
University of Southampton

Faculty of Engineering and Physical Sciences

School of Engineering

Multiscale Mathematical Modelling of Water
and Solute Movement in Plant Systems

by

Simon Jack Duncan

Thesis for the degree of Doctor of Philosophy

September 2018





University of Southampton

Abstract

Faculty of Engineering and Physical Sciences

School of Engineering

Doctor of Philosophy

Multiscale Mathematical Modelling of Water and Solute Movement in Plant Systems

by Simon Jack Duncan

This thesis deals with multiscale mathematical modelling of water and solute

movement in soil systems, with particular focus on the soil structures that are

formed by agricultural practices. The first mathematical model is developed to

describe water movement in a generalised ridge and furrow soil system, which is

coupled to dynamic surface water infiltration due to ponding. The model is based

on a non-linear Darcy-Richards’ equation in pressure formulation to describe

variably saturated soil. This model is then extended and coupled to an

advective-diffusion equation for solute movement. Using the mathematical model,

we compare water and solute movement in two soil structures: a ridge and furrow

soil and a flat field soil. We highlight scenarios that increase the risk of solute

leaching in both flat field and ridged soils. We also discuss the key factors affecting

solute leaching in these systems. We then focus on the water dynamics in the

regions of soil that contain crops. Using the Darcy-Richards’ equation for water

movement, we apply multiple scale asymptotic homogenisation to derive an

approximate set of equations that captures water movement around crops. We find

the approximate equations to be more computationally efficient by a factor of

O(102) when compared to the full equations. Extending this idea, we develop a

mathematical model that captures crop growth and its effect on solute movement.

The growth and development of the crops is dependent on the cumulative uptake of

nutrients available to the plant. The soil is modelled as a poroelastic material that is

able to deform due to crop growth. Special attention is paid to the reduction in void

space, change in local volumetric water content and the impact on solute movement

as the crops increase in size. Multiple scale asymptotic homogenisation is used to

derive a set of approximate equations that describe macroscale nutrient movement

and crop growth in the soil. This approach increases computational efficient by a

factor of O(103) while maintaining a percentage error of . 2%.
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Chapter 1

Introduction

In the year 2016, it was estimated that the total quantity of nitrogen, phosphate and

potash fertilisers applied to soils in the United Kingdom was 136 kg ha−1, covering

18,600,000 ha of agricultural land [1, 2]. This totalled 2,530,000,000 kg of

agricultural fertilisers with an estimated cost of £506,000,000 [1, 2]. Combined

with an estimated 16,000,000 kg of herbicides, fungicides and insecticides applied

to arable grassland [3], the total quantity of solutes applied to soils in the United

Kingdom is substantial.

Although the use of fertilisers and pesticides can aid in generating considerable

improvements to crop yield, excessive use of solutes in arable land is a substantial

problem [4]. Overuse of fertilisers and pesticides can have detrimental effects on

both human health and farmland ecosystems [5]. Excessive use of pesticides in

arable environments can destroy grassland ecosystems by reducing biodiversity [6].

Similarly, overuse of fertilisers can cause accelerated eutrophication due to surface

runoff into water systems, in which increased phytoplankton levels disrupt the

natural balance of the local ecology [7].

In the United Kingdom, farmers have significantly increased crop yields and

production over the 20th century, with crops such as wheat and barley having

increased substantially over the past 50 years [8]. However, this has caused a

wealth of problems within local environments including: a decline in bird

populations, greater gaseous emissions and increased nitrate concentrations in

rivers [9]. The estimated annual external cost to agriculture in the United Kingdom

is approximately £2,343,000,000 [4], where large portions of this is dedicated to

combatting the negative effects of overusing pesticides and fertilisers. The cost to

combat pesticide contamination in drinking water is approximately £120,000,000

[4]. Similarly, the expense to combat the effects of nitrate and phosphorous

leaching into groundwater is approximately £71,000,000 [4].

1
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In the year 2000, grasslands and arable fields in the United Kingdom had developed

a phosphorous surplus of 1000 kg ha−1 [10]. Whilst a build up of phosphorous in

soil can be beneficial to crop yields due to its low mobility [11], excessive

concentrations of phosphorous can be severely detrimental to arable environments.

Excessive phosphorous application in the UK has led to considerable increases in

lake sediment phosphorous concentrations [12], causing a substantial increase in

eutrophication. Given that worldwide phosphorous consumption is steadily

increasing [13], and phosphorous resources may run out in as little as 50 years

[14], more efficient use of fertilisers is crucial for sustainable life.

Understanding and maximising the beneficial properties of solutes whilst

minimising any detrimental effects is a difficult problem [15]. The advantages from

solute application in agriculture can benefit consumers, farmers and general society.

However, the specific risks associated with individual solutes may never be fully

understood [16]. As such, there are various aspects of solute use that must be

understood in order to quantitively determine the associated risk.

One aspect of particular importance is the associated risk to solute leaching due to

the surface topography of the soil, which results from different agricultural

practices. Previous studies have found contrasting results, suggesting that different

cultivation techniques can optimise solute leaching [17, 18]. Hence, it is not fully

understood which cultivation method is best to reduce leaching with the current

methodologies and studies. Therefore, it is necessary to develop a new methodology

to determine what influence the surface topography has on solute leaching.

One approach to aid in efficient use of solutes in agriculture is the use of

mathematical modelling. Mathematical modelling of soil systems has been studied

increasingly in recent years [19]. This technique provides the means to study soil

systems and plant-soil interactions, with the benefit of reducing time and resources

compared to standard experimental practices. This allows us to understand the

relationship between crop management practices and yield rates, whilst predicting

the resources required. Combining mathematical modelling with traditional

experiments allows us to efficiently improve our understanding of complex soil

systems [20, 21]. This can lead to further improvements in agricultural practices

and management for greater crop yield while minimising waste of resources.

In this thesis, we aim to develop a range of mathematical models to describe solute

movement in soil. The mathematical models will be constructed to accurately

capture the transport mechanisms of pesticide and nutrient like solutes in different

soil structures that arise due to specific cultivation practices. We aim to determine

how the surface topography of the soil influences the transport of solutes and the
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associated risk to leaching. Furthermore, we also aim to determine how the

presence of crops in soil influences the movement of water and solutes in these

systems. Our models will describe several processes in soil, including but not limited

to: water dynamics, solute transport, surface ponding, plant root uptake and soil

deformation from compaction. We build upon previous mathematical models to

incorporate these addtional soil processes to develop a more complete mathematical

description of the transport mechanisms within soil. A brief summary of the work

conducted in this thesis is given below.

1.1 Layout of the Thesis

A systematic method for modelling simultaneous water and solute movement in soil

will be presented. The remainder of Chapter 1 provides a brief introduction to soil

and cultivation methods for agricultural practices that form different soil structures.

A formal introduction to each of the chapters including a review of the relevant

literature is given in the introduction of each chapter. The mathematical analysis of

soil processes starts from Chapter 2.

In Chapter 2, we construct a mathematical model that describes water movement in

a generalised ridge and furrow soil system using a continuum approach. Special

attention is paid to pond formation on the surface of the soil and root water uptake

in the ridges of the system. The resulting model comprises a coupled system of

partial and ordinary differential equations that describe the mathematical interplay

between water movement, surface ponding and dynamic infiltration. Furthermore,

we validate the model from previous ridge and furrow ponding modelling data, in

which we find a difference of ≈ 4%.

In Chapter 3, we extend the water movement and surface ponding model from

Chapter 2 to include solute transport. Using this model, we conduct a case study

comparison of water and solute dynamics in two soil structures: a ridge and furrow

soil, and a flat field soil. We observe that the soil to best reduce solute leaching can

be either the ridge and furrow or flat field soil depending on several factors. We find

that the key factor in determining solute penetration in soil is the time delay

between solute application and rainfall, since the soil surface topology can heavily

influence solute transport in soil.

In Chapter 4, we focus on water dynamics in the regions of soil that contain crops.

Extending the model from Chapter 2, we develop a model that describes the

macroscale movement of water in the plough layer of soil. This is achieved using the

mathematical technique of multiple scale asymptotic homogenisation, where we
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construct an approximate set of equations that captures macroscale water

movement in soil, which is based on the intrinsic microscale soil structure that is

formed in the presence of crops and vegetation.

In Chapter 5, we build on the ideas used in developing the model for water

movement in the crop zones from Chapter 4. We derive a mathematical model that

describes the movement of solutes in soil, in which the soil is treated as a

poroelastic material. We allow crops to grow and freely deform the poroelastic soil,

where the growth of the crops is dependent on the uptake of the solute. Special

attention is paid to the reduction in void space, change in local volumetric water

content and the impact on solute diffusion within the poroelastic soil domain as the

crops increase in size. Then using multiple scale homogenisation we derive a set of

averaged equations that capture macroscale solute movement and crop growth.

Finally, in Chapter 6 we present a summary and the conclusions of the work in this

thesis. Furthermore, we provide a brief discussion of possible future work and

address the questions that arise within the thesis.

Chapters 2 and 3 in this thesis are based on two pieces of published work. These are

‘Duncan, S. et al. Mathematical modelling of water and solute movement in ridge

plant systems with dynamic ponding. European Journal of Soil Science 69, 2

(2018), 265-278’ and ‘Duncan, S. et al. Mathematical modelling of water and solute

movement in ridge versus flat plant systems. European Journal of Soil Science

(2018)’. For reference, these papers can be found at the back of this thesis.

1.2 Soil

Soil is a collection of organic and mineral matter that is created by geological

processes, organisms and climate [22]. As a naturally occurring and vast substance,

there is substantial variation in soil and hence, classification of soil into several key

groups is necessary [23].

There are multiple soil classification methods, examples include: the Winter Rainfall

Acceptance Potential (WRAP) system and the Hydrology of Soil Types (HOST)

classification, which can have up to 29 different classifications of soil types within

the United Kingdom alone [24]. However, soil minerals are typically split into one

of three core categories based on particle size, these being sand, silt and clay [25].

Classification of the three main mineral categories can be seen in Table 1.1 [26, 27].

Sand and silt particles are very similar by mineral composition and only differ based

on their size and quantity in soil [27]. Sand particles are classified as the largest of
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Table 1.1: Soil mineral classification [26, 27].

Particle Particle diameter (mm) No. particles per gram
Clay < 0.003 4× 1011

Silt 0.003− 0.06 2× 107

Sand 0.06− 2 112− 89× 105

the three types, which provide anchorage for plant roots to establish themselves

[28]. Furthermore, they typically increase the available pore space of the soil

system, allowing for greater quantities of air to circulate throughout.

Silt particles fall in between sand and clay in terms of particle size. Silt particles are

able to retain large quantities of water due to their size, which allows for easy

accessibility to the plants. However, they are typically the most erodible of the three

soil types, which can be a key factor in determining land-use [29].

Clay particles differ from silt and sand particles (other than by particle size) due to

the intense weathering they experience [27]. As such, the chemistry of clay particles

is substantially different to the larger soil minerals. Clay particles have a negative

charge that binds positively charged cations such as, K+, Ca2+ and Cu2+ to the

mineral surface [30, 31]. This coupled with the large surface area of clay particles

due to their small size, allows clay minerals play an important role in supplying

sufficient nutrients to plants.

Along with the minerals that exist in soil, organic matter can also be a considerable

component of soil. The quantity of organic material in soils can range anywhere

from 0.1% in dry desert soils, to over 50% in organic heavy soils [27]. Organic

matter holds large quantities of nutrients and water that are readily available to

plant roots, providing a vital source of food [32]. In addition to providing

sustenance to plants, organic matter also influences soil structure. Organic matter

causes soil to bind together creating compact soil aggregates, which readily

improves the soil structure and its ability to retain water [33, 34].

The key macroscale properties of soil, i.e., hydraulic conductivity, permeability and

porosity are typically governed by the ratio of the three mineral categories within

the soil. Shown in Figure 1.1 is the United States of America Department of

Agriculture (USDA) soil texture triangle for the classification of 12 different soil

types from the ratio of the three soil minerals clay, silt and sand [35, 36].

One of the key soil properties that is vital for agricultural practices is the hydraulic

conductivity. The hydraulic conductivity of soil is defined as the ability of a given

fluid to move through the pore space of the soil due to gravity [37]. This property of

soil heavily influences the transmission of water, and availability of water to plants.
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Figure 1.1: The United States of America Department of Agriculture (USDA) soil
texture triangle for classification of soil from the three minerals components [35].
Image from Rhodes (2012) [36].

The hydraulic conductivity of soil is related to the soil permeability by linear the

relationship,

K =
κsρg

µ
, (1.1)

where K [m s−1] is the hydraulic conductivity, κs [m2] is the saturated permeability,

ρ [kg m−3] is the fluid density, µ [Pa s] is the fluid viscosity and g [m s−2] is gravity.

Soil permeability describes the ability of the soil to transmit different fluids under

different conditions [37]. The relationship between the soil permeability and the

particle size (see Table 1.1) follows the mean square law κs = cgd
2
g, where dg [m] is

the mean grain size and cg [−] is a constant that is dependent on the pore space

configuration [38].

The properties dg and cg are closely linked to the porosity of the soil. The porosity of

soil is defined as the volume of pore (void) space per volume of soil [39]. This is an

indirect measure of the connectivity of the soil, i.e., the relationship between the

connection of the pore space throughout the soil, which can be used as a method to
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classify soil with respect to the pore space and solid matrix connectivity [40].

The porosity of the soil can play an important role in the transport of solutes such as

nutrients or pesticides. The power law relationship between solute diffusion and

porosity takes the form [41],

D = Dfφ
dSd, (1.2)

where D [m2 s−1] is the solute diffusion in soil, Df [m2 s−1] is the solute diffusion in

free liquid, φ [− ] is the porosity, S [− ] is the saturation, i.e., the volume of water

per volume of void space, and d [− ] is the impedance factor that accounts for the

tortuosity of the soil. In equation (1.2) we observe that the diffusion of solutes is

dependent on the porosity of the soil, which will significantly influence solute

movement.

From the soil properties above, we find that the soil type plays a vital role in

defining the mobility and transport of water and solutes in soil, as many of the soil

properties influence one another and contribute to the transport mechanisms within

soil. Hence, accurately capturing the influence of the soil type is vital in the

development of mathematical models to represent soil systems.

1.3 Soil Geometries

In arable farming row production is a widely used practice. Row production refers

to fields that are cultivated to create evenly spaced rows in which seeds are planted,

grown and harvested. A large variety of crops are grown using row production;

examples include maize (Zea mays, L.), pearl millet (Pennisetum glaucum, L.),

soybean (Glycine max, L.), potatoes (Solanum tubersum, L.) and sunflowers

(Helianthus annuus, L.) [42]. There are several cultivation and tillage procedures

that utilise row production methods, however, they are often for different soil

structures and surface topologies. These cultivation methods include but are not

limited to: flat planting [43], ridge planting [44], raised bed planting [45], wide

bed planting [46], furrow planting [47] and plastic covered rainfall harvesting

systems [48]. Shown in Figure 1.2 are cross section schematics of these cultivation

methods.

Several of these cultivation methods utilise a ridge and furrow soil geometry, or a

variant of this structure. Ridge and furrow geometries are created when the soil

surface is adapted to form a periodic series of peaks and troughs across an arable

field. Shown in Figure 1.3 is an example of a ridge and furrow system immediately

after crop sowing (Ordnance Survey grid ref. TG337240).
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Figure 1.2: Examples of different cultivation methods, including flat planting, ridge
planting, wide bed planting, furrow planting and a plastic cover rainfall harvesting
system.

The distinguishing feature of ridge and furrow structures is the surface topography

that is generated from the cultivation process. This uneven surface can alter the

mechanisms and dynamics by which water and solute infiltrate into the soil [44].

Furthermore, this can also affect the distribution of roots within the soil, which can

have an influence on the saturation and nutrient profiles throughout the soil.

The ridge and furrow soil structure is often the preferred crop system compared to

other alternatives [49]. This is due to multiple reasons including, ease of harvesting

[50], assisting with slow seed germination [51], and nutrient replenishment in the

soil [52]. A key advantage of ridge and furrow type structures is that they allow

water to flow across arable fields providing water to the plants whilst preventing

water logging of the root systems [53]. Ridge and furrow structures have also

shown to reduce soil erosion compared to other soil profiles [54]. This is attributed

to the influence of the ridges, which trap soil particles and reduce the effect of wind

damage [55].

Ridge and furrow tillage methods are favourable worldwide across multiple

environments and climates. In North-American climates, ridge and furrow planting

can protect the crop from seasonal (early and late) frosts, regulate weeds and

reduce blight [43]. In European climates, the ridge and furrow structure is

frequently used as it allows the crops to remain dryer during heavy rainfall [56].

Additionally, in east Asian climates the ridge and furrow tillage method has shown

to significantly increase soil moisture and temperature conditions resulting in

greater yields [57]. This makes the ridge and furrow tillage method one of the most

important cultivation practices globally.

Although the ridge and furrow cultivation procedure is often the preferred



Figure 1.3: A ridge and furrow cultivated soil system, located in East Anglia, UK
(Ordnance Survey grid ref. TG337240).

structure, growing evidence suggests that ridge and furrow soil systems may be

vulnerable to solute leaching compared to other tillage methods [18, 58, 59]. This

is often due to irrigation, which acts as a dominant transport mechanism for solute

movement in ridged soils. The European Food Safety Authority (EFSA) have

suggested that ridge and furrow soils can increase leaching six fold when compared

to flat soils [60]. This can cause devastating effects to local groundwater

contamination. Hence, understanding the effects that the ridge and furrow structure

can have on water and solute movement in soil is vital.

Large portions of this thesis are concerned with the mathematical modelling of ridge

and furrow structures and how they influence the movement and transport of water

and solutes throughout the soil. Due to the unique surface topology they exhibit,

they have many advantages but also several drawbacks. We aim to explore the

driving mechanisms for solute movement in this planting system to quantitively

determine the effect this soil geometry has on soil processes and crop growth.





Chapter 2

Water Movement and Ponding Model

In this chapter, we construct a mathematical model that describes the movement of

water in a generalised ridge and furrow soil domain. We focus on two physical

processes: root water uptake and pond formation on the soil surface. The resulting

model comprises of a coupled system of partial and ordinary differential equations

that describe the mathematical interplay between water movement, surface ponding

and dynamic infiltration. We validate the model using previous ridge and furrow

ponding data. We find a difference of ≈ 4% using data obtained from the literature.

2.1 Introduction

The ridge and furrow farming method is frequently used in the United Kingdom and

throughout the rest of Europe. However, large areas of Europe experience

substantial rainfall, which can lead to considerable ponding in the furrows of the

soil. This can result in significantly decreased yields for crops such as potatoes [61].

This reduction in yield can be due to bacterial diseases such as blackleg or soft rot,

which are easily transmitted by water logged soil [62, 63]. As such, ponded water

on the surface of the soil is a source of transport for the bacteria, and can also form

a host medium to generate new strains of bacteria [64]. Therefore, understanding

water movement in ridge and furrow soil systems is of critical importance, with

particular focus on the interface between surface and subsurface flow.

One approach that offers significant insight into water movement within soil

systems is mathematical modelling (see the comprehensive review for modelling of

soil processes by Vereecken et al. (2016) [19]). Understanding the mathematical

relationship between soil water movement, surface ponding and infiltration can aid

in decision making for agricultural practices directly. For example, the depth at

11
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which seeds are sown in ridge and furrow systems is a highly debated topic [65].

Several experimental studies find that deeper seed planting leads to faster

emergence, and therefore greater yields [56, 66]. However, contrasting results

suggest shallower planting has been more effective for emergence rates [43, 67].

The difference in findings has been shown to be attributed to the moisture

conditions in soil. The optimal planting depth is simply the one with the best

moisture for growth and emergence [65]. Hence, understanding the time-resolved

saturation profile with the use of mathematical modelling for localised regions

could aid in determining the optimal planting depth to generate maximum yields.

To model water movement in variably saturated soil, a combination of Richards’

equation and Darcy flow are traditionally used [40, 68]. Since we aim to develop a

mathematical model to describe water movement in a ridge and furrow system, the

mathematical description of the soil surface is a key factor. The soil surface plays an

important role describing infiltration of water into the soil, either through rainfall or

via ponding in the furrows of the soil. Hence, the boundary condition on the surface

of the soil representing the surface-subsurface interaction of water is of critical

importance.

The interaction of surface-subsurface flow between a porous material and free liquid

has been studied extensively over the past 50 years, both experimentally and

theoretically. In the 1960’s there was considerable analytic work on the boundary

interface between a saturated porous medium (subject to Darcy flow mechanics)

and stokes flow outside the porous domain [69, 70]. The porous material and the

flow of free liquid were assumed to be connected by pressure gradients and the

normal component of the velocity at the interface. Pressure conditions were then

matched between the two domains to determine analytic and semi-analytic

solutions. However, it was assumed that there was no tangential component of

velocity at the surface of the two domains [71].

Beavers and Joseph (1967) [72] expanded on these original ideas, and introduced a

‘slip’ boundary condition on the porous-free liquid interface, which described the

change in water velocity over the interface between the two domains. They

proposed that the difference between the slip velocity at the surface interface, and

the tangential component of the seepage velocity are proportional to the shear

stress that is transmitted to the porous media [73]. The Beavers and Joseph slip

boundary takes the form,

∂zvf = αbj(vf − vd), (2.1)

where vf [m s−1] is the fluid velocity tangential to the surface interface, vd [m s−1] is

the ‘seepage velocity’ in the porous domain tangential to the surface and αbj [m−1] is
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the Beavers and Joseph constant that is determined from the structure of the porous

domain. Shown in Figure 2.1 is a schematic of a velocity profile of a fluid between a

permeable domain and a free domain that is enclosed by an impermeable surface, in

which the Beavers and Joseph condition is used to describe the interface between

the two domains.

Figure 2.1: A velocity profile of a fluid between a permeable domain and a free
domain that is enclosed by an impermeable surface, where vf is the fluid velocity
tangential to the surface interface, vd is the ‘seepage velocity’ in the porous domain.
Image recreated from Beavers and Joseph (1967) [72].

Several experiments were conducted to test the condition proposed by Beavers and

Joseph. It was found that experimental results of laminar flow with the slip

condition were in accordance with the theoretic results [74, 75]. In addition, it was

found that the boundary condition could also be used to model the flow of gas

between a porous medium and an open domain [76].

Saffman (1971) [77] followed on from the Beavers and Joseph slip condition, in

which the boundary condition was modified. It was found that the seepage velocity

vd was small in comparison to the fluid velocity vf . Saffman proposed that the

seepage velocity vd could be removed as it was redundant.

The work done by Beavers and Joseph [72] and Saffman [77] has been used

frequently to model the continuation between free fluid flow and flow in a porous

medium [78]. However, the ‘slip’ condition is derived under the assumption that the
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porous media is fully saturated. When modelling fluid flow of a porous medium

such as soil, the domain is frequently partially saturated. Hence, the slip boundary

condition is not directly applicable for soil based studies that contain rainfall onto

partially saturated soil.

In specific mathematical modelling studies for groundwater and hydrology, there

are often areas of the domain that are partially saturated, which are modelled using

Richards’ equation. Hence, an alternate approach to the Beavers and Joseph

condition is required to model soil surfaces. Traditional continuum modelling

approaches for describing rainfall infiltration at the soil surface typically fall into

one of three types of boundary conditions. The first of these types is to prescribe a

Dirichlet boundary condition on the soil surface to provide a constant saturation

[79–82]. This condition moderates the filtration rate from the soil surface into the

soil. The second type of boundary condition is a Cauchy or Neumann condition.

This condition provides a consistent water flux into or out of the soil domain

[81, 83]. This flux is typically set to zero in the event of no precipitation, or to a

positive non-zero value to simulate constant infiltration. The final type of boundary

condition involves a mass balance at the soil surface. This typically revolves around

the Penman-Monteith equation [84] or other atmospheric mass balances [85, 86].

These mass balances often explicitly take into account several physical features

including evapotranspiration rate, vapour pressures, mean average daily

temperature and wind speed.

In addition to these three main groups, there have been attempts to hybridise two of

the boundary conditions, by combining a Dirichlet boundary condition with a

Cauchy boundary condition in order to better simulate rainfall on the soil surface

[87]. In this method the flat ground is split into a set of nodes. A Dirichlet boundary

is applied on the nodes that are saturated, and a Cauchy boundary condition of zero

flux is applied on the partially saturated nodes. These mathematical representations

of fluid flow on the soil surface boundary have been used successfully to model 1D

fluid flow in a soil domain. However, these boundary conditions only aim to

represent rainfall. To model other scenarios such as ponding and more complex

approaches are required.

In recent years, there have been several studies on mathematical modelling of soil

surface ponding [88–91]. These studies combined surface and subsurface flow

using an exchange flux between the two domains. This exchange flux is based on

the surface ponding depth on the soil surface. The standard protocol for combing

subsurface flow and surface flow (ponding), is to couple together the mixed form of

Richards’ equation for variably saturated groundwater flow, and the Saint Venant

equations for mass and momentum balance of water movement [89–91].
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However, the Saint Venant equation is only valid for shallow water and gentle

slopes, specifically when the water depth perpendicular to the slope can be

approximated to the absolute depth vertically [89]. Hence, these methods have only

been applied to either flat ground or a constant low gradient slope. The Saint Venant

equation is not necessarily applicable to substantial ponding in ridge and furrow

systems, given the large gradient posed by the ridge and furrow structure [47, 92].

Specific mathematical modelling of water movement in ridge and furrow systems

has been developed in recent years [93–97]. However, often the focus of these

studies is semi-arid soils, in which the ridge and furrow geometry is used as a means

of irrigation. Due to the lack of rainfall in these environments, precipitation and

surface runoff from rainfall is often ignored as furrow irrigation is the main priority.

From the furrow irrigation, several of these models contain pond infiltration for

ridge and furrow structures [82, 86, 94, 97–99]. However, these models typically

describe irrigation and drainage along a furrow (often using the zero-inertia model

for a moving body of water). Additionally, the ridge and furrow geometry is often

approximated as piecewise linear [82, 86, 98, 99].

In this chapter, we develop a mathematical model for water movement in a

generalised ridge and furrow system. We focus on root water uptake and dynamic

ponding in the furrows of the structure due to transient rainfall events. Since we are

concerned with rainfall in a temperate UK environment, we do not consider

irrigation or water movement down the furrows. Instead we focus on the

phenomena taking place in the cross-section of the furrow.

2.2 Theory

In this section we derive a mathematical model for water movement and dynamic

ponding in general ridge and furrow systems. We build the model from first

principles and develop a coupled system of partial differential equations (PDEs) and

ordinary differential equations (ODEs) to capture the water transport in the ridged

system.

2.2.1 Soil Domain

Let Λ̃ ⊂ R3 [m3] (shown in Figure 2.2 (a)) be an open bounded subset representing

a generalised ridged soil domain. Λ̃ has two distinct regions Λ̃U [m3] and Λ̃A [m3]

such that, Λ̃ = Λ̃U ∪ Λ̃A and Λ̃U ∩ Λ̃A = ∅. Here Λ̃U and Λ̃A are the regions of soil

with and without roots respectively.
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Although the mathematical model developed in this chapter is applicable for

general ridge and furrow soils, to construct domains for numerical simulations we

assign a function to describe the surface topology. Due to the symmetry and

periodicity of ridged soils, we approximate the surface ∂Λ̃S by the periodic function

χ̃ : Λ̃→ R [m] (see Nomenclature section for functional notation),

χ̃ = A cos(Bx̃1) + C, (2.2)

where A ∈ R≥0 [m] is the variation in soil depth, B ∈ R≥0 [m−1] is the ridge wave

number, C ∈ R [m] is the average soil depth and x̃1 is the spatial coordinate in the

horizontal direction (see Figure 2.2 (a)). The form of (2.2) allows us to describe the

complete soil system with a single half-period of a ridged geometry.

Figure 2.2: (a): A general ridged soil domain, where Λ̃ is the total soil domain such
that Λ̃ = Λ̃A ∪ Λ̃U , where ΛA is the region of soil absent roots, Λ̃U is the region of soil
with roots, ∂Λ̃S is the soil surface boundary, ∂Λ̃B is the base of the domain, ∂Λ̃W is
the boundary adjacent to the ridge, ∂Λ̃E is the boundary adjacent to the furrow and
x̃1, x̃2, x̃3 are the three directional components.
(b): The domain used for the numerical simulation in Section 2.3. The curve ∂Λ̃S is
generated using the values A = C = 0.16̇ and B = 2π from (2.2).
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2.2.2 Water Movement in Variably Saturated Soil

To describe water movement in ridged soils, we assume there may be regions of soil

that are fully saturated, i.e., directly under the pond, and regions that are partially

saturated. To account for this, we construct a model that can switch between a

partially and a fully saturated soil environment with a moving interface between the

two regions.

For water movement in variably saturated soil, Richards’ equation is typically used

[68]. To derive Richards’ equation, we use the mass conservation law [100], i.e.,

∂t̃φw + ∇̃ · ṽ = −F̃w in Λ̃∞, (2.3)

where Λ̃∞ = Λ̃× (0,∞) (where (0,∞) denotes the time domain). Here

φw : Λ̃× [0,∞)→ [0, 1] [− ] is the soil water fraction, i.e., the volume of water per

volume of void space, ṽ : Λ̃× [0,∞)→ R3 [m s−1] is the volume flux of water and

F̃w : Λ̃U × [0,∞)→ R [s−1] is the root water uptake. The saturation of Λ̃ is related to

φw by the relationship [101],

S =
φw − φr
φ− φr

, (2.4)

where S : Λ̃× [0,∞)→ [0, 1] [− ] is the relative saturation, i.e., the volume of water

per volume of void space, φr : Λ̃× [0,∞)→ [0, 1] [− ] is the residual water content,

i.e., the water content that cannot be removed due to gravity or the root system, and

φ : Λ̃× [0,∞)→ [0, 1] [− ] is the porosity, i.e., the volume of void space per volume

of soil. Here φ = φw + φa, where φa : Λ̃× [0,∞)→ [0, 1] [− ] is the soil air fraction,

i.e., the volume of air per volume of void space. We note that typically φr � {φ, φw}
[101], and hence can be neglected. This leads to the relationship S = φw/φ [41].

For simplicity, we initially assume φ to be constant such that,

φ(x̃) ≡ φ in Λ̃, (2.5)

where x̃ is the spatial component of R3, x̃ := (x̃1, x̃2, x̃3). Substituting S = φw/φ into

equation (2.3) yields,

φ∂t̃S + ∇̃ · ṽ = −F̃w in Λ̃∞. (2.6)

We define ṽ using Darcy’s law [102]. This takes the form,

ṽ = −κsκ(S)

µw

(
∇̃p̃w + ρgê3

)
, (2.7)

where κ(S) : Λ̃× [0,∞)→ [0, 1] [− ] is the relative soil permeability, µw ∈ R>0 [Pa s]

is the viscosity of water, κs ∈ R>0 [m2] is the saturated hydraulic permeability,
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p̃w : Λ̃× [0,∞)→ R [Pa] is the soil water pore pressure, ρ ∈ R>0 [kg m−3] is the

density of water, g ∈ R>0 [m s−2] is the acceleration due to gravity and

ê3 = (0, 0, 1) [− ]. Substituting (2.7) into (2.6) yields the Darcy-Richards’ equation

in mixed form,

φ∂t̃S = ∇̃ ·
[
κsκ(S)

µw

(
∇̃p̃w + ρgê3

)]
− F̃w in Λ̃∞. (2.8)

The function F̃w is only defined in the subdomain Λ̃U , i.e., where roots are present,

and is given by the difference in the soil water pore pressure and the pressure in the

root xylem [41], i.e.,

F̃w =

λc(p̃w − pr) in Λ̃U × [0,∞)

0 in Λ̃A × [0,∞)
, (2.9)

where λc ∈ R≥0 [Pa−1 s−1] is the product of the root surface area density and the

water conductivity of the root cortex and pr ∈ R≤0 [Pa] is the pressure in the root

xylem. We consider the subdomain Λ̃U to be contained in the ridges of the system,

since crops grown in ridge and furrow structures (such as Solanum tuberosum L.)

typically have roots in the plough layer of soil only, i.e., the top 30 cm of soil [103].

We express S as a function of p̃w using the van Genuchten relationship [101],

S =

[(
p̃a − p̃w
pc

) 1
1−m

+ 1

]−m
, (2.10)

where p̃a : Λ̃× [0,∞)→ R [Pa] is the air pressure, pc ∈ R>0 [Pa] is the characteristic

suction pressure and m ∈ [0, 1] [− ] is a van Genuchten parameter. We choose to set

p̃a = 0, such that p̃w is defined as the gauge pressure relative to p̃a [41]. Here we do

not consider the effects from hysteresis, i.e., the changes in the saturation-pressure

relation due to wetting and drying, since we assume that this has a negative effect

on the field scale transport of water.

We define κ(S) using a second van Genuchten formula [101],

κ(S) = S1/2
[
1− (1− S1/m)m

]2

. (2.11)

Combining Richards’ Equation (2.8) with the van Genuchten Equations (2.10) −



CHAPTER 2. WATER MOVEMENT AND PONDING MODEL 19

(2.11), we can write the water movement model in terms of p̃w only, i.e.,

φ
∂S(p̃w)

∂p̃w

∂p̃w

∂t̃
= ∇̃·

{
κsκ[S(p̃w)]

µw

(
∇̃p̃w + ρgê3

)}
−

λc(p̃w − pr), in Λ̃∞U

0, in Λ̃∞A

, (2.12)

where,

∂S(p̃w)

∂p̃w
=

m

[(
−p̃w
pc

) m
1−m

+ 1

]−m−1 (
−p̃w
pc

) m
1−m

pc(1−m)
, (2.13)

κ[S(p̃w)] =

[(
−p̃w
pc

) m
1−m

+ 1

]−m
2
(

1−

{
1−

[(
−p̃w
pc

) m
1−m

+ 1

]−1
}m)2

, (2.14)

Λ̃∞U = Λ̃U × (0,∞) and Λ̃∞A = Λ̃A × (0,∞).

Richards’ equation is used to describe water movement in partially saturated soil,

i.e., 0 < S(p̃w) < 1. If S = 1 singularities are formed, and hence cannot be used to

describe a fully saturated domain. However, we can adapt the system of equations

(2.12) − (2.14) so that they can represent both a saturated and partially saturated

soil by reducing Richards’ equation to saturated Darcy flow in the event of full

saturation, i.e., for p̃w ≥ 0. We do this by modifying Equations (2.12) − (2.14) in

two ways. Firstly, for p̃w ≥ 0 we eliminate the term φ∂S(p̃w)
∂p̃w

∂p̃w
∂t̃

from Equation (2.12)

by setting ∂S(p̃w)
∂p̃w

= 0. Thus, we impose the condition,

∂S(p̃w)

∂p̃w
=

0 for S(p̃w) = 1

∂S(p̃w)
∂p̃w

for 0 < S(p̃w) < 1
. (2.15)

To implement (2.15) as a closed-form expression, we use a smoothing

approximation to the Heaviside function H so that limp̃w→0−
∂S(p̃w)
∂p̃w

= 0. This imitates

the piecewise condition (2.15) while retaining a level of smoothness over a narrow

transition region about p̃w = 0 to aid in calculating a numerical solution. We add the

smoothed Heaviside function HS(p̃w) : Λ̃× [0,∞)→ [0, 1] [− ], so that

[1−HS(p̃w)]φ
∂S(p̃w)

∂p̃w

∂p̃w

∂t̃
= ∇̃·

{
κsκ[S(p̃w)]

µw

(
∇̃p̃w + ρgê3

)}
−F̃w in Λ̃∞, (2.16)

where,

HS(p̃w) =
1

2
[1 + tanh(σp̃w)], (2.17)

and 1
σ

[Pa] defines the width of transition between ∂S(p̃w)
∂p̃w

and 0 about p̃w = 0.

Secondly, the function κ[S(p̃w)] is required to be constant when p̃w ≥ 0. Thus, we
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introduce a second condition,

κ[S(p̃w)] =

1 for pw ≥ −ζt
κ[S(p̃w)] for pw < −ζt

, (2.18)

where ζt ∈ R>0 [Pa] is a small transition pressure that acts as the interface between

the saturated and partially saturated soil regions. We introduce (2.18) to avoid

discontinuities in the numerical solver when evaluating Equation (2.14). These

discontinuities occur since the numeric solver is often required to evaluate
δκ[S(p̃w)]

δp̃w

∣∣∣
p̃w=0

. However,
δκ[S(p̃w)]

δp̃w
is singular at the transition between fully and

partially saturated soil, so that limp̃w→0−
δκ[S(p̃w)]

δp̃w
=∞. Hence, we introduce ζt so

that
δκ[S(0)]
δp̃w

is never evaluated.

2.2.3 Soil Surface Boundary Conditions

To form a complete description of the ridge and furrow system, we derive boundary

conditions that are imposed on the edges of Λ̃. To represent ponding, which is often

present in ridge and furrow systems [82, 98], we split the boundary ∂Λ̃S [m2] (see

Figure 2.2 (a)) into two distinct regions, separated by the moving interface

x̃0 = x̃0(t̃) [m]. This is shown in Figure 2.3, where ∂Λ̃R = ∂Λ̃S ∩ [0, x̃0(t̃)) [m2] is the

surface of soil that is not ponded, i.e., where rain penetrates the soil directly, and

∂Λ̃P = ∂Λ̃S ∩ [x̃0(t̃), η] [m2] is the region on which ponding occurs (where η [m] is

the width of Λ̃ and has the relationship η = π/B).

On the surface ∂Λ̃P we impose a hydrostatic boundary condition [82, 88, 98], so

that directly under the pond we apply the pressure that results from the height of

the water column in the pond above it, i.e.,

p̃w = ρgh̃(x̃, t̃) on ∂Λ̃P × [0,∞), (2.19)

where h̃(x̃, t̃) : ∂Λ̃P × [0,∞)→ R≥0 [m] is the depth of the pond.

Precipitation landing on the bare soil ∂Λ̃R enters Λ̃ via a combination of capillary

forces and gravitational effects. Therefore, we implement a Cauchy fluid flux

condition on ∂Λ̃R [104], i.e.,

n̂ ·

{
κsκ[S(p̃w)]

µw

(
∇̃p̃w + ρgê3

)}
= ω̃ on ∂Λ̃R × [0,∞), (2.20)

where n̂ : R3 × [0,∞)→ R3 [− ] is the unit normal vector pointing outwards of Λ̃,
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Figure 2.3: Half of a ridge and furrow period, where ∂Λ̃P is the soil surface on which
ponding occurs, ∂Λ̃R is the soil surface that is not ponded, x̃0 = x̃0(t̃) is the point on
the soil surface ∂Λ̃S where the pond begins, η is the width of the half period of ridged
domain, h̃0 is the maximum depth of the pond, χ̃(x̃1) is the curve for the soil surface
∂Λ̃S and Ṽ is the volume of the pond.

ω̃ = ω̃(t̃) = min{q̃s, Ic} [m s−1] is the volume flux of water entering the soil per unit

surface area, q̃s = q̃s(t̃) : [0,∞)→ R≥0 [m s−1] is the volume flux of water per unit

area of soil surface, i.e., rainfall, and Ic ∈ R≥0 [m s−1] is the infiltration capacity of

the soil. In the event of sufficiently heavy rainfall, the quantity of water that can

enter Λ̃ is limited by Ic. Any excess rainfall that exceeds Ic, i.e., q̃s − Ic > 0 is defined

as the surface runoff R̃0 = R̃0(t̃) : [0,∞)→ R≥0 [m3 s−1], and is quantified by,

R̃0(t̃) =


{

[q̃s(t̃)− Ic]
∫ x̃0(t̃)

0

√
1 +

(
dχ̃(x̃1)
dx̃1

)2

dx̃1

}
for q̃s > Ic

0 for q̃s ≤ Ic

, (2.21)

where χ̃(x̃1) is the generalised curve of ∂Λ̃S, given by (2.2).

To determine the change in pond depth for the boundary conditions imposed on
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∂Λ̃R and ∂Λ̃P , we implement an additional ODE that is coupled to the governing

water movement model (2.16) − (2.18). This connects the volume of water in the

pond Ṽ = Ṽ (t̃) : [0,∞)→ R≥0 [m3], the rate of rainfall q̃s(t̃), the surface runoff R̃0(t̃)

and the infiltration flux entering the soil domain from the pond, i.e., the quantity of

water leaving the pond and infiltrating into the soil.

We define the maximum depth of the pond h̃0(t̃) : [0,∞)→ R≥0 [m] (see Figure 2.3)

at a given time t̃ to be,

h̃0(t̃) = χ̃[x̃0(t̃)] (2.22)

where x̃0(t̃) : [0,∞)→ [0, η] [m] is the x̃1 co-ordinate at which the pond starts, i.e.,
the partition between ∂Λ̃R and ∂Λ̃P . It should be noted that for h̃0(t̃) to have this

definition, the vertical datum x̃3 = 0 is measured from the base of the soil curve

χ̃(x̃) (see Figure 2.3). This allows the hydrostatic boundary condition (2.19) to be

re-written such that,

p̃w = ρg[h̃0(t̃)− χ̃(x̃)] on ∂Λ̃P × [0,∞), (2.23)

where h̃0(t̃)− χ̃(x̃) = h̃(x̃, t̃).

In addition, a length η is chosen to represent half a ridge and furrow period (see

Figure 2.3). It follows that for a given pond volume Ṽ (t̃), x̃0(t̃) is calculated by,

Ṽ (t̃) = h̃0(t̃)[η − x̃0(t̃)]−
∫ η

x̃0(t̃)

χ̃(x̃)dx̃. (2.24)

The change in pond volume Ṽ (t̃) is defined to be,

dṼ (t̃)

dt̃
= q̃s(t̃)[η − x̃0(t̃)] + R̃0(t̃)−

∫ η

x̃0(t̃)

ṽ · n̂|∂Λ̃P
dx̃, (2.25)

where q̃s(t̃) · [η − x̃0(t̃)] [m3 s−1] is the rainfall entering the pond, R̃0(t̃) is the surface

runoff and
∫ η
x̃0(t̃)

ṽ · n̂|∂Λ̃P
dx̃ [m3 s−1] is the quantity of water leaving the pond and

infiltrating into the soil by the boundary condition on ∂Λ̃P [105]. Substituting

(2.24) into (2.25) yields,

∂

∂t̃

{
h̃0(t̃)[η−x̃0(t̃)]−

∫ η

x̃0(t̃)

χ̃(x̃)dx̃

}
= q̃s(t̃)[η−x̃0(t̃)]+R̃0(t̃)−

∫ η

x̃0(t̃)

ṽ·n̂|∂Λ̃P
dx̃, (2.26)

where h̃0(t̃) is defined by (2.22). Equation (2.26) describes the change in the

position of x̃0(t̃), given the rainfall entering the pond, surface runoff and water

infiltration from the pond into the surrounding soil. To calculate ṽ · n̂|∂Λ̃P
, (2.26) is

coupled with (2.16) − (2.18) and the boundary condition (2.23).
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Through successive application of the Leibniz integral rule and the chain rule, for

the generic function χ̃(x̃), (2.26) can be expressed explicitly as a function of dx̃0(t̃)

dt̃
,

i.e.,

dx̃0(t̃)

dt̃

{
η
∂χ̃[x̃0(t̃)]

∂x̃0(t̃)
− χ̃[x̃0(t̃)]− x̃0(t̃)

∂χ̃[x̃0(t̃)]

∂x̃0(t̃)

}
−

[
∂

∂t̃

∫ η

x̃0(t̃)

χ̃(x̃)dx̃

]
=

q̃s(t̃)[η − x̃0(t̃)] + R̃0(t̃)+∫ η

x̃0(t̃)

({
∂χ̃(x̃)

∂x̃

κ[S(p̃w)]

µw
(∂x̃p̃w)−κ[S(p̃w)]

µw
(∂z̃p̃w+ρg)

}∣∣∣∣∣
∂Λ̃P

[
1+

(
−∂χ̃(x̃)

∂x̃

)2
]−0.5)

dx̃.

(2.27)

Note that for the boundary condition on ∂Λ̃P (2.23) to be active, we impose a

minimum pond depth threshold that must be reached before water leaves the pond

and infiltrates into the soil, i.e.,

p̃w = ρg[h̃0(t̃)− χ̃(x̃)] on ∂Λ̃P × [0,∞) for χ̃[x̃0(t̃)] > x̃min, (2.28)

where where x̃min [m] is the minimum pond depth. We impose this condition to aid

numerical computation, since a pond that is substantially smaller than the mesh size

can lead to convergence problems. However, we choose the threshold to be

sufficiently small that it has a negligible effect on the numeric results.

2.2.4 Non-surface Boundary Conditions and Initial Conditions

Lateral Boundary Conditions

For the boundaries ∂Λ̃E and ∂Λ̃W , we set a zero flux boundary condition due to the

periodicity of Λ̃, i.e.,

n̂ ·

{
κsκ[S(p̃w)]

µw

(
∇̃p̃w + ρgê3

)}
= 0 on ∂Λ̃E ∪ ∂Λ̃W × [0,∞). (2.29)

Therefore, there is no lateral water movement into or out of Λ̃.

Boundary Condition at the Base of the Soil

For the boundary on ∂Λ̃B, we set a Dirichlet boundary condition [93], i.e.,

p̃w = p0 on ∂Λ̃B × [0,∞). (2.30)
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This represents a constant saturation level at the base of the domain.

Initial Conditions

For the initial pressure condition p̃w|t̃=0, we use the steady state pressure profile, i.e.,

p̃w|t̃=0= p∞(x̃) in Λ̃× {t̃ = 0}, (2.31)

where p∞(x̃) [Pa] is the steady pressure profile, i.e., when ∂p̃w/∂t = 0. Furthermore,

we assume there is no surface ponding present on ∂Λ̃S at t̃ = 0, i.e.,

x̃0(t̃)|t̃=0= η for {t = 0}, (2.32)

such that the pond depth is h̃0(t̃)|t̃=0= χ̃[x̃0(t̃)|t̃=0] = 0.

The system of Equations (2.16) − (2.18), (2.20), (2.27) − (2.32) completes the

description of the coupled water balance in the presence of surface ponding.

2.2.5 Non-dimensionalisation

Here we non-dimensionalise the system of equations (2.16) − (2.18), (2.20), (2.27)

− (2.32). Whilst the final equations we solve are dimensional, we use

non-dimensionalisation to determine the magnitude of influence each parameter

has on the system of equations. We non-dimensionalise with the scaling,

x̃ = ηx, t̃ =
φµwη

2

κspc
t, p̃w = pcpw, χ̃ = ηχ, x̃0 = ηx0. (2.33)

In (2.33) we use the domain width η as the spatial scaling, the ‘effective diffusivity’
φµwη2

κspc
for the time scaling and the suction characteristic pc as the pressure scaling.

This leads to the system of equations,

[1−HS(pw)]
∂S(pw)

∂pw

∂pw
∂t

= ∇ ·
{
κ[S(pw)] (∇pw + ρê3)

}
−

(pcpw − pr) in Λ∞U

0 in Λ∞A

,

(2.34)

n̂ ·
{
κ[S(pw)] (∇pw + ρê3)

}
= ω on ∂ΛR × [0,∞), (2.35)

pw = ρ[h0(t)− χ(x)] on ∂ΛP × [0,∞), (2.36)

n̂ ·
{
κ[S(pw)] (∇pw + ρê3)

}
= 0 on ∂ΛE ∪ ∂ΛW × [0,∞), (2.37)

pw = p0 on ∂ΛB × [0,∞), (2.38)
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dx0(t)

dt

{
η
∂χ[x0(t)]

∂x0(t)
− χ[x0(t)]− x0(t)

∂χ[x0(t)]

∂x0(t)

}
−

[
∂

∂t

∫ 1

x0(t)η

χ(x)dx

]
=

qs · [1− x0(t)] +R0 + φ

∫ η

x0(t)

({
∂χ(x)

∂x
κ[S(pw)](∂xpw)− κ[S(pw)](∂zpw + ρ)

}∣∣∣∣∣
∂ΛP

·

[
1 +

(
−∂χ(x)

∂x

)2
]−0.5)

dx, (2.39)

pw|t=0= p∞ in Λ× {t = 0}, (2.40)

x0|t=0= 1, (2.41)

where,

∂S(pw)

∂pw
=

m

[
(−pw)

m
1−m + 1

]−m−1

(−pw)
m

1−m

(1−m)
, (2.42)

κ[S(pw)] =


1 for pw ≥ −ζt[

(pw)
m

1−m + 1

]−m
2
(

1−

{
1−

[
(−pw)

m
1−m + 1

]−1
}m)2

for pw < −ζt
,

(2.43)

and

ρ =
ρgη

pc
, pc =

λcpcµwη
2

κspc
, pr =

λcprµwη
2

κspc
, ω =

ηµwω

κspc
,

p0 =
p0

pc
, qs =

ηµwφqs
κspc

, R0 =
µwφR0

κspc
, p∞ =

p∞
pc
. (2.44)

2.2.6 Parameter Estimation

Here we estimate the parameters contained in equations (2.34) − (2.43) to

determine the magnitude of influence that each parameter in (2.44) has on the

system of equations. This allows us to identify the key mechanisms that dominate

water movement under surface ponding from heavy rainfall. Since this model has

been constructed for ridge and furrow soils, we assess the parameter values for silt

soils and the plant Solanum tuberosum L., since this crop is frequently grown in silt

soils in ridged systems [106]. Shown in Table 2.1 is a summary of the parameters

used in the non-dimensionalisation estimation.

For silt soils typical saturated permeability values are 1× 10−14 . κs . 5× 10−14 m2

[101], porosity values are φ ≈ 0.4 [101], and characteristic suction pressures are

pc ≈ 2× 104 Pa [101]. Furthermore, average values for pore pressures at field
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capacity in silt soils are p∞ ≈ p0 ≈ O(104) Pa [107].

Heavy rainfall in the United Kingdom is classified between the range of

4× 10−6 . qs . 1× 10−5 m s−1 [108], and silt soils have a steady state infiltration

capacity of Ic ≈ 2× 10−6 m s−1 [109]. Hence, the infiltration and runoff parameters

have values ω = O(10−6) m s−1 and R0 = O(10−6) m2 s−1.

For the plant Solanum tuberosum L., typical root pressures are pr ≈ 0.05 MPa [110],

and values for the effective uptake parameter are λc ≈ 3× 10−11 s−1 Pa−1 [107].

We take the density of water to be ρ = 1× 103 kg m−3, the viscosity of water to be

µw = 1× 10−3 Pa s and gravity to be g = 9.81m s−2. Additionally, for ridge and

furrow structures, the average width of a half period is η ≈ 0.5 m [47, 92].

Using the values above, we observe that the non-dimensionalised parameters shown

in (2.44) have the approximate values,

ρ = O(1), pc = O(1), pr = O(1), ω(t) = O(1),

p0 = O(1), qs(t) = O(1), R0(t) = O(1) p∞ = O(1). (2.45)

From (2.45) we observe that all the non-dimensionalised parameters are of the

same order of magnitude O(1), i.e., all components of the governing equations and

boundary conditions are important and none can be neglected from the model.

Table 2.1: A table of the parameters used in the non-dimensionalisation and param-
eter estimation of the water movement and ponding model.

Parameter Description Value Units Reference
κs saturated permeability 5× 10−14 m2 [101]
φ porosity 0.4 − [101]
pc characteristic suction pressure 2× 104 Pa [101]
p0 basal geometry pressure 2× 104 Pa [107]
qs rainfall 4− 10× 10−6 m s−1 [108]
Ic infiltration capacity 2× 10−6 m s−1 [109]
ω water infiltration 2× 10−6 m s−1 [109]
R0 runoff 2− 8× 10−6 m3 s−1 [109]
pr root xylem pressure 5× 104 Pa [110]
λc effective uptake 3× 10−11 s−1 Pa−1 [107]
ρ density of water 1× 103 kg m−3 −
µw viscosity of water 1× 10−3 Pa s −
g gravity 9.81 m s−2 −
η width of Λ̃ 0.5 m [47, 92]
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2.2.7 Implementation

Here we describe how we utilise the finite element package COMSOL Multiphysics

ver 5.3 (COMSOL Multiphysics, Stockholm, Sweden, www.comsol.com) to solve the

mathematical model. To implement the governing equation (2.16), we use the

inbuilt ‘General Form PDE’, which takes the form,

ea
∂2r

∂t2
+ da

∂r

∂t
+ ∇ ·Θ = f, (2.46)

where r = p̃w, and ea, da, Θ and f are parameters to be defined. To write the model

in this form, the parameters are constructed to replicate equation (2.16), i.e.,

ea = 0, da = [1−HS(p̃w)]φ
∂S(p̃w)

∂p̃w
, Θ = −κsκ[S(p̃w)]

µw

(
∇̃p̃w + ρgê3

)
,

f = −

λc(p̃w − pr), in Λ̃∞U

0, in Λ̃∞A

, (2.47)

where the functions HS(p̃w), S(p̃w) and κ[S(p̃w)] are explicitly defined.

For the ODE to describe the moving point x̃0 on the surface ∂Λ̃S, i.e., equation

(2.27), we use the inbuilt ODE equation ‘Global ODE’ to implicitly calculate x̃0(t̃).

The ‘Global ODE’ takes the form,

f(q, qt, qtt, t) = 0. (2.48)

To write equation (2.27) in this form for the curve χ̃(x̃), the ‘Global ODE’ is set up

so that,

{AB[x̃0(t̃)− η] sin [Bx̃0(t̃)]}dx̃0(t̃)

dt̃
− [Υr(t̃) + Υp(x̃, t̃)] = 0, (2.49)

where,

Υr(t̃) = q̃s(t̃) · [η − x̃0(t̃)] + R̃0(t̃), (2.50)

and,

Υp(x̃, t̃) =

∫ η

x̃0

[
κ(p̃w)
µ
∂z̃p̃w + ρg

]
+
[
AB sin(Bx̃)κ(p̃w)

µ
∂x̃p̃w

]
√

1 +
[
AB sin(Bx̃)

]2
. (2.51)

For the flux boundaries, i.e., equations (2.20) and (2.29), we use the inbuilt flux

boundary condition that takes the form,

n̂ ·Θ = g1 − g2r, (2.52)
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where g1 and g2 depend on the specific flux boundary. For equation (2.20) we set

g1 = ω̃(t̃) and g2 = 0, and for equation (2.29) we assign g1 = g2 = 0. Similarly, for

the boundary condition (2.30), we use the inbuilt Dirichlet boundary condition.

This takes the form,

r = r0, (2.53)

where r0 = p0.

For the hydrostatic boundary condition, equation (2.28), we are not able to impose

the generic inbuilt Dirichlet boundary condition since the software treats the

boundary condition as a step function so that,

p̃w =

ρg[h̃0(t̃)− χ̃(x̃)] on ∂Λ̃P × [0,∞)

0 on ∂Λ̃R × [0,∞)
. (2.54)

This in turn leads to a permanent fully saturated boundary along the bare soil

surface ∂Λ̃R. To avoid this problem, we re-write equation (2.28) as a flux condition

along ∂Λ̃P that mimics a Dirichlet condition. This is achieved by,

n̂ ·Θ =

k∞{ρg[h̃0(t̃)− χ̃(x̃)]− p̃w} on ∂Λ̃P × [0,∞)

0 on ∂Λ̃R × [0,∞)
, (2.55)

where k∞ � 1 [− ]. As k∞ increases, equation (2.55) reduces to

pw ≈ ρg[h̃0(t̃)− χ̃(x̃)] on ∂Λ̃P . Therefore, equation (2.28) can be approximated and

imposed as a flux condition along the partition ∂Λ̃P only, providing k∞ � 1 is

sufficiently large. In order to ensure that k∞ is large enough so that k−1
∞ n̂ ·Θ ≈ 0, we

run a series of simulations to determine when the flux effect is negligible. We find

that k∞ = ord(106) is sufficiently large to negate any influence from the term n̂ ·Θ.

The model is solved using the MUMPS (Multifrontal Massive Parallel Sparse Direct

Solver) subroutine, which is a direct method that utilises Gaussian elimination from

multiple LU decompositions. The subroutine utilises the sparsity of the system of

equations by constructing matrices for subsets of elements [111].

2.2.8 Model Validation

To validate the model, we use data from the ponding study by Siyal et al. (2012)

[112]. In that study a trapezoidal ridge and furrow geometry was created using a

loam soil in which a constant flow of water flowed longitudinally down the furrow

until a pond height of 0.1 m was reached. Once the desired pond height was

reached, the flow of water was stopped and the time required for the pond to
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infiltrate fully into the soil was measured.

The model derived in this chapter uses the sinusoidal function χ̃(x̃) = A cos(Bx̃) +C

to model the periodic surface topology of ridge and furrow structures, i.e., ∂Λ̃S. It is

impossible to resolve a piecewise trapezoidal surface with the sinusoidal surface

shown in equation (2.2). However, we construct a domain using equation (2.2) that

minimises the difference to the trapezoidal structure in Siyal et al. (2012) [112].

This was achieved with the geometry parameters A = C = 0.12 m, B = 2π m−1 and

η = 0.5 m in equation (2.2).

In the paper by Siyal et al. (2012) [112], the time taken to generate the 0.1 m deep

pond was 5.6 hours, and the time required for the water to fully infiltrate into the

soil was 16 hours. To replicate these conditions, we simulate a rainfall event that

lasted 5.6 hours with an intensity of 14.8 mm hour−1 to equate the total pond

volume in the simulated sinusoidal geometry with that of ponded water in the

trapezoidal geometry of Siyal et al. (2012) [112].

We measure the time required for the pond to fully infiltrate into the soil by

conducting a simulation, in which we use same parameter values as those used in

Siyal et al. (2012) [112]. These parameters were estimated experimentally for the

soil and were calculated to be φ = 0.43, κs = 2.63× 10−13 m2 (assuming the fresh

water properties ρ = 1000 kg m−3, µw = 1× 10−3 kg m−1s−1 and g = 9.81 m s−2),

m = 0.36 and pc ≈ 2500 Pa.

In the numerical simulation, we observed that the pond caused by the rainfall event

fully dissipated into the soil after approximately 15.3̇ hours, which is ≈ 4% different

to the results found in Siyal et al. (2012) [112]. This result gives us confidence that

the model derived in this chapter can accurately describe time-variable ponding in

ridge and furrow soil systems.

2.3 Numerical Solutions

To demonstrate the mathematical model, we explore how the water profile in ridge

and furrow soils is affected by heavy rainfall that generates substantial ponding. We

simulate one heavy rainfall event that generates substantial ponding in the furrow

of the soil, and analyse the infiltration of water into the soil and the influence on the

soil pressure profile. Additionally, we include vegetation in the ridges of the soil.

The crop we choose to simulate is the potato Solanum tuberosum L. as this crop is

traditionally grown in ridge and furrow structures.
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Table 2.2: A table of the parameters used in the numerical simulations for a single
heavy rainfall event using a ridge and furrow geometry.

Parameter Description Value Units Reference
κs saturated permeability 5.2× 10−14 m2 [101]
m van Genuchten parameter 0.5 − [101]
φ porosity 0.396 − [101]
pc characteristic suction pressure 23200 Pa [101]
p0 basal geometry pressure −1× 104 Pa −
qs rainfall 3.75× 10−6 m s−1 −
Ic infiltration capacity 1.6× 10−6 m s−1 [109]
pr root xylem pressure −5× 104 Pa [110]
λc effective uptake 3.14× 10−11 s−1 Pa−1 [107]
ρ density of water 1× 103 kg m−3 −
µw viscosity of water 1× 10−3 Pa s −
g gravity 9.81 m s−2 −
ζt saturated-partially saturated interface 1× 10−1 Pa −
σ Heaviside transition 1× 104 Pa−1 −
x̃min minimum ponding depth 3× 10−4 m −
A variation in soil depth 0.16 m [47, 92]
B ridge wave number 2π m−1 [47, 92]
C average soil depth 0.16 m [47, 92]
η width of Λ̃ 0.5 m [47, 92]

2.3.1 Parameter Values

Summarised in Table 2.2 are a list of the parameters used in the numerical

simulation. Detailed below are the parameter values and their origins.

To replicate the dimensions of typical ridge and furrow geometries, we use the

values η = 0.5 m, A = C = 1/6 m and B = 2π m−1 for the function χ̃(x̃) that

describes ∂Λ̃S [47, 92]. Furthermore, the crop Solanum tuberosum, L. is shallow

rooted with the majority of its roots in the plough layer, i.e., the top 0.3 m of soil

[103]. Therefore, we choose the size of the soil root region Λ̃U to be the top 0.3 m

of soil extending radially from the top of the ridge. The domain used can be seen in

Figure 2.2 (b).

The crop Solanum tuberosum, L. is frequently grown in silt loam soils [113]. Hence,

for the soil parameters, we choose values for typical silt loam soils, φ = 0.396,

m = 0.51, κs = 5.2× 10−14 m2 and pc = 23200 Pa [101]. For the viscosity of water we

use µw = 1× 10−3 Pa s, for acceleration due to gravity g = 9.81 m s−2 and for the

density of water ρ = 1000 kg m−3.

The parameter λc is the product of the root surface area density and water
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conductivity of the root cortex, which can be expressed by,

λc = krld, (2.56)

where ld is the root length density and kr is the radial conductivity of root cortex per

unit root length. ld values for Solanum tuberosum, L. are typically ld ≈ 4× 104 m−2

[114]. Additionally, in maize (Zea mays L.), the radial conductivity is

kr ≈ 7.85× 10−10 m2 s−1 MPa−1 [41]. Since maize and potato roots have similar root

radii and structure [115, 116], we assume this value is representative of potato

roots in soil. This leads to the parameter value λc = 3.14× 10−5 s−1 MPa−1.

The root pressure pr can vary considerably in Solanum tuberosum, L. plants

depending on several factors including soil saturation and atmospheric conditions

[117]. Liu et al. (2006) [110] found that the root water potential changes

substantially based on the method of irrigation applied to the crop. A value of

pr ≈ −0.01 MPa was present in the roots for a fully irrigated system and of

−0.2 MPa . pr . −0.02 MPa for areas of soil with partial root drying. Given this we

choose the value pr = −0.2 MPa.

For the parameters ζt and x̃min, we selected small values that have a negligible effect

on the numerical solution. For ζt we select the value ζt = 1× 10−1 Pa. Given that

pressure in soil is often measured in O(104) Pa, ζt is sufficiently small to have a

negligible effect. Furthermore, for x̃min (the minimum pond depth) we choose

x̃min = 3× 10−4 m. Therefore, the hydrostatic boundary condition Equation (2.28) is

activated once the pond depth surpasses 0.3 mm.

For the parameter σ in the smoothed Heaviside function HS(p̃w), we assign the

value σ = 1000 Pa−1. This limits the width of the transition between partially and

fully saturated soil regions such that the transition is completed across 0.001 Pa.

Given that pressure in soil is often measured in O(104) Pa, this value is sufficiently

small to have a negligible effect.

To describe the base of the geometry, we assign a constant soil water pore pressure

of p0 = −10 kPa. This equates to a saturation level of approximately S ≈ 0.9 for a

silt loam soil, thereby replicating a shallow water table. For the initial soil water

pore pressure profile p∞(x̃), we choose the steady state profile that forms in Λ̃ prior

to any rainfall. Hence, in the simulation, we allow steady state to form so that

∂tp̃w = 0 before initiating the rainfall event.

We simulate a single heavy rainfall event that lasts 4 hours with an intensity of

13.5 mm hr−1 after the soil pressure has reached steady state. The severity of the

ponding is primarily determined by the infiltration capacity Ic of soil. Ic is known to
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depend on several factors including volumetric water content, soil type, recent rain

events and tillage methods [118]. Therefore, it is difficult to assign a single value to

the infiltration capacity of a soil. Morin & Benyamini (1977) [109] found that

steady state infiltration of bare loam soil was reached after approximately 20

minutes into a rainfall event. We simulate a rainfall event that is an order of

magnitude longer than this, thus, we assign a constant value for the infiltration

capacity. Morin & Benyamini (1977) [109] found the steady state infiltration rate of

bare loam soil is between 1.3− 2.2× 10−6 m s−1. Hence, we assign the value

Ic = 1.6× 10−6 m s−1.

Figure 2.4: Time series of saturation S(p̃w) plots across the domain Λ̃ at times before,
during and after the rainfall event. The first three plots (a) − (c) show the S(p̃w)
profile before, during and at the end of the rainfall event, respectively, where t̃ = 0
represents the start of the 4 hour rain event. The second three plots (d) − (i) show
the S(p̃w) profile after the rain event, where t̃∗ = 0 denotes the end of the rainfall
event. The pond location x̃0 is indicated by a black star along ∂Λ̃S.
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2.3.2 Results

Figure 2.5: Time series of water flux streamline (flow vectors) plots across the do-
main Λ̃ at times before, during and after the rainfall event. The first three plots
(a)− (c) show the water flux streamlines before, during and at the end of the rainfall
event respectively, where t̃ = 0 represents the start of the 4 hour rain event. The sec-
ond three plots (d)− (i) show the water flux streamlines after the rain event, where
t̃∗ = 0 denotes the end of the rainfall event. The pond location x̃0 is indicated by a
black star along ∂Λ̃S.

Shown in Figures 2.4 − 2.6 are the numeric results of the simulation. Figures 2.4 −
2.6 show the saturation profile, water flux streamlines and region of full saturation

in Λ̃ respectively. The times chosen in each of the figures were selected to emphasise

the formation, growth and dissipation of the pond in the furrow. In each of the

figures, the first three subplots (a)− (c) show the domain Λ̃ before, during and at the

end of the 4 hour rainfall event respectively, where t̃ = 0 represents the start of the

rainfall. The second three plots (d)− (f) show the domain Λ̃ after the rainfall event
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has finished, where t̃∗ = 0 denotes the time at the end of the rainfall event. It should

be noted that each subplot (a)− (f) has a different colour scale bar. Since large soil

water pore pressure differences form throughout the simulation, the saturation

gradients that result from ponding would otherwise be reduced in appearance if the

scale considered both low and high saturation when ponding is present.

Figure 2.6: Time series of plots across the domain Λ̃ at times before, during and
after the rainfall event highlighting the region of full saturation. The first three plots
(a) − (c) show the fully saturated region of soil before, during and at the end of the
rainfall event respectively, where t̃ = 0 represents the start of the 4 hour rain event.
The second three plots (d)− (i) show the fully saturated region of soil after the rain
event, where t̃∗ = 0 denotes the end of the rainfall event. The pond location x̃0 is
indicated by a black star along ∂Λ̃S. The red regions represent fully saturated soil
and the white regions represent partially saturated soil.

At t̃ = 0, we observe the steady state conditions that form from the boundary

conditions imposed on Λ̃, which are achieved after approximately one week. From

Figure 2.4 (a) we find that the saturation S(p̃w) in Λ̃U is substantially reduced
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compared to Λ̃A. This is to be expected as there is a dominant pressure gradient

formed by the difference in soil water pore pressure and the pressure in the root

xylem. This can be clearly seen in Figure 2.5 (a) where the flux streamlines show

the movement of water from the base of the domain (originating from the Dirichlet

condition on ∂Λ̃B) to the subdomain Λ̃U .

Once the rainfall event starts, we can see the effect of the pond depth in the top of

Λ̃. At t̃ = 2 hours, there is a maximum pond depth of approximately h̃0 = 9 cm. The

effect of the pond on the soil surface can be seen in 2.4 (b) in which the soil adjacent

to the furrow has the highest degree of saturation. We observe that the pond on the

soil surface creates a region of fully saturated soil, i.e., p̃w ≥ 0, just below the pond,

which can be seen in Figure 2.6 (b). Furthermore, due to the dominant pressure in

the root xylem, in Figure 2.5 (b) we observe that the immediate water that infiltrates

into the soil is transported to the ridges and the vegetation in Λ̃U .

At the end of the rainfall event, the pond on ∂Λ̃S reaches a maximum depth of

h̃0 = 14 cm. From Figure 2.4 (c) we observe that in the ridges of Λ̃ the region of dry

soil from the roots is reduced as the infiltration of rainfall along the partition ∂Λ̃R

dominates the rate at which the plant can draw up water from the soil. Additionally,

the water that infiltrates into the soil from the ponded furrow is transported to the

ridges, thereby increasing the degree of saturation. In Figure 2.6 (c), we observe

that the region of fully saturated soil has increased due to the increase in ponding

depth.

Once the rainfall event has ended, the effect from surface ponding becomes evident.

In Figure 2.6 (d), we find that the region of fully saturated soil has increased.

Additionally, we observe in Figure 2.5 (d) that as the pond decreases and infiltrates

into the soil, the dominant water transport mechanism is no longer due to root

water uptake, but is instead controlled by the infiltration of water from ∂Λ̃P . From

Figure 2.4 (d) we find that the region of soil adjacent to the ridge surface of Λ̃

becomes the driest region of soil due to the termination of rainfall along ∂Λ̃R.

At the time point t̃∗ = 12 hours, we observe that the infiltration of water from the

pond fully suppresses the uptake of water by the roots in Λ̃U . In Figure 2.4 (e) we

observe that the value of S(p̃w) in Λ̃U has increased dramatically compared to the

prior time points. As the water infiltrates from the pond and decreases in height, this

causes the region of soil that is fully saturated to extend deeper into the soil, this

can be seen in Figure 2.6 (e). Furthermore, from Figure 2.5 (e) we observe that the

majority of the water from the pond is transported to the base of Λ̃ and is removed

from the system due to the Dirichlet condition on ∂Λ̃S. Hence, the infiltration of

water from the pond becomes the overwhelming mechanism for water movement.



Once the pond has fully infiltrated into the soil, i.e., t̃∗ = 36 hours, we observe that

Λ̃ returns to being partially saturated, this is seen in Figure 2.6 (f). Although the

degree of saturation in Λ̃U is substantially higher than in the steady state solution,

from Figure 2.4 (f) we find that the saturation profile in Λ̃ reflects the same

characteristics as Figure 2.4 (a), i.e., the top of Λ̃ has the lowest saturation and

increases with depth in soil. Furthermore, from Figure 2.5 (f) we observe that all

the water adjacent to the soil surface ∂Λ̃S is transported to Λ̃U . However, we see

that as the large body of ponded water moves down through the soil domain, this

remains largely unaffected by the influence of the pressure gradient due to the root

xylem. Hence, even after the pond has fully dissipated, the infiltration of water is

still the dominant transport mechanism.

2.4 Conclusions

In this chapter, we developed a system of equations that describe the movement of

water in soil. These equations were coupled to an equation for dynamic ponding on

the soil surface as a function of rainfall, surface runoff and infiltration of water from

the pond into the soil. We validated the model using data from a ridge and furrow

study that modelled the infiltration time of a pond into a loam soil, and found a

difference of ≈ 4% between the numeric results of the study and our model

simulation.

As a case study to demonstrate the model, we conducted a simulation to represent a

heavy rainfall event that generates substantial ponding on the soil surface for a silt

loam soil. We simulated plant roots and vegetation in the ridges of the soil for the

crop Solanum tuberosum L., which is typically grown in silt loam soils in ridge and

furrow structures.

We observe that when ponding is absent, the dominant transport mechanism for

water movement is determined by the pressure gradient that forms between the soil

water pore pressure and the pressure in the root xylem. This causes the majority of

water to be transported to the ridges of the soil structure. However, during the

ponding event, we find that the water infiltration from the soil surface is the

dominant mechanism, which draws water down to the base of the domain.



Chapter 3

Coupled Solute Transport and Water
Dynamics Model

In this chapter, we extend the water movement and surface ponding model from

Chapter 2 to incorporate the transport of solutes, thereby creating a coupled solute

and water movement model with the addition of surface ponding. Using this model

we conduct a comparison of water and solute movement in two key soil structures:

a ridge and furrow soil, and a flat field. We observe that the surface topology to best

reduce solute leaching can be either the ridge and furrow or flat geometry

depending on several factors. We find that the key factor in determining solute

penetration in these systems is the time delay between solute application and

rainfall, since the surface topology can heavily influence solute transport.

3.1 Introduction

In arable farming there are multiple row production planting methods that are used

to cultivate crops [45], which are briefly discussed in Chapter 1. Two of the key

planting methods are ridge and furrow planting [47], and flat planting [43]. These

cultivation methods are particularly important for crops like the potato, i.e.,
Solanum tuberosum L. [119], which is an essential crop in temperate European

environments [120].

There have been multiple experimental studies comparing crop yield between ridge

and furrow and flat tillage methods in order to determine the difference in Solanum
tuberosum L. growth and yield. Lewis et al. (1973) [43] found there to be no

measurable differences in the total crop yield between the two tillage methods,

however, there was found to be a significant difference in marketable yield. There

37



38 3.1. INTRODUCTION

was a reduction in marketable Solanum tuberosum L. tubers in the flat tillage field as

the surface topology caused the tubers to be susceptible to sunburn causing

damaged and inedible crops. Furthermore, Alva et al. (2002) [121] conducted a

four year field rotation study between ridge and furrow and flat planting systems.

There were no significant differences between the two planting methods over the

first two years of the study. However, there was a substantial difference in crop

production in the third year, in which there was a significant yield reduction using

the flat tillage method. This was due to nutrient replenishment problems in the flat

system [121].

While both the ridge and furrow planting and flat planting methods can result in

similar yields, tuber size and productivity [43, 121]; the ridge and furrow planting

method has been found to be the preferred tillage method [49]. This is due to

several reasons including: ease of harvesting [50], assisting with slow seed

germination [51], and nutrient replenishment in the soil [52].

Although the ridge and furrow cultivation procedure is often the preferred planting

system, growing evidence suggests that ridge and furrow soil systems may be

vulnerable to solute leaching compared to other tillage methods [18, 58, 59], due to

ponding on the soil surface [122]. Experimentally, solutes (including pesticides and

dyes) have been applied to ridges and furrows of potato fields in order to determine

the depth of solute penetration in different areas of the soil [50, 123, 124]. In these

studies, it was found that the substance in the furrows moved to a deeper absolute

depth in the soil, supporting the suggested vulnerability of the ridge and furrow

geometry to solute leaching. Furthermore, a recent European Food Safety Authority

(EFSA) report indicated that ridge and furrow soils may increase leaching six-fold

when compared to flat soils [60], which can cause devastating effects for local

groundwater contamination.

In ridge and furrow soil systems, a key result of the soil surface topology is the

influence of solute transport from localised rainfall. Rainfall that lands on the top of

the ridges is transported to the furrow and then into the soil, which has been shown

to increase the movement of several mobile solutes such as nitrogen, bromide and

herbicides (alachlor) deep into the soil profile [125].

However, there is also evidence to suggest that ridge and furrow planting can

significantly reduce leaching if solute management techniques are used [17]. This

can substantially reduce the negative environmental impact [126], even compared

to flat planting cultivation [127]. Furthermore, ridge and furrow structures have

been shown to reduce surface water contamination from pesticides since soil

erosion in ridged systems is reduced [128].
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It has been observed that ridge and furrow systems, and flat field systems show

similar levels of plant root uptake for mobile solutes, such as nitrogen [129].

However, in ridge and furrow systems, rainfall landing on the canopy of the plant

can transport water into the furrow generating increased ponding. This can lead to

greater infiltration of water and solutes into the soil through the furrow compared

to an analogous flat ground profile. As such, one hypothesis to reduce leaching and

optimising yields for mobile solutes such as nitrogen, is to place the solute solely on

the ridges of the soil as this may reduce deep penetration [129, 130]. However,

once the crops are removed from the ridge and furrow soil after harvesting, any

remaining solute that is left in the soil may be vulnerable to leaching from furrow

irrigation [131], as there is reduced solute penetration into the soil when plant root

uptake of water is present [132].

For climates in which the ridge and furrow structure is used for formal water

irrigation, it has been suggested that sprinkler irrigation (that avoids surface

ponding) would reduce nitrogen leaching compared to traditional furrow irrigation

[131]. This is due to the fact that prolonged surface ponding at low water depths

causes substantially higher dispersion of solutes in soil compared to short ponding

events with high water depths [133]. Additionally, to help combat the effects of

deep solute penetration from surface ponding, it has been hypothesised that

compressing the soil in the furrows may reduce potential leaching from mobile

solutes [112].

Conducting experimental solute movement studies in ridge and furrow, and flat

tillage systems is often very time consuming and expensive due to the large volume

of soil and equipment required, such as dialysis probes and lysimeters. Hence, using

mathematical modelling to determine solute movement in soil can significantly

reduce the time required to understand the influence of specific environmental

factors.

Mathematical models for solute movement in soil are typically based on the

advection-diffusion-reaction equation [134], i.e.,

∂tc = D∂xxc− V ∂xc− F, (3.1)

where c [kg m−3] is the solute concentration, D [m2 s−1] is the diffusion coefficient,

V [m s−1] is the volumetric water flux and F [kg2 m−3 s−1] is zero/first order

source/sink term. Originally these models were solved analytically for one spatial

dimension and one time dimension with either full or pseudo-analytical solutions

for a range of simple boundary conditions [135, 136]. These often resulted in

solving a series of eigenvalue problems to develop a series solution, which was
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troublesome due to the large number of values required for the series to converge.

Since then, the advection-diffusion-reaction equation for solute movement in soil

has been extended to include stochastic processes [137], non-linearity [138], dual

porosity [139], and heterogeneities with the soil domain [140].

There have been several studies utilising mathematical modelling to determine

solute movement in ridge and furrow structures [94, 112, 130, 131, 138, 141–143].

In all these studies the solute that is analysed is nitrogen or a nitrate based fertiliser.

All these models use the advection-diffusion-reaction equation to describe solute

movement within the soil system [142]. Several of the mathematical models couple

the advection-diffusion-reaction equation with Richards’ equation to create a system

of equations that describe simultaneous water and solute movement [130, 131], i.e.,

∂tS + ∇ · v = 0, (3.2)

∂tc+ ∇ · (D(S)∇c− V (S)c) = −Fc, (3.3)

where S [− ] is saturation, v [m s−1] is the volume flux of water, c [kg m−3] is the

solute concentration, D(S) [m2 s−1] is the saturation dependent diffusion,

V (S) [m s−1] is the saturation dependent advective flux and Fc [kg m−3 s−1] is a sink

term. Here V (S) is usually described by v so that the advective flux is described by

the movement of water within the soil domain.

Equations (3.2) and (3.3) have been used to describe nitrogen movement in

one-dimensional soil domains [143], as well as two-dimensional domains. However,

in many of the two-dimensional studies, the ridge and furrow structure is often

described by a trapezoidal piece-wise geometry which may not be representative of

the true structure of ridge and furrow soils [94, 112, 131, 138, 141].

In this chapter, we aim to determine the water and solute movement mechanisms

and key environmental factors that influence leaching in ridge and furrow, and flat

planting systems. This will allow us to understand how the soil surface topology

affects solute transport within the soil. Understanding the key factors that impact

solute leaching will allow us to qualitatively determine the increased risk to solute

leaching between the two planting methods. This knowledge can assist us in

developing solute application protocols unique to each planting method in order to

reduce solute leaching and maintain higher nutrient availability to the crops.

Specifically, we model the transport of solutes with varying mobility and

degradation in both soil geometries over 24 week periods. During this time

vegetation is present in soil for the first 16 weeks, i.e., a full growing season. We

apply solutes at different times throughout the growing season to observe the effects
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of early and late applications.

3.2 Theory

In this section, we extend the water movement and surface ponding model from

Chapter 2 to include solute transport in soil. We construct a non-linear

advection-diffusion-reaction equation that is coupled to equations (2.16) − (2.18)

using a similar approach used by Roose & Fowler (2004) [41].

3.2.1 Solute Movement in Variably Saturated Soil

Solutes such as nutrients, fertilisers and pesticides typically exist in one of two states

in soil, either sorbed to the soil surface or dissolved in the soil pore water [144]. We

state that the solute concentration in the sorbed state follows a reversible linear

binding reaction so that,

∂t̃c̃s = ds in [0,∞), (3.4)

where c̃s : [0,∞)→ R≥0 [kg m−3] is the sorbed solute concentration and

ds ∈ R [kg m−3 s−1] is the transfer rate to the sorbed phase from the pore water

phase. From conservation of mass, the rate of change of the solute concentration in

the soil pore water phase is,

∂t̃(φwc̃) + ∇̃ · (c̃ṽc) = ∇̃ ·
(
Dφw∇̃c̃

)
+ dl −

(τ + ξ)c̃ in Λ̃∞U

τ c̃ in Λ̃∞A

, (3.5)

where c̃ : Λ̃× [0,∞)→ R≥0 [kg m−3] is the solute concentration in the soil pore

water, ṽc : Λ̃× [0,∞)→ R3 [m s−1] is the volume flux, dl ∈ R [kg m−3 s−1] is the

transfer rate to the pore water phase from the sorbed phase, D ∈ R>0 [m2 s−1] is the

diffusion coefficient, τ ∈ R≥0 [s−1] is the biodegradation rate, ξ ∈ R≥0 [s−1] is the

uptake rate from plant roots and we recall φw : Λ̃× [0,∞)→ [0, 1] [− ] is the soil

water fraction. Adding (3.4) and (3.5) yields,

∂t̃(c̃s + φwc̃) + ∇̃ · (c̃ṽc) = ∇̃ ·
(
Dφw∇̃c̃

)
+ ds + dl −

(τ + ξ)c̃ in Λ̃∞U

τ c̃ in Λ̃∞A

. (3.6)

We assume there is a direct jump between the solute in the two states with no
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intermediate phase, such that ds + dl = 0. Furthermore, we define ds to be,

ds = kac̃− kdc̃s, (3.7)

where ka ∈ R>0 [s−1] is the adsorption rate of the solute in solution and

kd ∈ R>0 [s−1] is the desorption rate. We assume kd is sufficiently large such that

ds/kd � 1 and ka ∼ kd so that,

c̃s = bc̃, (3.8)

where b = ka/kd [− ] is the buffer power of the solute [27, 145]. This leads to the

governing equation for solute movement,

∂t̃(bc̃+ φwc̃) + ∇̃ · (c̃ṽc) = ∇̃ ·
(
Dφw∇̃c̃

)
−

(τ + ξ)c̃ in Λ̃∞U

τ c̃ in Λ̃∞A

. (3.9)

To couple equation (3.9) to the water movement model (2.16) − (2.18), we alter

(3.9) in three ways. Firstly, we state that ṽc is defined by the Darcy mechanics from

equation (2.7), i.e.,

ṽc = ṽ = −κsκ(S)

µw

(
∇̃p̃w + ρgê3

)
. (3.10)

Secondly, we relate D to S(pw) using the power law [41],

D = Dfφ
dS(pw)d, (3.11)

where Df ∈ R>0 [m2 s−1] is the diffusion coefficient in free liquid and d ∈ [0.5, 2] [− ]

is the impedance factor of the solute that accounts for the tortuosity of the solute

moving through the soil pore space [145]. Lastly, we relate φw to S(pw) using the

relationship S(pw) = φw/φ from equation (2.4).

Combining (3.9) with the three alterations and the governing water movement

equations with (2.16) − (2.18), the model for solute movement is given by,

∂c̃

∂t̃

[
b+ φS(p̃w)

]
+
∂p̃w

∂t̃

{
[1−HS(p̃w)]φ

∂S(p̃w)

∂p̃w
c̃

}
= ∇̃ ·

[
Dfφ

d+1S(p̃w)d+1∇̃c̃
]
+

∇̃ ·
{
c̃
κsκ[S(p̃w)]

µw

(
∇̃p̃w + ρgê3

)}
−

(τ + ξ)c̃ in Λ̃∞U

τ c̃ in Λ̃∞A

. (3.12)

To ensure the solute model is valid for a variably saturated soil domain, i.e.,
p̃w ≥ 0 ∩ p̃w < 0, a similar condition to (2.18) is imposed. This condition sets the

coefficient [b+ φS(p̃w)], and the diffusion coefficient [Dfφ
d+1
w S(p̃w)d+1] to be



CHAPTER 3. COUPLED SOLUTE TRANSPORT AND WATER DYNAMICS MODEL 43

constant when S(p̃w) = 1, i.e.,

b+ φS(p̃w) =

b+ φ for p ≥ −ζt
b+ φS(p̃w) for p < −ζt

, (3.13)

Dfφd+1S(p̃w)d+1 =

Dfφ
d+1 for p ≥ −ζt

Dfφ
d+1S(p̃w)d+1 for p < −ζt

, (3.14)

where we recall ζt ∈ R>0 [Pa] is a small transition pressure that acts as the interface

between the saturated and partially saturated soil regions.

The solute transport model (3.12) − (3.14) is then coupled to the water movement

model (2.16) − (2.18) to achieve a system of partial differential equations that

describes simultaneous water and solute movement in soil.

3.2.2 Boundary and Initial Conditions

To form a complete description of solute transport in ridge and furrow systems, we

derive boundary conditions that are imposed on the edges of Λ̃, see Figure 2.2 (a).

Surface Boundary Conditions

For the boundary ∂Λ̃S, we assume that solute applications are during dry conditions

or when rainfall is sufficiently low that it does not break the minimum pond depth

x̃min. Therefore, on the boundary ∂Λ̃S we impose a Cauchy flux condition, i.e.,

n̂ ·

{
Dfφd+1S(p̃w)d+1∇̃c̃+ c̃

κsκ[S(p̃w)]

µw

(
∇̃p̃w + ρgê3

)}
= cm

on ∂Λ̃S × [0,∞), (3.15)

where cm = cm(t) : [0,∞)→ R≥0 [kg m−2 s−1] is the volume flux of solute per unit

soil surface area per unit time entering the soil domain.
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Lateral Boundary Conditions

For the boundaries ∂Λ̃E and ∂Λ̃W , we set a zero flux boundary condition due to the

periodicity of Λ̃, i.e.,

n̂ ·

{
Dfφd+1S(p̃w)d+1∇̃c̃+ c̃

κsκ[S(p̃w)]

µw

(
∇̃p̃w + ρgê3

)}
= 0

on ∂Λ̃E ∪ ∂Λ̃W × [0,∞). (3.16)

Therefore, there is no lateral solute movement into or out of Λ̃.

Boundary condition at the base of the soil

For the boundary on ∂Λ̃B, we set a Dirichlet boundary condition set to the initial

condition, i.e.,
c̃ = c̃|t̃=0 on ∂Λ̃B × [0,∞). (3.17)

Initial conditions

Since we wish to understand how the soil surface topology influences solute

movement in soil, we choose the initial solute concentration in Λ̃ to be,

c̃|t=0= 0 in Λ̃× {t̃ = 0}, (3.18)

as our equations are linear in c̃, we may consider this system to describe the

movement of added solute.

The system of Equations (2.16) − (2.18), (2.20), (2.27) − (2.32), (3.12) − (3.18)

completes the description of simultaneous water and solute movement in the

presence of surface ponding.

3.2.3 Non-dimensionalisation

Here we non-dimensionalise the system of equations (3.12) − (3.18) shown above

to determine the magnitude of influence each parameter has on the system of

equations. We choose the same scaling as that in the non-dimensionalisation of the

water movement and ponding model (shown in Section 2.2.5) with the addition of
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the scaling for c̃, i.e.,

x̃ = ηx, t̃ =
φµwη

2

κspc
t, p̃w = pcpw, χ̃ = ηχ, c̃ = cmc, x̃0 = ηx0. (3.19)

In (3.19) we use the domain width η as the spatial scaling, the ‘effective diffusivity’
φµwη2

κspc
for the time scaling, the suction characteristic pc as the pressure scaling and

the solute application rate cm as the concentration scaling. This leads to the system

of equations,

∂c

∂t

[
b∗ + S(pw)

]
+
∂pw
∂t

{
[1−HS(pw)]

∂S(pw)

∂pw
c

}
= ∇ ·

[
D∗fφ

d+1S(pw)d+1∇c
]
+

∇ ·
{
cκ[S(pw)] (∇pw + ρê3)

}
−

(ξ + τ)c in Λ∞U

τc in Λ∞A

, (3.20)

n̂·

{
D∗fφ

d+1S(pw)d+1∇c+cκ[S(pw)] (∇pw + ρê3)

}
= cm on ∂ΛS×[0,∞), (3.21)

n̂ ·

{
D∗fφ

d+1S(pw)d+1∇c+ cκ[S(pw)] (∇pw + ρê3)

}
= 0 on ∂Λ̃E ∪ ∂Λ̃W × [0,∞),

(3.22)

c = 0 on ∂ΛB × [0,∞), (3.23)

c|t=0= 0 in Λ× {t = 0}, (3.24)

and

ρ =
ρgη

pc
, b∗ =

b

φ
, D∗f =

Dfφ
d+1µw
pcκs

, τ =
τη2µw
pcκs

, ξ =
ξη2µw
pcκs

cm =
ηµw
pcκs

. (3.25)

3.2.4 Parameter Estimation

Here we estimate the parameters contained in equations (3.20) − (3.24) to

determine the magnitude of influence each parameter has on the system of

equations. This allows us to identify the key mechanisms that dominate solute

movement in soil. We continue to assess the parameter values for silt soils and the

plant Solanum tuberosum L. Table 3.1 shows a summary of all parameters used in

the non-dimensionalisation. Several of the parameters used are discussed in

Chapter 2 and will be assumed here.

The value for the buffer power b depends heavily on the solute that is applied to the

soil. For extremely mobile solutes such as the pesticide Primisulfuron, the buffer

power takes the value b ≈ 0.1 [146]. However, for solutes such as phosphorous or
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Table 3.1: A table of the parameters used in the non-dimensionalisation and param-
eter estimation of the solute movement and ponding model.

Parameter Description Value Units Reference
κs saturated permeability 5× 10−14 m2 [101]
φ porosity 0.4 − [101]
pc characteristic suction pressure 2× 104 Pa [101]
b buffer power [0.1, 1000] − [41, 146]
Df diffusion in free liquid 2× 109 m2 s−1 [31]
τ biodegradation rate [0, 8× 10−7] s−1 [147]
d impedance factor 2 − [145]
ξ solute uptake 1× 10−9 s−1 [148, 149]
ρ density of water 1× 103 kg m−3 −
µw viscosity of water 1× 10−3 Pa s −
g gravity 9.81 m s−2 −
η width of Λ̃ 0.5 m [47, 92]

zinc that rapidly bind to the soil particles, the buffer power can be b ≈ 1000 [27].

Hence, there is a very large range that b can take, covering several orders of

magnitude.

Similarly, the degradation rate τ varies considerably based on the solute that is

chosen. The solute decay constant τ relates to the half-life t1/2 [s] by the relationship,

τ =
ln(2)

t1/2
. (3.26)

Solutes such as the pesticide Fenamiphos have particularly fast biodegradation rates

equating to a half-life of approximately 10 days [147]. In contrast, stable nutrients

in soil can take tens of years to decay in the soil environment. As such, τ also covers

a large range of values.

To estimate the solute uptake parameter ξ, we find that the crop Solanum tuberosum
L. has an uptake rate for the nutrient nitrogen of ξ ≈ 1× 10−9 s−1 [148, 149].

Additionally, we observe that the diffusion coefficient in free liquid for simple

electrolytes is typically Df ≈ 2× 10−9 m2 s−1 [31]. Finally, the impedance

coefficient d has the approximate value d ≈ 2 for moist environments, i.e., those that

are subject to surface ponding [145].

Using the values above, we observe that the non-dimensionalised parameters shown

in (3.25) have the approximate values,

ρ = O(1), b∗ ∈ [0.2, 2500], D∗f = O(10−4), τ ∈ [0.2, 0], ξ = O(10−4), cm = O(105).

(3.27)

From (3.27) we find that the non-dimensionalised parameters cover several orders
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of magnitude. We initially observe that the parameter D∗f � 1, implying that for

solute transport, diffusion is substantially weaker than the advective forces that

occur due to water movement in soil, i.e., solute movement is largely governed by

water movement rather than by diffusion, which is consistent with the literature

[145].

There are two mechanisms that reduce the quantity of solutes within the soil: solute

uptake by plants and biodegradation. For solutes that have a short half-life

(typically pesticides), we find that τ � ξ, i.e., biodegradation dominates solute

uptake. However, as the half-life is increased then τ → 0, and solute uptake

becomes the key mechanism governing reduction in solute in soil. Therefore, the

primary reduction mechanism is heavily dependent on the specific solute properties.

Finally, we observe that the adjusted buffer power b∗ can take a wide range of

values. For mobile solute such as nitrogen, we observe that b∗ = O(1). However, for

solutes such as zinc, which has a substantially higher buffer power, we find that

b∗ = O(104). For higher buffer powers, the term b∗ + S(pw) becomes the most

dominant in equation (3.20) and we find that the effects of diffusion

∇ ·
[
D∗fφd+1S(pw)d+1∇c

]
and advection ∇ ·

{
cκ[S(pw)] (∇pw + ρê3)

}
are

negligible. Hence, the buffer power b of the solute will vital in determining the key

transport mechanics.

3.2.5 Implementation

Here we describe how we utilise the finite element package COMSOL Multiphysics

(COMSOL Multiphysics, Stockholm, Sweden, www.comsol.com) to solve the

coupled solute-water model. To implement the governing equation (3.12) coupled

with the governing equation for water movement (2.16), we use the inbuilt ‘General

Form PDE’, which takes the form,

ea
∂2r

∂t2
+ da

∂r

∂t
+ ∇ ·Θ = f , (3.28)
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where r = [p̃w, c̃]
T , and ea, da, Θ and f are parameters to be defined. To write the

model in this form, the parameters were constructed so that,

ea =

[
0 0

0 0

]
, da =

[
[1−HS(p̃w)]φ∂S(p̃w)

∂p̃w
0

[1−HS(p̃w)]φ∂S(p̃w)
∂p̃w

c b+ S(p̃w)

]
,

Θ =

 −κsκ[S(p̃w)]
µw

(
∇̃p̃w + ρgê3

)
Dfφd+1S(p̃w)d+1∇c̃+ c̃κ[S(p̃w)] (∇p̃w + ρê3)

T , f =

[
−λc(p̃w − pr)
−(τ + ξ)c̃

]
. (3.29)

where the functions HS(p̃w), S(p̃w) and κ[S(p̃w)] are explicitly defined.

For the flux boundaries, i.e., equations (3.15) and (3.16), we use the inbuilt flux

boundary condition that takes the form,

n̂ ·Θ = g1 − g2r, (3.30)

where g1 and g2 depend on the specific flux boundary. Similarly, for the boundary

condition (3.17), we use the inbuilt Dirichlet boundary condition. This takes the

form,

r = r0. (3.31)

As in Chapter 2, the model is solved using the MUMPS (Multifrontal Massive

Parallel Sparse Direct Solver) subroutine.

3.3 Soil Domains and Parameter Values

In this section, we discuss the parameters used to conduct a numerical comparison

of solute transport between ridge and furrow soil structures, and flat field structures.

Based on the non-dimensionalisation above, we choose to compare multiple solutes

covering a wide range of parameter values for b and τ to determine how various

solutes are affected by the soil geometries, since we find that certain mechanisms

can either dominate or be neglected. Furthermore, we assume no solute uptake by

plant roots, since we are primarily concerned with the solute transport problem, i.e.,
modelling the worst case scenario, which applies to passive solutes.

3.3.1 Soil Domains

To model the differences in solute and water movement between a ridge and furrow

geometry and a flat geometry, we construct two domains. Let Ω̃ ⊂ R3 [m3] and
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Φ̃ ⊂ R3 [m3] be open bounded subsets representing a ridged soil and flat soil

respectively. These can be seen in Figure 3.1.

Figure 3.1: Simulated soil domains for a ridge and furrow geometry and a flat soil
geometry, where Ω̃ and Φ̃ are the ridged and flat domains respectively, ∂Ω̃S and ∂Φ̃S

are the soil surface boundaries, ∂Ω̃B and ∂Φ̃B are the base boundaries, ∂Ω̃W , ∂Φ̃W ,
∂Ω̃E and ∂Φ̃E are the lateral boundaries, ∂Ω̃A and ∂Φ̃A are the regions absent of root
activity and ∂Ω̃U and ∂Φ̃U are the regions of soil containing roots.

To capture typical ridge and furrow dimensions, for Ω̃ we use the values η = 0.5 m,

A = C = 1/6 m and B = 2π m−1 in equation (2.2) [47, 92]. Furthermore, for Φ̃ we

set η = 0.5 m, A = 0 m, C = 1/6 m and B = 2π m−1 to ensure
∫

Ω̃
dΩ̃ =

∫
Φ̃
dΦ̃.

In the ridge and furrow geometry we choose Ω̃U , i.e., the region of soil where roots

are present, to be the top 30 cm (i.e., the plough layer [103]) of soil extending

radially from the top of the ridge. Similarly, we choose the subdomain Φ̃U to be the

top 30 cm of soil (see Figure 3.1). We note that
∫

Ω̃U
dΩ̃U 6=

∫
Φ̃U
dΦ̃U , however, this is

taken into account when establishing the parameter for root length density ld.
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3.3.2 Parameter Values

Summarised in Tables 3.2 and 3.3 are a list of the parameters used in the numerical

simulations. Detailed below are the parameter values and their origins.

Geometric, Soil, Environmental, Plant and Solute Parameter values

We use the same soil parameters as those discussed in Chapter 2 for a silt loam soil

i.e., φ = 0.396, m = 0.51, κs = 5.2× 10−14 m2 and pc = 23200 Pa [101]. It should be

noted that in some cases different tillage methods applied to soil can alter φ within

the system [150]. However, to ensure a ‘like for like’ comparison, we keep φ the

same in both soil domains to ensure that any differences we observe are an effect of

the soil geometry and not dependent on small local porosity variations within the

soil. For the viscosity of water we use µw = 1× 10−3 Pa s, for acceleration due to

gravity g = 9.81 m s−2 and for the density of water ρ = 1000 kg m−3.

Table 3.2: A table of all the parameters used in the numerical simulations for ridge
and furrow, and flat field tillage.

Parameter Description Value Units Reference
κs saturated permeability 5.2× 10−14 m2 [101]
m van Genuchten parameter 0.5 − [101]
φ porosity 0.396 − [101]
pc characteristic suction pressure 23200 Pa [101]
p0 basal geometry pressure −1× 104 Pa −
Ic infiltration capacity 1.6× 10−6 m s−1 [109]
pr root xylem pressure −5× 104 Pa [110]

λc effective uptake 2.355× 10−11 s−1 Pa−1 [103, 115]
[41, 116]

Df diffusion in free liquid 2× 10−9 m2 s−1 [31]
d impedance factor 2 − [145]
ρ density of water 1× 103 kg m−3 −
µw viscosity of water 1× 10−3 Pa s −
g gravity 9.81 m s−2 −
ζt saturated-partially saturated interface 1× 10−1 Pa −
σ Heaviside pressure 1× 104 Pa−1 −
x̃min minimum ponding depth 3× 10−4 m −
A variation in soil depth 0.16/0 m [47, 92]
B ridge wave number 2π/0 m−1 [47, 92]
C average soil depth 0.16 m [47, 92]
η width of Λ̃ 0.5 m [47, 92]

The impedance coefficient is bounded by d ∈ [0.5, 2] [145]. Furthermore, φw ∝∼ d so

that increased volumetric moisture content leads to an increase in the impedance

factor for a solute [151]. Given that we model a temperate UK climate with
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frequent heavy rainfall events, we take d = 2. Additionally, the diffusion coefficient

in free liquid for simple electrolytes is typically 1× 10−9 ≤ DF ≤ 3× 10−9 m2 s−1

[31]. Hence, we select Df = 2× 10−9 m2 s−1.

We simulate 24 weeks of solute and water movement in soil, in which vegetation is

present for the first 16 weeks as this is typical for Solanum tuberosum L. crops [152].

However, Solanum tuberosum L. root length density changes significantly over a 16

week growing season [103]. Lesczynski and Tanner (1976) [103] found that over

the first 30 days the root length density develops to ld ≈ 3× 104 m−2 in the plough

layer. This remains fairly constant until ≈ 90 days, in which ld density declines. In

order to capture this growth and development, we assign ld(t) the piecewise

function (in m−2),

ld(t) =



1× 103t 0 ≤ t < 30

3× 104 30 ≤ t < 90

3× 104 − (1× 103)(t− 90) 90 ≤ t < 120

0 120 ≤ t

. (3.32)

We note that these results were obtained with ridge and furrow tillage, hence we

account for this when determining ld(t) for the flat domain Φ̃. In order to ensure∫
Ω̃U
ld(t)dΩ̃U =

∫
Φ̃U
ld(t)dΦ̃U , we scale ld(t) in the flat geometry by the ratio of the

two root active areas
∫

Ω̃U
dΩ̃U :

∫
Φ̃U
dΦ̃U .

As in Chapter 2, we choose the parameter λc to take the value λc = 3.14× 10−5 s−1

MPa−1, and we assign the value for the infiltration capacity to be

Ic = 1.6× 10−6 m s−1. Furthermore, for the root pressure pr, given that we model

heavy rainfall that promotes considerable ponding, we chose the values pr = −0.05

MPa.

We show results of numerical simulations for multiple hypothetical solutes with

varying degradation rates and buffering capacity to determine the differences in

solute movement mechanisms between the ridge and furrow and flat soil

geometries. Table 3.3 shows a matrix of the solute parameters that are used in the

simulations.

We choose to model extremely mobile solutes (α1, α2, α3) with a buffer power of

b = 0.1, highly mobile solutes (β1, β2, β3) with a buffer power of b = 1, and

moderately mobile solutes γ1, γ2 and γ3 with a buffer power of b = 10.

It is generally accepted that degradation rates of pesticide-like solutes in soil

decrease with depth [153]. Hence one value for the decay constant τ is not valid for

the entirety of the soil domains in Figure 3.1. For the pesticides Isoproturon and
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Table 3.3: Matrix of simulated solutes used in the numerical simulations.

Extremely Mobile
b = 0.1

Highly Mobile
b = 1

Moderately Mobile
b = 10

High Degradation
t∗λ = 10 days α1 β1 γ1

Medium Degradation
t∗λ = 50 days α2 β2 γ2

Low Degradation
t∗λ = 500 days α3 β3 γ3

Metolachlor, the half-life is approximately doubled between the initial 0−30cm of

soil and 1m below the soil surface [154, 155]. Therefore, for spatially varying

degradation, we impose the function,

tλ(x̃) = t∗λ + |za|t∗λ (3.33)

where, t∗λ is the half-life of the solute in the plough layer and |za| is the absolute

depth below soil surface.

For the high degrading solutes (α1, β1, γ1) we choose the value for the half life

t∗λ = 10 days, for moderately degrading solutes (α2, β2, γ2) we select the value

t∗λ = 50 days, and for slow degrading solutes (α3, β3, γ3) we select the value t∗λ = 500

days. Recall that the half-life t∗λ relates to the solute decay constant τ by τ = ln(2)
t∗λ

.

Boundary and Initial Condition Parameters Values

For p0 which describes a constant saturation at the base of the geometry, we assign a

value of p0 = −10 kPa. This equates to a saturation level of approximately S ≈ 0.9

for a silt loam soil, thereby replicating a shallow water table. For the initial

condition for soil water pore pressure p∞(x̃), we choose the steady state profile that

forms in Ω̃ and Φ̃ prior to any rainfall. Hence, in each of the simulations, we allow

steady state to form so that ∂tpw = 0 before initiating rainfall.

Rainfall and Solute Application Parameter Values

We simulate solute and water movement over a 24 week period, in which vegetation

is present for the first 16 weeks. Solanum tuberosum L. crops are typically sown from

April to June and are harvested in September to November [152, 156]. As such, we

simulate this ‘growth and harvesting’ timeframe with an additional 8 weeks to

determine how solutes move once the crops are harvested.
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For the volume flux of water per unit soil surface area Γ̃(t), i.e., rainfall, we use 6

months of rainfall field data from a site in Newbury, UK between 1st June 2006 and

31st December 2006. This data can be seen in Figure 3.2. The data was recorded

from instruments that were installed into a slope next to the A34 Newbury bypass

(Ordnance Survey grid ref. SU455652). Acquisition of the data is described in

Smethurst et al. (2006) [157]. The return period for the rainfall, i.e., the likelihood

that the amount of rainfall is exceeded in subsequent years for the total annual

rainfall is 17 in 39 [158]. Hence, there is a 43.6 % chance this level of annual rainfall

will be exceeded in the future.

Figure 3.2: Newbury site experimental rainfall data over a 6 month period between
1st June 2006 and 31st December 2006. The green cross indicates the time for an
early solute application, and the orange cross indicates the time for a late solute
application.

We apply the solutes at one of two times during the numerical simulations, denoted

as the early and late applications. For the early application, the solute is applied to

the soil surface at the start of the simulation over the initial 24 hours, with a total

application of 1 kg ha−1, i.e., an application rate of cm(t) = 1.157× 10−9 kg m−2 s−1.

We choose to have a total application of 1 kg ha−1 as this is typical for fungicides

like Mancozeb, which have been applied to potato fields at multiple times

throughout the growing season [159].
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Similarly, for the late application, a solute is applied for 24 hours with the same

application rate at the beginning of the 15th week. These can be seen in Figure 3.2.

The early and late application times where chosen in order to determine how solute

movement is affected during a growing and degrading root system respectively.

Thus, for the early application, the solute is applied as soon as the root system

begins to grow, since it is common practice to apply herbicides pre-emergence of the

crops [159]. The late application is applied shortly after the root length density

begins to decrease, since pestiicides are frequently applied towards the end of

growing seasons for defoliation, i.e., to reduce the foliage of the crops [159].

3.4 Numerical Solutions

We conduct a total of 36 simulations; 9 simulations for the ridged geometry Ω̃ with

an early application (for all 9 hypothetical solutes in Table 3.3), 9 simulations for Ω̃

with a late application, 9 simulations for the flat geometry Φ̃ with an early

application and 9 simulations for Φ̃ with a late application.

3.4.1 Early Application Results

Shown in Figure 3.3 are the results for the early application solutes for both the

domains Ω̃ and Φ̃ for the moderately mobile solutes, i.e., γ1, γ2 and γ3 (see Table

3.3). The results in Figure 3.3 show the solute profiles in the two soil domains at

the time points of 16 and 24 weeks after the solute application. At 16 weeks after the

solute application, water uptake from vegetation stops as this simulates harvesting

and the removal of crops, and 24 weeks after the solute application is the end of the

simulation timeframe. Furthermore, an additional contour plot of concentration

10 µg l−1 (shown in white) is added to each profile; since this concentration is

frequently used as a pesticide safety threshold for root and tuber vegetables [160].

In Figure 3.4 and Figure 3.5 we show the results for the highly mobile (β1, β2, β3)

and extremely mobile (α1, α2, α3) solutes respectively.

For the moderately mobile solutes (γ1, γ2, γ3), we find that there is not significant

penetration of the solutes into either of the soil geometries due to the buffer power

of the solutes (see Figure 3.3). However, there are several features of solute

movement that can be identified. Firstly, we find the solute adjacent to the furrow

has penetrated deeper into the soil compared to the solute contained in the ridge.

Experimentally, deep furrow penetration has been attributed to the effects of

ponding in the furrow of the geometry from soil surface runoff [50], which is
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Figure 3.3: Early application solute profiles in the ridged and flat domains for the
moderately mobile solutes (γ1, γ2, γ3) after 16 and 24 weeks post solute application.
A white contour line indicating a safety threshold of 10 µg l−1 is also plotted. The
ridge and furrow, and flat domains are the same as those shown in Figure 3.1.

evident in the simulation results.

Furthermore, we note that due to roots taking up water, solute is drawn up towards

the ridges through the difference between the soil water pore pressure and pressure

in the root system. Chen et al. (2011) [161] found that in ridge and furrow

structures, water that infiltrated into the furrows of the system was transported to

the ridges, which in turn reduced water movement directly below the ridge. In the

simulations, this results in greater concentrations of solute in the ridges of the

system due to water transporting the solute. This coincides with the results of Smelt

et al. (1981) [123], who found the most solute residues in the ridges of the ridge

and furrow structures at the end of growing seasons. Similarly, Jaynes & Swan

(1999) [17] found substantially higher concentrations in the ridges of the structure

compared to the furrows.

In the flat soil domain, we find that the solute moves down uniformly and is

temporarily impeded by the roots that are present in the plough layer. When we

compare the solute penetration between the flat and ridged soils, we find the solute
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Figure 3.4: Early application solute profiles in the ridged and flat domains for the
highly mobile solutes (β1, β2, β3) after 16 and 24 weeks post solute application. A
white contour line of the safety threshold of 10 µg l−1 is also plotted. The ridge and
furrow, and flat geometries are the same as those shown in Figure 3.1.

in the flat domain moves to a greater absolute depth below the soil surface than the

solute contained in the ridges. This result coincides with Hamlett et al. (1990)

[162], who identified that placing solutes on the ridges of the structure substantially

reduced the amount leached compared to the flat field application. Jaynes & Swan

(1999) [17] supported this hypothesis, and in addition found that applications to

the ridges could provide increased quantities of solute to the plant, i.e., nutrients

and fertilisers.

However, we observe that the solute in the flat soil penetrates less than the solute

contained in the furrows of the ridged soil. This can be explained by the distribution

of ponding on the two soil domains. When ponding occurs on the flat soil, the

ponding depth is significantly shallower than the ridged soil, since the pond is

uniformly spread over the entire soil surface. Conversely, in the ridged soil the pond

is solely situated in the furrow. This in turn causes a greater body of water to

infiltrate into the furrow, causing deep solute penetration in this region of the soil,

but reducing the penetration of solutes in the ridges of the domain.
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Figure 3.5: Early application solute profiles in the ridged and flat domains for the
extremely mobile solutes (α1, α2, α3) after 16 and 24 weeks post solute application. A
white contour line indicating a safety threshold of 10 µg l−1 is also plotted. The ridge
and furrow, and flat domains are the same as those shown in Figure 3.1.

Similar properties can be observed in Figure 3.4 (for the solutes β1, β2, β3) and

Figure 3.5 (for the solutes α1, α2, α3) for the simulations containing highly and

extremely mobile solutes respectively. For the highly mobile solutes β1, β2 and β3 in

the ridged system (see Figure 3.4), the effect of solute accumulation in the ridges is

more pronounced. In the ridge simulation containing solute β3, we find that at 16

weeks post-solute application, a large quantity of the solute is contained in the

region of soil adjacent to the plant roots due to water transport to the ridges created

by the ridge and furrow structure [161, 163].

At 24 weeks (the end of the simulation), we find that the solute has penetrated

down into the soil as a concentrated spot that slowly diffuses out. We understand

that there is reduced solute movement when root uptake is present in soil [132].

Since roots are only present for the first 16 weeks, in the remaining 8 weeks the

solute is influenced to a greater extent by rainfall into the ridges. Hence, we observe

deeper solute penetration in the later portion of the simulation. Furthermore, we

note that for the highly degrading solute β1, the concentration drops below the
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10 µg l−1 threshold for both soil domains Ω̃ and Φ̃. This is due to the combination of

fast dispersion and short half-life. Therefore, in either geometry it is the slowly

degrading solutes (α3, β3, γ3) that are of critical importance.

Shown in Figure 3.5 are the results for the extremely mobile solutes α1, α2 and α3.

For the solute α3, we find that a quantity of the solute leaves the base of both soil

domains. In the ridge simulation, as an effect of the solute accumulating in the

ridges, the solute moves down the soil profile as a highly concentrated spot. Given

that the solute is drawn up into the ridges early in the simulation, the majority of

the solute is not influenced by later ponding in the furrows. Therefore, the solute

moves down solely under the influence of the rainfall that enters the ridge of the

soil, and thus takes longer to reach the base of the domain. Conversely, in the flat

simulation, we find that all of the solute is affected by ponding (albeit significantly

less than the furrow in the ridged soil). This leads to large quantities of the solute

reaching the base of the domain. We find that the total amount of solute that crosses

the base of the domain to be 0.26 mg in the ridged system, and 3.5 mg in the flat

system. These findings support the results observed by Hamlett et al. (1990)[162]

and Jaynes & Swan (1999)[17], who found that placing solutes on the ridges of the

structure may substantially reduce leaching compared to the flat field application.

Since applying the solute solely to the ridges negates the effects of ponding, this

reduces the penetration depth in the soil [130]. Furthermore, root uptake reduces

the solute movement in the ridges [132]. This causes the solute to remain near the

surface, allowing for easy solute extraction from the soil after harvesting.

In the ridge and furrow simulations, we observe that as an effect of water uptake

from plant roots, the movement of the solute from the furrow to the ridges protects

the solute from deep penetration, which would otherwise be caused by furrow

ponding. In comparison, the flat ground has a uniform surface that offers no

protection, hence all the solute is affected by ponding and rainfall. Therefore, the

average depth of the solute is reduced in the ridged soil compared to the flat soil

when this spot formation mechanic is present.

3.4.2 Late Application Results

Figure 3.6 shows the solute profiles for the early and late applications of the solutes

α3, β3 and γ3, i.e., those with slow degradation, in Ω̃ and Φ̃ at the end of the

simulations. It should be noted that in the early application simulations the solutes

are in the soil for a full 24 weeks, and for the late application simulations the solutes

have a total of 9 weeks in the soil. We choose to only show the slow degrading

solutes as these results show the most extreme behaviours and best highlight the
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effects of surface ponding. However, all other solutes exhibit similar qualitative

behaviour.

From the results presented in Figure 3.6 we can highlight several key features. In

the simulations containing the late application of the solutes α3, β3 and γ3 in Ω̃, we

find that a substantial quantity of solute penetrates into the furrow. This is

significantly different compared to the solute profile in the early application ridge

and furrow simulations, in which the solutes move towards the ridge and form a

concentrated spot.

Figure 3.6: Early and late application solute profiles in the ridged and flat domains
for the slow degrading solutes α3, β3 and γ3 at the end of the 24 week simulations. A
white contour line indicating a safety threshold of 10 µg l−1 is also plotted. The ridge
and furrow, and flat domains are the same as those shown in Figure 3.1.

Differences in the solute profiles between the early and late applications in the ridge

and furrow soil are attributed to three reasons. Firstly, we note that in the late

application simulation, the period of time that the solute is in the soil is less than in

the early application. Therefore, in the late application simulations, there has not

been sufficient time for the solute to be transported towards the ridge of the

structure via water that infiltrates into the furrows and moves to the ridges

[161, 163]. Secondly, in the late application, the root length density is beginning to

decline such that the root uptake is not as strong as earlier in the simulated growing

season (refer to equation (3.32)). Hence, the difference in the soil water pore

pressure between the ridge and the furrow is decreased, which causes less

movement of water and solute towards the ridge, which causes greater solute
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penetration [132]. The third reason for the reduction in spot formation comes from

the rainfall that occurs immediately after the late application. From Figure 3.3, we

note that there is an intense rainfall event shortly after the late application, which

causes significant ponding in the furrow of the soil structure. Given that the solute

has recently been applied to the soil, there has not been sufficient time for the

solute to collect in the ridges of the structure. Therefore, the solute contained in the

region of soil adjacent to the furrow is moved deep into the soil from water

infiltration via the pond, since surface runoff leading to pond infiltration acts as a

key transport mechanism for solutes [50].

From the rainfall data shown in Figure 3.3, we can see that the second three months

(representing the winter months) have more frequent ‘high-intensity’ rainfall events

compared to the first three months. In the late application simulations, this causes

the solute in the furrow of Ω̃ to move deep into the soil, and does not allow for the

formation of a spot in the ridges. This makes the solute in the furrow vulnerable to

leaching since heavy water treatments can generate substantial dispersion of solutes

in ridged soils [164]. The effect of the ‘time of ponding’ can be clearly seen in the

difference between the early and late application simulation results for the solute α3

in Ω̃. In the early application, the solute collects in the ridges of the system due to

little ponding and a growing root system, and then proceeds to move down as a

highly concentrated spot as the root length density decreases. However, in the late

application, through immediate surface ponding and a lack of roots, the solute

moves down with a wider distribution under the influence of infiltration of water

from the pond.

For the simulations of the extremely mobile solute α3, we note that in several cases,

at the end of the simulations some solute leaves the system via the base of the

geometry. Furthermore, we find that the total quantity that crosses the base of the

domain depends on the soil surface topology and time of application. In the early

application simulations, we find that the ridge domain leaches 0.26 mg, whereas the

flat system leaches 3.5 mg. However, in the late application, we find that the in

ridge domain the amount leached is 0.15 mg and in the flat system the amount

leached is 0 mg.

The model results suggest that the optimal geometry to reduce solute leaching is

dependent on two key aspects: the immediate rainfall regime after a solute

application, and the quantity of roots in the soil. We find that in the early solute

application simulations, there is not a substantial quantity of rainfall that generates

significant furrow ponding. This allows the solute to move towards the ridges of the

system under the influence of water movement, which is often observed in ridge

and furrow soils [161, 163]. This then protects the solute from future furrow



CHAPTER 3. COUPLED SOLUTE TRANSPORT AND WATER DYNAMICS MODEL 61

ponding since root uptake can reduce the solute movement in the ridges [132].

Contrastingly, in the late application simulations, we note that there is an immediate

heavy rainfall event after the solute application that causes substantial ponding.

This generates greater ponding in Ω̃ compared to Φ̃, which results in the solute in

the furrow to be transported deeper into the soil. This makes Ω̃ substantially more

vulnerable to solute leaching compared to Φ̃. Therefore, considerable rainfall that

causes ponding after a solute application may make the ridge tillaged soils more

susceptible to solute leaching.

3.4.3 Time of Rainfall versus Solute Leaching

From the results above, we conduct a series of simulations in order to test the

hypothesis that the time between solute application and a heavy rainfall event

influences the quantity of leaching in ridged soils. We set up five ridged and five flat

soil simulations, in which a solute (with the same properties as the solute α3) is

applied uniformly to each soil. One heavy rainfall event that generates substantial

ponding is then simulated at different times after the solute application in each

simulation. The rainfall event is chosen to last for 4 hours and have a rainfall

intensity of 12 mm hr−1, and the times between the solute application and the

rainfall event are chosen to be 1 day, 2 days, 4 days, 1 week and 2 weeks. One day

after the rainfall event, the total amount of solute that crosses the plough layer is

then calculated. The plough layer is chosen to be the soil above the horizontal line

of −0.15 m in both soil domains shown in Figure 3.1.

Figure 3.7 shows the total amount of solute (as a percentage of solute applied) that

crossed the horizontal line of −0.15 m in Ω̃ and Φ̃. For the simulations where the

heavy rainfall event is 1 day after the solute application, there are trace amounts of

leaching in Φ̃. However, in Ω̃ 11% of the solute that was applied leaches past the

plough layer. This is due to the infiltration of water into the furrow from ponding,

which transports the solute in the adjacent regions deep into the soil, since under

heavy rainfall, ridge and furrow systems can generate substantial dispersion of

solutes [164].

In the simulations that allow for longer periods of time between the solute

application and the rainfall event, the relationship between the amounts of solute

that are leached in the two domains changes. In the Ω̃ simulations, as the time

between solute application and rainfall event is delayed, more of the solute can

move towards the ridges of the soil via water transport to the ridges from the

furrows [161]. This causes less solute to be affected by the ponding and water

infiltration from the heavy rainfall event, causing less solute to move past the
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Figure 3.7: Total amount of solute leached past the plough layer in the ridge and
furrow soil Ω̃ and flat soil Φ̃ for simulations that delay the period of time between a
solute application and a heavy rainfall event.

plough layer. For example, when the time period between the solute application and

the rainfall is 14 days, we find that ≈ 1.5% of the solute applied is leached past the

plough layer.

However, Φ̃ exhibits the opposite behaviour. As the time between solute application

and rainfall event is delayed, a greater amount of solute is leached past the plough

layer. This is due to the solute diffusion in the system before the rainfall event.

Since we simulate an extremely mobile solute, the longer the solute is in the system

the more it diffuses. This causes the rainfall and pond infiltration to have a greater

effect on the transport of the solute. In the simulation with a 14 day period between

the solute application and the rainfall event, the total amount of leached solute is

≈ 11%.

Figure 3.7 illustrates a crossover between the total quantities of solute leached in

the plough layer for Ω̃ and Φ̃ after approximately 8 days. In the case study of an

extremely mobile solute and a single heavy rainfall event in a silt loam soil, we find

that any time below an 8 day delay between the solute application and the rainfall

event, the flat domain Φ̃ better reduces leaching. However, any time after an 8 day

delay, the ridge and furrow domain Ω̃ better reduces leaching, since the solute can

move towards the ridges and create a ‘zone of protection’ from ponding. However,

this crossover period will change significantly depending on the mobility of solute,

rainfall regime, and type of plant roots, i.e., in scenarios where the applied solute is
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less mobile and there are lower root densities present in the soil. This will require

greater time to observe the ridge accumulation, thereby delaying the crossover

period. Regardless, these results suggest that in specific situations, it could be either

the ridge and furrow soil or the flat soil that better reduces leaching.

In previous research, it has been found that ridge and furrow planting often leads to

greater leaching of solutes compared to the flat system [18, 58, 59]. However, it has

been observed that certain application procedures may reduce leaching in ridged

fields compared to flat fields [17, 126, 127]. This supports our findings as we

observe that water movement from the furrows into the ridges [163], can transport

solutes into the root adjacent zones of the structure and while held there by plant

roots [132], reduce the effect from dominant surface runoff and subsequent

infiltration [50]. As such, we find that ridge and furrow systems can also reduce

solute leaching.

3.4.4 Assumption Limitations

In order to ensure that any differences that were observed were geometry

dependent (between Ω̃ and Φ̃), we made several key assumptions. Hence, it may be

of interest to incorporate ridge and furrow specific factors in order to determine the

magnitude and severity of the mechanisms that were observed.

One of the key factors to consider is the soil water content in each of the ridge and

furrow and flat domains. Since water movement is the key transport mechanism for

solutes in soil [145], it is vital to accurately characterise the soil water profile in

both Ω̃ and Φ̃. In the mathematical model, a boundary condition on the base of the

domains was imposed such that a shallow water table approximately 1 m below the

soil surface is replicated. This allowed us to model solute movement within an

idealised soil domain. However, incorporating high spatial resolution field data to

capture the soil water profile in the domains Ω̃ and Φ̃ could indicate how different

water profiles influence the solute dynamics and mechanisms that were observed,

i.e., penetration from furrow ponding and transport to the ridges from the furrow.

Understanding the water profile in soil would also aid in accurately capturing the

infiltration mechanics of rainfall into the soil. We used hourly time resolved rainfall

data for a 24 week period, which limits the accuracy in capturing any change in

infiltration capacity. This could play a key role in determining the severity of

ponding and therefore the movement of solutes from the furrow to the ridges. Thus,

understanding the infiltration capacity and soil water content on a higher time and

spatial resolution may aid us in understanding the magnitude of the effects
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observed.

To further understand the solute collection and ‘hot spot’ formation mechanism that

was observed, knowledge of the root architecture would play a key role. This would

allow us to understand the distribution of root pressures in the root zones, i.e., Ω̃U

and Φ̃U , and hence predict the spatial distribution of solutes that collect in the

ridges of the soil geometry. This would provide a more quantitate analysis of specific

case studies relating to different solutes and root systems. Furthermore, knowledge

of the harvestable crop product distribution, i.e., tubers in the soil could be

included. We neglect any influence from tubers in the soil, which may impede the

transport of water and solutes due to their size and clustered growth. This could be

a key aspect that may affect solute movement to the ridges of ridged soils.

Earlier we stated that in order to obtain a ‘like for like’ comparison, we kept the

porosity φ between the ridge and furrow and flat systems the same. However, we

understand that some tillage methods can affect φ. Hence, it would be useful to

determine how any effect from tillage would affect the solute movement from the

furrows to the ridges and therefore the impact on the spot formation in the ridges.

This could have a substantial effect on the time required for the solute in the

furrows to move to the ridges of the system.

In all of the simulations we neglected any solute uptake by roots, and only modelled

passive solutes that are not actively taken up by plants. This was in order to model

the ‘worst case scenario’, such that we could observe the most devastating effects

from leaching. However, we have set up the model so that including solute uptake

by plants could be easily incorporated, which would allow us to examine case

studies in which the solute is actively removed from the system due to plant roots.

3.5 Conclusions

In this chapter, we extended the model from Chapter 2 to construct a system of

equations that describe coupled solute transport, water movement and ponding

within a ridge and furrow soil system. Using the model we presented a comparison

of water and solute movement between a ridge and furrow, and a flat planting

system. We simulated the movement of solutes with varying mobility and

degradation in the two systems to observe how the structure of the soil surface

influences solute movement.

Previous literature found contrasting results, suggesting that ridge and furrow

systems may be vulnerable to solute leaching [18, 58, 59], or can significantly



reduce solute leaching [17, 126, 127]. The numerical modelling results explained

this discrepancy and showed that the ridge and furrow structure could either

impede or increase the penetration of solutes in soil, depending on the immediate

rainfall activity after a solute application and the quantity of roots in the soil. In

scenarios in which there was considerable rainfall that generated substantial

ponding immediately after a solute application, we found that due to the water

infiltration from the surface, advection acted as a strong transport mechanism for

solutes in the furrow. This caused solutes in the furrow to move to a significantly

greater depth when compared to the flat ground profile, in which due to the surface

topology the influence of ponding is not so substantial.

However, we found that these trends are reversed for scenarios in which there is not

significant ponding after a solute application. Instead, we observed that with the

presence of roots in the ridges, this caused a dominant pressure gradient to form

between the soil water pore pressure and the pressure in the root xylem. This in

turn, caused the solute in the ridged system to move toward the root abundant soil,

where the solute accumulates into a concentrated spot adjacent to the root zone in

the ridges of the structure. This effect impedes the movement of the solute

compared to the flat field, as the large majority is contained in the ridge of the

structure, and is only influenced directly by infiltrated rainfall on the ridges, i.e., no

influence from furrow ponding. This mechanism can substantially reduce the

quantity of solute that moves deep into the soil.

We observed that the vulnerability of the ridged system stems from the immediate

ponding on the soil surface after the application of a solute, and is not a function of

the structure itself. This solute movement mechanism should be noted when

farming in semi-arid soils in which, formal irrigation down the furrow is required,

i.e., creating constant furrow ponding to allow sufficient water to the crop, since this

mechanism may be contributing to the deep penetration of solutes into soils.





Chapter 4

Multiple Scale Homogenisation of
Water Movement

In this chapter, we use the water movement model from Chapter 2 and apply the

method of multiple scale homogenisation to develop a set of approximate equations.

These equations describe water movement in the plough layer of soil, where crops

are planted, grown and harvested. Particular focus is paid to the impedance of

water movement due to crops in the soil, i.e., potato tubers. We validate the

homogenisation procedure by comparing the full set of equations to the

approximate equations and find there to be a difference of . 2% between the two

sets of solutions. Furthermore, we find that the computation time for the

approximate equations is reduced by a factor of O(102) compared to the full set of

equations for a typical 3D problem.

4.1 Introduction

Often when studying plant-soil systems, the experimental or mathematical

techniques used are governed by the scale that is being analysed. Naturally, there

are several different scales of interest when analysing plant-soil systems. These

range from the large field scale to the very small pore scale [165]. Understanding

the scale of interest is vital when considering possible experimental techniques. For

example, X-ray computed tomography methods are used to examine small scale root

hair distributions [166], and field scale dissections are used to observe large

macroscale changes [167].

Similarly, when constructing mathematical models to represent plant-soil systems,

the scale considered is crucial when developing models to capture the important

67
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physical processes. For small scale pore studies, mathematical models can utilise

equations such as the Cahn-Hilliard equation for phase separation between air and

water, in order to understand the interaction at the air-water interface and on the

soil mineral surfaces [168]. However, employing Cahn-Hilliard type mathematical

models would be unnecessary and computationally prohibitive when considering a

large ‘plant scale’ study. The computational requirement to resolve a plant scale

geometry at the resolution to employ air-water interface models would be

monumental. For example, if we consider a cylindrical soil column with a radius of

5 cm and a depth of 20 cm, this would have a volume of 500π cm3. The typical

air-water interface is approximately 0.1 µm, hence an element size of 0.02 µm would

be required. This would generate ≈ 1012 elements, which would require several

terabytes to simply store the solution. Instead, for larger scales, continuum

mathematical models are implemented. For example, to model partially-saturated

soil on the plant/field scale (as in Chapters 2 and 3), Richards’ equation is used

[169]. Hence, there is an effective discontinuity between the two scales in which

physics on the small pore scale can be lost when deriving continuum models.

There has been substantial mathematical research conducted on bridging the gap

between small and large scale models to create concrete continuum models that are

derived from small scale models, in which more specific physics is considered [170].

One technique that has been particularly important in analysing the influence of

small scale physics on the large scale is the method of multiple scale

homogenisation [171]. This technique has been vital in combining small and large

scale physics in porous media covering a wide range of applications [172].

Multiple scale homogenisation is a mathematical technique that is used to derive a

system of averaged macroscopic equations that are parameterised by associated cell

problems, derived from the inherent microscopic structure of the domain/geometry

that is considered [171]. The underlying assumption of homogenisation is that there

are two independent length scales, these being the micro- (ly) and macro- (lx) length

scales. The ratio between the two length scales is often very small and is denoted

ly/lx = ε� 1. It is this small parameter that forms the basis for homogenisation.

Homogenisation was first developed for periodic heterogeneous structures, however

this technique has been used successfully in a wide range of porous media and soil

applications including: modelling saturated fluid flow [173], two-phase fluid flow

[174], wave propagation in poroelastic materials [175] and single-phase fluid flow

in double porosity systems [176].

Frequently when studying the transport of water and solutes in soil, complex

geometries are often required to capture the intrinsic details contained in the
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microscopic structure of the scale that is considered. This typically requires vast

amounts of computation time and resources [177]. Hence, it is often favourable to

construct an averaged macroscopic domain such that the macroscale transport

properties can be obtained directly from the microscale information [178].

One of the key results using homogenisation in porous media is the derivation of

Darcy’s law from Stokes flow [172]. Darcy’s law was first proposed in 1856 to

describe the the velocity of liquids in porous materials under specific pressure

gradients [102]. Darcy’s law takes the form,

v = −κ
µ

(∇p+ ρgê3), (4.1)

where v [m s−1] is the fluid velocity, κ [m2] is the permeability of the porous domain,

p [Pa] is the fluid pressure, µ [Pa s] is the fluid viscosity, ρ [kg m−3] is the fluid density

and g [m s−2] is gravity. Darcy’s law was initially derived empirically from a series of

sand flow experiments [102]. However, by applying multiple scale homogenisation

to the equations for Stokes flow in a periodic porous domain, i.e.,

µ∇2v −∇p = 0, (4.2)

∇ · v = 0, (4.3)

the resulting governing equation becomes,

v = −K

µ
(∇p+ ρgê3), (4.4)

where K [m2] is the ‘effective permeability’, a second rank tensor that is calculated

from an associated cell problem, based on the intrinsic microscopic structure of the

porous material [179]. Here equation (4.4) has the same functional form as Darcy

flow in equation (4.1).

This example is shown in Figure 4.1, where the geometry dependent equations for

Stokes flow, i.e., equations (4.2) and (4.3) are imposed on the heterogeneous soil

domain in Figure 4.1 (a). Shown in Figure 4.1 (b) is the homogeneous domain that

results from the homogenisation procedure, in which the geometry independent

equations for Darcy flow are imposed, i.e., equation (4.4). In order to parameterise

the effective permeability parameter K in equation (4.4), a cell problem is solved to

determine the ‘effective impedance’ from the heterogeneous domain shown in

Figure 4.1 (a).

Another key result is the rigorous derivation of Richards’ equation for water

movement and transport in partially saturated soil. Richards’ equation forms the
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Figure 4.1: An example of multiple scale homogenisation. (a): Shown is a hetero-
geneous soil domain in which the geometry dependent equations of Stokes flow are
imposed.
(b): Shown is the homogenous domain that results from the homogenisation proce-
dure, in which the geometry independent equations of Darcy flow are imposed. Here
the equations for Darcy flow are parameterised from a cell problem that captures the
effective impedance from (a).

basis of the models developed in the first two chapters of this thesis, since it

describes water movement as a continuum, which is important for describing

saturation gradients across large areas of soil. Richards’ equation was first published

in 1931 [100], and is typically parameterised from experimental water-release

curves [68, 180]. However, recently Richards’ equation has been formally derived

from the Cahn-Hilliard model using homogenisation [174]. This takes the first

principle approach for minimising a free energy interface between air and water,

i.e., modelling a partially saturated soil, and using the upscaling technique, a

macroscale set of equations are determined, which are parameterised by the

microscale soil structure. The water-release curves to parameterise Richards’

equation can then be determined from a series of cell problems, avoiding the

requirement to conduct expensive and time consuming experiments.

In this chapter, we construct a set of macroscale equations using homogenisation to

describe the movement and transport of water in the plough layer of soil in which

crops are grown and harvested, i.e., the subdomain Λ̃U as shown in Figure 2.2 (a).

Using the water movement model from Chapter 2 and a soil domain that contains
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potato tubers, we apply the method of multiple scale homogenisation to derive a set

of averaged equations that accurately capture the movement of water in this region

of soil. This model can then be incorporated into the water movement and ponding

model from Chapter 2.

Figure 4.2: A schematic diagram of potato tubers in the plough layer of soil. Here
Λ̃A is the region of soil absent roots, Λ̃U is the region of soil with roots, ∂Λ̃S is the
soil surface boundary, ∂Λ̃B is the base of the domain, ∂Λ̃W is the boundary adjacent
to the ridge, ∂Λ̃E is the boundary adjacent to the furrow and a visualisation of tubers
in Λ̃U is shown. Furthermore, a photo of a recently harvested potato plant is shown.
Photo from https://mumbaifarmer.files.wordpress.com/2014/09/potato-harvest.jpg

4.2 Crop Growth in Ridged Soils

The water movement and ponding model from Chapter 2 was developed for a

generalised ridge and furrow domain Λ̃, as shown in Figure 2.2 (a). We considered

the entire soil domain Λ̃ to be uniform and homogenous with the only difference
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within the soil being the region of water uptake by plant roots. We denoted the

subdomain Λ̃U ⊂ Λ̃ to be the region of soil that contains plant roots, since crops are

typically sown in the ridges of ridge and furrow soils. As such, when the plants

develop and grow, the subdomain Λ̃U will begin to contain harvestable crop

products, i.e., potato tubers. A schematic of this is shown in Figure 4.2.

In the region of soil Λ̃U , large clusters of potatoes can occupy much of the space in

the ridges of the soil, particularly near harvest (see photo in Figure 4.2). In these

regions, as the potato tubers increase in size and volume, they impede the

movement of water that infiltrates due to rainfall. This reduces the rate at which

water is transported through the plough layer of soil. Hence, fully grown potato

tubers may have a significant effect on the movement of water in the plough layer

and adjacent areas of soil. Additionally, since water movement is a key mechanism

for solute transport, this may heavily influence the transport of nutrients and

fertilisers in the root abundant areas of soil.

In the following section, we use the water movement model from Chapter 2 and

apply multiple scale homogenisation to develop a set of averaged equations specific

to the region of soil Λ̃U . This will allow us to describe macroscopic water movement

in the plough layer while capturing the effect of impedance from the potato tubers

without having to explicitly account for every tuber, since modelling each individual

potato tuber in the plough layer of soil, would be a heavily user-intensive process.

For simplicity, we assume the tubers to be spherical, however, it is trivial to extend

for any shape to represent carrots, turnips etc.

4.3 Theory

4.3.1 Plough Layer Domain

In order to develop a system of equations for water movement in the plough layer of

soil, i.e., Λ̃U , we consider an idealised geometry in which the potato tubers are

repeating and periodic. This can be seen in Figure 4.3 (a), where Ψ̃ [m3] is the

plough layer domain, Ψ̃S [m3] is the soil subdomain and Ψ̃pj [m3] are the

j = 1, . . . , N potato tubers each with a boundary Γ̃j [m2] between the tubers Ψ̃pj and

the soil Ψ̃S.
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Figure 4.3: (a): Dimensional schematic of a plough layer domain containing potato
tubers, where Ψ̃ is the total plough layer domain, Ψ̃S is the soil subdomain, Ψ̃pj are
the j = 1, . . . , N potato tubers and Γ̃j are the boundaries between the tubers and the
soil. In addition, lx is the macroscale, ly is the microscale and ε = ly/lx.
(b): Schematic of the dimensionless macroscale domain Ψ and microscale domain
Π, where ΨS is the soil domain, ∂ΨE is the external boundary of Ψ, ΠS is the soil
domain, Πp is a potato tuber, Γ is the boundary between ΠS and Πp, ∂ΠE is the
external boundary of the periodic cell and r is the radius of Πp.

4.3.2 Governing Equations

On the soil domain Ψ̃S ⊂ Ψ̃ we impose the governing equations from the model in

Chapter 2, i.e.,
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[1−HS(p̃w)]φ
∂S(p̃w)

∂p̃w

∂p̃w

∂t̃
= ∇̃ ·

{
κsκ[S(p̃w)]

µw

(
∇̃p̃w + ρgê3

)}
−λc(p̃w−pr) in Ψ̃∞S ,

(4.5)

where, Ψ̃∞S = Ψ̃S × (0,∞) (where (0,∞) denotes the time domain), and,

∂S(p̃w)

∂p̃w
=

m

[(
−p̃w
pc

) m
1−m

+ 1

]−m−1 (
−p̃w
pc

) m
1−m

pc(1−m)
, (4.6)

κ[S(p̃w)] =


1 for pw ≥ −ζt[(

−p̃w
pc

) m
1−m

+ 1

]−m
2
(

1−

{
1−

[(
−p̃w
pc

) m
1−m

+ 1

]−1
}m)2

for pw < −ζt
.

(4.7)

Since we now consider the individual potato tubers Ψ̃pj in Ψ̃, we require an

additional boundary condition on the surface of the tubers Γ̃j. We assume that

water does not infiltrate the tubers, hence, we impose a zero flux boundary

condition on Γ̃j, i.e.,

n̂ ·
{
κsκ[S(p̃w)]

µw

(
∇̃p̃w + ρgê3

)}
= 0 on Γ̃j. (4.8)

It should be noted that in this model, we limit the boundary condition on the

surface of the tubers to a zero flux condition, i.e., ignoring any effects from

preferential flow, which may be caused by the interface between the soil and tuber.

We strictly consider the impedance caused due to the tuber occupying space within

the soil domain.

4.3.3 Non-dimensionalisation

Here we non-dimensionalise the system of equations (4.5) − (4.8). We are

interested in the macroscopic properties of the system of equations whilst retaining

the influence of the microscopic structure. From Figure 4.3 we identify there are

two different length scales, the microscopic length scale ly [m] and the macroscopic

length scale lx [m], where ly/lx = ε� 1 [− ]. We choose to non-dimensionalise (4.5)

− (4.8) using the scaling,

x̃ = lxx, t̃ =
φµwl

2
x

κspc
t, p̃w = pcpw. (4.9)
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Shown in Figure 4.3 (b) is the non-dimensionalised macroscopic domain Ψ and

microscopic domain Π. In (4.9) we use the macroscopic length scale lx as the spatial

scaling to capture the large scale effects, the ‘effective diffusivity’ φµwl
2
x

κspc
for the time

scaling and the suction characteristic pc as the pressure scaling. It follows that the

system of equations becomes,

[1−HS(pw)]
∂S(pw)

∂pw

∂pw
∂t

= ∇ ·
{
κ[S(pw)] (∇pw + ρê3)

}
− (pcpw − pr) in Ψ∞S ,

(4.10)

n̂ ·
{
κ[S(p̃w)]

µw

(
∇̃p̃w + ρê3

)}
= 0 on Γj, (4.11)

where,

∂S(pw)

∂pw
=

m

[
(−pw)

m
1−m + 1

]−m−1

(−pw)
m

1−m

(1−m)
, (4.12)

κ[S(pw)] =


1 for pw ≥ −ζt[

(pw)
m

1−m + 1

]−m
2
(

1−

{
1−

[
(−pw)

m
1−m + 1

]−1
}m)2

for pw < −ζt
,

(4.13)

and

ρ =
ρglx
pc

, pc =
λcpcµwl

2
x

κspc
, pr =

λcprµwl
2
x

κspc
. (4.14)

In Chapter 2, we estimated the parameters contained in the water-ponding model,

which are contained in Table 2.1. Here we have one new parameter to consider, the

macro length scale lx. Since we are considering the plough layer of soil, we choose

the parameter to be the average plough layer depth, i.e., lx = 0.3 m [103].

Using the estimated parameters from Table 2.1 and lx = 0.3 m, we observe that all

the non-dimensionalised parameters in (4.14) are of the same order of magnitude,

i.e., ρ = pc = pr = O(1). Hence, there are no terms in the system of equations (4.10)

− (4.13) that are O(ε) other than the ratio between ly and lx.

4.3.4 Homogenisation

In this section, we use multiple scale homogenisation to develop a set of averaged

macroscale equations that describe the movement of water in the plough layer of

soil. We observe there are two different length scales present in the geometry Ψ̃, the

macro length scale lx and the micro length scale ly. Any change of O(1) on the

macroscopic length scale will result in a O(ε) change on the microscopic length

scale. We can formalise this by assuming that the dependent variable pw is a
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function of the small scale y and large scale x. We denote the unit cell Π

representing the microscale domain y ∈ Π ≡ [−1/2, 1/2]3. Using the two length

scales and chain rule, the gradient operator is written,

∇ = ∇x + ε−1∇y. (4.15)

Furthermore, we expand pw such that,

pw = pw0 + εpw1 + ε2pw2 +O(ε3). (4.16)

The system of equations we homogenise is given by,

[1−HS(pw)]
∂S(pw)

∂pw

∂pw
∂t

= ∇ ·
{
κ[S(pw)] (∇pw + ρê3)

}
− (pcpw − pr) in Π∞S ,

(4.17)

n̂ ·
{
κ[S(pw)] (∇pw + ρê3)

}
= 0 on Γ× [0,∞), (4.18)

periodic on ∂ΠE, (4.19)

where ΠS is the microscale domain shown in Figure 4.3.

The first step of the homogenisation procedure is to determine the most dominant

terms in the system of equations (4.17) − (4.19). To do this, we substitute

equations (4.15) and (4.16) into (4.17) − (4.19) and collect the largest terms of

order O(ε−2). This yields,

∇y ·
{
κ[S(pw0)]∇ypw0

}
= 0 in ΠS, (4.20)

n̂ ·
{
κ[S(pw0)]∇ypw0

}
= 0 on Γ, (4.21)

periodic on ∂ΠE. (4.22)

Theorem 4.3.1. Equations (4.20) − (4.22) have the solution pw0 = pw0(x, t), i.e., pw0

has large scale dependence only.

Proof. We observe from (4.20) that,∫
ΠS

pw0∇y ·
{
κ[S(pw0)]∇ypw0

}
dΠS = 0. (4.23)

Applying Green’s first identity to (4.23) yields,∫
Γ

pw0n̂ ·
{
κ[S(pw0)]∇ypw0

}
dΓ−

∫
ΠS

∇ypw0 ·
{
κ[S(pw0)]∇ypw0

}
dΠS = 0. (4.24)
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Using (4.21) to eliminate the first term, we find,∫
ΠS

∇ypw0 ·
{
κ[S(pw0)]∇ypw0

}
dΠS = 0. (4.25)

Equation (4.25) can be expressed as,∫
ΠS

||∇ypw0||2L2κ[S(pw0)] dΠS = 0, (4.26)

where ||·||L2 is the L2 norm, i.e., ||x||L2 =
√
〈x,x〉 =

√
x2

1 + ...+ x2
n. We observe that

κ[S(pw0)] > 0, since κ[S(pw)]→ 0 as pw → −∞, therefore in order satisfy (4.26),

||∇ypw0||2L2 = 0. By definition, ||x||L2 = 0 ⇐⇒ x = 0, hence,

||∇ypw0||2L2 = 0 ⇒ ∇ypw0 = 0 ⇒ pw0 = C, (4.27)

where C is independent of the small scale y. Therefore, pw0 = pw0(x, t).

From Theorem 4.3.1 we observe that pw0 has large scale dependence only and is

independent of the small scale y, however, we receive no other information

regarding the solution of pw0.

To proceed, we collect the second most important terms in the system of equations

(4.17) − (4.19). This is achieved by collecting terms of order O(ε−1), i.e.,

∇y ·
{
κ[S(pw0)]∇ypw1 + κ[S(pw0)]∇xpw0 + pw1

δκ

δpw

∣∣∣∣
pw=pw0

∇ypw0 + ρκ[S(pw0)]ê3

}
+

∇x ·
{
κ[S(pw0)]∇ypw0

}
= 0 in ΠS, (4.28)

n̂ ·
{
κ[S(pw0)]∇ypw1 + κ[S(pw0)]∇xpw0 + pw1

δκ

δpw

∣∣∣∣
pw=pw0

∇ypw0+

ρκ[S(pw0)]ê3

}
= 0 on Γ, (4.29)

periodic on ∂ΠE. (4.30)

Using the result from Theorem 4.3.1, i.e., ∇ypw0 = 0, the system of equations (4.28)

− (4.30) reduces to,

∇y ·
{
κ[S(pw0)]∇ypw1

}
= 0 in ΠS, (4.31)

n̂ ·
{
κ[S(pw0)]∇ypw1 + κ[S(pw0)]∇xpw0 + ρκ[S(pw0)]ê3

}
= 0 on Γ, (4.32)
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periodic on ∂ΠE. (4.33)

To ensure that equations (4.31) − (4.33) form a well-posed problem, i.e., the

equations have a solution that agrees with the boundary conditions, we assess the

solvability of the equations. To check the solvability of the system (4.31) − (4.33),

we apply the divergence theorem to equation (4.31) and use the boundary

condition (4.32) such that,∫
ΠS

∇y ·
{
κ[S(pw0)]∇ypw1

}
dΠS =

∫
Γ

n̂ ·
{
κ[S(pw0)]∇ypw1

}
dΓ =

−
∫

Γ

n̂ ·
{
κ[S(pw0)]∇xpw0 + ρκ[S(pw0)]ê3

}
dΓ =

−
∫

ΠS

∇y ·
{
κ[S(pw0)]∇xpw0 + ρκ[S(pw0)]ê3

}
dΠS = 0. (4.34)

Equation (4.34) confirms the problem is well-posed as the governing equations and

boundary conditions agree.

To proceed with the homogenisation procedure, we rescale pw1 such that,

pw1(x,y) =
3∑

k=1

χk(y)∂xkpw0 + γk(y)ρ+ p̆w1(x), (4.35)

where p̆w1(x) is the component of pw1(x,y) that is large scale only. Substituting

(4.35) into (4.31) − (4.33) yields,

∇y ·
{
κ[S(pw0)]∇yχk

}
∂xkpw0 + ∇y ·

{
ρκ[S(pw0)]∇yγk

}
= 0 in ΠS, (4.36)

n̂ ·
{
κ[S(pw0)]∇yχk + êk

}
∂xkpw0 + n̂ ·

{
ρκ[S(pw0)]∇yγk + ρκ[S(pw0)]ê3

}
= 0 on Γ,

(4.37)

periodic on ∂ΠE. (4.38)

Equations (4.36) − (4.38) can then be reduced to the two problems denoted (A)

and (B),

A =


∇y · (∇yχk) = 0 in ΠS

n̂ · (∇yχk + êk) = 0 on Γ

periodic on ∂ΠE

, (4.39)

B =


∇y · (∇yγk) = 0 in ΠS

n̂ · (∇yγk + ê3) = 0 on Γ

periodic on ∂ΠE

, (4.40)

for k = 1, . . . , 3. Note that that (B) = (A) when k = 3. The problems (A) and (B) are
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denoted cell problems, which take into account the intrinsic repeated microscale

geometry within the macroscale domain. The cell problems in this application

capture the water impedance around the tubers and are used as a representative of

the periodic domain. The cell problem solutions χk [m] and γk [m] in (A) and (B) are

used in the final stage of the homogenisation procedure. Examples of the cell

problem (A) can be seen in Figure 4.4 for tubers of varying sizes.

Figure 4.4: Examples of solutions to the cell problem (A) in (4.39) for the non-
dimensionalised tuber radii r = 0.1 and r = 0.2. The top two images show the full
solutions in three dimensions. The bottom two images show the central solution slice
in two dimensions.

The final stage of the homogenisation procedure is to collect terms O(ε0). This leads
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to the system of equations,

[1−HS(pw0)]
∂S(pw0)

∂pw0

∂pw0

∂t
= ∇y ·

{
κ[S(pw0)] (∇ypw2 + ∇xpw1) + pw1

δκ

δpw

∣∣∣∣
pw=pw0

(∇ypw1 + ∇xpw0)+

(
pw2

δκ

δpw

∣∣∣∣
pw=pw0

+
1

2
p2
w1

δ2κ

δp2
w

∣∣∣∣
pw=pw0

)
∇ypw0+ρpw1

δκ

δpw

∣∣∣∣
pw=pw0

ê3

}
+

∇x ·
{
κ[S(pw0)] (∇ypw1 + ∇xpw0) + pw1

δκ

δpw

∣∣∣∣
pw=pw0

∇ypw0 + ρκ[S(pw0)]ê3

}
−

(pcpw0 − pr) in Π∞S , (4.41)

n̂ ·

{
κ[S(pw0)] (∇ypw2 + ∇xpw1) + pw1

δκ

δpw

∣∣∣∣
pw=pw0

(∇ypw1 + ∇xpw0) +(
pw2

δκ

δpw

∣∣∣∣
pw=pw0

+
1

2
p2
w1

δ2κ

δp2
w

∣∣∣∣
pw=pw0

)
∇ypw0+ρpw1

δκ

δpw

∣∣∣∣
pw=pw0

ê3

}
= 0 on Γ×[0,∞),

(4.42)

periodic on ∂ΠE × [0,∞). (4.43)

To check equations (4.41) − (4.43) provide a well-posed problem, we check the

solvability of the system of equations. To check for solvability we integrate equation

(4.41) over the domain ΠS,

∫
ΠS

[1−HS(pw0)]
∂S(pw0)

∂pw0

∂pw0

∂t
dΠS =

∫
ΠS

∇y ·

{
κ[S(pw0)] (∇ypw2 + ∇xpw1) +

pw1
δκ

δpw

∣∣∣∣
pw=pw0

(∇ypw1 + ∇xpw0) +

(
pw2

δκ

δpw

∣∣∣∣
pw=pw0

+
1

2
p2
w1

δ2κ

δp2
w

∣∣∣∣
pw=pw0

)
∇ypw0+

ρpw1
δκ

δpw

∣∣∣∣
pw=pw0

ê3

}
dΠS +

∫
ΠS

∇x ·
{
κ[S(pw0)] (∇ypw1 + ∇xpw0) + pw1

δκ

δpw

∣∣∣∣
pw=pw0

∇ypw0 + ρκ[S(pw0)]ê3

}
dΠS −

∫
ΠS

(pcpw0 − pr) dΠS. (4.44)

By applying the divergence theorem to equation (4.44) and using boundary

condition (4.42) we observe that,∫
ΠS

[1−HS(pw0)]
∂S(pw0)

∂pw0

∂pw0

∂t
dΠS =

∫
ΠS

∇x ·
{
κ[S(pw0)] (∇ypw1 + ∇xpw0) +

pw1
δκ

δpw

∣∣∣∣
pw=pw0

∇ypw0 + ρκ[S(pw0)]ê3

}
dΠS −

∫
ΠS

(pcpw0 − pr) dΠS. (4.45)
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We define,

||·|| =
∫
·
d·, (4.46)

and use equation (4.35) to yield,

||ΠS||[1−HS(pw0)]
∂S(pw0)

∂pw0

∂pw0

∂t
=

∫
ΠS

∂

∂xi

{
κ[S(pw0)]

(
∂χj
∂yi

∂pw0

∂xj
+
∂pw0

∂xi

)
+

ρκ[S(pw0)]

(
∂γk
∂yi

+ ê3

)}
dΠS − ||ΠS||(pcpw0 − pr) in Π∞S , (4.47)

where ||ΠS|| is the volume integral of the cell problem.

Through algebra manipulation, equation (4.47) results in the equation for pw0,

||ΠS||[1−HS(pw0)]
∂S(pw0)

∂pw0

∂pw0

∂t
= ∇x ·

{
κ[S(pw0)]De∇xpw0 + ρκ[S(pw0)]Ke

}
−

||ΠS||(pcpw0 − pr) in Π∞S , (4.48)

where,

De =

∫
ΠS

∇yχk ⊗ êk + T dΠS, (4.49)

Ke =

∫
ΠS

∇yγk + ê3 dΠS, (4.50)

where T [− ] is the second rank identity tensor. This results identifies that equations

(4.41) − (4.43) provide a well-posed problem if and only if equation (4.48) has a

solution.

Since Ke = Deê3, we can re-write (4.48) as,

||ΠS||[1−HS(pw0)]
∂S(pw0)

∂pw0

∂pw0

∂t
= ∇x ·

{
κ[S(pw0)]De (∇xpw0 + ρê3)

}
−

||ΠS||(pcpw0 − pr) in ΠS. (4.51)

Here equation (4.51) is known as the homogenised equation for the system of

equations (4.17) − (4.19). Recall the relationship pw = pw0 + εpw1 + ε2pw2 +O(ε3).

The full equations (4.17) − (4.19) solve for pw, whereas the homogenised equation

(4.51) solves for the leading component only, i.e., pw0. In order to solve the

homogenised equation (4.51) however, the cell problem solutions for (A) and (B)

are used to determine De [m2 s−1] and ||ΠS|| [− ], which capture the impedance

effect from the tubers.

We observe that the homogenisation procedure has resulted in the approximate

equation (4.51), which takes a similar functional form to Richards’ equation, i.e.,
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(4.17). Hence, a homogenised Richards’ equation is simply another Richards’

equation. This result is common to homogenisation, in which homogenised second

order parabolic PDEs often result in an ‘effective’ second order parabolic PDE.

Theorem 4.3.2. The parameter De has unique values generated from the cell problem
(4.39).

Proof. Let χak and χBk be solutions to (4.39) and define ϕk = χak − χbk. We observe

that ϕk satisfies the problem,
∇y · (∇yϕk) = 0 in ΠS

n̂ · (∇yϕk) = 0 on Γ

periodic on ∂ΠE

. (4.52)

It follows that, ∫
ΠS

ϕk∇y · (∇yϕk) dΠS = 0. (4.53)

Applying Green’s first identity to (4.53) yields,∫
Γ

ϕkn̂ · (∇yϕk) dΓ−
∫

ΠS

∇yϕk · (∇yϕk) dΠS = 0, (4.54)

using n̂ · (∇yϕk) = 0, (4.54) reduces to,∫
ΠS

||∇yϕk||2L2 dΠS = 0. (4.55)

By definition ||·||L2 ≥ 0, hence,

||∇yϕk||2L2 ≥ 0 ⇒ ||∇yϕk||L2 = 0. (4.56)

Furthermore, ||x||L2 = 0 ⇐⇒ x = 0, hence,

∇yϕk = 0 ⇒ ∇yχ
a
k = ∇yχ

b
k. (4.57)

Therefore (4.39) has a unique gradient of the solution ∇yχk, i.e., a unique solution

χk with an additive constant. Since De = De (∇yχk), De is unique.

4.4 Validation of the Homogenisation Procedure

To validate the mathematical steps used in the homogenisation procedure, we

compare the homogenised equations (4.49) and (4.51) to the full set of equations
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(4.17) − (4.19) for two different saturation regimes. Firstly, we consider a partially

saturated soil domain, since potatoes typically grow in partially saturated soil.

However, to test the homogenisation procedure, we also consider a variably

saturated soil that has regions of partially and fully saturated soil to highlight that

the approximate equations successfully capture a moving saturated-partially

saturated interface. In each of the saturation regimes we conduct multiple

comparisons by varying the parameters in the two sets of equations for four

different soil types. To cover a wide range of parameters, we consider a sandy soil, a

clay soil, a silt soil and a loam soil. Shown in Table 4.1 are the parameters for the

different soil types.

Table 4.1: A list of the soil parameters used in the homogenisation validation for four
different soil types (sand, silt, loam and clay).

Soil φ κs (m2) pc (Pa) m Reference
sand 0.25 1× 10−12 12000 0.7 [181]
silt 0.4 5× 10−14 23200 0.5 [101]

loam 0.52 3× 10−13 8500 0.5 [101]
clay 0.4 8× 10−16 60000 0.2 [181]

4.4.1 Implementation

Here we describe how we utilise the finite element package COMSOL Multiphysics

(COMSOL Multiphysics, Stockholm, Sweden, www.comsol.com) to solve the full

and homogenised sets of equations. To solve both sets of equations we generate two

geometries, one for the full set of equations (4.17) − (4.19) containing potato

tubers, and a second uniform geometry for the homogenised set of equations (4.49)

and (4.51). We choose the domain length of each of the geometries to be composed

of eight periodic cells. The geometries can be seen in Figure 4.5, in which ΨFull

denotes the geometry for the full set of equations and ΨHom denotes the geometry

for the homogenised set of equations.

Full Equations

To implement the full set of equations (4.17) − (4.19), we use the inbuilt ‘General

Form PDE’, i.e.,

ea
∂2r

∂t2
+ da

∂r

∂t
+ ∇ ·Θ = f, (4.58)
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Figure 4.5: The geometries used to validate the homogenisation procedure (a): The
full set of equations (4.17) − (4.19) are solved on the domain ΨFull, where ∂ΨFull

B is
the boundary at the base of the domain and ∂ΨFull

S is the boundary on the top of the
domain.
(b): The homogenised set of equations (4.49) and (4.51) are solved on the domain
ΨHom, where ∂ΨHom

B is the boundary at the base of the domain and ∂ΨHom
S is the

boundary on the top of the domain.

where,

r = pw, ea = 0, da = [1−HS(pw)]φ
∂S(pw)

∂pw
,

Θ = κ[S(pw)] (∇pw + ρê3) , f = −(pcpw − pr). (4.59)

Appropriate boundary conditions are then applied to ∂ΨFull depending on the

saturation regime considered (see Sections 4.4.2 and 4.4.3 for details).
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Homogenised Equations

To implement the homogenised set of equations (4.49) and (4.51), we also use the

inbuilt ‘General Form PDE’ where,

r = pw0, ea = 0, da = ||ΠS||[1−HS(pw0)]
∂S(pw0)

∂pw0

,

Θ = κ[S(pw0)]De (∇xpw0 + ρê3) , f = −||ΠS||(pcpw0 − pr). (4.60)

Appropriate boundary conditions are then applied to ∂ΨHom depending on the

saturation regime considered.

To parameterise the homogenised equations we are also required to solve the cell

problem (4.39) for a given radius r to calculate ||ΠS|| and De. This involves solving

three different cell problems for k = 1, . . . , 3, i.e., for each of the three spatial

components x1, x2 and x3.

To solve the cell problem, we use the inbuilt ‘General Form PDE’ for the governing

equation where,

r = χk, ea = 0, da = 0,Θ = ∇yχk, f = 0, (4.61)

for k = 1, . . . , 3.

For the boundary condition on Γ, i.e., the tuber, we use the inbuilt flux boundary

condition that takes the form,

n̂ ·Θ = g1 − g2r, (4.62)

where g1 = −n̂ · êk and g2 = 0.

On the external boundaries of the cell ∂ΠE we impose three sets of ‘Periodic

Boundary Conditions’, so that each pair of opposite external boundaries are an

effective continuum. Furthermore, since (4.39) has a non-unique solution (see

Theorem 4.3.2), we are required to impose a ‘Pointwise Constraint’ such that we

allow COMSOL to pick an arbitrary solution. Since ||ΠS|| does not depend the

solution and De uses the gradient of the solution (which is unique), allowing the

software to choose a solution does not affect the final result.

4.4.2 Partially Saturated Regime

To test the homogenisation procedure for a partially saturated soil regime, we

simulate the wetting of dry soil from a shallow water table at the base of the

domains ΨHom and ΨFull. To do this, we impose the following boundary and initial
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conditions: on the boundaries ΨHom
B and ΨFull

B , we impose the boundary condition,

pw = −0.5 on ∂ΨFull
B × [0,∞), (4.63)

pw0 = −0.5 on ∂ΨHom
B × [0,∞), (4.64)

which equates to the dimensional pressure of p̃w ≈ −10, 000 Pa (equating to a

saturation of S ≈ 0.9), i.e., simulating a shallow water table at the base of the two

domains. On all other boundaries we impose a zero flux boundary condition, i.e.,

n̂ ·
{
κ[S(pw)] (∇pw + ρê3)

}
= 0 on ∂ΨFull \ ∂ΨFull

B × [0,∞), (4.65)

n̂ ·
{
κ[S(pw0)]De (∇xpw0 + ρê3)

}
= 0 on ∂ΨHom \ ∂ΨHom

B × [0,∞). (4.66)

Finally, in ΨHom and ΨFull we impose the initial condition,

pw|t=0= −2 in ΨFull × {t = 0}, (4.67)

pw0|t=0= −2 in ΨHom × {t = 0}, (4.68)

which equates to the dimensional pressure of p̃w ≈ −40, 000 Pa (equating to a

saturation of S ≈ 0.3). Furthermore, we choose a non-dimesionalised tuber radius

of r = 0.025. This equates dimensionally to a radius of 1.3 cm, i.e., a diameter of 2.6

cm. Additionally, the side length of the cell surrounding each tuber is 5.2 cm,

leading to a dimensional cell volume of 140.608 cm3. This tuber size is typical for

early season tubers, since potato tubers can grow substantially larger. We choose

this radius to highlight that even for small tuber radii, there is a notable effect on

water movement in soil from the influence of tuber impedance.

Shown in Figure 4.6 are the non-dimensional pressure solutions for the

homogenised and full sets of equations at the time point t = 2.78, which equates

dimensionally to one day after the start of the simulation. For all four soil types, we

observe that the two sets of solutions for pw (full) and pw0 (homogenised) are

qualitatively identical. We find there to be a maximum error of . 2% between the

two sets of solutions. However, the loam and clay profiles show small differences

between the full and homogenised solutions. This is due to the soil parameters of

the loam and clay soils. We note from homogenisation theory that pw0 → pw as

ε→ 0, i.e., the two solutions converge as the micro to macro ratio decreases. As a

result of the slow water mobility in the clay and loam soils, the infiltration of water

from the base of the domain covers a maximum of three cells, hence ε is relatively

large, and therefore the error is larger when compared to the sand and silt soil
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Figure 4.6: Validation of homogenised equations (4.49) and (4.51) against the orig-
inal set of equations (4.17) − (4.19) in a partially saturated soil regime. The plot
shows the solutions to the two sets of equations for the simulations described by
equations (4.63) − (4.68) at the time point t = 2.78, which equates dimensionally
to one day. There are multiple comparisons for four different soil types, these being
clay, sand, silt and loam type soils.

profiles, where the water penetrates substantially further. However, if we asses the

pressure profiles in the clay and loam soils at a later time period in which the water

infiltrates further into the soil, we observe that the error between the two solutions

becomes smaller and similar to the sand and silt soils.

We find that the full set of equations (4.17) − (4.19) in three dimensions requires

≈ 100 seconds to solve one simulation for eight periodic cells. Conversely, solving

the homogenised equations (4.49) and (4.51) requires ≈ 3 seconds to solve an
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analogous 3D problem. Furthermore, the homogenised set of equations can be

reduced to a 1D problem, which will achieve the same results as the 3D problem due

to the homogenisation procedure. We find that the computation time to solve the 1D

problem is� 1 second, which is substantially faster than the full set of equations.

Although, a cell problem is required to parameterise equation (4.51) via the terms

||ΠS||, De and Ke. The cell problem requires ≈ 3 seconds to solve and is only

required to be solved once for each radius tuber r. Hence, the homogenised set of

equations can considerably reduce the computation time whilst retaining a high

level of accuracy for partially saturated soil domains.

4.4.3 Variably Saturated Regime

To test the homogenisation procedure for a variably saturated soil regime, we

simulate water movement in the domains ΨHom and ΨFull due to wetting from a

shallow water table at the base of the domains, and infiltration from constant

ponding on the soil surface. The pond on the soil surface will create a zone of fully

saturated soil which will have a moving interface with the partially saturated soil

region.

To replicate these conditions, we impose the following boundary and initial

conditions: on the boundaries ΨHom
B and ΨFull

B , we impose the boundary condition,

pw = −0.5 on ∂ΨFull
B × [0,∞), (4.69)

pw0 = −0.5 on ∂ΨHom
B × [0,∞), (4.70)

which equates to the dimensional pressure of p̃w ≈ −10, 000 Pa (equating to a

saturation of S ≈ 0.9), i.e., simulating a shallow water table at the base of the two

domains.

On the boundaries ΨHom
S and ΨFull

S , we impose the boundary condition,

pw = −0.05 on ∂ΨFull
S × [0,∞), (4.71)

pw0 = −0.05 on ∂ΨHom
S × [0,∞), (4.72)

which equates to the dimensional pressure of p̃w ≈ 1, 000 Pa, i.e., simulating a pond

of ≈ 10 cm on the surface of each of the domains. On all other boundaries we

impose a zero flux boundary condition, i.e.,

n̂ ·
{
κ[S(pw)] (∇pw + ρê3)

}
= 0 on ∂ΨFull \

(
∂ΨFull

B ∩ ∂ΨFull
S

)
× [0,∞), (4.73)
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n̂ ·
{
κ[S(pw0)]De (∇xpw0 + ρê3)

}
= 0 on ∂ΨHom \

(
∂ΨHom

B ∩ ∂ΨHom
S

)
× [0,∞).

(4.74)

Finally, in ΨHom and ΨFull we impose the initial condition,

pw|t=0= −1 in ΨFull × {t = 0}, (4.75)

pw0|t=0= −1 in ΨHom × {t = 0}, (4.76)

which equates to the dimensional pressure of p̃w ≈ −40, 000 Pa (equating to a

saturation of S ≈ 0.3).

Shown in Figure 4.7 are the non-dimensional pressure solutions for the

homogenised and full sets of equations at the time point t = 2.78 (equating

dimensionally to 1 day) for the variably saturated soil regime described by

equations (4.69) − (4.76). For all four soil types, we find there to be a maximum

error of . 1% between the two sets of solutions. We observe that the

homogenisation procedure successfully captures the moving saturated-partially

saturated interface, whilst retaining a high level of accuracy for a large range of soil

parameters. Again, we find that the full set of equations (4.17) − (4.19) in three

dimensions requires ≈ 120 seconds to solve one simulation for eight periodic cells.

Conversely, solving the homogenised equations (4.49) − (4.51) requires ≈ 3

seconds to solve an analogous 3D problem.

To highlight the accuracy of the homogenisation procedure and the influence of

tubers on water movement, shown in Figure 4.8 is a comparison of the

dimensionless pressure profiles for the sandy soil under partially saturated

conditions. In Figure 4.8 (a) we impose the full set of equations (4.17) − (4.19) in

the full geometry and the homogenised geometry. We observe that the pressure

profiles in each of the geometries is different due to the presence of the tubers.

Hence, we cannot simply apply the original equations in the subdomain that

contains tubers. In Figure 4.8 (b) we impose the full set on the full geometry and

the homogenised set on the homogenised geometry. This allows us to clearly

identify that the homogenised system of equations captures this phenomena.

From the results shown in Figures 4.6 and 4.7, we observe that there is a maximum

error between the full set of equations and approximate equations of . 2%.

However, we observe there to be a difference of O(102) in computation time

between the two sets of equations. Therefore, we find that the homogenised set of

equations can reduce the computation time significantly whilst retaining a high

level of accuracy.

In the soil region Λ̃U in Figure 2.2, we are able impose the homogenised set of
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Figure 4.7: Validation of homogenised equations (4.49) and (4.51) against the orig-
inal set of equations (4.17) − (4.19) in a variably saturated soil regime. The plot
shows the solutions to the two sets of equations for the simulation described in equa-
tions (4.69) − (4.76) at the time point t = 2.78, which equates dimensionally to 1
day. There are multiple comparisons for four different soil types, these being clay,
sand, silt and loam type soils.

equations (4.49) and (4.51) to capture the water impedance from potato tubers in

the plough layer of soil. This can then be coupled to equations (2.16) − (2.18) for

the soil region Λ̃A. Providing knowledge of the potato radius and inter-tuber

distance is known, this will allow us to accurately model the average infiltration of

water in the ridges of the system without requiring substantial computational power

to model each individual tuber in the soil.
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Figure 4.8: Two-dimensional pressure profiles for a sandy soil under partially satu-
rated conditions. (a): The full set of equations (4.17) − (4.19) are solved on both
domains ΨFull and ΨHom.
(b): The homogenised set of equations (4.49) and (4.51) are solved on the domain
ΨHom, and the full set of equations (4.17) − (4.19) are solved on the full domain
ΨFull.

4.5 Conclusions

In this chapter, we derived a model for water movement in variably saturated soil in

the plough layer in which crops are planted, grown and harvested. Using the

method of multiple scale homogenisation, we developed a set of approximate

equations to capture the impedance of water movement in the plough layer due to

the influence of crops. This allows us to directly obtain the macroscale properties of

the system without requiring all the intrinsic detail of the soil structure.

To validate the homogenisation procedure, we compared the full set of equations for

water movement around tubers in soil to the approximate set of equations. We ran

simulations for four different soil types for two different saturation regimes. We

found there to be a maximum difference between the solutions of . 2%. However,

we observed that the approximate equations were faster by a factor of O(102) for a

3D problem. The difference between the two computation times could be increased,



since the homogenised set of equations can be solved on a 1D domain to achieve the

same solution.

The homogenised set of equations can then be imposed in the plough layer

subdomain Λ̃U and coupled to the remaining soil Λ̃A for the model presented in

Chapter 2. This will allow us to develop a system of equations that describes water

movement through the soil, whilst capturing the impedance of water movement due

to the crops forming in the ridges of the ridge and furrow soil.



Chapter 5

Multiple Scale Homogenisation of
Crop Growth

In this chapter, we build on the ideas in Chapter 4 and use multiple scale

homogenisation to derive a set of averaged macroscale equations, which describe

the movement of nutrients in partially saturated soil that contains growing potato

tubers. The soil is modelled as a poroelastic material, which is deformed by the

growth of the tubers. The growth of each tuber is assumed to be dependent on the

uptake of nutrients via a sink term within the soil representing nutrient uptake by

roots. To validate the homogenisation procedure, we compare the system of

homogenised equations to the original set of equations and find that the solutions

between the two models differ by . 2%. As in Chapter 4, we find that the

computation time between the two sets of equations differs by several orders of

magnitude. This is because the equations imposed on the dynamic

three-dimensional geometry, which captures tuber growth and soil deformation, are

simplified by homogenisation to a coupled set of one dimensional ODEs and PDEs.

5.1 Introduction

In each of the previous chapters we considered the soil to be a static porous

structure that remained unchanged. As such, the entire soil domain was governed

by a set of constant parameters, i.e., hydraulic conductivity, porosity and saturated

permeability. However, it is well known that soil is a heterogeneous medium due to

the distribution of soil particles and water/air filled pores [23]. The distributions of

these soil components can be due to natural heterogeneities in the soil or due to an

external influence, i.e., soil compression [182].

93
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A key factor that affects the local properties of soil in the plough layer is the

influence from the growth and development of crops. In Chapter 4 we incorporated

potato tubers into the soil domain Λ̃U . We assumed they were a constant size, since

potato tuber size remains approximately constant on the timescale of water

transport. However, throughout an entire growing season, the growth of crops will

compress the soil within and immediately adjacent to the crop zone, leading to a

change in the local porosity and other soil properties. These changes will affect

dynamic soil processes, i.e. transport of nutrients. In this chapter, we explore the

effects of crop growth and how this influences soil properties.

To capture the influence of crop growth, we no longer consider the soil domain to

be static. Rather, we model the soil a poroelastic medium [183]. The behaviour of

poroelastic materials are governed by the phenomena that couples the solid and

fluid components of the material, in which either a change in the solid matrix

results in a change in fluid pressure (or mass), or a change in fluid pressure results

in a change in the volume of the solid matrix [184].

The topic of poroelasticity has been studied in a wide range of scientific fields, since

poroelastic theory has been used to successfully model a wide range of applications

including: the internal mechanics of bone, specifically for deformation of bone

tissue due to bone fluid [185, 186], the properties of fluid movement in rocks and

anisotropic geological media [187, 188], and cells and their constituent parts such

as cytoplasm [189, 190].

Standard theory for linear poroelasticity is based on Biot’s original paper for

consolidation of soils entitled ‘General Theory of Three-Dimensional Consolidation’

[191]. This work was published in 1941 and developed mathematical theory for the

settlement of soils due to consolidation, which is synonymous with the squeezing of

liquid out of a porous medium that has elastic properties [191]. The governing

equations for linear poroelasticity are derived from coupling Darcy flow with linear

constitutive equations, to form a time-dependent relationship between the

deformation of the solid matrix and fluid pore pressure [184].

The governing poroelastic equations for a two-phase material (solid matrix and fully

saturated fluid) are given by [192],

∇ · (∂tus) =
K

µ
∇ · (∇pw)− q, (5.1)

∇ ·G = 0, (5.2)

where us [m] is the displacement of the solid matrix, µ [Pa s−1] is the fluid viscosity,

pw [Pa] is the fluid pore pressure, q [s−1] is a fluid sink term, K [m2] is the
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permeability tensor of the porous medium and G [Pa] is the stress tensor. Equations

(5.1) and (5.2) are coupled together to form a relationship between fluid pressure

and the stress on the medium. Biot’s equations for poroelastic materials have been

used successfully to model a wide range of materials including but not limited to:

modelling tumour growth and development [193], compaction of soils [177] and

fluid transport in biological tissues [192].

In this chapter, we model the growth of potato tubers in soil. We assume that the

growth is dependent on the quantity of nutrients the plant is able to draw up from

the soil. Subsequently, any growth from a single crop will influence the water

content adjacent to the plant and therefore the movement of nutrients in the

vicinity, since from Chapter 3 we found that solute movement is heavily influenced

by water content.

Equations (5.1) and (5.2) describe the interaction between a two-phase poroelastic

material that contains a solid matrix and a fluid component. However, partially

saturated soil is a three-phase poroelastic material that contains a solid matrix

representing the solid minerals, a fluid representing water and a fluid representing

air. Hence, equations (5.1) and (5.2) cannot be directly applied to the system we

aim to model. Therefore, we construct a model from first principles coupling the

constituent equations for the three-phases with Darcy’s law to derive a model for a

three-phase poroelastic material.

Using a similar approach to the methodology in Chapter 4, we aim to apply the

technique of multiple scale homogenisation. This will allow us to develop a

macroscale model that captures the global movement of nutrients in soil and uptake

from plants, and subsequent growth of the potato tubers. Applying this method to

the system described will require homogenising a moving boundary problem, since

the microscale domain containing the tubers will change depending on the nutrient

uptake and growth of each tuber.

Rigorous homogenisation theory for two-scale convergence of moving interfaces has

been increasingly studied in recent years, with particular focus on first and second

order partial differential equations [194, 195]. One application using

homogenisation of moving interfaces is the periodic solidification (transfer from a

liquid/gas to a solid) of periodic heterogeneous materials [196, 197]. This

incorporates a microscale moving interface that separates a solid domain and fluid

domain with a flux discontinuity on the interface. We aim to implement similar

protocols to describe the moving interface of the potato tubers as they grow and

compress the poroelastic soil.

For simplicity we choose to model the tubers as spherical objects in soil, however,
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this can be extended to any 3D geometry, including, but not limited to, ovoids,

capsules and cylinders. There have been recent models derived using

homogenisation that model the diffusion of a species with spatially varying spheres

in porous media [178]. However, in these cases the local porosity is approximated

using Rayleigh’s multipole method to determine a spatially dependent effective

diffusion coefficient based on the size of the sphere within the microscopic periodic

geometry [198]. This relies on underlying assumptions that ignore the poroelastic

properties of the material. Instead it is assumed that the solid matrix is

incompressible. Hence, it is inferred that the local porosity is a ratio of available

space to a constant solid fraction. Here we extend this idea to model both spatially

and temporally varying objects in poroelastic media, which are coupled to the

diffusion of the species within the material itself.

To validate the homogenisation procedure, we compare the solution of the

homogenised equations against the full system for a series of case studies. This

shows that the homogenised equations successfully capture the ‘effective’ growth of

the tubers and the change in nutrient diffusion from the reduction of volume within

the domain.

5.2 Theory

5.2.1 Three-Phase Poroelastic Soils

Let Ψ̃ ⊂ R3 [m3] be an open bounded subset representing a soil system (see Figure

5.1 (a)) that contains N ∈ N potato tubers. We define

Ψ̃ =
(∑N

j=1 Ψ̃Sj

)
∪
(∑N

j=1 Ψ̃pj

)
, where

∑N
j=1 Ψ̃Sj = Ψ̃S [m3] is the deformable

poroelastic soil domain that is composed of water, air and solid components, and

Ψ̃pj [m3] are the j = 1, . . . , N tubers each with a boundary Γ̃j [m2].

To describe the deformable poroelastic soil domain Ψ̃S, we impose a system of

equations that describe a three-phase poroelastic material. To derive the system of

equations, we use conservation laws for mass and momentum. The conservation of

mass equations for the three phases of air, water and soil solid are,

∂t̃φa = −∇̃ · (φaṽa) in Ψ̃∞S , (5.3)

∂t̃φw = −∇̃ · (φwṽw)− λc(p̃w − pr) in Ψ̃∞S , (5.4)

∂t̃φs = −∇̃ · (φsṽs) in Ψ̃∞S , (5.5)

φa + φw + φs = 1, (5.6)
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Figure 5.1: (a): Schematic of a dimensional poroelastic domain, where Ψ̃ is the total
domain, Ψ̃S is the deformable poroelastic soil domain, Ψ̃pj are the potato tubers, Ψ̃Sj

is the poroelastic soil subdomains adjacent to each tuber and Γ̃j are the boundaries
between Ψ̃pj and Ψ̃S. In addition, lx is the macroscale and ly is the microscale.
(b): Schematic of the dimensionless macroscale domain Ψ and microscale domain
Π, where ΨS is the poroelastic soil domain, ∂ΨE is the external boundary of Ψ, ΠS is
the microscale poroelastic soil domain, Πp is a tuber, Γ is the boundary between ΠS

and Πp, ∂ΠE is the external boundary of the periodic cell and r is the radius of Πp.

where φa : Ψ̃S × [0,∞)→ [0, 1] [− ] is the volumetric air content, i.e., the volume of

air per volume of soil, φw : Ψ̃S × [0,∞)→ [0, 1] [− ] is the volumetric water content,

i.e., the volume of water per volume of soil, φs : Ψ̃S × [0,∞)→ [0, 1] [− ] is the

volumetric soil solid content, i.e., the volume of soil solid per volume of soil,

p̃w : Ψ̃S × [0,∞)→ R [Pa] is the soil water pore pressure,

ṽa : Ψ̃S × [0,∞)→ R3 [m s−1] is the air velocity, ṽw : Ψ̃S × [0,∞)→ R3 [m s−1] is the
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water velocity, ṽs : Ψ̃S × [0,∞)→ R3 [m s−1] is the velocity of the soil solid

component, λc ∈ R≥0 [Pa−1 s−1] is the product of the root surface area density and

the water conductivity of the root cortex, and pr ∈ R≤0 [Pa] is the pressure in the

root xylem. The conservation of momentum equation is [184],

∇̃ ·
{
G

[(
∇̃ũs

)
+
(
∇̃ũs

)T
+

ν

1− 2ν
∇̃ · ũsT

]
− ζp̃wT− p̃aT

}
= 0 in Ψ̃∞S , (5.7)

where ũs : Ψ̃S × [0,∞)→ R3 [m] is the displacement of the solid component,

p̃a : Ψ̃S × [0,∞)→ R [Pa] is the soil air pore pressure, G ∈ R>0 [Pa] is the shear

modulus of the soil, ν ∈ [0, 0.5] [− ] is the Poisson ratio and ζ ∈ R>0 [− ] is the

effective ratio between the air and water phases. The displacement ũs is related to

ṽs by the relationship,

ṽs = ∂t̃ũs. (5.8)

Furthermore, Darcy’s law for the relative phase velocity of air and water is written

as,

φa (ṽa − ṽs) = −κa
µa

∇̃p̃a in Ψ̃∞S , (5.9)

φw (ṽw − ṽs) = −κw
µw

∇̃p̃w in Ψ̃∞S , (5.10)

where κa ∈ R>0 [s−1] and κw ∈ R>0 [s−1] are the air and water permeabilities

respectively, and µa ∈ R>0 [Pa s−1] and µw ∈ R>0 [Pa s−1] are the viscosities of air

and water respectively. In equations (5.9) and (5.10) we assume that air and water

are independent on the pore scale, i.e., air and water move freely.

The air and water pressures p̃a and p̃w, and the air and water fractions φa and φw are

related via the van Genuchten saturation expression [101],

φw
φw + φa

=

[(
p̃a − p̃w
pc

) 1
1−m

+ 1

]−m
, (5.11)

where pc ∈ R>0 [Pa] is the characteristic suction pressure and m ∈ [0, 1] [− ] is the

van Genuchten parameter. The system of equations (5.3) − (5.11) completes a full

description of a three-phase poroelastic soil.
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5.2.2 Diffusion of Nutrients in Soil

To describe nutrient movement in the poroelastic domain Ψ̃S, we recall the model

for solute movement from Chapter 3, i.e., equation (3.9),

(φw + b)∂t̃c̃+ c̃∂t̃φw = ∇̃ ·
(
Dφw∇̃c̃

)
− ξc̃ in Ψ̃∞S . (5.12)

where c̃ : Ψ̃S × [0,∞)→ R≥0 [kg m−3] is the nutrient concentration in pore water,

b ∈ R≥0 [− ] is the nutrient buffer power, D ∈ R>0 [m2 s−1] is the diffusion

coefficient and ξ ∈ R≥0 [s−1] is the nutrient uptake rate from plant roots. Equation

(5.12) is coupled to (5.3) − (5.11) to construct a complete system describing

nutrient movement in a poroelastic medium.

5.2.3 Boundary Conditions

Here we define a series of boundary conditions on the interfaces Γ̃j, i.e., between

the deformable poroelastic soil domain Ψ̃S and the potato tubers Ψ̃pj . To describe

the nutrient interaction on Γ̃j we impose a zero flux condition, since potato tubers

do not take up nutrients, i.e.,

n̂ ·
(
Dφw∇̃c̃

)
= 0 on Γ̃j × [0,∞), (5.13)

where n̂ : R3 × [0,∞)→ R3 [− ] is the unit normal vector pointing out of the

geometry. Furthermore, on Γ̃j we assume the soil solid is displaced normally to the

direction of the growing tuber and has no tangential velocity, hence,

(2n̂⊗ n̂− T) · ũs = n̂Ξ̃j on Γ̃j × [0,∞), (5.14)

where Ξ̃j ≥ 0 [m] is the displacement of tuber j given by,

Ξ̃j = r̃j − r∗, (5.15)

where r∗ ∈ R>0 [m] is the initial radius of the tuber and r̃j : [0,∞)→ R≥r∗ [m] is the

radius of the jth tuber, which is related to the total amount of nutrients taken up by

the roots. The growth of each tuber is expressed as,

∂t̃Ṽj = α

∫
Ψ̃Sj

ξc̃ dΨ̃Sj , (5.16)

where Ṽj [m3] is the tuber volume, ξ ∈ R≥0 [s−1] is the nutrient uptake rate from

plant roots, α ∈ R>0 [m3 kg−1] is the ratio between the rate of growth and uptake of
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nutrient, and Ψ̃Sj is the volume of soil adjacent to each potato tuber j (see Figure

5.1 (a)). Here we model the early-stage development of potato tubers, and assume

the tubers to be spherical. Therefore, equation (5.16) can be written in terms of the

radius r̃j only, i.e.,

∂t̃r̃j =
α

4πr̃2
j

∫
Ψ̃Sj

ξc̃ dΨ̃Sj . (5.17)

We state that the water and air components of Ψ̃S do not penetrate the tubers Ψ̃pj ,

thus, we require the Darcy velocities normal to the interface to be zero, i.e.,

n̂ ·
(
κw
µw

∇̃p̃w

)
= 0 on Γ̃j × [0,∞), (5.18)

n̂ ·
(
κa
µa

∇̃p̃a

)
= 0 on Γ̃j × [0,∞). (5.19)

Finally, on Γ̃j we assume the the air and water velocities are equal to the growth of

the tubers, i.e.,
(2n̂⊗ n̂− T) · ṽw = n̂∂t̃r̃j on Γ̃j × [0,∞), (5.20)

(2n̂⊗ n̂− T) · ṽa = n̂∂t̃r̃j on Γ̃j × [0,∞). (5.21)

5.2.4 Non-Dimensionalisation

To simplify the model and understand the magnitude of influence of each parameter,

we non-dimensionalise the system of equations described above. We are interested

in the macroscopic properties of the system of equations whilst retaining the

influence of the microscopic structure. Hence, we identify there are two different

length scales, the microscopic length scale ly [m] and the macroscopic length scale

lx [m], where ly/lx = ε� 1 [− ]. We choose to non-dimensionalise using the scaling,

x̃ = lxx, t̃ =
l2x
D
t, ũs = lyus, c̃ = cmaxc, p̃i = Gpi, ṽi =

lyD

l2x
vi, r̃ = lyr, (5.22)

where cmax ≥ 0 [kg m−3] is the maximum concentration of the nutrient applied to Ψ̃S

and i = {w, a}. In (5.22) we use the macroscopic length scale lx as the spatial

scaling to observe the macroscale propeties, the diffusion timescale l2x
D

for the time

scaling as diffusion is the dominant transport mechanism, and the shear modulus G

for the pressure scaling. Shown in Figure 5.1 (b) is the non-dimensionalised

macroscopic domain Ψ and microscopic domain Π. It follows that the system of

equations becomes,
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∂tφa = −ε∇ · (φava) in Ψ∞S , (5.23)

∂tφw = −ε∇ · (φwvw)− λc(pw − pr) in Ψ∞S , (5.24)

∂t(1− φa − φw) = −ε∇ · [(1− φa − φw)∂tus] in Ψ∞S , (5.25)

∇ ·
[

(∇us) + (∇us)
T + ν∇ · usT− ε−1(ζpwT− paT)

]
= 0 in Ψ∞S , (5.26)

φa (va − ∂tus) = −κa∇pa in Ψ∞S , (5.27)

φw (vw − ∂tus) = −κw∇pw in Ψ∞S , (5.28)

φw
φw + φa

=

{[
G(pa − pw)

] 1
1−m

+ 1

}−m
, (5.29)

(φw + b)∂tc+ c∂tφw = ∇ · (φw∇c)− ξc in Ψ∞S , (5.30)

n̂ · (φw∇c) = 0 on Γj × [0,∞), (5.31)

(2n̂⊗ n̂− T) · us = n̂(rj − r∗) on Γj × [0,∞), (5.32)

n̂ · (∇pw) = 0 on Γj × [0,∞), (5.33)

n̂ · (∇pa) = 0 on Γj × [0,∞), (5.34)

(2n̂⊗ n̂− T) · vw = n̂∂trj on Γj × [0,∞), (5.35)

(2n̂⊗ n̂− T) · va = n̂∂trj on Γj × [0,∞). (5.36)

∂trj =
α

4πr2
j

∫
ΨSj

c dΨSj , (5.37)

where,

λc =
λcGl

2
x

D
, pr =

pr
G
, ν =

ν

1− 2ν
, κa =

κaGε
−1

Dµa
, κw =

κwGε
−1

Dµw
,

G =
G

pc
, ξ =

ξl2x
D
, r∗ =

r∗

ly
, α =

cmaxαξl
2
x

D
. (5.38)

5.2.5 Parameter Estimation

Here we estimate the parameters contained in equations (5.23) − (5.37) to

determine the magnitude of influence each parameter has on the system of

equations. Since this model is motivated by the growth of potato tubers in soil, we

assess the parameter values for silt soils as potatoes are frequently grown in this soil

type [106].

Potato plants are typically grown in ridge and furrow geometries and are contained
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in the plough layer of soil, which is the top 30 cm [103]. Therefore, we choose the

macroscopic length scale to be lx ≈ 0.3 m. Similarly, we assume that the tubers have

an inter-tuber distance that is substantially less than the total length of the plough

layer. We choose an inter-tuber distance of approximately ly ≈ 0.05 m, resulting in

the ratio of the two length scales to be ε ≈ 0.1. We also assume an initial tuber

radius of r∗ = O(0.05) m . ly.

Values for the Poisson ratio of silt soils are approximately 0.3 . ν . 0.35 [199], and

the shear modulus is G ≈ 1× 107 Pa [200]. Furthermore, typical characteristic

suction pressures for silt soils are approximately pc ≈ 3× 104 Pa [101], with soil

permeabilities of κw ≈ κa ≈ 5× 10−14 m2 [101]. The viscosity of water is

µw = 1× 10−3 Pa s and the viscosity of air is µa = 1× 10−5 Pa s.

One of the key nutrients responsible for plant growth and development is nitrogen

[145]. We choose to model this nutrient since plant growth is closely linked to an

abundance of nitrogen in soil. Nitrogen has a diffusion coefficient in soil water of

D ≈ 2.5× 10−10 m2 s−1 [27] and for the potato plant Solanum tuberosum L., the

uptake rate of the nutrient nitrogen is ξ ≈ 1× 10−9 s−1 [148, 149], for nitrogen

concentrations in soil cmax ≈ 10−1 kg m−3 [149].

In the early-stages of growth for Solanum tuberosum L., the tuber radius growth rate

is approximately 1× 10−9 m s−1 [201]. If we assume that the quantity of nitrogen

taken up by the plant is proportional to the growth of the tuber, then we can

estimate the ratio between the rate of growth and the uptake, i.e.,
α ≈ 1× 101 kg−1 m3 [148, 149].

Using the values above, we find that the parameters κa and κw contained in (5.27)

and (5.28) are κa = O(109) and κw = O(107). This is significantly larger than the

other terms in the equations. Hence, we re-write equations (5.27) and (5.28) so

that,

κa∇pa ≈ 0 in ΨS, (5.39)

κw∇pw ≈ 0 in ΨS, (5.40)

which have the solutions pa = constant and pw = constant, i.e., the consolidation of

the soil is substantially faster than the diffusion of solutes. Since pw = constant, we

find that the sink term in equation (5.4) representing root uptake is constant, i.e.,
λc(p̃w − pr) = F , where F is the water uptake rate by plant roots. The uptake rate of

water by Solanum tuberosum L. roots over a growing season is F ≈ 1× 10−8 s−1

[202].

The result of pa = constant and pw = constant allows us to reduce the system of
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equations (5.23) − (5.37) to,

∂tφw = −ε∇ · (φwvw)− F in Ψ∞S , (5.41)

∇ ·
[

(∇us) + (∇us)
T + ν∇ · usT

]
= 0 in ΨS, (5.42)

vw − ∂tus = 0, (5.43)

(φw + b)∂tc+ c∂tφw = ∇ · (φw∇c)− ξc in Ψ∞S , (5.44)

(2n̂⊗ n̂− T) · us = n̂(rj − r∗) on Γj, (5.45)

n̂ · (φ∇c) = 0 on Γj × [0,∞), (5.46)

∂trj =
α

4πr2
j

∫
ΨSj

c dΨSj , (5.47)

where F = Fl2x/D.

This reduction of equations results from several physical processes having a

negligible effect on the system described. Since the air and water pressures are

constant on the timescale of solute diffusion, this causes the equation for

conservation of momentum for a poroelastic material (5.26) to reduce to the

equation for conservation of momentum for an elastic material, i.e., equation

(5.42). This then allows us to neglect the influence of air movement within the soil,

i.e., equation (5.23). This then leads to the system of equations (5.41) − (5.47).

Using the values discussed above, we find that the parameters contained in

equations (5.41) − (5.47) have the approximate values,

F = O(1), ν = O(1), ξ = O(1), r∗ = O(1), α = O(1). (5.48)

For the remainder of this Chapter, equations (5.41) − (5.47) will be referred to as

the ‘full set’ of equations to describe solute movement and tuber growth.

5.2.6 Homogenisation

In this section, we use multiple scale homogenisation to develop a set of averaged

macroscale equations that describe the movement of nutrients and tuber growth in

soil. From equation (5.41) we observe that the volumetric water content φw is

affected by two mechanisms: firstly by soil compression due to the growth of the

tuber, i.e., ε∇ · (φwvw), and secondly by root water uptake, i.e., F . From the

non-dimensionalisation, we observe that the maximum displacement is bounded

such that us � F . This leads to the result vs � F , and hence, ε∇ · (φwvw)� F .
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Therefore, we find that the root water uptake term dominates the change in water

content. Hence, for the homogenisation procedure, we neglect the term regarding

soil compression, and the system of equations we homogenise reduces to,

∂tφw = −F in Π∞S , (5.49)

(φw + b)∂tc+ c∂tφw = ∇ · (φw∇c)− ξc in Π∞S , (5.50)

n̂ · (φw∇c) = 0 on Γ× [0,∞), (5.51)

∂tr =
α

4πr2

∫
ΠS

c dΠS. (5.52)

periodic on ∂ΠE. (5.53)

To validate this assumption, we compare the full set of equations (5.41) − (5.47) to

the homogenised system of equations derived from (5.49) − (5.53) in the following

section.

As in Chapter 4, we observe there are two different length scales present in the

geometry Ψ̃, the macroscale lx and the mircoscale ly. Any change of O(1) on the

length scale lx will result in a O(ε) change on the length scale ly. We can formalise

this by assuming that the dependent variables φw, c and r are functions of a small

scale y and a large scale x. We denote the unit cell Π representing the microscale

domain y ∈ Π ≡ [−1/2, 1/2]3. Using the two length scales and chain rule, the

gradient operator is written as,

∇ = ∇x + ε−1∇y. (5.54)

Furthermore, we expand φw, c and r such that,

φw = φw0 +O(ε), (5.55)

c = c0 + εc1 + ε2c2 +O(ε3), (5.56)

r = r0 +O(ε). (5.57)

The first step of the homogenisation procedure is to determine the most dominant

terms in the system of equations (5.49) − (5.53). To do this we substitute equations

(5.54) − (5.57) into (5.49) − (5.53) and collect the largest terms of O(ε−2). This

results in the system of equations,

∇y · (φw0∇yc0) = 0 in ΠS, (5.58)
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n̂ · (φw0∇yc0) = 0 on Γ, (5.59)

periodic on ∂ΠE. (5.60)

From Chapter 4, we observed in Theorem 4.3.1 that the leading order term pw0 had

large scale dependence only and was independent of the small scale y. By applying

the same theorem methodology to equations (5.58) − (5.60) we find that

c0 = c0(x, t), i.e., c0 has large scale dependence only and is independent of the small

scale y.

To proceed with the homogenisation methodology, we collect the next most

dominant terms in the system of equations. This is achieved by collecting terms

O(ε−1) and using the result ∇yc0 = 0, i.e.,

∇y · (φw0∇yc1 + φw0∇xc0) = 0 in ΠS, (5.61)

n̂ · (φw0∇yc1 + φw0∇xc0) = 0 on Γ, (5.62)

periodic on ∂ΠE. (5.63)

To continue with the analysis, we must ensure that equations (5.61) − (5.63) form

a well-posed problem, i.e., the equations have a solution that agrees with the

boundary conditions. We can show the system is well-posed by applying the

divergence theorem to equation (5.61) and use boundary condition (5.62) such

that,∫
ΠS

∇y · (φw0∇yc1 + φw0∇xc0) dΠS =∫
∂ΠS

n̂ · (φw0∇yc1 + φw0∇xc0) d∂ΠS = 0. (5.64)

Next, we choose to rescale c1 so that,

c1(x,y) =
3∑

k=1

χk(y)∂xkc0 + c̄1(x), (5.65)

where c̄1(x) is the large scale component of c1(x,y). Substituting (5.65) into

equations (5.61) − (5.63) yields the cell problem for χk,

∇y · (∇yχk + êk) = 0 in ΠS, (5.66)

n̂ · (∇yχk + êk) = 0 on Γ, (5.67)

periodic on ∂ΠE. (5.68)
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Recall that the tubers grow in the soil domain, hence, the cell problem solution

χk [m] is dependent on the radius of the tuber. Since the cell problem is a

representation of the impedance of nutrient movement due to the tuber obstruction,

and as the tuber grows the impact on nutrient transport will change, therefore we

have the relationship χk = χk(r), i.e., the cell problem solution is dependent on the

radius of the tuber.

The last step of the homogenisation procedure is to collect terms O(ε0). This results

in the system of equations,

∂tφw0 = −F in Π∞S , (5.69)

(φw0 + b)∂tc0 + c0∂tφw0 = ∇y · (φw0∇yc2 + φw0∇xc1)+

∇x · (φw0∇yc1 + φw0∇xc0)− ξc in Π∞S , (5.70)

n̂ · (φw0∇yc2 + φw0∇xc1) = 0 on Γ× [0,∞), (5.71)

periodic on ∂ΠE, (5.72)

∂tr0 =
α

4πr2
0

∫
ΠS

c0 dΠS. (5.73)

To check (5.70) − (5.73) provide a well-posed problem, we check the solvability of

the system of equations. To check for solvability we integrate equation (5.70) over

the domain ΠS and apply the divergence theorem, i.e.,∫
ΠS

(φw0 + b)∂tc0 + c0∂tφw0 dΠS =

∫
ΠS

∇y · (φw0∇yc2 + φw0∇xc1) dΠS

+

∫
ΠS

∇x · (φw0∇yc1 + φw0∇xc0) dΠS −
∫

ΠS

ξc dΠS, (5.74)

and using the boundary condition (5.71) yields,∫
ΠS

(φw0 + b)∂tc0 + c0∂tφw0 dΠS =

∫
ΠS

∇x · (φw0∇yc1 + φw0∇xc0) dΠS

−
∫

ΠS

ξc dΠS. (5.75)

We define,

||ΠS(r)|| =
∫

ΠS(r)

dΠS, (5.76)

to be the volume integral of the cell problem, which is dependent of the radius of the
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tuber. It follows that by using equation (5.65), equation (5.75) can be written as,

||ΠS(r)||[(φw0 + b)∂tc0 + c0∂tφw0 ] =

∂

∂xi

∫
ΠS(r)

[
φw0

(
∂c0

∂xi
+
∂χj(r)

∂yi

∂c0

∂xj

)]
dΠS − ||ΠS(r)||ξc0 in Π∞S . (5.77)

This results in the system of equations for φw0, c0 and r0,

∂tφw0 = −F in Π∞S , (5.78)

||ΠS(r0)||[(φw0 + b)∂tc0 + c0∂tφw0 ] = φw0∇xDe(r0)∇xc0

− ||ΠS(r0)||ξc0 in Π∞S , (5.79)

∂tr0 =
α

4πr2
0

||ΠS(r0)||c0, (5.80)

where,

De(r0) =

∫
ΠS(r0)

T + ∇yχk(r0)⊗ êk dΠS, (5.81)

for k = (1, ..., 3). Here the averaged terms ||ΠS(r0)|| [− ] and De(r0) [m2 s−1] are

parameterised from the cell problem (5.66) − (5.68). This results identifies that

equations (5.70) − (5.73) provide a well-posed problem if and only if the system of

equations (5.78) − (5.81) have a solution.

In the system (5.78) − (5.81), the parameterised coefficients ||ΠS(r0)|| and De(r0)

describe the soil volume that is not occupied by the tuber, and the effective diffusion

due to impedance from the tuber respectively. Therefore, both these coefficients are

dependent on the radius of the tuber.

In Chapter 4, we developed a system of homogenised equations, in which the

homogenised coefficients were calculated from a static cell problem. However, in

this system we have a cell problem that is dependent on the radius of the tuber.

Hence, we have a coupled system which implicitly calculates the transport of the

nutrients, the uptake of nutrients by the plant, and the growth of the tubers.

For the remainder of this chapter, equations (5.78) − (5.81) will be referred to as

the ‘homogenised set’ of equations to describe solute movement and tuber growth.
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5.3 Validation of the Homogenisation Procedure

We validate the mathematical steps used in the homogenisation procedure by

comparing the homogenised set of equations (5.78) − (5.81) to the full set of

equations (5.41) − (5.47). We consider multiple comparisons by varying

parameters for the buffer power b, root uptake rate F and initial porosity φw|t=0 to

examine the accuracy of the averaging procedure.

5.3.1 Implementation

Here we describe how we utilise the finite element package COMSOL Multiphysics

(COMSOL Multiphysics, Stockholm, Sweden, www.comsol.com) to solve the full

and homogenised sets of equations. To solve both sets of equations we generate two

geometries, one for the full set of equations (5.41) − (5.47) containing potato

tubers, and a second uniform geometry for the homogenised equations (5.78) −
(5.81). We choose the domain length of each geometry to be composed of eight

periodic cells. Due to the homogenisation procedure, the approximate equations

(5.78) − (5.81) do not require any tubers as the influence of the microscale

geometry is contained in the paramterised terms ||ΠS(r0)|| and De(r0). Shown in

Figure 5.2 are the geometries used to validate the homogenisation procedure.

Full Equations

Implementation of the full set of equations (5.41) − (5.47) requires the

implementation of a complex moving boundary problem. This accounts for the

uptake of nutrients by each tuber Ψpj , the subsequent growth of Ψpj , and the

reduction in volumetric water content φw. The geometry we impose the full set of

equations on can be seen in Figure 5.2 (a). However, we require two versions of this

geometry: an undeformed geometry that is constant in time, and a deforming

geometry that is dependent on tuber growth, since different components of the

system (5.41) − (5.47) are solved on either an undeformed or deforming frame of

reference. There are three main components that are required to be implemented in

order to solve (5.41) − (5.47), these are: the poroelastic equations, the compaction

and deformation of soil, and the nutrient movement equations.

The implementation of the poroelastic equations (5.41) − (5.43) and (5.45) for the

local displacement us and reduction in φw is straightforward, since these equations

are solved on the undeformed geometry regardless of tuber size. This is achieved
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Figure 5.2: The geometries used to validate the homogenisation procedure (a): The
approximate equations (5.78) − (5.81) are solved on the left geometry, whereas
the original set of equations (5.41) − (5.47) are solved on the right geometry that
contains potato tubers. (b): The cell problem is solved on a single unit cell that
contains a potato tuber (coloured in red).

using the inbuilt ‘General Form PDE’, i.e.,

ea
∂2r

∂t2
+ da

∂r

∂t
+ ∇ ·Θ = f, (5.82)

where r = [φw,us]
T and,

ea =

[
0 0

0 0

]
, da =

[
1 0

0 0

]
,Θ =

[
εφw∂tus

(∇us) + (∇us)
T + ν∇ · usT

]
, f =

[
−F
0

]
.

(5.83)

Using this solution at each time step, we can prescribe a deformation (for the

deforming geometry) within the soil domain to correspond with the increase in

tuber size. This is achieved by implementing a ‘Domain Deformation’ in which we

prescribe the mesh displacement in the the three spatial directions x1,x2 and x3

using the solution for us.

The nutrient equations (5.44) and (5.46) − (5.47) are solved on the deforming
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geometry to correspond with the growth of the tubers. However, these equations

use the poroelastic solution from the undeformed geometry. Hence, we implement a

reference frame change such that poroelastic solution can be mapped from the

undeformed geometry to the deformed geometry. This allows us to solve the

nutrient equations on the deformed geometry corresponding with the prescribed

tuber deformation.

Since the nutrient equations are solved on a deforming geometry, extra care is

required to ensure that c is conserved. This is achieved by making two alterations to

(5.44) and (5.46). Firstly, we note Reynolds Transport Theorem,

d

dt

∫
θ(t)

F dV =

∫
θ(t)

∂F

∂t
dV +

∫
∂θ(t)

(ω · n̂)F dA, (5.84)

where, dV [m3] and dA [ m2] are volume and surface elements respectively,

ω [m s−1] is the velocity of the surface element, n̂ is the normal vector pointing out

of the geometry, F is any function of x and t, and θ(t) [ m3] is the domain. Reynolds

Transport Theorem states that the change in nutrient concentration in a domain is

equal to the change in concentration within the domain plus the rate at which

nutrient is entering the domain. Applying equation (5.84) to the full set of

equations (5.41) − (5.47) leads to,

d

dt

∫
ΨSoil(t)

c dΨSoil(t) =

∫
ΨSoil(t)

∂c

∂t
dΨSoil(t) +

∫
∂ΨSoil(t)

(ωmesh · n̂)c d∂ΨSoil(t), (5.85)

where, ωmesh [m s−1] is the velocity of the boundaries Ψpj . This requires us to adapt

equation (5.46) so that,

n̂ · (φw∇c) = −(ωmesh · n̂)c on Γj × [0,∞). (5.86)

Equation (5.86) then satisfies the conservation law for moving boundaries.

Secondly, as Ψpj grows and ΨS is deformed, this causes an advective movement

effect on c within ΨS. This can be interpreted as the boundaries of the tubers Γj

physically pushing the nutrients. Hence, we are required to add a conservative

advection term to equation (5.44) accounting for the individual elements within the

mesh moving, i.e.,

(φw + b)∂tc+ c∂tφw = ∇ · (φw∇c− ωmeshc)− ξc in Ψ∞S . (5.87)

This modified system of equations can then be successfully used to model coupled

nutrient movement and poroelastic deformation from growing tubers. To implement
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equations (5.87) and (5.86), we use the inbuilt ‘General Form PDE’ where,

r = c, ea = 0, da = (φw + b), Θ = φw∇c− ωmeshc, f = −ξc, (5.88)

and use the inbuilt flux boundary condition that takes the form,

n̂ ·Θ = g1 − g2r, (5.89)

where g1 = 0 and g2 = −(ωmesh · n̂). Finally, to implicitly solve for the tuber radii rj
in equation (5.47), we use the inbuilt ODE equation ‘Global ODE’ which takes the

form,

f(q, qt, qtt, t) = 0. (5.90)

This is used in tandem with an ‘Integral Component Coupling’ to establish the

integral in (5.47), i.e.,
∫

ΨSj
ξc dΨSj .

Homogenised Equations

The geometry on which we impose the homogenised set of equations (5.78) −
(5.81) can be seen in Figure 5.2 (a). To implement the equations (5.78) and (5.80)

is substantially simpler. We use the inbuilt ODE equation ‘Global ODE’ which takes

the form shown in equation (5.90).

To implement (5.79) we use the inbuilt ‘Coefficient Form PDE’ that takes the form,

ea
∂2r

∂t2
+ da

∂r

∂t
+ ∇ · (−c∇r− αr + γ) + β ·∇r + ar = f, (5.91)

where r = c0, ea = 0, da = ||ΠS(r0)||(φw0 + b), c = φw0De(r0), α = 0, γ = 0, β = 0,

a = ||ΠS(r0)||∂tφw0 and f = −||ΠS(r0)||ξc0.

However, to solve equation (5.79), we are required to solve a series of cell

problems, i.e., equations (5.66) − (5.68), to calculate the terms ||ΠS(r0)|| and

De(r0) that paramterise equation (5.79) and (5.80). Since the geometric properties

of the domain Π are contained in ||ΠS(r0)|| and De(r0), we solve the cell problem for

a series of different tuber radii to correspond with different levels of

growth/displacement from the original tuber size. Using the results from the cell

problems, we can construct interpolated functions to describe ||ΠS(r0)|| and De(r0)

as functions of the homogenised radius r0.

The cell problem is solved on the geometry shown in Figure 5.2 (b), and we use the
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inbuilt ‘General Form PDE’ for the governing equation where,

r = χk, ea = 0, da = 0, Θ = ∇yχk + êk, f = 0, (5.92)

for k = 1, . . . , 3.

For the boundary condition on Γ, i.e., the tuber, we use the inbuilt flux boundary

condition that takes the form,

n̂ ·Θ = g1 − g2r, (5.93)

where g1 = 0 and g2 = 0.

On the external boundaries of the cell ∂ΠE we impose three sets of ‘Periodic

Boundary Conditions’, so that each pair of opposite external boundaries are an

effective continuum. Furthermore, since (5.66) has a non-unique solution, we are

required to impose a ‘Pointwise Constraint’ such that COMSOL can find a specific

solution. As ||ΠS(r0)|| does not depend on the solution to the cell problem, and

De(r0) depends only on the gradient of the solution (which is unique), this arbitrary

choice of a specific solution does not affect the final result.

5.3.2 Results

To validate the homogenisation procedure we compare the homogenised equations

(5.78) − (5.81) against the original set of equations (5.41) − (5.47). We choose to

run a series of case studies by varying the parameters b, F and φw|t=0. For the buffer

power b we choose the values b ∈ {0.5, 5} since this covers a range of buffer powers

for the nutrients nitrogen, boron, magnesium, zinc and molybdenum [27]. From the

non-dimensionalisation and parameter estimation we observe the value for root

water uptake is F = O(1). However to test the homogenisation procedure, we select

the values F ∈ {0.1, 10} for low and high levels of water uptake respectively. Finally,

for the initial porosity φw|t=0 we assign the values φw|t=0∈ {0.4, 0.6} as these are

approximate upper and lower bounds for silty soils [203].

In each of the simulations we impose a Dirichlet condition of c = c0 = 1 on the top

of each of the geometries shown in Figure 5.2 (a). Additionally, we choose the

initial non-dimensionalised tuber radius to be r∗ = 0.025 and choose the remaining

parameters to be ξ = α = 1. We also impose a stop condition on each of the

simulations so that when the non-dimensionalised volume of a tuber has doubled,

the simulation is terminated. Finally, in order to construct interpolated functions to

describe ||ΠS(r0)|| and De(r0) in equations (5.79) and (5.80), we solve 6 cell
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Figure 5.3: Validation of homogenised equations (5.78) − (5.81) against the original
set of equations (5.41) − (5.47). The plots show the nutrient profile c and c0 down
the length of the domains shown in Figure 5.2 (a) for a series of case studies using
the parameter values b ∈ {0.5, 5}, F ∈ {0.1, 10}, φw|t=0∈ {0.4, 0.6}.

problems in radius increments of 0.02 from a sphere radius of r = 0.25 to a sphere

radius r = 0.35.

Shown in Figure 5.3 are the nutrient profiles for c and c0 down the length of the

geometries shown in Figure 5.2 (a). We observe for all buffer powers, root uptake

values and initial porosities, the homogenised nutrient profile for c0 is qualitatively

identical to the full nutrient concentration c. We find there to be a maximum error

of . 2% between the solutions across all scenarios.

Additionally, shown in Figure 5.4 are the individual tuber radii rj for the full set of

equations and the approximate radius r0 from the homogenised equations. We find

that the effective radius r0 successfully captures the growth of each tuber within the
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Figure 5.4: Validation of homogenised equations (5.78) − (5.81) against the original
set of equations (5.41) − (5.47). The plots show the effective radius r0 against the
actual radius rj of the tubers down the length of the domains shown in Figure 5.2
(a) for a series of case studies using the parameter values b ∈ {0.5, 5}, F ∈ {0.1, 10},
φw|t=0∈ {0.4, 0.6}.

full domain shown in Figure 5.2 (a). We find there to be a maximum error of . 2%

between the actual and effective tuber radius.

To highlight the accuracy of the homogenised set of equations, shown in Figure 5.5

are detailed results for the simulation using the parameters F = 0.1, b = 0.5 and

φw|t=0= 0.4. From Figure 5.5 (a) we observe that the effective radius r0 is able to

mimic the growth of the tubers in the full geometry. The growing tubers can be seen

in Figure 5.5 (b), in which the tubers at the top of the full equation domain at the

time point t = end have grown substantially larger than those at the base of the

domain. Furthermore, we find that the solute concentration profiles exhibit

identical traits between the full and homogenised domains.
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Figure 5.5: (a): Shown are the results for the actual and effective tuber volumes for
the simulation using the parameters F = 0.1, b = 0.5 and φw|t=0= 0.4 at the beginning
and end of the simulation.
(b): Shown are the results for the actual and effective solute concentration for the
same simulation as (a). Additionally the geometries capturing the tuber growth are
shown.

From Figures 5.3 and 5.4, we observe that the homogenised equations successfully

capture the nutrient movement and tuber growth in soil. However, the computation

time for the two systems of equations differs by several orders of magnitude. We
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find that the full set of equations in three dimensions requires ≈ 5 minutes (300

seconds) to solve one simulation for eight periodic cells. Conversely, solving the

homogenised equations requires ≈ 10 seconds to solve an analogous 3D simulation.

Furthermore, the homogenised set of equations can be reduced to a 1D problem

which will achieve the same results as the 3D problem due to the homogenisation

procedure. We find that the computation time to solve the 1D problem is� 1

second, which is substantially faster than the full set of equations. However, a set of

3D cell problems is required to parameterise the homogenised set of equations for

the terms ||ΠS(r0)|| and De(r0). In this case study, we chose to conduct six cell

problems for varying sphere radii. Each of the cell problems requires ≈ 10 seconds

to solve. However, these cell problems are only required to be solved once for each

set of parameters. Hence, we find that the homogenised set of equations can reduce

the computation time substantially whilst retaining a high level of accuracy.

5.4 Conclusions

In this chapter, we derived a set of averaged equations that describe the

macroscopic transport of nutrients in a partially saturated soil with growing potato

tubers. We used the method of multiple scale homogenisation that uses a set of

representative cell problems to parametrise the averaged equations, which are

based on the microscopic properties of the domain. We described the movement of

nutrients that are taken up by roots in soil, which induced growth of potato tubers

and in turn compress the surrounding soil, thereby changing the rate of nutrient

diffusion and the total volume of soil.

The full system equations required the implementation of a complex moving

boundary problem. This required the use of multiple domains to solve different

components of the equations, and subsequent mappings of solutions across

domains. Not only does this system require considerable computational power to

solve, the time required to correctly implement this system is substantial. This is

due to ensuring conservation of mass and consistent mappings of solutions across

domains. However, the homogenisation procedure eliminates this problem by

reducing the system to coupled system of PDEs with a series of cell problems. This

removes the need for moving boundaries and domain mappings, which considerably

reduces implementation time.

We made the assumption prior to the homogenisation procedure that the water

content was primarily dominated by the water uptake from plant roots, and was

negligibly affected by compaction effects. To justify this assumption, we validated



the homogenisation procedure by comparing the homogenised set of equations to

the full set of governing equations, which showed solutions that differed by a

maximum of . 2% between the actual and effective tuber radius, and . 2% between

the actual and effective nutrient concentration. Furthermore, we showed that the

computation time between the homogenised and full sets of equations differed by a

factor of O(103) for a set of eight periodic cells. However, the time required to solve

the full set of equations would increase substantially for a greater number of cells,

for example, a large cluster of potatoes in soil, whilst the homogenised set of

equations would require approximately the same amount of time. In addition, we

found that the considerable reduction in computation time did not compromise the

results, as we observed that a high level of accuracy is retained. This can aid in

analysing large series of case studies for solute movement in poroelastic domains,

such as modelling fertiliser applications for optimal crop growth in arable fields.





Chapter 6

Conclusions and Further Work

In this thesis we have developed mathematical models to describe multiple soil

processes in different soil structures. The key processes we considered were water

movement, solute transport, dynamic ponding and soil compaction. Particular

attention was paid to the surface of the soil that resulted from different cultivation

methods. Each of the four technical chapters of this thesis were concerned with

modelling a particular aspect of the processes described above. In this chapter, we

summarise the results and consider ways in which this work could be extended.

In Chapter 2 we developed a system of equations that described the movement of

water in soil for a generalised ridge and furrow soil domain. Soil water movement

was coupled to dynamic ponding on the ridged soil surface as a function of rainfall,

surface runoff, infiltration and surface topology. We validated the model using data

from a ridge and furrow study that measured the infiltration time of a pond into a

loam soil, and found a difference of ≈ 4% between the results of the study and the

results found in the simulation using the model.

In Chapter 3, we extended the model from Chapter 2 to include solute transport to

develop a coupled system of equations for water movement, solute transport and

dynamic ponding in generalised ridge and furrow systems. Using the model we

presented a comparison of water and solute movement between two key soil

geometries: a ridge and furrow geometry, and a flat planting geometry. We

simulated the movement of solutes with varying mobility and degradation in the

two geometries to observe how the structure of the soil surface topology influences

solute movement. The numeric modelling results showed that the ridge and furrow

structure could either impede or increase the penetration of solutes in soil,

depending on the immediate rainfall activity after a solute application and the

quantity of roots in the soil. For scenarios in which rainfall generated substantial

ponding immediately after a solute application, we found that water infiltration
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from the surface acted as a dominant transport mechanism for solutes in the furrow

of the soil. This caused solutes in the soil adjacent to the furrow to move to a

significantly greater depth when compared to the flat soil domain, where the

influence of ponding is not as substantial. However, we found that these trends are

reversed for scenarios where there is not considerable ponding after a solute

application. In these cases we observed that, with the presence of roots in the

ridges, this caused a dominant pressure gradient to form between the soil water and

root xylem. This in turn, caused the solute in the ridge and furrow domain to move

toward the roots, where the solute accumulated into a concentrated spot adjacent to

the root zone. This effect impedes the movement of the solute compared to the flat

soil, as the majority was contained in the ridge and had reduced influence from

furrow ponding. This mechanism can potentially reduce the quantity of solute that

penetrates deep into the soil.

In Chapter 4, we focused on modelling water movement in the plough layer of soil

in which crops were present. Using the model developed in Chapter 2, we

constructed a domain that contained harvestable crop products, i.e., potato tubers.

We modelled water uptake by the roots and impedance by crops. We used multiple

scale homogenisation to derive a set of approximate equations that described water

movement in this area of soil, which accounted for the effect of harvestable crop

products obstructing water movement. We validated the homogenisation procedure

by comparing the approximate set of homogenised equations to the full set of

equations for two different water regimes: partially saturated and variably saturated

soil. We found there to be a difference of . 2% between the two sets of solutions for

each of these cases. Furthermore, we identified that the time required to conduct

the simulations was reduced by a factor of O(102) seconds when using the

homogenised equations.

In Chapter 5 we focused on the area of soil contained in the plough layer. We

derived a set of equations to describe the movement of nutrients in partially

saturated soil that contains growing potato tubers. The soil was modelled as a

three-phase poroelastic material, which was deformed by the growth of the tubers,

where the growth of each tuber was dependent on the uptake of nutrients via a sink

term representing root uptake. We used multiple scale homogenisation to develop

an approximate set of equations that described the macoscopic transport of

nutrients and the effective growth of potato tubers in the soil. We validated the

homogenisation procedure by comparing the homogenised set of equations to the

full set of governing equations, which showed the solutions differed by a maximum

of . 2% between the actual and effective tuber radius, and . 2% between the actual

and effective nutrient concentration. We showed that the computation time
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between the homogenised and full sets of equations differed by a factor of O(103).

There are several natural ways to evolve the work conducted in this thesis. The

mathematical model in Chapter 3 for water and solute movement in a generalised

ridge and furrow soil domain can be extended in several directions. One of the key

extensions is consistent experimental verification of the mathematical model in

ridge and furrow fields. Although the numerical simulations replicate the results

found qualitatively in experimental studies, there is a lack of specific water and

solute data sets with which to compare and parameterise the model. Experimental

measurements of water and solute movement in ridge and furrow structures would

allow us to fully calibrate the model leading to more accurate results.

Along with experimental support, there are many ways to incorporate multiple new

components into the models themselves. For example, it is well known that

different cultivation methods alter the porosity, water retention permeability and

structure within the plough layer of soil. Hence, understanding the spatial

resolution of different soil parameters such as porosity and suction pressure would

allow for a more representative system. Similarly, knowledge of aspects such as the

root architecture would influence the movement of water and solutes in soil. These

are simple additions given the implementation of the mathematical model. Hence,

these types of extensions would require minimum work to implement successfully,

however, acquisition of the data would require additional experiments. Adding new

physics such as transpiration or other biological processes into the model may also

be an additional path to explore, such as incorporating above-ground processes to

generate a complete system of water and solute movement in crops.

In the original derivation of the ponding model, we considered the soil surface and

below, i.e., the soil system only. However, we are aware that the foliage from potato

plants can influence the distribution of solutes that are applied to soil due to the

leaves obstructing direct movement to the ground. Coupling the solute and water

movement in the below ground system with a mathematical model for the above

ground system including plant obstruction would encompass a more realistic

approach.

In Chapter 5, we developed a mathematical model that described solute movement

in a poroelastic soil domain in which there were growing crops. A clear progression

to extend this mathematical model is to incorporate water movement such that

within the poroelastic soil domain there is both water movement and solute

transport. Creating a coupled system of solute and water movement in a poroelastic

domain would encompass the key processes that are active in the plough layer of

soil. This could then be incorporated into the model from Chapter 3 to have a
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distinctive ‘sub-model’ in the plough layer of soil that accounted for the growth of

tubers in soil. Additionally, this could be further extended by incorporating other

factors, such as tuber densities varying with depth, since in the model derivation we

assumed a uniform distribution of tubers. This would generate a more complete

description of ridge and furrow systems, which could then be used to understand

the optimum depth and growth conditions for crops such as potatoes.

In this thesis we have developed new models to describe ridge and furrow soil

geometries that will form the backbone of future developments in this field. With

the rapid improvements in computation power, a complete mathematical system

describing the processes in and above soil may soon be a reality.
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[73] A. Mikelic and W. Jäger, “On the interface boundary condition of beavers,

joseph, and saffman,” SIAM Journal on Applied Mathematics, vol. 60, no. 4,

pp. 1111–1127, 2000.

[74] G. S. Beavers, E. M. Sparrow, and R. A. Magnuson, “Experiments on coupled

parallel flows in a channel and a bounding porous medium,” Journal of Basic
Engineering, vol. 92, no. 4, pp. 843–848, 1970.

[75] G. t. Taylor, “A model for the boundary condition of a porous material. part

1,” Journal of Fluid Mechanics, vol. 49, no. 2, pp. 319–326, 1971.

[76] G. Beavers, E. Sparrow, and B. Masha, “Boundary condition at a porous

surface which bounds a fluid flow,” AIChE Journal, vol. 20, no. 3,

pp. 596–597, 1974.

[77] P. G. Saffman, “On the boundary condition at the surface of a porous

medium,” Studies in applied mathematics, vol. 50, no. 2, pp. 93–101, 1971.

[78] J.-L. Auriault, “About the beavers and joseph boundary condition,” Transport
in porous media, vol. 83, no. 2, pp. 257–266, 2010.

[79] N. Jarvis, P.-E. Jansson, P. Dik, and I. Messing, “Modelling water and solute

transport in macroporous soil. i. model description and sensitivity analysis,”

European Journal of Soil Science, vol. 42, no. 1, pp. 59–70, 1991.

[80] J. Kool and J. Parker, “Analysis of the inverse problem for transient

unsaturated flow,” Water Resources Research, vol. 24, no. 6, pp. 817–830,

1988.

[81] A. Gardenas, J. Hopmans, B. Hanson, and J. Simunek, “Two-dimensional

modeling of nitrate leaching for various fertigation scenarios under

micro-irrigation,” Agricultural water management, vol. 74, no. 3,

pp. 219–242, 2005.

[82] T. Vogel, H. Gerke, R. Zhang, and M. T. Van Genuchten, “Modeling flow and

transport in a two-dimensional dual-permeability system with spatially

variable hydraulic properties,” Journal of hydrology, vol. 238, no. 1-2,

pp. 78–89, 2000.

[83] N. Patel and T. Rajput, “Dynamics and modeling of soil water under

subsurface drip irrigated onion,” Agricultural water management, vol. 95,

no. 12, pp. 1335–1349, 2008.



130 BIBLIOGRAPHY

[84] D. L. Ficklin, S. L. Letsinger, H. Gholizadeh, and J. T. Maxwell, “Incorporation

of the penman–monteith potential evapotranspiration method into a palmer

drought severity index tool,” Computers & Geosciences, vol. 85, pp. 136–141,

2015.

[85] T. Ramos, J. Simunek, M. Goncalves, J. Martins, A. Prazeres, N. Castanheira,

and L. Pereira, “Field evaluation of a multicomponent solute transport model

in soils irrigated with saline waters,” Journal of Hydrology, vol. 407, no. 1-4,

pp. 129–144, 2011.

[86] D. Rocha, F. Abbasi, and J. Feyen, “Sensitivity analysis of soil hydraulic

properties on subsurface water flow in furrows,” Journal of irrigation and
drainage engineering, vol. 132, no. 4, pp. 418–424, 2006.

[87] M. Camporese, C. Paniconi, M. Putti, and S. Orlandini, “Surface-subsurface

flow modeling with path-based runoff routing, boundary condition-based

coupling, and assimilation of multisource observation data,” Water Resources
Research, vol. 46, no. 2, 2010.

[88] S. J. Kollet and R. M. Maxwell, “Integrated surface–groundwater flow

modeling: A free-surface overland flow boundary condition in a parallel

groundwater flow model,” Advances in Water Resources, vol. 29, no. 7,

pp. 945–958, 2006.

[89] S. Weill, E. Mouche, and J. Patin, “A generalized richards equation for

surface/subsurface flow modelling,” Journal of Hydrology, vol. 366, no. 1-4,

pp. 9–20, 2009.

[90] D. Tian and D. Liu, “A new integrated surface and subsurface flows model

and its verification,” Applied mathematical modelling, vol. 35, no. 7,

pp. 3574–3586, 2011.

[91] S. Panday and P. S. Huyakorn, “A fully coupled physically-based

spatially-distributed model for evaluating surface/subsurface flow,” Advances
in Water Resources, vol. 27, no. 4, pp. 361–382, 2004.

[92] X. Li, D. Su, and Q. Yuan, “Ridge-furrow planting of alfalfa (medicago sativa

l.) for improved rainwater harvest in rainfed semiarid areas in northwest

china,” Soil and Tillage Research, vol. 93, no. 1, pp. 117–125, 2007.

[93] M. Banti, T. Zissis, and E. Anastasiadou-Partheniou, “Furrow irrigation

advance simulation using a surface–subsurface interaction model,” Journal of
Irrigation and Drainage Engineering, vol. 137, no. 5, pp. 304–314, 2010.



BIBLIOGRAPHY 131

[94] H. Ebrahimian, A. Liaghat, M. Parsinejad, E. Playán, F. Abbasi, and

M. Navabian, “Simulation of 1d surface and 2d subsurface water flow and

nitrate transport in alternate and conventional furrow fertigation,” Irrigation
science, vol. 31, no. 3, pp. 301–316, 2013.

[95] E. Bautista, A. Warrick, and T. Strelkoff, “New results for an approximate

method for calculating two-dimensional furrow infiltration,” Journal of
irrigation and drainage engineering, vol. 140, no. 10, p. 04014032, 2014.

[96] D. Zerihun, C. Sanchez, N. Lazarovitch, A. Warrick, A. Clemmens, and

E. Bautista, “Modeling flow and solute transport in irrigation furrows,”

Irrigation Drainage System Engineering, vol. 3, p. 124, 2014.

[97] E. Bautista, “Effect of infiltration modeling approach on operational solutions

for furrow irrigation,” Journal of Irrigation and Drainage Engineering,

vol. 142, no. 12, p. 06016012, 2016.

[98] M. Tabuada, Z. Rego, G. Vachaud, and L. Pereira, “Two-dimensional

infiltration under furrow irrigation: modelling, its validation and

applications,” Agricultural water management, vol. 27, no. 2, pp. 105–123,

1995.

[99] A. G. Segeren and T. J. Trout, “Hydraulic resistance of soil surface seals in

irrigated furrows,” Soil Science Society of America Journal, vol. 55, no. 3,

pp. 640–646, 1991.

[100] L. A. Richards, “Capillary conduction of liquids through porous mediums,”

Physics, vol. 1, no. 5, pp. 318–333, 1931.

[101] M. T. Van Genuchten, “A closed-form equation for predicting the hydraulic

conductivity of unsaturated soils 1,” Soil science society of America journal,
vol. 44, no. 5, pp. 892–898, 1980.

[102] H. Darcy, “Les fontaines publique de la ville de dijon,” Dalmont, Paris,
vol. 647, 1856.

[103] D. Lesczynski and C. Tanner, “Seasonal variation of root distribution of

irrigated, field-grown russet burbank potato,” American Potato Journal,
vol. 53, no. 2, pp. 69–78, 1976.

[104] B. Yang, P. S. Blackwell, and D. F. Nicholson, “A numerical model of heat and

water movement in furrow-sown water repellent sandy soils,” Water
Resources Research, vol. 32, no. 10, pp. 3051–3061, 1996.



132 BIBLIOGRAPHY

[105] T. Wohling and G. Schmitz, “Physically based coupled model for simulating

1d surface-2d subsurface flow and plant water uptake in irrigation furrows. i.

model development,” Journal of irrigation and drainage engineering, 2007.

[106] C. Shock, E. Feibert, and L. Saunders, “Potato yield and quality response to

deficit irrigation,” HortScience, vol. 33, no. 4, pp. 655–659, 1998.

[107] S. Duncan, K. Daly, P. Sweeney, and T. Roose, “Mathematical modelling of

water and solute movement in ridge plant systems with dynamic ponding,”

European Journal of Soil Science, 2017.

[108] M. Office, National Meteoroloigcal Library and Archive Fact Sheet 3 - Water in
the atmosphere. 2012.

[109] J. Morin and Y. Benyamini, “Rainfall infiltration into bare soils,” Water
Resources Research, vol. 13, no. 5, pp. 813–817, 1977.

[110] F. Liu, A. Shahnazari, M. N. Andersen, S.-E. Jacobsen, and C. R. Jensen,

“Physiological responses of potato (solanum tuberosum l.) to partial

root-zone drying: Aba signalling, leaf gas exchange, and water use

efficiency,” Journal of Experimental Botany, vol. 57, no. 14, pp. 3727–3735,

2006.

[111] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and J. Koster, “Mumps: a general

purpose distributed memory sparse solver,” in International Workshop on
Applied Parallel Computing, pp. 121–130, Springer, 2000.

[112] A. A. Siyal, K. L. Bristow, and J. Šimůnek, “Minimizing nitrogen leaching
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[159] A. Fließbach and P. Mäder, “Short-and long-term effects on soil

microorganisms of two potato pesticide spraying sequences with either

glufosinate or dinoseb as defoliants,” Biology and fertility of soils, vol. 40,

no. 4, pp. 268–276, 2004.

[160] “Commission regulation (eu) 2018/78 of 16 january 2018 amending annexes

ii and iii to regulation (ec) no 396/2005 of the european parliament and of

the council as regards maximum residue levels for 2-phenylphenol,

bensulfuron-methyl, dimethachlor and lufenuron in or on certain products,”

Official Journal of the European Union, pp. 6–30, 2018.

[161] X. Chen, X. Zhao, P. Wu, Z. Wang, F. Zhang, and Y. Zhang, “Water and

nitrogen distribution in uncropped ridgetilled soil under different ridge

width,” African Journal of Biotechnology, vol. 10, no. 55, pp. 11527–11536,

2011.

[162] J. Hamlett, J. Baker, and R. Horton, “Water and anion movement under ridge

tillage: a field study,” Transactions of the ASAE, vol. 33, no. 6, pp. 1859–1866,

1990.

[163] B. Bargar, J. Swan, and D. Jaynes, “Soil water recharge under uncropped

ridges and furrows,” Soil Science Society of America Journal, vol. 63, no. 5,

pp. 1290–1299, 1999.

[164] F. Abbasi, J. Feyen, and M. T. Van Genuchten, “Two-dimensional simulation

of water flow and solute transport below furrows: model calibration and

validation,” Journal of Hydrology, vol. 290, no. 1-2, pp. 63–79, 2004.

[165] P. Darrah, D. Jones, G. Kirk, and T. Roose, “Modelling the rhizosphere: a

review of methods for ‘upscaling’ to the whole-plant scale,” European Journal
of Soil Science, vol. 57, no. 1, pp. 13–25, 2006.

[166] S. D. Keyes, K. R. Daly, N. J. Gostling, D. L. Jones, P. Talboys, B. R. Pinzer,

R. Boardman, I. Sinclair, A. Marchant, and T. Roose, “High resolution

synchrotron imaging of wheat root hairs growing in soil and image based



138 BIBLIOGRAPHY

modelling of phosphate uptake,” New Phytologist, vol. 198, no. 4,

pp. 1023–1029, 2013.

[167] P. R. Adler, M. A. Sanderson, A. A. Boateng, P. J. Weimer, and H.-J. G. Jung,

“Biomass yield and biofuel quality of switchgrass harvested in fall or spring

mention of trade names or commercial products in this publication is solely

for the purpose of providing specific information and does not imply

recommendation or endorsement by the usda.,” Agronomy Journal, vol. 98,

no. 6, pp. 1518–1525, 2006.

[168] L. Cueto-Felgueroso and R. Juanes, “A phase field model of unsaturated flow,”

Water resources research, vol. 45, no. 10, 2009.

[169] J. Bear, Dynamics of fluids in porous media. Courier Corporation, 2013.
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Summary

We present a mathematical model that describes the movement of water and solutes in a ridge and furrow
geometry. We focus on the effects of two physical processes: root water uptake and pond formation in the furrows.
Special attention is paid to the physical description of ponding as an effect of transient rain events. We focus on
phenomena taking place in the furrow cross-section, not on the drainage along the furrow. The resulting model
comprises a coupled system of partial and ordinary differential equations that describe the mathematical interplay
between solute transport, water movement and furrow pond depth. The system of equations is solved numerically
using finite element techniques. We conducted numerical simulations to determine how mobile solutes with low
buffer powers penetrate into the soil. We considered two cases: low rainfall, in which pond formation does not
occur, and high rainfall, in which significant ponding is observed in the furrows. We found, in the presence of
roots, that mobile solutes collected into a concentrated spot adjacent to the root system independent of rainfall
intensity. In the absence of roots, however, we observed that water infiltration from ponding acted as the dominant
transport mechanism for mobile solutes. This resulted in deep solute penetration into the soil when compared with
non-ponded furrows.

Highlights

• Effect of furrow ponding and plant water uptake on solute movement in ridged fields.
• We developed a mathematical model that describes ponding in furrows from rainfall events.
• Solute ‘hot spots’ formed in soil from surface ponding and root water uptake.
• We estimate reduced risk to solute leaching under the effects of ponding when roots are present in soil.

Introduction

In arable farming, a specific form of row production known as a
ridge and furrow geometry is frequently used to cultivate crops such
as potatoes (Steele et al., 2006). This geometry is formed when
the soil surface is adapted to form a periodic series of peaks and
troughs. This allows water to flow across the field, providing water
to the plants whilst preventing waterlogging of the roots (Tisdall
& Hodgson, 1990). However, under certain rainfall conditions,
this can lead to pond formation in the furrows that can result in
decreased yields for crops such as potatoes (van Loon, 1981). An
understanding of water movement and ponding in ridge and furrow
geometries will help in developing strategies for crop and soil
management.

Correspondence: T. Roose. E-mail: t.roose@soton.ac.uk
Received 23 March 2017; revised version accepted 28 September 2017

There is growing uncertainty about whether ridge and furrow
geometries present greater potential for the movement of mobile
plant protection products to groundwater than flat fields, because
none of the models currently used for regulatory purposes to esti-
mate solute movement to groundwater after application can model
this system explicitly (EFSA, 2013). Consequently, a universal
multiplier has been proposed to extrapolate between estimates of
residues calculated for flat fields and those in ridge and furrow
geometries (EFSA, 2013). In the absence of extensive and expensive
field data, mathematical models designed to model solute move-
ment explicitly in ridges and furrow geometries can provide insight
into understanding the effects of ponding in these systems.

Mathematical modelling of water movement in ridge and furrow
systems has been studied increasingly in recent years (Ebrahimian
et al., 2013; Bautista et al., 2014; Sanchez et al., 2014), often for
semiarid soil where the ridge and furrow geometry is used to facil-
itate irrigation. Because of the lack of rain in these environments,
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precipitation and surface runoff are often disregarded because fur-
row irrigation management is the main priority.

In this paper, we develop a general mathematical model for
solute movement in ridge and furrow soil, taking account of sur-
face ponding and water movement from transient rainfall events to
understand how solutes move in United Kingdom environments.
We consider the movement of water and solutes in temperate
soils with no formal irrigation, but subjected to substantial rain
that results in ponding on the soil surface. The model presented
can then be customized for specific fertilizers or pesticide-like
solutes by including other soil processes such as biodegrada-
tion, microbial mineralization and air volatilization to determine
how a particular solute will behave under a specific rainfall
regime.

Several models for pond infiltration have been presented in the
literature (Ebrahimian et al., 2013; Bautista et al., 2016). However,
these models describe irrigation and drainage longitudinally along
a furrow (often using the zero-inertia model for a moving body of
water). To describe dynamic ponding from transient rainfall events,
we developed a model that captures the filling and draining of
a pond on the soil surface. In addition, we consider root-water
uptake in the ridges of the geometry. We assess soil ponding from a
mechanical perspective and incorporate Dirichlet and flux boundary
conditions to represent areas of ponding and water-free surfaces,
respectively (Camporese et al., 2010). We shall disregard fluid
drainage along the length of the furrow because our main concern
is ponding from rainfall, rather than irrigation that transports water
down the furrow.

To study the effects of solute movement under the influence of
surface ponding, we coupled water movement with solute transport
in soil. We incorporated the movement of solutes into the model
to understand better how nutrients, fertilizers and pesticides move
under the effect of surface ponding in the presence and absence of
roots. The physical characteristics of solutes can lead to adverse
effects on the local environment; however, mathematical modelling
enables us to develop strategies to reduce these negative effects by
either aiding or impeding solute penetration into the soil (i.e. to
promote the movement of low-mobility fertilizers or to reduce the
leaching of high-mobility solutes).

Previous modelling of ridge and furrow system behaviour typi-
cally used software packages such as HYDRUS-2D, WinSRFR and
so on (Ebrahimian et al., 2013; Sanchez et al., 2014; Bautista et al.,
2016). Although they enable easy implementation of fluid flow
models, we chose to use general finite element software (COMSOL
Multiphysics®, Stockholm, Sweden, www.comsol.com) because it
allows us to generalize fluid flow and surface ponding. It provides
greater flexibility and easier implementation of new physics without
relying on the functionality of software.

Our model presented in this paper consists of a coupled system of
two partial differential equations (PDEs): one for the movement of
water in soil and one for the transport of solutes. We also introduce
an additional ordinary differential equation (ODE) that is coupled to
the system of PDEs to describe dynamic ponding. It should be noted
that we disregard any effects of soil moisture from heat transfer in

soil because our focus is surface ponding and soil waterlogging in
a temperate UK environment.

Mathematical model

In this section, we derive a model for simultaneous water and solute
movement in variably saturated soil that accounts for the ridge and
furrow geometry and the effects of dynamic surface ponding. The
movement of solutes in soil is known to depend considerably on
the degree of water saturation (Nye & Tinker, 1977). Therefore, we
constructed a coupled water and solute movement model to connect
soil water pore pressure with solute concentration. We assume that
solutes do not create osmotic pressure gradients that influence fluid
flow (i.e. fluid flow influences solute movement, but not vice versa).

The symmetry and periodicity of the ridge and furrow structure
enable us to describe the complete system with a single half-period
of the ridge and furrow geometry. The geometry used in this
study is shown in Figure 1 by the domainΛ, which was chosen
to be consistent with the dimensions for typical ridge and furrow
geometries (Steele et al., 2006; Li et al., 2007). We approximate the
soil surface 𝜕ΛS (see Figure 1) by the periodic function:

𝜒 (x) = A cos (Bx) + C, (1)

where A is the variation in soil depth, B is the ridge wave number
and C is the average soil depth.

Water movement in variably saturated soil

To describe water movement in ridged soil systems, we assume
there may be regions of soil that are fully saturated (i.e. directly
under the pond) and regions that are partially saturated. To account
for this, we constructed a model that can switch between a partially
and a fully saturated soil environment with a moving interface
between the two regions.

For water movement in variably saturated soil, Richards’ equation
is used (Kollet & Maxwell, 2006; Weill et al., 2009). This equation
is derived by combining the equation for mass balance of soil water
flow (Richards, 1931):

𝜙
𝜕S
𝜕t

+ 𝛻 · u = −Fw, x ∈ Λ, (2)

with Darcy’s law,

u = −𝜅 (S)
𝜇

(
𝛻p + 𝜌g k̂

)
, x ∈ Λ. (3)

The result is Richards’ equation in mixed form:

𝜙
𝜕S
𝜕t

+ 𝛻 ·
[
−𝜅 (S)

𝜇

(
𝛻p + 𝜌g k̂

)]
= −Fw, x ∈ Λ, (4)

where 𝜙 is the soil porosity, S is the relative saturation (i.e. S=𝜙l/𝜙,
where 𝜙l is the volumetric water content), u is the volume flux of
water, 𝜅(S) is the relative hydraulic permeability, 𝜇 is the viscosity
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Figure 1 Half of a ridge and furrow period, where Λ is the total soil domain
such that Λ=ΛA ∪ΛU, ΛA is the region of soil with no roots, ΛU is the
region of soil with roots present, 𝜕ΛS is the soil surface boundary, 𝜕ΛB is
the base of the domain, 𝜕ΛW is the left boundary adjacent to the ridge and
𝜕ΛE is the right boundary adjacent to the furrow. The curve 𝜕ΛS is generated
from the values A = C = 0.16̇ and B= 2𝜋 used in the periodic function 𝜒(x)
(Equation (1)).

of water, p is the soil water pore pressure, 𝜌 is the density of water,
g is the acceleration due to gravity, k̂ is a unit vector in the upwards
direction and Fw is a sink term that describes water uptake via plant
roots.

The root water uptake function, Fw, is given by the difference
in soil water pore pressure and the pressure in plant roots (Roose
& Fowler, 2004a) and is assumed to be active only where roots
are present. We split Λ into two regions, ΛU is the zone in which
roots take up water and ΛA is the region in which there are no roots.
Hence, we write:

Fw =

{
𝜆c

(
p − pr

)
,

0,

x ∈ ΛU

x ∈ ΛA

, (5)

where 𝜆c is the product of the root surface area density and water
conductivity of the plant root cortex and pr is the pressure in the root
xylem.

We express S as a function of p using the van Genuchten
pressure-saturation relation (van Genuchten, 1980) (also called the

suction characteristic):

S ( p) =

[(
pa − p

pc

) 1
1−m

+ 1

]−m

, (6)

where pa is the atmospheric pressure, pc is the characteristic suction
pressure and m is a van Genuchten parameter. The parameters pc

and m are determined experimentally for each soil (van Genuchten,
1980). Note that we choose to set pa = 0, such that p is defined as
the gauge pressure relative to the atmospheric pressure (Roose &
Fowler, 2004a).

To describe the relative permeability 𝜅(S), we used a second van
Genuchten formula (van Genuchten, 1980):

𝜅 (S) = 𝜅sS
1
2

[
1 −
(

1 − S
1
m

)m]2
, (7)

where 𝜅s is the saturated hydraulic permeability.
Combining Richards’ equation (4) with the van Genuchten

equations (6)–(7) (van Genuchten, 1980), we can write the water
movement model in terms of p only:

𝜙
𝜕S (p)
𝜕p

𝜕p

𝜕t
+ 𝛻 ·

{
−
𝜅
[
S (p)
]

𝜇

(
𝛻p + 𝜌gk̂

)}
= −Fw, x ∈ Λ,

(8)
where,

𝜕S (p)
𝜕p

=

m

[(
−p

pc

) 1
1−m + 1

]−m−1 (
−p

pc

) m
1−m

pc (1 − m)
(9)

and

𝜅
[
S ( p)
]
= 𝜅s

[(
−p

pc

) 1
1−m

+ 1

] −m
2

×
⎛⎜⎜⎜⎝1 −
⎧⎪⎨⎪⎩1 −

[(
−p

pc

) 1
1−m

+ 1

]−1⎫⎪⎬⎪⎭
m⎞⎟⎟⎟⎠

2

. (10)

Richards’ equation is frequently used to describe water
movement in partially saturated soil. However, we can adapt
Equations (8)–(10) such that they can represent both a saturated
and partially saturated soil. To adapt Richards’ equation for vari-
ably saturated soil, we use similar methods to those used previously
by others (Kollet & Maxwell, 2006; Weill et al., 2009; Bautista
et al., 2014) that reduce Richards’ equation to saturated Darcy flow
in the event of full saturation (for p≥ 0). We do this by modifying
Equations (8)–(10) in two ways. First, for p≥ 0 we eliminate the
term 𝜙

𝜕S(p)
𝜕p

𝜕p

𝜕t
from Equation (8) by setting 𝜕S(p)

𝜕p
= 0, which in

turn reduces Richards’ equation to Darcy flow. Thus, to describe
the movement of water in variably saturated soil, we impose the
condition:

𝜕S (p)
𝜕p

=

{
0
𝜕S(p)
𝜕p

for S = 1
for 0 < S < 1

,
p ≥ 0
p < 0

. (11)
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To implement Equation (11) as a closed-form expression, we use
a smoothing approximation to the Heaviside function H(x) to set
𝜕S(p)
𝜕p

→ 0 as p→ 0. This imitates the piecewise Equation (11) while
retaining a level of smoothness over a narrow transition region
about p= 0 to aid in numerical simulation. We add the smoothed
Heaviside function HS(p), such that:

[
1 − HS ( p)

]
𝜙
𝜕S ( p)
𝜕p

𝜕p

𝜕t
+𝛻 ·

{
−
𝜅
[
S (p)
]

𝜇

(
𝛻p + 𝜌g k̂

)}
= −Fw,

(12)
where

HS (p) =
1
2

[
1 + tanh (𝜎p)

]
, (13)

and
1
σ defines the width of transition between 𝜕S(p)

𝜕p
and 0

around p= 0.
Second, when Richards’ equation is reduced to Darcy flow, the

function 𝜅[S(p)] is required to be constant in the fully saturated soil
regime. Thus, we introduce a second condition:

𝜅
[
S (p)
]
=

{
𝜅s

𝜅
[
S (p)
] p ≥ −𝜀

p < −𝜀
, (14)

where 𝜀 is a small transition pressure that acts as the interface
between the saturated and partially saturated soil regions. We
introduced 𝜀 to avoid discontinuities in the numerical solution
to Equation (12). These discontinuities come from the second
term in Equation (12) because we need to evaluate

d𝜅[S(p)]
dp

|||p=0
.

However,
d𝜅[S(p)]

dp
is singular at the transition between fully and

partially saturated soil, such that lim
p→0−

(
d𝜅[S(p)]

dp

)
= ∞. Hence, we

introduce 𝜀 such that d𝜅[S(0)]
dp

is never evaluated. If we did not
do this, the numerical procedure would fail to converge. The
parameter 𝜀 differs from 𝜎 because 𝜀 is applied strictly to the
negative side of p, whereas 𝜎 smooths either side of the pressure
p= 0.

Soil surface boundary condition

To form a complete description of the ridge and furrow system,
we derive boundary conditions that are imposed on the edges ofΛ,
and a novel and original ODE for a moving surface point interface
for dynamic water ponding on the soil surface that is coupled to
Richards’ equation for water infiltration into soil.

To represent ponding, which is often present in ridge and furrow
systems (Tabuada et al., 1995; Vogel et al., 2000), we split the
boundary 𝜕ΛS (see Figure 1) into two distinct regions. This is shown
in Figure 2, where 𝜕ΛR is the surface of soil that is not ponded
(i.e. where rain penetrates the soil directly) and 𝜕ΛP is the region on
which ponding occurs. Note that we allow the point x0 connecting
𝜕ΛR and 𝜕ΛP to move in time (i.e. x0 = x0(t)), such that the pond
height can change transiently.

We assume the pond boundary condition on 𝜕ΛP can be repre-
sented by a hydrostatic boundary condition (Tabuada et al., 1995;
Vogel et al., 2000; Kollet & Maxwell, 2006). On the soil surface

Figure 2 Half of a ridge and furrow period, where 𝜕ΛP is the soil surface
boundary on which ponding occurs, 𝜕ΛR is the soil surface that is not
ponded, x0 is the point on the soil surface 𝜕ΛS where the pond begins, 𝜂
is the width of the half period of ridged domain, h0 is the maximum depth
of the pond, 𝜒(x) is the curve for the soil surface 𝜕ΛS and V is the volume
of the pond.

directly under the pond, we apply the pressure that results from the
height of the water column in the pond above it; that is:

p = 𝜌gh (x, t) , x ∈ 𝜕ΛP, (15)

where h(x, t) is the depth of the pond.
Precipitation landing on the bare soil 𝜕ΛR enters the soil domain

by a combination of capillary forces and gravitational effects.
Therefore, we implement a normal fluid flux condition on 𝜕ΛR

(Yang et al., 1996), such that:

n ·
⎧⎪⎨⎪⎩
𝜅
[
S (p)
]

𝜇

(
𝛻p + 𝜌g k̂

)⎫⎪⎬⎪⎭ = 𝜔 (t) , x ∈ 𝜕ΛR, (16)

where𝜔(t)=min {Γ(t), Ic}, n is the unit normal vector pointing
outwards from Λ, Γ(t) is the volume flux of water per unit area of
soil surface (i.e. rain), Ic is the infiltration capacity of the soil and
𝜔(t) is the volume flux of water entering the soil per unit surface
area. In the event of sufficiently heavy rain, the quantity of water
that can enter the soil system is limited by the infiltration capacity of
the soil Ic. Any excess rain that exceeds Ic (i.e. Γ(t)> Ic) is defined
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as the surface runoff Ro(t), and is quantified by:

Ro (t) =
⎧⎪⎨⎪⎩
{[

Γ (t) − Ic

]
· ∫ x0(t)

0

√
1 +
(

d𝜒(x)
dx

)2
dx

}
,

0,

Γ (t) > Ic

Γ (t) ≤ Ic

,

(17)
where 𝜒(x) is the generalized curve of 𝜕ΛS, given by Equation (1).

To determine the change in pond depth for the boundary
conditions imposed on 𝜕ΛR and 𝜕ΛP, we implement an addi-
tional ODE that is coupled to the governing water movement
model, Equations (12)–(14). This connects the volume of
water in the pond V(t), the rate of rainfallΓ(t), the surface
runoff Ro(t) and the flux u entering the soil domain from the pond
(i.e. the quantity of water leaving the pond and infiltrating into
the soil).

We define the maximum depth of the pond h0(t) (see Figure 2) at
a given time t to be:

h0 (t) = 𝜒
[
x0 (t)
]
, (18)

where x0(t) is the x co-ordinate at which the pond starts (i.e. the
partition between 𝜕ΛR and 𝜕ΛP). It should be noted that for h0(t)
to have this definition, the vertical datum z= 0 is measured from
the base of the soil curve𝜒(x) (see Figure 2). This allows the
hydrostatic boundary condition Equation (15) to be re-written such
that:

p = 𝜌g
[
h0 (t) − 𝜒 (x)

]
, x ∈ 𝜕ΛP, (19)

where h0(t)−𝜒(x)= h(x, t).
In addition, a length 𝜂 is chosen to represent half a ridge and

furrow period (see Figure 2). It follows that for a given pond
volume V(t), the partition of the pond boundary x0(t) is calculated
by:

V (t) = h0 (t) ·
[
𝜂 − x0 (t)

]
− ∫

𝜂

x0(t)
𝜒 (x) dx. (20)

The change in pond volume V(t) is defined to be

dV (t)
dt

= Γ (t) ·
[
𝜂 − x0 (t)

]
+ Ro (t) − ∫

𝜂

x0(t)
u · n|𝜕ΛP

dx, (21)

where Γ(t) · [𝜂 − x0(t)] is the rainfall entering the pond, Ro(t) is the
surface runoff and ∫ 𝜂

x0(t)
u · n|𝜕ΛP

dx is the quantity of water leaving
the pond and infiltrating into the soil by the boundary condition
on 𝜕ΛP, Equation (19) (Wöhling & Schmitz, 2007). We substitute
Equation (20) into Equation (21) such that:

𝜕

𝜕t

{
h0 (t) ·

[
𝜂 − x0 (t)

]
− ∫

𝜂

x0(t)
𝜒 (x) dx

}
= Γ (t) ·

[
𝜂 − x0 (t)

]
+ Ro (t) − ∫

𝜂

x0(t)
u · n|𝜕ΛP

dx, (22)

where h0(t) is defined by Equation (18). Equation (22) describes
the change in the position of the pond boundary x0(t), given the
rainfall entering the pond, surface runoff and water infiltration from

the pond into the surrounding soil. To calculate u, Equation (22) is
coupled with Richards’ equation by Equations (12)–(14) and the
boundary condition Equation (19).

Through successive application of the Leibniz integral
rule and the chain rule, for the generic function z=𝜒(x),
Equation (22) can be expressed explicitly as a function of dx0(t)

dt
;

that is:

dx0 (t)
dt

{
𝜂
𝜕𝜒
[
x0 (t)
]

𝜕x0 (t)
− 𝜒
[
x0 (t)
]
− x0 (t)

𝜕𝜒
[
x0 (t)
]

𝜕x0 (t)

}

−
[
𝜕

𝜕t ∫
𝜂

x0(t)
𝜒 (x) dx

]
= Γ (t) ·

[
𝜂 − xo (t)

]
+ Ro (t)

+ ∫
𝜂

x0(t)

⎛⎜⎜⎜⎝
⎧⎪⎨⎪⎩
𝜕𝜒 (x)
𝜕x

𝜅
[
S (p)
]

𝜇

(
𝜕xp
)
−

𝜅
[
S (p)
]

𝜇

(
𝜕z p + 𝜌g

)⎫⎪⎬⎪⎭
||||||||𝜕ΛP

×

[
1 +
(
−
𝜕𝜒 (x)
𝜕x

)2
]−0.5⎞⎟⎟⎠ dx. (23)

Note that for the boundary condition on 𝜕ΛP, Equation (19),
to be active, we impose the condition that a minimum pond
depth threshold must be reached before water leaves the pond and
infiltrates into the soil:

p = 𝜌g
[
h0 (t) − 𝜒 (x)

]
for 𝜒

[
x0 (t)
]
> xmin, (24)

where xmin is the minimum pond depth. We impose this condition to
aid numerical computation because a pond that is much smaller than
the mesh size can lead to convergence problems for the numerical
solver. However, we chose the threshold to be sufficiently small that
it has a negligible effect on the results.

Lateral boundary conditions

For the boundaries 𝜕ΛE and 𝜕ΛW, we set a zero flux boundary
condition:

n ·
⎧⎪⎨⎪⎩
𝜅
[
S (p)
]

𝜇

(
𝛻p + 𝜌g k̂

)⎫⎪⎬⎪⎭ = 0, x ∈ 𝜕ΛE ∪ 𝜕ΛW . (25)

Therefore, there is no lateral water movement into or out of Λ.

Boundary condition at the base of the soil

For the boundary at the base of the domain 𝜕ΛB, we set a Dirichlet
boundary condition (Banti et al., 2011). This describes a constant
saturation level at a constant depth (i.e. 1 m below z= 0) (see
Figure 2). Thus, we impose the condition:

p = p0, x ∈ 𝜕ΛB. (26)
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Initial conditions

For the initial pressure condition p||t= 0, we impose the steady state
pressure profile that forms when roots are not present:

p||t=0 = p∞ (x) , x ∈ Λ. (27)

Furthermore, we assume there is no surface ponding present on 𝜕ΛS

at t= 0:

x0 (t)||t=0 = 𝜂, (28)

such that the pond depth is𝜒[ x0(t)|t= 0]= 0.
The system of Equations (12), (14), (16), (19) and (23)–(28)

completes the description of the coupled water balance in the
presence of surface ponding.

Solute movement in variably saturated soil

In this section, we introduce a mathematical model for solute
movement in soil. We couple it with the water movement model
derived above, thereby constructing a model for simultaneous water
and solute movement in soil. The model is coupled by a similar
approach to that used by Roose & Fowler (2004b). It should be
noted that we assume that there is no solute uptake by plant roots
or degradation of the solute from other soil processes. Here we deal
only with the solute transport problem of solutes that are not actively
taken up by plant roots, although it is trivial to customize and
extend the model to accommodate solute uptake by plant roots or
other soil processes. Examples of passive solutes include non-ionic
strongly lipophilic substances, which are taken up minimally by
barley (Hordeum vulgare L.) plants because of their lipophilicity
(Briggs et al., 1982, 1983).

To model the movement of solutes in soil, we use the
advection–diffusion equation (Nye & Tinker, 1977; Barber,
1995):

𝜕

𝜕t

[(
𝜙l + b

)
c
]
+ 𝛻 · (cu) = 𝛻 ·

(
𝜙lD𝛻c

)
, (29)

where D is the solute diffusion coefficient in the soil pore water,𝜙l

is the volumetric water content, c is the solute concentration in the
pore water, u is the volume flux of water and b is the buffer power
of the solute. We assume b to be constant in this model. However,
it is trivial to extend b to more complex adsorption isotherms
(i.e. Langmuir or Freundlich).

The volumetric water content 𝜙l is related to the soil water pore
pressure p by the suction characteristic𝜙l =𝜙S(p). In addition, we
state that u in Equation (29) is described by Darcy’s law, as in the
water movement model, Equation (3). Finally, we assume D can be
expressed by the power law:

D = Df𝜙
dS (p)d , (30)

where Df is the diffusion coefficient in free liquid and d is the
impedance factor of the solute that accounts for the tortuosity of the
solute moving through the soil pore space (Nye & Tinker, 1977).

Combining Equations (29) and (30) with Equations (12)–(14)
that govern water movement, the model for solute movement is
given by:

𝜕c
𝜕t

[
b + S (p)𝜙

]
+

𝜕p

𝜕t

{[
1 − HS (p)

] 𝜕S (p)
𝜕p

𝜙 c

}
+ 𝛻 ·
[
−Df𝜙

d+1S (p)d+1 𝛻c
]

+ 𝛻 ·
⎧⎪⎨⎪⎩−

c𝜅
[
S (p)
]

𝜇

(
𝛻p + 𝜌g k̂

)⎫⎪⎬⎪⎭ = 0. (31)

Note that for the solute model to be valid for a variably satu-
rated soil domain, a similar condition to Equation (14) has been
imposed. This condition sets the ‘time’ coefficient [b+ S(p)𝜙], the
diffusion coefficient [−Df𝜙

d + 1S(p)d + 1] and the advection coeffi-

cient

{
c𝜅[S(p)]

𝜇

}
to be constant at full saturation. Thus, these coef-

ficients do not change under different magnitudes of pressure in a
fully saturated environment.

The solute model Equation (31) is coupled to the water movement
model Equations (12)–(14) to achieve a system of PDEs that
describes simultaneous water and solute movement in soil.

Soil surface boundary condition

For the application of solutes to a soil surface, we assume that this
would be during dry conditions or when rainfall is sufficiently low
that it does not break the minimum pond depth xmin. Therefore,
on the boundary 𝜕ΛS we impose a flux condition similar to
Equation (16), such that:

n ·
⎛⎜⎜⎜⎝
[
Df𝜙

d+1S (p)d+1 𝛻c
]
+
⎧⎪⎨⎪⎩

c𝜅
[
S (p)
]

𝜇

(
𝛻p + 𝜌gk̂

)⎫⎪⎬⎪⎭
⎞⎟⎟⎟⎠

= cm (t) , x ∈ 𝜕ΛS, (32)

where cm(t) is the volume flux of solute per unit soil surface area
per unit time entering the soil domain.

Lateral boundary conditions

For the boundaries 𝜕ΛE and 𝜕ΛW on the lateral sides of the domain
Λ (see Figure 1), we set a zero flux boundary condition:

n ·
⎛⎜⎜⎜⎝
[
Df𝜙

d+1S (p)d+1 𝛻c
]
+
⎧⎪⎨⎪⎩

c𝜅
[
S (p)
]

𝜇

(
𝛻p + 𝜌gk̂

)⎫⎪⎬⎪⎭
⎞⎟⎟⎟⎠

= 0, x ∈ 𝜕ΛE ∪ 𝜕ΛW. (33)

Therefore, there is no lateral solute movement into or out of Λ.
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Boundary condition at the base of the soil

During our numerical simulations, we observed that the domain was
sufficiently large to avoid any solute reaching the base. Therefore,
we can implement either a zero flux boundary on 𝜕ΛB or a Dirichlet
boundary corresponding to the initial condition. The choice is
inconsequential given that any solute movement in numerical
simulations is contained in the top of the geometry. Therefore, we
impose a zero flux condition:

n ·
⎛⎜⎜⎜⎝
[
Df𝜙

d+1S (p)d+1 𝛻c
]
+
⎧⎪⎨⎪⎩

c𝜅
[
S (p)
]

𝜇

(
𝛻p + 𝜌gk̂

)⎫⎪⎬⎪⎭
⎞⎟⎟⎟⎠ = 0,

x ∈ 𝜕ΛB. (34)

To validate the zero flux condition, we checked that there was zero
solute concentration on 𝜕ΛB throughout the numerical simulation
(i.e. no solute reaches the base of Λ).

Initial conditions

We aimed to observe the effect of ponding on solute movement in
previously solute-free soil. Therefore, we impose a uniform zero
initial concentration across Λ with:

c|t=0 = 0, x ∈ Λ. (35)

Parameter values

There are 24 parameters in the model derived in the section above.
These parameters are: 𝜙, m, ks, 𝜇, g, 𝜌, pc, Df, d, b, 𝜀, 𝜎, xmin, 𝜔(t),
cm(t), p0, p∞(x), 𝜆c, pr and Ic for the coupled model, and the four
parameters A, B, C and 𝜂 for the construction ofΛ. These parameters
are summarized in Tables 1 and 2.

Geometric, soil, environmental, plant and solute parameter
values

To replicate the dimensions of ridge and furrow geometries, we used
the values 𝜂 = 0.5 m, A = C = 1

6
m and B= 2𝜋 m−1 (Steele et al.,

2006; Li et al., 2007). Furthermore, potato (Solanum tuberosum, L)
is shallow rooted with the majority of its roots in the plough layer
(i.e. the top 0.3 m of soil) (Lesczynski & Tanner, 1976). Therefore,
we chose the size of the soil root region ΛU to be the top 0.3 m of
soil extending radially from the top of the ridge (see Figure 1).

Several of the model parameters depend on the soil, for example
𝜙, m, ks and pc; the values of these for several soil types are listed
in Table 1 (van Genuchten, 1980). Potatoes are frequently grown in
ridge and furrow geometries of silt loam soil (Ahmadi et al., 2011).
Therefore, we used the parameter values for the ‘Silt Loam G.E.3’
soil from Table 1 (i.e. 𝜙= 0.396, m= 0.51, ks = 5.2× 10−14 m2 and
pc = 23 200 Pa) (van Genuchten, 1980).

We took values from the literature for the environmen-
tal and fluid parameters. For the viscosity of water we used

Table 1 Parameter values for various soil types (van Genuchten, 1980),
where 𝜙 is the porosity of the soil, 𝜅s is the saturated hydraulic permeability,
pc is the characteristic suction pressure and m is the van Genuchten
parameter

Soil type 𝜙 𝜅s (m2) pc (Pa) m

Hygiene sandstone 0.250 1.14× 10−12 12 400 0.90
Silt loam G.E.3 0.396 5.2× 10−14 23 200 0.51
Guelph loam (drying) 0.520 3.26× 10−13 8500 0.51
Beit netofa clay 0.446 8.62× 10−16 64 500 0.15

𝜇= 8.9× 10−4 kg m−1 s−1 (Watson et al., 1980), for accelera-
tion due to gravity g= 9.81 m s−2 and for the density of water
𝜌= 1000 kg m−3.

The typical range of the impedance coefficient d is between 0.5
and 2 (Nye & Tinker, 1977); an increase in volumetric moisture
content leads to an increase in impedance factor (Rowell et al.,
1967). Given that we aimed to simulate surface ponding with fully
saturated soil near the surface of the geometry, we used d = 2.

Values of the diffusion coefficient of a solution in free liq-
uid, Df, for simple electrolytes tend to be within the range of
1× 10−9 − 3× 10−9 m2 s−1 (Shackelford & Daniel, 1991); we used
a value in the middle of this range, Df = 2× 10−9 m2 s−1.

For the parameters in the water–root uptake term, Fw, 𝜆c and pr,
we selected typical values for potato plants. The parameter 𝜆c is the
product of the root surface area density and water conductivity of
the root cortex, which can be expressed by:

𝜆c = kr ld, (36)

where ld is the root length density and kr is the radial conductivity
of root cortex per unit root length. For the root length density,
we assigned the value ld = 4× 104 m m−3 (Kirkham et al., 1974;
Lesczynski & Tanner, 1976). In maize (Zea mays L.) roots, the
parameter kr is given the value 7.85× 10−10 m2 s−1MPa−1 (Roose
& Fowler, 2004a). Maize and potato roots have been found to
have similar root radii (Rawsthorne & Brodie, 1986; Steudle
et al., 1987); therefore, we assume that this value of kr is also
representative of potato roots in soil. This leads to the parameter
value 𝜆c = 3.14× 10−5 s−1MPa−1.

To describe root pressure pr, there are models for the root pressure
distribution within a single root (Roose & Fowler, 2004a). To
simulate large areas of soil consisting of many roots, therefore, we
used an average root pressure to describe the plant root system. The
root pressure pr can vary considerably in potatoes depending on
several factors, including soil saturation and atmospheric conditions
(Gandar & Tanner, 1976). Liu et al. (2006) found that the root water
potential changes substantially based on the method of irrigation
applied to the crop. A value of pr ≈ − 0.01 MPa was present in the
roots for a fully irrigated system and of ≈(−0.02,−0.2 ) MPa for
areas of soil with partial root drying. Given that we aimed to model
frequent heavy rain events that promote considerable ponding, we
chose the values pr = − 0.05 MPa and pr = − 0.1 MPa depending
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Table 2 Model parameter values used in numerical simulation

Parameter Description Value Units References

𝜌 Density of water 1× 103 kg m−3 –
g Acceleration due to gravity 9.81 m s−2 –
b Buffer power 2 – Barber (1995)
Df Diffusion coefficient in free liquid 2× 10−9 m2 s−1 Shackelford & Daniel (1991)
m van Genuchten parameter 0.5 – van Genuchten (1980)
𝜙 Porosity 0.396 – van Genuchten (1980)
𝜅s Saturated water permeability 5.2× 10−14 m2 van Genuchten (1980)
pc Characteristic soil suction 23 200 Pa van Genuchten (1980)
d Impedance factor 2 – Nye & Tinker (1977) and Roose & Fowler (2004b)
𝜇 Viscosity of water 8.9× 10−4 kg m−1 s−1 Watson et al. (1980)
𝜆c Root surface area density water conductivity 3.14× 10−5 s−1MPa−1 Kirkham et al. (1974), Lesczynski & Tanner (1976),

Rawsthorne & Brodie (1986), Steudle et al. (1987) and
Roose & Fowler (2004a)

pr Root xylem pressure −0.05, − 0.1 MPa Liu et al. (2006)
𝜀 Saturated – partially saturated interface 0.1 Pa –
xmin Minimum pond depth 3× 10−4 m –
Ic Infiltration capacity 1.6× 10−6 m s−1 Morin & Benyamini (1977)
A Variation in soil depth 0.16̇ m Steele et al. (2006) and Li et al. (2007)
B Ridge wave number 2𝜋 m−1 Steele et al. (2006); Li et al. (2007)
C Average soil depth 0.16̇ m Steele et al. (2006) and Li et al. (2007)
𝜂 Geometry width 0.5 m Steele et al. (2006) and Li et al. (2007)

on the simulated rainfall regime (see Rainfall, infiltration capacity
and solute application parameters for the applied rainfall regimes).

For the parameters 𝜀 and xmin, we selected small values that have a
negligible effect on the numerical solution; for 𝜀we chose 10−4 kPa.
Given that pressure in soil is often measured in 𝒪(10) kPa,
we assumed that 𝜀 was sufficiently small to avoid affecting the
numerical results. Furthermore, for xmin , which determines the
minimum pond depth, we chose xmin = 3× 10−4 m. Therefore, the
hydrostatic boundary condition Equation (19) is activated once the
pond depth surpasses 0.3 mm.

For the parameter 𝜎 in the smoothed Heaviside function HS(p),
we assigned 𝜎 = 1000 Pa−1; this limits the width of the transition
between partially and fully saturated soil regions such that the
transition is completed across 0.001 Pa. We conducted a series
of simulations for decreasing values of 𝜎 to determine when
differences between results became negligible. We tested and
confirmed that this value had a negligible effect on numerical
computation given that soil water pore pressure is typically several
orders of magnitude higher than 𝒪

(
10−6) kPa.

We ran several numerical simulations for a mobile solute to
determine how ponding and root water uptake affect the transport of
mobile solutes in soil. For this we selected a buffer power of b= 2.
Examples of solutes with a similar buffer power include the nutrient
boron (Barber, 1995), and the pesticide Dimethylamonium chloride
(Njoroge et al., 2016).

Boundary and initial condition parameters values

We assigned values to the remaining parameters in the boundary and
initial conditions to complete the system of equations that makes up
the solute ponding model.

For p0, which describes a constant saturation at the base of the
geometry, we assigned a value of p0 = − 10 kPa. This equates to a
saturation level of approximately S≈ 0.9 for a silt loam soil, thereby
replicating a shallow water table. For the initial condition of soil
water pore pressure, p∞(x), we chose the steady state profile that
forms in the absence of plant roots. As a result of capillary forces
and gravity, this leads to a constant pressure gradient from the base
to the top of the geometry of:

p∞ (x) = −pm
∞ z − pc

∞, x ∈ Λ, (37)

where pm
∞ = 9825 Pa and pc

∞ = 19 825 Pa.

Rainfall, infiltration capacity and solute application parameter
values

Here we describe the solute application and rainfall regime used
in the numerical simulations. There are several case studies that
could be examined with varying solute applications, rainfall events,
infiltration capacities and so on; therefore, it is not possible to cover
an exhaustive series of case studies. We chose a series of scenarios
to observe the effects surface ponding and root water uptake from
vegetation have on the transport of mobile solutes in soil.

We simulated solute and water movement over a 16-week period
because this time-frame is typical of a single season potato crop
(Noda et al., 1997). To observe the effect of water uptake from
plant roots and ponding on the soil surface, we simulated heavy
and light rain both with and without roots for a mobile solute; four
simulations in total. The rainfall regimes are shown in Figure 3.

In the light rainfall regime (Figure 3), we simulated one rain event
every week (midweek) throughout the 16-week period that lasted
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(a)

(b)

Figure 3 (a, b) The heavy and light rainfall regimes used in the numerical simulations, respectively.

4 hours and had an intensity of 4 mm hour−1. This is not sufficient
to generate soil surface ponding because all rainfall infiltrates into
the soil. In this case we imposed a root pressure pr of −0.1 MPa
because this quantity of rainfall will result in a drier soil compared
with the heavy rainfall regime.

For heavy rainfall (Figure 3), we simulated a rain event every
week (midweek). In weeks 1, 3 and 4 we simulated a rain event
that lasted 4 hours with an intensity of 4 mm hour−1, and in week
2 we simulated an event that lasted 4 hours with an intensity of
12.5 mm hour−1. This heavier rain caused ponding in the furrows
of the geometry. This 4-week routine was repeated throughout
the simulation. For heavy rain we imposed a root pressure pr of
−0.05 MPa because ponding saturated the soil.

The infiltration capacity Ic of soil is known to depend on several
factors, including tillage methods (Azooz & Arshad, 1996), volu-
metric water content, soil type and recent rain events. Therefore, it
is difficult to assign a single value to the infiltration capacity of a
soil. Morin & Benyamini (1977) found that steady state infiltration
of bare loam soil was reached after approximately 20 minutes into
a rain event. Given that we simulated rain events an order of magni-
tude longer than this, we assigned a constant value for the infiltration
capacity. Morin & Benyamini (1977) found that the steady state
infiltration rate of bare loam soil is 1.3− 2.2× 10−6 m s−1. Given
this, we assigned a value Ic of 1.75 × 10−6 m s−1.

At the beginning of the simulation, a solute was applied to the soil
surface over a period of 24 hours, with a total application of 1 kg
ha−1; an application rate of cm(t)= 1.157× 10−9 kg m−2 s−1.

Numerical solutions

Before we consider the two rainfall scenarios described above we
validated the model first with previous data from ponding in ridge
and furrow geometries.

Model validation

We validated the model with data from the ponding study by
Siyal et al. (2012). They created a trapezoidal ridge and furrow
geometry with a loam soil in which a constant flow of water flowed
longitudinally down the furrow until a pond height of 0.1 m was
reached. Once the desired pond height was reached, the flow of
water was stopped and the time required for the pond to infiltrate
fully into the soil was measured.

The model derived in this paper uses a sinusoidal curve to model
the periodic surface of ridge and furrow structures. It is impossible
to resolve a piecewise trapezoidal surface with the sinusoidal
surface Equation (1). Nevertheless, we constructed a geometry with
Equation (1) that minimizes the differences between the trapezoidal
structure in Siyal et al. (2012). This was achieved with the geometry
parameters A=C = 0.12 m, B= 2𝜋 m−1 and 𝜂 = 0.5 m for the soil
surface 𝜕ΛS in Equation (1).

In Siyal et al. (2012), the time taken to generate the 0.1-m-deep
pond was 5.6 hours, and the time required for the water to infiltrate
fully into the soil was 16 hours. To replicate these conditions,
we simulated a rain event that lasted 5.6 hours with an intensity
of 14.8 mm hour−1 to equate the total pond volume in the simulated
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sinusoidal geometry with that of ponded water in Siyal et al.
(2012).

We conducted a simulation to measure the time required for
the pond to infiltrate the soil fully with the parameters estimated
experimentally for the soil used in Siyal et al. (2012); that is,
𝜙= 0.43, 𝜅s = 2.63× 10−13 m2 (assuming the fresh water properties
𝜌= 1000 kg m−3, 𝜇= 8.9× 10−4 kg m−1 s−1 and g= 9.81 m s−2),
m= 0.36 and Pc ≈ 2500 Pa. We used the COMSOL Multiphysics®

finite element package to solve our model (implementation of the
model is described in the Appendix).

In the numerical simulation, we found that the pond caused by the
5.6-hour rain event dissipated into the soil fully after approximately
15.3̇ hours. This led to a difference of ≈4% between these results
with the model derived in this paper and those of Siyal et al.
(2012).

These results give us confidence that the model derived in this
paper can accurately describe time-variable ponding for loam soil.

Saturation results

Figure 4 shows the effect of ponding on the water profile of the
ridged domain Λ by a series of S(p) plots within the domain Λ,
for the first ponding rain event from the simulation with the heavy
rainfall regime and in the absence of plant roots. The times chosen
were selected to emphasize the formation, growth and dissipation
of a pond in the furrow. Note that each S(p) plot in Figure 4 has
a different colour scale bar. Because large soil pore water pressure
differences form throughout the simulation, the saturation gradients
that result from ponding would otherwise be reduced in appearance
if the scale considered both low and high saturation when a ponding
event was present.

Figure 4 (a–c) shows the water distribution before, during and at
the end of the first rain event, respectively. Figure 4 (d–i) shows the
water profile within the soil domain Λ after the rain has finished,
showing the effect of surface ponding on the water movement in
the soil.

At the start of the rain event, t= 0 (Figure 4a), we observe steady
state conditions that are formed from the boundary conditions
imposed on the domain. This causes a constant pressure gradient
to form throughout the geometry in which the base of the soil is the
most saturated. As the rain starts, we can see the effect of the rain in
the top of the soil domain. At 2 hours after the rain starts (Figure 4b),
a pond has formed in the furrow of the domain. This equates to
a pond depth of approximately 4 cm. During the remaining rain
the pond steadily increases to a maximum height of approximately
7 cm.

Once the rain has stopped, the effect from surface ponding
becomes evident. Figure 4(d) shows that 6 hours after the rain,
saturation in the ridge of the geometry has decreased as the
non-ponded soil begins to drain. However, the furrow is still
fully saturated as the pond on the soil surface gradually infiltrates
into the soil. The pond on the surface continues to infiltrate for
approximately 24 hours. The ponding effect on the water profile
is shown in Figure 4(e,f) for 12 and 18 hours after the rain,

respectively. These plots show the diminishing size of the pond and
movement of water from the top of the geometry to the base. The
soil in the ridges of the geometry has dried considerably faster than
in the furrows; this is to be expected given the effect of surface
ponding.

Thirty-six hours after the rain event (Figure 4g), the pond has
fully infiltrated the soil and the water profile is returning to
equilibrium. Two weeks after the rain event (Figure 4i), a steady
state equilibrium is achieved in the system. This water movement
cycle is then repeated for the second, third and fourth ponding rain
events for the remaining simulation.

Solute transport results

Figure 5 shows the solute concentration profiles within Λ for the
mobile solute (with buffer power b= 2) at the end of the 16-week
simulations for different rainfall regimes and root water uptake.
There were four combinations of rainfall intensity (ponded and
non-ponded) and root presence in the ridges of the domain. The
solute profiles at the end of the 16-week period are markedly
different in each of the four cases.

Figure 5(a) shows the combination of ponded rain without root
presence. The effect of ponding in the furrow is clear, and the solute
adjacent to the furrow has penetrated much deeper into the soil
than that in the ridge. The shape of the solute profile in the furrow
corresponds to the fully saturated region of soil that was displayed in
Figure 4 because infiltration of water from the pond acts as a carrier
mechanism for the solute. Because the soil has a given infiltration
capacity, the ridge of the domain can absorb a finite amount of water
only, and excess water enters the pond. This causes the solute near
the ridge to move fairly uniformly into the soil.

The results in Figure 5(a) are quite different from those in
Figure 5(b) for the non-ponded rain without roots. Because all of
the rain infiltrated the soil, the solute penetrates almost uniformly.
However, there is a larger concentration of solute in the ridge of
the domain. After a rain event, the first region of soil to dry out
is the ridge of the geometry (Figure 4). Because solute movement
depends on the saturation conditions, this reduction in relative
saturation causes a decrease in movement of the solute in the
ridge of the geometry. Therefore, any solute contained in the
ridge after drying has occurred, remains there until the succeeding
rain event.

Figure 5(c,d) shows the solute profiles for the heavy and light rain
events with roots present in the ridge of the geometry. For both
regimes, we imposed root pressures pr of −0.05 and −0.1 MPa,
respectively, to account for the difference in water available to the
plant roots. In both cases, the solute collects into a concentrated spot
at the edge of the root domain. This is caused by the difference in
soil pore water pressure and the pressure in the root xylem because
any water that infiltrates the soil surface is drawn towards the plant
roots, which acts as a carrier mechanism for the solute movement.
Therefore, solute in the furrow of the domain is transported to the
root system, resulting in the formation of a concentrated solute
spot.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4 Time series of saturation S(p) plots across the domain Λ at various times before, during and after the first rain event described by the heavy rainfall
regime and no plants. The first three plots (a–c) show the water profile before, during and at the end of the rainfall event, respectively, where t= 0 represents
the start of the 4-hour rain event. The last six plots (d–i) show the water profile after the rain event, where t* = 0 denotes the end of the rain event. The pond
location x0(t) is indicated by a black star along the surface curve of the geometry.
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(a) (b)

(c) (d)

Figure 5 Solute concentration profiles for a
mobile solute (buffer power b= 2) 16 weeks after
solute application under the two rainfall regimes:
(a) shows the results from the heavy rainfall
regime (which causes ponding) without water
uptake in the ridges of the geometry, (b) is the
light rainfall regime without root uptake, (c) is the
heavy rainfall regime with root uptake and (d) is
the light rainfall regime with root uptake.

Figure 5(d) shows a more concentrated and condensed spot
formation in the light rainfall regime. This is because of the greater
pressure difference between the soil pore water pressure and the
pressure in the root xylem, and the reduction in available water. This
reduces the diffusion of the solute and forms a more concentrated
spot. In the heavy rainfall regime a spot with greater saturation has
formed. This enables a larger rate of diffusion, resulting in increased
dispersion of the solute.

Figure 5(c) still shows the effects of ponding on the soil surface.
As the quantity of water overcomes the pressure gradient between
the soil and plant roots, this causes a fraction of the solute to
penetrate deep into the soil. However, the quantity of solute that
penetrates deep into the soil is greatly reduced compared with the
simulation without plant roots (Figure 5a).

Conclusions

We developed a coupled system of PDEs that describe the move-
ment of water and solutes in soil. Furthermore, we incorporated an
ODE to represent dynamic ponding as a function of rainfall, surface
runoff and infiltration of water from a pond into the soil. We vali-
dated the pond model using data from a ridge and furrow study that
measures the infiltration time of a pond into a loam soil, and found
a ≈4% difference only between the results of the study and model
simulations.

We found that when roots are absent in ridge and furrow soils,
ponding can have a considerable effect on the penetration of solutes
that are applied in the furrow of the geometry. This is directly
affected by the size of the pond that forms in the furrows, which
results from the quantity of rainfall and infiltration capacity of the
soil. As the infiltration capacity of the soil decreases, the total
volume of water immediately infiltrating the soil decreases and
generates a larger pond in the furrow. This leads to a greater quantity
of water infiltrating into the furrow, and transporting the solute deep
into the soil. This can lead to deep solute penetration, which can
cause substantial solute leaching.

The effects of solute penetration can be reduced by the presence
of plant roots in the ridges of the domain. With the addition of
vegetation to the ridges of the soil, the movement of water was
dominated by the pressure gradient between the soil pore pressure
and the pressure in the root xylem. Hence, the majority of infiltrated
water from rainfall or ponding is moved towards the plant roots in
the ridges of the system, which leads to solutes collecting adjacent
to the root system. This could substantially reduce the quantity of
solutes that move deep into the soil with heavy rain and surface
ponding. Knowledge of this solute movement mechanism can aid
targeted solute application on ridged surfaces to avoid leaching
and contamination, and also promote crop yields in which solute
application can be directed to provide greater efficiency for crops
and plants.
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Appendix

Numerical solution of the model with COMSOL
Multiphysics

Here we describe how we used the COMSOL Multiphysics
(Version 5.1) finite element package to solve the model derived
in this paper. We implemented the coupled system of PDEs for
simultaneous water and solute movement, with the addition of an
ODE for dynamic ponding on the soil surface.

Coupled water and solute model

We used COMSOL’s inbuilt ‘General Form PDE’ to set up the
coupled system of PDEs, Equations (12) and (31). This takes the
form:

ea
𝜕2r
𝜕t2

+ da
𝜕r
𝜕t

+ 𝛻 ·𝚯 = f , (A1)

where r= [S c]T and ea, da, 𝚯 and f are parameters to be defined by
the user. To write the model in this form, the parameters were set
up to replicate Equations (12) and (31) such that;

ea =
[

0 0
0 0

]
, da =

[ [
1 − HS (p)

]
𝜙𝜕S

𝜕p
0

c
[
1 − HS (p)

]
𝜙𝜕S

𝜕p
b + 𝜙S (p)

]
,

𝚯 =
⎡⎢⎢⎣

− 𝜅[S(p)]
𝜇

(
𝛻p + 𝜌g k̂

)
−Df𝜙

d+1S (p)d+1 𝛻c − c𝜅[S(p)]
𝜇

(
𝛻p + 𝜌g k̂

)⎤⎥⎥⎦ ,
f =
[
−𝜆c

(
p − pr

)
0

]
. (A2)

For the ODE to describe a moving pond, Equation (23), we used
the inbuilt ODE equation ‘Global ODE’ to calculate x0(t). The
‘Global ODE’ takes the form:

f
(
q, qt, qtt, t

)
= 0. (A3)

To write Equation (23) in this form, the ‘Global ODE’ is set up such
that:{

AB
[
x0 (t) − 𝜂

]
sin
(
Bx0 (t)

)} dx0 (t)
dt

−
[
Υr (t) + Υp (x, t)

]
= 0,

(A4)

where:
Υr (t) = 𝜔 (t)

(
𝜂 − x0 (t)

)
+ Ro (t) , (A5)

and

Υp (x, t) = ∫
𝜂

x0(t)

(
𝜅(p)
𝜇

(
𝜕zp + 𝜌g

))
+
(

AB sin (Bx) 𝜅(p)
𝜇
𝜕xp
)

√(
1 + (AB sin (Bx))2

) .

(A6)
The integral in Equation (A6) was calculated with the inbuilt
‘Boundary Integration Component Coupling’ by a summation over
the nodes along the top domain boundary.

Boundary conditions

For the flux boundaries used, Equations (16), (25), (32), (33) and
(34), we used the inbuilt flux boundary condition that takes the form:

n ·𝚯 = g1 − g2r, (A7)

where g1 and g2 depend on the specific flux boundary. Similarly, for
the constant boundary condition, Equation (26), we used the inbuilt
Dirichlet boundary condition. This takes the form:

r = r0, (A8)

where the parameter value used is described in the parameters
section.

For the constant hydrostatic boundary, Equation (19), we could
not impose the generic inbuilt Dirichlet boundary condition because
it treats the constant boundary as a step function such that:

p =
{
𝜌g
[
h0 (t) − 𝜒 (x)

]
0

,
x ∈ 𝜕ΛP

x ∈ 𝜕ΛR

. (A9)

This in turn leads to a permanent fully saturated boundary along
the bare soil surface 𝜕ΛR. To avoid this problem, we re-write
Equation (19) as a flux condition along 𝜕ΛP such that:

n ·𝚯 = k∞
{
𝜌g
[
h0 (t) − 𝜒 (x)

]
− p
}
, (A10)

where k∞ ≫ 1. As k∞ increases, Equation ((A10)) reduces
to p= 𝜌g[h0(t)−𝜒(x)]. Therefore, Equation (19) can be approxi-
mated and imposed as a flux condition along the partition 𝜕ΛP only,
providing k∞ is significantly large. We chose k∞ = 1× 106 because
this is sufficiently large to cause n ·𝚯≈ 0.
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Summary

We compared water and solute movement between a ridge and furrow geometry and that of flat soil with a
mathematical model. We focused on the effects of two physical processes: root water uptake and pond formation
on the soil surface. The mathematical model describes the interaction between solute transport, water movement
and surface pond depth. Numerical simulations were used to determine how solutes of varying mobility and
rates of degradation penetrated into the two soil geometries over a growing season. Both the ridge and furrow or
flat soil geometries could reduce solute leaching, but this depended on several factors. Rain immediately after a
solute application was a key factor in determining solute penetration into soil. In cases with delayed rain after
a solute application, solutes in ridge and furrow geometries collected adjacent to the root system, resulting in
reduced solute penetration compared to the flat soil geometry. In contrast, substantial rain immediately after a
solute application resulted in ponding where water infiltration acted as the dominant transport mechanism. This
resulted in increased solute penetration in the ridge and furrow geometry compared to the flat soil geometry.

Highlights

• We studied solute movement controlled by ponding in ridge and furrow and flat fields.
• We found the ridged soil could impede or increase leaching compared to the flat soil.
• Solute hot-spots formed in ridge and furrow soil because of root water uptake.
• Time between solute application and rainfall is a key factor for solute penetration.

Introduction

In arable farming several methods of planting are used to cultivate
crops (Fahong et al., 2004). Two planting methods are addressed
in this paper: ridge and furrow planting (Robinson, 1999) and flat
planting (Lewis & Rowberry, 1973). A ridge and furrow geometry
is formed when the soil surface is modified to form a periodic series
of peaks (ridges) and troughs (furrows). This allows water to flow
across the field, providing water to the plants whilst preventing
waterlogging of the roots (Tisdall & Hodgson, 1990). One crop that
is traditionally grown in ridge and furrow geometries is the potato
(Solanum tuberosum, L.) (Wayman, 1969), which is an essential
crop in temperate European environments (Huaccho & Hijmans,
1999).

Correspondence: T. Roose. E-mail: t.roose@soton.ac.uk
Declaration of conflict of interest: Paul Sweeney is an employee of
Syngenta Ltd and Simon Duncan is funded by BBSRC Syngenta Case PhD
studentship.
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There have been several experimental efforts to determine the
difference in potato growth and production between ridge and
furrow planting and other tillage methods. Such methods include
wide beds (Mundy et al., 1999), flat planting (Lewis & Rowberry,
1973) and furrow-only planting (Steele et al., 2006). Both ridge
and furrow and flat planting result in similar yields and tuber size
(Lewis & Rowberry, 1973; Alva et al., 2002), but ridge and furrow
planting has been found to be the preferred method of tillage (Jordan
et al., 2013) because of ease of harvesting (Leistra & Boesten,
2010b), slow seed germination (Benjamin et al., 1990) and nutrient
replenishment in the soil (Feddes et al., 1976).

Growing evidence suggests that ridge and furrow systems might
be vulnerable to solute leaching (Lehrsch et al., 2000; Alletto et al.,
2010; Kettering et al., 2013). Experimentally, solutes have been
applied to ridges and furrows of potato fields to determine the
depth of solute penetration in different areas of the soil (Smelt
et al., 1981; Kung, 1988; Leistra & Boesten, 2010a). In these
cases, the solute in the furrows moved to a greater absolute depth
in soil, supporting the suggested vulnerability of the ridge and
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furrow geometry to solute leaching. Furthermore, a recent European
Food Safety Authority report indicated that ridge and furrow soil
surfaces can increase leaching six-fold compared with flat surfaces
(EFSA, 2013). However, there is also evidence that ridge and furrow
planting can reduce leaching if solute management techniques are
used (Jaynes & Swan, 1999). These techniques can reduce the
negative environmental effect (Hatfield et al., 1998), even compared
with flat planting (Ressler et al., 1997).

In this study, we determined the water and solute movement
mechanisms and key environmental factors that affect leaching in
ridge and furrow and flat planting systems. This will enable us to
understand how the soil geometry affects transport within the soil.
Understanding the key factors that affect solute leaching will allow
us to determine qualitatively the increased risk to solute leaching
between the two planting methods. This knowledge will assist us
in developing solute application protocols unique to each planting
method to reduce solute leaching and maintain greater nutrient
availability to the crops.

Specifically, we modelled the transport of solutes with varying
mobility and degradation in both soil geometries over 24-week
periods. During this time, vegetation was present in soil for the first
16 weeks (i.e. a full growing season). Special attention was paid
to ponding on the soil surface because we considered a temperate
environment in the UK where there are often large amounts of rain.
It should be noted that we assumed that there was no solute uptake
by plant roots. In this paper we are only concerned with the solute
transport problem (i.e. modelling the ‘worst case scenario’), which
applies directly to passive solutes.

Mathematical model

We used the water–solute–pond model developed in Duncan et al.
(2018) to study water and solute movement in a cross-section of a
ridge and furrow (or flat) geometry. Here we state the equations and
parameters used in the model; for a full derivation see Duncan et al.
(2018). The governing equations are:

𝜙
𝜕S (p)
𝜕t

+ 𝛁 ·
{
−
𝜅s

𝜇
S (p)

1
2

[
1 −

(
1 − S (p)

1
m

)m]2 (
𝛁p + 𝜌gk̂

)}
=
{
−𝜆c

(
p − pr

)
,

0,
x ∈ ΛU

x ∈ ΛA

, (1)

𝜕c
𝜕t

[
b + S (p)𝜙

]
+

𝜕p

𝜕t

{
𝜕S (p)
𝜕p

𝜙c

}
+ 𝛁 ·

[
−Df𝜙

d+1S (p)d+1 𝛁c
]
+

𝛁 ·
{
−

c𝜅s

𝜇
S (p)

1
2

[
1 −

(
1 − S (p)

1
m

)m]2 (
𝛁p + 𝜌gk̂

)}
= −𝜉c, x ∈ Λ, (2)

where 𝜙 is the soil porosity, S(p) is the relative saturation, 𝜇 is the
viscosity of water, p is the soil water pore pressure, 𝜌 is the density
of water, g is the acceleration due to gravity, k̂ is a unit vector in
the upwards direction, 𝜅s is the saturated hydraulic permeability, m

Figure 1 Simulated soil domains for a (a) ridge and furrow and (b) flat
soil geometry, where Ω and Φ are the total cross-sectional areas of the two
domains, 𝜕ΩS and 𝜕ΦS are the soil surface boundaries, 𝜕ΩB and 𝜕ΦB are
the base boundaries, 𝜕ΩW, 𝜕ΦW, 𝜕ΩE and 𝜕ΦE are the lateral boundaries,
ΩA and ΦA are the areas without root activity and ΩU and ΦU are the areas
of soil containing root activity.

is a van Genuchten parameter, 𝜆c is the product of the root surface
area density and water conductivity of the plant root cortex, pr is
the pressure in the root xylem, Df is the diffusion coefficient in
free liquid, d is the impedance factor of the solute that accounts
for the tortuosity of the solute moving through the pore space, c is
the solute concentration in the pore water, 𝜉 is the solute decay rate
constant related to bacterial and other degradation processes, b is
the buffer power, and Λ is a generalized ridge and furrow geometry
(see Figure 1 in Duncan et al. (2018)) with subdomains ΛU and ΛA

for regions where roots are present and absent respectively.
The boundary and initial conditions imposed on Λ are:

p = 𝜌gh (x, t) , x ∈ 𝜕ΛP, (3)

n ·
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1
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}
, x ∈ 𝜕ΛR, (4)

dx0 (t)
dt

= f
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)
, (5)
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(6)
cm (t) , x ∈ 𝜕ΛS,

n ·
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S (p)

1
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1 −
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1 − S (p)

1
m

)m]2 (
𝛁p + 𝜌gk̂

)}
= 0,

x ∈ 𝜕ΛE ∪ 𝜕ΛW, (7)
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n ·
([

Df𝜙
d+1S (p)d+1 𝛁c

]
+
{

c𝜅s

𝜇
S (p)

1
2

[
1 −

(
1 − S (p)

1
m

)m]2 (
𝛁p + 𝜌gk̂

)})
= 0,

x ∈ 𝜕ΛE ∪ 𝜕ΛW (8)

p = p0, x ∈ 𝜕ΛB, (9)

c = c|t=0 , x ∈ 𝜕ΛB, (10)

p|t=0 = p∞ (x) , x ∈ Λ, (11)

x0 (t)||t=0 = 𝜂, (12)

c|t=0 = 0, x ∈ Λ, (13)

where 𝜕ΛS is the soil surface boundary defined by the curve,

𝜒 (x) = A cos (Bx) + C, (14)

where A is the variation in soil depth, B is the ridge wave number
and C is the average soil depth, 𝜕ΛP is the region of 𝜕ΛS where
ponding occurs (see Figure 2 in Duncan et al. (2018)), 𝜕ΛR is the
region of 𝜕ΛS that is not ponded (i.e. where rainfall penetrates the
soil directly), and the interface between the two regions (𝜕ΛR and
𝜕ΛP) is defined by the moving boundary point x0(t) (see Figure 2
in Duncan et al. (2018)), 𝜕ΛE and 𝜕ΛW are the lateral boundaries
of Λ, 𝜕ΛB is the boundary at the base of Λ, h(x, t) is the depth of
the pond, cm(t) is the volume flux of solute per unit soil surface
area per unit time entering the soil domain, n is the unit normal
vector pointing outwards of Λ, Γ(t) is the volume flux of water per

unit soil surface area (i.e. rainfall), Ic is the infiltration capacity of
the soil, p0 is the prescribed pressure at the base of the domain, 𝜂
is the width of Λ, RF(t) is rainfall landing directly into the pond,
If(t) is the infiltration of water from the pond into the soil, Ro(t) is
surface runoff, c|t= 0 is the initial solute concentration and p∞(x) is
the initial pressure profile.

Parameter values

There are 22 parameters in the model used in this study. These
parameters are: 𝜙, m, ks, 𝜇, g, 𝜌, pc, Df, d, b, Γ(t), cm(t), p0, p∞(x),
𝜆c, 𝜉, pr and Ic for the coupled model, and the four parameters A, B,
C and 𝜂 for the construction ofΛ. These parameters are summarized
in Tables 1 and 2.

Geometric, soil, environmental, plant and solute parameter
values

To model the differences in solute and water movement between
ridge and furrow and flat geometries, we construct two domains.
These domains are shown in Figure 1, where Ω is the ridge and
furrow geometry and Φ is the flat geometry. The flat geometry Φ
can be reduced to a one-dimensional problem; however, for ease of
comparison we present it as a two-dimensional (2-D) geometry.

To replicate the dimensions of ridge and furrow geometries,
we use the values 𝜂 = 0.5 m, A = C = 1

6
m and B= 2𝜋 m−1 for the

geometry Ω (Steele et al., 2006; Li et al., 2007). Furthermore, for
the flat geometry we set A = B = 0,C = 1

6
m and 𝜂 = 0.5 m. To

compare ‘like for like’ scenarios, we ensure that the ridge and
furrow and flat geometries have the same total volume of soil.

Potatoes are a shallow-rooted crop in which the majority of roots
are within the plough layer (i.e. the top 30 cm of soil) (Lesczynski
& Tanner, 1976). Therefore, in the ridge and furrow geometry we
chose the size of the soil root region ΩU to be the top 30 cm of
soil extending radially from the top of the ridge. Similarly, for the
flat soil geometry we chose the soil root region ΦU to be the top

Figure 2 Newbury site experimental rainfall
data over a 6-month period between 1 June 2006
and 31 December 2006. The green and orange
crosses indicate the time of early and late solute
applications, respectively.
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Table 1 Model parameter values used in numerical simulation

Parameter Description Value Units Reference

𝜌 Density of water 1× 103 kg m−3 –
g Acceleration due to gravity 9.81 m s−2 –
b Buffer power 0.1/1/10 – –
Df Diffusion coefficient in free liquid 2× 10−9 m2 s−1 (Shackelford & Daniel, 1991)
m Van Genuchten parameter 0.5 – (van Genuchten, 1980)
𝜙 Porosity 0.396 – (van Genuchten, 1980)
𝜅s Saturated water permeability 5.2× 10−14 m2 (van Genuchten, 1980)
pc Characteristic soil suction 23 200 Pa (van Genuchten, 1980)
d Impedance factor 2 – (Nye & Tinker, 1977; Roose & Fowler, 2004b)
𝜇 Viscosity of water 1× 10−3 kg m−1 s−1 –
𝜆c Product of root surface area density

and water conductivity
0− 2.355× 10−5 s−1MPa−1 (Lesczynski & Tanner, 1976; Rawsthorne & Brodie, 1986;

Steudle et al., 1987; Roose & Fowler, 2004a)
pr Root xylem pressure −0.05 MPa (Liu et al., 2006)
t∗
𝜆

Solute half-life 10/50/500 Days –
Ic Infiltration capacity 1.6× 10−6 m s−1 (Morin & Benyamini, 1977)
A Variation in soil depth 0.16̇∕0 m (Steele et al., 2006; Li et al., 2007)
B Ridge wave number 2𝜋/0 m−1 (Steele et al., 2006; Li et al., 2007)
C Average soil depth 0.16̇∕0 m (Steele et al., 2006; Li et al., 2007)
𝜂 Geometry width 0.5 m (Steele et al., 2006; Li et al., 2007)

Table 2 Matrix of simulated solutes used in numerical simulation

Extremely
mobile
b= 0.1

Highly
mobile
b= 1

Moderately
mobile
b= 10

High degradation,
t∗
𝜆
= 10days

Solute 𝛼1 Solute 𝛽1 Solute 𝛾1

Medium degradation,
t∗
𝜆
= 50 days

Solute 𝛼2 Solute 𝛽2 Solute 𝛾2

Low degradation,
t∗
𝜆
= 500 days

Solute 𝛼3 Solute 𝛽3 Solute 𝛾3

30 cm of soil (see Figure 1). There is a difference in the total root
active soil between ΩU and ΦU, but this is taken into account when
establishing the parameter for root length density (see below).

Several of the parameters in the model depend on the soil,
including 𝜙, m, 𝜅s and pc. Potatoes are frequently grown in silt loam
soil (Shock et al., 1998). Therefore, we chose to use the parameter
values for the ‘Silt Loam G.E.3’ soil from van Genuchten (1980)
(i.e. 𝜙= 0.396, m= 0.51, 𝜅s = 5.2× 10−14 m2 and pc = 23 200 Pa).
Note that in some cases different tillage methods applied to soil can
alter the porosity of the system. However, to ensure a ‘like for like’
comparison, we kept the porosity the same in both soil domains to
ensure that any differences we observed were an effect of the soil
geometry and not dependent on small variations in local porosity
within the soil.

We took values from the literature for the environmen-
tal and fluid parameters. For the viscosity of water we
used 𝜇= 1× 10−3 kg m−1 s−1, for acceleration due to gravity
g= 9.81 m s−2 and for the density of water 𝜌= 1000 kg m−3.

The typical range of the impedance coefficient d is between 0.5
and 2 (Nye & Tinker, 1977). Furthermore, increased volumetric

moisture content leads to an increase in the impedance factor for
a solute (Rowell et al., 1967). Given that we are modelling a
temperate UK climate with frequent heavy rain events, we took d
to be at the upper bound of this range (i.e. d = 2).

Values of the diffusion coefficient Df in a solution of free
liquid for simple electrolytes range from 1× 10−9to 3× 10−9 m2 s−1

(Shackelford & Daniel, 1991). Therefore, we chose the value to be
in the middle of this range (i.e. Df = 2× 10−9 m2 s−1).

The parameter 𝜆c is the product of the root surface area density
and the water conductivity of the root cortex; this can be expressed
as:

𝜆c = krld (t) , (15)

where ld(t) is the root length density and kr is the radial conductivity
of the root cortex per unit root length.

We simulated 24 weeks of solute and water movement in soil,
in which vegetation was present for the first 16 weeks, which is
typical for a potato crop (Noda et al., 1997). For potato plants the
root length density changes significantly over a 16-week growing
period (Lesczynski & Tanner, 1976). Lesczynski & Tanner (1976)
found that over the first 30 days the root length density develops
to approximately ld = 3× 104 m m−3 in the plough layer of soil.
This then remains fairly constant until approximately 90 days, at
which the root length density declines. To represent this growth and
development, we assigned ld(t) the piecewise function (in m m−3)
as follows:

ld (t) =

⎧⎪⎪⎨⎪⎪⎩

1 × 103 t

3 × 104

3 × 104 −
(
1 × 103

)
× (t − 90)

0

0 ≤ t < 30 days
30 ≤ t < 90 days
90 ≤ t < 120 days

120 < t days

.

(16)
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These results were obtained with ridge and furrow planting;
therefore, we must account for this when determining a root length
density function for the flat soil geometry. To have the same total
root length in Ω and Φ, we scale ld(t) in the flat geometry by the
ratio of the two root active areas ΩU and ΦU. This ensures a ‘like
for like’ comparison between the two geometries.

For maize (Zea mays, L.) roots, the parameter kr is given
the value 7.85× 10−10 m2s−1MPa−1 (Roose & Fowler, 2004a).
Maize and potato roots have similar root radii and structure
(Rawsthorne & Brodie, 1986; Steudle et al., 1987); therefore, we
assumed that this value of kr is also representative of potato
roots in soil.

To describe root pressure pr, there are models for root pressure
distribution within a single root (Roose & Fowler, 2004a). However,
to simulate large areas of soil consisting of many roots, we used
an average root pressure to describe the plant root system. The
root pressure pr can vary considerably in potatoes depending on
several factors, including soil saturation and atmospheric conditions
(Gandar & Tanner, 1976). Liu et al. (2006) found that the root water
potential changed considerably based on the method of irrigation
applied to the crop. They found that pr was ≈ − 0.01 MPa in the
roots of a fully irrigated system and ≈(−0.02,−0.2) MPa for areas
of soil with partial root drying. Given that we model frequent rain
events that promote ponding, we chose the value pr = − 0.05 MPa.

The infiltration capacity Ic of soil depends on several factors,
including volumetric water content, soil type and tillage methods
(Azooz & Arshad, 1996). Therefore, it is difficult to assign a single
value to the infiltration capacity of a soil. Morin & Benyamini
(1977) found that steady state infiltration of bare loam soil was
reached after approximately 20 minutes into a rain event. However,
the rain data we used (see ‘Rainfall and solute application parameter
values’) has a time resolution of 1 hour, which is considerably larger
than the time required to reach steady state infiltration. Therefore,
we averaged the infiltration capacity over each rain event. Morin &
Benyamini (1977) found that the steady state rate of infiltration of
bare loam soil is between 1.3 and 2.2× 10−6 m s−1. Given this, we
chose to assign the value Ic = 1.3× 10−6 m s−1.

We show results of numerical simulations for multiple hypo-
thetical solutes with varying rates of degradation and buffering
capacity to determine the differences in solute movement between
the ridge and furrow and flat soil geometries. In Table 2 we
give a matrix of the solute parameters that were used in the
simulations.

We chose to model extremely mobile solutes (𝛼1, 𝛼2, 𝛼3) with a
buffer power of b= 0.1, highly mobile solutes (𝛽1, 𝛽2, 𝛽3) with a
buffer power of b= 1 and moderately mobile solutes (𝛾1, 𝛾2, 𝛾3)
with a buffer power of b= 10.

It is generally accepted that rates of degradation of pesticide-like
solutes in soil decrease with depth (Fomsgaard, 1995). Therefore,
one value for the decay constant is not valid for the entirety of
the soil domains in Figure 1. For the pesticides isoproturon and
metolachlor, the half-life is approximately doubled between the
initial 0–30 cm of soil and 1 m below the soil surface (Rice et al.,
2002; Bending & Rodriguez-Cruz, 2007). Hence, for spatially

varying degradation, we impose the function:

t𝜆 (x) = t∗
𝜆
+ ||zA

|| t∗
𝜆
, (17)

where t∗
𝜆

is the half-life of the solute in the plough layer and |zA| is
the absolute depth below the soil surface.

For the rapidly degrading solutes (𝛼1, 𝛽1, 𝛾1) we chose the value
for the half life t∗

𝜆
= 10 days, for a moderately fast degrading

solute (𝛼2, 𝛽2, 𝛾2) we selected the value t∗
𝜆
= 50 days and for slowly

degrading solutes (𝛼3, 𝛽3, 𝛾3) we selected the value t∗
𝜆
= 500 days. It

follows that the half-life t∗
𝜆

relates to the solute decay constant 𝜉 by:

𝜉 = ln (2)
t𝜆 (x)

. (18)

Boundary and initial condition parameter values

For the parameter p0 that describes a constant saturation at the base
of the geometry, we assigned the pressure value p0 = − 10 kPa. This
equates to a saturation level of approximately S≈ 0.9 for a silt loam
soil, thereby replicating a shallow water table. For the soil water
pore pressure initial condition p∞(x), we chose to impose the steady
state profile that forms when the domain has no plant roots. As a
result of capillary forces and gravity, this leads to a constant pressure
gradient from the base to the top of the geometry, such that:

p∞ (x) = −pm
∞z − pc

∞, x ∈ Ω ∪ Φ, (19)

where pm
∞ = 9825 Pa and pc

∞ = 19 825 Pa.

Rainfall and solute application parameter values

We simulated solute and water movement over a 24-week period
in which vegetation was present for the first 16 weeks. Potatoes are
typically planted from April to June and are harvested in September
to November (Noda et al., 1997). Therefore, we simulated this
‘growth and harvesting’ time frame with an additional 8 weeks to
determine how solutes move once the crops are harvested.

For the volume flux of water per unit soil surface area Γ(t)
(i.e. rainfall), we used 6 months of rain field data from a site in New-
bury, UK, between 1 June 2006 and 31 December 2006. These data
are shown in Figure 2. The data were recorded from instruments that
were installed on a slope next to the A34 Newbury bypass (United
Kingdom Ordnance Survey grid reference SU455652). Acquisition
of the data is described in Smethurst et al. (2006).

We applied the solutes at one of two times during the numer-
ical simulations; these are denoted as the early and late appli-
cations. For the early application, solute was applied to the soil
surface at the start of the simulation over the initial 24 hours,
with a total application of 1 kg ha−1 (i.e. an application rate
of cm(t)= 1.157× 10−9 kg m−2 s−1). Similarly, for the late appli-
cation a solute was applied for 24 hours with the same rate of
application at the beginning of the 15th week. These can be seen
in Figure 2. The early and late application times were chosen to
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Figure 3 Early-application solute profiles in the ridged and flat domains for the moderately mobile solutes (𝛾1, 𝛾2, 𝛾3) 16 and 24 weeks after solute application.
A white contour line for the safety threshold of 10 μg l−1is also plotted. The ridge and furrow and flat geometries are the same as those shown in Figure 1.

determine how solute movement is affected during a growing and
degrading root system, respectively. For the early application, the
solute was applied as soon as the root system began to grow and
the late application was applied shortly after the root length density
began to decrease.

Results

We performed a total of 36 simulations; nine simulations for the
ridged geometry with an early application (for all nine hypothetical
solutes in Table 2), nine for the ridged geometry with a late
application, nine for the flat geometry with an early application and
nine simulations for the flat geometry with a late application.

Early application results

Figure 3 shows the results for the early application of solutes
for both the ridged and flat planting systems for the moderately
mobile solutes (i.e. solutes 𝛾1, 𝛾2 and 𝛾3) (see Table 2). The results
in Figure 3 show the solute profiles in the two soil geometries
at 16 and 24 weeks after the solute application. At 16 weeks
after the solute application, water uptake from vegetation stops
because this simulates harvesting and the removal of crops, and
24 weeks after solute application is the end of the simulation time
frame. Furthermore, an additional contour plot of concentration

10 μg l−1 (shown in white) was added to each profile, because this
concentration is frequently used as a pesticide safety threshold for
root and tuber vegetables (EU, 2018). In Figures 4 and 5 we show
the results for the highly mobile (𝛽1, 𝛽2, 𝛽3) and extremely mobile
(𝛼1, 𝛼2, 𝛼3) solutes, respectively.

For the moderately mobile solutes (𝛾1, 𝛾2, 𝛾3), there was no sig-
nificant penetration of the solutes into either of the soil geometries
because of the buffer power of the solutes (see Figure 3). However,
several features of the solute movement can be identified. First, the
solute adjacent to the furrow has penetrated deeper into the soil than
that contained in the ridge. Experimentally, deep furrow penetra-
tion has been attributed to the effects of ponding in the furrow of
the geometry from soil surface runoff (Leistra & Boesten, 2010a),
which is evident in the simulation results.

Furthermore, we note that because roots take up water, solute is
drawn up towards the ridges through the difference between the
soil water pore pressure and pressure in the root system. Chen
et al. (2011) found that in ridge and furrow structures, water that
infiltrated into the furrows of the system was transported to the
ridges, which in turn reduced water movement directly below the
ridge. In the simulations, this resulted in greater concentrations
of solute in the ridges of the system from water transporting the
solute. This coincides with the results of Smelt et al. (1981), who
found that most solute residues were in the ridges of the ridge
and furrow structures at the end of the growing season. Similarly,
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Figure 4 Early-application solute profiles in the ridged and flat domains for the highly mobile solutes (𝛽1, 𝛽2, 𝛽3) 16 and 24 weeks after solute application. A
white contour line for the safety threshold of 10 μg l−1is also plotted. The ridge and furrow and flat geometries are the same as those shown in Figure 1.

Jaynes & Swan (1999) found substantially larger concentrations in
the ridges of the structure than the furrows.

In the flat soil geometry, the solute moved down uniformly and
was temporarily impeded by the roots in the plough layer. When we
compared the solute penetration between the flat and ridged soils,
we found that the solute in the flat geometry moved to a greater
absolute depth below the soil surface than that in the ridges. This
result concurs with that of Hamlett et al. (1990), who identified that
placing solutes on the ridges of the structure substantially reduced
the amount leached compared with the flat field application. Jaynes
& Swan (1999) supported this hypothesis, and in addition found
that applications to the ridges could provide increased quantities of
solute to the plant (i.e. nutrients and fertilizers).

We observed, however, that the solute in the flat soil penetrated
less than that in the furrows of the ridged soil. This can be
explained by the distribution of ponding on the two soil geometries.
When ponding occurred on the flat soil, the ponding depth was
considerably shallower than on the ridged soil because the pond
was spread uniformly over the entire soil surface, whereas for the
ridged soil the pond was only in the furrow. This in turn, causes
a greater body of water to infiltrate into the furrow, causing deep
solute penetration in this region of the geometry, but reducing the
penetration of solutes in the ridges of the geometry.

Similar properties are evident in Figure 4 (for the solutes 𝛽1, 𝛽2,
𝛽3) and Figure 5 (for the solutes 𝛼1, 𝛼2, 𝛼3) for the simulations con-
taining highly and extremely mobile solutes, respectively. For the

highly mobile solutes 𝛽1, 𝛽2 and 𝛽3 in the ridged system (Figure 4),
the effect of solute accumulation in the ridges is more pronounced.
In the ridge simulation containing solute 𝛽3 at 16 weeks after solute
application, there is a large quantity of solute in the region of soil
adjacent to the plant roots because of water transport to the ridges
created by the ridge and furrow geometry (Bargar et al., 1999;
Chen et al., 2011).

At 24 weeks (the end of the simulation), the solute has penetrated
into the soil as a concentrated spot that diffuses out slowly. We
know that solute movement was reduced there when there was root
uptake in soil (Benjamin et al., 1996). Roots are only present for
the first 16 weeks; therefore, for the remaining 8 weeks the solute is
affected more by rain moving into the ridges. Hence, we observed
deeper solute penetration in the later portion of the simulation.
Furthermore, we note that for the highly degrading solute 𝛽1, the
concentration decreased below the 10 μg l−1 threshold for both soil
geometries. This was due to the combination of fast dispersion and
short half-life. In either geometry, it is the slowly degrading solutes
(𝛼3, 𝛽3, 𝛾3) that are of critical importance.

Figure 5 shows the results for the extremely mobile solutes 𝛼1, 𝛼2

and 𝛼3. For the solute 𝛼3, we found that a quantity of solute left the
base of both soil geometries. In the ridge simulation, as an effect
of the solute accumulating in the ridges, the solute moved down
the soil profile as a highly concentrated spot. Given that the solute
was drawn up into the ridges early in the simulation, the majority
of the solute was not affected by later ponding in the furrows.
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Figure 5 Early-application solute profiles in the ridged and flat domains for the extremely mobile solutes (𝛼1, 𝛼2, 𝛼3) 16 and 24 weeks after solute application.
A white contour line for the safety threshold of 10 μg l−1is also plotted. The ridge and furrow and flat geometries are the same as those shown in Figure 1.

Therefore, the solute moves down solely under the influence of the
rain that entered the ridge of the soil, and takes longer to reach
the base of the geometry. In the flat geometry, however, all of the
solute was affected by ponding (albeit considerably less than in the
furrow of the ridged soil). This led to large quantities of the solute
reaching the base of the geometry. The total amount of solute that
crossed the base of the geometry was 0.26 mg in the ridged system
and 3.5 mg in the flat system. These findings support the results
observed by Hamlett et al. (1990) and Jaynes & Swan (1999), who
found that placing solutes on the ridges of the structure substantially
reduced leaching compared with the flat field application. Applying
solute solely to the ridges negated the effects of ponding, which
reduced the penetration depth in the soil. Furthermore, root uptake
reduced solute movement in the ridges (Benjamin et al., 1996). This
caused the solute to remain near the surface, allowing for easy solute
extraction from the soil after harvesting.

In the ridge and furrow simulations, we observed that, as an effect
of water uptake from plant roots, movement of the solute from the
furrow to the ridges protected the solute from deep penetration,
which would otherwise result from furrow ponding. Flat ground has
a uniform surface that offered no protection; therefore, all the solute
was affected by ponding and rainfall. Therefore, the average depth
of the solute was reduced in the ridged soil compared with the flat
soil when this solute movement mechanism was present.

Late application results

Figure 6 shows the solute profiles for the early and late applications
of the solutes 𝛼3, 𝛽3 and 𝛾3 (i.e. those with slow degradation) in the
two soil geometries at the end of the simulations. For simulations
with the early application the solutes were in the soil for a full
24 weeks, and for the late application the solutes were in the soil
for 9 weeks. We chose to show the results of the slowly degrading
solutes only because they showed the most extreme behaviour and
highlight the effects of surface ponding best. Nevertheless, the other
solutes showed a similar qualitative behaviour.

From the results in Figure 6 we can highlight several key features.
In the simulations with the late application of solutes 𝛼3, 𝛽3 and 𝛾3

in the ridge and furrow geometry, a substantial quantity of solute
penetrates into the furrow. This is considerably different from the
simulations of solute profile in the early application to the ridge
and furrow, in which the solutes move towards the ridge and form
a concentrated spot.

There appear to be three reasons for differences in the solute
profiles between the early and late applications to the ridge and
furrow soil. First, for the late application simulation, the time that
the solute was in the soil was less than for the early application.
Therefore, in simulations of the late application there was not as
much time for the solute to be transported towards the ridge of
the structure by water that infiltrated into the furrows and moved
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Figure 6 Early- and late-application solute profiles in the ridged and flat domains for the slow degrading solutes (𝛼3, 𝛽3, 𝛾3) at the end of the 24-week
simulations. A white contour line for the safety threshold of 10 μg l−1is also plotted. The ridge and furrow and flat geometries are the same as those shown in
Figure 1.

to the ridges (Bargar et al., 1999; Chen et al., 2011). Second,
for the late application the root length density was beginning to
decline such that the root uptake was not as strong as earlier in the
simulated growing season (refer to Equation (16)). Consequently,
the difference in the soil water pore pressure between the ridge and
the furrow decreased, which resulted in less movement of water and
solute towards the ridge and greater solute penetration (Benjamin
et al., 1996). The third reason for the reduction in spot formation
was rain that occurred immediately after the late application.
Figure 2 shows that there was an intense rain event shortly after the
late application, which caused considerable ponding in the furrow
of the soil. Given that the solute had been applied recently to the
soil, there had not been sufficient time for it to collect in the ridges.
Therefore, the solute contained in the region of soil adjacent to the
furrow moved deep into the soil by water infiltration from the pond
because surface runoff leading to pond infiltration acts as a key
transport mechanism for the solute (Leistra & Boesten, 2010a).

From the rainfall data shown in Figure 2, we can see that during
the second 3-month period (representing the winter months) there
are more frequent ‘high-intensity’ rain events than during the first
3 months. In simulations of the late application, this caused solute
in the furrow of the ridged geometry to move deep into the soil and
did not allow formation of a spot in the ridges. This made the solute
in the furrow vulnerable to leaching because large amounts of water
infiltration can generate substantial dispersion of solutes in ridged
soil (Abbasi et al., 2004). The effect of the ‘time of ponding’ is

evident in the difference between the simulation results for early
and late applications of the solute 𝛼3 in the ridged soil. In the early
application, the solute collected in the ridges of the system because
of little ponding and a growing root system, and then proceeded
to move down as a concentrated spot as the root length density
decreased. For the late application with immediate surface ponding
and a lack of roots, the solute moved down the profile with a
wider distribution under the influence of infiltration of water from
the pond.

For the simulations of the extremely mobile solute 𝛼3, in several
cases some solute left the system from the base of the geometry.
Furthermore, the total quantity that crossed the base of the domain
depended on the soil geometry and time of application. In simu-
lations of the early application, 0.26 mg of solute leached in the
ridge geometry, whereas it was 3.5 mg for the flat system. For the
late application, however, the amount leached was 0.15 mg in ridge
geometry and it was zero in the flat system.

The model results suggest that the optimal geometry to reduce
solute leaching depends on two key aspects: the immediate rainfall
regime after solute application, and the quantity of roots in the
soil. In simulations of the early solute application, the amount
of rain was not sufficient to generate substantial furrow ponding.
This allowed the solute to move towards the ridges of the system
under the influence of water movement, which is often observed in
ridge and furrow soils (Bargar et al., 1999; Chen et al., 2011). This
protects the solute from future furrow ponding because root uptake
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can reduce solute movement in the ridges (Benjamin et al., 1996).
In contrast, for simulations of the late application there was an
immediate heavy rain event after solute application that caused sub-
stantial ponding. This generated more ponding in the ridged than the
flat soil, which resulted in the solute in the furrow being transported
deeper into the soil. This made the ridge and furrow system substan-
tially more vulnerable to solute leaching than the flat soil. Therefore,
substantial rain that causes ponding after a solute application may
make the ridged system more susceptible to solute leaching.

Time of rain versus solute leaching

From the results above, we ran a series of simulations to test the
hypothesis that the time between solute application and a heavy rain
event influences the quantity of leaching in ridged soil. We set up
five ridged and five flat soil simulations in which a solute (with the
same properties as the solute 𝛼3) was applied uniformly to each soil.
One heavy rain event that would generate substantial ponding was
then simulated at different times after the solute application in each
simulation. The rain event was chosen to last for 4 hours and have
a rainfall intensity of 12 mm hour−1, and the times between solute
application and the rain event were chosen to be 1, 2 and 4 days, 1
and 2 weeks. One day after the rain event, the total amount of solute
that crossed the plough layer was then calculated. The plough layer
was chosen to be the soil above the horizontal line of −0.15 m in
both soil geometries shown in Figure 1.

Figure 7 shows the total amount of solute (as a percentage of
solute applied) that crossed the horizontal line of −0.15 m in the
soil geometries. For the simulations where the heavy rain event was
1 day after solute application, there were trace amounts of leaching
in the flat geometry. However, in the ridged geometry 11% of solute
applied leached past the plough layer.

In the simulations for longer periods of time between the solute
application and the rain event, the relation between the amounts of
solute that were leached in the two geometries changed. In the ridge
and furrow simulations, as the time between solute application and
rain event increased more of the solute moved towards the ridges of

the soil by water transport from the furrows (Chen et al., 2011).
This caused less solute to be affected by the ponding and water
infiltration from the heavy rain event, and less solute moved below
the plough layer. For example, when the time period between solute
application and rain was 14 days, approximately 1.5% of the solute
applied was leached below the plough layer.

The flat geometry, however, showed the opposite behaviour. As
the time between solute application and the rain event increased,
more solute was leached past the plough layer. This resulted from
solute diffusion in the system before the rain event. We simulated an
extremely mobile solute; therefore, the longer it was in the system
the more it diffused. This meant that the rain and pond infiltration
had a greater effect on transport of the solute. In the simulation with
a 14-day period between solute application and the rain event, the
total amount of solute leached was approximately 11%.

Figure 7 illustrates a crossover between the total quantities of
solute leached in the plough layer for the two geometries after
approximately 8 days. In the case study of an extremely mobile
solute and a single heavy rain event in a silt loam soil, there was
less than 8 days between solute application and the rain event and
the flat geometry reduced leaching more. However, with more
than 8 days between solute application and rain, the ridge and
furrow geometry reduced leaching more than for the flat geometry
because the solute moved towards the ridges and created a ‘zone
of protection’ from ponding. This crossover period, however, can
change considerably depending on the mobility of solute, rainfall
regime and type of plant roots. For example, in scenarios where the
applied solute is less mobile and root densities in the soil are less,
the time for ridge accumulation will be longer, thereby delaying the
crossover period. Nevertheless, these results suggested that specific
situations determine whether the ridge and furrow or the flat soil
are better at reducing leaching.

Discussion

In previous research, ridge and furrow planting has often been
shown to lead to greater leaching of solutes than the flat system

Figure 7 Total amount of solute leached beyond the
plough layer in the ridge and furrow soil, Ω, and flat
soil, Φ, for simulations that delayed the period of
time between a solute application and a heavy rain
event.
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(Lehrsch et al., 2000; Alletto et al., 2010; Kettering et al., 2013).
However, certain application procedures might reduce leaching in
ridged fields more than in flat fields (Ressler et al., 1997; Hatfield
et al., 1998; Jaynes & Swan, 1999). This latter supports our find-
ings; we observed that water movement from the furrows to the
ridges (Bargar et al., 1999) can transport solutes into the adjacent
root zones of the structure and while held there by plant roots
(Benjamin et al., 1996) they reduced the effect from dominant sur-
face runoff and subsequent infiltration (Leistra & Boesten, 2010a).
Therefore, ridge and furrow systems can reduce solute leaching.

We made several key assumptions, however, to ensure that any
differences observed depended on the geometry (i.e. by comparing
the ridge and furrow and flat geometries directly). Therefore, it
might be of interest to incorporate specific factors of ridge and
furrow geometry to determine the magnitude and severity of the
mechanisms that were observed.

One of the key factors to consider is the soil water content in
each of the ridge and furrow and flat geometries. Water movement
is the key transport mechanism for solutes in soil (Nye & Tinker,
1977); therefore, it is vital to characterize the soil water profile
accurately in both the ridge and furrow and flat soil geometries.
In the mathematical model, we imposed a boundary condition
at the base of the domains to replicate a shallow water table
approximately 1 m below the soil surface. This allowed us to model
solute movement within an idealized soil domain. However, with
high spatial resolution field data to determine the soil water profile
in the ridge and furrow and flat geometries we could indicate
how different water profiles might affect the solute dynamics and
mechanisms that we observed (i.e. solute penetration from furrow
ponding and transport to the ridges from the furrow).

Understanding the water profile in soil would aid accurate
determination of the mechanics of infiltration of rain into the soil.
We used rainfall data with a resolution of 1 hour for a 6-month
period, which limits the accuracy of identifying any change in
infiltration capacity. This could play a key role in determining
the severity of ponding and therefore the movement of solutes
from the furrow to the ridges. Thus, understanding the infiltration
capacity and soil water content with higher temporal and spatial
resolution might aid our understanding of the magnitude of the
effects observed.

Coupling knowledge of the water profile with the antecedent
moisture conditions of the soil domains would enable us to model
the movement of solutes applied to the soil more accurately. We
modelled the initial water profile to be that formed under steady
state conditions in the absence of roots, which is unlikely to resolve
true field conditions accurately. Knowledge of past conditions
would enable us to determine accurate initial conditions for the soil
at the beginning of the simulations. This information could have a
marked effect on several factors, such as the infiltration capacity,
water table height and initial solute movement.

To understand further the observed solute accumulation and hot
spot formation mechanisms, knowledge of the root architecture
would play a key role. This would enable us to understand the
distribution of root pressures in the root zones (i.e. the ridges of

the system) and to predict the spatial distribution of solutes that
collect in the ridges of the soil geometry. This would provide a more
quantitative analysis of specific case studies relating to different
solutes and root systems.

Earlier, we stated that to obtain a ‘like for like’ comparison, we
kept the porosity between the ridge and furrow and flat systems
the same. However, we know that some tillage methods can affect
the porosity of the soil. Therefore, it would be useful to determine
how any effect from tillage would affect solute movement from the
furrows to the ridges and also spot formation in the ridges. This
could have a substantial effect on the time required for the solute in
the furrows to move to the ridges of the system.

Conclusions

Our modelling results bridged the gap between two contrasting
findings for ridge and furrow systems because previous literature
suggested that these soil systems might be vulnerable to solute
leaching or can reduce solute leaching. We found the ridge and
furrow structure could either impede or increase the penetration
of solutes in soil depending on the rainfall activity immediately
after solute application and the quantity of roots in the soil.
In scenarios where there was considerable rain that generated
substantial ponding immediately after solute application, we found
that water infiltration from the surface acted as a strong transport
mechanism for solutes in the furrow. This caused solutes in the
furrow to move to a greater depth compared with the flat ground
profile, where the effect of ponding was less substantial.

We found, however, that these trends were reversed when there
was no ponding after solute application. Instead, roots in the ridges
caused a dominant pressure gradient to form between the soil water
pore pressure and pressure in the root xylem. This caused the solute
in the ridged system to move towards the soil with abundant roots,
where the solute accumulated adjacent to the root zone in the ridges.
This effect impeded the movement of the solute compared with the
flat field because solute was in the ridge and therefore not influenced
by future ponding events in the furrow.

We determined that the vulnerability of the ridged system
stemmed from immediate ponding on the soil surface after the appli-
cation of a solute, and was not a function of the surface topology
itself. Our results suggested that one of the important factors that
should be considered when applying solutes to the soil surface is
the immediate water treatment (i.e. rainfall or irrigation after the
solute application) as this can have a substantial influence on solute
penetration and leaching in ridged fields.
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