability values are 1 x 1071* < k, <5 x 107 m?

[101], porosity values are ¢ ~ 0.4 [101], and characteristic suction pressures are
p. &~ 2 x 10* Pa [101]. Furthermore, average values for pore pressures at field
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capacity in silt soils are p., ~ py ~ O(10*) Pa [107].

Heavy rainfall in the United Kingdom is classified between the range of

4x107°% < g, <1x 107> ms~! [108], and silt soils have a steady state infiltration
capacity of I, ~ 2 x 107 m s~! [109]. Hence, the infiltration and runoff parameters
have values w = O(107%) m s~! and Ry = O(107%) m? s~*.

For the plant Solanum tuberosum L., typical root pressures are p, ~ 0.05 MPa [110],
and values for the effective uptake parameter are \. ~ 3 x 10~'' s=! Pa~! [107].

We take the density of water to be p = 1 x 10% kg m™°, the viscosity of water to be
te = 1 x 1073 Pa s and gravity to be g = 9.81m s2. Additionally, for ridge and
furrow structures, the average width of a half period is  ~ 0.5 m [47, 92].

Using the values above, we observe that the non-dimensionalised parameters shown
in (2.44) have the approximate values,

Py = O(1), 4(t) = O(1), Ro(t) = O(1) pos = O(1). (2.45)

From (2.45) we observe that all the non-dimensionalised parameters are of the
same order of magnitude O(1), i.e., all components of the governing equations and

boundary conditions are important and none can be neglected from the model.

Table 2.1: A table of the parameters used in the non-dimensionalisation and param-
eter estimation of the water movement and ponding model.

| Parameter | Description | Value | Units | Reference |

g saturated permeability 5x 10714 m? [101]
0] porosity 0.4 - [101]
De characteristic suction pressure 2 x 10* Pa [101]
Do basal geometry pressure 2 x 10% Pa [107]
qs rainfall 4—-10%x10% ms! [108]
I infiltration capacity 2x 107 ms! [109]
w water infiltration 2 x 1076 ms! [109]
Ro runoff 2—-8x107% m?s! [109]
Dr root xylem pressure 5 x 10% Pa [110]
e effective uptake 3x 1071 s~ Pa! [107]
) density of water 1x10° kgm=3 —

Lo viscosity of water 1x1073 Pas —

g gravity 9.81 ms? -

n width of A 0.5 m [47, 92]
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2.2.7 Implementation

Here we describe how we utilise the finite element package COMSOL Multiphysics
ver 5.3 (COMSOL Multiphysics, Stockholm, Sweden, www.comsol.com) to solve the
mathematical model. To implement the governing equation (2.16), we use the
inbuilt ‘General Form PDE’, which takes the form,
0r or
ot dy— + V-0 =1 2.46

Cagy T dagy + f (2.46)
where r = p,,, and ¢,, d,, ® and f are parameters to be defined. To write the model
in this form, the parameters are constructed to replicate equation (2.16), i.e.,

— _ ~ BS(ﬁw) . Hs/{[s(ﬁw)] — ~ N
eo =0, dy =[1 — Hs(puw)]¢ Op e = —T (pr + Pge3> ,
Ae(Pw — pr), In AR
f=— (p p) NU’ (2.47)
0, in AY

where the functions Hg(py,), S(pw) and k[S(p.,)] are explicitly defined.

For the ODE to describe the moving point %, on the surface dAg, i.e., equation

(2.27), we use the inbuilt ODE equation ‘Global ODE’ to implicitly calculate z((¢).
The ‘Global ODE’ takes the form,

f(a, a, qt, t) = 0. (2.48)

To write equation (2.27) in this form for the curve x(Z), the ‘Global ODE'’ is set up
so that,

{AB[zo(f) — ] sin [B;zo(f)]}di‘;ét) — [Y,(F) + T,(&,1)] = 0, (2.49)

where,

(1) = @ (&) - [y — 2o(B)] + RolD), (2.50)
and,

© I

& \/ 1+ 4B sin(B:E)r

. [Mﬁgﬁw + pg] + [AB sin(Bi)@afﬁw]
(2.51)

For the flux boundaries, i.e., equations (2.20) and (2.29), we use the inbuilt flux
boundary condition that takes the form,

n-0 =g, — gor, (2.52)
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where ¢g; and ¢, depend on the specific flux boundary. For equation (2.20) we set
g1 = @(t) and g, = 0, and for equation (2.29) we assign g; = g, = 0. Similarly, for
the boundary condition (2.30), we use the inbuilt Dirichlet boundary condition.
This takes the form,

r =70, (2.53)

where 1o = py.

For the hydrostatic boundary condition, equation (2.28), we are not able to impose
the generic inbuilt Dirichlet boundary condition since the software treats the
boundary condition as a step function so that,

5 _ Joslho@ = X(@] on 0Rrx [0,00) (2.54)
0 on OAg x [0,00)

This in turn leads to a permanent fully saturated boundary along the bare soil
surface A r- To avoid this problem, we re-write equation (2.28) as a flux condition
along A p that mimics a Dirichlet condition. This is achieved by,

o @ | Feloglho) = X@] =u} on dApx [0,00) (2.55)

0 on 9Agp x [0,00)

where k., > 1[—]. As k., increases, equation (2.55) reduces to
Pw 2 pglho() —
imposed as a flux condition along the partition 0Ap only, providing k., > 1 is

X(i)] on DA p. Therefore, equation (2.28) can be approximated and

sufficiently large. In order to ensure that k., is large enough so that k_'n- © =~ 0, we
run a series of simulations to determine when the flux effect is negligible. We find
that k., = ord(10°) is sufficiently large to negate any influence from the term n - ©.

The model is solved using the MUMPS (Multifrontal Massive Parallel Sparse Direct
Solver) subroutine, which is a direct method that utilises Gaussian elimination from
multiple LU decompositions. The subroutine utilises the sparsity of the system of
equations by constructing matrices for subsets of elements [111].

2.2.8 Model Validation

To validate the model, we use data from the ponding study by Siyal et al. (2012)
[112]. In that study a trapezoidal ridge and furrow geometry was created using a
loam soil in which a constant flow of water flowed longitudinally down the furrow
until a pond height of 0.1 m was reached. Once the desired pond height was
reached, the flow of water was stopped and the time required for the pond to
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infiltrate fully into the soil was measured.

The model derived in this chapter uses the sinusoidal function x(Z) = A cos(BzZ) + C
to model the periodic surface topology of ridge and furrow structures, i.e., dAg. It is
impossible to resolve a piecewise trapezoidal surface with the sinusoidal surface
shown in equation (2.2). However, we construct a domain using equation (2.2) that
minimises the difference to the trapezoidal structure in Siyal et al. (2012) [112].

1

This was achieved with the geometry parameters A = C = 0.12m, B =27 m~' and

n = 0.5 m in equation (2.2).

In the paper by Siyal et al. (2012) [112], the time taken to generate the 0.1 m deep
pond was 5.6 hours, and the time required for the water to fully infiltrate into the
soil was 16 hours. To replicate these conditions, we simulate a rainfall event that
lasted 5.6 hours with an intensity of 14.8 mm hour~! to equate the total pond
volume in the simulated sinusoidal geometry with that of ponded water in the
trapezoidal geometry of Siyal et al. (2012) [112].

We measure the time required for the pond to fully infiltrate into the soil by
conducting a simulation, in which we use same parameter values as those used in
Siyal et al. (2012) [112]. These parameters were estimated experimentally for the
soil and were calculated to be ¢ = 0.43, k, = 2.63 x 10~ m? (assuming the fresh

3

water properties p = 1000 kg m™>, 1, =1 x 103 kg m 's~! and g = 9.81 m s72),

m = 0.36 and p. ~ 2500 Pa.

In the numerical simulation, we observed that the pond caused by the rainfall event
fully dissipated into the soil after approximately 15.3 hours, which is ~ 4% different
to the results found in Siyal et al. (2012) [112]. This result gives us confidence that
the model derived in this chapter can accurately describe time-variable ponding in
ridge and furrow soil systems.

2.3 Numerical Solutions

To demonstrate the mathematical model, we explore how the water profile in ridge
and furrow soils is affected by heavy rainfall that generates substantial ponding. We
simulate one heavy rainfall event that generates substantial ponding in the furrow
of the soil, and analyse the infiltration of water into the soil and the influence on the
soil pressure profile. Additionally, we include vegetation in the ridges of the soil.
The crop we choose to simulate is the potato Solanum tuberosum L. as this crop is
traditionally grown in ridge and furrow structures.
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2.3. NUMERICAL SOLUTIONS

Table 2.2: A table of the parameters used in the numerical simulations for a single
heavy rainfall event using a ridge and furrow geometry.

| Parameter | Description | Value | Units | Reference |

Kg saturated permeability 52 x 107 m? [101]
m van Genuchten parameter 0.5 - [101]
0] porosity 0.396 — [101]
De characteristic suction pressure 23200 Pa [101]
Do basal geometry pressure —1 x 10* Pa -

qs rainfall 3.75x 107 ms! -

I, infiltration capacity 1.6 x 1076 ms! [109]
Dy root xylem pressure —5 x 10* Pa [110]
e effective uptake 3.14 x 1071 s~ Pa~! [107]
) density of water 1x 103 kgm—3 —

Lo viscosity of water 1x1073 Pa s —
g gravity 9.81 m s> —
G saturated-partially saturated interface 1 x 107! Pa -
o Heaviside transition 1 x 10% Pa~! -

Zmin minimum ponding depth 3x107* m -
A variation in soil depth 0.16 m [47, 92]
B ridge wave number or m~! [47, 92]
C average soil depth 0.16 m [47, 92]
n width of A 0.5 m [47, 92]

2.3.1 Parameter Values

Summarised in Table 2.2 are a list of the parameters used in the numerical

simulation. Detailed below are the parameter values and their origins.

To replicate the dimensions of typical ridge and furrow geometries, we use the
valuesn = 0.5m, A=C =1/6 mand B = 2r m~! for the function y(Z) that
describes 9A g [47, 92]. Furthermore, the crop Solanum tuberosum, L. is shallow
rooted with the majority of its roots in the plough layer, i.e., the top 0.3 m of soil
[103]. Therefore, we choose the size of the soil root region f\U to be the top 0.3 m
of soil extending radially from the top of the ridge. The domain used can be seen in
Figure 2.2 (b).

The crop Solanum tuberosum, L. is frequently grown in silt loam soils [113]. Hence,
for the soil parameters, we choose values for typical silt loam soils, ¢ = 0.396,

m = 0.51, ks = 5.2 x 10 m? and p. = 23200 Pa [101]. For the viscosity of water we
use /i, = 1 x 1073 Pa s, for acceleration due to gravity ¢ = 9.81 m s~2 and for the

density of water p = 1000 kg m>.

The parameter ). is the product of the root surface area density and water
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conductivity of the root cortex, which can be expressed by,
Ae = kplg, (2.56)

where [, is the root length density and &, is the radial conductivity of root cortex per
unit root length. I, values for Solanum tuberosum, L. are typically [; ~ 4 x 10* m~2
[114]. Additionally, in maize (Zea mays L.), the radial conductivity is

k. ~ 7.85 x 1071 m? s7! MPa"! [41]. Since maize and potato roots have similar root
radii and structure [115, 116], we assume this value is representative of potato
roots in soil. This leads to the parameter value A\, = 3.14 x 107> s~! MPa"'.

The root pressure p, can vary considerably in Solanum tuberosum, L. plants
depending on several factors including soil saturation and atmospheric conditions
[117]. Liu et al. (2006) [110] found that the root water potential changes
substantially based on the method of irrigation applied to the crop. A value of

pr = —0.01 MPa was present in the roots for a fully irrigated system and of

—0.2 MPa < p, < —0.02 MPa for areas of soil with partial root drying. Given this we
choose the value p, = —0.2 MPa.

For the parameters (; and 7, we selected small values that have a negligible effect
on the numerical solution. For (; we select the value ¢; = 1 x 10~! Pa. Given that
pressure in soil is often measured in O(10*) Pa, (; is sufficiently small to have a
negligible effect. Furthermore, for 7, (the minimum pond depth) we choose

Zmin = 3 X 107* m. Therefore, the hydrostatic boundary condition Equation (2.28) is
activated once the pond depth surpasses 0.3 mm.

For the parameter ¢ in the smoothed Heaviside function Hg(p,,), we assign the
value o = 1000 Pa~'. This limits the width of the transition between partially and
fully saturated soil regions such that the transition is completed across 0.001 Pa.
Given that pressure in soil is often measured in O(10%) Pa, this value is sufficiently
small to have a negligible effect.

To describe the base of the geometry, we assign a constant soil water pore pressure
of py = —10 kPa. This equates to a saturation level of approximately S ~ 0.9 for a
silt loam soil, thereby replicating a shallow water table. For the initial soil water
pore pressure profile p.,(X), we choose the steady state profile that forms in A prior
to any rainfall. Hence, in the simulation, we allow steady state to form so that

Oypw = 0 before initiating the rainfall event.

We simulate a single heavy rainfall event that lasts 4 hours with an intensity of
13.5 mm hr " after the soil pressure has reached steady state. The severity of the
ponding is primarily determined by the infiltration capacity /. of soil. /. is known to
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depend on several factors including volumetric water content, soil type, recent rain
events and tillage methods [118]. Therefore, it is difficult to assign a single value to
the infiltration capacity of a soil. Morin & Benyamini (1977) [109] found that
steady state infiltration of bare loam soil was reached after approximately 20
minutes into a rainfall event. We simulate a rainfall event that is an order of
magnitude longer than this, thus, we assign a constant value for the infiltration
capacity. Morin & Benyamini (1977) [109] found the steady state infiltration rate of
bare loam soil is between 1.3 — 2.2 x 10~° m s~!. Hence, we assign the value
I,=16x10%ms!.
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Figure 2.4: Time series of saturation S(f,,) plots across the domain A at times before,
during and after the rainfall event. The first three plots (a) — (¢) show the S(p.)
profile before, during and at the end of the rainfall event, respectively, where ¢ = 0
represents the start of the 4 hour rain event. The second three plots (d) — (i) show
the S(p,) profile after the rain event, where ¢, = 0 denotes the end of the rainfall
event. The pond location 7 is indicated by a black star along dAg.
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2.3.2 Results

A 092 Al

09

03

08 0.9

{os

0.7 08
0.7 197

0.6 :

06

0.6

0.5
0.5

0.5

04
04
0.4

0.3 03
0.3

0.2 0.2
0.2

vo (b)f =2 hours wou (C)f = 4 hours Y°u

Al Al A 096

095

098
109

0.96
085

0.94
08

0.9z

m IJ

v o0.11 vo0.89 ¥ 0.69

(d) t.= 3 Hours (e) T, = 12 hours (f) t. = 36 hours

0.75

07

Pond Height +

Figure 2.5: Time series of water flux streamline (flow vectors) plots across the do-
main A at times before, during and after the rainfall event. The first three plots
(a) — (c) show the water flux streamlines before, during and at the end of the rainfall
event respectively, where ¢ = 0 represents the start of the 4 hour rain event. The sec-
ond three plots (d) — (i) show the water flux streamlines after the rain event, where
t. = 0 denotes the end of the rainfall event. The pond location 7, is indicated by a
black star along OAg.

Shown in Figures 2.4 — 2.6 are the numeric results of the simulation. Figures 2.4 —
2.6 show the saturation profile, water flux streamlines and region of full saturation
in A respectively. The times chosen in each of the figures were selected to emphasise
the formation, growth and dissipation of the pond in the furrow. In each of the
figures, the first three subplots (a) — (¢) show the domain A before, during and at the
end of the 4 hour rainfall event respectively, where ¢t = 0 represents the start of the
rainfall. The second three plots (d) — (f) show the domain A after the rainfall event
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has finished, where ¢, = 0 denotes the time at the end of the rainfall event. It should
be noted that each subplot (a) — (f) has a different colour scale bar. Since large soil
water pore pressure differences form throughout the simulation, the saturation
gradients that result from ponding would otherwise be reduced in appearance if the
scale considered both low and high saturation when ponding is present.

“ “

(b)t = 2 hours (c)t = 4 hours

(d) t. = 3 Hours (e) t,= 12 hours (f) t. = 36 hours

; Fully Saturated
Pond Height +
Partially Saturated

Figure 2.6: Time series of plots across the domain A at times before, during and
after the rainfall event highlighting the region of full saturation. The first three plots
(a) — (c) show the fully saturated region of soil before, during and at the end of the
rainfall event respectively, where ¢ = 0 represents the start of the 4 hour rain event.
The second three plots (d) — (i) show the fully saturated region of soil after the rain
event, where ¢, = 0 denotes the end of the rainfall event. The pond location % is
indicated by a black star along dAg. The red regions represent fully saturated soil
and the white regions represent partially saturated soil.

At £ = 0, we observe the steady state conditions that form from the boundary
conditions imposed on A, which are achieved after approximately one week. From
Figure 2.4 (a) we find that the saturation S(p,,) in Ay is substantially reduced
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compared to A 4. This is to be expected as there is a dominant pressure gradient
formed by the difference in soil water pore pressure and the pressure in the root
xylem. This can be clearly seen in Figure 2.5 (a) where the flux streamlines show
the movement of water from the base of the domain (originating from the Dirichlet
condition on dAp) to the subdomain Ay;.

Once the rainfall event starts, we can see the effect of the pond depth in the top of
A. At = 2 hours, there is a maximum pond depth of approximately 4, = 9 cm. The
effect of the pond on the soil surface can be seen in 2.4 (b) in which the soil adjacent
to the furrow has the highest degree of saturation. We observe that the pond on the
soil surface creates a region of fully saturated soil, i.e., p,, > 0, just below the pond,
which can be seen in Figure 2.6 (b). Furthermore, due to the dominant pressure in
the root xylem, in Figure 2.5 (b) we observe that the immediate water that infiltrates
into the soil is transported to the ridges and the vegetation in A .

At the end of the rainfall event, the pond on dAg reaches a maximum depth of

ho = 14 cm. From Figure 2.4 (¢) we observe that in the ridges of A the region of dry
soil from the roots is reduced as the infiltration of rainfall along the partition dA
dominates the rate at which the plant can draw up water from the soil. Additionally;,
the water that infiltrates into the soil from the ponded furrow is transported to the
ridges, thereby increasing the degree of saturation. In Figure 2.6 (c¢), we observe
that the region of fully saturated soil has increased due to the increase in ponding
depth.

Once the rainfall event has ended, the effect from surface ponding becomes evident.
In Figure 2.6 (d), we find that the region of fully saturated soil has increased.
Additionally, we observe in Figure 2.5 (d) that as the pond decreases and infiltrates
into the soil, the dominant water transport mechanism is no longer due to root
water uptake, but is instead controlled by the infiltration of water from dA p. From
Figure 2.4 (d) we find that the region of soil adjacent to the ridge surface of A
becomes the driest region of soil due to the termination of rainfall along 9A 5.

At the time point ¢, = 12 hours, we observe that the infiltration of water from the
pond fully suppresses the uptake of water by the roots in A;. In Figure 2.4 (e) we
observe that the value of S(j,,) in Ay has increased dramatically compared to the
prior time points. As the water infiltrates from the pond and decreases in height, this
causes the region of soil that is fully saturated to extend deeper into the soil, this
can be seen in Figure 2.6 (e). Furthermore, from Figure 2.5 (e) we observe that the
majority of the water from the pond is transported to the base of A and is removed
from the system due to the Dirichlet condition on dAg. Hence, the infiltration of
water from the pond becomes the overwhelming mechanism for water movement.



Once the pond has fully infiltrated into the soil, i.e., £, = 36 hours, we observe that
A returns to being partially saturated, this is seen in Figure 2.6 (f). Although the
degree of saturation in A, is substantially higher than in the steady state solution,
from Figure 2.4 (f) we find that the saturation profile in A reflects the same
characteristics as Figure 2.4 (a), i.e., the top of A has the lowest saturation and
increases with depth in soil. Furthermore, from Figure 2.5 (f) we observe that all
the water adjacent to the soil surface OAg is transported to Ay However, we see
that as the large body of ponded water moves down through the soil domain, this
remains largely unaffected by the influence of the pressure gradient due to the root
xylem. Hence, even after the pond has fully dissipated, the infiltration of water is
still the dominant transport mechanism.

2.4 Conclusions

In this chapter, we developed a system of equations that describe the movement of
water in soil. These equations were coupled to an equation for dynamic ponding on
the soil surface as a function of rainfall, surface runoff and infiltration of water from
the pond into the soil. We validated the model using data from a ridge and furrow
study that modelled the infiltration time of a pond into a loam soil, and found a
difference of ~ 4% between the numeric results of the study and our model

simulation.

As a case study to demonstrate the model, we conducted a simulation to represent a
heavy rainfall event that generates substantial ponding on the soil surface for a silt
loam soil. We simulated plant roots and vegetation in the ridges of the soil for the
crop Solanum tuberosum L., which is typically grown in silt loam soils in ridge and
furrow structures.

We observe that when ponding is absent, the dominant transport mechanism for
water movement is determined by the pressure gradient that forms between the soil
water pore pressure and the pressure in the root xylem. This causes the majority of
water to be transported to the ridges of the soil structure. However, during the
ponding event, we find that the water infiltration from the soil surface is the
dominant mechanism, which draws water down to the base of the domain.



Chapter 3

Coupled Solute Transport and Water
Dynamics Model

In this chapter, we extend the water movement and surface ponding model from
Chapter 2 to incorporate the transport of solutes, thereby creating a coupled solute
and water movement model with the addition of surface ponding. Using this model
we conduct a comparison of water and solute movement in two key soil structures:
a ridge and furrow soil, and a flat field. We observe that the surface topology to best
reduce solute leaching can be either the ridge and furrow or flat geometry
depending on several factors. We find that the key factor in determining solute
penetration in these systems is the time delay between solute application and
rainfall, since the surface topology can heavily influence solute transport.

3.1 Introduction

In arable farming there are multiple row production planting methods that are used
to cultivate crops [45], which are briefly discussed in Chapter 1. Two of the key
planting methods are ridge and furrow planting [47], and flat planting [43]. These
cultivation methods are particularly important for crops like the potato, i.e.,
Solanum tuberosum L. [119], which is an essential crop in temperate European
environments [120].

There have been multiple experimental studies comparing crop yield between ridge
and furrow and flat tillage methods in order to determine the difference in Solanum
tuberosum L. growth and yield. Lewis et al. (1973) [43] found there to be no
measurable differences in the total crop yield between the two tillage methods,
however, there was found to be a significant difference in marketable yield. There

37



38 3.1. INTRODUCTION

was a reduction in marketable Solanum tuberosum L. tubers in the flat tillage field as
the surface topology caused the tubers to be susceptible to sunburn causing
damaged and inedible crops. Furthermore, Alva et al. (2002) [121] conducted a
four year field rotation study between ridge and furrow and flat planting systems.
There were no significant differences between the two planting methods over the
first two years of the study. However, there was a substantial difference in crop
production in the third year, in which there was a significant yield reduction using
the flat tillage method. This was due to nutrient replenishment problems in the flat
system [121].

While both the ridge and furrow planting and flat planting methods can result in
similar yields, tuber size and productivity [43, 121]; the ridge and furrow planting
method has been found to be the preferred tillage method [49]. This is due to
several reasons including: ease of harvesting [50], assisting with slow seed
germination [51], and nutrient replenishment in the soil [52].

Although the ridge and furrow cultivation procedure is often the preferred planting
system, growing evidence suggests that ridge and furrow soil systems may be
vulnerable to solute leaching compared to other tillage methods [18, 58, 59], due to
ponding on the soil surface [122]. Experimentally, solutes (including pesticides and
dyes) have been applied to ridges and furrows of potato fields in order to determine
the depth of solute penetration in different areas of the soil [50, 123, 124]. In these
studies, it was found that the substance in the furrows moved to a deeper absolute
depth in the soil, supporting the suggested vulnerability of the ridge and furrow
geometry to solute leaching. Furthermore, a recent European Food Safety Authority
(EFSA) report indicated that ridge and furrow soils may increase leaching six-fold
when compared to flat soils [60], which can cause devastating effects for local

groundwater contamination.

In ridge and furrow soil systems, a key result of the soil surface topology is the
influence of solute transport from localised rainfall. Rainfall that lands on the top of
the ridges is transported to the furrow and then into the soil, which has been shown
to increase the movement of several mobile solutes such as nitrogen, bromide and
herbicides (alachlor) deep into the soil profile [125].

However, there is also evidence to suggest that ridge and furrow planting can
significantly reduce leaching if solute management techniques are used [17]. This
can substantially reduce the negative environmental impact [126], even compared
to flat planting cultivation [127]. Furthermore, ridge and furrow structures have
been shown to reduce surface water contamination from pesticides since soil
erosion in ridged systems is reduced [128].
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It has been observed that ridge and furrow systems, and flat field systems show
similar levels of plant root uptake for mobile solutes, such as nitrogen [129].
However, in ridge and furrow systems, rainfall landing on the canopy of the plant
can transport water into the furrow generating increased ponding. This can lead to
greater infiltration of water and solutes into the soil through the furrow compared
to an analogous flat ground profile. As such, one hypothesis to reduce leaching and
optimising yields for mobile solutes such as nitrogen, is to place the solute solely on
the ridges of the soil as this may reduce deep penetration [129, 130]. However,
once the crops are removed from the ridge and furrow soil after harvesting, any
remaining solute that is left in the soil may be vulnerable to leaching from furrow
irrigation [131], as there is reduced solute penetration into the soil when plant root
uptake of water is present [132].

For climates in which the ridge and furrow structure is used for formal water
irrigation, it has been suggested that sprinkler irrigation (that avoids surface
ponding) would reduce nitrogen leaching compared to traditional furrow irrigation
[131]. This is due to the fact that prolonged surface ponding at low water depths
causes substantially higher dispersion of solutes in soil compared to short ponding
events with high water depths [133]. Additionally, to help combat the effects of
deep solute penetration from surface ponding, it has been hypothesised that
compressing the soil in the furrows may reduce potential leaching from mobile
solutes [112].

Conducting experimental solute movement studies in ridge and furrow, and flat
tillage systems is often very time consuming and expensive due to the large volume
of soil and equipment required, such as dialysis probes and lysimeters. Hence, using
mathematical modelling to determine solute movement in soil can significantly
reduce the time required to understand the influence of specific environmental
factors.

Mathematical models for solute movement in soil are typically based on the
advection-diffusion-reaction equation [134], i.e.,

Oyc = DOypc — VO, — F, (3.1)

where ¢ [kg m™?] is the solute concentration, D [m? s™] is the diffusion coefficient,
V [m s~!] is the volumetric water flux and F [kg” m~3 s~!] is zero/first order
source/sink term. Originally these models were solved analytically for one spatial
dimension and one time dimension with either full or pseudo-analytical solutions
for a range of simple boundary conditions [135, 136]. These often resulted in
solving a series of eigenvalue problems to develop a series solution, which was
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troublesome due to the large number of values required for the series to converge.

Since then, the advection-diffusion-reaction equation for solute movement in soil
has been extended to include stochastic processes [137], non-linearity [138], dual
porosity [139], and heterogeneities with the soil domain [140].

There have been several studies utilising mathematical modelling to determine
solute movement in ridge and furrow structures [94, 112, 130, 131, 138, 141-143].
In all these studies the solute that is analysed is nitrogen or a nitrate based fertiliser.
All these models use the advection-diffusion-reaction equation to describe solute
movement within the soil system [142]. Several of the mathematical models couple
the advection-diffusion-reaction equation with Richards’ equation to create a system
of equations that describe simultaneous water and solute movement [130, 131], i.e.,

S +V.-v=0, (3.2)
Oic+ V- (D(S)Ve—-V(S)e) = —F,, (3.3)
where S [ — | is saturation, v [m s™'| is the volume flux of water, ¢ [kg m~?] is the

solute concentration, D(S) [m? s~!] is the saturation dependent diffusion,

V(S) [m s™!] is the saturation dependent advective flux and F, [kg m~3 s7!] is a sink
term. Here V() is usually described by v so that the advective flux is described by
the movement of water within the soil domain.

Equations (3.2) and (3.3) have been used to describe nitrogen movement in
one-dimensional soil domains [143], as well as two-dimensional domains. However,
in many of the two-dimensional studies, the ridge and furrow structure is often
described by a trapezoidal piece-wise geometry which may not be representative of
the true structure of ridge and furrow soils [94, 112, 131, 138, 141].

In this chapter, we aim to determine the water and solute movement mechanisms
and key environmental factors that influence leaching in ridge and furrow, and flat
planting systems. This will allow us to understand how the soil surface topology
affects solute transport within the soil. Understanding the key factors that impact
solute leaching will allow us to qualitatively determine the increased risk to solute
leaching between the two planting methods. This knowledge can assist us in
developing solute application protocols unique to each planting method in order to
reduce solute leaching and maintain higher nutrient availability to the crops.

Specifically, we model the transport of solutes with varying mobility and
degradation in both soil geometries over 24 week periods. During this time
vegetation is present in soil for the first 16 weeks, i.e., a full growing season. We
apply solutes at different times throughout the growing season to observe the effects



CHAPTER 3. COUPLED SOLUTE TRANSPORT AND WATER DYNAMICS MODEL 41

of early and late applications.

3.2 Theory

In this section, we extend the water movement and surface ponding model from
Chapter 2 to include solute transport in soil. We construct a non-linear
advection-diffusion-reaction equation that is coupled to equations (2.16) — (2.18)
using a similar approach used by Roose & Fowler (2004) [41].

3.2.1 Solute Movement in Variably Saturated Soil

Solutes such as nutrients, fertilisers and pesticides typically exist in one of two states
in soil, either sorbed to the soil surface or dissolved in the soil pore water [144]. We
state that the solute concentration in the sorbed state follows a reversible linear
binding reaction so that,

0its =ds in [0,00), (3.4)

where ¢, : [0,00) — Rs( [kg m~?] is the sorbed solute concentration and

ds € R [kg m~3 s7!] is the transfer rate to the sorbed phase from the pore water
phase. From conservation of mass, the rate of change of the solute concentration in
the soil pore water phase is,

_ _ _ ¢ in A
() + V - (¢v.) =V - (D%V&) +d — (TN+ §)e 12 ]\OUO : (3.5)
TC 1 A

where ¢ : A x [0,00) — Rsg [kg m~3] is the solute concentration in the soil pore
water, V.. : A x [0,00) — R?® [m s7'] is the volume flux, d; € R [kg m~3 s‘l] is the

transfer rate to the pore water phase from the sorbed phase, D € R, [m? s7!] is the
diffusion coefficient, 7 € Rs, [s7!] is the biodegradation rate, £ € Rxq [s™ ] is the
uptake rate from plant roots and we recall ¢, : A x [0,00) — [0,1] [ —] is the soil
water fraction. Adding (3.4) and (3.5) yields,
- - - T+6)¢ in A
(s + puwC) + V - (eV,) = V - (chwVé) +d,+d; — (r+9) 3.6

. : -
TC in A%

We assume there is a direct jump between the solute in the two states with no
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intermediate phase, such that d, + d; = 0. Furthermore, we define d, to be,
dy = ko€ — kqCs, (3.7)

where k, € R [s7!] is the adsorption rate of the solute in solution and
kq € Rog [s7!] is the desorption rate. We assume k, is sufficiently large such that
ds/kq < 1 and k, ~ kg so that,

¢s = be, (3.8)

where b = k,/k4 | — | is the buffer power of the solute [27, 145]. This leads to the
governing equation for solute movement,

O(bé + hul) + V - (%) = V - (D%w) . {(T Toe i AT (3.9)

~ . ~m
TC in A%

To couple equation (3.9) to the water movement model (2.16) — (2.18), we alter
(3.9) in three ways. Firstly, we state that v, is defined by the Darcy mechanics from

equation (2.7), i.e.,
Ksk(S)

w

VC:{I:—

(Ww n pgég) . (3.10)

Secondly, we relate D to S(p,,) using the power law [41],
D = Ds¢"S(pu)”, (3.11)

where D; € R.o [m? s™!] is the diffusion coefficient in free liquid and d € [0.5,2] [ — ]
is the impedance factor of the solute that accounts for the tortuosity of the solute
moving through the soil pore space [145]. Lastly, we relate ¢,, to S(p,,) using the
relationship S(p.) = ¢ /¢ from equation (2.4).

Combining (3.9) with the three alterations and the governing water movement
equations with (2.16) — (2.18), the model for solute movement is given by,

0 5 ] 4 9w 050 < o
8_§ [b + QSS(pw)} + %{[1 — HS(pw)]QS%C} -V [qudeS(pw)dHVc n
AV {EM <6ﬁw +pgé3) } B {(T +&)é in j}OUO e
. Té in A%

To ensure the solute model is valid for a variably saturated soil domain, i.e.,
Pw > 0N p, <0, a similar condition to (2.18) is imposed. This condition sets the
coefficient [b + ¢S(p.,)], and the diffusion coefficient [D ¢4 S(p,)*™] to be
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constant when S(p,) = 1, i.e.,

I f _
b+ ¢S (Pw) = b+o o p2 Q, (3.13)

b+ ¢S(Pw) for p<—G

Dottt for > —
Dy¢p?t1S(py,) ! = 59 P2 G : (3.14)
D18 (p,) "t for p < —(¢

where we recall (; € R [Pa] is a small transition pressure that acts as the interface
between the saturated and partially saturated soil regions.

The solute transport model (3.12) — (3.14) is then coupled to the water movement
model (2.16) — (2.18) to achieve a system of partial differential equations that
describes simultaneous water and solute movement in soil.

3.2.2 Boundary and Initial Conditions

To form a complete description of solute transport in ridge and furrow systems, we
derive boundary conditions that are imposed on the edges of A, see Figure 2.2 (a).

Surface Boundary Conditions

For the boundary A, we assume that solute applications are during dry conditions
or when rainfall is sufficiently low that it does not break the minimum pond depth
Zmin. Therefore, on the boundary A g we impose a Cauchy flux condition, i.e.,

n- {Dmd*lS(ﬁw)‘”l@E + 5—@{[5(%” (W% + pgés) } =Cm

on 9Ag x[0,00), (3.15)

where ¢, = ¢,,(t) : [0,00) — Rsq [kg m~2 s7!] is the volume flux of solute per unit
soil surface area per unit time entering the soil domain.
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Lateral Boundary Conditions

For the boundaries A and OAy, we set a zero flux boundary condition due to the
periodicity of A, i.e.,

n- {qubd—‘rlS(ﬁw)d—i-l@é_i_,é/{s/{/[i(pw)} <6p~w +pgé3> } =0

on AAgUdAy x [0,00). (3.16)

Therefore, there is no lateral solute movement into or out of A.

Boundary condition at the base of the soil

For the boundary on OA 5, we set a Dirichlet boundary condition set to the initial
condition, i.e.,
o on OAg x[0,00). (3.17)

¢ =2l

Initial conditions

Since we wish to understand how the soil surface topology influences solute

movement in soil, we choose the initial solute concentration in A to be,
lio=0 in A x {t=0}, (3.18)

as our equations are linear in ¢, we may consider this system to describe the
movement of added solute.

The system of Equations (2.16) — (2.18), (2.20), (2.27) — (2.32), (3.12) — (3.18)
completes the description of simultaneous water and solute movement in the
presence of surface ponding.

3.2.3 Non-dimensionalisation

Here we non-dimensionalise the system of equations (3.12) — (3.18) shown above
to determine the magnitude of influence each parameter has on the system of

equations. We choose the same scaling as that in the non-dimensionalisation of the
water movement and ponding model (shown in Section 2.2.5) with the addition of
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the scaling for ¢, i.e.,

2
X=nx,t= ¢:wp77 t, Dw = PePuws X =NX, €= CmC, To = NTg. (3.19)
In (3.19) we use the domain width 7 as the spatial scaling, the ‘effective diffusivity’
d’:—“f for the time scaling, the suction characteristic p. as the pressure scaling and

the solute application rate c¢,, as the concentration scaling. This leads to the system
of equations,

Oc gy 4 9P dS(p
aj |:b*—|—S< ):| gt {[1 —H (pw)] 8 } |:D*¢d+1s d+1VC]—|—
TC in AY

n- {D;‘Zgbd“S(pw)dHchLC/f[S(pw)] (Vpw + pés) } =¢, on O0Agx[0,00), (3.21)

- {D;qsdﬂs*(pw)dﬂvc + ck[S(pw)] (Vpw + pe3) } =0 on dAgUAIAy x[0,00),

(3.22)
c=0 on JAp x|0,00), (3.23)
clio=0 in A x {t =0}, (3.24)
and
D .dd+! 2 _ 2
5 P9 e b Di = PO M T e S0P Tl (g 5
Pe ¢ Dekis Pekis Dekis Peks

3.2.4 Parameter Estimation

Here we estimate the parameters contained in equations (3.20) — (3.24) to
determine the magnitude of influence each parameter has on the system of
equations. This allows us to identify the key mechanisms that dominate solute
movement in soil. We continue to assess the parameter values for silt soils and the
plant Solanum tuberosum L. Table 3.1 shows a summary of all parameters used in
the non-dimensionalisation. Several of the parameters used are discussed in
Chapter 2 and will be assumed here.

The value for the buffer power b depends heavily on the solute that is applied to the
soil. For extremely mobile solutes such as the pesticide Primisulfuron, the buffer
power takes the value b ~ 0.1 [146]. However, for solutes such as phosphorous or
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Table 3.1: A table of the parameters used in the non-dimensionalisation and param-
eter estimation of the solute movement and ponding model.

| Parameter | Description | Value | Units | Reference |
K saturated permeability 5x 10714 m? [101]
) porosity 0.4 — [101]
De characteristic suction pressure 2 x 10* Pa [101]
b buffer power (0.1, 1000] - [41, 146]
Dy diffusion in free liquid 2 x 107 m?s~!  [31]
T biodegradation rate 0,8 x 1077 st [147]
d impedance factor 2 — [145]
£ solute uptake 1x107° s ! [148, 149]
) density of water 1x10? kgm=— —
Lo viscosity of water 1x1073 Pas —
g gravity 9.81 ms? -
n width of A 0.5 m [47, 92]

zinc that rapidly bind to the soil particles, the buffer power can be b ~ 1000 [27].
Hence, there is a very large range that b can take, covering several orders of
magnitude.

Similarly, the degradation rate 7 varies considerably based on the solute that is
chosen. The solute decay constant 7 relates to the half-life ¢, , [s] by the relationship,

~ In(2)
tijs

(3.26)

Solutes such as the pesticide Fenamiphos have particularly fast biodegradation rates
equating to a half-life of approximately 10 days [147]. In contrast, stable nutrients
in soil can take tens of years to decay in the soil environment. As such, 7 also covers
a large range of values.

To estimate the solute uptake parameter &, we find that the crop Solanum tuberosum
L. has an uptake rate for the nutrient nitrogen of £ ~ 1 x 107° s~ [148, 149].
Additionally, we observe that the diffusion coefficient in free liquid for simple
electrolytes is typically D; ~ 2 x 107? m? s~! [31]. Finally, the impedance
coefficient d has the approximate value d ~ 2 for moist environments, i.e., those that
are subject to surface ponding [145].

Using the values above, we observe that the non-dimensionalised parameters shown
in (3.25) have the approximate values,

p=0(1), b €[0.2,2500], D} = O(107"), 7 € [0.2,0], £ = O(107"), & = O(10°).
(3.27)

From (3.27) we find that the non-dimensionalised parameters cover several orders
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of magnitude. We initially observe that the parameter D} < 1, implying that for
solute transport, diffusion is substantially weaker than the advective forces that
occur due to water movement in soil, i.e., solute movement is largely governed by
water movement rather than by diffusion, which is consistent with the literature
[145].

There are two mechanisms that reduce the quantity of solutes within the soil: solute
uptake by plants and biodegradation. For solutes that have a short half-life
(typically pesticides), we find that 7 >> ¢, i.e., biodegradation dominates solute
uptake. However, as the half-life is increased then 7 — 0, and solute uptake
becomes the key mechanism governing reduction in solute in soil. Therefore, the
primary reduction mechanism is heavily dependent on the specific solute properties.

Finally, we observe that the adjusted buffer power b* can take a wide range of
values. For mobile solute such as nitrogen, we observe that b* = O(1). However, for
solutes such as zinc, which has a substantially higher buffer power, we find that

b* = O(10%). For higher buffer powers, the term b* + S(p,,) becomes the most
dominant in equation (3.20) and we find that the effects of diffusion

AV [D;Z(ﬁCHlS(pw)cHlVC and advection V - {CF;[S(pw)] (Vpw + pé3) } are

negligible. Hence, the buffer power b of the solute will vital in determining the key
transport mechanics.

3.2.5 Implementation

Here we describe how we utilise the finite element package COMSOL Multiphysics
(COMSOL Multiphysics, Stockholm, Sweden, www.comsol.com) to solve the
coupled solute-water model. To implement the governing equation (3.12) coupled
with the governing equation for water movement (2.16), we use the inbuilt ‘General
Form PDE’, which takes the form,

d’r or

@eraajtv-@:f, (3.28)

€a
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where r = [p,,, |7, and e,, d,, © and f are parameters to be defined. To write the
model in this form, the parameters were constructed so that,

€a = [0 0] 7 da - [[1 ] (ﬁ )]¢ag§)pr) T . ]

0 0 1 = Hs(pu)lo%522 e b+ S(pw)
- T
RsK S w D.
oo [ I ) T[] o
D ¢S (P )TV E + R[S (Pw)] (VD + PE3) —(rHoe

where the functions Hg(py,), S(pw) and k[S(p.)] are explicitly defined.

For the flux boundaries, i.e., equations (3.15) and (3.16), we use the inbuilt flux
boundary condition that takes the form,

n-0 =g —gor, (3.30)

where ¢g; and g, depend on the specific flux boundary. Similarly, for the boundary
condition (3.17), we use the inbuilt Dirichlet boundary condition. This takes the
form,

r =rp. (3.3D)

As in Chapter 2, the model is solved using the MUMPS (Multifrontal Massive
Parallel Sparse Direct Solver) subroutine.

3.3 Soil Domains and Parameter Values

In this section, we discuss the parameters used to conduct a numerical comparison
of solute transport between ridge and furrow soil structures, and flat field structures.
Based on the non-dimensionalisation above, we choose to compare multiple solutes
covering a wide range of parameter values for b and 7 to determine how various
solutes are affected by the soil geometries, since we find that certain mechanisms
can either dominate or be neglected. Furthermore, we assume no solute uptake by
plant roots, since we are primarily concerned with the solute transport problem, i.e.,
modelling the worst case scenario, which applies to passive solutes.

3.3.1 Soil Domains

To model the differences in solute and water movement between a ridge and furrow
geometry and a flat geometry, we construct two domains. Let Q ¢ R? [m?] and
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® c R? [m?] be open bounded subsets representing a ridged soil and flat soil
respectively. These can be seen in Figure 3.1.

Lo
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Figure 3.1: Simulated soil domains for a ridge and furrow geometry and a flat soil
geometry, where Q) and ® are the ridged and flat domains respectively, 895 and 8(I>S
are the soil surface boundaries, Q5 and 95 are the base boundaries, dQy, 0Py,
00 and 0P are the lateral boundaries, 94 and 9® 4 are the regions absent of root
activity and 99 and 9 are the regions of soil containing roots.

To capture typical ridge and furrow dimensions, for  we use the values n = 0.5 m,
A=C=1/6mand B =27 m! in equation (2.2) [47, 92]. Furthermore, for d we
setn=0.5m, A=0m, C =1/6mand B =27 m! to ensure [,dQ = [; d®.

In the ridge and furrow geometry we choose )y, i.e., the region of soil where roots
are present, to be the top 30 cm (i.e., the plough layer [103]) of soil extending
radially from the top of the ridge. Similarly, we choose the subdomain @ to be the
top 30 cm of soil (see Figure 3.1). We note that fflu A # |. By d®;;, however, this is
taken into account when establishing the parameter for root length density /.
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3.3.2 Parameter Values

Summarised in Tables 3.2 and 3.3 are a list of the parameters used in the numerical

simulations. Detailed below are the parameter values and their origins.

Geometric, Soil, Environmental, Plant and Solute Parameter values

We use the same soil parameters as those discussed in Chapter 2 for a silt loam soil
ie., ¢ =0.396, m = 0.51, k, = 5.2 x 107 m? and p, = 23200 Pa [101]. It should be
noted that in some cases different tillage methods applied to soil can alter ¢ within

the system [150]. However, to ensure a ‘like for like’ comparison, we keep ¢ the

same in both soil domains to ensure that any differences we observe are an effect of

the soil geometry and not dependent on small local porosity variations within the

soil. For the viscosity of water we use j,, = 1 x 1073 Pa s, for acceleration due to

gravity g = 9.81 m s~2 and for the density of water p = 1000 kg m ™.

Table 3.2: A table of all the parameters used in the numerical simulations for ridge
and furrow, and flat field tillage.

| Parameter | Description | Value | Units | Reference |
K saturated permeability 5.2 x 1071 m? [101]
m van Genuchten parameter 0.5 — [101]
10) porosity 0.396 — [101]
De characteristic suction pressure 23200 Pa [101]
Do basal geometry pressure -1 x 10* Pa —
I. infiltration capacity 1.6 x 1076 ms! [109]
Dr root xylem pressure —5 x 10% Pa [110]
. 4 1y [103,115]
Ae effective uptake 2.355 x 10 s™+ Pa [41, 116]
Dy diffusion in free liquid 2x107° m? s~! [31]
d impedance factor 2 — [145]
) density of water 1x 103 kgm=3 —
Lo viscosity of water 1x1073 Pa s —
g gravity 9.81 m s 2
G saturated-partially saturated interface 1 x 107! Pa —
o Heaviside pressure 1 x 10% Pa~! -
Zmin minimum ponding depth 3x 107 m —
A variation in soil depth 0.16/0 m [47,92]
B ridge wave number 27 /0 m~! [47,92]
C average soil depth 0.16 m [47, 92]
n width of A 0.5 m [47, 92]

The impedance coefficient is bounded by d € [0.5, 2] [145]. Furthermore, ¢,, X d so
that increased volumetric moisture content leads to an increase in the impedance

factor for a solute [151]. Given that we model a temperate UK climate with
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frequent heavy rainfall events, we take d = 2. Additionally, the diffusion coefficient

in free liquid for simple electrolytes is typically 1 x 107° < Dp < 3 x 1072 m? s!

[31]. Hence, we select Dy =2 x 1072 m? s™*.

We simulate 24 weeks of solute and water movement in soil, in which vegetation is
present for the first 16 weeks as this is typical for Solanum tuberosum L. crops [152].
However, Solanum tuberosum L. root length density changes significantly over a 16
week growing season [103]. Lesczynski and Tanner (1976) [103] found that over
the first 30 days the root length density develops to I; ~ 3 x 10* m~2 in the plough
layer. This remains fairly constant until ~ 90 days, in which [/, density declines. In
order to capture this growth and development, we assign /() the piecewise
function (in m™2),

1 x 10% 0<t<30
3 x 10 30 <t <90
la(t) = : (3.32)
3x 10* — (1 x 10%)(t —90) 90 <t < 120
0 120 <t

\

We note that these results were obtained with ridge and furrow tillage, hence we
account for this when determining I,4(¢) for the flat domain ®. In order to ensure
Ja, La(t)dQy = Js, 14(t)d®;, we scale [4(t) in the flat geometry by the ratio of the
two root active areas [ dQu : [3 dPu.

As in Chapter 2, we choose the parameter )\, to take the value \. = 3.14 x 107° s~1
MPa !, and we assign the value for the infiltration capacity to be

I. = 1.6 x 107% m s~!. Furthermore, for the root pressure p,, given that we model
heavy rainfall that promotes considerable ponding, we chose the values p, = —0.05
MPa.

We show results of numerical simulations for multiple hypothetical solutes with
varying degradation rates and buffering capacity to determine the differences in
solute movement mechanisms between the ridge and furrow and flat soil
geometries. Table 3.3 shows a matrix of the solute parameters that are used in the
simulations.

We choose to model extremely mobile solutes (ay, as, ag) with a buffer power of
b = 0.1, highly mobile solutes (5, 52, f3) with a buffer power of b = 1, and
moderately mobile solutes v, 7, and 73 with a buffer power of b = 10.

It is generally accepted that degradation rates of pesticide-like solutes in soil
decrease with depth [153]. Hence one value for the decay constant 7 is not valid for
the entirety of the soil domains in Figure 3.1. For the pesticides Isoproturon and
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Table 3.3: Matrix of simulated solutes used in the numerical simulations.

Extremely Mobile | Highly Mobile | Moderately Mobile

b=0.1 b=1 b=10
High Degradation
t5 = 10 days “ b n
Medium Degradation
tt = 50 days @2 & g
Low Degradation
t5 = 500 days s & 8

Metolachlor, the half-life is approximately doubled between the initial 0—30cm of
soil and 1m below the soil surface [154, 155]. Therefore, for spatially varying
degradation, we impose the function,

ta(X) =t + |24t} (3.33)

where, ¢} is the half-life of the solute in the plough layer and |z,| is the absolute
depth below soil surface.

For the high degrading solutes (a4, 81, v1) we choose the value for the half life

t5 = 10 days, for moderately degrading solutes (a2, 52, 72) we select the value

t5 = 50 days, and for slow degrading solutes (a3, 33, 73) we select the value ¢} = 500
days. Recall that the half-life ¢} relates to the solute decay constant 7 by 7 = In@)

3

Boundary and Initial Condition Parameters Values

For py which describes a constant saturation at the base of the geometry, we assign a
value of py = —10 kPa. This equates to a saturation level of approximately S ~ 0.9
for a silt loam soil, thereby replicating a shallow water table. For the initial
condition for soil water pore pressure p.(x), we choose the steady state profile that
forms in 2 and ® prior to any rainfall. Hence, in each of the simulations, we allow
steady state to form so that 0;p,, = 0 before initiating rainfall.

Rainfall and Solute Application Parameter Values

We simulate solute and water movement over a 24 week period, in which vegetation
is present for the first 16 weeks. Solanum tuberosum L. crops are typically sown from
April to June and are harvested in September to November [152, 156]. As such, we
simulate this ‘growth and harvesting’ timeframe with an additional 8 weeks to
determine how solutes move once the crops are harvested.
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For the volume flux of water per unit soil surface area f(t), i.e., rainfall, we use 6
months of rainfall field data from a site in Newbury, UK between 1% June 2006 and
315 December 2006. This data can be seen in Figure 3.2. The data was recorded
from instruments that were installed into a slope next to the A34 Newbury bypass
(Ordnance Survey grid ref. SU455652). Acquisition of the data is described in
Smethurst et al. (2006) [157]. The return period for the rainfall, i.e., the likelihood
that the amount of rainfall is exceeded in subsequent years for the total annual
rainfall is 17 in 39 [158]. Hence, there is a 43.6 % chance this level of annual rainfall
will be exceeded in the future.

35 %100 Newbury Rainfall Data
. T T T T

25 B

1.5 i

Rainfall (mm/s)

0.5 .,

2! e L-

0 4 8 20 24

Time (Weeks)
#  Early Application
# Late Application

Figure 3.2: Newbury site experimental rainfall data over a 6 month period between
1% June 2006 and 31 December 2006. The green cross indicates the time for an
early solute application, and the orange cross indicates the time for a late solute
application.

We apply the solutes at one of two times during the numerical simulations, denoted
as the early and late applications. For the early application, the solute is applied to
the soil surface at the start of the simulation over the initial 24 hours, with a total
application of 1 kg ha™', i.e., an application rate of ¢,,(t) = 1.157 x 1072 kg m > s~
We choose to have a total application of 1 kg ha™' as this is typical for fungicides
like Mancozeb, which have been applied to potato fields at multiple times
throughout the growing season [159].
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Similarly, for the late application, a solute is applied for 24 hours with the same
application rate at the beginning of the 15™ week. These can be seen in Figure 3.2.
The early and late application times where chosen in order to determine how solute
movement is affected during a growing and degrading root system respectively.
Thus, for the early application, the solute is applied as soon as the root system
begins to grow, since it is common practice to apply herbicides pre-emergence of the
crops [159]. The late application is applied shortly after the root length density
begins to decrease, since pestiicides are frequently applied towards the end of
growing seasons for defoliation, i.e., to reduce the foliage of the crops [159].

3.4 Numerical Solutions

We conduct a total of 36 simulations; 9 simulations for the ridged geometry Q with
an early application (for all 9 hypothetical solutes in Table 3.3), 9 simulations for {2
with a late application, 9 simulations for the flat geometry ® with an early
application and 9 simulations for ® with a late application.

3.4.1 Early Application Results

Shown in Figure 3.3 are the results for the early application solutes for both the
domains 2 and @ for the moderately mobile solutes, i.e., 71, 7 and ~; (see Table
3.3). The results in Figure 3.3 show the solute profiles in the two soil domains at
the time points of 16 and 24 weeks after the solute application. At 16 weeks after the
solute application, water uptake from vegetation stops as this simulates harvesting
and the removal of crops, and 24 weeks after the solute application is the end of the
simulation timeframe. Furthermore, an additional contour plot of concentration

10 g 17! (shown in white) is added to each profile; since this concentration is
frequently used as a pesticide safety threshold for root and tuber vegetables [160].
In Figure 3.4 and Figure 3.5 we show the results for the highly mobile (3, 52, 53)
and extremely mobile («;, as, a3) solutes respectively.

For the moderately mobile solutes (71,72, 73), we find that there is not significant
penetration of the solutes into either of the soil geometries due to the buffer power
of the solutes (see Figure 3.3). However, there are several features of solute
movement that can be identified. Firstly, we find the solute adjacent to the furrow
has penetrated deeper into the soil compared to the solute contained in the ridge.
Experimentally, deep furrow penetration has been attributed to the effects of
ponding in the furrow of the geometry from soil surface runoff [50], which is
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Figure 3.3: Early application solute profiles in the ridged and flat domains for the
moderately mobile solutes (v;,79,73) after 16 and 24 weeks post solute application.
A white contour line indicating a safety threshold of 10 ug1™' is also plotted. The
ridge and furrow, and flat domains are the same as those shown in Figure 3.1.

evident in the simulation results.

Furthermore, we note that due to roots taking up water, solute is drawn up towards
the ridges through the difference between the soil water pore pressure and pressure
in the root system. Chen et al. (2011) [161] found that in ridge and furrow
structures, water that infiltrated into the furrows of the system was transported to
the ridges, which in turn reduced water movement directly below the ridge. In the
simulations, this results in greater concentrations of solute in the ridges of the
system due to water transporting the solute. This coincides with the results of Smelt
et al. (1981) [123], who found the most solute residues in the ridges of the ridge
and furrow structures at the end of growing seasons. Similarly, Jaynes & Swan
(1999) [17] found substantially higher concentrations in the ridges of the structure
compared to the furrows.

In the flat soil domain, we find that the solute moves down uniformly and is
temporarily impeded by the roots that are present in the plough layer. When we
compare the solute penetration between the flat and ridged soils, we find the solute
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Figure 3.4: Early application solute profiles in the ridged and flat domains for the
highly mobile solutes (31, 52, 33) after 16 and 24 weeks post solute application. A
white contour line of the safety threshold of 10 g 17" is also plotted. The ridge and
furrow, and flat geometries are the same as those shown in Figure 3.1.

in the flat domain moves to a greater absolute depth below the soil surface than the
solute contained in the ridges. This result coincides with Hamlett et al. (1990)
[162], who identified that placing solutes on the ridges of the structure substantially
reduced the amount leached compared to the flat field application. Jaynes & Swan
(1999) [17] supported this hypothesis, and in addition found that applications to
the ridges could provide increased quantities of solute to the plant, i.e., nutrients
and fertilisers.

However, we observe that the solute in the flat soil penetrates less than the solute
contained in the furrows of the ridged soil. This can be explained by the distribution
of ponding on the two soil domains. When ponding occurs on the flat soil, the
ponding depth is significantly shallower than the ridged soil, since the pond is
uniformly spread over the entire soil surface. Conversely, in the ridged soil the pond
is solely situated in the furrow. This in turn causes a greater body of water to
infiltrate into the furrow, causing deep solute penetration in this region of the soil,
but reducing the penetration of solutes in the ridges of the domain.
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Figure 3.5: Early application solute profiles in the ridged and flat domains for the
extremely mobile solutes («y, as, a3) after 16 and 24 weeks post solute application. A
white contour line indicating a safety threshold of 10 g 17" is also plotted. The ridge
and furrow, and flat domains are the same as those shown in Figure 3.1.

Similar properties can be observed in Figure 3.4 (for the solutes i, f3,, #3) and
Figure 3.5 (for the solutes oy, as, a3) for the simulations containing highly and
extremely mobile solutes respectively. For the highly mobile solutes 5, 8 and 5 in
the ridged system (see Figure 3.4), the effect of solute accumulation in the ridges is
more pronounced. In the ridge simulation containing solute 5, we find that at 16
weeks post-solute application, a large quantity of the solute is contained in the
region of soil adjacent to the plant roots due to water transport to the ridges created
by the ridge and furrow structure [161, 163].

At 24 weeks (the end of the simulation), we find that the solute has penetrated
down into the soil as a concentrated spot that slowly diffuses out. We understand
that there is reduced solute movement when root uptake is present in soil [132].
Since roots are only present for the first 16 weeks, in the remaining 8 weeks the
solute is influenced to a greater extent by rainfall into the ridges. Hence, we observe
deeper solute penetration in the later portion of the simulation. Furthermore, we
note that for the highly degrading solute f3;, the concentration drops below the
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10 g 17" threshold for both soil domains 2 and ®. This is due to the combination of
fast dispersion and short half-life. Therefore, in either geometry it is the slowly
degrading solutes (as, 83, 3) that are of critical importance.

Shown in Figure 3.5 are the results for the extremely mobile solutes a;, @y and as.
For the solute a3, we find that a quantity of the solute leaves the base of both soil
domains. In the ridge simulation, as an effect of the solute accumulating in the
ridges, the solute moves down the soil profile as a highly concentrated spot. Given
that the solute is drawn up into the ridges early in the simulation, the majority of
the solute is not influenced by later ponding in the furrows. Therefore, the solute
moves down solely under the influence of the rainfall that enters the ridge of the
soil, and thus takes longer to reach the base of the domain. Conversely, in the flat
simulation, we find that all of the solute is affected by ponding (albeit significantly
less than the furrow in the ridged soil). This leads to large quantities of the solute
reaching the base of the domain. We find that the total amount of solute that crosses
the base of the domain to be 0.26 mg in the ridged system, and 3.5 mg in the flat
system. These findings support the results observed by Hamlett et al. (1990)[162]
and Jaynes & Swan (1999)[17], who found that placing solutes on the ridges of the
structure may substantially reduce leaching compared to the flat field application.
Since applying the solute solely to the ridges negates the effects of ponding, this
reduces the penetration depth in the soil [130]. Furthermore, root uptake reduces
the solute movement in the ridges [132]. This causes the solute to remain near the
surface, allowing for easy solute extraction from the soil after harvesting.

In the ridge and furrow simulations, we observe that as an effect of water uptake
from plant roots, the movement of the solute from the furrow to the ridges protects
the solute from deep penetration, which would otherwise be caused by furrow
ponding. In comparison, the flat ground has a uniform surface that offers no
protection, hence all the solute is affected by ponding and rainfall. Therefore, the
average depth of the solute is reduced in the ridged soil compared to the flat soil
when this spot formation mechanic is present.

3.4.2 Late Application Results

Figure 3.6 shows the solute profiles for the early and late applications of the solutes
ag, (3 and s, i.e., those with slow degradation, in () and ® at the end of the
simulations. It should be noted that in the early application simulations the solutes
are in the soil for a full 24 weeks, and for the late application simulations the solutes
have a total of 9 weeks in the soil. We choose to only show the slow degrading
solutes as these results show the most extreme behaviours and best highlight the
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effects of surface ponding. However, all other solutes exhibit similar qualitative
behaviour.

From the results presented in Figure 3.6 we can highlight several key features. In
the simulations containing the late application of the solutes a3, 35 and ~3 in Q, we
find that a substantial quantity of solute penetrates into the furrow. This is
significantly different compared to the solute profile in the early application ridge
and furrow simulations, in which the solutes move towards the ridge and form a
concentrated spot.
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Figure 3.6: Early and late application solute profiles in the ridged and flat domains
for the slow degrading solutes a3, 3 and 3 at the end of the 24 week simulations. A
white contour line indicating a safety threshold of 10 ug 17" is also plotted. The ridge
and furrow, and flat domains are the same as those shown in Figure 3.1.

Differences in the solute profiles between the early and late applications in the ridge
and furrow soil are attributed to three reasons. Firstly, we note that in the late
application simulation, the period of time that the solute is in the soil is less than in
the early application. Therefore, in the late application simulations, there has not
been sufficient time for the solute to be transported towards the ridge of the
structure via water that infiltrates into the furrows and moves to the ridges

[161, 163]. Secondly, in the late application, the root length density is beginning to
decline such that the root uptake is not as strong as earlier in the simulated growing
season (refer to equation (3.32)). Hence, the difference in the soil water pore
pressure between the ridge and the furrow is decreased, which causes less
movement of water and solute towards the ridge, which causes greater solute
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penetration [132]. The third reason for the reduction in spot formation comes from
the rainfall that occurs immediately after the late application. From Figure 3.3, we
note that there is an intense rainfall event shortly after the late application, which
causes significant ponding in the furrow of the soil structure. Given that the solute
has recently been applied to the soil, there has not been sufficient time for the
solute to collect in the ridges of the structure. Therefore, the solute contained in the
region of soil adjacent to the furrow is moved deep into the soil from water
infiltration via the pond, since surface runoff leading to pond infiltration acts as a
key transport mechanism for solutes [50].

From the rainfall data shown in Figure 3.3, we can see that the second three months
(representing the winter months) have more frequent ‘high-intensity’ rainfall events
compared to the first three months. In the late application simulations, this causes
the solute in the furrow of ) to move deep into the soil, and does not allow for the
formation of a spot in the ridges. This makes the solute in the furrow vulnerable to
leaching since heavy water treatments can generate substantial dispersion of solutes
in ridged soils [164]. The effect of the ‘time of ponding’ can be clearly seen in the
difference between the early and late application simulation results for the solute a;
in Q. In the early application, the solute collects in the ridges of the system due to
little ponding and a growing root system, and then proceeds to move down as a
highly concentrated spot as the root length density decreases. However, in the late
application, through immediate surface ponding and a lack of roots, the solute
moves down with a wider distribution under the influence of infiltration of water

from the pond.

For the simulations of the extremely mobile solute a3, we note that in several cases,
at the end of the simulations some solute leaves the system via the base of the
geometry. Furthermore, we find that the total quantity that crosses the base of the
domain depends on the soil surface topology and time of application. In the early
application simulations, we find that the ridge domain leaches 0.26 mg, whereas the
flat system leaches 3.5 mg. However, in the late application, we find that the in
ridge domain the amount leached is 0.15 mg and in the flat system the amount
leached is 0 mg.

The model results suggest that the optimal geometry to reduce solute leaching is
dependent on two key aspects: the immediate rainfall regime after a solute
application, and the quantity of roots in the soil. We find that in the early solute
application simulations, there is not a substantial quantity of rainfall that generates
significant furrow ponding. This allows the solute to move towards the ridges of the
system under the influence of water movement, which is often observed in ridge
and furrow soils [161, 163]. This then protects the solute from future furrow
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ponding since root uptake can reduce the solute movement in the ridges [132].
Contrastingly, in the late application simulations, we note that there is an immediate
heavy rainfall event after the solute application that causes substantial ponding.
This generates greater ponding in Q) compared to ®, which results in the solute in
the furrow to be transported deeper into the soil. This makes 2 substantially more
vulnerable to solute leaching compared to ®. Therefore, considerable rainfall that
causes ponding after a solute application may make the ridge tillaged soils more
susceptible to solute leaching.

3.4.3 Time of Rainfall versus Solute Leaching

From the results above, we conduct a series of simulations in order to test the
hypothesis that the time between solute application and a heavy rainfall event
influences the quantity of leaching in ridged soils. We set up five ridged and five flat
soil simulations, in which a solute (with the same properties as the solute «a3) is
applied uniformly to each soil. One heavy rainfall event that generates substantial
ponding is then simulated at different times after the solute application in each
simulation. The rainfall event is chosen to last for 4 hours and have a rainfall

! and the times between the solute application and the

intensity of 12 mm hr™
rainfall event are chosen to be 1 day, 2 days, 4 days, 1 week and 2 weeks. One day
after the rainfall event, the total amount of solute that crosses the plough layer is

then calculated. The plough layer is chosen to be the soil above the horizontal line

of —0.15 m in both soil domains shown in Figure 3.1.

Figure 3.7 shows the total amount of solute (as a percentage of solute applied) that
crossed the horizontal line of —0.15 m in (2 and ®. For the simulations where the
heavy rainfall event is 1 day after the solute application, there are trace amounts of
leaching in ®. However, in Q2 11% of the solute that was applied leaches past the
plough layer. This is due to the infiltration of water into the furrow from ponding,
which transports the solute in the adjacent regions deep into the soil, since under
heavy rainfall, ridge and furrow systems can generate substantial dispersion of
solutes [164].

In the simulations that allow for longer periods of time between the solute
application and the rainfall event, the relationship between the amounts of solute
that are leached in the two domains changes. In the Q simulations, as the time
between solute application and rainfall event is delayed, more of the solute can
move towards the ridges of the soil via water transport to the ridges from the
furrows [161]. This causes less solute to be affected by the ponding and water
infiltration from the heavy rainfall event, causing less solute to move past the
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Figure 3.7: Total amount of solute leached past the plough layer in the ridge and
furrow soil 2 and flat soil ® for simulations that delay the period of time between a
solute application and a heavy rainfall event.

plough layer. For example, when the time period between the solute application and
the rainfall is 14 days, we find that ~ 1.5% of the solute applied is leached past the
plough layer.

However, ¢ exhibits the opposite behaviour. As the time between solute application
and rainfall event is delayed, a greater amount of solute is leached past the plough
layer. This is due to the solute diffusion in the system before the rainfall event.
Since we simulate an extremely mobile solute, the longer the solute is in the system
the more it diffuses. This causes the rainfall and pond infiltration to have a greater
effect on the transport of the solute. In the simulation with a 14 day period between
the solute application and the rainfall event, the total amount of leached solute is

~ 11%.

Figure 3.7 illustrates a crossover between the total quantities of solute leached in
the plough layer for Q) and ® after approximately 8 days. In the case study of an
extremely mobile solute and a single heavy rainfall event in a silt loam soil, we find
that any time below an 8 day delay between the solute application and the rainfall
event, the flat domain ® better reduces leaching. However, any time after an 8 day
delay, the ridge and furrow domain (2 better reduces leaching, since the solute can
move towards the ridges and create a ‘zone of protection’ from ponding. However,
this crossover period will change significantly depending on the mobility of solute,
rainfall regime, and type of plant roots, i.e., in scenarios where the applied solute is
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less mobile and there are lower root densities present in the soil. This will require
greater time to observe the ridge accumulation, thereby delaying the crossover
period. Regardless, these results suggest that in specific situations, it could be either
the ridge and furrow soil or the flat soil that better reduces leaching.

In previous research, it has been found that ridge and furrow planting often leads to
greater leaching of solutes compared to the flat system [18, 58, 59]. However, it has
been observed that certain application procedures may reduce leaching in ridged
fields compared to flat fields [17, 126, 127]. This supports our findings as we
observe that water movement from the furrows into the ridges [163], can transport
solutes into the root adjacent zones of the structure and while held there by plant
roots [132], reduce the effect from dominant surface runoff and subsequent
infiltration [50]. As such, we find that ridge and furrow systems can also reduce
solute leaching.

3.4.4 Assumption Limitations

In order to ensure that any differences that were observed were geometry
dependent (between (2 and &), we made several key assumptions. Hence, it may be
of interest to incorporate ridge and furrow specific factors in order to determine the
magnitude and severity of the mechanisms that were observed.

One of the key factors to consider is the soil water content in each of the ridge and
furrow and flat domains. Since water movement is the key transport mechanism for
solutes in soil [145], it is vital to accurately characterise the soil water profile in
both Q and . In the mathematical model, a boundary condition on the base of the
domains was imposed such that a shallow water table approximately 1 m below the
soil surface is replicated. This allowed us to model solute movement within an
idealised soil domain. However, incorporating high spatial resolution field data to
capture the soil water profile in the domains (2 and ® could indicate how different
water profiles influence the solute dynamics and mechanisms that were observed,

i.e., penetration from furrow ponding and transport to the ridges from the furrow.

Understanding the water profile in soil would also aid in accurately capturing the
infiltration mechanics of rainfall into the soil. We used hourly time resolved rainfall
data for a 24 week period, which limits the accuracy in capturing any change in
infiltration capacity. This could play a key role in determining the severity of
ponding and therefore the movement of solutes from the furrow to the ridges. Thus,
understanding the infiltration capacity and soil water content on a higher time and
spatial resolution may aid us in understanding the magnitude of the effects



64 3.5. CONCLUSIONS

observed.

To further understand the solute collection and ‘hot spot’ formation mechanism that
was observed, knowledge of the root architecture would play a key role. This would
allow us to understand the distribution of root pressures in the root zones, i.e., Qu
and @, and hence predict the spatial distribution of solutes that collect in the
ridges of the soil geometry. This would provide a more quantitate analysis of specific
case studies relating to different solutes and root systems. Furthermore, knowledge
of the harvestable crop product distribution, i.e., tubers in the soil could be
included. We neglect any influence from tubers in the soil, which may impede the
transport of water and solutes due to their size and clustered growth. This could be
a key aspect that may affect solute movement to the ridges of ridged soils.

Earlier we stated that in order to obtain a ‘like for like’ comparison, we kept the
porosity ¢ between the ridge and furrow and flat systems the same. However, we
understand that some tillage methods can affect ¢. Hence, it would be useful to
determine how any effect from tillage would affect the solute movement from the
furrows to the ridges and therefore the impact on the spot formation in the ridges.
This could have a substantial effect on the time required for the solute in the
furrows to move to the ridges of the system.

In all of the simulations we neglected any solute uptake by roots, and only modelled
passive solutes that are not actively taken up by plants. This was in order to model
the ‘worst case scenario’, such that we could observe the most devastating effects
from leaching. However, we have set up the model so that including solute uptake
by plants could be easily incorporated, which would allow us to examine case
studies in which the solute is actively removed from the system due to plant roots.

3.5 Conclusions

In this chapter, we extended the model from Chapter 2 to construct a system of
equations that describe coupled solute transport, water movement and ponding
within a ridge and furrow soil system. Using the model we presented a comparison
of water and solute movement between a ridge and furrow, and a flat planting
system. We simulated the movement of solutes with varying mobility and
degradation in the two systems to observe how the structure of the soil surface
influences solute movement.

Previous literature found contrasting results, suggesting that ridge and furrow
systems may be vulnerable to solute leaching [18, 58, 59], or can significantly



reduce solute leaching [17, 126, 127]. The numerical modelling results explained
this discrepancy and showed that the ridge and furrow structure could either
impede or increase the penetration of solutes in soil, depending on the immediate
rainfall activity after a solute application and the quantity of roots in the soil. In
scenarios in which there was considerable rainfall that generated substantial
ponding immediately after a solute application, we found that due to the water
infiltration from the surface, advection acted as a strong transport mechanism for
solutes in the furrow. This caused solutes in the furrow to move to a significantly
greater depth when compared to the flat ground profile, in which due to the surface
topology the influence of ponding is not so substantial.

However, we found that these trends are reversed for scenarios in which there is not
significant ponding after a solute application. Instead, we observed that with the
presence of roots in the ridges, this caused a dominant pressure gradient to form
between the soil water pore pressure and the pressure in the root xylem. This in
turn, caused the solute in the ridged system to move toward the root abundant soil,
where the solute accumulates into a concentrated spot adjacent to the root zone in
the ridges of the structure. This effect impedes the movement of the solute
compared to the flat field, as the large majority is contained in the ridge of the
structure, and is only influenced directly by infiltrated rainfall on the ridges, i.e., no
influence from furrow ponding. This mechanism can substantially reduce the
quantity of solute that moves deep into the soil.

We observed that the vulnerability of the ridged system stems from the immediate
ponding on the soil surface after the application of a solute, and is not a function of
the structure itself. This solute movement mechanism should be noted when
farming in semi-arid soils in which, formal irrigation down the furrow is required,
i.e., creating constant furrow ponding to allow sufficient water to the crop, since this
mechanism may be contributing to the deep penetration of solutes into soils.






Chapter 4

Multiple Scale Homogenisation of
Water Movement

In this chapter, we use the water movement model from Chapter 2 and apply the
method of multiple scale homogenisation to develop a set of approximate equations.
These equations describe water movement in the plough layer of soil, where crops
are planted, grown and harvested. Particular focus is paid to the impedance of
water movement due to crops in the soil, i.e., potato tubers. We validate the
homogenisation procedure by comparing the full set of equations to the
approximate equations and find there to be a difference of < 2% between the two
sets of solutions. Furthermore, we find that the computation time for the
approximate equations is reduced by a factor of O(10%) compared to the full set of
equations for a typical 3D problem.

4.1 Introduction

Often when studying plant-soil systems, the experimental or mathematical
techniques used are governed by the scale that is being analysed. Naturally, there
are several different scales of interest when analysing plant-soil systems. These
range from the large field scale to the very small pore scale [165]. Understanding
the scale of interest is vital when considering possible experimental techniques. For
example, X-ray computed tomography methods are used to examine small scale root
hair distributions [166], and field scale dissections are used to observe large
macroscale changes [167].

Similarly, when constructing mathematical models to represent plant-soil systems,
the scale considered is crucial when developing models to capture the important
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physical processes. For small scale pore studies, mathematical models can utilise
equations such as the Cahn-Hilliard equation for phase separation between air and
water, in order to understand the interaction at the air-water interface and on the
soil mineral surfaces [168]. However, employing Cahn-Hilliard type mathematical
models would be unnecessary and computationally prohibitive when considering a
large ‘plant scale’ study. The computational requirement to resolve a plant scale
geometry at the resolution to employ air-water interface models would be
monumental. For example, if we consider a cylindrical soil column with a radius of
5 cm and a depth of 20 cm, this would have a volume of 5007 cm?. The typical
air-water interface is approximately 0.1 ym, hence an element size of 0.02 ym would
be required. This would generate ~ 10! elements, which would require several
terabytes to simply store the solution. Instead, for larger scales, continuum
mathematical models are implemented. For example, to model partially-saturated
soil on the plant/field scale (as in Chapters 2 and 3), Richards’ equation is used
[169]. Hence, there is an effective discontinuity between the two scales in which
physics on the small pore scale can be lost when deriving continuum models.

There has been substantial mathematical research conducted on bridging the gap
between small and large scale models to create concrete continuum models that are
derived from small scale models, in which more specific physics is considered [170].
One technique that has been particularly important in analysing the influence of
small scale physics on the large scale is the method of multiple scale
homogenisation [171]. This technique has been vital in combining small and large
scale physics in porous media covering a wide range of applications [172].

Multiple scale homogenisation is a mathematical technique that is used to derive a
system of averaged macroscopic equations that are parameterised by associated cell
problems, derived from the inherent microscopic structure of the domain/geometry
that is considered [171]. The underlying assumption of homogenisation is that there
are two independent length scales, these being the micro- (/,) and macro- (/,) length
scales. The ratio between the two length scales is often very small and is denoted
l,/l, = e < 1. It is this small parameter that forms the basis for homogenisation.

Homogenisation was first developed for periodic heterogeneous structures, however
this technique has been used successfully in a wide range of porous media and soil
applications including: modelling saturated fluid flow [173], two-phase fluid flow
[174], wave propagation in poroelastic materials [175] and single-phase fluid flow
in double porosity systems [176].

Frequently when studying the transport of water and solutes in soil, complex
geometries are often required to capture the intrinsic details contained in the
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microscopic structure of the scale that is considered. This typically requires vast
amounts of computation time and resources [177]. Hence, it is often favourable to
construct an averaged macroscopic domain such that the macroscale transport
properties can be obtained directly from the microscale information [178].

One of the key results using homogenisation in porous media is the derivation of
Darcy’s law from Stokes flow [172]. Darcy’s law was first proposed in 1856 to
describe the the velocity of liquids in porous materials under specific pressure
gradients [102]. Darcy’s law takes the form,

K .
v = —;(Vp + pgés), “4.1)

where v [m s7!] is the fluid velocity,  [m?] is the permeability of the porous domain,
p [Pa] is the fluid pressure, i [Pa s] is the fluid viscosity, p [kg m~] is the fluid density
and g [m s™?] is gravity. Darcy’s law was initially derived empirically from a series of
sand flow experiments [102]. However, by applying multiple scale homogenisation
to the equations for Stokes flow in a periodic porous domain, i.e.,

uViv —Vp =0, 4.2)

V-v=0, (4.3)

the resulting governing equation becomes,
R .
V= —;(Vp + pges), (4.4)

where & [m?] is the ‘effective permeability’, a second rank tensor that is calculated
from an associated cell problem, based on the intrinsic microscopic structure of the
porous material [179]. Here equation (4.4) has the same functional form as Darcy
flow in equation (4.1).

This example is shown in Figure 4.1, where the geometry dependent equations for
Stokes flow, i.e., equations (4.2) and (4.3) are imposed on the heterogeneous soil
domain in Figure 4.1 (a). Shown in Figure 4.1 (b) is the homogeneous domain that
results from the homogenisation procedure, in which the geometry independent
equations for Darcy flow are imposed, i.e., equation (4.4). In order to parameterise
the effective permeability parameter K in equation (4.4), a cell problem is solved to
determine the ‘effective impedance’ from the heterogeneous domain shown in
Figure 4.1 (a).

Another key result is the rigorous derivation of Richards’ equation for water
movement and transport in partially saturated soil. Richards’ equation forms the
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—

homogenisation

(a) (b)
Geometry dependent Geometry independent
equations, i.e., Stokes flow equations, i.e., Darcy flow

Figure 4.1: An example of multiple scale homogenisation. (a): Shown is a hetero-
geneous soil domain in which the geometry dependent equations of Stokes flow are
imposed.

(b): Shown is the homogenous domain that results from the homogenisation proce-
dure, in which the geometry independent equations of Darcy flow are imposed. Here
the equations for Darcy flow are parameterised from a cell problem that captures the
effective impedance from (a).

basis of the models developed in the first two chapters of this thesis, since it
describes water movement as a continuum, which is important for describing
saturation gradients across large areas of soil. Richards’ equation was first published
in 1931 [100], and is typically parameterised from experimental water-release
curves [68, 180]. However, recently Richards’ equation has been formally derived
from the Cahn-Hilliard model using homogenisation [174]. This takes the first
principle approach for minimising a free energy interface between air and water,
i.e., modelling a partially saturated soil, and using the upscaling technique, a
macroscale set of equations are determined, which are parameterised by the
microscale soil structure. The water-release curves to parameterise Richards’
equation can then be determined from a series of cell problems, avoiding the
requirement to conduct expensive and time consuming experiments.

In this chapter, we construct a set of macroscale equations using homogenisation to
describe the movement and transport of water in the plough layer of soil in which
crops are grown and harvested, i.e., the subdomain A, as shown in Figure 2.2 (a).
Using the water movement model from Chapter 2 and a soil domain that contains
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potato tubers, we apply the method of multiple scale homogenisation to derive a set
of averaged equations that accurately capture the movement of water in this region
of soil. This model can then be incorporated into the water movement and ponding
model from Chapter 2.
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Figure 4.2: A schematic diagram of potato tubers in the plough layer of soil. Here
A, is the region of soil absent roots, Ay is the region of soil with roots, dAg is the
soil surface boundary, dA is the base of the domain, Ay is the boundary adjacent
to the ridge, dA  is the boundary adjacent to the furrow and a visualisation of tubers
in Ay is shown. Furthermore, a photo of a recently harvested potato plant is shown.
Photo from https://mumbaifarmer.files.wordpress.com/2014/09/potato-harvest.jpg

4.2 Crop Growth in Ridged Soils

The water movement and ponding model from Chapter 2 was developed for a
generalised ridge and furrow domain A, as shown in Figure 2.2 (a). We considered
the entire soil domain A to be uniform and homogenous with the only difference
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within the soil being the region of water uptake by plant roots. We denoted the
subdomain Ay C A to be the region of soil that contains plant roots, since crops are
typically sown in the ridges of ridge and furrow soils. As such, when the plants
develop and grow, the subdomain A, will begin to contain harvestable crop
products, i.e., potato tubers. A schematic of this is shown in Figure 4.2.

In the region of soil Ay, large clusters of potatoes can occupy much of the space in
the ridges of the soil, particularly near harvest (see photo in Figure 4.2). In these
regions, as the potato tubers increase in size and volume, they impede the
movement of water that infiltrates due to rainfall. This reduces the rate at which
water is transported through the plough layer of soil. Hence, fully grown potato
tubers may have a significant effect on the movement of water in the plough layer
and adjacent areas of soil. Additionally, since water movement is a key mechanism
for solute transport, this may heavily influence the transport of nutrients and
fertilisers in the root abundant areas of soil.

In the following section, we use the water movement model from Chapter 2 and
apply multiple scale homogenisation to develop a set of averaged equations specific
to the region of soil Ay This will allow us to describe macroscopic water movement
in the plough layer while capturing the effect of impedance from the potato tubers
without having to explicitly account for every tuber, since modelling each individual
potato tuber in the plough layer of soil, would be a heavily user-intensive process.
For simplicity, we assume the tubers to be spherical, however, it is trivial to extend
for any shape to represent carrots, turnips etc.

4.3 Theory

4.3.1 Plough Layer Domain

In order to develop a system of equations for water movement in the plough layer of
soil, i.e., Ay, we consider an idealised geometry in which the potato tubers are
repeating and periodic. This can be seen in Figure 4.3 (a), where ¥ [m?] is the
plough layer domain, ¥g [m?] is the soil subdomain and \i!pj [m?] are the
j=1,...,N potato tubers each with a boundary I'; [m?] between the tubers ¥, and
the soil Ug.



CHAPTER 4. MULTIPLE SCALE HOMOGENISATION OF WATER MOVEMENT 73

eP
o
o o | o | @
f}.
e o & e
@ @ @ @
Lo | @ @
W
Ly
xXeYy (@)
y €1l
e o o o/ t
e o|eoe|e
Ay c
e o oo
e o oo '
We < >
oW £
(b)

Figure 4.3: (a): Dimensional schematic of a plough layer domain containing potato
tubers, where U is the total plough layer domain, Wy is the soil subdomain, \If are
the j = 1,..., N potato tubers and T'; are the boundaries between the tubers and the
soil. In addition, [, is the macroscale, l, is the microscale and ¢ = [,,/[,.

(b): Schematic of the dimensionless macroscale domain ¥ and microscale domain
I1, where Uy is the soil domain, 0V is the external boundary of W, Ilg is the soil
domain, II, is a potato tuber, I" is the boundary between IIg and II,, 0Ilg is the
external boundary of the periodic cell and r is the radius of II,,.

4.3.2 Governing Equations

On the soil domain ¥g C ¥ we impose the governing equations from the model in
Chapter 2, i.e.,
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Since we now consider the individual potato tubers \ifpj in ¥, we require an
additional boundary condition on the surface of the tubers I';. We assume that
water does not infiltrate the tubers, hence, we impose a zero flux boundary
condition on fj, ie.,
s S Nw — ~ N T~
n- {w (pr + pge3> } =0 on Ty (4.8)

It should be noted that in this model, we limit the boundary condition on the
surface of the tubers to a zero flux condition, i.e., ignoring any effects from
preferential flow, which may be caused by the interface between the soil and tuber.
We strictly consider the impedance caused due to the tuber occupying space within
the soil domain.

4.3.3 Non-dimensionalisation

Here we non-dimensionalise the system of equations (4.5) — (4.8). We are
interested in the macroscopic properties of the system of equations whilst retaining
the influence of the microscopic structure. From Figure 4.3 we identify there are
two different length scales, the microscopic length scale /, [m]| and the macroscopic
length scale [, [m], where [, /I, = ¢ < 1 [ —]. We choose to non-dimensionalise (4.5)
— (4.8) using the scaling,

2
Ottuls, (4.9)
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Shown in Figure 4.3 (b) is the non-dimensionalised macroscopic domain ¥ and

microscopic domain II. In (4.9) we use the macroscopic length scale [, as the spatial

: ) . . e e, 2 )
scaling to capture the large scale effects, the ‘effective diffusivity % for the time

KsPc

scaling and the suction characteristic p. as the pressure scaling. It follows that the
system of equations becomes,
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1= Hstp) 252 B — v (5] (V00 +e0) |~ (o =7) i 05,
) (4.10)
i {M (ww +pé3) } —0 on T} (4.11)
[l
where,
—m—1
m <_pw)ﬁ + 1 (_pw)llnm
S (pw) _ [
Opw (1 —m) ’ *-12)
1 for p, > —¢
K[S(pw)] = . E 1™ :
o 1| (141 {(—pww—m ¥ 1] for pu < —G
(4.13)
and
_pgle — Apepolz _ AcDptill
P=—"— D= D= (4.14)
pC "{/SpC K:Sp(,‘

In Chapter 2, we estimated the parameters contained in the water-ponding model,
which are contained in Table 2.1. Here we have one new parameter to consider, the
macro length scale [,. Since we are considering the plough layer of soil, we choose
the parameter to be the average plough layer depth, i.e., I, = 0.3 m [103].

Using the estimated parameters from Table 2.1 and /, = 0.3 m, we observe that all
the non-dimensionalised parameters in (4.14) are of the same order of magnitude,
ie.,p=p,=Dp, = O(1). Hence, there are no terms in the system of equations (4.10)
— (4.13) that are O(¢) other than the ratio between [, and /.

4.3.4 Homogenisation

In this section, we use multiple scale homogenisation to develop a set of averaged
macroscale equations that describe the movement of water in the plough layer of
soil. We observe there are two different length scales present in the geometry ¥, the
macro length scale [, and the micro length scale /,. Any change of O(1) on the
macroscopic length scale will result in a O(¢) change on the microscopic length
scale. We can formalise this by assuming that the dependent variable p,, is a
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function of the small scale y and large scale x. We denote the unit cell T
representing the microscale domain y € IT = [-1/2, 1/2]®. Using the two length
scales and chain rule, the gradient operator is written,

V =V,+e'V,. (4.15)
Furthermore, we expand p,, such that,
Pw = Pwo + EPw1 + €2pw2 + 0(53)- (416)

The system of equations we homogenise is given by,

05 (pyw) Opw _ . _ _ )
1= Hs(p) S50 e 5 {86 (V00 b~ (7)1,
4.17)
n- {/{[S(pw)] (Vpw + pés) } =0 on I x][0,00), (4.18)
periodic on OJllg, (4.19)

where I1g is the microscale domain shown in Figure 4.3.

The first step of the homogenisation procedure is to determine the most dominant
terms in the system of equations (4.17) — (4.19). To do this, we substitute
equations (4.15) and (4.16) into (4.17) — (4.19) and collect the largest terms of
order O(e~?). This yields,

Vy {5 (u) | Vypuo} =0 in i, (4.20)
n- {/@[S(pwo)]vypwo} =0 on T, (4.21)
periodic on OJllg. (4.22)

Theorem 4.3.1. Equations (4.20) — (4.22) have the solution p,o = puwo(X, 1), i.e., Puo
has large scale dependence only.

Proof. We observe from (4.20) that,
/ prVy : {"Q[S(pr)]Vypr} dHS = 0. (423)
IIs
Applying Green’s first identity to (4.23) yields,

/pw[]ﬁ . {H[S(pr)]VypwU} I’ — Vypr : {K'[S(pr)}Vypr} dHS =0. (424)
r

IIg
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Using (4.21) to eliminate the first term, we find,

VyPuo - {R[S(pwo)]Vypwo} dIlg = 0. (4.25)

IIs

Equation (4.25) can be expressed as,

/ [V yPuwol|726[S (Puwo)] dIls = 0, (4.26)
IIs

where ||| 2 is the L? norm, i.e., ||x|[2 = /(x,x) = \/2? + ... + 22. We observe that
k[S(pwo)] > 0, since k[S(p,)] — 0 as p,, — —oo, therefore in order satisfy (4.26),
||V ypuol |22 = 0. By definition, [|x|[z2 =0 <= x =0, hence,

IVypwoll7e =0 = Vypwo=0 = puo=C, (4.27)

where C' is independent of the small scale y. Therefore, p,o = pu, (X, t). O

From Theorem 4.3.1 we observe that p, has large scale dependence only and is
independent of the small scale y, however, we receive no other information
regarding the solution of p,.

To proceed, we collect the second most important terms in the system of equations
(4.17) — (4.19). This is achieved by collecting terms of order O(¢7 1), i.e.,

0K

Vy . {K[S(pw())]vypwl + /{[S(pr)]prwO + Pwi——— Vypr + ﬁK[S(pr)]é3}+

OPuw
vx-{ﬁ[S(pw())]vypwo}:o in T, (4.28)

Pw=Pw0

N et —_ 0K
n- {K[S(pr)]Vypwl + K[S(pw())]vxpwo + pwlé_l{

w

Vypw0+

Pw=Pw0

ﬁH[S(Pwo)]és}ZO on T. (4.29)

periodic on Ollg. (4.30)

Using the result from Theorem 4.3.1, i.e., Vyp,0 = 0, the system of equations (4.28)
— (4.30) reduces to,

v, - {/{[S(pwo)]vypm} =0 in IIg, (4.31)

i - LR (000) | Vbt + KIS (uo) | Vbuo + pRIS(uo)Jés =0 on T, (432)
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periodic on OJllg. (4.33)

To ensure that equations (4.31) — (4.33) form a well-posed problem, i.e., the
equations have a solution that agrees with the boundary conditions, we assess the
solvability of the equations. To check the solvability of the system (4.31) — (4.33),
we apply the divergence theorem to equation (4.31) and use the boundary
condition (4.32) such that,

/H Vs {0 Vs } s = /F i1+ LRl (pu0) | Vg | T =
- /pﬁ A RS Wu0) Vxpuo + IS (puo)es T =

~ [ Yy (TG Vapaa + 5T Tualles  dlls = 0. (434
IIs

Equation (4.34) confirms the problem is well-posed as the governing equations and

boundary conditions agree.

To proceed with the homogenisation procedure, we rescale p,,; such that,

NE

Pt (X,¥) = Y Xe(¥)OuPwo + V(¥)D + Pun (%), (4.35)

k=1

where p,,(x) is the component of p,; (x,y) that is large scale only. Substituting
(4.35) into (4.31) — (4.33) yields,

Vy-{K[S(pwo)]vyxk}ﬁxkpwo—i—vy'{ﬁﬁ[S(pwo)]Vy’yk}:O in T (4.36)
i1+ { RIS (o) VX + 6 b0y puo + - { R[S (puo)| Vs + IS (puo)Js | =0 on T,
(4.37)

periodic on Ollg. (4.38)

Equations (4.36) — (4.38) can then be reduced to the two problems denoted (A)
and (B),

(v, (V) =0 in T

A=qn-(Vyxy+€)=0 on I (4.39)
periodic on OJllg

¢

Vy (Vyyw)=0 in llg
B=<{n-(Vyyu+eé)=0 on I |, (4.40)

\periodic on Ollg

for k =1,...,3. Note that that (B) = (A) when k£ = 3. The problems (A) and (B) are
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denoted cell problems, which take into account the intrinsic repeated microscale
geometry within the macroscale domain. The cell problems in this application
capture the water impedance around the tubers and are used as a representative of
the periodic domain. The cell problem solutions x; [m] and ~; [m] in (A) and (B) are
used in the final stage of the homogenisation procedure. Examples of the cell
problem (A) can be seen in Figure 4.4 for tubers of varying sizes.

r=20.1 r=20.2 0.15
0.08
0.06 | 0.1
0.04
' > 0.05
0.02 | |
- o Ak N 22 o Xk
\_J.
0.02 i
\ -0.05
-0.04 | |
-0.06 0.1
-0.08
-0.15
A 0.15
0.08
0.06 0.1
0.04
0.05
0.02
1 o Xk o Xk
-0.02
-0.05
-0.04
-0.06 -0.1
v 0,08
. _ ) . -0.15
1 1

Figure 4.4: Examples of solutions to the cell problem (A) in (4.39) for the non-
dimensionalised tuber radii = 0.1 and » = 0.2. The top two images show the full
solutions in three dimensions. The bottom two images show the central solution slice
in two dimensions.

The final stage of the homogenisation procedure is to collect terms O(c?). This leads
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to the system of equations,

8S(pw0) apr o o/ V1 0K
[1 - HS(pr)] apwo 8t - Vy . K[S(pr)] (Vypr + prwl) + pwlm I
0% 1, 0%k _ R X
(Vypuw1 + Vipuo)+ (pr(S_ + 529121,15—2 ) Vypw0+ppw16_ es}+
W pywy=pwo pw DPw=Pw0 p’LU Pw=Pw0

Ok

v.. {H[S@wo)] (Vs pot + Vo) + pur 2

o vypwom[S(p_wo)Jéz}—

Pw=Pw0

(P.pwo —P,) in 11T, (4.41)

0K

n- {H[S(pw(])] (Vypuwz + Vipu1) + Pur=—

5pw (Vypwl + prwo) +

Pw=Pw0

oK 1., 0% OR .
(pwzd— + 5]9121)15—2 ) Vypwo+ﬁpw1(5— 93} =0 on I'x [0, OO),
pw Pw=Pw0 pw Pw=Pw0 W poy=pwo
(4.42)
periodic on OJllg x [0, 00). (4.43)

To check equations (4.41) — (4.43) provide a well-posed problem, we check the
solvability of the system of equations. To check for solvability we integrate equation

(4.41) over the domain Ilg,

0S(Pwo) Opuw —_—

[ 1= s S 2ty vy~{/~e[s<pwo>] (Vypoo + Fapi) +
IIg pr IIg

1, 2

+ —
2pw1 5p2

w

R
(Vypwl + prwO) + (pr(S_

w

3
Puw1 (S

w

> Vypw0+

Pw=Pw0 Pw=PwO Pw=Pw0

R . —_— R
ﬁpwl(s_ 63} dHS + / Vx : {K[S<pw0)] (Vypwl + prwO) +pw15_
Pw=Pw0 g Dw

w

Pw=Pw0

VyDwo + ﬁ/f[s(])wo)]és} dllg — / (Depwo — D,) dllg. (4.44)
IIs

By applying the divergence theorem to equation (4.44) and using boundary
condition (4.42) we observe that,

IS (Puwo) Opw -
/ (1= He(pug)) 22 Pu0) Pty / vx-{m[soowo)} (Vypur + Vispuo) +
IIg apw() 8t IIg

il
Puw1 (5

w

Vypwo + ﬁﬁ[S(pwo)]éd} dHS — / (]_?prg — Z_jr) dHS (445)
Is

Pw=Pw0
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We define,
1] = / 3 (4.46)

and use equation (4.35) to yield,

IS (puwo) Opuo / 0 [—— (0X; Opwo . ODuwo
Ig||[1 — H =
[T 5(Puwo)] Opuo 01 w01, kS (Pwo)] dy: Oz, + oz, +

7/} R B o .
PE[S (Puo)] (a?f +eg> } dlls — |[Us||(Ppwo —P,) in 11T, (4.47)

where ||II¢|| is the volume integral of the cell problem.

Through algebra manipulation, equation (4.47) results in the equation for p,,

95 (puo) Opuwo —ar e
s (1 — HS(Pwo)]mw = Vi {H[S(pwo)]Qerpwo + PH[S(pwo)]ﬁe}—

[ s|[(Pepwo —P,) 0 11T, (4.48)

where,
D, = Vyxr ® €, + % dllg, (4.49)

IIg
R, = Vy’}/k + e3 dllg, (4.50)
IIg

where T [ — | is the second rank identity tensor. This results identifies that equations

(4.41) — (4.43) provide a well-posed problem if and only if equation (4.48) has a
solution.

Since R, = ©.e3, we can re-write (4.48) as,

aS<pr) apr

||HS||[1 - HS(pr)] apwo at

= Voo {WS (o) Dc (Vspuo +785) | -

Is||(Ppwo —D,) in Hg. (4.51)

Here equation (4.51) is known as the homogenised equation for the system of
equations (4.17) — (4.19). Recall the relationship p, = puwo + €Pwi + €2pua + O(£3).
The full equations (4.17) — (4.19) solve for p,,, whereas the homogenised equation
(4.51) solves for the leading component only, i.e., p,o. In order to solve the
homogenised equation (4.51) however, the cell problem solutions for (A) and (B)
are used to determine ®, [m? s™!] and ||II5|| [ — ], which capture the impedance
effect from the tubers.

We observe that the homogenisation procedure has resulted in the approximate
equation (4.51), which takes a similar functional form to Richards’ equation, i.e.,
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(4.17). Hence, a homogenised Richards’ equation is simply another Richards’
equation. This result is common to homogenisation, in which homogenised second
order parabolic PDEs often result in an ‘effective’ second order parabolic PDE.

Theorem 4.3.2. The parameter ®,. has unique values generated from the cell problem
(4.39).

Proof. Let x¢ and x? be solutions to (4.39) and define ¢;, = x{ — x%. We observe
that ¢, satisfies the problem,

Vy . (Vy@k) =0 in HS
n-(Vypr)=0 on T : (4.52)

periodic on OJllg

It follows that,
/ gﬁkvy . (VyQOk) dHS =0. (453)
IIs

Applying Green’s first identity to (4.53) yields,

r

IIs

using n - (Vy¢;) = 0, (4.54) reduces to,
[ 1950 ats o (4.55)
IIs
By definition ||-||,2 > 0, hence,
IVyerllz: 20 = [[Vyprllr2 = 0. (4.56)
Furthermore, ||x||;2 =0 <= x =0, hence,
Voo =0 = Vyxi=Vyh (4.57)

Therefore (4.39) has a unique gradient of the solution Vx4, i.e., a unique solution
X, With an additive constant. Since ®, =D, (Vyxs), D, is unique. O

4.4 Validation of the Homogenisation Procedure

To validate the mathematical steps used in the homogenisation procedure, we
compare the homogenised equations (4.49) and (4.51) to the full set of equations
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(4.17) — (4.19) for two different saturation regimes. Firstly, we consider a partially
saturated soil domain, since potatoes typically grow in partially saturated soil.
However, to test the homogenisation procedure, we also consider a variably
saturated soil that has regions of partially and fully saturated soil to highlight that
the approximate equations successfully capture a moving saturated-partially
saturated interface. In each of the saturation regimes we conduct multiple
comparisons by varying the parameters in the two sets of equations for four
different soil types. To cover a wide range of parameters, we consider a sandy soil, a
clay soil, a silt soil and a loam soil. Shown in Table 4.1 are the parameters for the
different soil types.

Table 4.1: A list of the soil parameters used in the homogenisation validation for four
different soil types (sand, silt, loam and clay).

| Soil |¢ [k (m?) |p.(Pa)|m | Reference |
sand 0.25 1x 1072 12000 0.7 [181]
silt 04  5x 107 23200 0.5 [101]
loam 0.52 3 x 107 8500 0.5 [101]
clay 04 8x 10716 60000 0.2 [181]

4.4.1 Implementation

Here we describe how we utilise the finite element package COMSOL Multiphysics
(COMSOL Multiphysics, Stockholm, Sweden, www.comsol.com) to solve the full
and homogenised sets of equations. To solve both sets of equations we generate two
geometries, one for the full set of equations (4.17) — (4.19) containing potato
tubers, and a second uniform geometry for the homogenised set of equations (4.49)
and (4.51). We choose the domain length of each of the geometries to be composed
of eight periodic cells. The geometries can be seen in Figure 4.5, in which ¥Fu!
denotes the geometry for the full set of equations and ¥H°™ denotes the geometry
for the homogenised set of equations.

Full Equations

To implement the full set of equations (4.17) — (4.19), we use the inbuilt ‘General

Form PDFE’, i.e.,

0%*r or
ﬁ"‘dag‘i‘ve):f, (458)

€a
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Figure 4.5: The geometries used to validate the homogenisation procedure (a): The
full set of equations (4.17) — (4.19) are solved on the domain V™!, where 9UH! is
the boundary at the base of the domain and 9U5! is the boundary on the top of the
domain.

(b): The homogenised set of equations (4.49) and (4.51) are solved on the domain
pHom - where 9UHo™ is the boundary at the base of the domain and V5™ is the
boundary on the top of the domain.

where,

0S(pw)
Opw

© = k[S(pw)| (Vpw +p€3), f=—~PLpw—D,) (4.59)

' = Py, €q = 07 d(l = [1 - Hs(pw)]qb

Appropriate boundary conditions are then applied to 0! depending on the
saturation regime considered (see Sections 4.4.2 and 4.4.3 for details).
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Homogenised Equations

To implement the homogenised set of equations (4.49) and (4.51), we also use the
inbuilt ‘General Form PDE’ where,

aS(pr)
apr

@ = "Q[S(Pwo)]@e (prwo + ﬁé?)) ) f = _HHSH<23cpw0 - ﬁr) (460)

I' = Pwo, €a = 07 da = HHSH[l - HS(pr)}

Appropriate boundary conditions are then applied to 9¥H°™ depending on the
saturation regime considered.

To parameterise the homogenised equations we are also required to solve the cell
problem (4.39) for a given radius r to calculate ||II5|| and ©.. This involves solving
three different cell problems for & = 1,..., 3, i.e., for each of the three spatial
components z, x, and 3.

To solve the cell problem, we use the inbuilt ‘General Form PDE’ for the governing
equation where,
= Xk, €a = 07 da = 07 O = Vkaa f = Oa (461)

fork=1,...,3.

For the boundary condition on T, i.e., the tuber, we use the inbuilt flux boundary
condition that takes the form,

n-0 =g, — gr, (4.62)

where g; = —n - ¢, and g, = 0.

On the external boundaries of the cell JI1; we impose three sets of ‘Periodic
Boundary Conditions’, so that each pair of opposite external boundaries are an
effective continuum. Furthermore, since (4.39) has a non-unique solution (see
Theorem 4.3.2), we are required to impose a ‘Pointwise Constraint’ such that we
allow COMSOL to pick an arbitrary solution. Since ||II5|| does not depend the
solution and ®. uses the gradient of the solution (which is unique), allowing the
software to choose a solution does not affect the final result.

4.4.2 Partially Saturated Regime

To test the homogenisation procedure for a partially saturated soil regime, we
simulate the wetting of dry soil from a shallow water table at the base of the
domains W™ and U™, To do this, we impose the following boundary and initial
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conditions: on the boundaries W™ and W5, we impose the boundary condition,
pw=—0.5 on 9T X [0, 00), (4.63)

pwo = —0.5 on JPE™ x [0, 00), (4.64)

which equates to the dimensional pressure of p,, ~ —10, 000 Pa (equating to a
saturation of S ~ 0.9), i.e., simulating a shallow water table at the base of the two
domains. On all other boundaries we impose a zero flux boundary condition, i.e.,

- {R[S(pw)] (Vpw + pé3) } =0 on QUM Gl 5 [0 00), (4.65)

f1-{R[S(pwg)]ge(vxpwo+ﬁé3)}ZO on AU\ GUHM « [0 00).  (4.66)

Finally, in ¥H°™ and U we impose the initial condition,
Puli—o= —2 in UM fr =0}, (4.67)

Puwoli=o= —2 in W™ x {# =0}, (4.68)

which equates to the dimensional pressure of p,, ~ —40, 000 Pa (equating to a
saturation of S ~ 0.3). Furthermore, we choose a non-dimesionalised tuber radius
of r = 0.025. This equates dimensionally to a radius of 1.3 cm, i.e., a diameter of 2.6
cm. Additionally, the side length of the cell surrounding each tuber is 5.2 cm,
leading to a dimensional cell volume of 140.608 cm?. This tuber size is typical for
early season tubers, since potato tubers can grow substantially larger. We choose
this radius to highlight that even for small tuber radii, there is a notable effect on
water movement in soil from the influence of tuber impedance.

Shown in Figure 4.6 are the non-dimensional pressure solutions for the
homogenised and full sets of equations at the time point ¢t = 2.78, which equates
dimensionally to one day after the start of the simulation. For all four soil types, we
observe that the two sets of solutions for p,, (full) and p,, (homogenised) are
qualitatively identical. We find there to be a maximum error of < 2% between the
two sets of solutions. However, the loam and clay profiles show small differences
between the full and homogenised solutions. This is due to the soil parameters of
the loam and clay soils. We note from homogenisation theory that p,, — p., as

e — 0, i.e., the two solutions converge as the micro to macro ratio decreases. As a
result of the slow water mobility in the clay and loam soils, the infiltration of water
from the base of the domain covers a maximum of three cells, hence ¢ is relatively
large, and therefore the error is larger when compared to the sand and silt soil
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Figure 4.6: Validation of homogenised equations (4.49) and (4.51) against the orig-
inal set of equations (4.17) — (4.19) in a partially saturated soil regime. The plot
shows the solutions to the two sets of equations for the simulations described by
equations (4.63) — (4.68) at the time point ¢ = 2.78, which equates dimensionally
to one day. There are multiple comparisons for four different soil types, these being
clay, sand, silt and loam type soils.

profiles, where the water penetrates substantially further. However, if we asses the
pressure profiles in the clay and loam soils at a later time period in which the water
infiltrates further into the soil, we observe that the error between the two solutions
becomes smaller and similar to the sand and silt soils.

We find that the full set of equations (4.17) — (4.19) in three dimensions requires
~ 100 seconds to solve one simulation for eight periodic cells. Conversely, solving
the homogenised equations (4.49) and (4.51) requires ~ 3 seconds to solve an
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analogous 3D problem. Furthermore, the homogenised set of equations can be
reduced to a 1D problem, which will achieve the same results as the 3D problem due
to the homogenisation procedure. We find that the computation time to solve the 1D
problem is <« 1 second, which is substantially faster than the full set of equations.

Although, a cell problem is required to parameterise equation (4.51) via the terms
||IIls|], ®. and K.. The cell problem requires ~ 3 seconds to solve and is only
required to be solved once for each radius tuber r. Hence, the homogenised set of
equations can considerably reduce the computation time whilst retaining a high
level of accuracy for partially saturated soil domains.

4.4.3 Variably Saturated Regime

To test the homogenisation procedure for a variably saturated soil regime, we
simulate water movement in the domains V1™ and ¥™!! due to wetting from a
shallow water table at the base of the domains, and infiltration from constant
ponding on the soil surface. The pond on the soil surface will create a zone of fully
saturated soil which will have a moving interface with the partially saturated soil
region.

To replicate these conditions, we impose the following boundary and initial
conditions: on the boundaries ¥H°™ and ¥, we impose the boundary condition,

po=—05 on 0¥ X [0, 00), (4.69)

Pwo = —0.5 on QU™ 5 [0 00), (4.70)

which equates to the dimensional pressure of p,, ~ —10, 000 Pa (equating to a
saturation of S ~ 0.9), i.e., simulating a shallow water table at the base of the two
domains.

On the boundaries W™ and Wi we impose the boundary condition,
pw=—0.05 on UEN % [0,00), (4.71)

Pwo = —0.05 on VL™ x [0, 00), (4.72)

which equates to the dimensional pressure of p,, ~ 1,000 Pa, i.e., simulating a pond
of ~ 10 cm on the surface of each of the domains. On all other boundaries we
impose a zero flux boundary condition, i.e.,

n- {/@'[S(pw)] (Vpw + pé3) } =0 on U™\ (VRN NowE") x [0,00), (4.73)
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i {K[S(pwo)]fDe (VxDuo + 783) } —0 on QU™\ (HPH™ N HPHEom) [0, 00).

4.74)

Finally, in WH°™ and U™ we impose the initial condition,
Puli—o= —1 in WM =0}, (4.75)
pw0|t:0: —1 in \I/Hom X {t = O}, (476)

which equates to the dimensional pressure of p,, ~ —40, 000 Pa (equating to a
saturation of S ~ 0.3).

Shown in Figure 4.7 are the non-dimensional pressure solutions for the
homogenised and full sets of equations at the time point ¢ = 2.78 (equating
dimensionally to 1 day) for the variably saturated soil regime described by
equations (4.69) — (4.76). For all four soil types, we find there to be a maximum
error of < 1% between the two sets of solutions. We observe that the
homogenisation procedure successfully captures the moving saturated-partially
saturated interface, whilst retaining a high level of accuracy for a large range of soil
parameters. Again, we find that the full set of equations (4.17) — (4.19) in three
dimensions requires ~ 120 seconds to solve one simulation for eight periodic cells.
Conversely, solving the homogenised equations (4.49) — (4.51) requires ~ 3
seconds to solve an analogous 3D problem.

To highlight the accuracy of the homogenisation procedure and the influence of
tubers on water movement, shown in Figure 4.8 is a comparison of the
dimensionless pressure profiles for the sandy soil under partially saturated
conditions. In Figure 4.8 (a) we impose the full set of equations (4.17) — (4.19) in
the full geometry and the homogenised geometry. We observe that the pressure
profiles in each of the geometries is different due to the presence of the tubers.
Hence, we cannot simply apply the original equations in the subdomain that
contains tubers. In Figure 4.8 (b) we impose the full set on the full geometry and
the homogenised set on the homogenised geometry. This allows us to clearly
identify that the homogenised system of equations captures this phenomena.

From the results shown in Figures 4.6 and 4.7, we observe that there is a maximum
error between the full set of equations and approximate equations of < 2%.
However, we observe there to be a difference of O(10?) in computation time
between the two sets of equations. Therefore, we find that the homogenised set of
equations can reduce the computation time significantly whilst retaining a high

level of accuracy.

In the soil region A in Figure 2.2, we are able impose the homogenised set of
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Figure 4.7: Validation of homogenised equations (4.49) and (4.51) against the orig-
inal set of equations (4.17) — (4.19) in a variably saturated soil regime. The plot
shows the solutions to the two sets of equations for the simulation described in equa-
tions (4.69) — (4.76) at the time point ¢ = 2.78, which equates dimensionally to 1
day. There are multiple comparisons for four different soil types, these being clay,
sand, silt and loam type soils.

equations (4.49) and (4.51) to capture the water impedance from potato tubers in
the plough layer of soil. This can then be coupled to equations (2.16) — (2.18) for
the soil region A 4. Providing knowledge of the potato radius and inter-tuber
distance is known, this will allow us to accurately model the average infiltration of
water in the ridges of the system without requiring substantial computational power
to model each individual tuber in the soil.
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Figure 4.8: Two-dimensional pressure profiles for a sandy soil under partially satu-
rated conditions. (a): The full set of equations (4.17) — (4.19) are solved on both
domains ¥ and wHom,

(b): The homogenised set of equations (4.49) and (4.51) are solved on the domain
wHom = and the full set of equations (4.17) — (4.19) are solved on the full domain
\IjFull-

4.5 Conclusions

In this chapter, we derived a model for water movement in variably saturated soil in
the plough layer in which crops are planted, grown and harvested. Using the
method of multiple scale homogenisation, we developed a set of approximate
equations to capture the impedance of water movement in the plough layer due to
the influence of crops. This allows us to directly obtain the macroscale properties of
the system without requiring all the intrinsic detail of the soil structure.

To validate the homogenisation procedure, we compared the full set of equations for
water movement around tubers in soil to the approximate set of equations. We ran
simulations for four different soil types for two different saturation regimes. We
found there to be a maximum difference between the solutions of < 2%. However,
we observed that the approximate equations were faster by a factor of O(10?) for a
3D problem. The difference between the two computation times could be increased,



since the homogenised set of equations can be solved on a 1D domain to achieve the
same solution.

The homogenised set of equations can then be imposed in the plough layer
subdomain Ay and coupled to the remaining soil A4 for the model presented in
Chapter 2. This will allow us to develop a system of equations that describes water
movement through the soil, whilst capturing the impedance of water movement due
to the crops forming in the ridges of the ridge and furrow soil.



Chapter 5

Multiple Scale Homogenisation of
Crop Growth

In this chapter, we build on the ideas in Chapter 4 and use multiple scale
homogenisation to derive a set of averaged macroscale equations, which describe
the movement of nutrients in partially saturated soil that contains growing potato
tubers. The soil is modelled as a poroelastic material, which is deformed by the
growth of the tubers. The growth of each tuber is assumed to be dependent on the
uptake of nutrients via a sink term within the soil representing nutrient uptake by
roots. To validate the homogenisation procedure, we compare the system of
homogenised equations to the original set of equations and find that the solutions
between the two models differ by < 2%. As in Chapter 4, we find that the
computation time between the two sets of equations differs by several orders of
magnitude. This is because the equations imposed on the dynamic
three-dimensional geometry, which captures tuber growth and soil deformation, are
simplified by homogenisation to a coupled set of one dimensional ODEs and PDE:s.

5.1 Introduction

In each of the previous chapters we considered the soil to be a static porous
structure that remained unchanged. As such, the entire soil domain was governed
by a set of constant parameters, i.e., hydraulic conductivity, porosity and saturated
permeability. However, it is well known that soil is a heterogeneous medium due to
the distribution of soil particles and water/air filled pores [23]. The distributions of
these soil components can be due to natural heterogeneities in the soil or due to an
external influence, i.e., soil compression [182].

93
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A key factor that affects the local properties of soil in the plough layer is the
influence from the growth and development of crops. In Chapter 4 we incorporated
potato tubers into the soil domain A;;. We assumed they were a constant size, since
potato tuber size remains approximately constant on the timescale of water
transport. However, throughout an entire growing season, the growth of crops will
compress the soil within and immediately adjacent to the crop zone, leading to a
change in the local porosity and other soil properties. These changes will affect
dynamic soil processes, i.e. transport of nutrients. In this chapter, we explore the
effects of crop growth and how this influences soil properties.

To capture the influence of crop growth, we no longer consider the soil domain to
be static. Rather, we model the soil a poroelastic medium [183]. The behaviour of
poroelastic materials are governed by the phenomena that couples the solid and
fluid components of the material, in which either a change in the solid matrix
results in a change in fluid pressure (or mass), or a change in fluid pressure results
in a change in the volume of the solid matrix [184].

The topic of poroelasticity has been studied in a wide range of scientific fields, since
poroelastic theory has been used to successfully model a wide range of applications
including: the internal mechanics of bone, specifically for deformation of bone
tissue due to bone fluid [185, 186], the properties of fluid movement in rocks and
anisotropic geological media [187, 188], and cells and their constituent parts such
as cytoplasm [189, 190].

Standard theory for linear poroelasticity is based on Biot’s original paper for
consolidation of soils entitled ‘General Theory of Three-Dimensional Consolidation’
[191]. This work was published in 1941 and developed mathematical theory for the
settlement of soils due to consolidation, which is synonymous with the squeezing of
liquid out of a porous medium that has elastic properties [191]. The governing
equations for linear poroelasticity are derived from coupling Darcy flow with linear
constitutive equations, to form a time-dependent relationship between the
deformation of the solid matrix and fluid pore pressure [184].

The governing poroelastic equations for a two-phase material (solid matrix and fully
saturated fluid) are given by [192],

V- (9u,) = fv (Vpu) — 4. 5.1)

V-6=0, (5.2)

where u, [m] is the displacement of the solid matrix, p [Pa s™!] is the fluid viscosity,
pw [Pa] is the fluid pore pressure, ¢ [s7'] is a fluid sink term, & [m?] is the
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permeability tensor of the porous medium and & [Pa] is the stress tensor. Equations
(5.1) and (5.2) are coupled together to form a relationship between fluid pressure
and the stress on the medium. Biot’s equations for poroelastic materials have been
used successfully to model a wide range of materials including but not limited to:
modelling tumour growth and development [193], compaction of soils [177] and
fluid transport in biological tissues [192].

In this chapter, we model the growth of potato tubers in soil. We assume that the
growth is dependent on the quantity of nutrients the plant is able to draw up from
the soil. Subsequently, any growth from a single crop will influence the water
content adjacent to the plant and therefore the movement of nutrients in the
vicinity, since from Chapter 3 we found that solute movement is heavily influenced
by water content.

Equations (5.1) and (5.2) describe the interaction between a two-phase poroelastic
material that contains a solid matrix and a fluid component. However, partially
saturated soil is a three-phase poroelastic material that contains a solid matrix
representing the solid minerals, a fluid representing water and a fluid representing
air. Hence, equations (5.1) and (5.2) cannot be directly applied to the system we
aim to model. Therefore, we construct a model from first principles coupling the
constituent equations for the three-phases with Darcy’s law to derive a model for a
three-phase poroelastic material.

Using a similar approach to the methodology in Chapter 4, we aim to apply the
technique of multiple scale homogenisation. This will allow us to develop a
macroscale model that captures the global movement of nutrients in soil and uptake
from plants, and subsequent growth of the potato tubers. Applying this method to
the system described will require homogenising a moving boundary problem, since
the microscale domain containing the tubers will change depending on the nutrient
uptake and growth of each tuber.

Rigorous homogenisation theory for two-scale convergence of moving interfaces has
been increasingly studied in recent years, with particular focus on first and second
order partial differential equations [194, 195]. One application using
homogenisation of moving interfaces is the periodic solidification (transfer from a
liquid/gas to a solid) of periodic heterogeneous materials [196, 197]. This
incorporates a microscale moving interface that separates a solid domain and fluid
domain with a flux discontinuity on the interface. We aim to implement similar
protocols to describe the moving interface of the potato tubers as they grow and
compress the poroelastic soil.

For simplicity we choose to model the tubers as spherical objects in soil, however,
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this can be extended to any 3D geometry, including, but not limited to, ovoids,
capsules and cylinders. There have been recent models derived using
homogenisation that model the diffusion of a species with spatially varying spheres
in porous media [178]. However, in these cases the local porosity is approximated
using Rayleigh’s multipole method to determine a spatially dependent effective
diffusion coefficient based on the size of the sphere within the microscopic periodic
geometry [198]. This relies on underlying assumptions that ignore the poroelastic
properties of the material. Instead it is assumed that the solid matrix is
incompressible. Hence, it is inferred that the local porosity is a ratio of available
space to a constant solid fraction. Here we extend this idea to model both spatially
and temporally varying objects in poroelastic media, which are coupled to the
diffusion of the species within the material itself.

To validate the homogenisation procedure, we compare the solution of the
homogenised equations against the full system for a series of case studies. This
shows that the homogenised equations successfully capture the ‘effective’ growth of
the tubers and the change in nutrient diffusion from the reduction of volume within
the domain.

5.2 Theory

5.2.1 Three-Phase Poroelastic Soils

Let ¥ C R? [m?] be an open bounded subset representing a soil system (see Figure
5.1 (a)) that contains N € N potato tubers. We define

U = (Z;\le \IIS]) U <25V:1 \i!p].), where Ejvzl Ug, = Uy [m® is the deformable
poroelastic soil domain that is composed of water, air and solid components, and
¥, [m?] are the j = 1,..., N tubers each with a boundary I'; [m?].

To describe the deformable poroelastic soil domain ¥y, we impose a system of
equations that describe a three-phase poroelastic material. To derive the system of
equations, we use conservation laws for mass and momentum. The conservation of
mass equations for the three phases of air, water and soil solid are,

g = =V - (pa¥V,) in VT, (5.3)
Oh = =V - (V) — Ae(Pw — py)  in U, (5.4)
Drps = =V - (¢sv,) in U, (5.5)

¢a+¢w+¢s = 17 (56)
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Figure 5.1: (a): Schematic of a dimensional poroelastic domain, where U is the total
domain, ¥y is the deformable poroelastic soil domain, V¥, are the potato tubers, ¥,

is the poroelastic soil subdomains adjacent to each tuber and I'; are the boundaries
between ﬁlpj and V. In addition, [, is the macroscale and l, is the microscale.

(b): Schematic of the dimensionless macroscale domain ¥ and microscale domain
I1, where W is the poroelastic soil domain, 0V, is the external boundary of ¥, Il is
the microscale poroelastic soil domain, II,, is a tuber, I" is the boundary between IIg
and II,,, Il is the external boundary of the periodic cell and r is the radius of II,,.

where ¢, : Ug x [0,00) — [0,1] [ — ] is the volumetric air content, i.e., the volume of
air per volume of soil, ¢, : U5 x [0,00) — [0, 1] [ — ] is the volumetric water content,
i.e., the volume of water per volume of soil, ¢, : ¥g x [0,00) — [0, 1] [ — ] is the
volumetric soil solid content, i.e., the volume of soil solid per volume of soil,

Pw: Vg x [0,00) — R [Pa] is the soil water pore pressure,

Vo : g x [0,00) = R? [m s'] is the air velocity, v,, : U x [0,00) — R3 [m s~!] is the
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water velocity, v, : ¥y x [0, 00) — R? [m s~!] is the velocity of the soil solid
component, \. € Rs, [Pa~! s7!] is the product of the root surface area density and
the water conductivity of the root cortex, and p, € R« [Pa] is the pressure in the
root xylem. The conservation of momentum equation is [184],

- o - \T v~ B ~ .
v. {G[ <Vu5) + (Vu5> + =V uS‘Z} _ prT—paT} —0 in ¥¥, (5.7)
where 1, : Ug x [0,00) — R? [m] is the displacement of the solid component,

Pa: Wg x [0,00) — R [Pa] is the soil air pore pressure, G € R [Pa] is the shear
modulus of the soil, v € [0,0.5] [ — | is the Poisson ratio and ¢ € R [ — | is the
effective ratio between the air and water phases. The displacement u, is related to

v, by the relationship,
Ve = afﬁs. (5.8)

Furthermore, Darcy’s law for the relative phase velocity of air and water is written

as,
b0 (Vo — V) = —9%p, in T, (5.9)
b (Vo — V) = — W, in T, (5.10)

Hw

where k, € Ry [s7!] and «,, € R [s7!] are the air and water permeabilities
respectively, and p, € R [Pa s™] and p,, € R.o [Pa s™!] are the viscosities of air
and water respectively. In equations (5.9) and (5.10) we assume that air and water
are independent on the pore scale, i.e., air and water move freely.

The air and water pressures p, and p,,, and the air and water fractions ¢, and ¢,, are
related via the van Genuchten saturation expression [101],

wa ﬁa _ﬁw ﬁ
= | (= 1
(bw + ¢a [ ( Pe > i

where p. € R, [Pa] is the characteristic suction pressure and m € [0, 1] [ — | is the

(5.11)

Y

van Genuchten parameter. The system of equations (5.3) — (5.11) completes a full
description of a three-phase poroelastic soil.
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5.2.2 Diffusion of Nutrients in Soil

To describe nutrient movement in the poroelastic domain ¥ g, we recall the model
for solute movement from Chapter 3, i.e., equation (3.9),

(o + D)O5E + 0y = V - (Dqsﬁé) _ ¢ in ¥ (5.12)

where ¢ : Ug x [0,00) — Rx [kg m~?] is the nutrient concentration in pore water,
b € R [ — ] is the nutrient buffer power, D € R, [m? s7!] is the diffusion
coefficient and ¢ € Ry [s7!] is the nutrient uptake rate from plant roots. Equation
(5.12) is coupled to (5.3) — (5.11) to construct a complete system describing
nutrient movement in a poroelastic medium.

5.2.3 Boundary Conditions

Here we define a series of boundary conditions on the interfaces fj, i.e., between

the deformable poroelastic soil domain ¥¢ and the potato tubers \Tfpj. To describe

the nutrient interaction on I'; we impose a zero flux condition, since potato tubers
do not take up nutrients, i.e.,

ﬁ-(quw%):o on T x [0,00), (5.13)

where n : R? x [0,00) — R? [ — ] is the unit normal vector pointing out of the
geometry. Furthermore, on fj we assume the soil solid is displaced normally to the
direction of the growing tuber and has no tangential velocity, hence,

(20®@h—%) -0, =nZ; on I, x0,00), (5.14)
where =; > 0 [m] is the displacement of tuber j given by,
= =7 =1 (5.15)

where r* € R.( [m] is the initial radius of the tuber and 7; : [0,00) — R>,~ [m] is the
radius of the j™ tuber, which is related to the total amount of nutrients taken up by
the roots. The growth of each tuber is expressed as,

OHVi=a [ Edbg, (5.16)

b,

where V; [m?] is the tuber volume, ¢ € R [s~'] is the nutrient uptake rate from
plant roots, o € R, [m?® kg™ '] is the ratio between the rate of growth and uptake of
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nutrient, and \I/SJ. is the volume of soil adjacent to each potato tuber ;j (see Figure
5.1 (a)). Here we model the early-stage development of potato tubers, and assume
the tubers to be spherical. Therefore, equation (5.16) can be written in terms of the
radius 7, only, i.e.,

- (%
@g?”j

¢edVs,. (5.17)

a2 -
A7y ) s;

We state that the water and air components of ¥g do not penetrate the tubers \i/pj,

thus, we require the Darcy velocities normal to the interface to be zero, i.e.,

n- (Z—wﬁﬁu) =0 on fj x [0, 00), (5.18)
n- <@@ﬁa) =0 on fj x [0, 00). (5.19)

Finally, on fj we assume the the air and water velocities are equal to the growth of
the tubers, i.e.,

2h®@n—%)-v, =n0;7; on I, x][0,00), (5.20)

(20@h—%)-v, =07 on T x[0,00). (5.21)

5.2.4 Non-Dimensionalisation

To simplify the model and understand the magnitude of influence of each parameter,
we non-dimensionalise the system of equations described above. We are interested
in the macroscopic properties of the system of equations whilst retaining the
influence of the microscopic structure. Hence, we identify there are two different
length scales, the microscopic length scale /, [m] and the macroscopic length scale
l, [m], where [,,/l, = ¢ < 1 [ —]. We choose to non-dimensionalise using the scaling,

2

£

I,D
- vy, F=lyr,  (5.22)

l2

T

X =l,x, t =2t U, = lyus, ¢ = cmax¢, D;i = Gpi, V; =
where ¢ > 0 [kg m™3] is the maximum concentration of the nutrient applied to U
and i = {w, a}. In (5.22) we use the macroscopic length scale [, as the spatial
scaling to observe the macroscale propeties, the diffusion timescale % for the time
scaling as diffusion is the dominant transport mechanism, and the shear modulus GG
for the pressure scaling. Shown in Figure 5.1 (b) is the non-dimensionalised
macroscopic domain ¥ and microscopic domain II. It follows that the system of
equations becomes,
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Oie = —€V - (¢uve) in U, (5.23)
at¢w - —€V : (¢wvw) - A_c(pw - p_r) il'l ‘112*07 (524)
at(l - ¢a - gbw) =—€V. [(1 - ¢a - ¢w)atus] in \Pgo7 (525)

V.| (Vuy) + (VuS)T +7V - u, T — e ((puT — pa‘Z)] =0 in U, (5.26)

¢o (Vo — Opus) = —K,Vp, in U, (5.27)
Ow (Vi — Opug) = =K, Vp, in UT, (5.28)

Pu { — = }m
=< |G(pa — Pw 1 , 5.29
buw + Pa [ v p)} " (5:29)
(¢w + D)0y + cOipy = V - (¢, V) —Ec in U, (5.30)
n-(¢,Ve)=0 on I x]0,00), (5.31)
2n®@n—%)-u;=n(r; —r*) on I, x]0,00), (5.32)
n-(Vp,)=0 on I x]|0,00), (5.33)
n-(Vp,) =0 on I;x][0,00), (5.34)
2n®n—%)-v,=ndr; on I;x][0,00), (5.35)
2h®@n—%)-v, =n00dr; on I';x]0,00). (5.36)

a
oyr; = —/ cd¥sg,, (5.37)
J 471_7"? \I}Sj
where,
_ ANGE Pro__ v _ KoGe™' _ R,Ge!
c D 7p7"_Ga _1—2V’ a — D/La 9 w T D/Lw 9
— G - &2 o cpaxQfll

G—]z,f—ﬁ,?"—g,()é—T. (538)

5.2.5 Parameter Estimation

Here we estimate the parameters contained in equations (5.23) — (5.37) to
determine the magnitude of influence each parameter has on the system of
equations. Since this model is motivated by the growth of potato tubers in soil, we
assess the parameter values for silt soils as potatoes are frequently grown in this soil
type [106].

Potato plants are typically grown in ridge and furrow geometries and are contained
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in the plough layer of soil, which is the top 30 cm [103]. Therefore, we choose the
macroscopic length scale to be [, =~ 0.3 m. Similarly, we assume that the tubers have
an inter-tuber distance that is substantially less than the total length of the plough
layer. We choose an inter-tuber distance of approximately [, ~ 0.05 m, resulting in
the ratio of the two length scales to be ¢ ~ 0.1. We also assume an initial tuber
radius of 7* = 0(0.05) m < [,.

Values for the Poisson ratio of silt soils are approximately 0.3 < v < 0.35 [199], and
the shear modulus is G ~ 1 x 107 Pa [200]. Furthermore, typical characteristic
suction pressures for silt soils are approximately p. ~ 3 x 10* Pa [101], with soil
permeabilities of x,, &~ k, ~ 5 x 1071* m? [101]. The viscosity of water is

tw = 1 x 1072 Pa s and the viscosity of air is ji, = 1 x 107 Pa s.

One of the key nutrients responsible for plant growth and development is nitrogen
[145]. We choose to model this nutrient since plant growth is closely linked to an
abundance of nitrogen in soil. Nitrogen has a diffusion coefficient in soil water of
D ~ 2.5 x 1071 m? s~! [27] and for the potato plant Solanum tuberosum L., the
uptake rate of the nutrient nitrogen is £ ~ 1 x 107 s~! [148, 149], for nitrogen
concentrations in soil ¢y ~ 1071 kg m® [149].

In the early-stages of growth for Solanum tuberosum L., the tuber radius growth rate
is approximately 1 x 107 m s~! [201]. If we assume that the quantity of nitrogen
taken up by the plant is proportional to the growth of the tuber, then we can
estimate the ratio between the rate of growth and the uptake, i.e.,

a~1x10' kg ' m3 [148, 149].

Using the values above, we find that the parameters %, and %, contained in (5.27)
and (5.28) are &, = O(10°) and %,, = O(107). This is significantly larger than the
other terms in the equations. Hence, we re-write equations (5.27) and (5.28) so
that,

KoVp,~0 in Vg, (5.39)

RwVpy~0 in Vg, (5.40)

which have the solutions p, = constant and p,, = constant, i.e., the consolidation of
the soil is substantially faster than the diffusion of solutes. Since p,, = constant, we
find that the sink term in equation (5.4) representing root uptake is constant, i.e.,
Ae(Pw — pr) = F, where F' is the water uptake rate by plant roots. The uptake rate of
water by Solanum tuberosum L. roots over a growing season is F' ~ 1 x 1078 s~}

[202].

The result of p, = constant and p,, = constant allows us to reduce the system of
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equations (5.23) — (5.37) to,

01w = —eV - (puVy) — F in WY, (5.41)
V.| (Vu) + (Vu) 17V - uS‘Z] —0 in Vg, (5.42)
vy — O, = 0, (5.43)
(¢ + b)Dyc + Oy = V - (6, V) —Ec in UL, (5.44)
2n®n—%)-u,=n(r; —r*) on T}, (5.45)
n-(¢Ve)=0 on I, x[0,00), (5.46)

a
8157"]‘ = FT? /I}S/. C d\:[/sj, (547)

where F = FI2/D.

This reduction of equations results from several physical processes having a
negligible effect on the system described. Since the air and water pressures are
constant on the timescale of solute diffusion, this causes the equation for
conservation of momentum for a poroelastic material (5.26) to reduce to the
equation for conservation of momentum for an elastic material, i.e., equation
(5.42). This then allows us to neglect the influence of air movement within the soil,
i.e., equation (5.23). This then leads to the system of equations (5.41) — (5.47).

Using the values discussed above, we find that the parameters contained in
equations (5.41) — (5.47) have the approximate values,

F=0(Q1), 7=0(1), €

I
S
=
ﬂ*
I
S
=
o
I
S
=

(5.48)

For the remainder of this Chapter, equations (5.41) — (5.47) will be referred to as
the ‘full set’ of equations to describe solute movement and tuber growth.

5.2.6 Homogenisation

In this section, we use multiple scale homogenisation to develop a set of averaged
macroscale equations that describe the movement of nutrients and tuber growth in
soil. From equation (5.41) we observe that the volumetric water content ¢,, is
affected by two mechanisms: firstly by soil compression due to the growth of the
tuber, i.e., eV - (¢,V,,), and secondly by root water uptake, i.e., F. From the
non-dimensionalisation, we observe that the maximum displacement is bounded
such that u, < F. This leads to the result v, < F, and hence, ¢V - (¢,,v,,) < F.
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Therefore, we find that the root water uptake term dominates the change in water
content. Hence, for the homogenisation procedure, we neglect the term regarding
soil compression, and the system of equations we homogenise reduces to,

Oy = —F in TIZ, (5.49)
(b + b)0yc + 01y = V - (6, V) — Ec in 11T, (5.50)
n-(¢,Ve)=0 on I x|[0,00), (5.51)
or = —— / ¢ dll. (5.52)
Amre Jng
periodic on Ollg. (5.53)

To validate this assumption, we compare the full set of equations (5.41) — (5.47) to
the homogenised system of equations derived from (5.49) — (5.53) in the following
section.

As in Chapter 4, we observe there are two different length scales present in the
geometry U, the macroscale [, and the mircoscale I,. Any change of O(1) on the
length scale [,, will result in a O(¢) change on the length scale /,. We can formalise
this by assuming that the dependent variables ¢,,, ¢ and r are functions of a small
scale y and a large scale x. We denote the unit cell II representing the microscale
domainy € IT = [-1/2,1/2]3. Using the two length scales and chain rule, the
gradient operator is written as,

V=V,+e'V,. (5.54)

Furthermore, we expand ¢,,, c and r such that,

buw = Pu, + O(e), (5.55)
c=cy+éec+ 5262 + 0(63), (556)
r=ry+ O(e). (5.57)

The first step of the homogenisation procedure is to determine the most dominant
terms in the system of equations (5.49) — (5.53). To do this we substitute equations
(5.54) — (5.57) into (5.49) — (5.53) and collect the largest terms of O(¢72). This
results in the system of equations,

V- (6w, Vyco) =0 in TIg, (5.58)
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n-(py,Vyco) =0 on T, (5.59)

periodic on Ollg. (5.60)

From Chapter 4, we observed in Theorem 4.3.1 that the leading order term p,,, had
large scale dependence only and was independent of the small scale y. By applying
the same theorem methodology to equations (5.58) — (5.60) we find that

co = co(x, 1), L.e., o has large scale dependence only and is independent of the small
scale y.

To proceed with the homogenisation methodology, we collect the next most
dominant terms in the system of equations. This is achieved by collecting terms
O(e') and using the result Vo = 0, ie.,

Vy (0w Vyc1 + 0wy Vxco) =0 in g, (5.61)
A+ (G, Vyer + duy Vo) =0 on T, (5.62)
periodic on Ollg. (5.63)

To continue with the analysis, we must ensure that equations (5.61) — (5.63) form
a well-posed problem, i.e., the equations have a solution that agrees with the
boundary conditions. We can show the system is well-posed by applying the
divergence theorem to equation (5.61) and use boundary condition (5.62) such
that,

Vy : (¢wovycl + ¢w0vx00) dHS —

IIs

/ n- (¢wovycl + ¢w0VxCO) d(?HS =0. (564)
g

Next, we choose to rescale ¢; so that,

M)

ci(x,y) = Xk (Y) 0, co + G1(x), (5.65)

k=1

where ¢;(x) is the large scale component of ¢ (x,y). Substituting (5.65) into
equations (5.61) — (5.63) yields the cell problem for x4,

V- (Vyxi+é) =0 in I, (5.66)

periodic on Ollg. (5.68)
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Recall that the tubers grow in the soil domain, hence, the cell problem solution

X% |m] is dependent on the radius of the tuber. Since the cell problem is a
representation of the impedance of nutrient movement due to the tuber obstruction,
and as the tuber grows the impact on nutrient transport will change, therefore we
have the relationship y, = xx(r), i.e., the cell problem solution is dependent on the
radius of the tuber.

The last step of the homogenisation procedure is to collect terms O(g"). This results
in the system of equations,

Oipwy = —F in IIZ, (5.69)

(wao + b)atco + COatgbwo = Vy ' (wao VyC2 + waovxcl)‘f‘
Vi (0w VyCi 4 ¢uy Vxco) — & in 11, (5.70)

N - (¢Gu, Vyca + 0y Vxc1) =0 on I x [0, 00), (5.71)
periodic on OJllg, (5.72)
at’l“o = Lz/ Co dHS (573)

47TT0 Mg

To check (5.70) — (5.73) provide a well-posed problem, we check the solvability of
the system of equations. To check for solvability we integrate equation (5.70) over
the domain I1g and apply the divergence theorem, i.e.,

/ (¢wo + b)atc() + COat¢wo dHS = Vy : <¢wovy62 + ¢wovxcl> dHS
IIs

IIs

+ Vi (g VyCr + duy Vo) dlls — Ecdllg, (5.74)

IIs g
and using the boundary condition (5.71) yields,

/ (¢w0 + b)atC() —+ Coat¢wo dHS = Vx . (gwaVycl + gwaVxCO) dHS
IIs

IIs

— | &cdllg. (5.75)

IIs

We define,
|[TLs ()| =/ dlls, (5.76)
g(r)

to be the volume integral of the cell problem, which is dependent of the radius of the



CHAPTER 5. MULTIPLE SCALE HOMOGENISATION OF CROP GROWTH 107

tuber. It follows that by using equation (5.65), equation (5.75) can be written as,

||HS(T>||[(¢wo + b)atco + 008t¢w0] =

4 dcy  Ox;(r) Oco _
a7, ) | dls — (|1 ne. (5.
O /1‘15()[¢w0 <8$i+ dy; Oz, dllg — [|Hs(r)||éco in TIF. (5.77)

This results in the system of equations for ¢,,,, ¢y and r,

01w, = —F in II¥, (5.78)

HHS(TO)H[((wa + b)atco + COat(bwo] = ¢wovx©e(r0)vxco
— Mg (ro)|[éco in T, (5.79)

o

Orro = 4W(2)||HS(T‘0)||007 (5.80)
where,
D.(ro) = / T+ Vyxi(ro) @ e dllg, (5.81)
15 (ro)
for k = (1,...,3). Here the averaged terms ||IIs(ro)|| [ — ] and D.(r¢) [m? s~'] are

parameterised from the cell problem (5.66) — (5.68). This results identifies that
equations (5.70) — (5.73) provide a well-posed problem if and only if the system of
equations (5.78) — (5.81) have a solution.

In the system (5.78) — (5.81), the parameterised coefficients ||IIs(r¢)|| and D, (ro)
describe the soil volume that is not occupied by the tuber, and the effective diffusion
due to impedance from the tuber respectively. Therefore, both these coefficients are
dependent on the radius of the tuber.

In Chapter 4, we developed a system of homogenised equations, in which the
homogenised coefficients were calculated from a static cell problem. However, in
this system we have a cell problem that is dependent on the radius of the tuber.
Hence, we have a coupled system which implicitly calculates the transport of the
nutrients, the uptake of nutrients by the plant, and the growth of the tubers.

For the remainder of this chapter, equations (5.78) — (5.81) will be referred to as
the ‘homogenised set’ of equations to describe solute movement and tuber growth.
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5.3 Validation of the Homogenisation Procedure

We validate the mathematical steps used in the homogenisation procedure by
comparing the homogenised set of equations (5.78) — (5.81) to the full set of
equations (5.41) — (5.47). We consider multiple comparisons by varying
parameters for the buffer power b, root uptake rate F and initial porosity ¢,,|—o to

examine the accuracy of the averaging procedure.

5.3.1 Implementation

Here we describe how we utilise the finite element package COMSOL Multiphysics
(COMSOL Multiphysics, Stockholm, Sweden, www.comsol.com) to solve the full
and homogenised sets of equations. To solve both sets of equations we generate two
geometries, one for the full set of equations (5.41) — (5.47) containing potato
tubers, and a second uniform geometry for the homogenised equations (5.78) —
(5.81). We choose the domain length of each geometry to be composed of eight
periodic cells. Due to the homogenisation procedure, the approximate equations
(5.78) — (5.81) do not require any tubers as the influence of the microscale
geometry is contained in the paramterised terms ||IIs(r¢)|| and ©.(rp). Shown in
Figure 5.2 are the geometries used to validate the homogenisation procedure.

Full Equations

Implementation of the full set of equations (5.41) — (5.47) requires the
implementation of a complex moving boundary problem. This accounts for the
uptake of nutrients by each tuber ¥, , the subsequent growth of ¥, , and the
reduction in volumetric water content ¢,,. The geometry we impose the full set of
equations on can be seen in Figure 5.2 (a). However, we require two versions of this
geometry: an undeformed geometry that is constant in time, and a deforming
geometry that is dependent on tuber growth, since different components of the
system (5.41) — (5.47) are solved on either an undeformed or deforming frame of
reference. There are three main components that are required to be implemented in
order to solve (5.41) — (5.47), these are: the poroelastic equations, the compaction
and deformation of soil, and the nutrient movement equations.

The implementation of the poroelastic equations (5.41) — (5.43) and (5.45) for the
local displacement u® and reduction in ¢,, is straightforward, since these equations
are solved on the undeformed geometry regardless of tuber size. This is achieved
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4
~ 4

Homogenised domain
Full domain

(a) (b)

Figure 5.2: The geometries used to validate the homogenisation procedure (a): The
approximate equations (5.78) — (5.81) are solved on the left geometry, whereas
the original set of equations (5.41) — (5.47) are solved on the right geometry that
contains potato tubers. (b): The cell problem is solved on a single unit cell that
contains a potato tuber (coloured in red).

using the inbuilt ‘General Form PDE/| i.e.,

d*r Jr
€aw+daa+v'@—ﬁ (5.82)

where r = [¢,,, u,]” and,

0 0 10 £Pu0ius
€q = ) dy = 7@ = T
00 00 (Vu,) + (Vu,)' 47V -u, %

Using this solution at each time step, we can prescribe a deformation (for the

Y f - 0

(5.83)

deforming geometry) within the soil domain to correspond with the increase in
tuber size. This is achieved by implementing a ‘Domain Deformation’ in which we
prescribe the mesh displacement in the the three spatial directions z;,z, and x3
using the solution for u;.

The nutrient equations (5.44) and (5.46) — (5.47) are solved on the deforming
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geometry to correspond with the growth of the tubers. However, these equations
use the poroelastic solution from the undeformed geometry. Hence, we implement a
reference frame change such that poroelastic solution can be mapped from the
undeformed geometry to the deformed geometry. This allows us to solve the
nutrient equations on the deformed geometry corresponding with the prescribed
tuber deformation.

Since the nutrient equations are solved on a deforming geometry, extra care is
required to ensure that c is conserved. This is achieved by making two alterations to
(5.44) and (5.46). Firstly, we note Reynolds Transport Theorem,

d F
2 Fav= / 9F v +/ (w-0)F dA, (5.84)
dt Jo o) Ot 20(t)

where, dV [m?] and dA | m?] are volume and surface elements respectively,

w [m s™!] is the velocity of the surface element, n is the normal vector pointing out
of the geometry, F is any function of x and ¢, and 6(¢) [ m?] is the domain. Reynolds
Transport Theorem states that the change in nutrient concentration in a domain is
equal to the change in concentration within the domain plus the rate at which
nutrient is entering the domain. Applying equation (5.84) to the full set of
equations (5.41) — (5.47) leads to,

d dc .
— c dVUsoii) = / = dVseiie) + / (Wmesh - D)c dOWsiiry,  (5.85)
dt Usoil(t) Usoil(t) ot OVsoil(t)

where, wpesh [m s7!] is the velocity of the boundaries V.. This requires us to adapt
equation (5.46) so that,

n- (¢, Ve) = —(Wmesh - N)c on  I'; x [0, 00). (5.86)

Equation (5.86) then satisfies the conservation law for moving boundaries.

Secondly, as ¥, grows and Vg is deformed, this causes an advective movement
effect on ¢ within Wg. This can be interpreted as the boundaries of the tubers I';
physically pushing the nutrients. Hence, we are required to add a conservative
advection term to equation (5.44) accounting for the individual elements within the
mesh moving, i.e.,

(¢ + b)0sc + Oty = V - (¢ V€ — Wiesnc) — ¢ in U, (5.87)

This modified system of equations can then be successfully used to model coupled
nutrient movement and poroelastic deformation from growing tubers. To implement
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equations (5.87) and (5.86), we use the inbuilt ‘General Form PDE’ where,
r=c e,=0, dy = (¢ +0), © =,V —wWnese, f=—Ec, (5.88)
and use the inbuilt flux boundary condition that takes the form,
n-0 =g, — gor, (5.89)

where g; = 0 and g, = —(wWmesh - ). Finally, to implicitly solve for the tuber radii r,
in equation (5.47), we use the inbuilt ODE equation ‘Global ODE’ which takes the
form,

flg,q, qit, t) = 0. (5.90)

This is used in tandem with an ‘Integral Component Coupling’ to establish the
integral in (5.47), i.e., [y, EcdVs,.

Homogenised Equations

The geometry on which we impose the homogenised set of equations (5.78) —
(5.81) can be seen in Figure 5.2 (a). To implement the equations (5.78) and (5.80)
is substantially simpler. We use the inbuilt ODE equation ‘Global ODE’ which takes
the form shown in equation (5.90).

To implement (5.79) we use the inbuilt ‘Coefficient Form PDE’ that takes the form,

O 0 Y (CeVr—art)+ - Vrbar— | (5.91)
Cagp o cVr —ar + 7 r+ar=f, .
where r = ¢, e, =0, dy = ||Hs(r0)||(Pwy + D)5 ¢ = PuyDe(10), « =0,v=0, 8 =0,

a = [|Is(ro)||0:bu, and f = —|[TLs(ro)[[Eco-

However, to solve equation (5.79), we are required to solve a series of cell
problems, i.e., equations (5.66) — (5.68), to calculate the terms ||IIs(r¢)|| and
©.(rp) that paramterise equation (5.79) and (5.80). Since the geometric properties
of the domain IT are contained in ||IIs(r¢)|| and ©.(r), we solve the cell problem for
a series of different tuber radii to correspond with different levels of
growth/displacement from the original tuber size. Using the results from the cell
problems, we can construct interpolated functions to describe ||II5(r)|| and ©.(ro)
as functions of the homogenised radius r,.

The cell problem is solved on the geometry shown in Figure 5.2 (b), and we use the
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inbuilt ‘General Form PDE’ for the governing equation where,
' = Xk, €a = 07 da = 07 e = Vka + éka f = 07 (592)

fork=1,...,3.

For the boundary condition on I, i.e., the tuber, we use the inbuilt flux boundary
condition that takes the form,

n-0 =g — gr, (5.93)

where g; = 0 and ¢, = 0.

On the external boundaries of the cell JIl; we impose three sets of ‘Periodic
Boundary Conditions’, so that each pair of opposite external boundaries are an
effective continuum. Furthermore, since (5.66) has a non-unique solution, we are
required to impose a ‘Pointwise Constraint’ such that COMSOL can find a specific
solution. As ||IIs(ro)|| does not depend on the solution to the cell problem, and
D.(ro) depends only on the gradient of the solution (which is unique), this arbitrary
choice of a specific solution does not affect the final result.

5.3.2 Results

To validate the homogenisation procedure we compare the homogenised equations
(5.78) — (5.81) against the original set of equations (5.41) — (5.47). We choose to
run a series of case studies by varying the parameters b, F and ¢,,|;—o. For the buffer
power b we choose the values b € {0.5,5} since this covers a range of buffer powers
for the nutrients nitrogen, boron, magnesium, zinc and molybdenum [27]. From the
non-dimensionalisation and parameter estimation we observe the value for root
water uptake is F' = O(1). However to test the homogenisation procedure, we select
the values F' € {0.1, 10} for low and high levels of water uptake respectively. Finally,
for the initial porosity ¢,,|;—o we assign the values ¢,,|—o€ {0.4,0.6} as these are
approximate upper and lower bounds for silty soils [203].

In each of the simulations we impose a Dirichlet condition of ¢ = ¢y = 1 on the top
of each of the geometries shown in Figure 5.2 (a). Additionally, we choose the
initial non-dimensionalised tuber radius to be 7* = 0.025 and choose the remaining
parameters to be £ = @ = 1. We also impose a stop condition on each of the
simulations so that when the non-dimensionalised volume of a tuber has doubled,
the simulation is terminated. Finally, in order to construct interpolated functions to
describe ||I15(ro)|| and ©.(r) in equations (5.79) and (5.80), we solve 6 cell
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Figure 5.3: Validation of homogenised equations (5.78) — (5.81) against the original
set of equations (5.41) — (5.47). The plots show the nutrient profile ¢ and ¢, down
the length of the domains shown in Figure 5.2 (a) for a series of case studies using
the parameter values b € {0.5,5}, F' € {0.1,10}, ¢,,|s=0€ {0.4,0.6}.

problems in radius increments of 0.02 from a sphere radius of » = 0.25 to a sphere
radius r = 0.35.

Shown in Figure 5.3 are the nutrient profiles for ¢ and ¢y down the length of the
geometries shown in Figure 5.2 (a). We observe for all buffer powers, root uptake
values and initial porosities, the homogenised nutrient profile for ¢, is qualitatively
identical to the full nutrient concentration c¢. We find there to be a maximum error
of < 2% between the solutions across all scenarios.

Additionally, shown in Figure 5.4 are the individual tuber radii r; for the full set of
equations and the approximate radius r, from the homogenised equations. We find
that the effective radius r, successfully captures the growth of each tuber within the
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Figure 5.4: Validation of homogenised equations (5.78) — (5.81) against the original
set of equations (5.41) — (5.47). The plots show the effective radius r, against the
actual radius r; of the tubers down the length of the domains shown in Figure 5.2
(a) for a series of case studies using the parameter values b € {0.5,5}, F € {0.1,10},

Puli=o€ {0.4,0.6}.

full domain shown in Figure 5.2 (a). We find there to be a maximum error of < 2%
between the actual and effective tuber radius.

To highlight the accuracy of the homogenised set of equations, shown in Figure 5.5
are detailed results for the simulation using the parameters F = 0.1,b = 0.5 and
¢w|i=o= 0.4. From Figure 5.5 (a) we observe that the effective radius ry is able to
mimic the growth of the tubers in the full geometry. The growing tubers can be seen
in Figure 5.5 (b), in which the tubers at the top of the full equation domain at the
time point ¢ = end have grown substantially larger than those at the base of the
domain. Furthermore, we find that the solute concentration profiles exhibit
identical traits between the full and homogenised domains.
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Figure 5.5: (a): Shown are the results for the actual and effective tuber volumes for
the simulation using the parameters F' = 0.1,b = 0.5 and ¢,,|,—o= 0.4 at the beginning
and end of the simulation.

(b): Shown are the results for the actual and effective solute concentration for the
same simulation as (a). Additionally the geometries capturing the tuber growth are
shown.

From Figures 5.3 and 5.4, we observe that the homogenised equations successfully
capture the nutrient movement and tuber growth in soil. However, the computation
time for the two systems of equations differs by several orders of magnitude. We
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find that the full set of equations in three dimensions requires ~ 5 minutes (300
seconds) to solve one simulation for eight periodic cells. Conversely, solving the
homogenised equations requires ~ 10 seconds to solve an analogous 3D simulation.
Furthermore, the homogenised set of equations can be reduced to a 1D problem
which will achieve the same results as the 3D problem due to the homogenisation
procedure. We find that the computation time to solve the 1D problem is < 1
second, which is substantially faster than the full set of equations. However, a set of
3D cell problems is required to parameterise the homogenised set of equations for
the terms ||I1s(ro)|| and ©,(r). In this case study, we chose to conduct six cell
problems for varying sphere radii. Each of the cell problems requires ~ 10 seconds
to solve. However, these cell problems are only required to be solved once for each
set of parameters. Hence, we find that the homogenised set of equations can reduce
the computation time substantially whilst retaining a high level of accuracy.

5.4 Conclusions

In this chapter, we derived a set of averaged equations that describe the
macroscopic transport of nutrients in a partially saturated soil with growing potato
tubers. We used the method of multiple scale homogenisation that uses a set of
representative cell problems to parametrise the averaged equations, which are
based on the microscopic properties of the domain. We described the movement of
nutrients that are taken up by roots in soil, which induced growth of potato tubers
and in turn compress the surrounding soil, thereby changing the rate of nutrient

diffusion and the total volume of soil.

The full system equations required the implementation of a complex moving
boundary problem. This required the use of multiple domains to solve different
components of the equations, and subsequent mappings of solutions across
domains. Not only does this system require considerable computational power to
solve, the time required to correctly implement this system is substantial. This is
due to ensuring conservation of mass and consistent mappings of solutions across
domains. However, the homogenisation procedure eliminates this problem by
reducing the system to coupled system of PDEs with a series of cell problems. This
removes the need for moving boundaries and domain mappings, which considerably
reduces implementation time.

We made the assumption prior to the homogenisation procedure that the water
content was primarily dominated by the water uptake from plant roots, and was
negligibly affected by compaction effects. To justify this assumption, we validated



the homogenisation procedure by comparing the homogenised set of equations to
the full set of governing equations, which showed solutions that differed by a
maximum of < 2% between the actual and effective tuber radius, and < 2% between
the actual and effective nutrient concentration. Furthermore, we showed that the
computation time between the homogenised and full sets of equations differed by a
factor of O(10?) for a set of eight periodic cells. However, the time required to solve
the full set of equations would increase substantially for a greater number of cells,
for example, a large cluster of potatoes in soil, whilst the homogenised set of
equations would require approximately the same amount of time. In addition, we
found that the considerable reduction in computation time did not compromise the
results, as we observed that a high level of accuracy is retained. This can aid in
analysing large series of case studies for solute movement in poroelastic domains,
such as modelling fertiliser applications for optimal crop growth in arable fields.






Chapter 6
Conclusions and Further Work

In this thesis we have developed mathematical models to describe multiple soil
processes in different soil structures. The key processes we considered were water
movement, solute transport, dynamic ponding and soil compaction. Particular
attention was paid to the surface of the soil that resulted from different cultivation
methods. Each of the four technical chapters of this thesis were concerned with
modelling a particular aspect of the processes described above. In this chapter, we
summarise the results and consider ways in which this work could be extended.

In Chapter 2 we developed a system of equations that described the movement of
water in soil for a generalised ridge and furrow soil domain. Soil water movement
was coupled to dynamic ponding on the ridged soil surface as a function of rainfall,
surface runoff, infiltration and surface topology. We validated the model using data
from a ridge and furrow study that measured the infiltration time of a pond into a
loam soil, and found a difference of ~ 4% between the results of the study and the
results found in the simulation using the model.

In Chapter 3, we extended the model from Chapter 2 to include solute transport to
develop a coupled system of equations for water movement, solute transport and
dynamic ponding in generalised ridge and furrow systems. Using the model we
presented a comparison of water and solute movement between two key soil
geometries: a ridge and furrow geometry, and a flat planting geometry. We
simulated the movement of solutes with varying mobility and degradation in the
two geometries to observe how the structure of the soil surface topology influences
solute movement. The numeric modelling results showed that the ridge and furrow
structure could either impede or increase the penetration of solutes in soil,
depending on the immediate rainfall activity after a solute application and the
quantity of roots in the soil. For scenarios in which rainfall generated substantial
ponding immediately after a solute application, we found that water infiltration
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from the surface acted as a dominant transport mechanism for solutes in the furrow
of the soil. This caused solutes in the soil adjacent to the furrow to move to a
significantly greater depth when compared to the flat soil domain, where the
influence of ponding is not as substantial. However, we found that these trends are
reversed for scenarios where there is not considerable ponding after a solute
application. In these cases we observed that, with the presence of roots in the
ridges, this caused a dominant pressure gradient to form between the soil water and
root xylem. This in turn, caused the solute in the ridge and furrow domain to move
toward the roots, where the solute accumulated into a concentrated spot adjacent to
the root zone. This effect impedes the movement of the solute compared to the flat
soil, as the majority was contained in the ridge and had reduced influence from
furrow ponding. This mechanism can potentially reduce the quantity of solute that
penetrates deep into the soil.

In Chapter 4, we focused on modelling water movement in the plough layer of soil
in which crops were present. Using the model developed in Chapter 2, we
constructed a domain that contained harvestable crop products, i.e., potato tubers.
We modelled water uptake by the roots and impedance by crops. We used multiple
scale homogenisation to derive a set of approximate equations that described water
movement in this area of soil, which accounted for the effect of harvestable crop
products obstructing water movement. We validated the homogenisation procedure
by comparing the approximate set of homogenised equations to the full set of
equations for two different water regimes: partially saturated and variably saturated
soil. We found there to be a difference of < 2% between the two sets of solutions for
each of these cases. Furthermore, we identified that the time required to conduct
the simulations was reduced by a factor of O(10?) seconds when using the
homogenised equations.

In Chapter 5 we focused on the area of soil contained in the plough layer. We
derived a set of equations to describe the movement of nutrients in partially
saturated soil that contains growing potato tubers. The soil was modelled as a
three-phase poroelastic material, which was deformed by the growth of the tubers,
where the growth of each tuber was dependent on the uptake of nutrients via a sink
term representing root uptake. We used multiple scale homogenisation to develop
an approximate set of equations that described the macoscopic transport of
nutrients and the effective growth of potato tubers in the soil. We validated the
homogenisation procedure by comparing the homogenised set of equations to the
full set of governing equations, which showed the solutions differed by a maximum
of < 2% between the actual and effective tuber radius, and < 2% between the actual
and effective nutrient concentration. We showed that the computation time
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between the homogenised and full sets of equations differed by a factor of O(10%).

There are several natural ways to evolve the work conducted in this thesis. The
mathematical model in Chapter 3 for water and solute movement in a generalised
ridge and furrow soil domain can be extended in several directions. One of the key
extensions is consistent experimental verification of the mathematical model in
ridge and furrow fields. Although the numerical simulations replicate the results
found qualitatively in experimental studies, there is a lack of specific water and
solute data sets with which to compare and parameterise the model. Experimental
measurements of water and solute movement in ridge and furrow structures would

allow us to fully calibrate the model leading to more accurate results.

Along with experimental support, there are many ways to incorporate multiple new
components into the models themselves. For example, it is well known that
different cultivation methods alter the porosity, water retention permeability and
structure within the plough layer of soil. Hence, understanding the spatial
resolution of different soil parameters such as porosity and suction pressure would
allow for a more representative system. Similarly, knowledge of aspects such as the
root architecture would influence the movement of water and solutes in soil. These
are simple additions given the implementation of the mathematical model. Hence,
these types of extensions would require minimum work to implement successfully,
however, acquisition of the data would require additional experiments. Adding new
physics such as transpiration or other biological processes into the model may also
be an additional path to explore, such as incorporating above-ground processes to
generate a complete system of water and solute movement in crops.

In the original derivation of the ponding model, we considered the soil surface and
below, i.e., the soil system only. However, we are aware that the foliage from potato
plants can influence the distribution of solutes that are applied to soil due to the
leaves obstructing direct movement to the ground. Coupling the solute and water
movement in the below ground system with a mathematical model for the above
ground system including plant obstruction would encompass a more realistic
approach.

In Chapter 5, we developed a mathematical model that described solute movement
in a poroelastic soil domain in which there were growing crops. A clear progression
to extend this mathematical model is to incorporate water movement such that
within the poroelastic soil domain there is both water movement and solute
transport. Creating a coupled system of solute and water movement in a poroelastic
domain would encompass the key processes that are active in the plough layer of
soil. This could then be incorporated into the model from Chapter 3 to have a



122

distinctive ‘sub-model’ in the plough layer of soil that accounted for the growth of
tubers in soil. Additionally, this could be further extended by incorporating other
factors, such as tuber densities varying with depth, since in the model derivation we
assumed a uniform distribution of tubers. This would generate a more complete
description of ridge and furrow systems, which could then be used to understand
the optimum depth and growth conditions for crops such as potatoes.

In this thesis we have developed new models to describe ridge and furrow soil
geometries that will form the backbone of future developments in this field. With
the rapid improvements in computation power, a complete mathematical system

describing the processes in and above soil may soon be a reality.
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Summary

We present a mathematical model that describes the movement of water and solutes in a ridge and furrow
geometry. We focus on the effects of two physical processes: root water uptake and pond formation in the furrows.
Special attention is paid to the physical description of ponding as an effect of transient rain events. We focus on
phenomena taking place in the furrow cross-section, not on the drainage along the furrow. The resulting model
comprises a coupled system of partial and ordinary differential equations that describe the mathematical interplay
between solute transport, water movement and furrow pond depth. The system of equations is solved numerically
using finite element techniques. We conducted numerical simulations to determine how mobile solutes with low
buffer powers penetrate into the soil. We considered two cases: low rainfall, in which pond formation does not
occur, and high rainfall, in which significant ponding is observed in the furrows. We found, in the presence of
roots, that mobile solutes collected into a concentrated spot adjacent to the root system independent of rainfall
intensity. In the absence of roots, however, we observed that water infiltration from ponding acted as the dominant
transport mechanism for mobile solutes. This resulted in deep solute penetration into the soil when compared with
non-ponded furrows.

Highlights
Effect of furrow ponding and plant water uptake on solute movement in ridged fields.

We developed a mathematical model that describes ponding in furrows from rainfall events.
Solute ‘hot spots’ formed in soil from surface ponding and root water uptake.

We estimate reduced risk to solute leaching under the effects of ponding when roots are present in soil.

Introduction There is growing uncertainty about whether ridge and furrow

. . . geometries present greater potential for the movement of mobile
In arable farming, a specific form of row production known as a .
i . . plant protection products to groundwater than flat fields, because
ridge and furrow geometry is frequently used to cultivate crops such .
none of the models currently used for regulatory purposes to esti-

mate solute movement to groundwater after application can model
this system explicitly (EFSA, 2013). Consequently, a universal

as potatoes (Steele etal., 2006). This geometry is formed when
the soil surface is adapted to form a periodic series of peaks and
troughs. This allows water to flow across the field, providing water
to the plants whilst preventing waterlogging of the roots (Tisdall
& Hodgson, 1990). However, under certain rainfall conditions,

multiplier has been proposed to extrapolate between estimates of
residues calculated for flat fields and those in ridge and furrow
geometries (EFSA, 2013). In the absence of extensive and expensive

this can lead to pond formation in the furrows that can result in . .
. field data, mathematical models designed to model solute move-
decreased yields for crops such as potatoes (van Loon, 1981). An T . R
ment explicitly in ridges and furrow geometries can provide insight
into understanding the effects of ponding in these systems.

Mathematical modelling of water movement in ridge and furrow

understanding of water movement and ponding in ridge and furrow
geometries will help in developing strategies for crop and soil

management.
systems has been studied increasingly in recent years (Ebrahimian
etal., 2013; Bautista etal., 2014; Sanchez et al., 2014), often for
Correspondence: T. Roose. E-mail: t.roose @soton.ac.uk semiarid soil where the ridge and furrow geometry is used to facil-
Received 23 March 2017; revised version accepted 28 September 2017 itate irrigation. Because of the lack of rain in these environments,
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precipitation and surface runoff are often disregarded because fur-
row irrigation management is the main priority.

In this paper, we develop a general mathematical model for
solute movement in ridge and furrow soil, taking account of sur-
face ponding and water movement from transient rainfall events to
understand how solutes move in United Kingdom environments.
We consider the movement of water and solutes in temperate
soils with no formal irrigation, but subjected to substantial rain
that results in ponding on the soil surface. The model presented
can then be customized for specific fertilizers or pesticide-like
solutes by including other soil processes such as biodegrada-
tion, microbial mineralization and air volatilization to determine
how a particular solute will behave under a specific rainfall
regime.

Several models for pond infiltration have been presented in the
literature (Ebrahimian ez al., 2013; Bautista et al., 2016). However,
these models describe irrigation and drainage longitudinally along
a furrow (often using the zero-inertia model for a moving body of
water). To describe dynamic ponding from transient rainfall events,
we developed a model that captures the filling and draining of
a pond on the soil surface. In addition, we consider root-water
uptake in the ridges of the geometry. We assess soil ponding from a
mechanical perspective and incorporate Dirichlet and flux boundary
conditions to represent areas of ponding and water-free surfaces,
respectively (Camporese eral., 2010). We shall disregard fluid
drainage along the length of the furrow because our main concern
is ponding from rainfall, rather than irrigation that transports water
down the furrow.

To study the effects of solute movement under the influence of
surface ponding, we coupled water movement with solute transport
in soil. We incorporated the movement of solutes into the model
to understand better how nutrients, fertilizers and pesticides move
under the effect of surface ponding in the presence and absence of
roots. The physical characteristics of solutes can lead to adverse
effects on the local environment; however, mathematical modelling
enables us to develop strategies to reduce these negative effects by
either aiding or impeding solute penetration into the soil (i.e. to
promote the movement of low-mobility fertilizers or to reduce the
leaching of high-mobility solutes).

Previous modelling of ridge and furrow system behaviour typi-
cally used software packages such as HYDRUS-2D, WinSRFR and
so on (Ebrahimian et al., 2013; Sanchez et al., 2014; Bautista et al.,
2016). Although they enable easy implementation of fluid flow
models, we chose to use general finite element software (COMSOL
Multiphysics®, Stockholm, Sweden, www.comsol.com) because it
allows us to generalize fluid flow and surface ponding. It provides
greater flexibility and easier implementation of new physics without
relying on the functionality of software.

Our model presented in this paper consists of a coupled system of
two partial differential equations (PDEs): one for the movement of
water in soil and one for the transport of solutes. We also introduce
an additional ordinary differential equation (ODE) that is coupled to
the system of PDESs to describe dynamic ponding. It should be noted
that we disregard any effects of soil moisture from heat transfer in

soil because our focus is surface ponding and soil waterlogging in
a temperate UK environment.

Mathematical model

In this section, we derive a model for simultaneous water and solute
movement in variably saturated soil that accounts for the ridge and
furrow geometry and the effects of dynamic surface ponding. The
movement of solutes in soil is known to depend considerably on
the degree of water saturation (Nye & Tinker, 1977). Therefore, we
constructed a coupled water and solute movement model to connect
soil water pore pressure with solute concentration. We assume that
solutes do not create osmotic pressure gradients that influence fluid
flow (i.e. fluid flow influences solute movement, but not vice versa).

The symmetry and periodicity of the ridge and furrow structure
enable us to describe the complete system with a single half-period
of the ridge and furrow geometry. The geometry used in this
study is shown in Figure 1 by the domain A, which was chosen
to be consistent with the dimensions for typical ridge and furrow
geometries (Steele et al., 2006; Li et al., 2007). We approximate the
soil surface dAg (see Figure 1) by the periodic function:

x (x) =Acos (Bx) + C, (D)

where A is the variation in soil depth, B is the ridge wave number
and C is the average soil depth.

Water movement in variably saturated soil

To describe water movement in ridged soil systems, we assume
there may be regions of soil that are fully saturated (i.e. directly
under the pond) and regions that are partially saturated. To account
for this, we constructed a model that can switch between a partially
and a fully saturated soil environment with a moving interface
between the two regions.

For water movement in variably saturated soil, Richards’ equation
is used (Kollet & Maxwell, 2006; Weill et al., 2009). This equation
is derived by combining the equation for mass balance of soil water
flow (Richards, 1931):

¢§+V~u=—Fw,xeA, 2)
ot
with Darcy’s law,
S ~
u=—Q<Vp+pgk), X € A. 3)
"

The result is Richards’ equation in mixed form:

oS K (S) | _
¢E+V~ [—T (VP+ng>] =-F,, XEA, “)

where ¢ is the soil porosity, S is the relative saturation (i.e. S = ¢,/¢p,
where ¢, is the volumetric water content), u is the volume flux of
water, k(S) is the relative hydraulic permeability, y is the viscosity
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Figure 1 Half of aridge and furrow period, where A is the total soil domain
such that A=A, UAy, Ay is the region of soil with no roots, Ay is the
region of soil with roots present, dAg is the soil surface boundary, dAg is
the base of the domain, dAyy is the left boundary adjacent to the ridge and
0Ag is the right boundary adjacent to the furrow. The curve dAg is generated
from the values A = C = 0.16 and B =2z used in the periodic function y(x)
(Equation (1)).

of water, p is the soil water pore pressure, p is the density of water,
g is the acceleration due to gravity, K is a unit vector in the upwards
direction and F, is a sink term that describes water uptake via plant
roots.

The root water uptake function, F,, is given by the difference
in soil water pore pressure and the pressure in plant roots (Roose
& Fowler, 2004a) and is assumed to be active only where roots
are present. We split A into two regions, Ay is the zone in which
roots take up water and A, is the region in which there are no roots.
Hence, we write:

sz{ﬁc(p_pr)’ XGAU’ (3)
0, XE AN,
where 4, is the product of the root surface area density and water
conductivity of the plant root cortex and p, is the pressure in the root
xylem.

We express S as a function of p using the van Genuchten
pressure-saturation relation (van Genuchten, 1980) (also called the
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suction characteristic):

1 —m

S(p) = [(u) +1] , ©)
P

where p, is the atmospheric pressure, p, is the characteristic suction
pressure and m is a van Genuchten parameter. The parameters p,_
and m are determined experimentally for each soil (van Genuchten,
1980). Note that we choose to setp, =0, such that p is defined as
the gauge pressure relative to the atmospheric pressure (Roose &
Fowler, 2004a).

To describe the relative permeability x(S), we used a second van
Genuchten formula (van Genuchten, 1980):

K (S) = K, 87 [1—(1—5%>m]2, (7

where k is the saturated hydraulic permeability.

Combining Richards’ equation (4) with the van Genuchten
equations (6)—(7) (van Genuchten, 1980), we can write the water
movement model in terms of p only:

S (p) dp x [S )] AN
¢F5+V.{_T (Vp+pgk> =~Fw xeh,
®)

where,

1 —m=1 m
o "EH] @)

ap p(,(l _m)

)]

and

m\2
x[1- 1—[<_—p>lm+1] 10
Pe

Richards’ equation is frequently used to describe water
movement in partially saturated soil. However, we can adapt
Equations (8)—(10) such that they can represent both a saturated
and partially saturated soil. To adapt Richards’ equation for vari-
ably saturated soil, we use similar methods to those used previously
by others (Kollet & Maxwell, 2006; Weill eral., 2009; Bautista
etal.,2014) that reduce Richards’ equation to saturated Darcy flow
in the event of full saturation (for p > 0). We do this by modifying
Equations (8)—(10) in two ways. First, for p >0 we eliminate the
term d)%ﬁ’)% from Equation (8) by setting% =0, which in
turn reduces Richards’ equation to Darcy flow. Thus, to describe
the movement of water in variably saturated soil, we impose the
condition:

98 (p) 0 for S=1 p>0
a_z{w for 0<S<1°p<0 an
P o p
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To implement Equation (11) as a closed-form expression, we use
a smoothing approximation to the Heaviside function H(x) to set
%(:) — 0 asp — 0. This imitates the piecewise Equation (11) while
retaining a level of smoothness over a narrow transition region
about p=0 to aid in numerical simulation. We add the smoothed
Heaviside function Hg(p), such that:

S ~
[1-Hg(p)] ¢6S(p)d_p+v' {—@ (Vp+pgk>} =-F,,

dp ot
12)

where 1
Hq (p) = 5 [1+ tanh (op)] , (13)

1 . o
and — defines the width of transition between %(f) and 0
c
around p=0.
Second, when Richards’ equation is reduced to Darcy flow, the
function x[S(p)] is required to be constant in the fully saturated soil
regime. Thus, we introduce a second condition:

Fiwl= {:S[S@]

> —€
Z< e (14)

where ¢ is a small transition pressure that acts as the interface
between the saturated and partially saturated soil regions. We
introduced € to avoid discontinuities in the numerical solution

to Equation (12). These discontinuities come from the second
de[S(p)]

ip p=0.
is singular at the transition between fully and

term in Equation (12) because we need to evaluate

dx[[S
However, S0

partially saturated soil, such that lim (@) = o0. Hence, we

p—0-
dSO1 g never evaluated. If we did not

introduce ¢ such that -
do this, the numerical procedure would fail to converge. The
parameter ¢ differs from o because € is applied strictly to the
negative side of p, whereas ¢ smooths either side of the pressure

p=0.

Soil surface boundary condition

To form a complete description of the ridge and furrow system,
we derive boundary conditions that are imposed on the edges of A,
and a novel and original ODE for a moving surface point interface
for dynamic water ponding on the soil surface that is coupled to
Richards’ equation for water infiltration into soil.

To represent ponding, which is often present in ridge and furrow
systems (Tabuada eral., 1995; Vogel eral., 2000), we split the
boundary dAq (see Figure 1) into two distinct regions. This is shown
in Figure 2, where dAy is the surface of soil that is not ponded
(i.e. where rain penetrates the soil directly) and dA, is the region on
which ponding occurs. Note that we allow the point x,, connecting
0Ag and 0dA, to move in time (i.e. x, =x,(#)), such that the pond
height can change transiently.

We assume the pond boundary condition on dA, can be repre-
sented by a hydrostatic boundary condition (Tabuada et al., 1995;
Vogel etal., 2000; Kollet & Maxwell, 2006). On the soil surface

Flux condition

x = Dirichlet condition

n

Figure 2 Half of a ridge and furrow period, where 0Ap is the soil surface
boundary on which ponding occurs, Ay is the soil surface that is not
ponded, x, is the point on the soil surface dAg where the pond begins, #
is the width of the half period of ridged domain, A is the maximum depth
of the pond, y(x) is the curve for the soil surface dAg and V is the volume
of the pond.

directly under the pond, we apply the pressure that results from the
height of the water column in the pond above it; that is:

p=pgh(x,1), X € IAp, (15)

where A(x, 1) is the depth of the pond.

Precipitation landing on the bare soil dAy enters the soil domain
by a combination of capillary forces and gravitational effects.
Therefore, we implement a normal fluid flux condition on dAy
(Yang et al., 1996), such that:

S ~
. K[M(p)] (Vp+pgk> =w(l), X €Ay, (16)

where () =min {I'(¢),/.},n is the unit normal vector pointing
outwards from A, I'(¢) is the volume flux of water per unit area of
soil surface (i.e. rain), /, is the infiltration capacity of the soil and
(1) is the volume flux of water entering the soil per unit surface
area. In the event of sufficiently heavy rain, the quantity of water
that can enter the soil system is limited by the infiltration capacity of
the soil /_. Any excess rain that exceeds / (i.e. I'(¥) > 1) is defined
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as the surface runoff R (¢), and is quantified by:

2
R = {[F(l‘)—[c]./oxo(t)‘/l+(%> dx}, r>I,

rmsli’
0,

a7
where y(x) is the generalized curve of dAg, given by Equation (1).
To determine the change in pond depth for the boundary
conditions imposed on 0Ap and JAp, we implement an addi-
tional ODE that is coupled to the governing water movement
model, Equations (12)—(14). This connects the volume of
water in the pond V(7), the rate of rainfallI'(r), the surface
runoff R (#) and the flux u entering the soil domain from the pond
(i.e. the quantity of water leaving the pond and infiltrating into
the soil).
We define the maximum depth of the pond A () (see Figure 2) at
a given time 7 to be:

hy () = x [x @] . (18)

where x,(¢) is the x co-ordinate at which the pond starts (i.e. the
partition between dAg and dAp). It should be noted that for /(1)
to have this definition, the vertical datum z=0 is measured from
the base of the soil curve y(x) (see Figure 2). This allows the
hydrostatic boundary condition Equation (15) to be re-written such
that:

p=rgh ()= x W], x €A, (19)

where h(t) — y(x) = h(x, 1).

In addition, a length # is chosen to represent half a ridge and
furrow period (see Figure 2). It follows that for a given pond
volume V(1), the partition of the pond boundary x,(#) is calculated
by:

n

V) =hy@)- [n—x,0] - / x (%) dx. (20

xo(1)
The change in pond volume V(¢) is defined to be
n

=F(t)-[11—x0(t)]+Ro(t)—/ u-nl,, dx, (21)

xo(1)

dv ()
dt

where I'(#) - [n — xy(#)] is the rainfall entering the pond, R (¢) is the
XZ( H e n|,,, dxis the quantity of water leaving
the pond and infiltrating into the soil by the boundary condition
on 0Ap, Equation (19) (W&hling & Schmitz, 2007). We substitute

Equation (20) into Equation (21) such that:

n
i{ho(z).[n—xo(t)]—/ )((x)dx}
ot w0

n

=T [n—x @] +R, (r)—/ u-nfy, drv, (22)

Xo(t)

surface runoff and

where h(t) is defined by Equation (18). Equation (22) describes
the change in the position of the pond boundary x,(¢), given the
rainfall entering the pond, surface runoff and water infiltration from
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the pond into the surrounding soil. To calculate u, Equation (22) is
coupled with Richards’ equation by Equations (12)—(14) and the
boundary condition Equation (19).

Through successive application of the Leibniz integral
rule and the chain rule, for the generic functionz= y(x),
Equation (22) can be expressed explicitly as a function of d"dL’(’);
that is:

dx, (1) oy [Xo (f)] oy [xo (f)]
di { O o 0] = @ ax (1)

n

9t Sy

S S
+/’1 0)((X)K[ (P)] (axp)_K[ (I))] (a,p+pg)
Xo(0) ox H H N
oAp
5 )7 -05
x [1+ <-ﬂ) ] dx. 23)
ox

Note that for the boundary condition on dA;, Equation (19),
to be active, we impose the condition that a minimum pond
depth threshold must be reached before water leaves the pond and
infiltrates into the soil:

p=pg|hy(t)— x )] for y [x, ()] > Xpins 24)

where x,;, is the minimum pond depth. We impose this condition to
aid numerical computation because a pond that is much smaller than
the mesh size can lead to convergence problems for the numerical
solver. However, we chose the threshold to be sufficiently small that
it has a negligible effect on the results.

Lateral boundary conditions

For the boundaries dAy and dAy, we set a zero flux boundary
condition:

S .
£ [”(p)] (Vp + g k) =0, X€E0A,UIA,. (25

Therefore, there is no lateral water movement into or out of A.

Boundary condition at the base of the soil

For the boundary at the base of the domain dAg, we set a Dirichlet
boundary condition (Banti etal., 2011). This describes a constant
saturation level at a constant depth (i.e. 1 m below z=0) (see
Figure 2). Thus, we impose the condition:

P =Dy XEIN, (26)
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Initial conditions

For the initial pressure condition p|,:0, we impose the steady state
pressure profile that forms when roots are not present:

Plio =P ®), XEA. @7

Furthermore, we assume there is no surface ponding present on dAg
att=0:
X (D],og =11, (28)

such that the pond depth is y[ x,(£)l,_,]=0.

The system of Equations (12), (14), (16), (19) and (23)—(28)
completes the description of the coupled water balance in the
presence of surface ponding.

Solute movement in variably saturated soil

In this section, we introduce a mathematical model for solute
movement in soil. We couple it with the water movement model
derived above, thereby constructing a model for simultaneous water
and solute movement in soil. The model is coupled by a similar
approach to that used by Roose & Fowler (2004b). It should be
noted that we assume that there is no solute uptake by plant roots
or degradation of the solute from other soil processes. Here we deal
only with the solute transport problem of solutes that are not actively
taken up by plant roots, although it is trivial to customize and
extend the model to accommodate solute uptake by plant roots or
other soil processes. Examples of passive solutes include non-ionic
strongly lipophilic substances, which are taken up minimally by
barley (Hordeum vulgare L.) plants because of their lipophilicity
(Briggs etal., 1982, 1983).

To model the movement of solutes in soil, we use the
advection—diffusion equation (Nye & Tinker, 1977; Barber,
1995):

a% [(¢,+b)c] +V-(cu)=V-(¢,DVc), (29)

where D is the solute diffusion coefficient in the soil pore water, ¢,
is the volumetric water content, c is the solute concentration in the
pore water, u is the volume flux of water and b is the buffer power
of the solute. We assume b to be constant in this model. However,
it is trivial to extend b to more complex adsorption isotherms
(i.e. Langmuir or Freundlich).

The volumetric water content ¢, is related to the soil water pore
pressure p by the suction characteristic ¢, = ¢S(p). In addition, we
state that u in Equation (29) is described by Darcy’s law, as in the
water movement model, Equation (3). Finally, we assume D can be
expressed by the power law:

D =Di"'S(p)", (30)
where Dy is the diffusion coefficient in free liquid and d is the

impedance factor of the solute that accounts for the tortuosity of the
solute moving through the soil pore space (Nye & Tinker, 1977).

Combining Equations (29) and (30) with Equations (12)—(14)
that govern water movement, the model for solute movement is
given by:

dc dp is@ ,
e [b+Sp ¢ +E{[1—Hs(l’)] Wd’c}

+V. [_Df¢d+]s(p)d+l VC]

S ~
_M (Vp+pgk) =0. (31)
U

Note that for the solute model to be valid for a variably satu-
rated soil domain, a similar condition to Equation (14) has been
imposed. This condition sets the ‘time’ coefficient [b + S(p)¢], the
diffusion coefficient [—Dyp?*1S(p)?* '] and the advection coeffi-

U

cient { to be constant at full saturation. Thus, these coef-
ficients do not change under different magnitudes of pressure in a
fully saturated environment.

The solute model Equation (31) is coupled to the water movement
model Equations (12)—(14) to achieve a system of PDEs that

describes simultaneous water and solute movement in soil.

Soil surface boundary condition

For the application of solutes to a soil surface, we assume that this
would be during dry conditions or when rainfall is sufficiently low
that it does not break the minimum pond depthx, ;. . Therefore,
on the boundary dAg we impose a flux condition similar to
Equation (16), such that:

min*

S ~
n- [Df<l>d+'S(I7)dJrl Vc] + il | [ﬂ([))] (Vp + pgk)

=c, (), X€E A, (32)

where ¢, (?) is the volume flux of solute per unit soil surface area
per unit time entering the soil domain.

Lateral boundary conditions

For the boundaries dAg and dAy, on the lateral sides of the domain
A (see Figure 1), we set a zero flux boundary condition:

S
n- [Df¢d+ls (p)d+l VC] + cK [# (p)]

(Vp + pgﬁ)

=0, X € 0A; UdAy,. (33)

Therefore, there is no lateral solute movement into or out of A.
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Boundary condition at the base of the soil

During our numerical simulations, we observed that the domain was
sufficiently large to avoid any solute reaching the base. Therefore,
we can implement either a zero flux boundary on dAg or a Dirichlet
boundary corresponding to the initial condition. The choice is
inconsequential given that any solute movement in numerical
simulations is contained in the top of the geometry. Therefore, we
impose a zero flux condition:

S ~
n- [Df¢d+ls (p)d+1 VC] + @ (Vp + pgk) =0,

X € 0A;. (34)

To validate the zero flux condition, we checked that there was zero
solute concentration on dAy throughout the numerical simulation
(i.e. no solute reaches the base of A).

Initial conditions

We aimed to observe the effect of ponding on solute movement in
previously solute-free soil. Therefore, we impose a uniform zero
initial concentration across A with:

Clo =0, xEA. 35)

Parameter values

There are 24 parameters in the model derived in the section above.
These parameters are: ¢, m, kg, pt, g, p, p.. Dy, d, b, €, 0, X, o(1),
cn(®), po» P(X), A, p, and I for the coupled model, and the four
parameters A, B, C and # for the construction of A. These parameters
are summarized in Tables 1 and 2.

Geometric, soil, environmental, plant and solute parameter
values

To replicate the dimensions of ridge and furrow geometries, we used
the valuesn=0.5m, A=C= ém andB=2zm™! (Steele etal.,
2006; Li et al., 2007). Furthermore, potato (Solanum tuberosum, L)
is shallow rooted with the majority of its roots in the plough layer
(i.e. the top 0.3 m of soil) (Lesczynski & Tanner, 1976). Therefore,
we chose the size of the soil root region Ay, to be the top 0.3 m of
soil extending radially from the top of the ridge (see Figure 1).

Several of the model parameters depend on the soil, for example
¢, m, k, and p_; the values of these for several soil types are listed
in Table 1 (van Genuchten, 1980). Potatoes are frequently grown in
ridge and furrow geometries of silt loam soil (Ahmadi et al., 2011).
Therefore, we used the parameter values for the ‘Silt Loam G.E.3’
soil from Table 1 (i.e. ¢ =0.396, m=0.51,k,=5.2 % 107'* m? and
p. =23200Pa) (van Genuchten, 1980).

We took values from the literature for the environmen-
tal and fluid parameters. For the viscosity of water we used
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Table 1 Parameter values for various soil types (van Genuchten, 1980),
where ¢ is the porosity of the soil, k is the saturated hydraulic permeability,
p. is the characteristic suction pressure and m is the van Genuchten

parameter

Soil type ¢ K, (m?) p. (Pa) m
Hygiene sandstone 0.250 1.14x 10712 12400 0.90
Silt loam G.E.3 0.396 52x1071 23200 0.51
Guelph loam (drying) 0.520 3.26%x 10713 8500 0.51
Beit netofa clay 0.446 8.62x 10710 64500 0.15

u=89x10"*kgm"'s~' (Watson etal., 1980), for accelera-
tion due to gravity g=9.81ms™2
p=1000kgm™.

The typical range of the impedance coefficient d is between 0.5

and for the density of water

and 2 (Nye & Tinker, 1977); an increase in volumetric moisture
content leads to an increase in impedance factor (Rowell etal.,
1967). Given that we aimed to simulate surface ponding with fully
saturated soil near the surface of the geometry, we used d =2.

Values of the diffusion coefficient of a solution in free lig-
uid, Dy, for simple electrolytes tend to be within the range of
1%x10™ =3 x 10" m?s~! (Shackelford & Daniel, 1991); we used
a value in the middle of this range, D;=2x 10 m?s~".

For the parameters in the water—root uptake term, F,,, 4. andp,,
we selected typical values for potato plants. The parameter A, is the
product of the root surface area density and water conductivity of
the root cortex, which can be expressed by:

do =k, (36)

where /; is the root length density and k, is the radial conductivity
of root cortex per unit root length. For the root length density,
we assigned the value /;=4X10* m m~* (Kirkham ezal., 1974;
Lesczynski & Tanner, 1976). In maize (Zea mays L.) roots, the
parameter k, is given the value 7.85x 1071m?s~'MPa~! (Roose
& Fowler, 2004a). Maize and potato roots have been found to
have similar root radii (Rawsthorne & Brodie, 1986; Steudle
etal., 1987); therefore, we assume that this value of k, is also
representative of potato roots in soil. This leads to the parameter
value A, =3.14x 107% s~'MPa~"!.

To describe root pressure p,, there are models for the root pressure
distribution within a single root (Roose & Fowler, 2004a). To
simulate large areas of soil consisting of many roots, therefore, we
used an average root pressure to describe the plant root system. The
root pressure p, can vary considerably in potatoes depending on
several factors, including soil saturation and atmospheric conditions
(Gandar & Tanner, 1976). Liu et al. (2006) found that the root water
potential changes substantially based on the method of irrigation
applied to the crop. A value of p. & —0.01 MPa was present in the
roots for a fully irrigated system and of ~(—0.02,—-0.2 ) MPa for
areas of soil with partial root drying. Given that we aimed to model
frequent heavy rain events that promote considerable ponding, we
chose the values p, = —0.05 MPa and p.= —0.1 MPa depending
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Table 2 Model parameter values used in numerical simulation

Parameter Description Value Units References

p Density of water 1x103 kgm™ -

g Acceleration due to gravity 9.81 ms~2 -

b Buffer power 2 - Barber (1995)

Dy Diffusion coefficient in free liquid 2x107° m? s~! Shackelford & Daniel (1991)

m van Genuchten parameter 0.5 - van Genuchten (1980)

1) Porosity 0.396 - van Genuchten (1980)

K Saturated water permeability 52x 10714 m? van Genuchten (1980)

De Characteristic soil suction 23200 Pa van Genuchten (1980)

d Impedance factor 2 - Nye & Tinker (1977) and Roose & Fowler (2004b)

" Viscosity of water 8.9x 107+ kgm™' 57! Watson et al. (1980)

Ae Root surface area density water conductivity 3.14x 107 s~ MPa~! Kirkham ez al. (1974), Lesczynski & Tanner (1976),
Rawsthorne & Brodie (1986), Steudle et al. (1987) and
Roose & Fowler (2004a)

D, Root xylem pressure —-0.05, - 0.1 MPa Liu et al. (2006)

3 Saturated — partially saturated interface 0.1 Pa -

Xpin Minimum pond depth 3x 1074 m -

1. Infiltration capacity 1.6x 1070 ms~! Morin & Benyamini (1977)

A Variation in soil depth 0.16 m Steele et al. (2006) and Li et al. (2007)

B Ridge wave number 2r m~! Steele et al. (2006); Li et al. (2007)

C Average soil depth 0.16 m Steele et al. (2006) and Li et al. (2007)

n Geometry width 0.5 m Steele et al. (2006) and Li et al. (2007)

on the simulated rainfall regime (see Rainfall, infiltration capacity
and solute application parameters for the applied rainfall regimes).

For the parameters € and x,;,, we selected small values that have a
negligible effect on the numerical solution; for € we chose 10~ kPa.
Given that pressure in soil is often measured in ©(10) kPa,
we assumed that € was sufficiently small to avoid affecting the
numerical results. Furthermore, for x,;, , which determines the
minimum pond depth, we chose x,,;, =3 X 10~* m. Therefore, the
hydrostatic boundary condition Equation (19) is activated once the
pond depth surpasses 0.3 mm.

For the parameter ¢ in the smoothed Heaviside function H¢(p),
we assigned ¢ = 1000 Pa~'; this limits the width of the transition
between partially and fully saturated soil regions such that the
transition is completed across 0.001 Pa. We conducted a series
of simulations for decreasing values of ¢ to determine when
differences between results became negligible. We tested and
confirmed that this value had a negligible effect on numerical
computation given that soil water pore pressure is typically several
orders of magnitude higher than 6 (107°) kPa.

We ran several numerical simulations for a mobile solute to
determine how ponding and root water uptake affect the transport of
mobile solutes in soil. For this we selected a buffer power of b =2.
Examples of solutes with a similar buffer power include the nutrient
boron (Barber, 1995), and the pesticide Dimethylamonium chloride
(Njoroge etal., 2016).

Boundary and initial condition parameters values

We assigned values to the remaining parameters in the boundary and
initial conditions to complete the system of equations that makes up
the solute ponding model.

For p,, which describes a constant saturation at the base of the
geometry, we assigned a value of p, = — 10 kPa. This equates to a
saturation level of approximately S = 0.9 for a silt loam soil, thereby
replicating a shallow water table. For the initial condition of soil
water pore pressure, p . (X), we chose the steady state profile that
forms in the absence of plant roots. As a result of capillary forces
and gravity, this leads to a constant pressure gradient from the base
to the top of the geometry of:

P (X)=-plz—p, XEA, (37

where p7! = 9825 Paand pS = 19 825 Pa.

Rainfall, infiltration capacity and solute application parameter
values

Here we describe the solute application and rainfall regime used
in the numerical simulations. There are several case studies that
could be examined with varying solute applications, rainfall events,
infiltration capacities and so on; therefore, it is not possible to cover
an exhaustive series of case studies. We chose a series of scenarios
to observe the effects surface ponding and root water uptake from
vegetation have on the transport of mobile solutes in soil.

We simulated solute and water movement over a 16-week period
because this time-frame is typical of a single season potato crop
(Noda etal., 1997). To observe the effect of water uptake from
plant roots and ponding on the soil surface, we simulated heavy
and light rain both with and without roots for a mobile solute; four
simulations in total. The rainfall regimes are shown in Figure 3.

In the light rainfall regime (Figure 3), we simulated one rain event
every week (midweek) throughout the 16-week period that lasted
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Figure 3 (a, b) The heavy and light rainfall regimes used in the numerical simulations, respectively.

4 hours and had an intensity of 4 mm hour~!. This is not sufficient
to generate soil surface ponding because all rainfall infiltrates into
the soil. In this case we imposed a root pressure p, of —0.1 MPa
because this quantity of rainfall will result in a drier soil compared
with the heavy rainfall regime.

For heavy rainfall (Figure 3), we simulated a rain event every
week (midweek). In weeks 1, 3 and 4 we simulated a rain event
that lasted 4 hours with an intensity of 4 mm hour™!, and in week
2 we simulated an event that lasted 4 hours with an intensity of
12.5 mm hour™". This heavier rain caused ponding in the furrows
of the geometry. This 4-week routine was repeated throughout
the simulation. For heavy rain we imposed a root pressure p, of
—0.05 MPa because ponding saturated the soil.

The infiltration capacity /, of soil is known to depend on several
factors, including tillage methods (Azooz & Arshad, 1996), volu-
metric water content, soil type and recent rain events. Therefore, it
is difficult to assign a single value to the infiltration capacity of a
soil. Morin & Benyamini (1977) found that steady state infiltration
of bare loam soil was reached after approximately 20 minutes into
arain event. Given that we simulated rain events an order of magni-
tude longer than this, we assigned a constant value for the infiltration
capacity. Morin & Benyamini (1977) found that the steady state
infiltration rate of bare loam soil is 1.3 —2.2x 107 m s™!. Given
this, we assigned a value I, of 1.75 X 107 ms~!.

At the beginning of the simulation, a solute was applied to the soil
surface over a period of 24 hours, with a total application of 1 kg
ha™!; an application rate of ¢,,(1)=1.157x 10~ kg m~2 s7..

Numerical solutions

Before we consider the two rainfall scenarios described above we
validated the model first with previous data from ponding in ridge
and furrow geometries.

Model validation

We validated the model with data from the ponding study by
Siyal etal. (2012). They created a trapezoidal ridge and furrow
geometry with a loam soil in which a constant flow of water flowed
longitudinally down the furrow until a pond height of 0.1 m was
reached. Once the desired pond height was reached, the flow of
water was stopped and the time required for the pond to infiltrate
fully into the soil was measured.

The model derived in this paper uses a sinusoidal curve to model
the periodic surface of ridge and furrow structures. It is impossible
to resolve a piecewise trapezoidal surface with the sinusoidal
surface Equation (1). Nevertheless, we constructed a geometry with
Equation (1) that minimizes the differences between the trapezoidal
structure in Siyal et al. (2012). This was achieved with the geometry
parameters A=C=0.12 m, B=2z m~' and #=0.5 m for the soil
surface dAg in Equation (1).

In Siyal etal. (2012), the time taken to generate the 0.1-m-deep
pond was 5.6 hours, and the time required for the water to infiltrate
fully into the soil was 16hours. To replicate these conditions,
we simulated a rain event that lasted 5.6 hours with an intensity
of 14.8 mm hour™' to equate the total pond volume in the simulated
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sinusoidal geometry with that of ponded water in Siyal etal.
(2012).

We conducted a simulation to measure the time required for
the pond to infiltrate the soil fully with the parameters estimated
experimentally for the soil used in Siyal etal. (2012); that is,
¢ =0.43, k,=2.63 x 107> m? (assuming the fresh water properties
p=1000 kgm™, y=89x10"*kgm™' s! and g=9.81 ms2),
m=0.36 and P, ~ 2500 Pa. We used the COMSOL Multiphysics®
finite element package to solve our model (implementation of the
model is described in the Appendix).

In the numerical simulation, we found that the pond caused by the
5.6-hour rain event dissipated into the soil fully after approximately
15.3 hours. This led to a difference of ~4% between these results
with the model derived in this paper and those of Siyal etal.
(2012).

These results give us confidence that the model derived in this
paper can accurately describe time-variable ponding for loam soil.

Saturation results

Figure 4 shows the effect of ponding on the water profile of the
ridged domain A by a series of S(p) plots within the domain A,
for the first ponding rain event from the simulation with the heavy
rainfall regime and in the absence of plant roots. The times chosen
were selected to emphasize the formation, growth and dissipation
of a pond in the furrow. Note that each S(p) plot in Figure 4 has
a different colour scale bar. Because large soil pore water pressure
differences form throughout the simulation, the saturation gradients
that result from ponding would otherwise be reduced in appearance
if the scale considered both low and high saturation when a ponding
event was present.

Figure 4 (a—c) shows the water distribution before, during and at
the end of the first rain event, respectively. Figure 4 (d—i) shows the
water profile within the soil domain A after the rain has finished,
showing the effect of surface ponding on the water movement in
the soil.

At the start of the rain event, =0 (Figure 4a), we observe steady
state conditions that are formed from the boundary conditions
imposed on the domain. This causes a constant pressure gradient
to form throughout the geometry in which the base of the soil is the
most saturated. As the rain starts, we can see the effect of the rain in
the top of the soil domain. At 2 hours after the rain starts (Figure 4b),
a pond has formed in the furrow of the domain. This equates to
a pond depth of approximately 4 cm. During the remaining rain
the pond steadily increases to a maximum height of approximately
7 cm.

Once the rain has stopped, the effect from surface ponding
becomes evident. Figure 4(d) shows that 6 hours after the rain,
saturation in the ridge of the geometry has decreased as the
non-ponded soil begins to drain. However, the furrow is still
fully saturated as the pond on the soil surface gradually infiltrates
into the soil. The pond on the surface continues to infiltrate for
approximately 24 hours. The ponding effect on the water profile
is shown in Figure 4(e,f) for 12 and 18hours after the rain,

respectively. These plots show the diminishing size of the pond and
movement of water from the top of the geometry to the base. The
soil in the ridges of the geometry has dried considerably faster than
in the furrows; this is to be expected given the effect of surface
ponding.

Thirty-six hours after the rain event (Figure 4g), the pond has
fully infiltrated the soil and the water profile is returning to
equilibrium. Two weeks after the rain event (Figure 4i), a steady
state equilibrium is achieved in the system. This water movement
cycle is then repeated for the second, third and fourth ponding rain
events for the remaining simulation.

Solute transport results

Figure 5 shows the solute concentration profiles within A for the
mobile solute (with buffer power b =2) at the end of the 16-week
simulations for different rainfall regimes and root water uptake.
There were four combinations of rainfall intensity (ponded and
non-ponded) and root presence in the ridges of the domain. The
solute profiles at the end of the 16-week period are markedly
different in each of the four cases.

Figure 5(a) shows the combination of ponded rain without root
presence. The effect of ponding in the furrow is clear, and the solute
adjacent to the furrow has penetrated much deeper into the soil
than that in the ridge. The shape of the solute profile in the furrow
corresponds to the fully saturated region of soil that was displayed in
Figure 4 because infiltration of water from the pond acts as a carrier
mechanism for the solute. Because the soil has a given infiltration
capacity, the ridge of the domain can absorb a finite amount of water
only, and excess water enters the pond. This causes the solute near
the ridge to move fairly uniformly into the soil.

The results in Figure 5(a) are quite different from those in
Figure 5(b) for the non-ponded rain without roots. Because all of
the rain infiltrated the soil, the solute penetrates almost uniformly.
However, there is a larger concentration of solute in the ridge of
the domain. After a rain event, the first region of soil to dry out
is the ridge of the geometry (Figure 4). Because solute movement
depends on the saturation conditions, this reduction in relative
saturation causes a decrease in movement of the solute in the
ridge of the geometry. Therefore, any solute contained in the
ridge after drying has occurred, remains there until the succeeding
rain event.

Figure 5(c,d) shows the solute profiles for the heavy and light rain
events with roots present in the ridge of the geometry. For both
regimes, we imposed root pressures p, of —0.05 and —0.1 MPa,
respectively, to account for the difference in water available to the
plant roots. In both cases, the solute collects into a concentrated spot
at the edge of the root domain. This is caused by the difference in
soil pore water pressure and the pressure in the root xylem because
any water that infiltrates the soil surface is drawn towards the plant
roots, which acts as a carrier mechanism for the solute movement.
Therefore, solute in the furrow of the domain is transported to the
root system, resulting in the formation of a concentrated solute
spot.
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Rainfall Regime

Figure 5 Solute concentration profiles for a
mobile solute (buffer power b =2) 16 weeks after
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heavy rainfall regime with root uptake and (d) is

the light rainfall regime with root uptake.

Figure 5(d) shows a more concentrated and condensed spot
formation in the light rainfall regime. This is because of the greater
pressure difference between the soil pore water pressure and the
pressure in the root xylem, and the reduction in available water. This
reduces the diffusion of the solute and forms a more concentrated
spot. In the heavy rainfall regime a spot with greater saturation has
formed. This enables a larger rate of diffusion, resulting in increased
dispersion of the solute.

Figure 5(c) still shows the effects of ponding on the soil surface.
As the quantity of water overcomes the pressure gradient between
the soil and plant roots, this causes a fraction of the solute to
penetrate deep into the soil. However, the quantity of solute that
penetrates deep into the soil is greatly reduced compared with the
simulation without plant roots (Figure 5a).

Conclusions

We developed a coupled system of PDEs that describe the move-
ment of water and solutes in soil. Furthermore, we incorporated an
ODE to represent dynamic ponding as a function of rainfall, surface
runoff and infiltration of water from a pond into the soil. We vali-
dated the pond model using data from a ridge and furrow study that
measures the infiltration time of a pond into a loam soil, and found
a ~4% difference only between the results of the study and model
simulations.

We found that when roots are absent in ridge and furrow soils,
ponding can have a considerable effect on the penetration of solutes
that are applied in the furrow of the geometry. This is directly
affected by the size of the pond that forms in the furrows, which
results from the quantity of rainfall and infiltration capacity of the
soil. As the infiltration capacity of the soil decreases, the total
volume of water immediately infiltrating the soil decreases and
generates a larger pond in the furrow. This leads to a greater quantity
of water infiltrating into the furrow, and transporting the solute deep
into the soil. This can lead to deep solute penetration, which can
cause substantial solute leaching.

The effects of solute penetration can be reduced by the presence
of plant roots in the ridges of the domain. With the addition of
vegetation to the ridges of the soil, the movement of water was
dominated by the pressure gradient between the soil pore pressure
and the pressure in the root xylem. Hence, the majority of infiltrated
water from rainfall or ponding is moved towards the plant roots in
the ridges of the system, which leads to solutes collecting adjacent
to the root system. This could substantially reduce the quantity of
solutes that move deep into the soil with heavy rain and surface
ponding. Knowledge of this solute movement mechanism can aid
targeted solute application on ridged surfaces to avoid leaching
and contamination, and also promote crop yields in which solute
application can be directed to provide greater efficiency for crops
and plants.
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Appendix

Numerical solution of the model with COMSOL
Multiphysics

Here we describe how we used the COMSOL Multiphysics
(Version 5.1) finite element package to solve the model derived
in this paper. We implemented the coupled system of PDEs for
simultaneous water and solute movement, with the addition of an
ODE for dynamic ponding on the soil surface.

Coupled water and solute model

We used COMSOL’s inbuilt ‘General Form PDE’ to set up the
coupled system of PDEs, Equations (12) and (31). This takes the
form:

o*r or

Ir 4% iv.e=r Al
“or TN ! (Ab)

where r=[S ¢]" and e,,d,, ® and f are parameters to be defined by

the user. To write the model in this form, the parameters were set
up to replicate Equations (12) and (31) such that;

[o o] [1 - Hs )] $2 0
= .d, = 98 >
0 0 c[1 - Hs (p)] ¢; b+ ¢S (p)

a

0= N
=Dy s () Ve - B2 (vp 4 pek)
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f= [ ¢ (1(’) ”f)], (A2)

For the ODE to describe a moving pond, Equation (23), we used
the inbuilt ODE equation ‘Global ODE’ to calculate x,(#). The
‘Global ODE’ takes the form:

f (q7 994> t) =0. (A3)

To write Equation (23) in this form, the ‘Global ODE’ is set up such
that:

dx, (
dt

D [Y,()+Y,x0] =0,
(A4)

{AB [x, (1) — | sin (Bx, (1)) }

Solute movement driven by ponding in ridge systems 277

where:
Y. =@ (n—x,0)+R, ), (A5)
and
e /n (*2 (0 +pg) ) + (AB sin (Bx) K‘TWaxp>
X, 1) = .
’ %00 \/ (1 + (ABsin (Bx))?)
(A6)

The integral in Equation (A6) was calculated with the inbuilt
‘Boundary Integration Component Coupling’ by a summation over
the nodes along the top domain boundary.

Boundary conditions

For the flux boundaries used, Equations (16), (25), (32), (33) and
(34), we used the inbuilt flux boundary condition that takes the form:

n-0=g —gr, (A7)

where g, and g, depend on the specific flux boundary. Similarly, for
the constant boundary condition, Equation (26), we used the inbuilt
Dirichlet boundary condition. This takes the form:

r=r,, (A8)

where the parameter value used is described in the parameters
section.

For the constant hydrostatic boundary, Equation (19), we could
not impose the generic inbuilt Dirichlet boundary condition because
it treats the constant boundary as a step function such that:

_frglhy® - x| x€0A
”‘{ | 0 ! x €A (&9)

This in turn leads to a permanent fully saturated boundary along
the bare soil surface dAy. To avoid this problem, we re-write
Equation (19) as a flux condition along dA, such that:

n- 0=k, {pg[hy®) - x 0] -p}. (A10)

where k>1. Ask, increases, Equation ((A10)) reduces
to p=pglhy(t) — y(x)]. Therefore, Equation (19) can be approxi-
mated and imposed as a flux condition along the partition dA; only,
providing k_, is significantly large. We chose k_, =1 x 10° because
this is sufficiently large to cause n- @ ~ 0.
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Summary

We compared water and solute movement between a ridge and furrow geometry and that of flat soil with a
mathematical model. We focused on the effects of two physical processes: root water uptake and pond formation
on the soil surface. The mathematical model describes the interaction between solute transport, water movement
and surface pond depth. Numerical simulations were used to determine how solutes of varying mobility and
rates of degradation penetrated into the two soil geometries over a growing season. Both the ridge and furrow or
flat soil geometries could reduce solute leaching, but this depended on several factors. Rain immediately after a
solute application was a key factor in determining solute penetration into soil. In cases with delayed rain after
a solute application, solutes in ridge and furrow geometries collected adjacent to the root system, resulting in
reduced solute penetration compared to the flat soil geometry. In contrast, substantial rain immediately after a
solute application resulted in ponding where water infiltration acted as the dominant transport mechanism. This
resulted in increased solute penetration in the ridge and furrow geometry compared to the flat soil geometry.

Highlights

We studied solute movement controlled by ponding in ridge and furrow and flat fields.
We found the ridged soil could impede or increase leaching compared to the flat soil.
Solute hot-spots formed in ridge and furrow soil because of root water uptake.

Time between solute application and rainfall is a key factor for solute penetration.

Introduction There have been several experimental efforts to determine the
difference in potato growth and production between ridge and
furrow planting and other tillage methods. Such methods include
wide beds (Mundy ez al., 1999), flat planting (Lewis & Rowberry,
1973) and furrow-only planting (Steele et al., 2006). Both ridge
and furrow and flat planting result in similar yields and tuber size
(Lewis & Rowberry, 1973; Alva et al., 2002), but ridge and furrow
planting has been found to be the preferred method of tillage (Jordan
et al., 2013) because of ease of harvesting (Leistra & Boesten,
2010b), slow seed germination (Benjamin et al., 1990) and nutrient
replenishment in the soil (Feddes et al., 1976).

In arable farming several methods of planting are used to cultivate
crops (Fahong et al., 2004). Two planting methods are addressed
in this paper: ridge and furrow planting (Robinson, 1999) and flat
planting (Lewis & Rowberry, 1973). A ridge and furrow geometry
is formed when the soil surface is modified to form a periodic series
of peaks (ridges) and troughs (furrows). This allows water to flow
across the field, providing water to the plants whilst preventing
waterlogging of the roots (Tisdall & Hodgson, 1990). One crop that
is traditionally grown in ridge and furrow geometries is the potato
(Solanum tuberosum, L.) (Wayman, 1969), which is an essential
crop in temperate European environments (Huaccho & Hijmans,
1999).

Growing evidence suggests that ridge and furrow systems might
be vulnerable to solute leaching (Lehrsch et al., 2000; Alletto et al.,
2010; Kettering et al., 2013). Experimentally, solutes have been
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applied to ridges and furrows of potato fields to determine the
depth of solute penetration in different areas of the soil (Smelt
etal., 1981; Kung, 1988; Leistra & Boesten, 2010a). In these
cases, the solute in the furrows moved to a greater absolute depth
in soil, supporting the suggested vulnerability of the ridge and
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furrow geometry to solute leaching. Furthermore, a recent European
Food Safety Authority report indicated that ridge and furrow soil
surfaces can increase leaching six-fold compared with flat surfaces
(EFSA, 2013). However, there is also evidence that ridge and furrow
planting can reduce leaching if solute management techniques are
used (Jaynes & Swan, 1999). These techniques can reduce the
negative environmental effect (Hatfield et al., 1998), even compared
with flat planting (Ressler et al., 1997).

In this study, we determined the water and solute movement
mechanisms and key environmental factors that affect leaching in
ridge and furrow and flat planting systems. This will enable us to
understand how the soil geometry affects transport within the soil.
Understanding the key factors that affect solute leaching will allow
us to determine qualitatively the increased risk to solute leaching
between the two planting methods. This knowledge will assist us
in developing solute application protocols unique to each planting
method to reduce solute leaching and maintain greater nutrient
availability to the crops.

Specifically, we modelled the transport of solutes with varying
mobility and degradation in both soil geometries over 24-week
periods. During this time, vegetation was present in soil for the first
16 weeks (i.e. a full growing season). Special attention was paid
to ponding on the soil surface because we considered a temperate
environment in the UK where there are often large amounts of rain.
It should be noted that we assumed that there was no solute uptake
by plant roots. In this paper we are only concerned with the solute
transport problem (i.e. modelling the ‘worst case scenario’), which
applies directly to passive solutes.

Mathematical model

We used the water—solute—pond model developed in Duncan et al.
(2018) to study water and solute movement in a cross-section of a
ridge and furrow (or flat) geometry. Here we state the equations and
parameters used in the model; for a full derivation see Duncan et al.
(2018). The governing equations are:
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ot

— _AC (p_pr)’ XE[\U (1)
0, xEA,’

op
0

oc aS (p)
= [b+Sp) ¢ +—t{

7@} + V- [-Dip™'S ()™ V| +

V. {—C:SS(p)% [1 - (1 —S(p)%)m]z (vp+pgﬁ)}

=-¢c, XEA, 2)

where ¢ is the soil porosity, S(p) is the relative saturation, y is the
viscosity of water, p is the soil water pore pressure, p is the density
of water, g is the acceleration due to gravity, K is a unit vector in
the upwards direction, k is the saturated hydraulic permeability, m
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Figure 1 Simulated soil domains for a (a) ridge and furrow and (b) flat
soil geometry, where  and ® are the total cross-sectional areas of the two
domains, 0Qg and 0®q are the soil surface boundaries, 02 and d®y are
the base boundaries, 0Qy, 0@y, 0Qg and 0@y are the lateral boundaries,
Q, and ®, are the areas without root activity and €(; and @, are the areas
of soil containing root activity.

is a van Genuchten parameter, A, is the product of the root surface
area density and water conductivity of the plant root cortex, p, is
the pressure in the root xylem, D; is the diffusion coefficient in
free liquid, d is the impedance factor of the solute that accounts
for the tortuosity of the solute moving through the pore space, c is
the solute concentration in the pore water, & is the solute decay rate
constant related to bacterial and other degradation processes, b is
the buffer power, and A is a generalized ridge and furrow geometry
(see Figure 1 in Duncan et al. (2018)) with subdomains A and A,
for regions where roots are present and absent respectively.
The boundary and initial conditions imposed on A are:
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where dAg is the soil surface boundary defined by the curve,
x (x) =Acos(Bx)+ C, (14)

where A is the variation in soil depth, B is the ridge wave number
and C is the average soil depth, dA,; is the region of dAg where
ponding occurs (see Figure 2 in Duncan et al. (2018)), dA; is the
region of dAg that is not ponded (i.e. where rainfall penetrates the
soil directly), and the interface between the two regions (0Ag and
0Ap) is defined by the moving boundary point x,(#) (see Figure 2
in Duncan et al. (2018)), 0Ag and 0A,, are the lateral boundaries
of A, dAy is the boundary at the base of A, h(x, ) is the depth of
the pond, ¢, (¢) is the volume flux of solute per unit soil surface
area per unit time entering the soil domain, n is the unit normal
vector pointing outwards of A, I'(¢) is the volume flux of water per
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unit soil surface area (i.e. rainfall), /. is the infiltration capacity of
the soil, p, is the prescribed pressure at the base of the domain, #
is the width of A, Rg(¢) is rainfall landing directly into the pond,
I¢(1) is the infiltration of water from the pond into the soil, R () is
surface runoff, cl,_ is the initial solute concentration and p (X) is
the initial pressure profile.

Parameter values

There are 22 parameters in the model used in this study. These
parameters are: ¢, m, kg, pt, g, p, p., Dy, d, b, I'(1), c,,(), Py, P (X),
A, &, p, and I for the coupled model, and the four parameters A, B,
C and 7 for the construction of A. These parameters are summarized
in Tables 1 and 2.

Geometric, soil, environmental, plant and solute parameter
values

To model the differences in solute and water movement between
ridge and furrow and flat geometries, we construct two domains.
These domains are shown in Figure 1, where Q is the ridge and
furrow geometry and @ is the flat geometry. The flat geometry @
can be reduced to a one-dimensional problem; however, for ease of
comparison we present it as a two-dimensional (2-D) geometry.

To replicate the dimensions of ridge and furrow geometries,
we use the values n=0.5m,A=C = é m and B=2xz m~! for the
geometry Q (Steele et al., 2006; Li et al., 2007). Furthermore, for
the flat geometry we setA =B =0,C = é m and 7n=0.5 m. To
compare ‘like for like’ scenarios, we ensure that the ridge and
furrow and flat geometries have the same total volume of soil.

Potatoes are a shallow-rooted crop in which the majority of roots
are within the plough layer (i.e. the top 30 cm of soil) (Lesczynski
& Tanner, 1976). Therefore, in the ridge and furrow geometry we
chose the size of the soil root region Q to be the top 30 cm of
soil extending radially from the top of the ridge. Similarly, for the
flat soil geometry we chose the soil root region ®; to be the top

Figure 2 Newbury site experimental rainfall
data over a 6-month period between 1 June 2006

<106 Newbury rainfall data
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and 31 December 2006. The green and orange
crosses indicate the time of early and late solute
applications, respectively.
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Table 1 Model parameter values used in numerical simulation

Parameter Description Value Units Reference

p Density of water 1x103 kgm™3 -

g Acceleration due to gravity 9.81 ms~2 -

b Buffer power 0.1/1/10 - -

Dy Diffusion coefficient in free liquid 2x 107 m? s~! (Shackelford & Daniel, 1991)

m Van Genuchten parameter 0.5 - (van Genuchten, 1980)

[ Porosity 0.396 - (van Genuchten, 1980)

Ky Saturated water permeability 52x 10714 m? (van Genuchten, 1980)

Pe Characteristic soil suction 23200 Pa (van Genuchten, 1980)

d Impedance factor 2 - (Nye & Tinker, 1977; Roose & Fowler, 2004b)

U Viscosity of water 1x1073 kgm~!s7! -

A Product of root surface area density 0-2.355x107° s~ IMPa~! (Lesczynski & Tanner, 1976; Rawsthorne & Brodie, 1986;
and water conductivity Steudle et al., 1987; Roose & Fowler, 2004a)

Dr Root xylem pressure —0.05 MPa (Liu et al., 2006)

1 Solute half-life 10/50/500 Days -

1. Infiltration capacity 1.6x 1076 ms~! (Morin & Benyamini, 1977)

A Variation in soil depth 0.16 /0 m (Steele et al., 2006; Li et al., 2007)

B Ridge wave number 2x/0 m~! (Steele et al., 2006; Li et al., 2007)

C Average soil depth 0.16/0 m (Steele et al., 2006; Li et al., 2007)

n Geometry width 0.5 m (Steele et al., 2006; Li et al., 2007)

Table 2 Matrix of simulated solutes used in numerical simulation

Extremely Highly Moderately
mobile mobile mobile
b=0.1 b=1 b=10

High degradation, Solute a; Solute f, Solute

#; = 10days

Medium degradation, Solute a, Solute g, Solute y,

1; = 50 days

Low degradation, Solute ay Solute 5 Solute y3

1 = 500 days

30cm of soil (see Figure 1). There is a difference in the total root
active soil between €(; and @y, but this is taken into account when
establishing the parameter for root length density (see below).

Several of the parameters in the model depend on the soil,
including ¢, m, k and p_. Potatoes are frequently grown in silt loam
soil (Shock er al., 1998). Therefore, we chose to use the parameter
values for the ‘Silt Loam G.E.3” soil from van Genuchten (1980)
(i.e. $=0.396, m=0.51, k,=5.2x 10~'* m? and p_, =23 200 Pa).
Note that in some cases different tillage methods applied to soil can
alter the porosity of the system. However, to ensure a ‘like for like’
comparison, we kept the porosity the same in both soil domains to
ensure that any differences we observed were an effect of the soil
geometry and not dependent on small variations in local porosity
within the soil.

We took values from the literature for the environmen-
tal and fluid parameters.
used y=1x1073 kgm™' s!
£=9.81 m s72 and for the density of water p=1000 kg m~3.

The typical range of the impedance coefficient d is between 0.5
and 2 (Nye & Tinker, 1977). Furthermore, increased volumetric

For the viscosity of water we
, for acceleration due to gravity
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moisture content leads to an increase in the impedance factor for
a solute (Rowell efal., 1967). Given that we are modelling a
temperate UK climate with frequent heavy rain events, we took d
to be at the upper bound of this range (i.e. d =2).

Values of the diffusion coefficient D; in a solution of free
liquid for simple electrolytes range from 1 X 10™°t0 3 x 107 m? s~!
(Shackelford & Daniel, 1991). Therefore, we chose the value to be
in the middle of this range (i.e. D;=2x 107" m? s71).

The parameter A, is the product of the root surface area density
and the water conductivity of the root cortex; this can be expressed
as:

A=kl (1), (15)
where [4(¢) is the root length density and k, is the radial conductivity
of the root cortex per unit root length.

We simulated 24 weeks of solute and water movement in soil,
in which vegetation was present for the first 16 weeks, which is
typical for a potato crop (Noda et al., 1997). For potato plants the
root length density changes significantly over a 16-week growing
period (Lesczynski & Tanner, 1976). Lesczynski & Tanner (1976)
found that over the first 30 days the root length density develops
to approximately /;=3X10* mm~ in the plough layer of soil.
This then remains fairly constant until approximately 90 days, at
which the root length density declines. To represent this growth and
development, we assigned /,(f) the piecewise function (in m m~3)
as follows:

3
1x10° ¢ 0 < 7 < 30 days
1) = 3% 10 30 < < 90 days
‘ 3x10° = (1x10° ) x (1 =90) 90 <1< 120 days
0 120 < t days

16)



These results were obtained with ridge and furrow planting;
therefore, we must account for this when determining a root length
density function for the flat soil geometry. To have the same total
root length in Q and @, we scale /() in the flat geometry by the
ratio of the two root active areas ; and ®y;. This ensures a ‘like
for like’ comparison between the two geometries.

For maize (Zea mays, L.) roots, the parameter k, is given
the value 7.85% 107! m>s~'MPa~! (Roose & Fowler, 2004a).
Maize and potato roots have similar root radii and structure
(Rawsthorne & Brodie, 1986; Steudle et al., 1987); therefore, we
assumed that this value of k, is also representative of potato
roots in soil.

To describe root pressure p,, there are models for root pressure
distribution within a single root (Roose & Fowler, 2004a). However,
to simulate large areas of soil consisting of many roots, we used
an average root pressure to describe the plant root system. The
root pressure p, can vary considerably in potatoes depending on
several factors, including soil saturation and atmospheric conditions
(Gandar & Tanner, 1976). Liu et al. (2006) found that the root water
potential changed considerably based on the method of irrigation
applied to the crop. They found that p. was ~ —0.01 MPa in the
roots of a fully irrigated system and ~(—0.02, —0.2) MPa for areas
of soil with partial root drying. Given that we model frequent rain
events that promote ponding, we chose the value p, = —0.05 MPa.

The infiltration capacity I, of soil depends on several factors,
including volumetric water content, soil type and tillage methods
(Azooz & Arshad, 1996). Therefore, it is difficult to assign a single
value to the infiltration capacity of a soil. Morin & Benyamini
(1977) found that steady state infiltration of bare loam soil was
reached after approximately 20 minutes into a rain event. However,
the rain data we used (see ‘Rainfall and solute application parameter
values’) has a time resolution of 1 hour, which is considerably larger
than the time required to reach steady state infiltration. Therefore,
we averaged the infiltration capacity over each rain event. Morin &
Benyamini (1977) found that the steady state rate of infiltration of
bare loam soil is between 1.3 and 2.2 x 10~® m s~!. Given this, we
chose to assign the value I, =1.3X 10 m s7".

We show results of numerical simulations for multiple hypo-
thetical solutes with varying rates of degradation and buffering
capacity to determine the differences in solute movement between
the ridge and furrow and flat soil geometries. In Table 2 we
give a matrix of the solute parameters that were used in the
simulations.

We chose to model extremely mobile solutes («,, a,, a;) with a
buffer power of b=0.1, highly mobile solutes (f,, #,, f;) with a
buffer power of b=1 and moderately mobile solutes (y,,7,,¥3)
with a buffer power of b= 10.

It is generally accepted that rates of degradation of pesticide-like
solutes in soil decrease with depth (Fomsgaard, 1995). Therefore,
one value for the decay constant is not valid for the entirety of
the soil domains in Figure 1. For the pesticides isoproturon and
metolachlor, the half-life is approximately doubled between the
initial 0—30 cm of soil and 1 m below the soil surface (Rice et al.,
2002; Bending & Rodriguez-Cruz, 2007). Hence, for spatially
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varying degradation, we impose the function:
1, (X) =1+ 24| 75, (17)

where 7} is the half-life of the solute in the plough layer and Izl is
the absolute depth below the soil surface.

For the rapidly degrading solutes (a,, f§,,y,) we chose the value
for the half life /; = 10 days, for a moderately fast degrading
solute (@y, fi,,7,) we selected the value 7 = 50 days and for slowly
degrading solutes (a3, f3, y;) we selected the value #; = 500 days. It
follows that the half-life 7} relates to the solute decay constant & by:

_In(2)
L

¢ (18)

Boundary and initial condition parameter values

For the parameter p,, that describes a constant saturation at the base
of the geometry, we assigned the pressure value p, = — 10 kPa. This
equates to a saturation level of approximately S~ 0.9 for a silt loam
soil, thereby replicating a shallow water table. For the soil water
pore pressure initial condition p (x), we chose to impose the steady
state profile that forms when the domain has no plant roots. As a
result of capillary forces and gravity, this leads to a constant pressure
gradient from the base to the top of the geometry, such that:

P (X)=-plz—p, X€EQUO, (19)

where pfl = 9825 Pa and p¢ = 19 825 Pa.

Rainfall and solute application parameter values

We simulated solute and water movement over a 24-week period
in which vegetation was present for the first 16 weeks. Potatoes are
typically planted from April to June and are harvested in September
to November (Noda et al., 1997). Therefore, we simulated this
‘growth and harvesting’ time frame with an additional 8 weeks to
determine how solutes move once the crops are harvested.

For the volume flux of water per unit soil surface area I'(7)
(i.e. rainfall), we used 6 months of rain field data from a site in New-
bury, UK, between 1 June 2006 and 31 December 2006. These data
are shown in Figure 2. The data were recorded from instruments that
were installed on a slope next to the A34 Newbury bypass (United
Kingdom Ordnance Survey grid reference SU455652). Acquisition
of the data is described in Smethurst et al. (2006).

We applied the solutes at one of two times during the numer-
ical simulations; these are denoted as the early and late appli-
cations. For the early application, solute was applied to the soil
surface at the start of the simulation over the initial 24 hours,
with a total application of 1 kg ha™' (i.e. an application rate
of ¢,,()=1.157x 10~ kg m~2 s7!). Similarly, for the late appli-
cation a solute was applied for 24 hours with the same rate of
application at the beginning of the 15th week. These can be seen
in Figure 2. The early and late application times were chosen to

© 2018 British Society of Soil Science, European Journal of Soil Science
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Figure 3 Early-application solute profiles in the ridged and flat domains for the moderately mobile solutes (y, 7,, y3) 16 and 24 weeks after solute application.
A white contour line for the safety threshold of 10 pg I~ !is also plotted. The ridge and furrow and flat geometries are the same as those shown in Figure 1.

determine how solute movement is affected during a growing and
degrading root system, respectively. For the early application, the
solute was applied as soon as the root system began to grow and
the late application was applied shortly after the root length density
began to decrease.

Results

We performed a total of 36 simulations; nine simulations for the
ridged geometry with an early application (for all nine hypothetical
solutes in Table 2), nine for the ridged geometry with a late
application, nine for the flat geometry with an early application and
nine simulations for the flat geometry with a late application.

Early application results

Figure 3 shows the results for the early application of solutes
for both the ridged and flat planting systems for the moderately
mobile solutes (i.e. solutes ¥, y, and y;) (see Table 2). The results
in Figure 3 show the solute profiles in the two soil geometries
at 16 and 24 weeks after the solute application. At 16 weeks
after the solute application, water uptake from vegetation stops
because this simulates harvesting and the removal of crops, and
24 weeks after solute application is the end of the simulation time
frame. Furthermore, an additional contour plot of concentration

© 2018 British Society of Soil Science, European Journal of Soil Science

10 pg 17! (shown in white) was added to each profile, because this
concentration is frequently used as a pesticide safety threshold for
root and tuber vegetables (EU, 2018). In Figures 4 and 5 we show
the results for the highly mobile (8,, #,, ;) and extremely mobile
(ay, ay, a3) solutes, respectively.

For the moderately mobile solutes (y,, 7,,73), there was no sig-
nificant penetration of the solutes into either of the soil geometries
because of the buffer power of the solutes (see Figure 3). However,
several features of the solute movement can be identified. First, the
solute adjacent to the furrow has penetrated deeper into the soil than
that contained in the ridge. Experimentally, deep furrow penetra-
tion has been attributed to the effects of ponding in the furrow of
the geometry from soil surface runoff (Leistra & Boesten, 2010a),
which is evident in the simulation results.

Furthermore, we note that because roots take up water, solute is
drawn up towards the ridges through the difference between the
soil water pore pressure and pressure in the root system. Chen
etal. (2011) found that in ridge and furrow structures, water that
infiltrated into the furrows of the system was transported to the
ridges, which in turn reduced water movement directly below the
ridge. In the simulations, this resulted in greater concentrations
of solute in the ridges of the system from water transporting the
solute. This coincides with the results of Smelt ef al. (1981), who
found that most solute residues were in the ridges of the ridge
and furrow structures at the end of the growing season. Similarly,
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Jaynes & Swan (1999) found substantially larger concentrations in
the ridges of the structure than the furrows.

In the flat soil geometry, the solute moved down uniformly and
was temporarily impeded by the roots in the plough layer. When we
compared the solute penetration between the flat and ridged soils,
we found that the solute in the flat geometry moved to a greater
absolute depth below the soil surface than that in the ridges. This
result concurs with that of Hamlett ez al. (1990), who identified that
placing solutes on the ridges of the structure substantially reduced
the amount leached compared with the flat field application. Jaynes
& Swan (1999) supported this hypothesis, and in addition found
that applications to the ridges could provide increased quantities of
solute to the plant (i.e. nutrients and fertilizers).

We observed, however, that the solute in the flat soil penetrated
less than that in the furrows of the ridged soil. This can be
explained by the distribution of ponding on the two soil geometries.
When ponding occurred on the flat soil, the ponding depth was
considerably shallower than on the ridged soil because the pond
was spread uniformly over the entire soil surface, whereas for the
ridged soil the pond was only in the furrow. This in turn, causes
a greater body of water to infiltrate into the furrow, causing deep
solute penetration in this region of the geometry, but reducing the
penetration of solutes in the ridges of the geometry.

Similar properties are evident in Figure 4 (for the solutes f,, f,,
f5) and Figure 5 (for the solutes a, a,, a;) for the simulations con-
taining highly and extremely mobile solutes, respectively. For the

highly mobile solutes f,, f, and f; in the ridged system (Figure 4),
the effect of solute accumulation in the ridges is more pronounced.
In the ridge simulation containing solute f; at 16 weeks after solute
application, there is a large quantity of solute in the region of soil
adjacent to the plant roots because of water transport to the ridges
created by the ridge and furrow geometry (Bargar et al., 1999;
Chen et al., 2011).

At 24 weeks (the end of the simulation), the solute has penetrated
into the soil as a concentrated spot that diffuses out slowly. We
know that solute movement was reduced there when there was root
uptake in soil (Benjamin et al., 1996). Roots are only present for
the first 16 weeks; therefore, for the remaining 8 weeks the solute is
affected more by rain moving into the ridges. Hence, we observed
deeper solute penetration in the later portion of the simulation.
Furthermore, we note that for the highly degrading solute f,, the
concentration decreased below the 10 pg 17! threshold for both soil
geometries. This was due to the combination of fast dispersion and
short half-life. In either geometry, it is the slowly degrading solutes
(a3, B3, y3) that are of critical importance.

Figure 5 shows the results for the extremely mobile solutes «,, a,
and a;. For the solute a;, we found that a quantity of solute left the
base of both soil geometries. In the ridge simulation, as an effect
of the solute accumulating in the ridges, the solute moved down
the soil profile as a highly concentrated spot. Given that the solute
was drawn up into the ridges early in the simulation, the majority
of the solute was not affected by later ponding in the furrows.

© 2018 British Society of Soil Science, European Journal of Soil Science
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Therefore, the solute moves down solely under the influence of the
rain that entered the ridge of the soil, and takes longer to reach
the base of the geometry. In the flat geometry, however, all of the
solute was affected by ponding (albeit considerably less than in the
furrow of the ridged soil). This led to large quantities of the solute
reaching the base of the geometry. The total amount of solute that
crossed the base of the geometry was 0.26 mg in the ridged system
and 3.5 mg in the flat system. These findings support the results
observed by Hamlett ez al. (1990) and Jaynes & Swan (1999), who
found that placing solutes on the ridges of the structure substantially
reduced leaching compared with the flat field application. Applying
solute solely to the ridges negated the effects of ponding, which
reduced the penetration depth in the soil. Furthermore, root uptake
reduced solute movement in the ridges (Benjamin et al., 1996). This
caused the solute to remain near the surface, allowing for easy solute
extraction from the soil after harvesting.

In the ridge and furrow simulations, we observed that, as an effect
of water uptake from plant roots, movement of the solute from the
furrow to the ridges protected the solute from deep penetration,
which would otherwise result from furrow ponding. Flat ground has
a uniform surface that offered no protection; therefore, all the solute
was affected by ponding and rainfall. Therefore, the average depth
of the solute was reduced in the ridged soil compared with the flat
soil when this solute movement mechanism was present.

© 2018 British Society of Soil Science, European Journal of Soil Science

Late application results

Figure 6 shows the solute profiles for the early and late applications
of the solutes a3, f; and y; (i.e. those with slow degradation) in the
two soil geometries at the end of the simulations. For simulations
with the early application the solutes were in the soil for a full
24 weeks, and for the late application the solutes were in the soil
for 9 weeks. We chose to show the results of the slowly degrading
solutes only because they showed the most extreme behaviour and
highlight the effects of surface ponding best. Nevertheless, the other
solutes showed a similar qualitative behaviour.

From the results in Figure 6 we can highlight several key features.
In the simulations with the late application of solutes a5, f; and y,
in the ridge and furrow geometry, a substantial quantity of solute
penetrates into the furrow. This is considerably different from the
simulations of solute profile in the early application to the ridge
and furrow, in which the solutes move towards the ridge and form
a concentrated spot.

There appear to be three reasons for differences in the solute
profiles between the early and late applications to the ridge and
furrow soil. First, for the late application simulation, the time that
the solute was in the soil was less than for the early application.
Therefore, in simulations of the late application there was not as
much time for the solute to be transported towards the ridge of
the structure by water that infiltrated into the furrows and moved
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to the ridges (Bargar et al., 1999; Chen et al., 2011). Second,
for the late application the root length density was beginning to
decline such that the root uptake was not as strong as earlier in the
simulated growing season (refer to Equation (16)). Consequently,
the difference in the soil water pore pressure between the ridge and
the furrow decreased, which resulted in less movement of water and
solute towards the ridge and greater solute penetration (Benjamin
etal., 1996). The third reason for the reduction in spot formation
was rain that occurred immediately after the late application.
Figure 2 shows that there was an intense rain event shortly after the
late application, which caused considerable ponding in the furrow
of the soil. Given that the solute had been applied recently to the
soil, there had not been sufficient time for it to collect in the ridges.
Therefore, the solute contained in the region of soil adjacent to the
furrow moved deep into the soil by water infiltration from the pond
because surface runoff leading to pond infiltration acts as a key
transport mechanism for the solute (Leistra & Boesten, 2010a).
From the rainfall data shown in Figure 2, we can see that during
the second 3-month period (representing the winter months) there
are more frequent ‘high-intensity’ rain events than during the first
3 months. In simulations of the late application, this caused solute
in the furrow of the ridged geometry to move deep into the soil and
did not allow formation of a spot in the ridges. This made the solute
in the furrow vulnerable to leaching because large amounts of water
infiltration can generate substantial dispersion of solutes in ridged
soil (Abbasi et al., 2004). The effect of the ‘time of ponding’ is

evident in the difference between the simulation results for early
and late applications of the solute a in the ridged soil. In the early
application, the solute collected in the ridges of the system because
of little ponding and a growing root system, and then proceeded
to move down as a concentrated spot as the root length density
decreased. For the late application with immediate surface ponding
and a lack of roots, the solute moved down the profile with a
wider distribution under the influence of infiltration of water from
the pond.

For the simulations of the extremely mobile solute a5, in several
cases some solute left the system from the base of the geometry.
Furthermore, the total quantity that crossed the base of the domain
depended on the soil geometry and time of application. In simu-
lations of the early application, 0.26 mg of solute leached in the
ridge geometry, whereas it was 3.5 mg for the flat system. For the
late application, however, the amount leached was 0.15 mg in ridge
geometry and it was zero in the flat system.

The model results suggest that the optimal geometry to reduce
solute leaching depends on two key aspects: the immediate rainfall
regime after solute application, and the quantity of roots in the
soil. In simulations of the early solute application, the amount
of rain was not sufficient to generate substantial furrow ponding.
This allowed the solute to move towards the ridges of the system
under the influence of water movement, which is often observed in
ridge and furrow soils (Bargar et al., 1999; Chen et al., 2011). This
protects the solute from future furrow ponding because root uptake

© 2018 British Society of Soil Science, European Journal of Soil Science
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can reduce solute movement in the ridges (Benjamin et al., 1996).
In contrast, for simulations of the late application there was an
immediate heavy rain event after solute application that caused sub-
stantial ponding. This generated more ponding in the ridged than the
flat soil, which resulted in the solute in the furrow being transported
deeper into the soil. This made the ridge and furrow system substan-
tially more vulnerable to solute leaching than the flat soil. Therefore,
substantial rain that causes ponding after a solute application may
make the ridged system more susceptible to solute leaching.

Time of rain versus solute leaching

From the results above, we ran a series of simulations to test the
hypothesis that the time between solute application and a heavy rain
event influences the quantity of leaching in ridged soil. We set up
five ridged and five flat soil simulations in which a solute (with the
same properties as the solute a5) was applied uniformly to each soil.
One heavy rain event that would generate substantial ponding was
then simulated at different times after the solute application in each
simulation. The rain event was chosen to last for 4 hours and have
a rainfall intensity of 12 mm hour™', and the times between solute
application and the rain event were chosen to be 1, 2 and 4 days, 1
and 2 weeks. One day after the rain event, the total amount of solute
that crossed the plough layer was then calculated. The plough layer
was chosen to be the soil above the horizontal line of —0.15 m in
both soil geometries shown in Figure 1.

Figure 7 shows the total amount of solute (as a percentage of
solute applied) that crossed the horizontal line of —0.15 m in the
soil geometries. For the simulations where the heavy rain event was
1 day after solute application, there were trace amounts of leaching
in the flat geometry. However, in the ridged geometry 11% of solute
applied leached past the plough layer.

In the simulations for longer periods of time between the solute
application and the rain event, the relation between the amounts of
solute that were leached in the two geometries changed. In the ridge
and furrow simulations, as the time between solute application and
rain event increased more of the solute moved towards the ridges of

-~ Ridged soil -~ Flat soil|

the soil by water transport from the furrows (Chen et al., 2011).
This caused less solute to be affected by the ponding and water
infiltration from the heavy rain event, and less solute moved below
the plough layer. For example, when the time period between solute
application and rain was 14 days, approximately 1.5% of the solute
applied was leached below the plough layer.

The flat geometry, however, showed the opposite behaviour. As
the time between solute application and the rain event increased,
more solute was leached past the plough layer. This resulted from
solute diffusion in the system before the rain event. We simulated an
extremely mobile solute; therefore, the longer it was in the system
the more it diffused. This meant that the rain and pond infiltration
had a greater effect on transport of the solute. In the simulation with
a 14-day period between solute application and the rain event, the
total amount of solute leached was approximately 11%.

Figure 7 illustrates a crossover between the total quantities of
solute leached in the plough layer for the two geometries after
approximately 8 days. In the case study of an extremely mobile
solute and a single heavy rain event in a silt loam soil, there was
less than 8 days between solute application and the rain event and
the flat geometry reduced leaching more. However, with more
than 8days between solute application and rain, the ridge and
furrow geometry reduced leaching more than for the flat geometry
because the solute moved towards the ridges and created a ‘zone
of protection’ from ponding. This crossover period, however, can
change considerably depending on the mobility of solute, rainfall
regime and type of plant roots. For example, in scenarios where the
applied solute is less mobile and root densities in the soil are less,
the time for ridge accumulation will be longer, thereby delaying the
crossover period. Nevertheless, these results suggested that specific
situations determine whether the ridge and furrow or the flat soil
are better at reducing leaching.

Discussion

In previous research, ridge and furrow planting has often been
shown to lead to greater leaching of solutes than the flat system

i Figure 7 Total amount of solute leached beyond the
plough layer in the ridge and furrow soil, Q, and flat
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g N

S . .

‘g 10 4 \. e

L N =

—_ - N .

=l . -

z >

- [ 3 -

L ~ -

2 6+ T

en '\-. V.f"

R T -7

= - L

S e -

& . e ..

v 4 =~

— T

a -~ T

= 2 P Tl

2 P

D.‘ Y ?‘—‘- T T 1
1 2 4 7

Time delay before rainfall event / days

© 2018 British Society of Soil Science, European Journal of Soil Science

14
time between a solute application and a heavy rain

event.



(Lehrsch et al., 2000; Alletto et al., 2010; Kettering et al., 2013).
However, certain application procedures might reduce leaching in
ridged fields more than in flat fields (Ressler ef al., 1997; Hatfield
et al., 1998; Jaynes & Swan, 1999). This latter supports our find-
ings; we observed that water movement from the furrows to the
ridges (Bargar et al., 1999) can transport solutes into the adjacent
root zones of the structure and while held there by plant roots
(Benjamin et al., 1996) they reduced the effect from dominant sur-
face runoff and subsequent infiltration (Leistra & Boesten, 2010a).
Therefore, ridge and furrow systems can reduce solute leaching.

We made several key assumptions, however, to ensure that any
differences observed depended on the geometry (i.e. by comparing
the ridge and furrow and flat geometries directly). Therefore, it
might be of interest to incorporate specific factors of ridge and
furrow geometry to determine the magnitude and severity of the
mechanisms that were observed.

One of the key factors to consider is the soil water content in
each of the ridge and furrow and flat geometries. Water movement
is the key transport mechanism for solutes in soil (Nye & Tinker,
1977); therefore, it is vital to characterize the soil water profile
accurately in both the ridge and furrow and flat soil geometries.
In the mathematical model, we imposed a boundary condition
at the base of the domains to replicate a shallow water table
approximately 1 m below the soil surface. This allowed us to model
solute movement within an idealized soil domain. However, with
high spatial resolution field data to determine the soil water profile
in the ridge and furrow and flat geometries we could indicate
how different water profiles might affect the solute dynamics and
mechanisms that we observed (i.e. solute penetration from furrow
ponding and transport to the ridges from the furrow).

Understanding the water profile in soil would aid accurate
determination of the mechanics of infiltration of rain into the soil.
We used rainfall data with a resolution of 1 hour for a 6-month
period, which limits the accuracy of identifying any change in
infiltration capacity. This could play a key role in determining
the severity of ponding and therefore the movement of solutes
from the furrow to the ridges. Thus, understanding the infiltration
capacity and soil water content with higher temporal and spatial
resolution might aid our understanding of the magnitude of the
effects observed.

Coupling knowledge of the water profile with the antecedent
moisture conditions of the soil domains would enable us to model
the movement of solutes applied to the soil more accurately. We
modelled the initial water profile to be that formed under steady
state conditions in the absence of roots, which is unlikely to resolve
true field conditions accurately. Knowledge of past conditions
would enable us to determine accurate initial conditions for the soil
at the beginning of the simulations. This information could have a
marked effect on several factors, such as the infiltration capacity,
water table height and initial solute movement.

To understand further the observed solute accumulation and hot
spot formation mechanisms, knowledge of the root architecture
would play a key role. This would enable us to understand the
distribution of root pressures in the root zones (i.e. the ridges of
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the system) and to predict the spatial distribution of solutes that
collect in the ridges of the soil geometry. This would provide a more
quantitative analysis of specific case studies relating to different
solutes and root systems.

Earlier, we stated that to obtain a ‘like for like’ comparison, we
kept the porosity between the ridge and furrow and flat systems
the same. However, we know that some tillage methods can affect
the porosity of the soil. Therefore, it would be useful to determine
how any effect from tillage would affect solute movement from the
furrows to the ridges and also spot formation in the ridges. This
could have a substantial effect on the time required for the solute in
the furrows to move to the ridges of the system.

Conclusions

Our modelling results bridged the gap between two contrasting
findings for ridge and furrow systems because previous literature
suggested that these soil systems might be vulnerable to solute
leaching or can reduce solute leaching. We found the ridge and
furrow structure could either impede or increase the penetration
of solutes in soil depending on the rainfall activity immediately
after solute application and the quantity of roots in the soil.
In scenarios where there was considerable rain that generated
substantial ponding immediately after solute application, we found
that water infiltration from the surface acted as a strong transport
mechanism for solutes in the furrow. This caused solutes in the
furrow to move to a greater depth compared with the flat ground
profile, where the effect of ponding was less substantial.

‘We found, however, that these trends were reversed when there
was no ponding after solute application. Instead, roots in the ridges
caused a dominant pressure gradient to form between the soil water
pore pressure and pressure in the root xylem. This caused the solute
in the ridged system to move towards the soil with abundant roots,
where the solute accumulated adjacent to the root zone in the ridges.
This effect impeded the movement of the solute compared with the
flat field because solute was in the ridge and therefore not influenced
by future ponding events in the furrow.

We determined that the vulnerability of the ridged system
stemmed from immediate ponding on the soil surface after the appli-
cation of a solute, and was not a function of the surface topology
itself. Our results suggested that one of the important factors that
should be considered when applying solutes to the soil surface is
the immediate water treatment (i.e. rainfall or irrigation after the
solute application) as this can have a substantial influence on solute
penetration and leaching in ridged fields.
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