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Abstract

The transient Auditory Brainstem Response (ABR) is a change in neural activity along

the auditory pathway in response to a brief acoustic stimulus. It is typically recorded

non-invasively using electroencephalography (EEG), and has become an important di-

agnostic tool in the clinic, e.g. for diagnosing various neurological disorders and hearing

screening in new borns. Detecting the ABR, however, can be a challenging task, and is

still strongly dependent on highly trained individuals who are given the task to visually

examine the EEG data. Besides incurring additional training costs, visual inspection

has limitations in terms of specificity and sensitivity. Consequently, test time for some

ABR examinations can be quite extensive, and information is often incomplete. This

can have significant clinical implications, and has a large impact on the parents/carers

of the infants.

The limitations associated with visual inspection have led to the development of many

different objective measures for assisting the examiner during the visual inspection task,

and improving the reliability and efficiency of the test. The overall goal for this thesis is

to further improve the reliability and efficiency of ABR examinations by improving the

specificity, sensitivity, and test time of objective ABR detection methods. To achieve

this, the focus is firstly on the objective ABR detection methods themselves, i.e. on

exploring, evaluating, optimising, and comparing new and existing detection methods,

with the goal to find or develop methods with a high sensitivity, a low test time, and a

controlled specificity. Important elements within this analysis include the assumptions

underlying the detection methods, along with the adopted test and pre-processing pa-

rameters. Results demonstrate that the main concern for specificity is the independence

assumption between epochs, which is violated as a function of the stimulus rate and the

filter’s high-pass cut-off frequency. The best performing method in terms of sensitivity

and test time was furthermore a new bootstrapped statistic, consisting of a combination

of the Hotelling’s T 2 test and a correlation coefficient.

A second route in this thesis for improving the performance of objective ABR detec-

tion methods is through the development and optimisation of a new sequential testing

framework for ABR detection methods. The approach, called the Convolutional Group

Sequential Test (or CGST), controls the specificity of sequentially applied statistical

tests, and permits data-driven adaptations (using previously analysed data) to test pa-
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rameters following each stage of the sequential analysis. This allows the statistical

analysis to be tailored specifically to the subject and recording in question, which offers

new opportunities to speed up testing with high statistical power and controlled speci-

ficity. Results demonstrate relatively large reductions in test time when compared to a

’single shot’ test where the detection method is applied to the data just once.

A final route in this thesis for improving the performance of objective detection methods

is through a new adaptive ensemble size re-estimation procedure, integrated within

the sequential testing framework. Besides further reductions in test time (relative to

non-adaptive sequential test procedures), the adaptive approach can help bring ABR

examinations to an unambiguous test outcome in terms of ‘ABR present’ or ‘ABR absent

or abnormal’.



Overview

The thesis starts with a brief introduction and background on the auditory brainstem

response (ABR), and describes the standard model underlying almost all objective ABR

detection methods. A summary of the main findings and contributions from this the-

sis are is presented in Chapter 1 (section 1.2). Following the introduction, a review of

the literature is presented (Chapter 2) where the focus is on some of the more widely

used ABR detection methods. A description of the methods and data used throughout

this thesis is then presented in Chapters 3 and 4, respectively, after which an in-depth

exploratory analysis of the specificity of objective ABR detection methods is presented

in Chapter 5. In particular, Chapter 5 explores the main statistical assumptions under-

lying ABR detection methods, with the goal to identify (and potentially compensate,

remove, or modify) test parameters or pre-processing strategies that contribute towards

a poor control of specificity. Following the specificity assessment is a sensitivity and test

time assessment (Chapter 6). The focus here is on evaluating and comparing new and

existing objective detection methods, with the overall goal of finding the most sensitive

method, with the shortest test time for some fixed specificity. In the second half of

the thesis (Chapters 7, 8, and 9), the focus is on sequential testing for ABR detection.

Chapter 7 first presents a brief literature review on sequential test procedures (section

7.1), and introduces a novel method for controlling the FPR of sequentially applied sta-

tistical tests, called the Convolutional Group Sequential Test (CGST; section 7.2). The

performance of the CGST is then explored and optimised for ABR detection in Chapter

8. Finally, Chapter 9 integrates a new, online sample size re-estimation procedure within

the sequential testing framework, and briefly evaluates the performance of the approach

using simulations. The thesis then ends with an overview of the main conclusions and

some directions for future work in Chapter 10.
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Chapter 1

Introduction

Transient auditory brainstem responses (ABRs) are defined as short changes in neural

activity along the auditory pathway in response to a brief acoustic stimulus, such as

a click, chirp or tone burst. Typically recorded non-invasively using surface mounted

electrodes, they are used primarily for diagnosing abnormalities within the auditory

system, such as hearing loss (e.g. Stevens et al, 2013) and various neurological disorders

(e.g. Robinson & Rudge, 1980). Usually, the first step for these applications is to

determine whether an ABR is present or not, after which additional analysis can be

performed on, for example, the morphology of the response.

The main focus for this thesis is on detecting the ABR using objective detection methods.

Before turning to objective detection methods, it is worth noting that ABR detection

has historically, and continues to be, realised through visual inspection, i.e. by manually

inspecting the acquired EEG data. Although potentially quite sensitive (Arnold, 1985),

visual inspection has been found to vary substantially between examiners (Vidler &

Parker, 2004). As a result, the false-positive and false-negative rates (further defined

below) are also dependent on the examiner, which makes quantifying these properties

problematic (Don & Elberling, 1996). The process of visual inspection thus introduces a

variable and subjective element to what could potentially be a consistent, reliable, and

objective measure.

Many researchers have therefore turned to more objective methods for detecting the

ABR, i.e. methods with a firm foundation in statistics, capable of producing consistent

and highly sensitivity measures for the presence or absence of a response. The primary

goal for these methods is still to assist the examiner during the visual inspection task,

and, in particular, to improve the reliability of the test, and reduce the required time

for response detection. It is can also be envisioned that an objective detection method

with a sufficiently high performance would allow examination to be carried out by staff

without specialist training, or, in some applications, may allow the human observer

to be removed entirely. Either way, this places high requirements on the performance

of objective detection methods in terms of specificity, sensitivity, and test time (the

1
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required time for detecting a response), which can be considered as their three most

important properties.

With respect to specificity (see also Chapter 5), this is directly related to the false-

positive-rate (FPR), also known as the type-I error rate, i.e the rate at which the null

hypothesis H0 of ‘no ABR present’ is incorrectly rejected. In other words, a false-

positive is when it is concluded that a response is present, when there is, in fact, just

noise. Specificity is furthermore controlled through the nominal α-level of the test,

which is the theoretical or assumed FPR. In practice, deviations from α can occur due

to random fluctuations, or due to a violation to the statistical assumptions underlying

the detection method. When the observed FPR is larger than α, the test is called liberal,

whereas when the observed FPR is smaller than α, it is called conservative.

For many ABR-related applications, it is generally accepted that a conservative test per-

formance is less detrimental than a liberal one. In ABR hearing screening applications,

for example, a higher than expected FPR can result in cases of undetected hearing loss

(it is incorrectly concluded that the subject heard the acoustic stimulus), which, when

left untreated, have been associated with an impaired language development in children

(Ramkalawan & Davis, 1992), along with various other more obvious handicaps, such

as discrimination, less effective education, a reduced life expectancy and higher unem-

ployment rates (Miziara et al., 2012), to name a few. With respect to a conservative

test performance, although this is less detrimental than a liberal one, it is still far from

desirable. In particular, a conservative test performance tends to result in a reduced

statistical power, and consequently in a prolonged test time (i.e. the reduced statistical

power needs to be compensated for by increasing the sample size). In short, the FPR

of the test should ideally be controlled as intended, that is, it should match with the

nominal α-level of the test.

With respect to sensitivity, this is the detection rate of the test, and is directly related to

the false-negative rate (FNR), also known as the type-II error rate, i.e. the rate at which

H0 is incorrectly accepted. In other words, a false-negative is when it is concluded that a

response is absent, when a response is, in fact, present. Sensitivity is furthermore closely

related to test time, as a more sensitive test will tend to detect the response sooner.

Ideally, sensitivity should be as high as possible for some set type-I error rate, and test

time as low as possible for some set type-I and type-II error rate. In ABR audiometry,

for example, one would expect an increased sensitivity to allow the detection of lower

signal-to-noise rate (SNR) responses (evoked by lower amplitude acoustic stimuli), which

may lead to greater convergence between behavioural and estimated hearing thresholds.

A relatively low type-II error rate is also important when fitting hearing aids, as a

type-II error can potentially result in the hearing aid being fitted too loudly. With

respect to a reduced test time, this is desirable as some ABR examinations are currently

quite long, e.g. it can take well over an hour to measure hearing thresholds in both

ears for a range of frequencies. This is not ideal, particularly so for new born hearing

screenings as the infant may become restless and introduce movement artefacts to the
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EEG measurements. A reduced test time is of course also desirable as available resources

are limited, and due to a reduced cost of service delivery.

The main goal for this thesis is to improve the performance of ABR detection methods

in terms of specificity, sensitivity, and test time. There are, broadly speaking, two

routes through which this might be achieved: (1) increasing the SNR of the ABR, or

(2) improving the performance of the objective detection method. Starting with the

SNR, a typical ABR has a duration of approximately 15 ms following the onset of an

acoustic stimulus, with a peak amplitude of around 0.5 µV (Hall, 2006, p.95). This is

in contrast to the noise (also known as the EEG background activity), which consists

of a conflux of unwanted potentials with amplitudes typically in the range of at least

10 µV after filtering. The EEG background activity can furthermore originate from a

wide range of sources, of which the most common include muscle artefacts (due to e.g.

moving, blinking, breathing, and heart beats), along with electro-magnetic interference

from power lines, lighting, and a wide range of electronic equipment in general. A first

step to increase the SNR is hence to remove the source of the EEG background activity,

e.g. by switching off unnecessary electronic equipment. Many noise sources, such as

breathing and heart beats, are of course unavoidable (assuming no drastic measures are

taken), and suitable artefact rejection and pre-processing strategies (e.g. differential

amplification, filtering, and signal averaging, to name a few) are considered common

practice. Alternatively, the SNR might be improved by increasing the amplitude of the

ABR. The most obvious way to do so is through the amplitude of the acoustic stimulus,

which tends to be positively correlated with the amplitude of the evoked response (see

e.g. Picton & Hillyard, 1974; Starr & Achor, 1975). Other stimulus parameters that

affect the ABR include the stimulus rate (the rate at which the stimulus is presented

to the subject; Don et al., 1977; Fowler & Noffsinger, 1983), and the type of stimulus

in general (Hood, 1998; Elberling et al., 2010), e.g. the stimulus might be a click or

a chirp, or it might be spectrally complex or simple, have a short or long duration,

etc. Various additional factors that can affect the ABR include whether the stimulus is

presented monaurally or binaurally (e.g. Blegvad, 1975), the age (Fria & Doyle, 1984)

and gender (Allison et al., 1983; Jerger & Hall, 1980; Michalewski et al., 1980; Don et

al., 1994) of the subject, and potentially even body temperature (Jones et al., 1980) or

some forms of medication (Hood, 1998). The (observed) ABR is also affected by the

electrode placement (Moore, 1977; Mizrahi et al., 1983). Factors that do not affect the

ABR that are worth mentioning include sleep (Jewett & Williston, 1971), coma (Starr et

al., 1977), and attention (Picton & Hillyard, 1974). Finally, a second route for improving

the performance of ABR detection methods, and coincidentally the main focus for this

thesis, is through an improved design and application of the objective detection method.
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1.1 The standard model for objective ABR detection meth-

ods

The conventional model underlying almost all ABR detection methods is built around

the following three basic assumptions: (i) the evoked response is deterministic (it does

not change over time) within the recoding session, (ii) the evoked response is independent

of the EEG background activity, and (iii) the EEG background activity is a stationary,

random, ergodic process. The observed signal following the onset of each stimulus can

then be described as (see e.g. Elberling & Don, 1984; Raz et al, 1988):

x(t) = ABR(t) +Noise(t) (1.1)

Where x(t) is the observed voltage measurement at time t following stimulus onset,

ABR(t) is the true value of the evoked response at time point t, and Noise(t) is the

observed value of the EEG background activity, similarly at time point t. The time

windows following the onsets of the stimuli are typically referred to as ‘epochs’. By

presenting many stimuli to the subject, an ensemble of epochs are collected, which are

pre-processed and analysed using the adopted statistical detection method. Note that

each epoch is ‘time-locked’ to an acoustic stimulus.

Many ABR detection methods also make use (either implicitly or explicitly) of the

coherently averaged epoch X̄(t), which (following the above notation) is given by:

X̄(t) =
1

N

N∑
i=1

xi(t) = ABR(t) +Noise(t) (1.2)

Where N is the ensemble size, xi(t) is the observed value for epoch i at time point t,

and Noise(t) is the coherently averaged background noise at time point t. Note that

ABR(t) remains constant within the coherent average, as ensemble coherent averaging

does not affect deterministic signals. When the samples between epochs are independent

and normally distributed, then the power of the background noise within the coherent

average (called the residual background noise) is decreased, on average, by
√
N .

It is generally accepted that the aforementioned assumptions are not entirely true for

EEG measurements, most notably so for the stationarity assumption, e.g. the variance

of the EEG background activity can vary significantly within recordings, which coinci-

dentally brings the normality assumption into question. With respect to independence,

the spectral content of EEG measurements introduces correlations between samples,

which jeopardises the assumed independence between epochs. Finally, with respect to
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the assumption that the ABR is a deterministic signal, this is generally true (Salamy

& McKean, 1977), although short term depression of the ABR has been observed for

fast stimulus rates (Salamy et al., 1975; Terkildsen et al., 1975; Thornton & Coleman,

1975).

Although the stationarity, normality and independence assumptions are not always sat-

isfied for EEG measurements, it is worth pointing out that the standard model does

not necessarily break down when these assumptions are violated, i.e. the main adverse

effect is that the residual power in the ensemble coherent average is no longer decreased

by
√
N . When using visual inspection for ABR detection, it might therefore take more

time to reach an unambiguous decision in terms of ABR present or absent. It might also

be pointed out that it is also not clear how violations to the aforementioned assump-

tions might affect the specificity and sensitivity of ABR examinations when using visual

inspection for response detection (as noted earlier, quantifying the TPRs and FPRs for

visual inspection is problematic). When using a formal parametric statistical test for

ABR detection, on the other hand, then this is a different matter, i.e. it is well known

that specificity (and consequently sensitivity and test time) is compromised when the

aforementioned assumptions are violated, which then brings the reliability and efficiency

of objective detection methods into question. The statistical assumptions underlying ob-

jective ABR detection methods play an important role throughout all Chapters in this

thesis, and are the main focus for Chapter 5.

Finally, with a few exceptions (Stürzebecher et al., 2005; Cebulla & Stürzebecher, 2013;

Stürzebecher & Cebulla, 2015), objective ABR detection methods are designed under

the assumption of a ‘single shot’ application, i.e. it is assumed that they are applied

to the data just once. This is, however, not how ABR detection methods are used in

practice. Instead, they tend to be used in conjunction with visual inspection, and are

thus applied repeatedly to the accumulating data until a decision in terms of response

present or response absent has been made. The advantage of doing so is that the

higher SNR responses can be detected early (thus reducing test time), whereas the test

can still be prolonged in the case of a lower SNR response. The caveat is that the

probability of finding patterns in noise is increased with the number of interim ‘looks’

at the data (e.g. Armitage et al., 1969; Wassmer, 2000). The latter is also known as

an ‘inflated FPR’, and adjusted critical boundaries (for rejecting or accepting H0) are

required in order to preserve the nominal α-level of the test. Controlling the FPR of

sequentially applied statistical tests is the main focus for Chapter 7 in this thesis, which

describes a new approach, called the Convolutional Group Sequential Test (CGST).

When the assumptions underlying the CGST are satisfied, then the CGST also permits

data-driven adaptations to test parameters, i.e. previously anaysed data can be used

to optimise test parameters for the remaining stages of the sequential analysis. Data-

driven adaptations are further explored in Chapter 9, which describes a new approach

for choosing the ensemble size online as data becomes available. The main advantage

for the adaptive approach is a reduced test time, along with an improved control over
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both the TPR and the FNR.

1.2 Research hypotheses

This section presents an overview of the main research hypotheses that developed

throughout the project.

The specificity of objective ABR detection methods

1. Pre-processing parameters and test settings (e.g. the filter cut-off frequencies, the

stimulus rate, and the artefact rejection method) will partly determine the extent to

which the assumptions underlying most objective detection methods are satisfied for ABR

detection, which will, in turn, affect the specificity of the test.

2. A set of pre-processing strategies and test parameters can be found, such that the

specificity of objective detection methods remains controlled as intended for ABR detec-

tion.

The sensitivity and test time of objective ABR detection methods

Exploratory research: Optimise, evaluate, and compare the specificity, sensitivity and

test time of various new and existing objective detection methods, such that a recom-

mended detection method can be provided for ABR examinations.

Sequential testing

1. The convolution theorem (Grinstead & Snell, 1997) can provide a foundation for the

development of a new, flexible, and intuitive approach (the CGST) for controlling the

FPR of sequentially applied statistical tests.

2. The CGST will allow the specificity of sequentially applied objective detection methods

to be controlled for ABR detection, and will provide reductions in test time relative to a

‘single shot’ test.

An adaptive ensemble size re-estimation procedure

1. Ensemble size re-estimation using previously collected data will allow for a more

informed decision regarding the required ensemble size for detecting the ABR. This will

reduce test time, and give an improved control over the TPR.
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1.3 Original contributions

Contributions are made towards improving the performance of objective methods for

ABR detection in terms of specificity, sensitivity, and test time.

1.3.1 Specificity

This work firstly presents in-depth exploratory assessment of the specificity of single shot

ABR detection methods (Chapter 5), with the overall goal of obtaining a more robust

evaluation of test significance. In particular, the Chapter uses simulations and record-

ings of EEG background activity to isolate and explore the main statistical assumptions

underlying ABR detection methods, which include the normality, the stationarity, and

the independence assumption. Results demonstrate significant violations to the inde-

pendence assumption (between epochs), as a function of the high-pass cut-off frequency

fc and the stimulus rate, i.e. specific combinations of fc and the stimulus rate resulted

in relatively large deviations from α, ranging from 0.0385 to 0.0985 for α = 0.05. Sig-

nificant violations to the normality and stationarity assumptions were also observed,

which resulted in a tendency towards a conservative test performance. For some record-

ings, the normality and stationarity violations were relatively severe, giving maximum

deviations of 0.0161 and 0.0335 (for α = 0.05) for normality and stationarity violations,

respectively, whereas for other recordings stationarity and normality were more or less

satisfied. Finally, various methods and data transformations for removing or compen-

sating for the aforementioned violations were explored, which include (i) bootstrapping

in blocks for a more robust evaluation of test significance under independence violations,

(ii) normalisation of the epoch variances for removing stationarity violations, and (iii)

increasing the ensemble size and/or artefact rejection for compensating and removing

normality violations. Further details and results are presented in Chapter 5.

1.3.2 Sensitivity and test time

Various new and existing ABR detection methods were evaluated and compared across

a range of feature sets and test conditions (Chapter 6), with the overall goal of find-

ing or designing an ABR detection method with good sensitivity and low test time,

for some fixed type-I error rate. With respect to new methods, this work explores (1)

the performance of the Hotelling’s T 2 test in the time domain, where it is applied as

either a standard multivariate approach, or as a multivariate approach for analysing re-

peated measurements (see section 3.2.4 for details), (2) the Repeated Measures Analysis

of Variance test, using the Greenhouse Gesier and Huyn Feldt corrections for spheric-

ity violations, and (3) a new bootstrapped statistic, consisting of a combination of the

Hotelling’s T 2 test and a correlation coefficient. The latter was designed using a modified

bootstrap approach (section 3.6.2). The performance of these methods were evaluated
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and compared to various existing methods, which include the Fsp and the Fmp (evalu-

ated using either theoretical F-distributions or with the bootstrap approach), the boot-

strapped max-difference and mean power statistics from Lv et al (2007), the q-sample

uniform scores test and its modifications from Cebulla et al (2006), Friedman’s test, and

the Hotelling’s T 2 test in the frequency domain. The main results firstly demonstrate

a more robust control of specificity for the Fsp and Fmp when evaluating test signifi-

cance with the bootstrap approach, as opposed to using theoretical F-distributions with

assumed DOF. The improved specificity coincidentally resulted in an improved test sen-

sitivity, e.g. for the Fsp, evaluating test significance with the bootstrap (as opposed to

using theoretical F-distributions) resulted in a maximum increase in test sensitivity of

∼40% for the simulations, and ∼25% for the subject recorded data. With respect to

the remaining methods, an overall sensitive and robust performance (across test condi-

tions) for the Hotelling’s T 2 test was observed. When compared to the Fsp (evaluated

using theoretical F-distributions), maximum increases in test sensitivity of ∼60% were

observed for the simulations, and ∼40% for the subject recorded data. Finally, the best

performing method throughout this work was the new bootstrapped statistic, composed

of the Hotelling’s T 2 test and a correlation coefficient. When compared to the Fsp

(evaluated using theoretical F-distributions), a maximum increase in test sensitivity of

70-75% was observed for the simulations, and ∼50% for the subject recorded data.

1.3.3 Sequential testing

A novel method (the CGST) for finding the stage-wise critical decision boundaries and

controlling the overall type-I error rate for sequential testing is described in Chapter 7.

Various connections with existing methods are also discussed. The main advantage for

the CGST over some alternative methods is flexibility, ease of understanding, and low

computational load. The specificity, sensitivity and test time of the CGST were assessed

across a range of CGST design parameters for ABR detection (Chapter 8). In terms

of specificity, results emphasize that care is required to ensure that the assumptions

underlying the objective ABR detection method (used for analysing the data) are sat-

isfied, else additional violations originating from the CGST might be introduced. With

respect to sensitivity and test time, various trade-offs are demonstrated as a function

of CGST design parameters, which include predominantly the number of stages used

for the sequential analysis and the choice of the stage-wise critical decision boundaries.

When compared to the single shot test (where the objective detection method is ap-

plied just once, i.e. not sequentially), results demonstrate reductions in mean test time

(taken across a large number of tests) for the CGST of up to 40-45%, with no loss in

statistical power. The latter came at the cost of an increased maximum test time, i.e.

for some subjects test time was prolonged. The increased maximum test time also has

consequences for the no-stimulus condition, i.e. when a response is absent, the test

will proceed to the final stage of the trial in (1-α)100% of the cases. Test time for the

no-stimulus condition was therefore prolonged (potentially by a factor of ∼250%). This
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emphasizes the importance of futility stopping (early acceptance of the null hypothesis),

not only for the CGST, but for sequential test procedures in general. Results indeed

demonstrate significant reductions in mean test time for the no-stimulus condition when

early stopping in favour of H0 was permitted. Further details are presented in Chapter

8.

1.3.4 Adaptive ensemble size re-estimation

A new online ensemble size re-estimation procedure, integrated within a sequential test-

ing framework, is proposed for ABR detection (chapter 9). The main advantage of the

adaptive approach over a conventional non-adaptive approach (where the ensemble size

is fixed in advance) is an improved control over both statistical power and the true-

negative rate, along with a reduced test time. In other words, the approach can help

bring ABR examinations to an unambiguous test outcome in terms of ‘ABR present’

or ‘ABR absent (or abnormal)’, whilst using as little test time as possible. Simula-

tion results demonstrate a reduced test time of ∼10-30% for the stimulus condition and

∼25-45% for the no-stimulus condition.

1.3.5 Publications
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• Chesnaye M.A., Bell S.L., Harte J.M., & Simpson D.M. 2018. Objective measures
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DOI: https://doi.org/10.1080/14992027.2018.1447697

• Vanheusden F, Bell S.L., Chesnaye M.A., & Simpson D.M. (2018). Improved

detection of vowel envelope frequency-following responses using Hotelling’s T2

analysis. Ear and Hearing.

Submitted

• Chesnaye M.A., Bell S.L., Harte J.M., & Simpson D.M. (2018). The Convolu-

tional Group Sequential Test: reducing test time for evoked potentials, IEEE:
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Chapter 2

A review of objective ABR

detection methods

This chapter presents a review of some of the more widely used ABR detection methods.

The review starts in 1892 with a short story about Hans Berger (section 2.1), the

original inventor of the electroencephalogram, after which some of the earliest methods

for assisting clinicians and researchers during evoked response detection are presented

(section 2.2). From the late 60s onwards, formal parametric statistical tests for ABR

detection began to emerge (section 2.3), ultimately resulting in the well known Fsp and

Fmp statistics, which are up to the current day still some of the most frequently used

ABR detection methods. From 1976 onwards, researchers began to explore single-band

frequency domain analysis for ABR detection (section 2.4), which was soon extended

to multiple bands in order to cover the broadband spectral content of a typical ABR

(section 2.5).

Besides giving an overview of some of the most well known ABR detection methods, the

goal for this chapter is to provide justification for choosing or rejecting ABR detection

methods for further evaluations and comparisons throughout this thesis. In particular,

the review is used to make a selection of some of the best performing ABR detection

methods (section 2.6), which are evaluated in terms of specificity, sensitivity, and test

time in Chapters 5, 6, and the Appendix. Various new methods that have not yet been

explored for ABR detection are also included. Finally, it should be stressed that this

review is on some of the more frequently used and well known ABR detection methods.

Various less conventional methods such as Neural Networks (Freeman, 1992; Alpsan

& Özdamar, 1992a; Alpsan & Özdamar, 1992b; Habraken et al., 1993; Sánchez et al.,

1995) and advanced denoising methods (e.g. wavelet de-noising; Popescu et al., 1999;

Zhang et al., 2006) are excluded from the review.

11
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2.1 The origin of EEG

The origin of the electroencephalogram dates back to a man falling from his horse one

morning in Würzburg. It was during a military training exercise in 1892 when Hans

Berger’s horse reared, throwing Hans to the ground. Hans landed right in front of the

wheel of a horse drawn artillery gun, which was luckily stopped by the driver in the

nick of time, thus saving Hans from what would otherwise be certain death. That very

evening, and for the first time ever, Hans received a telegram from his father enquiring

about his health. He later discovered that it was his sister who, overwhelmed by a

sudden sensation that something was wrong, had urged their father to contact him.

Hans was convinced that the coincidence could not be accounted for by mere chance

alone, and that some form of mental telepathy between him and his sister must have

taken place. He hereby developed an interest in psychophysics, and set out on what

would be a 40 year journey to find empirical evidence for psychic energies within the

brain.

To cut a long story short, Hans was never successful in his quest for detecting psy-

chic energies. However, his research ultimately led him to the discovery that neural

potentials could be measured non-invasively from the scalp of a subject, i.e. the first

electroencephalographic measurements. After numerous control studies, Berger pub-

lished his findings in 1929 (Berger, 1929), and coined the observed potentials alpha and

beta waves. Due to the German journals being inaccessible to many British and Amer-

ican researchers at the time, and otherwise due to scepticism from colleagues, Berger’s

findings initially went unnoticed (Millet, 2001), and it wasn’t until after they were con-

firmed by Adrian and Mattews (1934) that his discovery gained recognition from the

scientific community.

“Is it possible that I might fulfill the plan I have cherished for over 20 years and even

still, to create a kind of brain mirror: the Elektrenkephalogramm!”

A quote from Hans Berger’s diary following his discovery. From Millet, 2001

2.2 Early methods and averaging

Early research following Berger’s discovery helped to further characterize his alpha and

beta waves, and, in particular, to describe how they were affected by various factors

such as sleep (Loomis et al., 1937; Davis et al., 1938), drugs (Berger, 1931, 1934, 1937),

pathologies (Berger 1931), and different types of stimuli (Adrian and Matthews, 1934;

Davis, 1939; Davis et al., 1939; Adrian, 1941). New potentials were also discovered, such

as transient potentials induced by sound (Davis, 1939), sleep spindles (Loomis et al.,

1935) and K-complexes (Loomis et al., 1937). These potentials were soon exploited by

researchers in an attempt to develop the first EEG hearing screening programs (Marcus,

Gibbs and Gibbs, 1949; Gidoll 1952; Perl et al., 1953; Derbyshire et al., 1956).
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Techniques for assisting clinicians and researchers at the time were still unavailable,

and these early experiments were dependent on the researchers ability to visualy detect

patterns in the waveforms. Averaging techniques for reducing the EEG background noise

and increasing the SNR were also not yet in practice, and the relatively low amplitude

potentials were often lost in the fluctuating EEG background noise. This hence restricted

applications to potentials with relatively large amplitudes, such as the K-complex.

One of the first averaging techniques, called photographic superposition, was developed

by G.D. Dawson in 1947. The technique relied on photographing all responses following

stimulus onset, and rephotographing the superimposed records as a single image so that

deflections time-locked to the stimulus were easier to detect (Dawson, 1947, 1950). The

technique was first applied to somatosensory evoked responses induced by electrically

stimulating the peripheral nerve (Dawsen, 1947, 1950), and was later used in the visual

and auditory domain for detecting high intensity flashes (Cobb and Morton, 1952) and

continuous tones and clicks (Abe, 1954). Suzuki and Asawa (1957) furthermore applied

it to tone stimuli of various intensities in an attempt to estimate behavioural hearing

thresholds in a group of subjects (Fig. 2.1).

Figure 2.1: Four examples of ten superimposed responses following stimulus onset (indicated
by the arrow) measured from the vertex. The first set (++) represents an example of a response
that is strongly present, the second (+) a response that is not as strongly represent, the third
(±) is inconclusive, and in the fourth (-) the response is considered to be absent. Reprinted from
Publication ‘Evoked Potential of Waking Human Brain to Acoustic Stimuli: A Clinical Study
on its Application to Objective Audiometry’, Vol. 48(5-6), Suzuki T., Asawa I., pp. 508-515
(1957), with permission from Taylor & Francis.

With the development of computers, Dawsen was able to extend his photographic super-

position technique to the digital domain (Dawsen, 1951, 1954), which allowed a much

finer grained analysis of the auditory response (Barlow and Brown, 1955; Clark et al.,

1961). Small potentials hidden in relatively large fluctuations of EEG background noise

(and indetectable to the human eye) could now be extracted, resulting in the identifica-

tion and characterization of the auditory mid-latency (Geisler et al., 1958; Geisler, 1960;
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Goldstein and Rodman, 1967) and auditory brain stem response (Jewett et al., 1970;

Jewett & Williston, 1971). Moreover, the findings allowed the development of various

evoked response detection methods based on peak amplitudes and latencies (Schimmel

et al., 1974; Morley and Liedke, 1977; Aunon, 1978), (for a coherent overview of the

identified waveforms and their peaks, see Picton et al., (1974), see also Fig. 2.2).

Figure 2.2: The waveform morphology of the auditory evoked response, plotted on a logarithmic
axis of time. Reprinted from Publication ‘Human Auditory Evoked Potentials I: Evaluation of
Components’, Vol. 36, Picton T.W., Hillyard S.A., Krausz H.I., Galambos R., pp. 179-190
(1974), with permission from Elsevier.

2.3 Estimating the signal to noise ratio.

A more informed decision on the presence or absence of a response can be made if the

EEG background activity is not only reduced, but also quantified, thus giving a measure

of the ‘quality’ of the waveform (Schimmel et al, 1967; Wong and Bickford, 1980; Elber-

ing and Don, 1984). In particular, this would help determine whether peaks and valleys

in the ensemble coherent average might be attributed to either the background noise

or to the ABR. The latter would be particularly beneficial when considering abnormal

responses, or when a response is near threshold and the clinicians do not know exactly

what they are looking for.

A first measure for quantifying the residual background noise within the coherent average

was provided by Schimmel et al. (1967), and is called the ±-reference. The ±-reference is

a special type of averaging that alternates between adding and subtracting each succes-

sive epoch. Consequently, deterministic signals within the coherent average will cancel

out, and the user is left with the residual background noise. The pm-reference was first

used in the ‘split-sweep’ technique developed by Lowy and Weiss (1968), and was later

transformed into a formal parametric statistical test by Schimmel et al. (1974). In par-

ticular, Schimmel et al. (1974) constructed a power ratio, called the P ratio, between

the estimated power of the evoked response (given by the mean square of the coherent
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average) and the estimated power of the residual noise (given by the mean square of

the pm-reference; Schimmel, 1974; Wong and Bickford, 1980). The significance of the

P ratio can be assessed using an F-distribution with v1 and v2 degrees of freedom, both

of which, however, are dependent on the spectral content of the EEG, and are typically

unknown (Picton et al., 1983; Elbering and Don, 1984). Taking the square root of the

numerator and denominator of the P ratio furthermore gives the standard deviation

ratio (SDR), which is loosely related to the correlation coefficient (CC), albeit when the

CC is obtained from two replicates of the coherent average (Picton et al., 1983).

The performance of the P ratio in detecting click ABRs was evaluated by Arnold (1985),

who compared it to the CC, a ‘multiple pre-post Z test’ (consisting of multiple univariate

tests between the pre- and post-stimulus coherent average), and visual detection by

clinicians. Their results show that for low stimulus intensities, the CC was the most

sensitive method, but that for high stimulus intensities visual detection by clinicians

was the most sensitive. Others have similarly observed either a small advantage for the

CC over the P ratio (or, equivalently, the SDR) for click-evoked ABR detection (Picton

et al., 1983; Valdes et al., 1987), or more or less equivalent performance (Mijares et al.,

2013).

The P ratio was later further modified by Elberling and Don (1984), who replaced the

estimated variance of the residual noise with the ‘single point’ (SP) variance, found

by drawing a single sample at some fixed index from all epochs, and calculating the

variance of the resulting sample. Under the assumption of independence between the

SP values, the DOF for the residual background noise (denoted by v2) will be equal to

the number of epochs N − 1. The resulting statistic, called the Fsp, can be evaluated

with an F-distribution where v2 is now known. The DOF for the estimated evoked

response (contaminated by EEG background activity) is, however, still unknown, and a

conservative approach (to minimise false-positives) is recommended by setting v1 to 5

(Elberling & Don, 1984).

A final modification to the Fsp consists of replacing the SP variance with the mean of

multiple SP variances (Martin et al., 1994; Özdamar & Delgado, 1996; Neely & Pepe,

1997). The reasoning behind this modification, according to Neely & Pepe (1997), is that

significant correlations can still be observed for samples separated by up to 3 seconds,

in which case v2 would again depend on the spectral content of the EEG. Replacing

the SP variance by the mean of multiple SP variances would presumably reduce this

dependency, resulting in a more accurate estimation of the power of the noise (Neely

& Pepe, 1997). A second advantage is that the underlying distribution of the mean of

multiple SP variances will generally be less disperse than the distribution underlying

the SP variance, i.e. the mean of multiple SP variances may provide more consistent

estimations of the residual power of the EEG background activity.

With respect to auditory steady-state response (ASSR) detection, the sensitivity of the

Fsp has been compared to the SDR, and was found to be more or less equivalent when
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detecting the auditory steady-stage middle-latency response (Picton et al., 1987). Both

were able to detect responses evoked by 40 dB SL tones, which could be decreased to

20-30 dB SL when a band pass filter of 20-100 Hz was used (as opposed to the initial

1-300 Hz band). They were, however, both outperformed by various frequency domain

methods. It is worth noting here that ASSRs tend to have a dominant response at

specific modulation frequencies, whereas the ABR is more broadband. Results from

studies on objective ASSR detection might therefore not always generalise well to ABR

detection. With respect to the ABR, the Fsp has been compared to the Fmp and the

Scor statistic (Gentiletti et al., 2003), where the Scor statistic is essentially the Fmp

combined with a CC, and where the CC is obtained from the ensemble coherent average

and some template (Neely & Pepe, 1997). Results suggest that the Fsp outperformed

both the Fmp and the Scor statistic when detecting clicks of various intensity levels.

Further comparisons have been drawn between the Fsp, Friedman’s test, Cochran’s Q

test, and the modified q-sample uniform scores test (Cebulla et al., 2000a) when de-

tecting both simulated data and real click-evoked ABR data. For the simulations, the

performance of the modified q-sample test and the Fsp was more or less equivalent,

whereas for subject ABR data, the modified q-sample test was found to be more sen-

sitive. The authors speculate that the decrease in the sensitivity of the Fsp for real

ABR data relative to their simulations may be due to their subject data following a

non-Gaussian distribution. Valderrama et al (2014) furthermore compared the Fsp to

the CC (obtained from either two replicates of the coherent average, of from the coher-

ent average and a template), along with a novel method based on peak identification

called fitted parametric peaks (FPP). Their FPP method proved to be most sensitive

in detecting click-evoked ABRs, followed by the FSP, and lastly by the two CCs.

Finally, the problem of unknown DOF of EEG measurements has been circumvented

by Lv et al. (2007) by means of a bootstrap approach. The bootstrap is also a re-

sampling with replacement approach, that Lv et al use to approximate the underlying

null distribution of some statistic of interest. Statistical inference is then carried out

using the approximated null distribution (see section 3.6). The main advantage for this

approach is that the null distribution for the statistic of interest does not have to be

assumed a priori. Besides circumventing the unknown DOF, the bootstrap also permits

a large amount of freedom when choosing which features to use for objective detection.

In Lv et al (2007), the bootstrap was used to evaluate and compare the specificity and

sensitivity of the FSP, the SDR, the ‘Peak-to-Peak Difference’ and the ‘Mean Power’

statistics when detecting ABRs in both simulations and in a small sample of normal

hearing adults. For the simulations, the Peak-to-Peak Difference was most sensitive

method, whereas for the subject data, the Mean Power was the most sensitive. The

performance of all four statistics was however quite similar.

As an alternative to the bootstrap, the permutation test might also be considered

(Fisher, 1935; Efron & Tibshirani, p 202, 1993). The permutation test is resampling

without replacement approach, and can similarly be used as a non-parametric approach
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for evaluating test significance. It has been applied to evoked response detection by

Maris & Oostenveld (2007), who used it to evaluate ‘clusters of t-statistics’, also known

as the cluster mass test (Bullmore et al., 1999). The permutation test is further consid-

ered in the Appendix (section A.5.4).

2.4 Single-band ABR detection

The majority of the aforementioned ABR detection methods are applied in the time

domain, and essentially strive to detect an offset (from zero) in voltage as a function

of the stimulus. Detection can also be carried out in the frequency domain, in which

case the evoked response is detected through the phases and amplitudes of the Fourier

components of the spectral bands. In particular, the presence of an evoked response

tends to result in an aggregation of the phase components, which are otherwise uniform

on the [0, 2π] interval under H0.

The majority of the research on phase coherence for evoked response detection has been

directed towards ASSRs, as the spectral band within which the ASSR can be found

is both narrow and known a priori. The spectral content of a typical transient ABR,

on the other hand, is smeared across multiple bands (Elberling, 1976; Kevanishvili &

Aphonchenko, 1979; Elberling, 1979; Suzuki et al., 1982). Besides less ideal filter settings

due to an increased overlap between noise and signal, the broadband spectral content of

the ABR is problematic for single-band spectral coherence techniques, as these would

need to be applied multiple times to cover the bandwidth of a typical ABR, potentially

resulting in an inflated FPR.

One of the first studies on frequency domain analysis for evoked response detection was

conducted by Sayers et al in 1973, who indeed observed an aggregation of phase values of

the Fourier components as a function of stimulus intensity. Based on their findings, they

speculate that the evoked response might be a reordering of the phases of the Fourier

components of the EEG background noise, as opposed to an evoked additive component,

superimposed on the background noise. Although an interesting query, it is presumably

irrelevant for ABR detection methods, as phase coherence can be expected under both

models (Jervis et al, 1983).

Following their 1973 study, Sayers et al (1979) developed the first frequency domain

auditory evoked response detection method, which was built around phase variance

(and applied a ‘rotating χ2 test’ to deal with the circularity of phase). Their test was

later improved by Jervis et al., (1983), and extended to ABRs by Fridman et al (1982).

The method now goes by the name component synchrony measure (CSM) (Fridman

et al., 1982, 1984) or phase synchrony measure (PSM) (Simpson et al., 2000), and is

equivalent to the Rayleigh test (Picton et al., 1987; Champlin, 1992). Other methods

that test for phase coherence in a single spectral band include Kuiper’s statistic (Bachen,
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1986; Cebulla et al., 1996; Stürzebecher & Cebulla, 1997), the Hodges-Ajne test (Jervis

et al., 1983; Cebulla et al., 1996; Stürzebecher & Cebulla, 1997), and Watson’s U2 test

(Cebulla et al., 1996; Stürzebecher & Cebulla, 1997). These tests have furthermore been

compared in their ability to detect click-evoked ABRs (Cebulla et al., 1996; Stürzebecher

& Cebulla, 1997), from which it was concluded that the Rayleigh and Watson’s U2 test

were more sensitive in detecting ABRs relative to the Hodges-Ajne and Kuiper’s test.

The aforementioned methods are applied exclusively to the phase values of Fourier

components, and neglect the amplitudes. From a theoretical point of view, methods

that use both phase and amplitude values are more powerful than those that use just

phase alone (Dobie & Wilson, 1993). The Rayleigh test has therefore been modified

to also take either the ranks of the spectral amplitudes into account (Moore, 1980) or

the actual values of the spectral amplitudes (Cebulla et al., 2006). Other tests that

depend on both phase and amplitude information include the spectral F test (SFT)

for hidden periodicity (Valdes et al., 1997), the magnitude squared coherence (MSC)

(Dobie and Wilson, 1989), the Hotelling’s T2 test (Hotelling, 1931; Picton et al., 1987), a

multivariate version of the MSC called Multiple Coherence (Miranda de Sá et al., 2004),

and several modifications of the q-sample uniform scores test (Cebulla et al., 2006).

Simulations have indeed demonstrated an advantage for methods that use both phase

and amplitude over those that use just phase (Dobie & Wilson, 1993; 1994a). For

evoked response detection, however, the advantage is less obvious, and in some cases,

a more or less equivalent performance is observed (Jervis et al., 1983; Dobie & Wilson,

1994a). This suggests that the evoked response can be found primarily in the spectral

phases, which is supported by various findings that show a relatively poor performance

for methods that use just amplitude information (Jervis et al., 1983; Greenblatt et

al., 1985; Champlin, 1992). Nevertheless, there is still somewhat of a consensus that

at least a small increase in sensitivity for evoked response detection can be gained by

including amplitude information, as opposed to using just the phases (Picton et al., 1987;

Champlin, 1992; Dobie & Wilson, 1993; Cebulla et al., 1996; Stürzebecher & Cebulla,

1997; Valdes et al., 1997; Simpson et al., 2000; Picton et al., 2001; Cebulla et al., 2006).

Various comparisons between the aforementioned methods (using both phase and am-

plitude information) have been drawn, i.e. the modified Rayleigh test (using the ranks

of the spectral amplitudes), the MSC, the Hotelling’s T2 test and the SFT have been

compared in their ability to detect ASSRs within a single-band (Cebulla et al., 2001).

Findings show that the modified Rayleigh test was the most sensitive method, followed

closely by the MSC, and lastly by the Hotelling’s T 2 test and the SFT, although per-

formance between all four statistics was quite similar. The (single-band) Hotelling’s T 2

test has furthermore taken a variety of forms for evoked response detection. It was first

used for detecting ASSRs, where it was applied to the real and imaginary parts of the

Fourier components of a single-band (Rodriguez et al., 1986; Picton et al., 1987). The

Hotelling’s T 2 test was later modified by Victor and Mast (1991) to exploit the assump-

tion that the real and imaginary parts within a single-band are uncorrelated and have
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equal variance. Their modification, called circular T2 (T2C), grants a small increase in

power, most noticeably for small ensemble sizes (Victor and Mast, 1991). The T2 test

was later modified again by Valdes et al (1997), who estimate the critical boundaries

using noise estimated from the spectral bands adjacent to the spectral band of the mod-

ulation rate. A potential advantage for the latter is an increased robustness to noise

artefacts, i.e. it does not require the mean of the noise to be zero. Their modification

was compared to T2C, the CSM, and the SFT, but no consistent differences in test

performance were observed.

Finally, when the expected value of the phase of a spectral band is known a priori, then

a bias can be introduced by projecting the phase values onto an expected phase vector

(Dobie & Wilson, 1994b; Lins et al., 1996; Picton et al., 2001). Lins et al (1996) tested

a phase-weighted version of the SFT and an amplitude- and phase-weighted version

of T2C, where the expected phase and amplitude values were obtained from the grand

coherent average (taken across all subject coherent averages). The phase- and amplitude-

weighted versions performed better than their original counterparts, with the increase

in performance for the SFT being larger than for the T2C. Further tests were performed

by Picton et al. (2001), who compared a standard phase coherence test with it’s phase-

weighted version, along with the SFT, and a phase-weighted t-test for detecting ASSRs.

Results again showed a small but significant advantage in sensitivity for the phase-

weighted methods.

2.5 Multi-band ABR detection

The broadband spectral content of the ABR has led scientific investigations towards

methods for analysing multiple-bands within a single test, i.e. multi-band detection

methods. Multi-band detection methods previously explored for ABR detection include

the Synchrony Measure (Fridman, 1984), the q-sample uniform scores test (Mardia,

1972) and it’s modifications (Stürzebecher et al., 1999; Cebulla et al., 2006), the q-

sample Analogue of Watson’s U2 Statistic (Maag, 1966; Stúrzebecher et al., 1999),

the Hotelling’s T 2 test (Hotelling, 1931; Valdes et al., 1987), and Multiple Coherence

(Miranda de Sá et al., 2004). An and/or decision rule for combining p values from

multiple univariate tests has also been proposed (Stürzebecher & Cebulla, 1997).

With respect to the detection of transient click-evoked ABRs, the sensitivity of the q-

sample uniform scores test has been compared to the q-sample Analogue of Watson’s

U2 Statistic, along with a modified version of the q-sample uniform scores test that,

in addition to the ranks of the phases, also takes the ranks of the spectral amplitudes

into account (Stürzebecher et al., 1999). The modified version of the q-sample uniform

scores test proved to be most sensitive, followed by the original q-sample uniform scores

test, and lastly by the q-sample Analogue to Watson’s U2 Statistic. The q-samples

uniform scores test was later further modified to include combinations of (i) phase values
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and amplitude ranks, (ii) amplitude ranks and phase values, or (iii) phase values and

amplitude values (Cebulla et al., 2006). These modifications have been compared to the

SFT, the Rayleigh test, and the modified Rayleigh test (where the modification uses

either the ranked spectral amplitudes or the actual values of the amplitudes) in their

ability to detect ASSRs. Findings show that the q-samples uniform scores test (using

the actual values of the phases and amplitudes) was the most sensitive method (Cebulla

et al., 2006).

With respect to multivariate applications of the Hotelling’s T 2 test, it was first applied

to the real and imaginary parts of the Fourier components from multiple spectral bands

(under the assumption of independence between spectral bands) by Valdes et al (1987)

for detecting click-evoked ABRs in infants. Results show a superior test performance

for the T 2 test over the SDR and the CC. The Hotelling’s T 2 test has also outperformed

the Fmp when detecting ABRs extracted from quasi ASSRs (Lachowska et al., 2012),

and has recently been applied in the time domain for detecting speech-evoked cortical

auditory evoked potentials (CAEPs; Golding et al., 2009; Carter et al., 2010; Chang et

al., 2012; Van Dun et al., 2012; Van Dun et al., 2015). These time domain features are

defined as the means of segments of epochs (later referred to as ‘time-voltage means’, or

TVMS). Findings from Golding et al. (2009) and Carter et al. (2010) show that, when

using these time-domain features, the sensitivity of the Hotelling’s T 2 test is at least

equivalent to that of a group of experienced examiners when detecting CAEPs. Finaly,

Van Dun (2015) applied the Hotelling’s T 2 test in combination with a decision tree for

sequential testing in an attempt to automate the process for approximating behavioural

hearing thresholds in CAEP audiometry.

2.6 Discussion

Based on the review, a selection of methods is now made, which are further evaluated

in terms of specificity, sensitivity, and test time in Chapters 5, 6, and the Appendix.

Some new methods that have not yet been explored for ABR detection are also included.

With respect to the frequency domain methods, the selection is restricted to multi-band

methods (due to the broadband spectral content of the ABR) that use both phase and

amplitude information.

The first two methods that are of interest include the Fsp and the Fmp. Although the

Fsp is not necessarily the most sensitive method (e.g. Cebulla et al., 2000a, 2000b;

Lv et al, 2007), it is perhaps the most widely used for ABR detection. Including the

Fsp (and the Fmp) may therefore allow findings to be related (to some degree) to

previous studies. Moreover, the literature shows some inconsistency in the sensitivity

of the Fsp relative to e.g. the Fmp. In particular, Cebulla et al (2000b) observed

a small advantage for the Fmp over the Fsp for small ensemble sizes, and more or

less equivalent performance for large ensemble sizes, which might be attributed to a
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decreased reliability (or an increased variability) of the SP variance (within the Fsp)

for small ensemble sizes (see also Methods, section 3.1). Gentiletti et al (2003), on the

other hand, observed an advantage in test performance for the Fsp over the Fmp. Both

the Fsp and the Fmp are therefore included in the selection, which are evaluated using

either theoretical F-distributions with assumed DOF, or with the bootstrap approach.

The bootstrap approach will presumably allow a more fair and consistent comparison of

test performance, as it does not require the DOF of the data to be assumed in advance.

A method that has evoked much interest throughout the literature is the CC (Arnold,

1985; Picton et al., 1983; Valdes et al., 1987; Neely & Pepe, 1997; Mijares et al., 2013;

Valderrama et al, 2014). A recurring complication, however, is again the unknown DOF

of the data, which complicates statistical inference. The CC is therefore also included in

the selection, and its significance is evaluated using the bootstrap approach. Additional

bootstrapped statistics that are included are the ‘Peak-to Peak Difference’ and the ‘Mean

Power’ statistics, both of which outperformed the Fsp in Lv et al. (2007), but have not

yet been compared to alternative methods.

With respect to multi-band ABR detection methods, a first set of methods to include are

various modifications to the q-sample uniform scores test (Cebulla et al, 2006), which

have shown a good performance for ASSR detection, but have not yet been evaluated for

ABR detection. The modifications selected here are (following the notation in Cebulla

et al, 2006) the ‘Modified q-sample V4’ test, which is applied to the actual values

of the phases and amplitudes, along with the ‘Modified q-sample V2’ test, which is

applied to the ranks of the phases and amplitudes (see also section 3.5). A competitor

to the modified q-sample statistics is the Hotelling’s T 2 test. When applied in the

frequency domain, the Hotelling’s T 2 test essentially uses the same information as the

Modified q-sample V4 test, i.e. it is applied to the real and imaginary parts of the

Fourier components, whereas the modified q-sample V4 test is applied to the phases and

amplitudes. An important difference, however, is that the Hotelling’s T 2 test weights

the feature means according to the variance and covariance of the features, whereas the

modified q-sample V4 test does not. Weighting the feature means by the variance and

covariance results in a hyper-ellipsoid as H0 rejection region for the Hotelling’s T 2 test,

where the shape of the ellipsoid is determined by the variance and covariance of the

features (see section 3.2). The advantage of having an ellipsoid as H0 rejection region

is that the null hypothesis is more easily rejected in some directions relative to others,

i.e. it has the potential of providing a more powerful test relative to, for example,

tests with a spherical rejection region. Finally, recent studies also demonstrate a good

performance for the Hotelling’s T 2 test for CAEP detection when applied in the time

domain (Golding et al., 2009; Carter et al., 2010; Chang et al., 2012; Van Dun et al.,

2012; Van Dun et al., 2015). Time domain features have not yet been explored for the

Hotelling’s T 2 test for ABR detection, and are also included in the selection.

Some alternative methods that have not yet been explored for ABR detection include

Repeated Measures Analysis of Variance (RM ANOVA), along with a Multivariate Anal-
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ysis of Variance approach, for which the Hotelling’s T 2 test can again be used. Repeated

measurements are of interest as they are insensitive to mean voltage offsets due to some

types of artefacts or noise, i.e. they may have a more robust control of specificity rela-

tive to some alternative methods that just look for non-zero mean voltages in the EEG

recording. It is also worth noting here that RM ANOVA is, in theory, more power-

ful than the multivariate approach for analysing repeated measurements, but requires

an additional assumption called sphericity to be satisfied. When sphericity is violated,

then the DOF of the test need to be corrected (achieved using the Greenhouse Geiser

or Huyn Feldt correction), resulting in a reduced statistical power. The performance

of RM ANOVA for ABR detection will hence depend, in part, on the extent to which

sphericity is satisfied for EEG measurements (further explored in the Appendix, sections

A.3 and A.4). A final method for analysing repeated measurements that is included in

the analysis is Friedman’s test, which is the non-parametric equivalent to RM ANOVA.

Friedman’s test requires neither the sphericity nor the normality assumption, and might

therefore have an increased robustness to noise and artefacts.

Finally, section 3.6.2 describes a variation to the standard bootstrap approach in Lv et

al (2007), which allows multiple statistics to be combined (and tested for significance)

efficiently. The approach is used to combine the Hotelling’s T 2 test (applied in the time

domain) with the CC, henceforth referred to as ‘T2 Time + CC’. A useful property for

‘T2 Time + CC’ is that it can be biased towards detecting specific response morphologies

through the CC, without losing the (potentially) robust, non-template specific detection

through the Hotelling’s T 2 test.



Chapter 3

Objective detection methods

This section provides a description of the ABR detection methods, which were chosen

based on the review and discussion in Chapter 2. The methods are further evaluated

and compared in terms of specificity, sensitivity, and test time in Chapters 5, 6, and the

Appendix.

The data to which the methods are applied consists of ensembles of epochs, structured

according to matrix D:

D =


d11 d12 · · · d1J

d21 d22
...

...
. . .

...

dN1 · · · · · · dNJ



where N is the ensemble size, J is the number of samples per epoch, and dij is the jth

sample of the ith epoch. The mean epoch X̄ (also known as the coherent average), is

found by taking the J averages across the columns. The frequency domain representation

of D is furthermore obtained by taking the Fast Fourier Transform (FFT) of each row.

Features can then be extracted from either the time or frequency domain representations

of the data. Extracting Q features from each epoch results in the NxQ-dimensional

feature matrix V :

V =


v11 v12 · · · v1Q

v21 v22
...

...
. . .

...

vN1 · · · · · · vNQ



23
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where vij is the jth feature extracted from the ith epoch.

3.1 The Fsp and the Fmp

The Fsp and the Fmp are defined as the ratio between the variance of the mean epoch X̄

(found by taking the J averages across the columns of data matrix D) and the estimated

variance of the EEG background noise. For the Fsp, the variance of the EEG background

noise is estimated by the ‘single point’ (SP) variance, which is defined as the variance

down a single arbitrarily chosen column of data matrix D. The Fsp is given by Elberling

and Don (1984):

Fsp = N
VAR(X̄)

VAR(SP)
(3.1)

where VAR denotes variance, and SP refers to the values along an arbitrarily chosen

column of D. For the Fmp, the variance of the EEG background noise is approximated

by taking the average of multiple ‘SP variances’ (the average of the variances of multiple

columns of D). The Fmp is given by (Martin et al., 1994):

Fmp = N
V AR(X̄)

1
H

∑H
i=1 V AR(SPi)

(3.2)

where VAR(SPi) is the variance of the ith included column of D, and H is the number

of columns of D to include.

Under the null hypothesis of no response present, it is assumed that the Fsp and the

Fmp follow F-distributions with v1 and v2. DOF v2 is equal to N−1, under the condition

that consecutive epochs are sufficiently distant in time to be uncorrelated, i.e. they are

independent. DOF v1 is more difficult to determine, and depends on the extent to which

consecutive samples within X̄ are correlated, which, in turn, depends on the spectral

content of the data. A conservative recommendation (a FPR smaller than the nominal

α-level of the test) is given by Elberling & Don (1984) by setting v1 to 5. Alternatively,

the significance of the Fsp and the Fmp can be evaluated with the bootstrap approach

(section 3.6).

3.2 The one-sample Hotelling’s T 2 test

The one-sample Hotelling’s T 2 test plays a big role throughout this thesis, and is there-

fore given a slightly more in depth description. The most important equations are
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first provided below, after which further insight into Hotelling’s T 2 test is established

by exploring its relationship with the one-sample t-test, and illustrating its H0 rejec-

tion region. The time and frequency domain features for the Hotelling’s T 2 test used

throughout this thesis are then also described (sections 3.2.2 and 3.2.3), along with its

application to repeated measurements (section 3.2.4).

The one-sample Hotelling’s T 2 test is the multivariate extension to Student’s t-test and

can be used to test whether the means of Q features are significantly different from Q

hypothesised values. The statistic itself is a weighted sum of the Q feature means where

the weights are determined by the variances and covariances of the features. These

weights have the convenient property of normalising the Q feature means, which allows

features with different scales and units to be combined appropriately. The T 2 statistic

is given by (Hotelling, 1931; Rencher, 2001, p.118):

T 2 = N(x̄− µ0)S−1(x̄− µ0)H (3.3)

where x̄ is the Q-dimensional vector of means (found by taking the means down the Q

columns of V ), µ0 the Q-dimensional vector of hypothesized values to test against, S−1

the inverse of the covariance matrix of the NxQ-dimensional feature matrix V , and H

superscript denotes Hermitian transpose. The T 2 statistic can then be transformed into

an F statistic with:

F =
N −Q
Q(N − 1)

T 2, ∼ Fv1,v2 (3.4)

which follows an F-distribution with v1 and v2 DOF under H0 (denoted by ∼ Fv1,v2),

where v1 = Q and v2 = N − Q. Note that in order to calculate S−1, the number of

epochs N should be larger than the number of features Q. Note also that when the

features are highly correlated, that S−1 can be close to singular, in which case rounding

errors might occur. A solution would then be to use the pseudoinverse (e.g. the Moore-

Penrose pseudoinverse; Moore 1920; Penrose 1955) instead of the regular inverse.

3.2.1 Relationship with the t-test and the H0 rejection region

Further insight in the one-sample Hotelling’s T 2 test can be gained by drawing an

analogy with its univariate counterpart, Student’s one-sample t-test. The t-statistic
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(Student, 1908) can be written as:

t =
(x̄− µ0)

s√
N

=
√
N(x̄− µ0)s−1 (3.5)

where N is the sample size, x̄ the sample mean, µ0 the hypothesized value to test against,

and s is the sample standard deviation. The t-statistic is hence the distance between

x̄ and µ0, standardized in units of the estimated standard error (where one standard

error is given by s√
(N)

). The relationship with the T 2-statistic becomes more apparent

by squaring the t-statistic:

t2 = N(x̄− µ)s−2(x̄− µ0)′ (3.6)

By comparing Eq. 3.3 and 3.5, it is readily seen that the multivariate counterpart to x̄

is x̄, and the multivariate counterpart to s−2 is S−1. The multivariate counterpart to

s−1 (in Eq. 3.5), however, is still somewhat obscure. To find it, spectral decomposition

can be used to decompose S−1 into its rotation matrix R and scaling matrix C, where

R
√
C

√
C R = S−1. It can then be seen that the multivariate counterpart to s−1 is

R
√
C.

S−1 in Eq. 3.3 essentially has the same role as s−1 in Eq. 3.6, i.e. to normalise the

distance between x̄ and µ0. Note that normalisation is an important step if the distance

is to be evaluated using a theoretical distribution. In the univariate case, normalising

the observed feature values through s−1 and re-calculating the standard deviation (from

the now normalised feature values) gives a standard deviation of 1. For the multivariate

case, the only difference is that the normalisation also takes covariance into account.

An example is given for the bivariate case (Q = 2) in Fig. 3.1: Data A has covariance

matrix(
20 10

10 20

)

Transforming data A using its rotation matrix R removes the covariance between the

features, giving data B, which now has covariance matrix(
30 0

0 10

)

Data B is then further transformed using scaling matrix
√

C, which normalises the

feature variances, giving data C. The covariance matrix for data C is now the 2x2
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identity matrix:(
1 0

0 1

)

Figure 3.1: An illustration for demonstrating the normalisation process underlying the T 2-
statistic for a bivariate data set. In particular, the original feature values (data A) are first
rotated, such that the correlation between feature X and feature Y is zero (data B). The resulting
rotated feature values are then rescaled, such that the variances of X and Y are both one (data
C). The covariance matrix for data C is now the 2x2 identity matrix.

Figure 3.2: The confidence ellipse for a hypothetical bivariate population with positively corre-
lated variables. The semi-axes of the ellipse (E1 and E2) are determined by the eigenvectors of
the data’s covariance matrix S and have lengths (L1 and L2) proportional to the corresponding
eigenvalues. Alternatively, the ellipse can be defined by all possible combinations of sample
means (x̄1 and x̄2) that satisfy the given equation, where Fα,Q,N−Q is the critical value at level
α for an F-distribution with Q and N −Q DOF.
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Finally, how covariance might affect test significance is demonstrated for the bivariate

case in Fig. 3.2. The confidence ellipse (the H0 acceptance rejection) is centred around

the hypothesized values to test against, denoted by µ01 and µ02. The shape of the ellipse

is determined by the variance and covariance of the data, i.e. the semi-major (E1) and

semi-minor (E2) axes are given by the eigenvectors of S, and have lengths (L1 and

L2) proportional to the largest and second largest eigenvalues respectively. When the

two feature means (x̂1 and x̂2) fall within the confidence ellipse, the null hypothesis is

accepted, else H0 is rejected (with certainty ≥ (1-α) x 100%). As can be seen, the result

of having an ellipsoidal rejection region is that H0 is more easily rejected for certain

combinations of x̂1 and x̂2, relative to others. Note that when the covariance is zero,

that the H0 rejection region is spherical.

3.2.2 Time domain features

When applied in the time domain, the features consist of ‘time-voltage means’ (TVMs),

which are defined as mean voltages, calculated across short time-intervals within each

epoch (see e.g. Golding et al. 2009; Carter et al. 2010; Chang et al. 2012; Van Dun

et al., 2012; Van Dun et al., 2015). Note that the direct current component is removed

from the EEG recordings with a high-pass filter, meaning the expected values for the

TVMs under H0 will be zero. The hypothesised values to test against (denoted above

as µ0) are therefore given as a Q-dimensional vector of zeros.

To clarify with an example, when using Q TVMs, each epoch is divided into Q segments

of approximately equal duration, and the mean is taken across each segment, resulting

in the NxQ-dimensional feature matrix V . The length of each TVM segment requires a

compromise, such that the segments are neither too long, thus covering both peaks and

troughs (resulting in a loss of information) nor too short, thus leading to poor statistical

robustness and a reduced test sensitivity. The loss of information due to too few TVMs

is further illustrated in Figure 3.3 below.

Figure 3.3: Plots A, B, and C show the loss of information when using 5, 15, and 25 TVMs,
respectively. The gray plots show an ABR template obtained from the 40 dB SL condition from
data set D2 (see Chapter 4), whereas the blue plots show the values of the TVMs when plotted
across the time-segments from which they were obtained. When too few TVMs are used then
consecutive peaks and valleys in the waveform start to cancel out (the time-segment across which
each TVM is calculated is too long), resulting in a loss of information.
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3.2.3 Frequency domain features

When using the frequency domain approach, the features are the real and imaginary

parts of the Fourier components of W spectral bands, giving a Nx2W -dimensional

feature matrix V . Note that when using the frequency domain approach, that Q = 2W

in Eq. 3.3 and 3.4. The phases within each spectral band are furthermore assumed to

be uniformly distributed between 0 and 2π under H0. The hypothesised values µ0 are

therefore given as a 2W -dimensional vector of zeros.

3.2.4 Repeated measurements

Observations are called repeated measurements when multiple measurements are taken

from the same sampling unit. For evoked response detection, a sampling unit can be

defined is an epoch, in which case the repeated measurements is the voltage over time.

Tests for analysing repeated measurements attempt to evaluate the null hypothesis H0

that, on average, the repeated measurements are constant over time. More formally,

for Q repeated measurements on N sampling units, the null hypothesis H0 is given by:

x̄1 = x̄2 = ... = x̄Q, where x̄i is the mean value for the ith feature.

Repeated measurements are readily analysed in the time domain with the Hotelling’s

T 2 test. In particular, the columns in V are redefined using Vi = Vi − Vi−1 for

(i = 2, 3, ..., Q), where Vi denotes the ith column of V . The resulting matrix of ‘differ-

ence features’ can then be analysed using the standard Hotelling’s T 2 test in Eq. 3.3

(note that column V1 is removed, thus reducing the dimension of the feature set by 1).

Alternatively, the Hotelling’s T 2 test can be applied to the original Q-dimensional vector

of means x̄, and a contrast matrix A can be inserted into the T 2 equation (Eq. 3.3),

giving (Rencher, 2001, p.208):

T 2 = N(Ax̄)
[
AS−1A−1

]
(Ax̄)′ (3.7)

The requirements for A is that it is of rank Q− 1 and that it’s rows sum to zero, e.g.:

A =


1 −1 0 . . . 0

0 1 −1 . . . 0

. . . . . . . . . . . . . . .

0 0 0 . . . −1

 (3.8)

The T 2-statistic in Eq. 3.7 is then again transformed to an F-statistic, now using
N−(Q+1)

(Q−1)(N−1)T
2, which follows an F-distribution with Q − 1 and N − Q + 1 DOF under
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H0. It might be noted that the T 2 test for repeated measurements also goes by the

name ‘Profile analysis’ (Rencher, 2001, p.208).

3.3 Friedman’s test

Friedman’s test is a non-parametric test for analysing repeated measurements (Fried-

man, 1937). The test is applied to the ranks of the features, where the ranking is

performed within sampling units. To clarify, when Q TVMs are extracted (per epoch),

then a separate ranking (across the Q TVMs) is performed for each epoch, thus trans-

forming each epoch into integer values ranging from 1 to Q. Friedman’s test is then

used to test whether the columns in V (now containing the ranks of the features) share

the same underlying distribution. To do so, note first that when H0 is true (the feature

rankings are random) then the theoretical mean rank down an arbitrarily chosen column

of V is given by (Friedman, 1937):

µ =
1

2
(Q+ 1) (3.9)

which has expected variance

σ2 =
Q2 − 1

12
(3.10)

A measure for evaluating the null hypothesis H0 can then be constructed using the

difference between the theoretical mean feature rank µ and the observed mean feature

ranks x̄i (for i = 1, 2, ...Q). In particular, a sum of squares term is constructed using∑Q
i=1(x̄i − µ)2), which follows a (scaled) χ2 distribution under H0, that is:

χ2
Q−1 =

Q− 1

Qσ2

Q∑
i=1

(x̄i − µ)2 (3.11)

where Q−1
Qσ2 functions as a normalisation factor for the sum of squares term

∑Q
i=1(x̄i−µ)2.

When H0 is true, then χ2
Q−1 follows a χ2 distribution with Q− 1 DOF.
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3.4 Repeated Measures Analysis of Variance

Repeated measures Analysis of Variance (RM ANOVA) is essentially a modification

of the standard between subjects ANOVA, which is therefore described first. For a

standard between subjects ANOVA with Q between subject levels and N subjects, there

will be NxQ observations (feature matrix V is again NxQ-dimensional), all of which are

assumed to be independent. The null hypothesis states that the Q columns in V share

the same distribution, i.e. that the between subjects factor (time, in this case) does not

affect feature means x̄i for i = 1, 2, ..., Q. The null hypothesis can be evaluated using

a variance ratio (see e.g. Cardinal, 2004), where the nominator represents an estimate

of the variance of the feature means, denoted by ‘mean sum of squares between’ (or

MSSB), and is given by:

MSSB =
1

Q− 1

Q∑
i=1

N(x̄i − x̄)2 (3.12)

where x̄ is the grand mean (the mean taken across feature means x̄i for i = 1, 2, ..., Q).

The denominator of the variance ratio is also an estimate of the variance of the feature

means, and is denoted by the ‘mean sum of squares within’ (or MSSW ):

MSSW =
1

N −Q

Q∑
i=1

N∑
j=1

(vij − x̄i)2 (3.13)

Note that MSSW depends exclusively on the variance within each column of V . It

is therefore invariant under data translations, which implies that it is a true estimate

of sample variance under H0, regardless of H0 being true or not (albeit under the

assumption of homogeneity of variance amongst the columns in V ). The MSSB, on the

other hand, estimates data variance using the means of the columns (it is the variance

between the column means), and is not invariant under data translations. MSSB is

therefore an unbiased estimate of sample variance under H0, only when H0 is indeed

true. When H0 is false, then the MSSB will tend to be larger than MSSW , and

the variance ratio will tend to be large, giving a higher probability of rejecting H0. In

particular, the null hypothesis can be evaluated using MSSB
MSSW , which is F-distribution

with Q− 1 and N −Q DOF under H0.

The assumptions underlying ANOVA include the normality assumption, the homo-

geneity of variance assumption (amongst the columns in V ), and the independence

assumption (between all observations). For repeated measurements, the independence

assumption is typically violated, and a modification to the standard ANOVA is required,
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achieved by taking the mean of each sampling unit is taken into account. The data

should also satisfy an additional assumption called ‘sphericity’, which is the assumption

of ‘equal variance of difference scores’ (see Appendix, section A.4). When sphericity

is violated, then the DOF of the test need to be corrected, achieved using either the

Greenhouse Geisser (GG, section A.4.1) and/or the Huyn Feldt correction (HF, section

A.4.2). The modification to the standard ANOVA is called the ’mean sum of squares

error’ (or MSSE), and is given by (Cardinal, 2004):

MSSE =
1

(N − 1)(Q− 1)

 Q∑
i=1

N∑
j=1

(xij − x̄i)2 −Q
N∑
i=1

(x̄j − x̄)2

 (3.14)

where x̄j is the mean taken across the Q TVMs in epoch j. The ratio MSSB
MSSE is then

again F-distribution under H0, now with Q− 1 and (N − 1)(Q− 1) DOF.

3.5 The q-sample uniform scores test and its modifications

The original q-sample uniform scores test (Mardia, 1972) is a non-parametric test for

evaluating whether the phases of W spectral bands share the same distribution. The

modification proposed by Stürzebecher et al (1999) uses the ranks of the amplitudes in

addition to the ranks of the phases, and is given by:

W ∗ = c

W∑
j=1

[ N∑
i=1

rijcos(βij)

]2

+

[
N∑
i=1

rijsin(βij)

]2
 (3.15)

where rij is the rank of the amplitude of the ith Fourier component (obtained from the

ith epoch) of the jth spectral band, c is an additional scaling factor given by:

c =
4

W 2(W + 1)2

2

N
(3.16)

and βij is given by:

βij =
aij2π

NW
(3.17)

where aij is the rank of the phase of the ith Fourier component (similarly obtained from
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the ith epoch) of the jth spectral band. This modification will henceforth be referred

to as ‘Modified q-sample V2’ (in accordance with Cebulla et al, 2006).

In addition to the modified q-sample V2 test, the ‘Modified q-sample V4’ test (Cebulla

et al, 2006) is also included in the analysis. The latter uses the actual values of the

phases and amplitudes as opposed to their ranks, in which case rij in Eq. 3.15 refers

to the amplitude of the ith Fourier component of the jth spectral band and βij to the

(untransformed) phase value of the ith Fourier component of the jth spectral band.

The significance of these statistics can furthermore be evaluated with pre-determined

critical values determined using simulations (Stürzebecher et al (1999), Cebulla et al,

2000; Cebulla et al, 2006). Deviating from the literature, the significance of the modified

q-sample V2 and V4 statistics in this work are evaluated using the bootstrap. How the

critical decision thresholds might differ between these two approaches is further consid-

ered in the section 6.1.3 (discussion). Some results on the reliability of pre-determined

thresholds and bootstrapped confidence intervals are also presented in the Appendix

(sections A.8 and A.5.1, respectively).

3.6 Bootstrapping

The bootstrap (Efron & Tibshirani, 1993) is a resampling with replacement procedure

for generating additional (resampled) datasets. Each resampled dataset is constructed

by choosing N sampling units (with replacement) from the original sample, where each

observation has an equal probability of being selected. Some parameter of interest is then

calculated from each resampled dataset, giving a population or histogram of (resampled)

parameters, which can then be used to estimate additional parameters of interest (e.g.

confidence intervals or a standard error)

In Lv et al (2007), the bootstrap is used to approximate the null distribution for some

feature of interest, which can then be used to construct confidence intervals for accept-

ing or rejecting H0. To achieve this, the resampled data sets should represent EEG

measurements under H0. This is realised by randomly resampling epochs from within

the continuous EEG recording without regard to where the stimuli occur, such that the

resampled epochs are (on average) no longer time-locked to the stimuli. Note that the

resampled epochs may overlap, in accordance with the principles of bootstrapping where

samples are picked at random with replacement, i.e. without removing that data from

what can be picked later. The feature of interest is then calculated from all re-sampled

datasets, giving a population or histogram of values. It is assumed that the distribution

of resampled feature values is an accurate approximation of the features true null distri-

bution, under the condition that the number of resampled data sets M and the original

ensemble size N is sufficiently large.

An example using the Fsp

Consider evaluating the test significance of an Fsp value of 1.5, calculated from an
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ensemble of N = 500 epochs. The bootstrap would then proceed by randomly resampling

(with replacement) many additional ensembles (each containing 500 epochs) from the

original recording, without regard to where the stimuli occur (for illustration purposes,

the number of resampled data sets in this example is set to 10 000). Calculating the Fsp

from each bootstrapped ensemble then gives a population of Fsp values, which can be

used to approximate the null distribution of the Fsp (see Figure 3.4). The approximated

null distribution is then used to construct confidence intervals for rejecting or accepting

H0. Alternatively, a p value can be generated by finding the location of the observed

Fsp value (in this case a value of 1.5) along the bootstrapped null distribution. In

particular, the p value is given by the percentile under the null distribution to the right

of the observed Fsp value, and is for this hypothetical example equal to p = 0.1261.

Figure 3.4: An example of how the approximated null distribution is used to evaluate the
significance of an observed Fsp value of 1.5, achieved by finding the percentile under the approx-
imated null distribution to the right of the observed Fsp value. For this hypothetical example,
the percentile is 0.1261, which is the probability of observing the given Fsp value if the null
hypothesis H0 (no response present) was indeed true, i.e. the p value.

Discussion

The bootstrap approach in Lv et al (2007) makes the assumption that the bootstrapped

null distribution approximates the features true null distribution for sufficiently large N

and M . This first raises the question as to how large N and M should be before the

approximation is sufficiently accurate. Note that when N is too small, the probability

of obtaining a sampling error is increased, i.e. the observed sample may not be rep-

resentative of the true population. Efron & Bradely (1993) suggest that a sample size

of at least 30 is usually sufficient for avoiding sampling errors. Although this suggests

that N is not an issue for ABR detection (as N is typically much larger than 30), it

is not clear how sampling errors might be affected by highly non-stationary, correlated

data. With respect to M , this should be sufficiently large to ensure a good consistency
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or reliability of the estimated critical thresholds for rejecting H0. In particular, when

M is too small, then the bootstrapped null distribution will be both unreliable and in-

sufficiently smooth, resulting in variable critical thresholds, i.e. repeating the bootstrap

procedure may result in different decision boundaries (and hence a different test result).

How large M should be before the critical thresholds are sufficiently reliable is further

considered using additional simulations in the Appendix (section A.5.1).

A second assumption in Lv et al (2007) is that the evoked response (when present)

either cancels out in the resampled data sets, or that its power is negligible. When

this is not the case, then parameters generated from the resampled data sets will be

biased towards a response, with the magnitude of the bias depending on the SNR of the

response within the resampled data sets. As a result, the critical threshold for rejecting

H0 is increased, and test sensitivity is reduced. A possible solution is to approximate the

evoked response with the ensemble coherent average, and to subtract it from all epochs

prior to resampling (see Appendix, section A.5.2). A second solution (not explored in

this work) is to randomly invert half of the epochs within the resampled data sets.

A final complication is the independence assumption between epochs, which takes two

forms for the bootstrap. First, note that the random resampling with replacement proce-

dure disrupts the correlation (if present) between the original epochs. The bootstrapped

null distribution will then deviate from the true null distribution, with the extent of the

deviation depending on the independence violation between the original epochs. Sec-

ondly, the resampling with replacement procedure may result in some EEG segments

being selected multiple times, which introduces a new violation to the independence

assumption, now between the epochs in the resampled data sets. The independence

violation between the resampled epochs is further considered in the Appendix (section

A.5.3), and a partial solution to independence violations between the original epochs is

presented in section 3.6.1 below.

3.6.1 Bootstrapping in blocks

A more robust evaluation of test significance under independence violations between

epochs (within the original ensemble) is to resample epochs in blocks, as opposed to

resampling on an epoch to epoch basis. In particular, resampling in blocks preserves

the correlations between epochs within each block, i.e. the bootstrapped ensembles will

retain some degree of the original violation. Note however that the correlations between

the resampled blocks is still disrupted. The extent to which the independence violation

is preserved is therefore dependent on the number of epochs within each resampled

block, which suggests that increasing the number of epochs within each block could be

beneficial. This does however come at the price of a reduced variation in the starting

positions of the resampled epochs. When this variation is too small, then (i) some

epochs may remain partly time-locked to the stimulus, thus reducing test sensitivity, and

(ii) insufficient variation amongst the resampled data sets may result in an inaccurate
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bootstrapped null distribution. A potential solution to (i) might be to again subtract

the ensemble coherent average from the epochs prior to resampling, or to randomly

invert half of the resampled epochs within each bootstrapped ensemble. Bootstrapping

in blocks for a more robust evaluation of test significance under independence violations

is further considered in section 5.1.4.

3.6.2 Bootstrapping multiple features

The bootstrap approach gives the user a great deal of freedom when choosing which

features to use for objective detection. Note that the bootstrapped feature can itself be

a summary statistic, composed of multiple features or even of multiple statistical tests,

e.g. the Fsp might be combined with the T 2 statistic through summation, in which case

the bootstrapped statistic would be: N(x̄− µ0)S−1(x̄− µ0)H +N V AR(X̄)
V AR(SP ) .

The main challenge for bootstrapping multiple features is how to combine them, such

that test sensitivity is optimised. An obvious disadvantage with summation, for example,

is that it weights the summary statistic heavily in favour of features with large scales (the

T 2 statistic is generally much larger than the Fsp). The core of the issue is however not

that the feature scales are different, but that the underlying distributions of the features

are not taken into account appropriately. In particular, the probability of observing the

given feature values under H0 needs to be considered, else the importance of outliers is

underestimated, and the sensitivity of the summary statistic reduced.

In what follows, a variation of the standard bootstrap approach described in Lv et al

(2007) is described, which allows multiple features to be combined appropriately. The

approach is illustrated in Fig. 3.5, and uses the Fsp and the T 2 statistic again as

example, i.e. the goal is to construct a single p value, representing the probability of

observing the given Fsp and T 2 values under H0.

Starting with data matrix D (see Fig. 3.5), bootstrapping first proceeds as usual by

resampling M bootstrapped ensembles (M = 1000 here) from the continuous recording

of D, giving bootstrapped ensembles D∗1, D∗2, ..., D∗1000. Both the Fsp and the T 2-

statistic are then calculated from each bootstrapped ensemble, giving Fsp values Fsp1,

Fsp2, ..., Fsp1000, and T 2 values T 2
1 , T 2

2 , ..., T 2
1000. These values are used to approximate

the underlying null distributions for both the Fsp (plot A) and the T 2 statistic (plot

B). Next, the observed Fsp values (Fsp1, Fsp2, ..., Fsp1000) and T 2 values (T 2
1 , T 2

2 , ...,

T 2
1000) are transformed into p values, achieved by finding their locations (percentiles)

along their bootstrapped null distribution, giving p values pFsp1
, pFsp2

, ..., pFsp1000
for

the Fsp, and p values pT 2
1
, pT 2

2
, ..., pT 2

1000
for T 2. The resulting p values are then

log-transformed, and combined through summation, giving combined values -ln(pFsp1
)-

ln(pT 2
1
), -ln(pFsp2

)-ln(pT 2
2
), ..., -ln(pFsp1000

)-ln(pT 2
1000

), from which the null distribution

of the summary statistic is constructed (plot C). The Fsp and the T 2-statistic are then

also calculated from the original ensemble D, and the resulting values are processed
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using the same procedure: they are first transformed into p values (say pFsp and pT 2)

by finding their location along their bootstrapped null distributions, after which the p

values are log-transformed and combined through summation, giving summary statistic

−2ln(pFsp) −2ln(pT 2). Finally, the significance of −2ln(pFsp) −2ln(pT 2) is evaluated

by finding its location (percentile) along its bootstrapped null distribution.

Figure 3.5: A variation of the bootstrap approach for evaluating the significance of multiple
features and/or statistical tests simultaneously. In the example presented here, the goal is to
evaluate the significance of the Fsp and the T 2 statistic, i.e. to generate a single p value,
representing the probability of observing the given Fsp and T 2 values under H0. Further details
are presented in the text.

It is worth noting that if the individual features are independent, that the significance of

each feature can be evaluated separately (using the standard bootstrap approach in Lv et
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al, 2007), and the resulting p values combined using e.g. Fisher’s method (Fisher, 1932).

Independence between features and/or statistical tests is nevertheless quite unlikely,

particularly so when the features are obtained from the same data set. Taking the

correlation between p values into account is hence necessary, which is essentially the

goal for the previously described bootstrap approach.

3.6.3 Bootstrapped parameters for objective detection

This section describes various bootstrapped features, including the ‘Max Difference’

and the ‘Mean Power’ statistics in Lv et al (2007), along with the CC, and a summary

statistic composed of the Hotelling’s T 2 test and the CC, called ‘T2 Time + CC’. Pre-

viously described test statistics that are evaluated with the bootstrap approach include

the Modified q-sample uniform scores test (section 3.5), and both the Fsp and the Fmp

(section 3.1).

The Peak-to-Peak Difference

The Peak-to-Peak Difference (henceforth ‘Max Diff’), is defined as the difference between

the maximum and minimum value within the ensemble coherent average, and is given

by (Lv et al., 2004; Lv et al., 2007):

Max Diff = max(X̄)−min(X̄) (3.18)

Mean Power

The ‘Mean Power’ is given by the mean square of the ensemble coherent average (Lv et

al., 2007):

Mean Power =
1

K

K∑
i=1

X̄2
i (3.19)

where X̄i is the ith value of the ensemble coherent average.

The correlation coefficient

The correlation coefficient (CC) gives the linear correlation between two variables (Pear-

son, 1895). It takes values ranging from -1 to 1, with -1 representing perfect negative
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correlation (the variables follow identical but opposite trends around their respective

means), 1 representing perfect positive correlation (the variables mirror each other per-

fectly around their respective means), and 0 representing no correlation at all, i.e. per-

fectly random. In this work, the CC is used to calculate the correlation between the

ensemble coherent average X̄ and some template T̄ , in which case the CC is given by:

CC =
Cov(X̄, T̄ )

σX̄σT̄
(3.20)

where Cov(X̄, T̄ ) is the covariance between X̄ and T̄ , σX̄ is the standard deviation of

X̄, and σT̄ is the standard deviation of T̄ .

T2 Time + CC

As the name suggests, the ‘T2 Time + CC’ is a summary statistic, composed of the

Hotelling’s T 2 test (applied in the time domain) and the CC. The statistic is constructed

and evaluated using the bootstrap approach described in section 3.6.2, and is given by:

T2 Time + CC = −ln(pT2)− ln(pCC) (3.21)

where pT2 is the p value obtained from the Hotelling’s T 2 test (applied in the time

domain) and pCC the p value from the CC, where the CC represents the correlation

between X̂ and T̂ (see Eq. 3.20). The p value pT2 can furthermore be generated by

evaluating the significance of the T 2 statistic using either theoretical F-distributions

or the bootstrap approach. Either way, the underlying null distribution for T2 Time

still needs to be approximated (using the bootstrap), else the null distribution for the

summary statistic cannot be constructed (see section 3.6.2).
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Data

This chapter provides a description of the data used throughout this work. The two most

important data sets are (1) a relatively large database of no-stimulus EEG background

noise recordings (data set D1), and (2) an ABR threshold series obtained from a small

sample of normal hearing adults (data set D2). In addition to real data, many sections

use simulations to explore, evaluate, and compare the performance of objective ABR

detection methods. The data for these simulations consists of realistic simulated coloured

noise for representing the EEG background activity, along with ABR templates for

representing a response (section 4.4).

4.1 Data set D1: No-stimulus EEG recordings

Recordings of spontaneous EEG background activity (no stimulus was used) were previ-

ously collected by Madsen et al. (2017) and Madsen (2010) from 17 subjects (12 males

and five females) under four conditions. The conditions were (i) asleep, where the sub-

jects were asked to try and fall asleep, though sleep was not confirmed, (ii) still, where

the subjects were instructed to lie still with their eyes closed, but not to fall asleep, (iii)

blink, where the subjects were instructed to blink every 1-3 s as a circle appeared on a

screen in front of them, and (iv) move, where the subjects were asked to move according

to a random animation, also shown on a screen in front of them. Measurements were

then obtained using a Compumedics Neuroscan II EEG amplifier at a sampling rate of

20 kHz with three silver–silver chloride (Ag/AgCl) electrodes placed on the left mastoid,

the right cheek (ground) and the upper forehead (reference). The electrode impedances

remained below 1 kΩ throughout the recording for all subjects. A total of 149 contin-

uous EEG recordings were available, with an average of 6800 pre-processed epochs per

recording, resulting in a grand total of ∼8 hours of EEG.

It should be noted here that no distinction is made throughout this work between the

different noise conditions. This keeps the results concise and is justified as all four

40
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conditions occur in clinical practice, and the methods should ideally perform adequately

under each of them. To give an impression of how the different noise conditions may

affect the EEG background activity, the variance of the recordings are presented as

box-and-whisker diagrams in Fig 4.1 (Figure obtained from Madsen et al., 2017). The

‘box’ gives the intervals for the first and third quantiles, along with the median (center

line), whereas the ‘whiskers’ show the minimum and maximum values (after outlier

removal). As noted in Madsen et al (2017), the given variances were calculated from

the full recordings, prior to artefact rejection, and hence represent the average or long

term power of the EEG background activity per recording.

Figure 4.1: Box-and-whisker diagrams, representing the variance of the EEG recordings in data
set D1, per noise condition. As noted by Madsen et al, each variance was calculated from the
full recording, prior to artefact rejection, and thus represents the average or long term power of
the EEG background activity. Reprinted from Publication ‘Accuracy of averaged auditory evoked
potential amplitude and latency estimates’, Vol. 57(2), Madsen S.M.K., Harte J.M., Elberling
C. & Dau T., pp. 1-9 (2017), with permission from Taylor & Francis.

4.2 Data set D2: Subject recorded ABR threshold series

Subject recorded ABR data, previously described in Lv, Simpson, and Bell (2007), was

collected from 12 subjects (six female and six males) ranging from 18 to 30 years of

age. The stimulus was a rectangular 100 µs click delivered at a stimulus rate of 33.3

Hz through ER-2 insert phones (Etymotic, Elk Grove Village, IL). The click intensities

ranged from 0 to 50 dB SL (sensation level, i.e. relative to individual hearing thresholds)

in steps of 10 dB. The behavioural thresholds were estimated using a simple “up-down”

approach where the click intensity was reduced in steps of 10 dB for every correct

response and increased in steps of 5 dB for every missed response. ABRs were recorded

with the active electrode placed at vertex, a reference electrode at the nape of the

neck and a ground electrode placed at mid-forehead. Measurements were obtained at a

sampling rate of 10 kHz using a Cambridge Electronic Design (CED) micro 1401 data

acquisition unit along with a CED 1902 amplifier. Electrode impedances remained below

5 kΩ throughout the recording. Approximately, 3600 clicks were delivered per subject

and per stimulus condition.
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As described below (section 4.3), the ensemble coherent averages of data set D2 are

used throughout this work to simulate a response. When doing so, it is important that

the ensemble coherent averages do, in fact, contain a clear response (else the simulations

would just be simulating noise). The criteria for a ‘clear response’ is further defined for

data sets D3 and D4 below. The estimated SNRs for the ensemble coherent averages

are furthermore shown in Table 4.1 below. These were generated using Eq. 4.1, where

PTemplate is the mean square of the ensemble coherent average from the subject and

dB SL condition in question, and PNoise the mean square of the ensemble of epochs

when treated as a continuous recording. The mean SNR (taken across subjects) is also

presented per dB SL condition. It is worth noting that the residual background noise

within the ensemble coherent average is not zero, which implies that the SNRs are likely

over-estimated.

Table 4.1: The estimated SNRs for the ensemble coherent averages, for subjects S1 to S12, along
with the mean SNR (taken across subjects, per dB SL condition). The SNRs were estimated
using Eq. 4.1, where PTemplate is the mean square of the ensemble coherent average from the
subject and dB SL condition in question, and PNoise the mean square of the ensemble of epochs
when treated as a continuous recording.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 Mean

0 dB SL -33.4 -38.4 -41.4 -34.7 -34.5 -34.7 -37.5 -34.5 -39.2 -35.1 -35 -36.1 -36.2
10 dB SL -33 -34.5 -39.9 -37 -32.5 -26 -38.7 -31.6 -34.8 -32.8 -29.8 -33.1 -33.6
20 dB SL -24.5 -31.6 -33.9 -30.5 -30.3 -26.6 -33.8 -31.4 -28.7 -32.4 -28.6 -25.6 -29.8
30 dB SL -26 -31.7 -31.4 -31.1 -23.6 -27.1 -32.5 -27.4 -30 -32.1 -25.9 -24.9 -28.7
40 dB SL -25.3 -30.8 -28.5 -28.7 -22.8 -26.3 -32.6 -28.3 -28.9 -28.2 -27.4 -23 -27.6
50 dB SL -28.2 -30.9 -29.1 -23.3 -22.9 -34.6 -30.9 -30.3 -28.6 -25.7 -25.8 -23.3 -27.8

4.3 ABR templates

Various sections throughout this work use simulations to evaluate and compare the test

performance of ABR detection methods. When simulating the stimulus condition, a

response is represented by rescaling an ABR template, and adding it to noise. The

ABR templates are obtained from the ensemble coherent averages from data set D2,

under the condition that they contain a clear response. The criteria for a clear response

is defined as either a significant detection (using α = 0.05) with the Hotelling’s T 2 test

(data set D3), or using visual inspection by an experienced audiologist (data set D4).

The scaling factors for the ABR templates are furthermore chosen such that a specific

SNR is obtained, which is calculated using:

SNR = 10log10
pTemplate
pNoise

(4.1)

where PTemplate is the mean square of the scaled ABR template in question, and PNoise

the mean square of the ensemble of epochs (containing just noise). The chosen SNR for

the simulated response is typically in the range of -23 to -28 dB, which was based on
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both pilot simulations (which show a good coverage of detection rates for these SNRs

without having to simulate excessively large ensembles) and on the estimated SNRs

presented in Table 4.1 above.

4.3.1 ABR templates: data set D3

For the first set of ABR templates, the criteria for a ‘clear response’ was a positive

detection (using an α-level of 0.05) with the Hotelling’s T 2 test (applied in the time

domain, using 25 TVMs). The 0 and 10 dB SL conditions were furthermore excluded

entirely in an attempt to avoid templates contaminated by significant amounts of noise.

Prior to calculating the T 2 statistic, data were band-pass filtered (from either 30-2000

Hz or from 100-2000 Hz) using a 3rd-order Butterworth filter (see Appendix section

A.16 for further details on these filters), and artefact rejection was applied by throwing

away 10% of the noisiest epochs, as determined by their maximum absolute values. The

resulting templates for band-pass filter settings of 100-2000 Hz are shown in Fig. 4.2

for the 20, 30, 40, and 50 dB SL conditions, along with the grand coherent average (the

mean of the subject coherent averages).

Figure 4.2: The ABR templates from data set D3, per dB SL condition. The templates were
obtained from the subject ensemble coherent averages, under the condition that these contained
a clear response. The criteria for a clear response was a significant ( p<0.05) detection by the
Hotelling’s T 2 test. The grand coherent average (the mean of the subject coherent averages) are
also shown per dB SL condition.

4.3.2 ABR templates: data set D4

The second set of ABR templates were similarly obtained from data set D2, except

that the criteria for a ‘clear response’ was now determined through visual inspection
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by an experienced audiologist. As guidance for determining the presence of a clear

response, the audiologist inspected the repeatability of the waveform by comparing two

replicates of the coherent average (obtained by averaging across epochs 1-1500, and again

across epochs 1501-3000). The audiologist also used the 3-1 signal to noise criterion as

additional guidance (see Sutton et al. 2013), but was ultimately left free to decide

whether a response was present or not. This process resulted in a total of 34 ABR

templates with a clear response: 4, 7, 8, 7 and 8 from the 10, 20, 30, 40 and 50 dB SL

conditions, respectively. The templates are presented in Fig. 4.3 (using band-pass filter

settings of 100-2000 Hz) per dB SL condition, along with the grand coherent averages

(taken across subjects), also per dB SL condition.

Figure 4.3: The ABR templates from data set D4, per dB SL condition. The templates were
obtained from the subject ensemble coherent averages, under the condition that these contained
a clear response. The latter was determined by an experienced audiologist (further details are
presented in the text). The grand coherent average (the mean of the subject coherent averages)
is also shown per dB SL condition.

4.4 Simulated coloured noise

Many simulations throughout this work use zero-mean stationary coloured noise to rep-

resent the EEG background activity. The coloured noise is generated by filtering Gaus-
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sian white noise with an all-pole filter, where the poles of the filter are given by the

parameters of an autoregressive (AR) model. The AR models were estimated from the

recordings of EEG background activity (data set D1) using the Modified Covariance

method (Marple, 1987), with a new AR model being fit to each recording. The general

form for the resulting AR process is:

y(t) =

O∑
i=1

bix(t− i) (4.2)

where O is the order of the model, y(t) is the generated signal at time point t, O is the

order of the model, and bk (for i = 1, 2, ..., O) are the AR parameters (estimated from

the original EEG recording being simulated). Many recordings (typically between 2000

and 50 000) of zero-mean stationary coloured noise are then generated and by filtering

Gaussian white noise, using the bi values as poles in an all pole filter.

The order of the AR models was determined by visually comparing the power spectral

densities (PSDs) from the original EEG recordings to the simulated EEG recordings.

A relatively high model order of O = 60 was then chosen to ensure a close match in

terms of the spectral content of the original and the simulated recordings. An example

is presented in Fig. 4.4: plot A shows the PSD, estimated using Welch’s (1967) FFT

method, from one of the original recordings of EEG background activity. Plot B then

shows the PSD estimated from a simulated recording, which was simulated using the

AR model estimated from the recording in plot A.

Limitations

An obvious shortcoming for this approach is that the simulated noise is stationary, which

is not the case for real EEG background activity. Visual inspection of the simulated

recordings and their PSDs also suggests that various artefacts, such as movement arte-

facts and the mains interference, are not simulated adequately. Simulating coloured noise

is nevertheless still very useful, as it (i) allows more powerful evaluations and compar-

isons amongst methods to be drawn (large amounts of data can be generated), and (ii)

it provides a more controlled environment for exploring various underlying assumptions

of the ABR detection methods.



46 Chapter 4. Data

Figure 4.4: An example, illustrating the PSD estimated (estimated using Welch’s 1967 FFT
method) from one of the original recordings of EEG background activity (plot A) along with the
PSD estimated from the corresponding simulated recording (plot B). Further details presented
in the text.
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Specificity

The specificity of a test determines how ‘specific’ the test is when rejecting H0, i.e. a

highly specific test will reject H0 only under what would be considered highly improbable

conditions if H0 were true. Specificity is therefore directly related to the rate at which

H0 is incorrectly rejected, that is, it is related to the FPR through 1 - specificity.

Specificity is specified a priori through the nominal significance level of the test α, which

is the theoretical or assumed FPR. In practice, deviations from α can occur due to (i)

random variations and (ii) violations to the statistical assumptions underlying the test.

A convenient tool for evaluating these deviations is the binomial distribution, which can

be used to construct confidence intervals for α. When the observed FPR falls outside the

confidence intervals, then a violation of the underlying statistical assumptions is more

probable, with the extent of the probability depending on the coverage of the confidence

intervals (for more on the binomial distribution and confidence intervals for α, see the

Appendix, section A.2).

The aim for this Chapter is to explore the extent to which the main three statistical

assumptions underlying most ABR detection methods are satisfied for EEG measure-

ments. These include the independence assumption between epochs (section 5.1), (ii)

the normality assumption (section 5.2), and (iii) the stationarity assumption (section

5.3). In the case of significant violations, various solutions are explored for removing of

compensating for the violation, with the overall goal of obtaining a more robust control

of specificity. The sphericity assumption underlying RM ANOVA is not explored in

this Chapter, but is instead addressed in sections A.3 and A.4 of the Appendix. Var-

ious assumptions underlying the bootstrapped statistics are also not included, but are

considered in section A.5 of the Appendix.

47
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5.1 Independence

Independently and identically distributed (i.i.d.) data implies that the probability of

observing any set of data is unaffected by any previously collected data. In terms of

conditional probabilities, the i.i.d. assumption is defined as (Jean-Yves Le Boudec, 2015,

p39):

Pr(Xi ∈ A | X1 = x1, ..., Xi−1 = xi−1) = Pr(Xi ∈ A) (5.1)

where A is any set of real data of size N with elements Xi and values xi (for i =

1, 2, ..., N).

Violations to the independence assumption can result in an under- or overestimation of

both the sample variance and the DOF of the data (Thiébaux, 1984). This results in a

mismatch between the assumed theoretical null distribution and the true null distribu-

tion of the test statistic, resulting in a conservative or a liberal test performance.

The independence assumption underlying objective ABR detection methods can take

two forms: (i) independence between epochs, and (ii) (some degree of) independence

between samples within epochs. Independence between epochs is assumed by more or

less all known ABR detection methods. Some statistics (e.g. the Fsp, the Fmp, and the

CC) make the additional assumption of some degree of independence between samples

within epochs. In particular, these statistics assume the DOF of the samples within

epochs when evaluating test significance using some theoretical distribution (see also

methods section). As mentioned before, this is problematic, as the DOF of the data can

vary both within and between recordings, and is typically not known in advance.

The remainder of this section is structured as follows: a brief literature review on studies

that have looked at independence violations for auditory evoked response detection in

the past is first presented in section 5.1.1 below, after which some results from a brief

exploratory analysis using the Turning Point test (Heyde & Seneta, 1972; Bienaymé,

1874) are described in section 5.1.2. Follow up simulations are then conducted with the

goal to quantify potential independence violations in terms of increased or decreased

FPRs for the Hotelling’s T 2 test (section 5.1.3). Finally, section 5.1.4 presents some

early results from the ‘bootstrapping in blocks’ approach, which is used for a more

robust evaluation of test significance under independence violations.

5.1.1 Literature review

Despite the potentially harmful effects from independence violations, few authors have

investigated it for auditory evoked response detection. Geisler (1960) looked at the
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autocorrelogram of a 6 minute 8-600 Hz band-pass filtered EEG recording, obtained

from a subject playing chess, to which 40 dB clicks were presented at a rate of 5 clicks

per second. Samples separated by less than 10 ms were quite strongly correlated, but

autocorrelations decreased rapidly for larger distances (Fig. 5.1).

Figure 5.1: Figure from: Geisler C.D. 1960. Average responses to clicks in man recorded
by scalp electrodes. Massachusetts Institute of Technology, Research Laboratory of Electronics.
Technical report 380. The autocorrelogram of a 6 minute 8-600 Hz band-pass filtered EEG
recording, obtained from a subject playing chess, to which 40 dB clicks were presented at a rate
of 5 clicks per second.

Others have observed significant autocorrelations within EEG recordings for much longer

periods of time. Neely & Pepe (1997) looked at 65 dB SPL clicks in 14 babies, and ob-

served significant autocorrelations for samples separated by distances of up to 3 seconds

or more. They do, however, also mention a 60 Hz line noise along with low frequency

spectral peaks of 10.7 and 11.8 Hz, and do not mention filtering the data prior to the

analysis (note that filtering affects the spectral content of the data, which, in turn, de-

termines the autocorrelation function). Victor & Mast (1991) looked at the required

length of adjacent EEG segments before the Fourier components of some spectral band

could be considered independent. They show that it is safe to assume independence

when the power spectra around the frequency in question is approximately flat within

the frequency window 2π
L , where L is the length of the (adjacent) EEG segments on

which the Fourier analysis was performed (Victor & Mast, 1991; Mast & Victor, 1991).

Victor & Mast (1991) calculated L for 16 frequencies in the range of 2.5 to 40 Hz, and

found that the required length for independence of adjacent EEG segments was in the

range of 3 to 6 seconds.

The time required for independence observed by both Neely & Pepe (1997) and Victor

and Mast (1991) is on a different scale as that observed by Geisler (1960). A possible ex-

planation might be found in the spectral content of the data, i.e. data from Geisler was

band-passed filtered from 8-600 Hz, whereas Victor & Mast considered spectral bands as

low as 2.5 Hz, and Neely & Pepe presumably applied no filtering. The additional time
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required for independence observed by Victor & Mast and Neely & Pepe may therefore

be due to lower frequencies in their data. Alternatively, the different time scales might

be due to different methodologies, i.e. Geisler visually inspected the autocorrelogram,

whereas Victor & Mast looked at the power spectra around specific frequencies as a

function of the length of adjacent EEG segments. In the following section, the indepen-

dence assumption is explored in more detail using the Turning Point test, and results

are discussed and compared to the aforementioned studies.

5.1.2 Exploring independence violations: the Turning Point test

It can be expected that independence between samples will depend on the distance in

time between the samples, along with the dominant frequency within the data (the

frequency with the largest amplitude), which is determined primarily by the high-pass

cut-off frequency. Independence in this section is therefore explored as a function of the

high-pass cut-off frequency and the separating distance between consecutive samples.

The latter is achieved using the Turning Point test, which is a simple non-parametric

test, applied to the number of local minima and maxima (called ‘turning points’) in a

series of observations. In particular, for a series of N observations x(i), x(i+1), ..., x(N),

a local maxima at index j is defined as x(j − 1) < x(j) > x(j + 1), and a local minima

as x(j − 1) > x(j) < x(j + 1). The expected number of turning points for i.i.d. data

is 1
3(2N − 1) ≈ 2

3N , with expected variance 16N−29
90 (Heyde & Seneta, 1972; Bienaymé,

1874).

Method

Data for the analysis consists of recordings of EEG background activity from data set

D1. For each recording in D1 (149 total), additional recordings were constructed by

randomly resampling 20 000 consecutive samples from within the original recording,

where each sample was separated from its neighbouring samples by τ ms. The distance

τ was then varied from 0.2 to 200 ms, in steps of 0.2 ms (there were 1000 values for τ).

The band-pass filter settings (for data set D1) were furthermore set to either 30-2000

Hz, or to 100-2000 Hz (filtering was realised using a 3rd-order Butterworth filter, see also

the Appendix section A.16 for further details on the filters). The resampled recordings

were then tested for independence using the Turning Point test. Under H0 (data is i.i.d),

the PDF for the mean number of turning points for N = 20000 samples is approximately

normal with mean 20000·2
3 ≈ 13333 and standard deviation

√
16·20000−29

90 ≈ 59.63. The

two-sided 95% CIs for the expected number of turning points are therefore [13216, 13450],

or in terms of the percentage of tuning points: [66.08%, 67.25%] (with mean ≈ 66.67%,

see Heyde & Seneta, 1972; Bienaymé, 1874): .

Results

The results from the Turning Point test are presented in Fig. 5.2. The two upper plots

show the percentage of turning points, for each resampled recording, as a function of

the distance in ms τ between samples. The data (in data set D1) was band-pass filtered
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at either 100-3000 Hz (plot A) or 30-3000 Hz (plot B). The two lower plots show the

detection rates (across the 149 recordings) for the Turning Point test, i.e. the fraction

of tests where independence was significantly violated (at α = 0.05), similarly as a

function of the distance between samples, and where data were band-pass filtered at

either 100-3000 Hz (plot C) or 30-3000 Hz (plot D).

Figure 5.2: Results from the Turning Point test for testing the independence assumption be-
tween samples. The two upper plots (plots A and B) show the percentage of turning points,
per resampled recording, as a function of the distance in ms between samples, where data were
band-pass filtered at either 100-3000 Hz (plot A) or 30-3000 Hz (plot B). The two lower plots
(plots C and D) show the fraction of tests (149 in total) where the independence assumption was
significantly violated (at α = 0.05), similarly as a function of the distance between the samples,
and where the data were band-pass filtered at either 100-3000 Hz (plot C) or 30-3000 Hz (plot
D).

Discussion

Visual inspection of plots A and B in Fig. 5.2 suggests that independence is satisfied

after ∼25 ms when using a 100 Hz high-pass cut-off frequency, and after ∼70 ms when

using a 30 Hz high-pass cut-off frequency, corresponding to a ∼40 Hz and a ∼14.29 Hz

stimulus rate, respectively. The regular peaks at ∼30, ∼60, ∼90, ∼120, ∼150, ∼180 ms

might be attributed to the harmonics of a 50 Hz mains. Overall, results appear to agree

with Geisler (1960), who similarly observed autocorrelations between samples separated

by ∼50-70 ms (when using a band-pass filter of 8-600 Hz). The different time-scales

for independence observed by Victor & Mast (1991) and Neely & Pepe (1997) might

therefore be due to different methodologies, e.g. Victor & Mast looked at the required

length of adjacent EEG measurements before independence was satisfied. Note therefore

that the initial correlations between adjacent EEG measurements was not disrupted in

Victor & Mast. The independence assumption will hence never be completely satisfied

using this approach, i.e. the best one can hope for is to attenuate or ‘drown out’ the

violation by expanding the sample with a sufficiently large amount of i.i.d. data.
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5.1.3 Quantifying independence violations

This section explores the extent to which independence violations are relevant for ABR

detection methods, achieved by quantifying the violation in terms of increased or de-

creased FPRs for the Hotelling’s T 2 test. The Hotelling’s T 2 test is chosen primarily

due to (i) fast processing times, and (ii) because realistic EEG data can be simulated,

such that all assumptions underlying the Hotelling’s T 2 test are satisfied, except the

independence assumption between epochs. Independence violations are again explored

as a function of the high-pass cut-off frequency and the separating distance between

samples (now expressed as a stimulus rate).

Method

Data for the assessment consists of simulated Gaussian, stationary, zero-mean noise with

similar spectral content to real EEG background activity, constructed as described in

section 4.4. A total of 50 000 recordings were simulated, which were band-pass filtered

from fc to 2000 Hz using a 3rd-order Butterworth filter. The cut-off frequency fc was

varied from 30 to 100 Hz, in steps of 5 Hz. Each filtered recording was then structured

into 15 ms epochs, where the distance between epochs was varied from 0 to 40 ms,

in steps of 0.4 ms. Note that the analysis window remains constant at 15 ms (it is

just the distance between the 15 ms windows that is varied). The latter is related to

a (hypothetical) stimulus rate using 1000
15+τ , where τ is the distance between the 15 ms

windows. The ensemble size was furthermore set to 200 epochs. All resulting ensembles

were then analysed using the Hotelling’s T 2 (applied in the time domain, using 25

TVMs).

Results

The FPRs (using α = 0.05) for the Hotelling’s T 2 test are plotted in Fig. 5.3 as a function

of the (hypothetical) stimulus rate and the high-pass cut-off frequency. The binomial

distribution (section A.2) was used to construct two-sided 95% confidence intervals for

the theoretical 0.05 FPR. The large number of tests performed (50 000 total) resulted

in relatively narrow confidence intervals, with a lower limit of 0.0481 and an upper limit

of 0.0519. FPRs that fell outside the expected boundaries are indicated in Fig. 5.3 by

blue (FPR < 0.0481) and red (FPR > 0.0519) cells, whereas the FPRs that fell within

the 95% CIs are indicated by green cells.

Discussion

Results (Fig. 5.3) demonstrate potentially large violations to the independence as-

sumption between epochs when using specific combinations of fc and the stimulus rate,

resulting in both conservative and liberal test performances. In particular, when the

epochs are positively correlated, the performance of the Hotelling’s T 2 test will tend to

be liberal, whereas when the epochs are negatively correlated, it will tend to be con-

servative. These results hence emphasize the importance of choosing suitable values for

fc and the stimulus rate, as an incorrect choice can potentially result in relatively large

deviations from the nominal α-level, i.e. using fc = 65 Hz and a 66.67 Hz stimulus rate
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Figure 5.3: The FPRs for the Hotelling’s T 2 test (α = 0.05), as a function of the (hypothetical)
stimulus rate and the high-pass cut-off frequency. Each FPR was generated from 50 000 tests,
where the data for the tests consists of simulated Gaussian, stationary, zero-mean noise with
similar spectral content to real EEG background activity (details presented in the text). The
95% two-sided confidence intervals for α = 0.05 are [0.0481, 0.0519]. FPRs that fall outside
the expected boundaries are indicated by blue (FPR < 0.0481) and red (FPR > 0.0519) cells,
whereas FPRs that fall within the 95% CIs are indicated by green cells.

resulted in a FPR of 0.0985, as opposed to the theoretical 0.05. It is also worth noting

here that a similar simulation was conducted for CAEP detection. Results (presented

in the Appendix, section A.15) also demonstrate a relationship between the FPR, the

high-pass cut-off frequency fc, and the stimulus rate.

5.1.4 Compensating for independence violations

The section briefly explores whether ‘bootstrapping in blocks’ (section 3.6.1) can be

used for a more robust assessment of test significance under independence violations.

Method

Data for the assessment was identical to section 5.1.3 above, except that the number of

simulated recordings was reduced to 10 000 (due to relatively long processing times). The

high-pass cut-off frequency was now also fixed at 65 Hz, and the (hypothetical) stimulus

rate took values of 66.67, 58.82, 62.63, 47.62, and 43.48 Hz. These values were chosen

based on results from the previous section (Figure 5.3), which showed relatively large

independence violations (giving both liberal and conservative test performances) when

using these values. The data were again analysed using the Hotelling’s T 2 test, which

was evaluated using either theoretical F-distributions, or with the bootstrap approach.

When using the bootstrap approach, epochs were resampled in either blocks of two or

in blocks of four epochs, i.e. each resampled windows had a duration of either 60.06 ms

(two 30.03 ms epochs) or 120.12 ms (four 30.03 ms epochs).
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Results

The observed FPRs for the Hotelling’s T 2 test (evaluated using either theoretical F-

distributions of with the bootstrap) under significance independence violations are pre-

sented in Fig. 5.4. The nominal level α = 0.05 and the two-sided 95% CIs for α (given

by [0.0459, 0.0544]) are also shown. Results suggest that the FPRs appear to approach

the nominal α-level of the test as the number of epochs per block are increased.

Figure 5.4: The FPRs for the Hotelling’s T 2 test for various (hypothetical) stimulus rates when
evaluated using either theoretical F-distributions or the bootstrap approach, where random
resampling was performed in blocks of epochs or in blocks of four epochs.

Discussion

Results (Fig. 5.4) suggest that ‘bootstrapping in blocks’ might be a viable option for

obtaining a more robust evaluation of test significance under independence violations.

As mentioned in section 3.6.1, the advantage of resampling in blocks of epochs is that

the correlations between epochs within blocks is preserved. The correlations between

blocks, however, is still disrupted. Hence, although deviations from the nominal α-level

are significantly reduced, specificity is (at least in theory) still not completely controlled

as intended.

Robustness to independence violations might therefore be further improved by increasing

the number of resampled epochs per block. However, this comes at the price of a reduced

variation in the starting positions of the epochs, which might result in (i) a reduced test

sensitivity, as some epochs may remain time-locked to the stimuli, or (ii) insufficient

variation in the resampled data sets, which may result in an inaccurate approximation

of the null distribution. A limitation for this section is furthermore that the approach

was evaluated exclusively under significant independence violations. In future work, the

approach should be tested across a more diverse set of test conditions, which should

include a stimulus condition to ensure that test sensitivity is not reduced.
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5.2 Normality

The goal for this section is to explore the extent to which normality is violated for EEG

measurements, and to quantify potential violations in terms of increased or decreased

FPRs for the Hotelling’s T 2 test. An additional goal is to explore whether violations

can be reduced through artefact rejection, or compensated for through Central Limit

Theorem (CLT: see Appendix, section A.1) by increasing the ensemble size.

The underlying distribution of a Q-dimensional set of observations x is said to be mul-

tivariate normal (MVN) when its density function f(x) is described by (Rencher, 2001,

p.83):

f(x) =
1

(
√

2π)Q | Σ |0.5
e−(x−µ)′Σ−1(x−µ) (5.2)

where x is the Q-dimensional vector of observed feature means, µ the Q-dimensional

vector containing the true mean values of the Q features, and Σ is the true underlying

Q-dimensional covariance matrix for the Q features. The normal distribution can also

be characterized by its skewness and kurtosis. The kurtosis of a distribution is a measure

of how ‘peaked’ it is, i.e. whether its volume is concentrated around a single peak or

whether it is spread out across a larger interval, whereas the skewness of a distribution

is a measure of its asymmetry around its mean. The normal distribution has a kurtosis

of three and a skewness of zero.

Deviations from normality are a concern for ABR detection firstly due to the assumption

(underlying e.g. the Hotelling’s T 2 test) that the population feature means and variances

are independent, which is only true when the underlying distribution is normal. A second

concern is in regards to the theoretical null distribution, which can deviate from the true

null distribution when normality is violated, resulting in a conservative or a liberal test

performance. That said, deviations from normality are not always an issue, as these can

be compensated for through CLT by means of a sufficiently large sample size (Appendix,

section A.1). The caveat is the term ‘sufficiently large’, i.e. it is not clear how large

the sample should be before deviations from normality become negligible. The latter is

typically left unanswered by authors, or as noted by Mordkoff (2016), authors tend to

assume the effects are negligible and then ‘look away and whistle’.

5.2.1 Exploring normality violations

This section provides a very brief exploratory analysis, simply by plotting the histograms

of the samples of the recordings. The recordings of EEG background activity (data set

D1) were first band-pass filtered from 30 to 2000 Hz using a 3rd-order Butterworth
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filter (see Appendix A.16), and structured into 30.03 ms epochs. Artefact rejection was

then applied by throwing away 10% of the noisiest epochs (as determined by their mean

square values), and a histogram was constructed from the resulting samples, both before

and after artefact rejection.

Results

The histograms of the samples for two subjects are shown in Figure 5.5, both before

(plots A and B) and after (plots C and D) artefact rejection. Note that the x-axis in

Figure 5.5 was determined by the smallest and largest sample values within the recording

in question. Results show that kurtosis is quite extreme prior to artefact rejection (the

tails of the histograms are long), but is greatly reduced by artefact rejection. Visual

inspection of plots C and D suggests that the histograms are almost perfectly normal

after artefact rejection. In the following section, the extent to which these violations are

relevant for ABR detection is further explored.

Figure 5.5: Histograms, constructed from two recordings of EEG background activity, both
before artefact rejection (plots A and B) and after artefact rejection (plots C and D). The x-axis
was determined by the smallest and largest sample values within the recording in question.

5.2.2 Quantifying and compensating for normality violations

This section explores the extent to which normality violations are relevant for ABR

detection, achieved by quantifying the violation in terms of increased or decreased FPRs

for the Hotelling’s T 2 test. Additional goals are to test whether potential violations can

be removed for through either artefact rejection or compensated for through CLT (by

increasing the ensemble size).

Method

In order to isolate normality violations, stationarity and independence violations need to



57 Chapter 5. Specificity

be avoided. The latter is achieved by fitting distributions to the samples, and resampling

from the fitted distributions. To do so, each recording of EEG background activity from

data set D1 was first compressed into TVMs by taking the mean across each 0.6 ms

segment. An Epanechnikov kernel was then fit to the PDF of the resulting TVMs,

which was repeated per recording. For each fitted distribution, 10 000 additional 25-

dimensional feature sets of size N were simulated, where N took values of either 100

or 500. This procedure was applied both before and after artefact rejection: artefact

rejection was applied (prior to compressing the recordings into TVMs) using the same

approach described in previous sections, i.e. the recordings were structured into 30.03

ms epochs, and 10% of the noisiest epochs (as determined by their mean square values)

were discarded. The resampled feature sets were analysed with the Hotelling’s T 2 test.

Results

The FPRs are presented in Fig. 5.6 as a function of the recording index being simulated

(there were 149 recordings in total). Plot A first shows the FPRs when using either

N = 100 or N = 500, as a function of the recording index being simulated. Note

that artefact rejection was not used for these simulations. The nominal α-level and

its approximate two-sided 95% CIs (given by [0.0459, 0.0544]) are also shown. Results

demonstrate an overall tendency towards a conservative test performance for both N =

100 and N = 500. Plot B then shows the FPRs for N = 100, where the distributions

were now fit after artefact rejection. Results show that the FPRs mostly fall within the

two-sided 95% CIs for α, with the exception of a few recordings where the FPR was

now exceptionally high.

Post-hoc exploration

A post-hoc analysis was conducted to explore why artefact rejection increased the FPR

for some recordings. Results show that the increased FPRs can likely be attributed to

the mean of the recording, which was shifted away from zero due to artefact rejection

(further clarified below). The latter is illustrated in Fig. 5.7, which shows the mean of

the recordings of EEG background activity both before and after artefact rejection.

Summary

When no artefact rejection is used, results demonstrate a tendency towards a conserva-

tive test performance, which can likely be attributed to excessive kurtosis (resulting in

an overestimation of the sample variance). For some recordings, the conservative test

performance was quite drastic, i.e. for recording 73, a FPR of 0.0161 was observed (for

N = 100), as opposed to the theoretical 0.05. The mean FPR (calculated across all

recordings) was nevertheless still close to the nominal α-level: for the N = 100 condi-

tion, the mean FPR was 0.0445, whereas for N = 500 it was 0.0456. Note therefore that

the effects of normality violations might be difficult to detect when considered across a

cohort of recordings. Note also that increasing N from 100 to 500 was insufficient for

compensating for the violation through CLT.

When artefact rejection was used, the distributions are more or less perfectly normally
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Figure 5.6: The FPRs for the Hotelling’s T 2 test, as a function of the recording being simulated.
Plot A: the ensemble size N was set to either 100 or 500, and no artefact rejection was used.
Plot B: the ensemble size N was set to 100, and artefact rejection was used. The nominal α-level
(α = 0.05) and its two-sided 95% CIs are also shown.

Figure 5.7: The means of the recordings of EEG background activity, both before and after
artefact rejection.

distributed (Figure 5.5). The mean of the recordings, however, were now sometimes

shifted away from zero (Figure 5.7), resulting in a liberal test performance for some

recordings (Figure 5.6, plot B). The non-zero mean for some recordings following artefact

rejection can likely be attributed to a combination of skewness and kurtosis, i.e. when

the voltage measurements of the outliers are pre-dominantly negative, then artefact

rejection results in more negative samples being removed relative to positive samples.

The mean of the recording (which is originally zero due to the high-pass filter) is hence

increased, resulting in a liberal test performance. For some recordings, the liberal test

performance was quite drastic, i.e. for recording 137, the FPR was 0.1359, as opposed

to 0.05. The mean FPR (taken across all recordings) was nevertheless again relatively

close to the nominal α-level, and was equal to 0.0539.
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5.3 Stationarity

Data can be considered stationary when its mean, variance, and autocorrelation are

constant over time. More formally, stationarity is satisfied when the joint distribution

of [X(t1+τ), X(t2+µ), ..., X(tn+τ)] is independent of time shift τ for any time sequence

t1 < t2 < ... < tn, where X(ti+ τ) is the observed value at time ti+ τ (Le Boudec, 2015,

p.223).

It is well known that the EEG background activity can change significantly within and

between recordings. Violations to the stationarity assumption are hence commonplace

for EEG data analysis. The goal for this section is (i) to briefly demonstrate the extent to

which stationarity is violated for EEG background activity, (ii) to quantify the violation

in terms of increased or decreased FPRs for the Hotelling’s T 2 test, and (iii) to evaluate

a data transformation (normalising the epoch variances) for removing the violation.

5.3.1 Exploring stationarity violations

This section briefly demonstrates the extent to which stationarity is violated for EEG

background activity. The recordings of EEG background activity (data set D1) were

downsampled to 5kHz, band-pass filtered from 30-2000 Hz using a 3rd-order Butterworth

filter (Appendix A.16), and structured into 30.03 ms epochs. Artefact rejection was then

applied by throwing away 10% of the noisiest epochs, as determined by their absolute

maximum values. For each recording, the variance was calculated per epoch, both before

and after artefact rejection. The resulting epoch variances are plotted as a function of

time (seconds) for two subjects in Fig. 5.8, both before and after artefact rejection.

As expected, visual inspection suggests relatively large violations to the stationarity

assumption, which was reduced by artefact rejection.

5.3.2 Quantifying and compensating for stationarity violations

This section explores the extent to which violations to the stationarity assumption are

relevant for evoked response detection, achieved by isolating the stationarity violation,

and quantifying it in terms of increased or decreased FPRs for the Hotelling’s T 2 test. An

additional goal is to test whether specificity can be improved by removing the violation

through normalisation of the epoch variances.

Method

Data consists of simulated Gaussian, stationary, zero-mean coloured noise with similar

spectral content to real EEG background activity, generated as described in section 4.4.

Each recording of EEG background activity (149 total) was used to generate 10 000

additional simulated recordings (using the AR model estimated from the recording in

question; see section 4.4). The simulated recordings were then structured into ensembles
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Figure 5.8: The epoch variances over time for two subjects, both before artefact rejection (plots
A and B) and after artefact rejection (plots C and D).

of N = 500 30.03 ms epochs. Note that this data is stationary. A violation to the

stationarity assumption was therefore introduced by rescaling the epochs. In particular,

each epoch was scaled by a specific factor, where the scaling factors were given by the

epoch variances calculated from 500 randomly selected (but consecutive) epochs from

within the original recording (i.e. the recording from which the AR model in question

was obtained). The initial 15 ms of the ensembles were then analysed with the Hotelling’s

T 2 test using 25 TVMs as features, both before and after introducing the stationarity

violation. Finally, the variances of the simulated epochs were also normalised, such that

all variances were identical. The initial 15 ms of the normalised ensembles were again

analysed using the Hotelling’s T 2 test.

To summarise: 10 000 additional recordings were simulated for each original recording

of EEG background activity. A violation to the stationarity assumption was then intro-

duced to each simulated recording, after which the violation was removed by normalising

the epoch variances. At each stage, the recordings were structured into ensembles of

N = 500 epochs, which were analysed using the Hotelling’s T 2 test.

Results

The FPRs from the Hotelling’s T 2 test are presented in Fig. 5.9 as a function of the

recording index being simulated. Plot A shows the FPRs before and after introducing

the stationarity violation. Note that significant deviations from the nominal α-level

can be observed for the stationary data, which suggests a violation to the independence

assumption between epochs (as all remaining assumptions were satisfied). Note therefore

that in order to isolate the stationarity violation, it is necessary to compare the FPRs

from the stationary and non-stationary data. To facilitate the comparison, the FPRs
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from the stationary data are subtracted from the FPRs from the non-stationary data,

and the difference is added to α. Results (Fig. 5.9, Plot B) demonstrate an overall trend

towards a conservative test performance, which can now be attributed to the stationarity

violation. Finally, Fig. 5.9 Plot C shows the FPRs generated from the normalised

epochs. The FPRs generated from the stationary data are also shown for comparison.

Results demonstrate a more or less identical performance between the stationary and

normalised data, which suggests that normalisation of the epoch variances is a viable

option for removing stationarity violations.

Figure 5.9: The FPRs for the Hotelling’s T 2 test as a function of the recording of EEG
background activity being simulated. Plot A: the FPRs generated from stationary and non-
stationary data. Plot B: the discrepancy amongst the FPRs presented in Plot A, added to
the theoretical α = 0.05. Plot C: FPRs generated from normalised data, along with the FPRs
generated from stationary data, which is repeated here for the sake of comparison. The nominal
α-level and its two-sided 95% CIs are also shown.

Summary

This section demonstrated violations to the stationarity assumption (Figure 5.8), which

resulted in a tendenecy towards a conservative test performance (Figure 5.9, plot B).

The latter can likely be attributed to an overestimated sample variance. The largest

deviation from α (in Figure 5.9, plot B) was observed for recording 119, and was equal

to 0.0335. The mean FPR across all recordings was furthermore equal to 0.0454, and

was hence again relatively close to the expected 0.05. Finally, results also suggest that

violations to the stationarity assumption can be removed by normalising the variances

of the epochs (Figure 5.9, plot C).

Relationship with Bayesian averaging

Normalising the variances of the epochs is somewhat similar to the Bayesian averaging

approach described in Elberling & Walhgreen (1985). For Bayesian averaging, the goal

is to increase the SNR within the coherent average for when data is non-stationary.
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Following the notation in Elberling & Wahlgreen (1985), the Bayesian-weighted coherent

average is given by:

X̄ = (
S1

V1
+
S2

V2
+ ...+

Sn
Vn

) · 1

Cn
(5.3)

where Si is the ith block average, obtained by averaging (now using conventional aver-

aging) across a subset of epochs, Vi is the variance of the EEG background noise within

the ith block of epochs (estimated using the SP variance), n is the total number of

sub-blocks, and 1
Cn

is a sum of variances, defined as
∑n

i=1 Vi.

Note therefore that Bayesian averaging has a slightly different goal than normalising the

epoch variances, i.e. the goal in Bayesian averaging is to maximize the SNR with the

coherent average, whereas the goal for normalising the epoch variances is to improve the

specificity of the objective detection method by removing stationarity violations. It is

nevertheless expected that Bayesian averaging would still reduce non-stationarity vio-

lations, but would not remove them completely. Similarly, normalising epoch variances

may improve the SNR within the coherent average, but perhaps not as effectively as

Bayesian averaging.

5.4 Real EEG background activity

In the previous sections of this Chapter, simulations were used to isolate and evaluate

the main assumptions underlying objective ABR detection methods. A shortcoming

for these sections is that each assumption was considered in isolation, whereas for real

EEG background activity violations to multiple assumptions can occur simultaneously,

potentially with interaction effects. A second shortcoming for the simulations is that

various real world noise sources were not modelled adequately (e.g. the mains inter-

ference and movement artefacts). The goal for this section is therefore to explore the

extent to which specificity is controlled for real EEG background activity. The EEG

pre-processing parameters included in the assessment are (1) the cut-off frequency for

the high-pass filter, (2) the (hypothetical) stimulus rate, (3) artefact rejection, and (4)

normalisation of the epoch variances.

Method

Each recording of EEG background activity (data set D1) was downsampled to 5 kHz

and band-pass filtered from fc to 2000 Hz (using a 3rd-order Butterworth filter) where

fc took values of 30 to 100 Hz, in steps of 5 Hz. Ensembles of epochs were then con-

structed by randomly selecting N = 200 consecutive windows from within the recording

in question. The duration of each window was set to 15 ms, and the distance between

windows was varied from 0 ms to 40 ms, in steps of 0.2 ms. As was the case in section
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5.1, this can be related to a (hypothetical) stimulus rate of 1000
15+τ , where τ is the distance

in ms between the 15 ms windows. A total of 50 ensembles were constructed from each

recording, both before and after artefact rejection (achieved by throwing away 10% of

the noisiest epochs, as determined by the absolute maximum values), resulting in a total

of 7450 ensembles, per test condition. The resulting ensembles were analysed with the

Hotelling’s T 2 test using 25 TVMs as features, extracted from the 15 ms windows, both

before and after normalising the variances of the epochs.

To summarize: 7450 ensembles were constructed for the following test conditions: (1)

artefact rejection was applied, and the variances of the epochs within each ensemble were

normalised, (2) artefact rejection was applied, but the variances of the epochs were not

normalised, (3) no artefact rejection was applied, and the variances of the epochs were

normalised, and (4) no artefact rejection was applied, and the epoch variances were not

normalised. These four conditions were evaluated across all aforementioned high-pass

cut-off frequencies and (hypothetical) stimulus rates.

Results

Before presenting the results, it should be mentioned that the FPRs for all four test

conditions were quite similar. Hence, to keep this section concise, FPRs from just the

second condition (artefact rejection, but no normalisation, which is considered to be

the conventional approach) are initially presented in Fig 5.10. After some modifications

(further described below), results from all four conditions are presented in Fig. 5.11.

The binomial distribution was furthermore used to construct two-sided 95% CIs for

α = 0.05, giving lower and upper bounds of [0.0452, 0.0552]. Note that these boundaries

are approximate, as the random resampling (with replacement) procedure may have

resulted in some EEG segments being selected multiple times, resulting in a violation of

the independence assumption between tests (underlying the binomial distribution: see

Appendix, section A.2). Significant deviations from α are indicated in Fig. 5.10 and

5.11 by red (FPR > 0.0552) and blue (FPR < 0.0452) cells, whereas green cells indicate

that the FPR fell within the two-sided 95% CI.

With respect to the big ‘spikes’ in Fig. 5.10, these can at least partly be attributed to

the 50 Hz mains and its harmonics. The 50 Hz mains is indicated in Fig. 5.10 by an

‘M’, whereas the H1, H2, H3, H4, and H5 (located at 62.5, 41.667, 35.71, 31.25, and

27.78 Hz respectively) correspond to a 250 Hz signal and its harmonics, which might

be related to the 50 Hz mains. The source of various additional peaks located at 54.95,

45.05, 34.97, 27.47, and 26.18 Hz (indicated by ?1, ?2, ?3, ?4, and ?5 respectively) are

further considered in the discussion below.

Post-hoc analysis

It is first worth emphasizing that the FPRs in Fig. 5.10 show a similar pattern as

those from the simulations (Fig 5.3). In order to facilitate this comparison (and to aid

visual inspection when comparing the four test conditions), the spikes in Fig. 5.10 were

removed. The latter was achieved through interpolation, i.e. by setting the spikes to the
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mean value of the neighbouring cells (under the condition that the neighbouring cells

did not contain a spike), after which smoothing was applied to the resulting FPRs. The

modified results for all four test conditions are presented in Fig. 5.11.

Figure 5.10: The FPRs of the Hotelling’s T 2 test, as a function of the high-pass cut-off frequency
and (hypothetical) stimulus rate. For this data, artefact rejection was applied, but the epoch
variances were not normalised. The source for the ‘spikes’ in the FPRs (indicated by the M,
H1, H2, H3, H4, H5, ?1, ?2, ?3, ?4, and ?5 captions) are further considered in the results and
discussion sections.

Discussion

The close correspondence between Fig. 5.3 and 5.11 firstly suggests that the main con-

cern for the specificity of ABR detection methods is the independence assumption be-

tween epochs, which is violated primarily as a function of the high-pass cut-off frequency

fc and the stimulus rate. As was the case for the simulations, specific combinations of fc

and the stimulus rate can result in relatively severe deviations from the nominal α-level,

e.g. using fc = 65 Hz and a stimulus rate of 66.67 Hz gave a FPR of 0.0896 (Figure

5.10). Certain combinations of fc and the stimulus rate are nevertheless safe (see Figures

5.10 and 5.11).

With respect to stationarity and normality violations, results from Figure 5.11 demon-

strate that the FPRs across all four test conditions were quite similar, which implies that

artefact rejection and normalising the epoch variances did not have a huge effect on the

FPRs. This suggests that violations to the stationarity and normality assumptions were

more or less negligible, albeit when considered across a cohort of subjects. The latter is

in agreement with results from the simulations, which show significant deviations from
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Figure 5.11: The FPRs of the Hotelling’s T 2 test after removing the spikes identified in Fig
5.10 and applying a smoothing algorithm, as a function of the high-pass cut-off frequency and
the (hypothetical) stimulus rate, for each of the following test conditions: Plot A: artefact
rejection (denoted here by AR) was used, and the variances of the epochs were normalised
(denoted by Norm). Plot B: Artefact rejection was used, but the variances of the epochs were
not normalised. Plot C: artefact rejection was not used, but the variances of the epochs were
normalised. Plot D: artefact rejection was not used, and the variances of the epochs were not
normalised.

α (due to normality and stationarity violations) for some recordings, but a mean FPR

(across all recordings) still relatively close to α. It should however be stressed that this

does not necessarily imply that normality and stationarity assumptions are negligible,

i.e. for many ABR-related applications, a robust and reliable control of specificity is

desirable at the level of the individual, not just across a cohort of subjects.

Various spikes in the FPRs in Fig. 5.10 furthermore remain unidentified. The first

two spikes are located at 54.9451 and 45.045 Hz (captioned in Fig. 5.10 by ?1 and ?2

respectively). A possible source might be a 500 Hz harmonic, i.e. one full cycle of a 500

Hz signal would have a duration of 2 ms, meaning any epochs separated by distances

that are a multiple of 2 ms will be time-locked to multiple cycles of a 500 Hz signal. For

a 54.9451 Hz signal, the onsets of the epochs are located at 18.2 ms intervals, whereas for

a 45.045 Hz signal they are located at 22.2 ms intervals. Although neither is a multiple

of 2 ms, the 4 ms distance between the 18.2 and 22.2 intervals seems suspicious. The

remaining three spikes, located at 34.965 Hz, 27.4725 Hz, and 26.178 Hz (captioned

by ?3, ?4, and ?5 respectively), however, show no such suspicious relationships. In a

nutshell: the source for these spikes remain unknown, and may require a deeper analysis

(possibly at the level of the recording) before an answer can be found.
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5.5 Summary

This Chapter used simulations and real recordings of EEG background activity to iso-

late, evaluate, and potentially compensate or remove violations to the main statistical

assumptions underlying ABR detection methods, with the overall goal of obtaining a

more robust control of specificity. The main statistical assumptions that were explored

include the independence assumption (between epochs), the normality assumption, and

the stationarity assumption.

The main culprit for increased or decreased FPRs in both the simulations and the real

data turned out to be the independence assumption, which was violated as a function

of the high-pass cut-off frequency fc and the stimulus rate. Specific combinations of fc

and the stimulus rate resulted in relatively large deviations from α, ranging from 0.0385

to 0.0985 for α = 0.05 (section 5.1.3). Certain combinations of fc and the stimulus rate

are nevertheless safe (see Figures 5.3, 5.10, and 5.11).

With respect to the normality and stationarity assumptions, simulations demonstrate a

tendency towards a conservative test performance when these assumptions are violated,

with maximum deviations from α = 0.05 of 0.0161 for normality violations (using no

artefact rejection, andN = 100: Figure 5.6, plot A) and 0.0335 for stationarity violations

(Figure 5.9, plot B). The mean FPR (across all recordings) was nevertheless still close to

α = 0.05, and was in the range of 0.045 (for both normality and stationarity violations).

To remove or compensate (through CLT) for normality violations, artefact rejection was

used, or the ensemble size was increased. Results show that increasing the ensemble size

was insufficient for compensating for the violation. Artefact rejection, on the other hand,

resulted in more or less perfectly normally distributed data (Figure 5.5), but sometimes

shifted the mean of the recording away from zero, resulting in a liberal test performance

(Figures 5.6, plot B, and Figure 5.7). With respect to stationarity violations, these were

successfully removed (with no noticeable adverse effects) by normalising the variances

of the epochs. Although not explored here, it is also hypothesized that normalising the

epoch variances would reduce normality violations.

For the real EEG background activity, violations to the normality and stationarity

violations were found to be more or less negligible, albeit when considered across a

cohort of subjects. This is in agreement with the simulations, which show that the

mean FPR (taken across recordings) is still close to α under significant normality and

stationarity violations. The FPRs for individual recordings, however, can still deviate

significantly from α, which implies that stationarity and normality violations should

ideally not be ignored if a robust control of specificity at the level of the individual is

desired.

Finally, early results suggest that ‘bootstrapping in blocks’ can be used for a more robust

evaluation of test significance under independence violations (Figure 5.4). Note that the
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bootstrap is also immune to normality and stationarity violations, and might therefore

provide a solution to all aforementioned violations.

5.5.1 Limitations

A first limitation for this Chapter is that specificity was explored in isolation, whereas,

ideally, it would have gone hand in hand with a sensitivity assessment, i.e. it is not clear

how or if some of the methods (e.g. bootstrapping in blocks, and normalising epoch

variances) might affect test sensitivity. A second limitation for this Chapter is that

results were generated using the Hotelling’s T 2 test, and might not generalise well to

alternative detection methods. For example, some methods may not distinguish between

positively and negatively correlated epochs (as is the case with the Hotelling’s T 2 test),

potentially resulting in an exclusively liberal test performance for any independence

violation. Some methods might also be more susceptible to independence violations

relative to others due to the additional assumption of (some degree of) independence

between samples within epochs (e.g. the Fsp and the Fmp). The FPRs presented in

Figures 5.3, 5.10 and 5.11 might therefore show a similar but more pronounced trend

for these methods.

With respect to the simulations for quantifying normality violations (section 5.2.2), a

limitation is that a univariate PDF was assumed for the features. As a result, the co-

variance structure of the features is neglected. In other words, the resampled TVMs can

be considered independent, both within and between epochs. Future work might ex-

plore a multivariate approach, and strive to model (and resample from) a multivariate

distribution. A potential complication with this approach is the sparseness of multi-

variate datasets, which increases with the dimension of the data. An excessively large

data set might therefore be required in order to accurately model the distribution of a

25-dimensional feature set.

Finally, results from the real EEG background activity should ideally have been con-

ducted on a recording to recording basis, as opposed to across a cohort of subjects. The

latter was hampered by (i) long computation times, (ii) insufficient data at the level of

the recording, and (iii) additional complications in terms of how to present and analyse

the results (there would be too many figures).



Chapter 6

Sensitivity and test time

The sensitivity of a test is its detection rate when detecting the effect in question (an

ABR). Sensitivity is also referred to as the ‘true-positive rate’ (TPR), defined as the

ratio of significant test outcomes when the alternative hypothesis is true (the ABR is

indeed present) over the total number of tests performed. Test time is then defined as the

total time spent trying to detect the hypothesized effect size. Test time is furthermore

closely related to sensitivity, as a more sensitive test will typically detect the response

sooner. An exception is of course when sensitivity is increased by increasing the sample

size, which will increase test time.

The goal for this Chapter is to evaluate and compare the sensitivities and test times

of various objective ABR detection methods. The sensitivity of a test is influenced by

many factors, amongst which is the specificity of the test. In particular, a decrease in the

nominal α-level results in a decreased sensitivity, and vice versa for an increase in α. The

sensitivity assessment in this Chapter is therefore always accompanied by a specificity

assessment, firstly to ensure that specificity is controlled as intended, and secondly

to verify that discrepancies in sensitivity are not due to increased or decreased FPRs.

Additional factors that may affect test sensitivity include pre-processing parameters, the

statistical features selected for the analysis, and (as mentioned above) the ensemble size.

A comprehensive comparison in sensitivity should therefore take a range of statistical

features, EEG pre-processing parameters and ensemble sizes into account. For this

Chapter, the statistical features and pre-processing parameters are selected based on

(i) findings or recommendations from the literature, (ii) results from Chapter 5, and

(iii) pilot simulations and results from feature optimisations presented in the Appendix

(section A.3).

Throughout this Chapter, the performance of 12 different objective detection methods

are evaluated and compared. To avoid cluttering the results, the sensitivity assessment

is initially split across two simulations (sections 6.1 and 6.2). Based on results from the

simulations, a final selection of methods is made for further evaluation in section 6.3, for

which the subject recorded ABR threshold series is used. The methods selected for the

68
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assessment throughout this Chapter include: the Hotelling’s T 2 test (applied in time or

frequency domain), the Fsp and the Fmp (evaluated with theoretical F-distributions or

with the bootstrap approach), the Modified q-sample V2 and V4 tests, the bootstrapped

correlation coefficient, the bootstrapped Max-Difference and Mean Power statistics, and

the bootstrapped ‘T2 Time + CC’ combination. Additional simulations for comparing

the performance of RM ANOVA, Friedman’s test, and the Hotelling’s T 2 test can also

be found in section A.7 of the Appendix.

6.1 Simulations I: comparisons in sensitivity

This section uses simulations to draw comparisons in sensitivity between (i) the Hotelling’s

T 2 test, applied in both the time and the frequency domain (denoted by ‘T2 Time’ and

‘T2 Freq’ respectively), (ii) the Fsp and the Fmp, evaluated using either theoretical F-

distributions with assumed DOF (denoted by ‘Fsp 5 dof’ and ‘Fmp 5 dof’ respectively),

or with the bootstrap approach (denoted by ‘Fsp bootstrapped’ and ‘Fmp bootstrapped’,

respectively), and (iii) two versions of the modified q-sample uniform scores test, which

use either the ranks (Modified q-sample V2) or the actual values (Modified q-sample

V4) of the phases and amplitudes of multiple Fourier components.

The primary goal for these simulations is to provide a more powerful comparison of test

sensitivity under controlled test conditions. More specific goals include evaluating the

hypothesis that ‘T2 Freq’ will outperform ‘Modified q-sample V4’, which would be due to

the Hotelling’s T 2 test taking the correlations between features into account (which are

neglected by ‘Modified q-sample V4’, see also sections 3.2 and 3.5, and discussion section

2.6). It is also hypothesized that the bootstrap approach will improve the specificity

and sensitivity of the Fsp and the Fmp, as opposed to evaluating test significance with

theoretical F-distributions. In particular, ‘Fsp 5 dof’ and ‘Fmp 5 dof’ are expected to

give conservative test performances (Elberling & Don, 1984), which would coincidentally

result in a reduced test sensitivity, relative to their bootstrapped counterparts.

Method

Data for the simulations consists of recordings of real EEG background activity (data

set D1) and ABR templates (data set D4) for simulating a response. The recordings

of EEG background activity were downsampled to 5 kHz and band-pass filtered (using

a 3rd-order Butterworth filter, see Appendix A.16) from 30 to 2000 Hz.

Specificity assessment

Each pre-processed recording of EEG background activity was decomposed into ensem-

bles of N epochs, where N took values of 50, 100, 175, 275, 375, 500, 650, 800. Note that

the resulting ensembles did not overlap, and can hence be considered (more or less) inde-

pendent. The duration of each epoch was furthermore set to 30.03 ms, corresponding to
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a (hypothetical) stimulus rate of 33.3 Hz. This resulted in a total of 20197, 10060, 5717,

3606, 2640, 1967, 1500, and 1187 ensembles for ensemble sizes of 50, 100, 175, 275, 375,

500, 650, and 800, respectively. The specificity assessment then consists of analysing

the initial 15 ms windows of the ensembles using the aforementioned detection methods.

The statistical features for the detection methods are described in below.

Sensitivity assessment

For the sensitivity assessment, a random resampling (with replacement) approach was

used to resample blocks of N epochs from within the continuous recordings of EEG

background activity (data set D1). In total, 10 000 ensembles of N epochs were con-

structed, where N again took values of 50, 100, 175, 275, 375, 500, 650, 800 epochs. A

response was simulated by randomly selecting an ABR template (from data set D4),

rescaling it, and adding it to all epochs within the ensemble in question. The scaling

factor was chosen such that the SNR of the response was -23 dB, which was calculated as

described in section 4.3. The -23 dB simulated response would correspond to a relatively

strong response (from a normal hearing subject) from the 30, 40, or 50 dB SL condition

(see Table 4.1 in section 4.2). The initial 15 ms windows of the resulting ensembles were

then analysed using the aforementioned detection methods.

Statistical features

The time domain features for T2 Time consist of 25 TVMs (spread equally across the

initial 15 ms windows within the epochs). The choice for 25 TVMs was based on pilot

simulations, which showed a robust performance for anything between ∼25 and ∼40

TVMs. For the frequency domain methods, all spectral bands within (and including) the

80 and 600 Hz bands were used for the analysis. The latter was based on findings in the

literature which show that the majority of the energy within the ABR lies within the 50-

250 and 500-600 Hz bands, and (for higher stimulus intensities) also within the 900-1100

Hz band (Elberling, 1976; Kevanishvili & Aphonchenko, 1979; Elberling, 1979; Suzuki

et al., 1982). Because of the relatively low dB SL stimulus, it was assumed (for this

section) that the energy within the 900-1100 Hz band was negligible (as shown in section

6.2, this is actually not the case). Prior to calculating the FFT, each 15 ms window was

first extended to 25 ms through zero-padding, giving a spectral resolution of 40 Hz. For

the Modified q-sample V2 and V4 tests, averaging was also used (prior to calculating

the FFT) to compress each ensemble into blocks of sub-averages, as recommended by

Cebulla et al (2000). For these simulations, averaging was performed across blocks of

25 epochs so that no epochs were excluded from the analysis (each ensemble size is

a multiple of 25), which hence compressed each ensemble into N
25 sub-averages. The

column index (of data matrix D) for calculating the single point variance for the Fsp

was furthermore arbitrarily set to 30 (corresponding to the 6th ms following stimulus

onset), and the number of columns to include in the Fmp was set to 75 (corresponding

to the full analysis window, or 15 ms).
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Results

Specificity

The FPRs of the methods (using either α = 0.01 or α = 0.05) per ensemble size

are presented in Table 6.1. Two-sided 95% confidence intervals for nominal levels of

either α = 0.01 or α = 0.05 were found using the binomial distribution (Appendix,

section A.2), and are similarly presented in Table 6.1. Significant (p < 0.05) deviations

from the nominal levels are denoted by red and blue asterisks, indicating a liberal and

conservative test performance respectively. Results demonstrate a conservative test

performance for ‘Fsp 5 dof’ and ‘Fmp 5 dof’. The remaining methods appear to show

a very minor tendency towards a more liberal test performance.

Sensitivity

The percentage of detected responses are presented in Fig 6.1 as a function of the

ensemble size N , per method. Results show an overall advantage in sensitivity for the

Hotelling’s T 2 test (applied in either the time or frequency domain).

Table 6.1: Simulations I: specificity. The FPRs of the methods (using either α = 0.01
or α = 0.05) for the no-stimulus condition, per ensemble size N . The 95% two-sided CIs
for α are also shown, per ensemble size. Significantly (p<0.05) conservative and liberal
test performances are are denoted blue and red asterisks respectively.

Alpha = 0.01

Ensemble size –> 50 100 175 275 375 500 650 800

T2 Time 0.0108 0.0125∗ 0.0098 0.0133 0.0148∗ 0.0092 0.0113 0.0126

T2 Freq 0.0109 0.0108 0.0114 0.0119 0.0159∗ 0.0132 0.0173∗ 0.0126

Fsp 5 dof 0.0054∗ 0.0053∗ 0.0051∗ 0.005∗ 0.008 0.0056∗ 0.004∗ 0.0051∗
Fmp 5 dof 0.0023∗ 0.0036∗ 0.0037∗ 0.0044∗ 0.0061∗ 0.0056∗ 0.0033∗ 0.0042∗
Fsp bootstrapped 0.0115∗ 0.0127∗ 0.014∗ 0.0094 0.0144∗ 0.0117 0.0127 0.0152

Fmp bootstrapped 0.0112 0.0124∗ 0.0124 0.0097 0.0148∗ 0.0102 0.012 0.0143

Modified q-sample V2 0.0094 0.0096 0.0117 0.0125 0.0144∗ 0.0188∗ 0.0087 0.0152

Modified q-sample V4 0.0086 0.0105 0.0115 0.0089 0.0114 0.0097 0.0113 0.0143

Confidence intervals

Lower bound 0.0087 0.0083 0.0077 0.0072 0.0068 0.0066 0.0060 0.0059

Upper bound 0.0114 0.0121 0.0128 0.0136 0.0144 0.0153 0.0160 0.0168

Alpha = 0.05

Ensemble size –> 50 100 175 275 375 500 650 800

T2 Time 0.0512 0.0542 0.0569∗ 0.0549 0.0565 0.0504 0.0514 0.0481

T2 Freq 0.052 0.053 0.0565∗ 0.0541 0.064∗ 0.057 0.0567 0.0506

Fsp 5 dof 0.0266∗ 0.0239∗ 0.025∗ 0.0214∗ 0.0254∗ 0.0254∗ 0.0233∗ 0.0278∗
Fmp 5 dof 0.0146∗ 0.0181∗ 0.0192∗ 0.0205∗ 0.0243∗ 0.0249∗ 0.022∗ 0.027∗
Fsp bootstrapped 0.0498 0.0509 0.0553 0.0513 0.0553 0.0534 0.0554 0.0489

Fmp bootstrapped 0.048 0.0506 0.0562∗ 0.0527 0.0534 0.0544 0.0647∗ 0.0497

Modified q-sample V2 0.0483 0.0493 0.05 0.0491 0.0568 0.0514 0.0554 0.0472

Modified q-sample V4 0.046∗ 0.046 0.0521 0.0533 0.0549 0.0493 0.0494 0.0481

Confidence intervals

Lower bound 0.0471 0.0459 0.0446 0.0433 0.0420 0.0412 0.0400 0.0388

Upper bound 0.0531 0.0544 0.0560 0.0574 0.0587 0.0605 0.0620 0.0632
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Figure 6.1: The percentage of detected responses when simulating a -23 dB response, as a
function of the ensemble size N .

Discussion

In what follows, results from the specificity and sensitivity analysis are further discussed.

In particular, various sources that may have contributed to the slight tendency towards a

more liberal test performance are first considered, after which the use of pre-determined

thresholds for evaluating test significance is discussed. Some pros and cons associated

with the use of detection rates for evaluating and comparing sensitivity are then con-

sidered. The features for the frequency domain methods are also reviewed, and some

comparisons between the Modified q-sample V4 test and the Hotelling’s T 2 test are

drawn.

Specificity: elevated FPRs

For the specificity assessment, a very minor tendency towards a more liberal test per-

formance was observed for most methods, which might be attributed to various factors,

including: (i) violations to the underlying statistical assumptions, (ii) random fluctua-

tions, and (iii) inaccurate CIs for the nominal α-levels. Starting with potential violations

to the underlying statistical assumptions, these were evaluated extensively in Chapter 5.

The most likely culprit, the independence assumption, was explored using simulations

in section 5.1. Results (based on 50 000 tests) show a FPR (using α = 0.05 for the

Hotelling’s T 2 test) of 0.053 when using a (hypothetical) stimulus rate of 33.3 Hz and

a high-pass cut-off frequency of 30 Hz (which were the adopted values for this section).

The two-sided 95% confidence intervals for α = 0.05 were furthermore [0.0481, 0.0519],

thus suggesting a very minor violation of the independence assumption for these set-

tings. With respect to stationarity and normality, note that the bootstrapped statistics

are (at least in theory) immune to such violations. Because the elevated FPR was also
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observed for some of the bootstrapped statistics, it might be concluded that station-

arity and normality violations did not play a significant role here (at least not when

considered across a cohort of subjects).

Moving on to random fluctuations, although this may seem an easy ‘hand waving’ expla-

nation, the deviations were very small, which make it quite reasonable. Moreover, the

performance of the tests can be considered highly correlated, i.e. if one method has an

elevated FPR, then it is more likely that the remaining methods will also have elevated

FPRs. The many significant deviations observed in Table 6.1 are then no longer quite

as worrying.

Finally, the CIs for the nominal α-levels might be slightly inaccurate. The latter is

firstly due to the binomial distribution being a discrete probability distribution, meaning

rounding errors occur when approximating CIs. As noted in the Appendix (section A.2),

a liberal approach is adopted throughout this work, i.e. the CIs are rounded ‘inwards’,

resulting in a minor bias towards too narrow CIs. A second factor is the independence

violation between epochs, which may have resulted in an (even smaller) violation to the

independence assumption (now underlying the binomial distribution) between statistical

tests, which may also have contributed towards too narrow CIs. Finally, note that for the

bootstrapped statistics, the critical thresholds for rejecting H0 are approximations, i.e.

they will have their own distributions (see Appendix, section A.5.1). Note therefore that

the probability of a false-positive may vary between tests, in which case the assumption

(underlying the binomial distribution) that the probability of a false-positive is fixed at

α is violated. This might, again, have resulted in slightly inaccurate CIs for α for the

bootstrapped statistics.

To summarise, the minor tendency towards a liberal test performance can most likely

be attributed to a minor violation of the independence assumption between epochs,

potentially in combination with slightly too narrow CIs for the nominal α-level of the

test.

Specificity: pre-determined thresholds

As mentioned earlier, the DOF of EEG measurements are known to vary across record-

ings. This means that any a priori choice for the critical decision boundaries cannot be

accurate across all recordings, which is coincidentally why Elberling & Don (1984) have

recommended a conservative approach for the Fsp and the Fmp, i.e. by setting DOF

v1 to 5. Note also that the DOF are strongly correlated with the cut-off frequency of

the high-pass filter. In particular, increasing the cut-off frequency results in fewer low

frequency components. Because the lower frequency components tend to dominate the

signal due to their high power, removing these frequencies tends to reduce the corre-

lations amongst the samples within epochs, thus increasing the DOF of the data, and

removing it farther from the assumed DOF v1 = 5. It can therefore be expected that
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the performance of ‘Fsp 5 dof’ and ‘Fmp 5 dof’ would be even more conservative when

the high-pass cut-off frequency is increased, which was confirmed when repeating the

specificity assessment with an adjusted high-pass cut-off frequency of 100 Hz. In par-

ticular, DOF v1 ranged from 3 to 15 (with mean 8.4 and standard deviation [SD] 2.6)

when using a high-pass cut-off frequency of 30 Hz, and from 3 to 20 (with mean 11.3 and

SD 4.9) when using a high-pass cut-off frequency of 100 Hz (the latter was achieved by

fitting F-distributions to each bootstrapped null distribution and finding the best fitting

function). It might be noted here that the conservative estimate of v1 = 5 was originally

intended for the higher cut-off frequency of 100 Hz (Elberling & Don, 1984). Note also

that the Hotelling’s T 2 test and the bootstrapped statistics are immune to independence

violations amongst samples within epochs (but not between epochs). In particular, the

Hotelling’s T2 test accounts for correlated samples within epochs by scaling the feature

means by the covariance matrix of the features, whereas the bootstrapped statistics ac-

count for correlated samples by resampling on an epoch to epoch basis, which preserves

the correlations between samples within epochs. This further allows the bootstrapped

confidence intervals to more accurately reflect test dependent factors, such as the EEG

background noise, the electrode impedances and ultimately the DOF of the data. The

latter is important for many ABR applications where the objective detection methods

are expected to perform adequately across EEG recordings with varying DOF.

A similar argument might be made in favour of the bootstrap approach over the use

of pre-determined thresholds generated from no-stimulus data (see e.g. Stürzebecher et

al., 1999; Cebulla et al., 2000a; Cebulla et al., 2006), i.e. pre-determined thresholds may

not generalise well across recordings with varying DOF, whereas the bootstrap approach

estimates CIs specifically for the recording in question. The accuracy of pre-determined

thresholds calculated from no-stimulus data is further considered in the Appendix (sec-

tion A.8). Results indeed demonstrate relatively large variation in the critical decision

boundaries, even when calculated under more or less identical test conditions.

Sensitivity: detection rates and adjusted α values

Sensitivity was evaluated using detection rates, which have the desirable properties of

being intuitive and simple. A potential risk of using detection rates, however, is that

methods with higher FPRs receive an unfair advantage over those with lower FPRs.

The latter is most notably the case for ‘Fsp 5 dof’ and ‘Fmp 5 dof’, which were indeed

designed to have lower FPRs. The problem can be resolved by adjusting the nominal

α-levels, such that the FPRs are equal across methods. Note however that although this

allows for a more fair comparison, it is not necessarily a realistic one as adjustment of

the FPR may need to be carried out on an individual basis using prior knowledge that

is not always available. The detection rates using the adjusted α-levels are nevertheless

presented in the Appendix (section A.6). Results demonstrate an advantage for the

Hotelling’s T 2 test when using both the adjusted and unadjusted critical α values. This



75 Chapter 6. Sensitivity and test time

is also supported by FPRs in Table 6.1: consistent differences in detection rates (Fig.

6.1) cannot be readily explained from relatively inconsistent FPRs.

Sensitivity: the Hotelling’s T 2 test and the Modified q-sample V4

With respect to the frequency domain features for the Hotelling’s T 2 test, it is worth

noting that these are essentially the same as those used by the Modified q-sample V4

test (the Hotelling’s T 2 test is applied to the real and imaginary parts of the Fourier

components, whereas the Modified q-sample V4 test is applied to the phases and am-

plitudes), and yet a relatively large discrepancy in performance was still observed. This

can likely be attributed to the way in which features are weighted and combined into

a single statistic. In particular, the Hotelling’s T 2 test weights the features according

to their variance and covariance, whereas the Modified q-sample V4 test does not. The

latter results in a Q-dimensional hyper-ellipsoid (centred at the features means) as H0

rejection region for the Hotelling’s T 2 statistic, where the shape of the ellipsoid is de-

termined by the variance and covariance of the features (see section 3.2.1). Having an

ellipsoid as rejection region means that the null hypothesis is more easily rejected in

some directions relative to others, meaning it has the potential of providing a more

powerful test relative to, for example, a test with a spherical rejection region.

Based on the preceding paragraph, an identical performance between the Modified q-

sample V4 test and the Hotelling’s T 2 test might be expected when applied to uncor-

related features with equal variance, which was tested with additional simulations. In

particular, simulations described in Stürzebecher et al (1999) and Cebulla et al (2000)

were implemented, which used Gaussian zero mean white noise with stationary vari-

ance to represent the EEG background noise, along with a sinewave multiplied with a

Gaussian window for representing a response. The detection methods included for these

simulations were (i) the original q-sample uniform scores test (Mardia, 1972), (ii) both

the Modified q-sample V2 and V4 tests (Stürzebecher et al, 1999; Cebulla et al, 2006),

and (iii) the Hotelling’s T 2 test using the frequency domain approach. As predicted, the

Hotelling’s T 2 test and the Modified q-sample V4 test both came out on top in terms of

sensitivity (with very similar performances), followed by the Modified q-sample V2 test

(using ranks rather than measured values), and lastly by the original q-sample uniform

scores test (which only uses phase ranks). Further details and results can be found in

the Appendix (section A.9).

Finally, it was assumed a priori that the power of the ABR within the 900-1100 spectral

band would be negligible. A post-hoc feature optimisation (Appendix, section A.3) show

that this is not the case, i.e. significant improvements in test sensitivity were gained by

including the ∼900-1100 spectral bands. This might also explain why the Hotelling’s

T 2 test in the time domain slightly outperformed its frequency domain counterpart. It

should however be noted that the time-domain features for the Hotelling’s T 2 test were

also not optimal. Results (Appendix, section A.3) indeed suggest a small increase in
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test sensitivity when using 35 TVMs, as opposed to 25 TVMs, albeit when simulating

a response using ABR templates from data set D3.

Sensitivity: bootstrapping

The bootstrap approach was successful in improving the sensitivity of the Fsp and the

Fmp, as opposed to evaluating test significance using theoretical F-distributions. The

latter is not surprising when considering the conservative performance of ‘Fsp 5 dof’

and ‘Fmp 5 dof’. When re-plotting the detection rates using the adjusted alpha values

(Appendix, section A.6), the sensitivities of ‘Fsp 5 dof’ and ‘Fmp 5 dof’ and their boot-

strapped counterparts are more similar. Note that it is just the critical boundaries that

differ between ‘Fsp 5 dof’, ‘Fmp 5 dof’ and their bootstrapped counterparts. Evaluat-

ing test significance using the adjusted α-levels would then indeed result in more similar

critical boundaries, and hence a more similar test performance.

6.2 Simulations II: comparisons in sensitivity

For the second set of simulations, comparisons in sensitivity are drawn between: (i) the

CC, obtained from the ensemble coherent average and some template, (ii) the boot-

strapped ‘Max Diff’ and ‘Mean Power’ statistics, and (iii) ‘T2 Time + CC’, i.e. the

Hotelling’s T 2 test (applied in the time domain) combined with the CC (see section

3.6.3). The Fsp and T2 Time were also included so that comparisons with previous re-

sults can be drawn. For T2 Time, test significance was evaluated using either theoretical

F-distributions (the standard approach) or with the bootstrap. This allows comparisons

to be drawn between the bootstrapped T 2 statistic, and the T 2 statistic evaluated with

theoretical F-distributions. The latter is important to verify that the bootstrap ap-

proach is not reducing test sensitivity. Finally, the statistical features selected for the

analysis were chosen based on feature optimisations (section A.3 of the Appendix), and

can be considered more or less optimal.

Method

Data for the simulations is similar to the data used in ‘Simulations I’ (section 6.1),

and consists of recordings of real EEG background activity (data set D1), along with

click-evoked ABR templates (now using data set D4) for simulating a response. The

recordings of EEG background activity were downsampled to 5 kHz and band-pass

filtered (using a 3rd-order Butterworth filter, see Appendix A.16) from 100 to 2000 Hz.

Ensembles of N epochs were then constructed by randomly resampling N consecutive

30.03 ms epochs from within a randomly selected and pre-processed recording of EEG

background activity. A response was then simulated at -28 dB using a stimulus rate of
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33.3 Hz. A response with a SNR of -28 dB corresponds to the SNR of a typical response

to a 30-40 dB SL click (see Table 4.1). The 100 Hz high-pass cut-off frequency was

furthermore chosen based on results from Chapter 5, which show that independence is

satisfied when using a 100 Hz high-pass cut-off frequency in combination with a 33.3 Hz

stimulus rate. The ensemble size N again took values of 50, 100, 175, 275, 375, 500, 650,

and 800 epochs, and the initial 15 ms windows of the ensembles were analysed using the

aforementioned detection methods, both before and after simulating a -28 dB response.

Statistical features

As mentioned above, the statistical features selected for the methods were chosen based

on results from feature optimisations presented in section A.3 of the Appendix. The

number of TVMs for both T2 Time and ‘T2 Time + CC’ was set to 35, and the column

index for the Fsp was arbitrarily set to 20 (corresponding to the 4th ms following stim-

ulus onset). With respect to the CC, ABR templates (for correlating with the ensemble

coherent average) were constructed per subject, and per dB SL condition. To avoid con-

fusion, the templates for calculating the CC (i.e. the correlation between the ensemble

coherent average in question and a template) are henceforth denoted by ‘CC templates’,

whereas the templates for simulating a response (using data set D4) are referred to as

‘ABR templates’. For each subject and each dB SL condition, a ‘CC template’ was con-

structed by taking the grand coherent average across all ‘ABR templates’ from the dB

SL condition in question, after excluding the ‘ABR template’ that was currently being

used to simulate a response. The latter is necessary to avoid an unfair bias towards the

simulated response. With respect to the bootstrapped statistics, the ensemble coherent

average was subtracted from each epoch prior to random re-sampling, as described in

the Appendix (section A.5.2).

Results

Specificity

The observed FPRs (using α = 0.01 or α = 0.05) for each ensemble size N are presented

in Table 6.2. The binomial distribution was used to construct two-sided 95% CIs,

giving [0.0076, 0.013] for α = 0.01, and [0.0442, 0.0564] for α = 0.05. Note however

that for these simulations, a random resampling (with replacement) procedure was used

to construct the ensembles, which may have resulted in some segments being selected

multiple times. The latter may have resulted in an independence violation between tests

(underlying the binomial distribution), giving slightly too narrow CIs (see also section

A.2 of the Appendix). Significant deviations from the nominal α-levels are nevertheless

denoted in Table 6.2 by red and blue asterisks, indicating a liberal and conservative test

performance respectively.

Sensitivity

The percentage of detected responses (using α = 0.01) are presented in Fig. 6.2, as

a function of the ensemble size N . Results show that the bootstrapped CC came out
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on top for N = 50, but that test sensitivity decreased rapidly (relative to alternative

methods) for larger ensemble sizes. For all N > 100, the bootstrapped ‘T2 Time + CC’

statistic came out on top by a relatively large margin. Results also show an identical

performance between ‘T2 Time (F-distributions)’ and ‘T2 Time (bootstrapped)’, which

implies that bootstrapping did not decrease the sensitivity of the Hotelling’s T 2 test.

Note that for the bootstrap, the ensemble coherent average was subtracted from the

epochs prior to random resampling, which is necessary to avoid a small decrease in test

sensitivity (see section A.5.2 of the Appendix).

Figure 6.2: The percentage of detected responses when simulating a -28 dB response, as a
function of the ensemble size N . Note that the detection rates for T2 Time (bootstrapped) and
T2 Time (F-distributions) overlap, and may be difficult to distinguish from each other.

Table 6.2: Simulations II: specificity. The FPRs of the methods (using α = 0.05 or α = 0.01)
for the no-stimulus condition, per ensemble size N , using a nominal. Significantly (p<0.05)
conservative and liberal test performances are denoted blue and red asterisks respectively.

Alpha = 0.01

Ensemble size –> 50 100 175 275 375 500 650 800

T2 Time (F-distributions) 0.0114 0.0086 0.0086 0.0076 0.0092 0.0096 0.0096 0.0108

T2 Time (bootstrapped) 0.0102 0.0088 0.01 0.0094 0.0094 0.0108 0.0094 0.0112

T2 Time & CC (bootstrapped) 0.011 0.0102 0.0124 0.0124 0.0128 0.013 0.0126 0.0112

CC (bootstrapped) 0.013 0.0122 0.0116 0.011 0.0128 0.0124 0.011 0.0094

Max Diff (bootstrapped) 0.0080 0.0114 0.0116 0.0110 0.0104 0.0114 0.0110 0.0126

Mean Power (bootstrapped) 0.0086 0.0096 0.0086 0.0112 0.0104 0.0108 0.0098 0.0108

Fsp (bootstrapped) 0.0122 0.0106 0.0124 0.0114 0.0114 0.0102 0.0102 0.012

Fsp 5 dof 0.0032∗ 0.0012∗ 0.0012∗ 0.0018∗ 0.0002∗ 0.0002∗ 0.001∗ 0.001∗

Alpha = 0.05

Ensemble size –> 50 100 175 275 375 500 650 800

T2 Time (F-distributions) 0.05 0.0444 0.0444 0.049 0.0492 0.0522 0.0544 0.051

T2 Time (bootstrapped) 0.0458 0.0438∗ 0.0458 0.05 0.0496 0.0536 0.0544 0.052

T2 Time & CC (bootstrapped) 0.0536 0.0472 0.0522 0.0496 0.0556 0.0562 0.0536 0.0524

CC (bootstrapped) 0.0526 0.0552 0.0522 0.049 0.054 0.0538 0.051 0.0494

Max Diff (bootstrapped) 0.0456 0.0546 0.0540 0.0528 0.0490 0.0548 0.0562 0.0572∗
Mean Power (bootstrapped) 0.0466 0.0536 0.0548 0.0512 0.06∗ 0.0596∗ 0.0584∗ 0.0540

Fsp (bootstrapped) 0.0534 0.0588∗ 0.0554 0.0548 0.0546 0.0634∗ 0.0588∗ 0.0544

Fsp 5 dof 0.017∗ 0.0156∗ 0.0112∗ 0.0126∗ 0.0124∗ 0.009∗ 0.0138∗ 0.0114∗
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Discussion

With respect to specificity, results (Table 6.2) show that the FPRs were close to the

nominal α-levels, although various minor (but significant) deviations from α were still

observed. With respect to sensitivity, results demonstrate a relatively good sensitivity

for the CC for small N , but performance dropped rapidly (relative to alternative meth-

ods) for larger N . The best performing method for this section was the ‘T2 Time +

CC’ combination. These results are now discussed in more detail below.

Sensitivity

Starting with the bootstrapped CC, results show a relatively good test sensitivity for

small ensemble sizes, but performance dropped rapidly (relative to alternative methods)

as the ensemble size was increased. This can likely be attributed to the choice for the

‘CC templates’, which may have correlated well with some ‘ABR templates’ (resulting

in an early detection), but poorly with others (resulting in a late or no detection). If this

is indeed the case, then the bootstrapped CC may provide an exceptionally sensitive

test statistic, under the condition that the exact waveform morphology for the subject

in question is known a priori. In practice, this information is typically not available, and

using the bootstrapped CC as ABR detection method might be a bit of a gamble, i.e.

it may perform exceptionally well for some subjects, but poorly for others. A potential

solution might be to calculate the CC using multiple templates (and to bootstrap the

sum or the mean of the correlations). Alternatively, the CC can be combined with a

non-template specific method, such as the Hotelling’s T 2 test. Results from this section

indeed demonstrate a highly sensitive and robust (across ensemble sizes) performance

for the ‘T2 Time + CC’ combination.

Additional observations worth mentioning include results from T2 Time, which show

that sensitivity was not reduced when evaluating test significance with the bootstrap

approach, as opposed to using theoretical F-distributions. Note that for the bootstrap

approach in this section, the ensemble coherent average was subtracted from the epochs

prior to re-sampling. The latter is necessary if a (minor) decrease in sensitivity is to be

prevented (Appendix, section A.5.2). With respect to the bootstrapped ‘Mean Power’,

‘Max-Diff’, and Fsp, a minor advantage was observed for the ‘Mean Power’ and ‘Max

Diff’ statistics over the Fsp, which is in agreement with results from Lv et al (2007).

Specificity

With the exception of ‘Fsp 5 dof’, just a single conservative test performance was ob-

served for the bootstrapped T2 Time statistic (using α = 0.05, N = 100). For the

bootstrapped Fsp, Max Diff, and Mean Power statistics, a slightly liberal test perfor-

mance was observed for the N = 100, N = 375, N = 500, N = 650 and N = 800
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conditions when using α = 0.05. Various factors contributing towards significantly

liberal or conservative test performances were previously discussed in section 6.1, and

include (i) violations to the statistical assumptions underlying the test, (ii) random fluc-

tuations, and (iii) inaccurate CIs for α. Starting with the CIs, the resampling with

repacement procedure used to construct the ensembles in this section may have resulted

in some EEG measurements being used multiple times, resulting in an independence

violation (underlying the binomial distribution) between statistical tests, which might

have contributed towards too narrow CIs (note that this is in addition to the factors

discussed in section 6.1). With respect to the independence assumption between epochs,

simulation results from section 5.1 (based on 50 000 tests) show a FPR (using α = 0.05)

for the Hotelling’s T 2 test of 0.0484 when using a (hypothetical) stimulus rate of 33.3 Hz

and a high-pass cut-off frequency of 100 Hz. The two-sided 95% confidence intervals for

α = 0.05 were [0.0481, 0.0519], suggesting that independence is satisfied for these set-

tings (albeit when considered across a cohort of recordings). The latter is confirmed in

section A.5.1, which shows a FPR (using α = 0.05 and 175 000 tests) for the Hotelling’s

T 2 test of 0.0496, along with two-sided CIs of [0.0490, 0.0510].

6.3 Subject ABR data: comparisons in sensitivity and test

time.

Based on simulation results in sections 6.1 and 6.2, a final selection of methods is now

made for further comparison using the subject recorded ABR threshold series (data set

D2). The methods selected for the analysis include (i) the Hotelling’s T 2 test, applied in

either the time or frequency domain, (ii) the bootstrapped CC, (iii) the bootstrapped T2

Time + CC statistic, and (iv) the Fsp and the Fmp, evaluated using either theoretical

F-distributions with assumed DOF, or with the bootstrap approach.

Method

The recordings (data set D2) were downsampled to 5 kHz, band-pass filtered from 100

to 1500 Hz using a 3rd-order Butterworth filter (see Appendix, A.16), and structured

into ensembles of 30.03 ms epochs. The methods were then applied to the initial 1-16

ms windows of the epochs (the first ms was excluded to avoid potential contaminations

from a stimulus artefact), which was repeated per subject, and per dB SL condition.

The methods were furthermore applied to the ensembles sequentially, every 50 epochs,

from 50 epochs onwards. To clarify - the first test was performed using an ensemble

size of 50, then again using an ensemble size of 100, etc., until all 3000 epochs had been

analysed (a total of 60 tests, per subject, and per dB SL condition).

Statistical features

The features for the detection methods are the same as those described in section 6.2.
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The ‘CC templates’ were similarly constructed as described in section 6.2.

Results

The detection rates (α = 0.01) when using an ensemble size of N = 3000 epochs are first

presented in Fig. 6.3, per dB SL condition. The required time for detecting a response

was then found by finding the number of stimuli (expressed in seconds) required for

the p value to drop and remain below the 0.01 threshold for the remainder of the test.

The additional requirement that the p value remains below the 0.01 threshold ensures

that the FPR is not inflated due to multiple tests being performed. If a test did not

drop below the 0.01 significance threshold, then the full ∼90 seconds test time was used

(corresponding to 3000 epochs), which may have resulted in an underestimation of test

time in the case of a false-negative. The mean of the resulting detection times (taken

across subjects) are presented as bar graphs in Fig. 6.4, per method and per dB SL

condition.

Visually inspecting the distributions of the detection rates and detection times sug-

gests that both were strongly non-Gaussian, which was confirmed with the Kolmogorov-

Smirnov goodness of fit test (p < 0.01 for all distributions). Non-parametric statistical

analysis was therefore used to test whether the discrepancy amongst the methods in

terms of detection rates and detection times was significant. With respect to detection

rates, Cochran’s Q test was first used to test for equivalence in performance across all 7

methods, per dB SL condition. Results indicate a significant difference in performance

for the 20, 30, and 50 dB SL conditions (p < 0.01), and for the 10 dB SL condition

(p < 0.05). As a follow-up, Fishers exact test was used to draw pairwise comparisons

amongst the methods for the 10, 20, 30, and 50 dB SL conditions. Results show that

the performance of the bootstrapped ‘T2 Time + CC’ statistic differed significantly

(p < 0.05) from ‘Fsp 5 dof’ for the 30 dB SL condition. The remaining comparisons

were not significant. Similarly, with respect to detection times, non-parametric statis-

tical analysis was first used to test for equivalence in performance across all 7 methods

(now using Friedman’s test), per dB SL condition. Results indicate a significant dif-

ference in performance for the 20, 30, 40, and 50 dB SL conditions (all p < 0.001).

The Wilcoxon rank sum test was then used to draw pairwise comparisons between all

methods for the 20, 30, 40, and 50 dB SL conditions. Results show that Fsp 5 dof was

significantly outperformed by T2 Freq (p < 0.05) and T2 Time + CC (p < 0.0001)

for the 40 dB SL condition, and again by T2 Time + CC for the 20 and 30 dB SL

conditions (p < 0.05). T2 Time + CC also significantly (p < 0.05) outperformed the

bootstrapped CC for the 50 dB SL condition, and the bootstrapped Fsp (p < 0.05)

for the 40 dB SL condition. A borderline significant advantage was observed for the

bootstrapped CC over Fsp 5 dof for the 40 dB SL condition (p = 0.0525), for T2 Time

+ CC over the Fsp 5 dof for the 50 dB SL condition (p = 0.0559), and for T2 Time

over Fsp 5 dof for the 40 dB SL condition (p = 0.0528). The remaining comparisons
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were not significant.

Figure 6.3: The percentage of detected responses (p < 0.01) in a small sample of normal
hearing adults (data set D2), per method and per dB SL condition.

Figure 6.4: The mean of the detection times (calculated across 12 subjects) when detecting
ABRs in a small sample of normal hearing adults (data set D2), per method and per dB SL
condition.

Discussion

Starting with the CC, performance is relatively poor, most notably so for the 50 dB SL

condition. This is somewhat in agreement with the simulations, which show a maximum

detection rate of around ∼50% when simulating a -28 dB response (Fig. 6.2). As

noted in the discussion (section 6.2), a possible explanation is that some responses

did not match well with the templates. An additional explanation might be due to

the way in which the templates were constructed. In particular, visual inspection by

an experienced audiologist was used to first pre-select ensemble coherent averages that

contained a ‘clear response’. The ‘CC templates’ were then constructed using these ‘clear

responses’. This procedure may have resulted in a selection of ‘stereotypical’ responses

by the audiologist. The similarity between the ABR waveforms (and hence the CC

templates) might therefore have been larger than what might be typically observed in

practice.

Despite the relatively poor performance of the bootstrapped CC in this section, the
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‘T2 Time + CC’ combination was still the best performing ABR detection method. In

terms of detection rates, it significantly outperformed Fsp 5 dof, whereas in test time, it

significantly outperformed Fsp 5 dof, the bootstrapped CC, and the bootstrapped Fsp.

Results also suggest a small advantage for ‘T2 Time + CC’ over the standard Hotelling’s

T2 test (applied in either the time or frequency domain), which, although not significant

for a small sample size of just 12 subjects, was consistent across test conditions.

With respect to the detection rates, note that just a single comparison between methods

was found to be significant. This can partly be attributed to a loss of information when

using detection rates. In particular, the p values are transformed into ‘all or nothing

quantities’, i.e. a 0 for p < α or a 1 for p > α. The ‘all or nothing’ values thus no longer

discriminate between weakly significant and highly significant p values, e.g. a p value of

0.0501 and a p value of 0.9 would both be rounded up to 1. When also considering the

small sample size of just 12 subjects, along with a relatively high sample variance, then

it is no longer surprising that the majority of the comparisons between methods were

not significant. This is in contrast to the detection times, which did not suffer from the

loss of information, and where many comparisons were indeed significant.

6.4 Summary

This Chapter used simulations and subject data to evaluate and compare the perfor-

mance of various existing and new ABR detection methods. The methods selected for

the analysis were chosen primarily based on the literature review presented in Chapter

2, whereas the statistical features were selected based on pilot simulations and results

from feature optimisations (Appendix, section A.3), and otherwise on findings or rec-

ommendations from the literature. The overall goal for this Chapter was to find or

design an ABR detection method with good sensitivity and low test time, for some fixed

type-I error rate. The main results in terms of specificity, sensitivity, and test time are

summarised below.

Specificity

Throughout this Chapter, the FPRs of the methods mostly fell within the two-sided

95% CIs for α. For a few cases, weakly conservative and liberal test performances were

observed, which were attributed to (i) violations to the underlying statistical assump-

tions, (ii) random fluctuations, and (iii) inaccurate CIs for the nominal α-levels. With

respect to the statistical assumptions, the main concern for ABR detection methods was

shown in Chapter 5 to be the independence assumption between epochs. When using a

high-pass cut-off frequency of 30 Hz and a stimulus rate of 33.3 Hz, results from Chapter

5 suggest a small tendency towards a liberal test performance, which is in agreement

with results presented in Table 6.1. When using a high-pass cut-off frequency of 100 Hz
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and a stimulus rate of 33.3 Hz, results from Chapter 5 (and the Appendix, section A.5.3)

suggest that independence is satisfied. The latter is also in agreement with the FPRs

from section 6.2 (where the high-pass cut-off frequency was 100Hz), i.e. no consistently

conservative or liberal test performances were observed (with the exception of Fsp 5

dof). With respect to inaccurate CIs for the nominal α-level, it is expected that the CIs

throughout this Chapter were slightly too narrow. As discussed in sections 6.1 and 6.2,

this may have been the result of a multitude of factors (see discussions in sections 6.1

and 6.2).

With respect to Fsp 5 dof and Fmp 5 dof, results demonstrate an overall conservative

test performance, as predicted by Elberling & Don (1984). Comparing results from

section 6.1 (fc = 30) to section 6.2 (fc = 100) also confirms that the specificity of ‘Fsp 5

dof’ and ‘Fmp 5 dof’ is dependent on the spectral content (and hence the DOF) of the

data. This is of course not desirable for ABR detection, i.e. specificity should ideally

be controlled as intended across recordings with varying DOF.

With respect to the Hotelling’s T 2 test and the bootstrapped statistics, results demon-

strate a relatively robust control of specificity throughout this Chapter. For the Hotelling’s

T 2 test, this can at least partly be attributed to the way in which features are weighted

and combined using the feature covariance matrix, which takes the correlations between

samples within epochs into account. For the bootstrapped statistics, the random re-

sampling procedure preserves the correlations between samples within epochs, and thus

also takes the correlations between samples into account. It is therefore hypothesized

that the specificity of the Hotelling’s T 2 test and bootstrapped statistics will be more

robust across recordings with varying DOF, relative to ABR detection methods where

significance is evaluated using (partly) pre-determined significance thresholds, as is the

case for e.g. ‘Fsp 5 dof’ and ‘Fmp 5 dof’.

Sensitivity and test time

Starting with the Fsp and the Fmp, results firstly demonstrate an improved sensitivity

when evaluating test significance with the bootstrap approach, as opposed to using the-

oretical F-distributions with assumed DOF. For the simulations, evaluating test signifi-

cance with the bootstrap approach (as opposed to using theoretical F-distributions) re-

sulted a maximum increase in test sensitivity of ∼40%, whereas for the subject recorded

ABR threshold series, the increase in test sensitivity was ∼25%. With respect to the re-

maining methods, a highly sensitive and robust performance for the Hotelling’s T2 test

was observed. When compared to the Fsp (evaluated using theoretical F-distributions),

a maximum increase in test sensitivity of ∼60% was observed for the simulations, and

∼40% for the subject recorded data. The best performing method throughout this Chap-

ter, however, was the bootstrapped ‘T2 Time + CC’ combination. For the simulations,

a maximum increase in test sensitivity for ‘T2 Time + CC’ over the Fsp (evaluated using
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theoretical F-distributions) of 70-75% was observed, whereas for the subject recorded

data this was ∼50%.

With respect to the bootstrapped CC, performance was relatively poor for the subject

recored data, and for large N in the simulations. As noted in section 6.2, this can likely

be attributed to the adopted ‘CC templates’, which might have correlated well with

some subjects, but poorly with others. This suggests that if the exact ABR waveform

morphology for the subject in question is known a priori, that the bootstrapped CC

may provide an exceptionally sensitive test statistic, else using the CC as ABR detection

method might be a bit of a gamble, i.e. it may perform well in some subjects, but poorly

in others.

Various additional observations worth mentioning include the performance of T2 Time

versus T2 Freq, which was found to be more or less identical, under the condition that

the feature sets were optimal (as was the case in section 6.2). Secondly, the discrepancy

in sensitivity between T2 Freq and Modified q-sample V4, which demonstrates the im-

portance of taking both the variance and the covariance of the features into account.

The latter is achieved by the Hotelling’s T 2 test by re-scaling and combining the fea-

ture means as a function of the feature covariance matrix. This may similarly have

contributed (to some extent) to the advantage for the Hotelling’s T 2 test over methods

such as the Fsp, the Fmp, and the Mean Power statistics, which similarly neglect feature

covariance when evaluating test significance.



Chapter 7

Multi-stage adaptive group

sequential tests: the

Convolutional Group Sequential

Test

When using a conventional approach for statistical hypothesis testing, then the statisti-

cal analysis should be specified at the outset. This includes the choice for the statistical

test, the features, and the ensemble size. Note that fixing the statistical analysis a priori

may be inefficient for evoked response detection, as both the signal-to-noise ratio (SNR)

and the morphology of the response can vary across subjects, recordings, and test condi-

tions. To deal with uncertainty in the SNR and the response morphology, this Chapter

introduces a novel adaptive sequential testing procedure for ABR detection. The main

benefit of the procedure over existing test strategies is that the statistical analysis can

be optimised online, throughout the sequential analysis, i.e. the test can be tailored

specifically to the subject and recording in question. The approach is furthermore built

around a new method for controlling the type-I error rate of sequentially applied statis-

tical tests, called the Convolutional Group Sequential Test (CGST). The CGST revolves

around the discrete convolution of truncated probability density functions, and allows

the null distribution for the test statistic to be constructed at each stage of the sequen-

tial analysis. Because the null distribution remains tractable, the procedure for finding

the stage-wise critical decision boundaries is greatly simplified.

The remainder of this Chapter is structured as follows: in section 7.1, some back-

ground and a very brief literature review on sequential testing (with the emphasis on

the adaptive group sequential test) is presented. The CGST and its underlying theo-

retical framework is then introduced in section 7.2, after which some simulation results

are presented in section 7.3. A brief discussion on various design parameters along with

some connections to existing methods from the literature is then presented in section

86
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7.4.

7.1 Background

There are many methods available in the literature for constructing the stage-wise crit-

ical decision boundaries and controlling the type-I error rate for sequential test proce-

dures. These methods differ primarily in terms of (i) design flexibility, and (ii) how the

data is analysed. Starting with the latter, a distinction is typically made between ‘fully

sequential tests’, where data is analysed continuously as it becomes available, and ‘group

sequential tests’, where data is analysed in distinct groups or blocks of observations. A

group sequential test is furthermore called adaptive when data-driven adaptations to

test parameters are permitted following each stage of the sequential analysis (Wass-

mer, 2000). The main advantage of an adaptive group sequential test is that the initial

assumptions (e.g. the power of the EEG background noise, or the amplitude and mor-

phology of the response) are relaxed, i.e. these can be updated (and the statistical

analysis modified accordingly) as new data becomes available, which can help bring the

trial to an unambiguous test outcome in terms of ‘effect present’ or ‘effect absent’. With

respect to design flexibility, this is related to how free the user is in terms of: choosing

the total number of sequential stages for the analysis (e.g. some methods permit just

2 or 3 stages), how the available α-level is ‘spread’ across the sequential analysis (note

that this is also related to statistical power), and the type of adaptations permitted

following each stage of the sequential analysis (further discussed in the review below).

The main focus for the following section is to provide a very brief review on sequential

testing, with the emphasis on the adaptive group sequential test.

7.1.1 Literature review

Early applications for sequential testing with controlled type-I error rates date back

to the late 1920s, and were designed for quality control in industrial processes (see

e.g. Dodge & Romig, 1929; Shewart, 1931), i.e. for discriminating between defective

and non-defective products. Besides improving quality control, sequential testing also

allowed causes for potential defects to be identified (and eliminated) at each stage of

the sequential analysis, thus resulting in a reduced probability of a defect (Sheward,

1931). Sequential test theory was later further developed by Wald (1947) who intro-

duced the sequential probability ratio test (SPRT); a simple method for constructing

decision boundaries (for either accepting or rejecting H0) for a fully sequential likelihood

ratio test, which is still frequently used up to the present day. From the 50s onwards,

the (non-adaptive) group sequential test began to emerge (McPherson, 1974; Pocock

1977; O’Brien and Fleming, 1979), which became increasingly popular in clinical trials

due to ethical and economical considerations. The design flexibility for these methods,

however, was still relatively poor. In particular, the methods were typically restricted
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to normally distributed responses, and data-driven adaptations to test parameters were

not permitted. The latter was somewhat addressed by Lan & DeMets (1982) who in-

troduced the α-spending function, which allowed decision boundaries to be specified

without needing to know the number of stages or the ensemble size per stage. The

choice for the ensemble size, however, still had to be made independently of the pre-

viously accumulated data, i.e data-driven adaptations were not permitted. This is not

the case for the adaptive group sequential test.

The advantage of using an adaptive group sequential test is that the user is allowed to

look at previously analysed data (it can be ‘unblinded’), and use this data to adjust

or optimise test parameters for all remaining stages of the sequential analysis, without

compromising the overall type-I error rate (Wassmer, 2000). Examples of the type of

adaptations permitted include sample size modifications (see e.g. Proschan & Huns-

berger, 1995; Lehmacher & Wassmer, 1999), changes to the number of remaining tests

within the trial (e.g. Hartung & Knapp, 2003), and even a change in the choice of

statistical test and features selected for the analysis. As noted earlier, adaptive group

sequential tests relax the initial assumptions regarding, for example, the effect size and

sample variance, and can help bring the trial to an unambiguous outcome in terms of

‘effect present’ or ‘effect absent’. Indeed, as noted by Proschan & Hunsberger (1995),

various controversies in the literature may be the result of poorly designed trials, such as

an overestimated effect size (and hence an underpowered test), which might have been

prevented by use of a suitable adaptive group sequential test.

Many types of adaptive group sequential tests can be found in the literature, the ma-

jority of which are built around either (1) conditional error functions (see e.g. Proschan

& Hunsberger, 1995; Liu & Chi, 2001; Muller & Shafer, 2001), i.e. the conditional

probability of incorrectly rejecting the null hypothesis given the test statistic from the

previous stage, or (2) analysing the data in disjoint sub-samples and finding an appropri-

ate critical decision boundary for some combination function of the stage-wise p values

or test statistic (Bauer & Köhne, 1994; Lehmacher & Wassmer, 1999; Brannath et al,

2002; Hartung & Knapp, 2003; Chang, 2006; Sheng & Qiu, 2007). The earlier designs

in Bauer & Köhne (1994) and Proschan & Hunsberger (1995) allow various data-driven

adaptations, but are still limited regarding (i) the number of stages permitted, and (ii)

the choice for the stage-wise critical decision boundaries (e.g. how the available α is

spent throughout the trial). Methods following these earlier designs strive to either

simplify the construction of adaptive group sequential tests (e.g. Sheng & Qiu, 2007),

or to provide additional design flexibility in terms of the choice for critical decision

boundaries and the type of adaptations permitted (Fisher, 1998; Shen and Fisher, 1999;

Lehmacher & Wassmer, 1999; Müller & Shäfer, 2001; Liu & Chi, 2001; Brannath et al,

2002; Hartung & Knapp, 2003; Chang, 2006; Sheng & Qiu, 2007).

Methods for constructing multi-stage adaptive designs that have good flexibility include

the ‘sum of p values approach’ in Chang (2007), the ‘new class of completely self-

designing tests’ described in Hartung & Knapp (2003), ‘Recursive combination tests’
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described in Brannath et al (2002), and a general approach based on conditional error

functions described in Müller & Schäfer (2001). Starting with the method in Chang

(2006): as the name suggests, at each stage of the sequential analysis, a p value is gener-

ated by the statistical test, which is combined (through summation) with all previously

generated p values. At each stage of the analysis, the null hypothesis is evaluated using

the summary statistic, and the trial can be stopped for either futility (H0 is accepted)

or efficacy (H0 is rejected), else the trial proceeds to the next stage. The user is also

free to spend the available α across the K stages as desired, and their method per-

mits data-driven adaptations to both the sample size and the statistical test selected

for the analysis. A potential disadvantage for their approach is that combining p values

through summation can potentially result in a sub-optimal test sensitivity (see also the

Appendix, section A.12).

A flexible, potentially powerful, and remarkably simple approach for designing adaptive

group sequential tests is given by Hartung & Knapp (2003). The statistic consists of

a sum of inverse χ2-distributed random variables (see also section 7.2.3), and permits

adaptations to (i) the sample size, (ii) the statistical test selected for the analysis, and

(iii) the number of remaining stages within the trial. A potential disadvantage is that

early stopping for futility is not permitted. The stage-wise type-I error rates are also

‘hidden’ from the user, i.e. it is not transparent in terms of how the available α is

‘spread’ across the K stages (further details presented in the discussion, section 7.3.2).

Fisher (1998) and Shen and Fisher (1999) have proposed various ‘self-designing designs’

where the number of stages and sample sizes need not be specified in advance. However,

their method only allows the null hypothesis to be rejected after the final stage of the

sequential analysis. This is in contrast to the methods described in Müller & Shäfer

(2001) and Brannath et al (2002), which provide similar design flexibility as Fisher

(1998) and Shen and Fisher (1999), whilst still allowing the test to be stopped early for

futility and efficacy. The complexity of these methods, however, is quite high. Moreover,

in Brannath et al (2002), the decision to stop early is based exclusively on the p value

from the current stage. An overall p value is then computed only after the decision

to stop has been made. Although the stage-wise critical decision boundaries can be

chosen such that an early stopping will always result in the overall p value being smaller

than α, this method might result in a loss of test sensitivity relative to some alternative

methods.

In the remainder of this Chapter, a novel method for designing multi-stage adaptive

group sequential tests is described, called the Convolutional Group Sequential Test, or

CGST. In terms of design flexibility, the CGST is similar to Müller & Shäfer (2001) and

Brannath et al (2002), except that data-driven adaptations to the stage-wise critical

boundaries are typically not permitted. That said, an exception can be made for evoked

response detection under certain conditions (see Chapter 9). It is also worth pointing

out that the CGST will likely have an advantage in terms of sensitivity over Brannath

et al (2002), as the choice to stop the test early for the CGST is based on all previously
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generated p values (not just the p value from the current stage, as is the case in Brannath

et al). An additional advantage for the CGST over Brannath et al (2002) and Müller &

Schäfer (2001) is that it is considered to be an intuitive and accessible approach.

7.2 The CGST: theoretical framework and graphical illus-

trations

This section introduces the notation and underlying theoretical framework for the CGST,

after which graphical illustrations are used to further clarify the approach. Consider first

a sequential test procedure with K stages, i.e. the statistical test is applied to the data

K times, with each stage considering a new group of (independent) samples. The choice

for the statistical test will depend on the specific problem, but does not affect the CGST

itself. The goal is to evaluate the global null hypothesis H0 at nominal significance level

α:

H0 : H01 ∩ ... ∩H0K (7.1)

where H0i (for i = 1, 2, ...,K) is the null hypothesis at stage i. It is assumed that

all stage-wise null hypotheses H0i pose the same proposition (no ABR present), else

the global null hypothesis becomes difficult to interpret. At each stage, a new group

of samples is collected, and a p value is generated by analysing the group of samples

with a statistical test. As is the case in some methods from the literature (Bauer

& Köhn, 1994; Brannath et al., 2002; Chang, 2006; Hartung & Knapp, 2003; Sheng

& Qiu, 2007), it is assumed that all stage-wise p values pi (for i = 1, 2, ...,K) are

stochastically independent and uniformly distributed on the [0,1] interval under H0,

which implies that the accumulated data cannot be pooled, but must be analysed in

disjoint sub-samples. Data analysed in stage i, for example, cannot be re-analysed in

the subsequent stages of the trial, neither can it be pooled with previously collected

data. However, at each stage of the analysis, all previously generated p values can be

combined into a summary statistic, after which the test can be stopped for either futility

or efficacy. Futility implies that the summary statistic is sufficiently far from statistical

significance, such that additional data collection is deemed futile, and H0 is accepted,

whereas efficacy implies that there is sufficient evidence for rejecting H0 at level α. The

CGST furthermore requires the summary statistic to be a summation of (potentially

transformed) p values. The stage k summary statistic is thus defined as:

Σk =

k∑
i=1

fi(pi) (7.2)
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where fi(pi) is the desired transformation at stage i for pi. A typical transformation

that may be used here is that of Fisher (Fisher, 1932), achieved by defining fi(pi) =

−2ln(pi). Note that although transformation is not necessary, combining untransformed

p values through summation can potentially result in a small loss of test sensitivity rela-

tive to some alternative combination functions (see e.g. Chow &, 2007Chang). Fisher’s

method in particular has some desirable properties in terms of efficiency (Littel & Folks,

1971), which can be attributed to the ln(pi) transform placing more emphasis on small p

values (note also that a succession of small pi is more likely when an evoked response is

present). After combining the stage-wise p values, the test can be stopped at stage i for

futility when Σi < Bi, or for efficacy when Σi > Ai, where Ai and Bi (for i = 1, 2, ...,K)

are the stage i critical decision boundaries. Finally, note that it is assumed here that

transformation fi(pi) gives large values for small pi, i.e. that fi(pi) is monotonic with a

negative gradient.

Critical decision boundaries

The method for finding the critical decision boundaries Ai and Bi, such that the nominal

α-level of the full test is preserved, is built around the convolution theorem, which states

(Grinstead & Snell, 1997):

The null distribution for the sum of two independent random variables is

given by the convolution of their individual null distributions.

Hence, if the stage-wise null distributions (the null distributions for fi(pi), henceforth

denoted by φi) are known, then these can be iteratively convolved (an additional con-

volution for each stage of the analysis), to find the null distribution for the combined

statistic Σi, henceforth denoted by φΣi . An important caveat is that φΣi changes when

proceeding from stage i to stage i + 1, as it is not possible to enter stage i + 1 with

Σi > Ai or Σi < Bi, else the trial would already have been stopped. The probability

densities for the stage i rejection regions for φΣi should therefore be set to zero prior to

convolving with φi+1. More formally, the null distribution for the combined statistic at

stage two is given by:

φΣ2 = φ
T [B1,A1]
1 ∗ φ2 (7.3)

and for all following stages by:

φΣi = φ
T [Bi−1,Ai−1]
Σi−1

∗ φi (7.4)
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where ∗ denotes convolution, and where φT [B,A] indicates that distribution φ contains

non-zero values exclusively for the [B,A] interval, i.e. that the distribution has been

truncated to this interval. When using the discrete convolution, the φi distributions

should furthermore be sufficiently smooth to ensure a good accuracy. For Fisher’s

method (the φi are χ2
2-distributed), a good accuracy is obtained by defining φi on the

[0,30] interval with a resolution of 1
2000 .

Once φΣi has been generated, then finding Ai and Bi is straightforward. In particular,

the stage i critical boundary for efficacy Ai is found by numerically solving:

ΦΣi [Ai,∞] = αi (7.5)

where αi is the desired type-I error rate for stage i, and where ΦΣi [Ai,∞] is the cumu-

lative distribution function for Σi, calculated across the interval [Ai,∞]. In practice,

∞ is of course replaced by a sufficiently large value (a value of 30 is sufficiently large

when using Fisher’s method). The αi values (for i = 1, 2, ...,K) are furthermore chosen

freely, under the condition that
∑K

i=1 αi = α. Similarly, the stage i critical boundary

for futility Bi is found by numerically solving:

ΦΣi [0, Bi] = βi (7.6)

where βi is the desired fraction of tests to be rejected for futility (under H0) for stage

i. The βi values (for i = 1, 2, ...,K) are also chosen freely, under the condition that

α+
∑K

i=1 βi 6 1. This procedure is now illustrated graphically using a generic example

below.

7.2.1 Illustrations

The goal for this section is to clarify the approach for a three stage sequential design using

illustrations presented in Fig. 7.1. First, let the nominal α-level be 0.15 (an unusually

high type-I error rate is chosen for illustration purposes only), and be spread equally

across 3 stages (K = 3), giving stage-wise type-I error rates α1 = α2 = α3 = 0.05. The

βi values are furthermore specified as β1 = 0.2, β2 = 0.4, and β3 = 0.25, i.e. for the

current example α +
∑

i=1 βi = 1. Further considerations on how to chose the stage-

wise αi and βi values are given in the discussion. For the p value combination function,

the generalized inverse χ2-method (see e.g. Hartung & Knapp, 2003) is used, which is
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defined as:

Σk =

k∑
i=1

[χ2
vi ]
−1(1− pi) (7.7)

where [χ2
vi ]
−1 is the inverse of a χ2 distribution with vi DOF, and where DOF vi (for i =

1, 2, ...,K) are chosen freely by the user. Note that transforming pi using [χ2
vi ]
−1(1− pi)

results in a χ2
vi-distributed random variable (under the condition that pi is uniform on

the [0,1] interval under H0), i.e. for the current example, the φi distributions are χ2
vi-

distributed. Note also that the vi values function as weights for the stage-wise p values,

with larger values corresponding to a larger weighting, i.e. when DOF vi are increased,

then the [χ2
vi ]
−1(1 − pi) transform will give larger values, in which case pi will make a

larger contribution towards summary statistic Σk. It is also worth mentioning here that

when vi = 2 for all i, Fishers method is obtained. For the current example, v1, v2, and

v3 are set to 2, 3, and 4 respectively (chosen to illustrate the possibility of using distinct

functions at each stage). The choice for statistical test along with the ensemble size for

the first stage of the analysis is then also specified, after which data is collected and

analysed with the statistical test, thus generating p value p1. The test can be stopped

for efficacy if p1 6 α1, and for futility if p1 > 1 − β1, else the trial proceeds to stage

two of the analysis. It is worth emphasizing here that φ1 need not be generated for

the first stage of the analysis. For completeness, however, the φ1 distribution (given in

this example by a χ2
2 distribution, in accordance with the choice v1 = 2) is shown in

Fig. 1 (plot a), along with the stage one critical boundaries A1 and B1 for Σ1. Efficacy

boundary A1 was found by solving Eq. 7.5, i.e. the area under φ1 to the right of A1

should equal α1 = 0.05, giving A1 = 5.992. Futility boundary B1 was found by solving

Eq. 7.6, i.e. the area under φ1 to the left of B1 should equal β1 = 0.2, solved for

B1 = 0.446.

Assuming p1 fell within the [B1, A1] interval, stage 2 is initiated by collecting a second

group of samples. Stage two data is then analysed with the statistical test (note again

that data analysed in stage one cannot be re-analysed here), giving p value p2. Results

from stages one and two are then combined using Eq. 7.7, giving Σ2 = [χ2
2]−1(1− p1) +

[χ2
3]−1(1− p2), and the null distribution for Σ2 is found using Eq. 7.3:

φΣ2 = [χ2
2]T [B1,A1] ∗ χ2

3 (7.8)

That is, φ1 (given by a χ2
2 distribution, in accordance with the choice v1 = 2) is truncated

to the [B1, A1] interval, and convolved with φ2 (given by a χ2
3 distribution, in accordance

with the choice v2 = 3). This procedure is illustrated in Fig. 1: plot (b) shows φ
T [B1,A1]
1 ,

i.e. φ1 where the stage one H0 rejection and acceptance regions have been truncated.
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It might be pointed out here that if H0 were to be true, that 25% of the tests would

have already been stopped after stage 1, i.e. (α1 · 100)% = 5% of the tests would have

been stopped for efficacy, and (β1 · 100)% = 20% for futility. Upon entering stage two,

the area under φ
T [B1,A1]
1 is therefore 1 − β1 − α1 = 0.75. The truncated stage one null

distribution φ
T [B1,A1]
1 (plot b) is then convolved with φ2 (plot c), giving φΣ2 (plot d).

Stage two critical boundaries A2 and B2 can then again be found by solving Eq. 7.5

and 7.6, respectively, i.e. the area under φΣ2 to the right of A2 should equal α2 = 0.05,

giving A2 = 9.695, whereas the area under φΣ2 to the left of B2 should equal β2 = 0.4,

giving B2 = 4.798. If Σ2 6 B2 or Σ2 > A2, the test is stopped for futility and efficacy,

respectively, else the trial proceeds to stage three.

Assuming Σ2 fell within the [B2, A2] interval, a third group of samples is collected for

the third (and for this example final) stage of the analysis. Stage three data is then

analysed, giving p value p3, which is combined with p1 and p2 using Eq. 7.7, now giving

Σ3 = [χ2
2]−1(1 − p1) + [χ2

3]−1(1 − p2) + [χ2
4]−1(1 − p3). The null distribution for Σ3 is

then found using Eq. 7.4:

φΣ3 = φ
T [B2,A2]
Σ2

∗ χ2
4 (7.9)

That is, φΣ2 is truncated to the [B2, A2] interval, after which it is convolved with φ3

(given in this example by a χ2
4 distribution, in accordance with the choice v3 = 4).

The procedure is again illustrated in Fig. 1: plot (e) shows φΣ2 where the stage two

rejection regions have been truncated, thus further reducing the area under φ
T [B2,A2]
Σ2

to

1−
∑2

i=1 αi−
∑2

i=1 βi = 0.3, and plot (f) shows φ3 (a χ2
4 distribution). Convolving plots

(e) and (f) gives φΣ3 , shown in plot (g). The stage three critical boundaries A3 and B3

are then found using the same procedure as in stages one and two: the area under φΣ3

to the left of B3 should equal to β3 = 0.25, giving B3 = 13.396, and the area under

φΣ3 to the right of A3 should equal to α3 = 0.05, giving A3 = 13.396. Note that when

α +
∑K

i=1 βi = 1, that the critical boundaries for futility and efficacy at the final stage

of the analysis will be the same, i.e. H0 is either accepted for Σ3 6 B3 = A3, or rejected

for Σ3 > B3 = A3.

7.2.2 Simulations

This section describes and presents results from simulations. The goal is to explore

sensitivity and test time as a function of the SNR for different choices for K and βi.

Method

Data for the simulations consists of ensembles of N = 3000 epochs of simulated coloured

noise (constructed as described in section 4.4) for representing the EEG background

activity, along with scaled ABR templates (data set D4) for representing a response.
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Figure 7.1: An overview of the approach for generating the critical decision boundaries for a
three-stage group sequential test design. Details are presented in the text.

The SNR of the simulated response (calculated as described in section 4.3) took values

of ranging from -20 dB to -50 dB, in steps of 0.5 dB. The no-stimulus condition was

also included, i.e. SNR = −∞. The resulting ensembles were then analysed using the

Hotelling’s T 2 test (applied in the time domain to 25 TVMs) in K sequential stages,

giving stage-wise ensemble sizes of 3000
K , and where the number of stages K took values

of either 1, 2, 4, or 8. The nominal α-level was set to 0.01, which was also split equally

across the K stages, giving αi values of α
K for all i and K. Finally, the analysis was

performed both with and without futility stopping. When futility stopping was used,

the βi values were set to 0.9
K , for all i and K, whereas when no futility stopping was used,

the βi values were all set to zero. It is worth noting here that these values were chosen

primarily for exploring the performance of the CGST, and that an optimal selection

of design parameters will depend on the specific application in question (see also the

discussion in section 7.3).

Results

The true-positive-rates (TPRs) and mean test times (calculated across 100 000 tests)

are shown in Figure 7.2 as a function of the SNR, for different K, and for both with
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and without futility stopping. Results firstly demonstrate a reduced TPR for increasing

K (plots a and c), i.e. analysing N samples using the single shot test will always

have a higher statistical power relative to analysing the same N samples using multiple

sequentially applied statistical tests (see also Bauer & Köhne, 1994). Test time, however,

will tend to be higher for the single shot test (plots b and d), as the test is only applied

after the full N = 3000 stimuli have been presented. In terms of futility stopping, this

had no noticeable effect on the TPR for these simulations (plots a and c). Moreover,

when the SNR was relatively large (approximately >-30 dB), futility stopping also had

no noticeable effect on the mean test time (plot d). For small SNRs (approximately

<-30 dB), however, futility stopping resulted in relatively large reductions in mean

test time (plot d). The extent to which futility stopping affects test performance is

therefore dependent on the SNR of the response, but also on the choice for the βi

values. In particular, when the evoked response has a high SNR and the βi values are

chosen conservatively, then the Σi values will tend to be much larger than the Bi futility

boundaries, and the test will typically not be stopped for futility. Vice versa, when the

SNR is low (or a response is absent) and the βi values are chosen more liberally, then

the Σi values will tend to be closer to the Bi values, and the probability of stopping the

test early in favour of H0 is increased, potentially resulting in an increased false-negative

rate. A more liberal choice for the βi values might therefore result in larger reductions

in test time, potentially at the cost of a reduced test sensitivity.

With respect to the no-stimulus condition: when no futility stopping was used, results

show FPRs of 0.00949, 0.00989, and 0.00988 for K = 2, K = 4, and K = 8, respectively,

whereas when futility stopping was used, the FPRs were 0.00953, 0.00994, and 0.00992

for K = 2, K = 4, and K = 8, respectively. For the single shot test (K = 1), a

FPR of 0.0096 was observed. The two-sided 95% confidence intervals for the expected

0.01 FPR are furthermore given by [0.0094, 0.0106]. Hence, no significant deviations

from the expected 0.01 FPR were observed for this data. The confidence intervals were

furthermore found using a binomial distribution, constructed from 100 000 observations,

where the probability of a single ‘successful’ Bernoulli trial (defined here as a false-

positive) was set to 0.01 (the theoretical probability of a false-positive)

7.3 Discussion

This Chapter presented the CGST; a relatively simple and intuitive method for finding

the stage-wise critical decision boundaries (for rejecting or accepting H0) and control-

ling the type-I error rate for sequentially applied statistical tests. Although originally

designed for evoked response detection, it should be stressed that the CGST can po-

tentially be used for a wide range of applications. The only condition for using the

CGST is that the following two assumptions are satisfied: (i) the φi distributions (for

i = 1, 2, ...,K) are mutually independent under H0, and (ii) the φi distributions (for

i = 1, 2, ...,K) are known a priori. With respect to (ii), it was assumed throughout this
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Figure 7.2: Results from the simulations, which include the true-positive-rate (TPR) and mean
test time (calculated across 100 000 tests) as a function of the SNR, for various K, both with
futility stopping (plots c and d) and without (plots a and b).

work that the stage-wise p values were uniform on the [0,1] interval under H0. Note that

this is only true when the assumptions underlying the statistical test (used for analysing

the data) are satisfied. This emphasizes the importance of choosing an appropriate sta-

tistical test for the data analysis, i.e. the assumptions underlying the statistical test

should be satisfied for the data in question, else additional violations (originating from

the CGST) might be introduced, potentially resulting in increased or decreased type-I

and type-II error rates.

With respect to test performance, the main advantage of using the CGST over a con-

ventional single shot approach is a reduced mean test time, which comes at the cost

of a reduced statistical power. As demonstrated in section three, the trade-off between

test time and statistical power is dependent on both the SNR of the response, and the

CGST design parameters selected for the analysis. The trade-off can therefore be op-

timised for the specific application in question by a suitable selection of CGST design

parameters, which include; the number of stages K; the ensemble size N ; the αi and βi

values; and the p value transformation functions fi(). Various trade-offs associated with

these parameters are further discussed below.
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7.3.1 CGST design parameters

Starting with the number of stages K, a trade-off is introduced between a potential

reduction in test time versus an increased type-II error rate (a reduced statistical power).

As mentioned earlier, analysing N samples using a single test (K = 1) will always have

a higher statistical power compared to analysing the same N samples using multiple

sequentially applied tests (Bauer & Köhne, 1994). Test time, however, will tend to be

higher for the single shot test, as the test can only be stopped after the full ensemble

of epochs has been collected. For the most part, the optimal number of stages K will

depend on the distribution of the SNR of the response (when considered across a cohort

of subjects), i.e. when the distribution is disperse, it may be beneficial to use more

stages so that the test can be stopped sooner for the higher SNR responses.

With respect to the ensemble size N , this is of course directly related to statistical power

and test time, with an increased N going hand in hand with an increased statistical

power and an increased test time. How large N should be is therefore dependent on the

SNR and the desired TPR, but also on the number of stages K, i.e. if a reduced TPR

for increasing K is to be prevented, then N should be increased with K (to compensate

for the loss of statistical power). An additional consideration is how to split N across

the K stages. Additional simulations (see Appendix A.17) suggest that test time is close

to optimal (i.e. as low as possible for some fixed test sensitivity and specificity) when

splitting the N epochs equally across the K stages, giving stage-wise ensemble sizes of
N
K . Alternatively, the user may want to consider choosing N and the stage-wise ensemble

sizes adaptively, based on a predictive power analysis using previously analysed data.

With respect to the αi values, a trade-off is introduced between the type-I and type-II

error rate (as is the case with all significance tests), with an increased αi going hand

in hand with an increased type-I error rate and a decreased type-II error rate. The αi

values might therefore be chosen to optimize statistical power throughout the trial. As

an example, the user might expect a small effect size for stage ones, and a large effect

size for stage two, and might therefore choose to assign more α to the second stage of

the analysis. If the effect size is expected to be constant throughout the test, then the

safe approach is to split the available α equally across the K stages, giving αi values of
α
K .

In terms of the the p value transformation functions fi, these might similarly be chosen

to optimise test sensitivity. The vi values in the sum of inverse χ2-distributed random

variables in Eq. 7.7, for example, can be used as a weighting for the stage-wise p values

(see section 7.2.1). Hence, if the user expects a large effect size in stage two and a small

effect size in stage one, then v2 can be chosen to be larger than v1, which would give

more emphasis to stage two data when evaluating test significance.

Finally, with respect to the βi values, a trade-off is again introduced between statistical

power and test time, i.e. larger βi values result in an increased probability of stopping
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the test in favour of H0, which decreases test time, potentially at the cost of a type-

II error. An additional effect associated with the βi values is that they reduce the

remaining area under the null distribution, which affects the critical decision boundaries

(for both efficacy and futility) for the remaining stages. Taking the example presented

in section II, and setting β1 = 0 (as opposed to β1 = 0.2) would give stage two critical

boundaries A2 = 9.899 and B2 = 3.654, as opposed to A2 = 9.694 and B2 = 4.796.

Note that A2 is reduced as β1 is increased. Hence, under the right conditions, increasing

the βi values can sometimes prevent a type-II error. A liberal choice for the βi values,

however, may result in a significantly higher type-II error rate. The choice for the βi

values will therefore again depend on the application in question. In general, a relatively

conservative choice would be to either split the available β (equal to 1-α) equally across

the K stages (giving βi values of 1−α
K ), or to choose small βi for the early stages, and

slightly larger βi for the later stages.

7.3.2 Some connections to existing methods

Various connections between the CGST and methods such as ‘self designing tests’ de-

scribed by Hartung and Knapp (2003) can be identified. In Hartung & Knapp, data is

analysed in disjoint groups of samples (as is the case with the CGST). At each stage of

the analysis, a p value is generated using a statistical test (all p values are again assumed

to be independent and uniformly distributed on [0, 1] under H0), which is combined with

all previously generated p values using the generalized inverse χ2-method. At each stage

of the analysis, the test can be stopped for efficacy if the summary statistic exceeds some

upper threshold AvΣ , which is defined as:

AvΣ = [χ2
vΣ

]−1(1− α) (7.10)

and where vΣ are the DOF of a χ2 distribution. DOF vΣ should furthermore be specified

by the user a priori, and functions as a ‘currency’ that the user is free to ‘spend’

throughout the trial, i.e. at each stage of the analysis, the user is free to specify how

much of the available vΣ to spend for the next stage. This procedure can be repeated

until the test is stopped for efficacy, or until vΣ has been depleted.

A potential advantage for the approach in Hartung & Knapp (relative to some alternative

methods, including the CGST) is that the total number of stages K need not be specified

in advance. A potential disadvantage for their approach is that early stopping in favour

of H0 is not permitted. Note also that the stage-wise type-I error rates are ‘hidden’

from the user. A potential advantage for the CGST over various alternative methods

is indeed its clarity in terms of how the type-I error rate is spread across the trial, i.e.

the user is given the choice to explicitly specify the desired stage-wise type-I error rates
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through the αi values. Finally, it is worth noting that the critical boundary AvΣ can also

be generated with the CGST, achieved by convolving any number of χ2
vi distributions

where
∑K

i=1 vi = vΣ, and by setting all αi and βi values to zero, except for αK which

should be set to α. The approach in Hartung & Knapp can therefore be seen as a special

case of the CGST.

Connections with additional methods worth mentioning include the ‘sum of p values’

approach described by Chang (2007), which can be represented by the CGST by setting

the combination function to Σk =
∑k

i=1wipi, where wi is the chosen weight for stage i.

The φi distributions are then uniformly distributed on the [0, wi] interval. The CGST

also covers the class of adaptive group sequential tests described by Bauer & Köhne

(1994), achieved by using Fisher’s method as p value combination function, and by

choosing appropriate values for K, αi, and βi.

7.4 Conclusion

The CGST is a flexible and intuitive method for finding the stage-wise critical decision

boundaries, and controlling the type-I error rate of sequentially applied statistical tests.

Although originally designed for ABR detection, the CGST can be used for a wide

range of sequential test applications, under the condition that the stage-wise p value

null distributions are mutually independent under H0, and that their null distributions

are known a priori. The main advantage of using the CGST over a single shot test is

furthermore a reduced test time, which comes at the cost of a reduced statistical power.

The trade-off between statistical power and test time is dependent on both the SNR

or the response, and the selection of CGST design parameters. A suitable selection of

CGST design parameters is therefore essential when optimising test performance. The

CGST furthermore falls under the class of ‘adaptive group sequential tests’; a class of

group sequential tests that permit data-driven adaptations to test parameters, without

compromising the type-I error rate. For the CGST, adaptations to the sample size and

the statistical test selected for the analysis are permitted, which might be exploited when

further optimising sequential test procedures. Finally, as shown in the discussion, the

CGST is a generalized form of some alternative adaptive group sequential tests found

in the literature, and one that facilitates understanding, and allows greater flexibility in

the choice of approach.



Chapter 8

The non-adaptive CGST for ABR

detection

This chapter explores the specificity, sensitivity, and test time of a sequentially applied

Hotelling’s T 2 test for ABR detection, where the critical decision boundaries for re-

jecting or accepting H0 are found using the CGST. The aim is firstly to verify that

the assumptions underlying the CGST remain satisfied (and the FPR controlled as in-

tended) across a range of EEG pre-processing parameters and test conditions. Secondly,

the aim is to explore trade-offs betweens statistical power and test time for ABR de-

tection as a function of (i) the number of sequential stages used for the analysis, and

(ii) the βi values. The overall goal is to explore the potential benefit of a sequential

test procedure for ABR detection, and to provide general guidelines and/or preliminary

recommendations for selecting sequential test design parameters.

The structure for this chapter is as follows: the approach for choosing the βi values

is first described in section 8.1 below, after which a specificity assessment is conducted

across a range of CGST design parameters and EEG pre-processing parameters in section

8.2. Section 8.3 then explores test time and sensitivity for the stimulus and no-stimulus

conditions as a function of K and βi. It is worth emphasizing here that data-driven

adaptations are not explored in this chapter, but are instead considered in chapter 9.

8.1 The stage-wise true-negative rates

Throughout this chapter, various CGST design parameters are fixed in advance (data-

driven adaptations are not explored), which includes the stage-wise true negative rates

(TNRs), specified through the βi values. As mentioned in Chapter 7, the βi values

introduce a trade-off between statistical power and test time, i.e. increasing the βi

values increases the probability of stopping the test early in favour of H0, thus reducing

test time, potentially at the cost of a false-negative.

101
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Ideally, the βi values would be chosen based on knowledge of both the null and the alter-

native distribution of the test statistic, as this would allow both the TNR and the FNR

to be controlled (further illustrated in chapter 9). In practice, however, the alternative

distribution is almost always unknown, and even estimating it from previously analysed

data can be problematic. For this chapter, the βi values are instead chosen as a function

of the stage index i. The rationale is that when an ABR is present, statistical power

will tend to increase as the ensemble size is increased, i.e. the stage i summary statistic

Σi will tend to be larger as more data becomes available. Consequently, the Bi values

can be chosen more liberally as the trial progresses, without increasing the probability

of a false-negative.

The most straightforward approach for choosing βi is to simply split the available β

equally across the K stages, giving βi values of 1−α
K for all i and K. Alternatively, it

may be beneficial to assign less β in the early stages, and more in the later stages (or

vice versa). In the following section, various functions are described for relating the

stage index i to βi. These functions are henceforth referred to as a ‘futility functions’.

8.1.1 Futility functions

The functions for relating stage index i to βi take the form of either cosine or exponential

ramps. A cosine ramp gives values from 0 to 1, and is defined on the [1.5π, 2π] interval.

The function is given by:

fcos(x) = cos(x)c1 (8.1)

where c1 is a scaling factor that determines how steep the ramp is. Note that x can only

take values from 1.5π to 2π. The exponential ramp similarly gives values from 0 to 1,

and is defined on the [0, c2] interval:

fexp(x) = 1− exp(−x) (8.2)

where c2 can again be used to determine the steepness of the slope (see below). Note

that x is again restricted to a specific interval, now defined from 0 to c2.

The βi values can now be generated as follows; When using the cosine ramp, βi for stage

i is given by:

βi = βRi

[
1− cos

(
1.5π +

i(2π − 1.5π)

K

)c1]
(8.3)
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and when using the exponential ramp, βi for stage i is given by:

βi = βRi

[
1− exp

(
−i c2

K

)]
(8.4)

where βRi is the maximum available β that can be spent at stage i, given by βRi =

1− α−
∑i−1

j=1 βj .

Finally, when using a cosine ramp, constant c1 is set to either 1 (denoted by Cos 1)

or to 3 (denoted by Cos 3). When using an exponential ramp, constant c2 is set to

either 5 (denoted by Exp 5) or to 15 (denoted by Exp 15). The actual values for βi for

K = 2, 3, ..., 9 and the shape of the futility functions are given in the Appendix (section

A.10).

8.2 Specificity

The aim for this section is to test whether the assumptions underlying the CGST are

satisfied, and the FPR controlled as intended, across a range of CGST design parameters

and EEG pre-processing parameters, and when using the Hotelling’s T 2 test (applied in

the time-domain) as objective detection method. Throughout this section, the α-level is

always set to 0.05, which is spread equally across the K stages, giving stage-wise type-I

error rates of α
K . For the p value combination function, Fisher’s method is used, given

by (Fisher, 1932):

Σk =
k∑
i=1

−2ln(pi) (8.5)

8.2.1 Method

This section first describes simulations for evaluating the independence assumptions

between (i) epochs (underlying the Hotelling’s T 2 test), and (ii) the stage-wise p values

(underlying the CGST). Simulations and recordings of EEG background activity are

then used to further test whether specificity remains controlled as intended for ABR

detection across a range of βi values.

Independence assessment

Data consists of 1 000 000 recordings of simulated coloured noise, generated as described

in section 4.4. The simulated recordings were all band-pass filtered using a 3rd order

Butterworth filter from either 30-1500 Hz, or from 100-1500 Hz (corresponding to typical

values used in the literature), after which they were structured into ensembles ofN = 500
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15 ms windows. The distance between the 15 ms windows, denoted by τ , was then varied

from 0 to 25 ms, in steps of 0.4 ms, which corresponds to a (hypothetical) stimulus rate

of 1000
15+τ (covering stimulus rates of 25.13 Hz up to 66.67 Hz). The 15 ms windows of the

ensembles were analysed in K sequential stages using the Hotelling’s T 2 test, where K

took values ranging from 1 to 9. Finally, the βi values were set to 1−α
K , for all i and K.

It might be noted here that the large number of simulated recordings were necessary in

order to discriminate between relatively small differences in the FPR as a function of

K (see also the results section). The IRIDIS High Performance Computing Facility was

used for generating and analysing the simulated recordings for this section.

Simulations and EEG background activity

Result from the previous simulations (section 8.2.2 below) suggest that the underlying

assumptions are satisfied when using band-pass filter settings of 100-1500 Hz in combina-

tion with a stimulus rate to 33.3 Hz. The aim for this section is to verify that specificity

is indeed controlled as intended when using these test parameters. The βi values for

this section are furthermore chosen using the previously described futility functions (see

section 8.1). The ‘no futility stopping’ condition was also included, i.e. all βi were set

to zero (early stopping in favour of H0 was not permitted). For the simulations, data

consisted of 10 000 recordings of simulated coloured noise, constructed as described in

section 4.4, and structured into ensembles of N epochs, where N was set to either 500

or 3000 epochs. The resulting ensembles were then analysed in K sequential stages with

the Hotelling’s T 2 test, where K ranging from 1 to 9. For the real EEG background

activity, the recordings (data set D1) were downsampled to 5 kHz, band-pass filtered

from 100-2000 Hz, and structured into ensembles of N epochs, where N was set to either

555 or 3333. Artefact rejection was then applied by throwing away 10% of the noisiest

epochs (as determined by their maximum absolute values), resulting in ensemble sizes

of N = 500 and N = 3000 after artefact rejection. Note that the ensembles did not

overlap, i.e. data was used at most once. This resulted in a total of 2156 ensembles for

N = 500, and 324 ensembles for N = 3000. The initial 15 ms windows of the ensembles

were then analysed in K sequential stages using the Hotelling’s T 2 test, where K ranged

from 1 to 9.

8.2.2 Results

Independence assessment

The FPRs from the independence assessment are presented in Figure 8.1 as a function of

the (hypothetical) stimulus rate, for high-pass cut-off frequencies of either 30 Hz (plot

A) or 100 Hz (plot B). The FPRs for K = 3, 4, ..., 8 were all quite similar (they fell

between the FPRs from K = 2 and K = 9), and are excluded from the Figure to avoid

cluttering. The two-sided 95% confidence intervals for α = 0.05 were very narrow, and

are given by [0.0496, 0.0504]. For the single shot test (K = 1), results demonstrate

significant fluctuations around α = 0.05 as a function of the stimulus rate and the
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high-pass cut-off frequency, which can be attributed to a violation of the independence

assumption between epochs. For the sequential test (K > 1), the FPRs follow a similar

but more pronounced trend, which implies that additional assumptions underlying the

CGST were violated. The latter was further explored with a post-hoc analysis.

Figure 8.1: FPRs generated by the Hotelling’s T 2 test when applied to simulated coloured
noise, as a function of the (hypothetical) stimulus rate, when using band-pass filter settings of
either 30-1500 Hz (plot A) or 100-1500 Hz (plot B). Results are presented for K = 1 (giving a
single shot test), K = 2, and K = 9.

Post-hoc simulations

The goal for the post-hoc simulations is to determine whether the independence as-

sumption (underlying the CGST) between the stage-wise p values was violated or not.

This was achieved by inserting a short pause, denoted by τ2, between each stage of the

sequential analysis. The rationale is that as τ2 is increased, then consecutive blocks of

observations will become sufficiently distant in time to be uncorrelated, and indepen-

dence (between the stage-wise p values) will be satisfied. To test this, The high-pass

cut-off frequency fc was set to 60 Hz, and the stimulus rate to 33.1 Hz. These values

were chosen based on Figure 8.1, which show relatively large independence violations

(between epochs) when using these parameters. The number of stages K was then set

to either 1 or to 9. It is hypothesized that the independence violation between p values

will decrease as τ2 is increased, and hence that the FPR for K = 9 will approach the

FPR for K = 1 for increasing τ2.

Results are presented in Figure 8.2: plot A shows the FPR as a function of τ2. As

can be seen, the FPR for K = 9 is unaffected by τ2, which suggests that independence

between the stage-wise p values is satisfied, or else that the violation is negligible. The

increased FPRs for K > 1 observed in Figure 8.1 can therefore be attributed to the

stage-wise p value null distributions being no longer uniform on the [0,1] interval (as is

assumed by the CGST), which can, in turn, be attributed to the independence violation

between epochs. In particular, when independence between epochs is violated, then the

null distributions for the p values will be skewed. The latter is demonstrated in Figure

8.2, plot B, which shows a histogram of the p values generated in the first stage of the

analysis. When using a high-pass cut-off frequency is increased to 100 Hz and a stimulus

rate (SR) of 33.3 Hz, then independence between epochs is satisfied, and the p value

null distributions are more or less perfectly uniform on the [0,1] interval (Figure 8.2,
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plot C).

Figure 8.2: Results from post-hoc simulations for exploring the independence assumption (un-
derlying the CGST) between the stage-wise p values. Details are presented in the text.

Simulations and EEG background activity

The FPRs (α = 0.05) for the simulations and real EEG background activity are pre-

sented in Table 8.1 for different K and N , and for different βi values. The binomial

distribution was used to construct two-sided 95% confidence intervals for the expected

FPRs, giving lower and upper boundaries of [0.0459, 0.0544] for the simulations (10

000 tests), and either [0.0413, 0.0598] (for N = 500, 2156 tests) or [0.0309, 0.0772]

(for N = 3000, 324 tests) for the EEG background activity. Significantly (p<0.05)

conservative and liberal test performances are indicated in Table 8.1 with blue and red

asterisks respectively.

8.2.3 Conclusion

Significant violations to the independence assumption between epochs (underlying the

Hotelling’s T 2 test) were again observed as a function of the high-pass cut-off frequency

and stimulus rate (Figure 8.1). The violation resulted in non-uniform p value null

distributions, which resulted in an additional violation (now originating from the CGST)

to the assumption that the stage-wise p values are uniform on the [0,1] interval under

H0. These results hence emphasize that care is required to ensure that the assumptions

underlying the chosen ABR detection method are satisfied, else additional violations

(originating from the CGST) might be introduced. The choice for the ABR detection

method is therefore important, as some methods have a more robust control of specificity

relative to others. The Hotelling’s T 2 test, for example, has a good control of specificity

relative to ‘Fsp 5 dof’ and ‘Fmp 5 dof’. Bootstrapped statistics are also expected to

give a good control of specificity, particularly so as they are robust to normality and

stationarity violations.

With respect to the FPRs shown in Table 8.1, a total of 13 (of the 164) test conditions

showed a conservative test performance. This can possibly be attributed to random

fluctuations in combination with too narrow CIs for α (see also the discussions in sec-

tions 6.1-6.2). Alternatively, the stationarity and normality assumptions underlying the
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Table 8.1: The FPRs (α = 0.05) from the Hotelling’s T 2 test when applied to simulated coloured
noise and real EEG background activity in K sequential stages. The ensemble size N took values
of either 500 or 3000 epochs. The βi values were furthermore chosen using the futility functions
described in section 8.1. The ‘no futility stopping’ condition was also included, i.e. early stopping
in favour of H0 was not permitted (denoted by No Fut). Significant (p<0.05) deviations from
the nominal α-level are indicated by blue (conservative) and red (liberal) asterisks.

Simulated coloured noise

N = 500 N = 3000
Exp 15 Exp 5 Cos 3 Cos 1 No Fut Exp 15 Exp 5 Cos 3 Cos 1 No Fut

K=1 - - - - 0.0491 - - - - 0.0465

K=2 0.0490 0.0480 0.0495 0.0490 0.0476 0.0449∗ 0.0461 0.0473 0.0477 0.0466

K=3 0.0503 0.0489 0.0524 0.0517 0.048 0.0473 0.0460 0.0466 0.0471 0.0468

K=4 0.0470 0.0478 0.0469 0.0474 0.0472 0.0457 0.0433∗ 0.0459 0.0462 0.0489

K=5 0.0485 0.0496 0.0491 0.0462 0.0478 0.0461 0.0463 0.0483 0.0484 0.0473

K=6 0.0491 0.0492 0.0490 0.0486 0.0469 0.0475 0.0465 0.0454∗ 0.0489 0.0515

K=7 0.0459 0.0485 0.0474 0.0469 0.0489 0.0480 0.0455∗ 0.0475 0.0492 0.0455

K=8 0.0487 0.0506 0.0494 0.0486 0.0485 0.0464 0.0454∗ 0.0464 0.0480 0.0478

K=9 0.0518 0.0491 0.0514 0.0502 0.0493 0.0461 0.0465 0.0476 0.0484 0.0507

EEG background activity

N = 500 N = 3000
Exp 15 Exp 5 Cos 3 Cos 1 No Fut Exp 15 Exp 5 Cos 3 Cos 1 No Fut

K=1 - - - - 0.0526 - - - - 0.0516

K=2 0.0399∗ 0.0431 0.0431 0.0427 0.0476 0.0617 0.0586 0.0525 0.0494 0.0516

K=3 0.0427 0.0455 0.0468 0.0445 0.0445 0.0586 0.0494 0.0617 0.0586 0.0645

K=4 0.0533 0.0468 0.0515 0.0496 0.042 0.0556 0.0525 0.0432 0.0556 0.0613

K=5 0.0413 0.0399∗ 0.0445 0.0436 0.04∗ 0.0556 0.0679 0.0525 0.0741 0.0613

K=6 0.0519 0.0445 0.0459 0.0468 0.0481 0.0370 0.0309 0.0309 0.0340 0.0645

K=7 0.0510 0.0473 0.0455 0.0492 0.0405∗ 0.0463 0.0586 0.0556 0.0556 0.0516

K=8 0.0445 0.0422 0.0399∗ 0.0380∗ 0.045 0.0340 0.0556 0.0340 0.0340 0.0258∗
K=9 0.0436 0.0390∗ 0.0436 0.0431 0.0425 0.0432 0.0617 0.0494 0.0463 0.0645

Hotelling’s T 2 test may have been violated. As was the case with independence viola-

tions, violations to stationarity and normality may result in non-uniform p value null

distributions, incurring additional violations originating from the CGST. That said, no

noticeable relationships can be observed between the FPRs, the number of stages K, and

the βi values (see Table 8.1), which suggests that any additional violations originating

from the CGST were negligible for this analysis.

8.3 Sensitivity and test time

The aim for this section is to use simulations and subject ABR data to explore the

trade-off between sensitivity and test time, as a function of the number of stages K and

the βi values. The band-pass filter settings in this section were fixed at 100-1500 Hz,

and the duration of the epochs to 30.03 ms (corresponding to a stimulus rate of 33.3

Hz).



108 Chapter 8: The non-adaptive CGST

8.3.1 Method

For the simulations that follow, data consists of simulated coloured noise, constructed

as described in section 4.4, along with scaled ABR templates from data set D4 for

simulating a response.

Simulations I: TPR fixed at 0.99

For the first set of simulations, the aim is to obtain a fair comparison of test time for

different choices of K. The true-positive rate (TPR) was therefore fixed at 0.99 for all K

and all simulated conditions (including the 20, 30, 40, or 50 dB SL condition), achieved

by repeatedly generating 10 000 ensembles with increasing or decreasing ensemble sizes

N , until a TPR of 0.99±0.005 was obtained, which was repeated per K and per dB

SL condition. Needless to say, this approach is not feasible in a clinical setting. The

number of sequential stages for the analysis K was varied from 1 to 9. For this analysis,

early stopping in favour of H0 was not permitted (βi are zero for all i and K).

Simulations II: N fixed at 3000

For the second set of simulations, the ensemble size N was fixed at 3000 epochs, for all K

and all simulated conditions (including the 20, 30, 40, or 50 dB SL condition). Contrary

to Simulations I, the loss in statistical power for increasing K cannot be compensated

for by increasing N , i.e. a reduced TPR can be expected for increasing K. A total of

10 000 recordings were again simulated, and the initial 15 ms windows of the ensembles

were analysed in K sequential stages using the Hotelling’s T 2 test, where K was varied

from 1 to 9. Early stopping in favour of H0 was again not permitted.

Simulations III: futility stopping

The aim for these simulations is to explore trade-off between statistical power and test

time as a function of the βi values. To do so, the required ensemble sizes for obtaining

a 0.99 detection rate are used, i.e. the same N as in Simulations I. The critical decision

boundaries were then varied as a function of βi, which were chosen through the futility

functions from section 8.1. The ‘no futility stopping’ condition was also included. The

number of stages K again took values ranging from 1 to 9. The analysis was performed

both before and after simulated a response.

Subject ABR data

The subject data were analysed in K sequential stages with the Hotelling’s T 2 test

(applied to the initial 1-16 ms window), per dB SL condition, and per subject. The βi

values were again chosen using the futility functions from section 8.1, and the number

of stages K took values from 1 to 9.

8.3.2 Results

Simulations I: TPR = 0.99

Results from Simulations I (TPR fixed at 0.99) are presented in Figure 8.3 (plots A



109 Chapter 8: The non-adaptive CGST

and B). Results firstly demonstrate an increased maximum test time for increasing K

(plot A), i.e. as K is increased, statistical power is decreased, and the ensemble size

N needs to be increased in order to maintain the 0.99 TPR. Note that although the

ensemble size N was increased with K, the mean test time was still decreased (plot B),

with reductions in test time of 40-45% when using K = 6 (relative to K = 1). The

decreased mean test time is due to the test being stopped early (and H0 rejected) for

the higher SNR responses, i.e. the final stage of the analysis is typically not reached

(and the maximum test time is not used).

Simulations II: N = 3000

Results from Simulations II (N fixed at 3000) are also presented in Figure 8.3 (plots C

and D). Note again that for these simulations, the reduced statistical power for increas-

ing K cannot be compensated for by increasing N . Coincidentally, a reduced TPR is

observed for increasing K (plot D). The decrease in mean test time for increasing K

(plot C) was now also more pronounced; reductions in test time of up to 50-60% are

observed for K = 4 or K = 5, relative to K = 1.

Simulations III: futility stopping

Results from Simulations III from the 20 dB SL condition are presented in plots E, F,

and G of Figure 8.3. Results first show that when a response is absent (plot G) and early

stopping in favour or H0 is not permitted, that the mean test time for the sequential test

is increased with K. This is due to the increased maximum test time (note again that

the maximum test time was increased with K to compensate for the reduced statistical

power). For the no-stimulus condition, the trial was allowed to proceed to the final stage

of the analysis in (1 − α)x100% of the cases for the no-stimulus condition. The mean

test time is therefore close to the maximum test time. When early stopping in favour

of H0 was permitted, on the other hand, then the increased mean test time for the no

stimulus condition was greatly reduced (plot G). With respect to the stimulus condition

(plots E and F), early stopping in favour of H0 had no noticeable effect on the TPR or

mean test time, under the condition that the βi values were chosen conservatively, e.g.

through the ‘Cos 1’ or ‘Cos 3’ futility functions. When the choice for the βi values was

more liberal (e.g. when chosen through the ‘Exp 5’ and ‘Exp 15’ futility functions) then

a reduced TPR was observed. Finally, it is worth noting that results from the 30, 40,

and 50 dB SL conditions demonstrated similar trade-offs between statistical power and

test time, and are not presented in order to keep the results concise.

Subject ABR data

Results from the subject ABR data are presented in Fig. 8.4: plots A-F show the

detection rates as a function of K for different choices of βi, whereas plots G-L show the

mean test time (taken across 12 subjects), similarly as a function of K and for different

choices of βi. The trade-off betweens statistical power and test time as a function of K

is similar to that observed for Simulations II where N was also fixed at 3000 epochs.

With respect to the βi values, results again demonstrate reductions in mean test time

for increasing βi, potentially at the cost of a reduced TPR. Test time for the 0 and 10



110 Chapter 8: The non-adaptive CGST

dB SL conditions was also greatly reduced by increasing the βi values.

Figure 8.3: Results from Simulations I, II, and III for exploring the trade-off between statistical
power and test time per dB SL condition, as a function of K and the βi values. Details are
provided in the text.

8.4 Summary

This chapter explored the specificity, sensitivity, and test time of a sequentially applied

Hotelling’s T 2 test with critical decision boundaries (for accepting or rejecting H0) con-

structed by the CGST. With respect to specificity, results show that the main concern

for the CGST for EEG measurements is the assumption that the p value null distri-

butions are uniform on the [0,1] interval under H0, which is only satisfied when the

assumptions underlying the statistical detection method are also satisfied. This empha-

sizes the importance of using a suitable ABR detection method, i.e. one with a good

control of specificity. As shown in chapter 5 (and confirmed in this chapter), the main

concern for the specificity of ABR detection methods is the independence assumption

between epochs, which is violated as a function of the high-pass cut-off frequency and

the stimulus rate. Results from this chapter demonstrate that the FPR of a sequen-

tially applied Hotelling’s T 2 test was (more or less) controlled as intended when using a

high-pass cut frequency of 100 Hz and a stimulus rate of 33.3 Hz (Table 8.1).

With respect to the trade-offs between statistical power and test time, results firstly

demonstrate relatively large reductions for the stimulus condition by increasing K, up



111 Chapter 8: The non-adaptive CGST

Figure 8.4: Results from the subject ABR data for exploring the trade-off between statistical
power and test time per dB SL condition, as a function of K and the βi values. Details are
provided in the text.

to 40-45% for K = 6 relative to K = 1, with no loss in test sensitivity (Figure 8.3,

plot B). In order to achieve these results, the maximum test time needs to be increased,

else a reduced test sensitivity can be expected. If N cannot be increased with K (due

to e.g. an upper limit of, say, 3000 epochs), then a reduced TPR can be expected for



112 Chapter 8: The non-adaptive CGST

increasing K. The latter was confirmed with both simulations (Figure 8.3) and subject

data (Figure 8.4), and was found to be most prominent when the single shot test (K = 1)

was already under-powered (e.g. for the 10 and 20 dB SL conditions of the subject ABR

data). Based on the preceding results, the following rough guidelines might be used for

choosing K: if the single shot test (K = 1) is expected to be under-powered, and N

cannot be increased, then it may be beneficial to keep the number of sequential stages

for the analysis low, e.g. 1, 2, or 3 stages might be used. If the single shot test is

expected to be over-powered, or if N can be increased with K, then a more efficient

approach is to use 4, 5, or 6 stages for the analysis.

Finally, the increased maximum test time for increasing K has consequences for the no-

stimulus condition, i.e. because the test is allowed to proceed to the final stage of the

analysis in (1-α)x100% of the trials, the mean test time will be close to the maximum

test time. This emphasizes the importance of futility stopping for sequential testing.

Results indeed demonstrate large reductions in test time for the no-stimulus condition

by increasing the βi values, which can potentially come at the cost of a reduced test

sensitivity. The βi values should therefore be chosen conservatively, if a reduced test

sensitivity is to be prevented.



Chapter 9

An adaptive sample-size

re-estimation procedure for ABR

detection

In all previous chapters, the ensemble size N for the statistical analysis was fixed at

the outset. As already mentioned in previous chapters, fixing N in advance may be

inefficient for ABR detection as the SNR of the response can vary across recordings,

i.e. a fixed N will tend to result in either an over-powered test (and an unnecessarily

prolonged test time) for the the higher SNR responses, or an under-powered test (and

an increased false-negative rate) for the lower SNR responses. As shown in chapter 8, a

partial solution to variability in the SNR is to analyse data sequentially, as this allows

the test to be stopped early in the case of a clear response. However, the total ensemble

size N (for the full trial) still needs to be fixed in advance. This raises the question as

to how N should be chosen, and how detrimental an incorrect choice for N might be

towards test performance.

The focus for this chapter is on two approaches for choosing N : (1) a non-adaptive

approach where N is chosen at the outset, and (2) an adaptive approach, where N

is chosen adaptively, using previously collected data. Note that for the non-adaptive

approach, the user should ideally assume an SNR in advance, and then choose N such

that some desired TPR is obtained for the assumed SNR. For the adaptive approach,

there are various methods available in the literature that can be used for choosing N

adaptively (see e.g. Chow & Chang, 2007, Chapter 7; Proschan & Hunsberger, 1995;

Lehmacher & Wassmer, 1999; Chow & Chang, 2007; Mehta & Pocock, 2010). These

methods essentially use previously analysed data to predict the required N for obtaining

the desired statistical power for the trial. The main difference between these methods

and the adaptive approach described in this chapter, is that the adaptive approach from

this chapter applies the statistical power analysis first. In particular, statistical power

is re-estimated continuously (as new data becomes available) for an a priori assumed

113
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response. The statistical analysis for response detection is then only applied once some

desired statistical power has been obtained. The reader might already be worried that

this approach would bias the analysis towards favourable results, thus inflating the FPR.

This is indeed a concern, and precautions are necessary to avoid introducing such a bias

(further described in the subsequent sections). Note also that the proposed adaptive

approach requires both the amplitude and waveform morphology of the response to be

assumed a priori. This also has some pros and cons, which will be discussed in more

detail later on.

The structure of this chapter is as follows: section 9.1 below first gives a brief background

on statistical power and the alternative distribution. The general approach for the

sample size re-estimation procedure is then described in section 9.2. The formulas and

equations for the statistical power and the alternative distribution are then presented

specifically for the Hotelling’s T 2 test in section 9.2.1. The approach is evaluated and

compared to a non-adaptive approach in section 9.3. The results and some directions

for future work are further discussed in section 9.4, and the chapter ends with some

concluding remarks in section 9.5.

9.1 Background on statistical power and the alternative

distribution

Before describing the adaptive approach, a very brief background will be given on statis-

tical power and the alternative distribution, both of which play important roles through-

out this chapter. To quote the very first sentence in Chapter one of Cohen’s well known

book on statistical power analysis (Cohen, 1988, p.1):

The power of a statistical test is the probability that it will yield statistically significant

results.

The probability that a test will yield a statistically significant result is given by the

area under the true distribution of the test statistic to the right of the critical decision

boundary for rejecting H0. The latter is easily clarified with an example: Figure. 9.1

shows the null distribution for some hypothetical test statistic, along with the critical

decision boundary for rejecting H0 at a 95% confidence (α = 0.05), equal to 1.535. If

the null hypothesis H0 is actually false, then the true distribution of the test statistic is

not given by the null distribution, but by the ‘alternative distribution’ (the distribution

of the test statistic when anything but H0 is true). Statistical power is then equal to the

area under the alternative distribution, to the right of the critical decision boundary.

In practice, the true distribution of the test statistic is almost always unknown (if this

were known, there would be no need for the statistical analysis). For the adaptive

approach in this chapter, it is assumed that H0 is false, and that a response is present.

The true distribution for the test statistic for the assumed response is then estimated
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using previously collected data. Finally, the estimated alternative distribution can be

used to estimate statistical power. This approach is now discussed in more detail in

section 9.2 below.

Figure 9.1: An example for illustrating statistical power for some hypothetical test statistic.
The null distribution for the test statistic is shown on the left, along with the critical decision
boundary for rejecting H0 at 95% confidence (α = 0.05). The distribution to the right is the
distribution of the test statistic when H0 is false, referred to as the alternative distribution.
Statistical power is given by the area under the true distribution of the test statistic, to the right
of the critical decision boundary.

9.2 Online sample size re-estimation

This section describes a new approach for adaptively choosing N based on a post-

hoc power analysis, applied to previously collected data. The core of the approach

revolves around estimating the alternative distribution for the test statistic under some

a priori assumed response. In particular, the alternative distribution is estimated using

both the assumed response and the power of the EEG background activity (estimated

from previously collected data). The estimated alternative distribution is then used to

estimate statistical power, and the statistical analysis is only applied once the desired

statistical power has been obtained. The main advantage for this approach over a non-

adaptive approach is that the power of the (potentially non-stationary) EEG background

activity is taken into account when choosing N . This hence allows a more informed

decision with regards to N , potentially resulting in an improved control over the TPR

and/or a reduced test time. A second advantage is that a more informed decision can

be made with regards to the Bi critical decision boundaries (the critical boundaries for

stopping the test early for futility), i.e. these can now be chosen as a function of the

estimated alternative distribution, which may give an improved control over the false-
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negative rate (FNR). A caveat is that in order to avoid introducing a bias, the EEG

background activity should be estimated exclusively from the inter-epoch intervals, i.e

the intervals between the windows being analysed by the statistical test (see also Figure

9.2).

Figure 9.2: The analysis windows (the 0-15 ms window following stimulus onset) and the inter-
epoch intervals (the 15-30.03 ms windows following stimulus onset) for N epochs. When using
the online sample size re-estimation approach, data within the analysis windows should be kept
hidden from the user.

To clarify the approach, the user will be guided through a two-stage sequential test

design. The user should first specify the following parameters: the FPR for stage 1

(previously denoted as α1); the desired TPR for stage 1 (the statistical power for stage

1), say γ1; and the permitted FNR for stage 1 due to early acceptance of H0, say Γ1. The

value for β1 (the stage 1 TNR) is no longer specified, but will instead follow from the

previously chosen parameters. For this example, say α1 = 0.01, γ1 = 0.8, Γ1 = 0.02, and

that the alternative distribution is re-estimated after every 50 additional epochs have

been collected (using epochs 1-50, 1-100, 1-150, etc.). The resulting null and alternative

distributions for this hypothetical example are shown in the upper plots in Figure 9.3

(the null distributions are in black, whereas the alternative distributions are in gray).

The critical decision boundary A1 (for rejecting H0) is also shown, which was found

using the approach described in chapter 7, i.e. the area under the null distribution to

the right of A1 should equal α1. The estimated statistical power γ̂1 is then given by

the area under the alternative distribution, to the right of A1. For this example, the

desired statistical power of 0.8 was exceeded once 200 epochs had been collected. Data

collection for stage 1 was therefore stopped at N1 = 200. The estimated alternative

distribution (using N1 = 200) is then used to find B1, i.e. B1 needs to be found such
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that the area under the estimated alternative distribution to the left of B1 is equal to

the permitted stage 1 FNR, denoted by Γ1 (equal to 0.02 for this example).

Figure 9.3: An illustration of an online sample size re-estimation procedure for stage 1. The
black plots show the null distributions, whereas the gray plots show the alternative distributions.
Increasing N1 shifts the alternative distribution away from the null distribution, thus increasing
the estimated statistical power γ̂1. For this example, the desired statistical power of 0.8 was
exceeded at N1 = 200. Data collection was hence stopped at N1 = 200, after which the estimated
null and alternative distributions (using N1 = 200) were used to construct critical decision
boundaries A1 and B1. Further details are presented in the text.

Assuming the test statistic fell within the [B1, A1] interval, the trial proceeds to stage

two (the final stage of the analysis for this example). The user should then specify the

total desired statistical power (for the full trial), along with the stage two FPR and FNR.

Say the total desired statistical power is 0.95, α2 = 0.01, and Γ2 = 0.02. Data collection

for stage two is then initiated, which follows the same procedure as in stage one, i.e. the

alternative distribution is continuously re-estimated (every 50 epochs) until the total

estimated statistical power (given by γ̂1 + γ̂2) has exceeded the desired statistical power

of 0.95 (further illustrated below). Note that in stage two, the procedure is applied to
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the null and alternative distributions for the summary statistic (composed of stage 1

and stage 2 transformed p values). These distributions are generated as described in

Chapter 7, i.e. by convolving truncated PDFs. Note that the exact same procedure can

be applied for the alternative distribution as for the null distribution.

The stage two test procedure is illustrated in Figure 9.4: the upper left plot shows

the stage one distributions (for N1 = 200), which have been truncated to the [B1, A1]

interval, whereas the upper right plots show the null and alternative distributions for

the stage two test statistic for N2 = 50 and N2 = 100. Convolving the truncated stage 1

distributions with the stage two distributions gives the null and alternative distribution

for the stage two summary statistic (middle plots). The distributions for the summary

statistic are then used to estimate statistical power: when N2 = 50, the estimated

statistical power for stage 2 is γ̂2 = 0.0452, giving a total estimated statistical power of

γ̂1+γ̂2 = 0.9252; still less than the desired 0.95. Increasing the ensemble size to N2 = 100

gives γ̂2 = 0.0798. The total estimated statistical power is now γ̂1 + γ̂2 = 0.9598, and

has exceeded the desired 0.95. Data collection for stage two can hence be stopped

after N2 = 100 epoch have been collected. The null and alternative distributions (for

N2 = 100) are then used to find A2 and B2, which follows the same procedure as for

stage one.

9.2.1 Online sample size re-estimation using the Hotelling’s T 2 test

This section describes how statistical power and the alternative distribution are esti-

mated when using the Hotelling’s T 2 test as detection method. The alternative distri-

bution, say H1, for the F-transformed T 2 statistic (Eq. 3.4) is given by a non-central

F-distribution with Q and N −Q DOF (Bilodeau & Brenner, 1999, p.100):

H1(F ) = Fnc (F,Q,N −Q, δ) (9.1)

where F is the observed F value (the x-axis of the distribution) and δ is a non-centrality

parameter. The non-centrality parameter is directly related to the effect size, and is

given by (Bilodeau & Brenner, 1999, p.100):

δ = N(µ− µ0)Σ−1(µ− µ0)H (9.2)

where µ is a Q-dimensional vector containing the true feature means, µ0 is a Q-

dimensional vector containing the hypothesized values to test against, and Σ is the true

covariance matrix of the features. The alternative distribution H1 can then be used to

determine statistical power, given by the area under the alternative distribution, to the
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Figure 9.4: An illustration of an online sample size re-estimation procedure for stage two. The
black plots show the null distributions, whereas the gray plots show the alternative distribution.
Upper plots: the upper left plot shows the stage one distributions, which have been truncated
to the [B1, A1] interval. The upper right plots show the null and alternative distributions for
the stage two test statistic. Middle plots: The null and alternative distribution for the stage
two summary statistic, found by convolving the truncated distributions from the stage one with
the distributions for the stage two test statistic. Lower plot: the final null and alternative
distribution for the stage two summary statistic, which are used to construct stage two critical
boundaries A2 and B2. Further details are presented in the text.

right of the critical decision boundary for rejecting H0. When using F-distributions,
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statistical power γ can be expressed as:

γ = 1− Fnc
(
F−1(1− α, v1, v2), v1, v2, δ

)
(9.3)

where F−1(.) is the inverse of the central F-distribution (the inverse of the null dis-

tribution) and Fnc is the cumulative distribution function (CDF) of the non-central

F-distribution. Note that F−1(1−α, v1, v2) is the critical boundary for rejecting H0 and

nominal level α. The Fnc
(
F−1(1− α, v1, v2), v1, v2, δ

)
term is hence the area under the

alternative distribution to the left of the critical boundary. Subtracting the result from

one therefore gives the area to the right of the critical boundary, i.e. statistical power.

It should be stressed that in practice, both µ and Σ are almost always unknown, and are

instead either assumed a priori, or estimated from data using x̄ and S. When estimated

from data, the (estimated) non-centrality parameter is given by:

δ̂ = N(x̄− µ0)S−1 − (x̄− µ0)H (9.4)

which is identical to the T 2 statistic in Eq. 3.3.

The caveat with estimating δ is that it can potentially be contaminated by significant

amounts of noise. Put differently, δ̂ has its own underlying PDF. As a result, statistical

power γ will also be an estimate (denoted by γ̂), i.e. it will tend to either over-estimate

or under-estimate the true statistical power γ, which introduces uncertainty to the

approach. As mentioned earlier, the proposed approach assumes a response at the

outset. The mean feature vector µ is therefore assumed to be known, and is given by the

feature values extracted from the assumed response (see also section 9.2.2). Uncertainty

within δ̂ is therefore solely due to measurement error in S. Ideally, uncertainty within S

should be taken into account when estimating statistical power. The latter is achieved

using a resampling approach, further described below.

Before turning to the resampling approach, it should again be stressed here that in order

to avoid introducing a bias, Σ should be estimated from just the inter-epoch intervals

(the 15-30 ms windows following stimulus onset for this chapter), in which case it will

henceforth be referred to as S2. In addition, S2 should be either independent from

the 0-15 ms windows following stimulus onset, or the independence violations should be

negligible, else a bias might still be introduced to the analysis. The spectral content of

EEG measurements brings this independence assumption into question, and is further

considered in section 9.3.

Returning to the resampling approach: the goal is to rescale S2 as a function of uncer-

tainty. In particular, when uncertainty is high, S2 is scaled upwards, giving a liberal
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estimate of covariance matrix Σ. The choice to adopt a liberal approach here is to

prevent a reduced test sensitivity. In particular, when S2 is under-estimated, γ̂ will

be over-estimated, and data collection will be stopped prematurely (i.e. before the de-

sired statistical power has not been obtained), giving a reduced test sensitivity. The

resampling approach itself consists of resampling many covariances matrices from the

underlying distribution of S2. The underlying distribution of S2 is given by a scaled

Wishart distribution with true covariance structure Σ and N − 1 degrees of freedom

(Rencher, 2001, p.92), denoted by W (Σ, N − 1). The true covariance structure Σ is of

course again unknown, and is instead substituted with S2. The resampling approach

then consists of sampling 50 covariance matrices from W (S2, N−1), ranking them from

small to large, as determined by either their determinants or their traces, and selecting

the largest resampled covariance matrix. The determinant of a covariance matrix (also

known as generalised variance; Wilks, 1932) represent a single value for multi-variate

scatter, where larger values correspond to more disperse data. The largest resampled

covariance matrix, say SMax, is then used to find a re-scaling factor, say c3, such that:

| SMax | = | c3S2 | (9.5)

where | S | denotes the generalised variance of S. For small N , uncertainty will be rela-

tively large, and the W (S2, N −1) distribution will be relatively disperse, in which case

| SMax | will tend to be larger than | S2 |. This will result in S2 being scaled upwards,

which reduces δ̂, giving a conservative estimate of statistical power. Consequently, data

collection will be prolonged, and an over-powered test can be expected. This is given

preference over the alternative, i.e. an under-powered test and a reduced test sensitivity.

Putting it all together, the estimated statistical power in the presence of an assumed

response, using the Hotelling’s T 2 test (time domain) as detection method, is given by:

γ̂ = 1− Fnc
(
F−1(1− α,Q,Ni −Q), Q,N −Q, δ̂

)
(9.6)

where δ̂ is given by:

δ̂ = N(xa − µ0)(c3S
−1
2 )− (xa − µ0)H (9.7)

and where xa contains Q TVMs, extracted from the assumed response.
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9.2.2 The assumed response

The assumed response is important, as it affects the estimated statistical power, e.g.

when the assumed response is smaller than the true response, then the estimated statis-

tical power will tend to be lower than the true statistical power, and data collection will

be longer than necessary (giving an over-powered test). For this chapter, the assumed

response is a ‘minimum response’, given by the smallest ABR template from the 40

dB SL condition from data set D4. In particular, the ABR templates (the coherent

averages from data set D1) were all ranked from small to large, as determined by their

mean square values, and the ABR template with the smallest mean square value was

used as the assumed response. The choice to use a minimum response, as opposed to a

mean or maximum response, is to prevent a reduced test sensitivity. To clarify, if the

assumed response is larger than the true response, then γ will be over-estimated, and

data collection will be stopped pre-maturely (before the desired statistical power has

been obtained), giving a reduced test sensitivity.

9.2.3 The summary statistic

The summary statistic at each stage of the sequential analysis is given by a sum of

inverse F-distributed random variables:

Σk =
k∑
i=1

F−1(1− pi, v1, v2) (9.8)

where F−1 is the inverse of an F-distribution. The choice to use a sum of inverse F-

distributed random variables (as opposed to χ2-distributed random variables in chapter

8) is purely for convenience, i.e. when using the Hotelling’s T 2 test, statistical power

(and hence the alternative distribution) is expressed directly through F-distributions.

It might be noted here that the adaptive approach can still be used for a sum of χ2-

distributed random variables, but the alternative distribution in Eq. 9.1. would then

have to be transformed to a non-central χ2-distribution, achieved by warping the x-

axis. It is also worth noting here that the sum of inverse F-distributed random variables

appears to give a more or less identical test sensitivity compared to a sum of inverse

χ2-distributed random variables (Appendix, section A.12, Figure A.19).

9.3 Simulations

This section describes simulations for evaluating the specificity, sensitivity, and test time

of (1) a non-adaptive approach, where N is optimised in advance, such that some desired
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TPR is obtained for an a priori assumed SNR, and (2) the previously described adaptive

approach.

9.3.1 Method

Data

Data for the simulations consists of ABR templates (from data set D4) for simulating a

response, along with scaled simulated coloured noise (generated as described in section

4.4) for representing the EEG background activity.

A non-adaptive ensemble size

For the first approach, the ensemble size N is optimised in advance, such that some

desired TPR is obtained for an a priori assumed SNR. For the current simulations, the

assumed SNR is given by the smallest SNR from the 40 dB SL condition from data set

D4, equal to -32.6, whereas the desired TPR was set to 0.95. The ensemble size N

was then optimised, such that a 0.95 TPR was obtained for an SNR of -32.6 dB. The

latter was achieved using the same procedure described for ‘Simulations I’ in chapter

8, i.e. by repeatedly generating 5000 ensembles with increasing or decreasing ensemble

sizes, until a TPR of 0.95±0.01 was obtained, which was repeated for difference choices

for K (ranging from 1 to 9). Once N was optimised, a second set of simulations were

used to evaluate sensitivity and test time (using the optimised N), now across a range

of SNRs (shown in Table 4.1, for the 40 dB SL condition). Data were then analysed

in K sequential stages using the Hotelling’s T 2 test, both before and after simulating a

response. Finally, the nominal α-level was set to 0.01, which was spread equally across

K stages, giving αi values of α
K for all i and K, and the βi values were chosen through

the ‘Exp 5’ futility function (see also section 8.1.1).

An adaptive ensemble size

For the adaptive approach, the desired TPR for the a priori assumed minimum response

was set to 0.95. The stage-wise TPRs γi now need to be chosen, such that
∑K

i=1 γi =

0.95. As shown in chapter 8, a sensitive and robust performance is obtained by splitting

the available N equally across the K stages. The γi values are therefore given by the

stage-wise TPRs when N is optimised (and split equally across the K stages), such

that a 0.95 TPR is obtained. The resulting γi values are shown in section A.13 of the

Appendix (Table A.12). The nominal α-level was furthermore set to 0.01, which was

again spread equally across the K stages, giving αi values of α
K for all i and K. The

total permitted FNR due to early stopping in favour of H0 was set to 0.04, which was

also spread equally across the K stages, giving Γi values of 0.04
K for all i and K. Finally,

data were again analysed with the Hotelling’s T 2 test in K sequential stages, both before

and after simulating a response.
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9.3.2 Results

Results from the simulations are presented in Figure 9.5. Starting with the stimulus

condition (plots A and B), results show that when N was optimised (in advance) for an

a priori assumed minimum SNR, that the test was over-powered, as expected (plot A).

For the adaptive approach, results also demonstrate an over-powered test, which can be

attributed to (i) the assumption that the response is the ‘minimum response’ and (ii) the

resampling approach, which gives a liberal estimate for the features covariance matrix.

Comparing the two approaches shows a similar test performance in terms of TPRs (the

largest difference was at K = 9, with a TPR of 0.9953 for the non-adaptive approach

and a TPR of 0.9878 for the adaptive approach), which suggests that the comparison

in test time was relatively fair. The mean test times are shown in plot B, and show a

reduced test time for the adaptive approach of ∼10-30% (depending on K) relative to

the non-adaptive approach. Results from the no-stimulus condition are also shown in

Figure 9.5 (plots C and D). Results first show that the FPRs (for both the adaptive and

the non-adaptive approach) fall within the two-sided 99% confidence intervals for the

expected 0.01 FPR (plot C), with the exception of a single condition which can likely be

attributed to random variation. With respect to test time (plot D), results show large

reductions in mean test time for the adaptive approach (relative to the non-adaptive

approach) of ∼25-45%, depending on K. The latter can be attributed to a more suitable

choice for the Bi futility boundaries.

Figure 9.5: Results from the simulations: plots A and B, the TPRs and mean test times
(respectively) when a response was present, as a function of K. Plots C and D: the FPRs and
mean test times (respectively) when a response was absent, as a function of K.
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9.4 Discussion

This chapter described and briefly explored the performance of a new approach for

adaptively choosing the ensemble-size N for ABR detection, and compared the results

with those from a non-adaptive approach where N was optimised in advance. Results

show an advantage for the adaptive approach over the non-adaptive approach, with

reductions in mean test time of ∼10-30% for the stimulus condition and ∼25-45% for the

no-stimulus condition, with a more or less equal performance in terms of test sensitivity.

The advantage for the adaptive approach can be attributed to a reduced uncertainty with

respect to the power of the EEG background activity, i.e. the EEG background activity

is now estimated for the specific recording in question, which allows for a more informed

decision with respect to N . An additional advantage for the adaptive approach is an

improved control over the TPR and the FNR, which can now be specified explicitly by

the user through the γi and Γi values. Note that this can help bring ABR examinations to

an unambiguous test outcome, to within some confidence limits. In particular, when the

test is stopped for futility (Σk < Bk), it can be concluded (with certainty > 1−
∑K

i=1 Γi)

that the response is either absent, or that it is smaller than the minimum response,

whereas when the test is stopped for efficacy (Σk > Bk) it can be concluded (with

certainty > 1− α) that a response is present.

Although results from this chapter look promising, it should be noted that the approach

has not yet been tested for real data. Moreover, the extent to which these results are

dependent on design parameters and test conditions has not yet been explored. In

particular, the following areas require more testing and/or justification: (i) the choice

for the assumed response, (ii) the resampling approach, and (iii) specificity in general,

i.e. the extent to which the underlying assumptions remain satisfied. Starting with the

assumed response, this chapter adopted a conservative approach by assuming a ‘mini-

mum response’ (the smallest response for normal hearing adults). Besides preventing a

reduced test sensitivity, adopting a ‘minimum assumed response’ also allows more in-

teresting conclusions to be drawn from the analysis, i.e. as mentioned earlier, when the

test is stopped for futility, it can now be concluded that the response is either absent or

that it is smaller than the minimum response. Note that this is of more interest than

‘absent or smaller than the mean normal hearing response’, which can be concluded

when using a ‘mean ABR’ as the assumed response. That said, it is not clear what the

amplitude and waveform morphology for the ‘assumed minimum response’ should be.

In order to determine this, data may be required from a much larger cohort of normal

hearing adults.

With respect to the resampling approach, a potential shortcoming is that the covariance

structure Σ of the Wishart distribution W(Σ, N − 1) is still unknown, and was instead

replaced with S2. Consequently, results will again vary as a function of the measurement

error within S2, which is undesirable. The choice to resample 50 covariance matrices,

and not e.g. 100, was chosen primarily to reduce computation time, and might also be



126 Chapter 9: The adaptive CGST for ABR detection

sub-optimal. Future work might further explore the resampling approach, or look into

alternative methods for estimating the alternative distribution and/or non-centrality

parameters (Meyer, 1967; Spruill, 1986; Li et al, 2009; Neff & Strawderman, 1976;

Saxena & Alam, 1982; Perlman & Rasmussen, 1975; Berger et al, 1998; Chow, 1987;

Kubokawa et al, 1993; Shao & Strawderman, 1995; Leung & Muirhead, 1987; Kubokawa

et al, 2017). A more detailed discussion on estimating the non-centrality parameter

and/or the alternative distribution is presented in section A.14 of the Appendix.

With respect to specificity, a potential concern is that the stage-wise critical decision

boundaries Ai and Bi were chosen adaptively, whereas the CGST described in chapter

7 states that these should be fixed in advance, which is necessary to avoid introducing

a bias. The latter was circumvented in this chapter by assuming the response, and

by just using the inter-epoch intervals for estimating the EEG background activity, i.e.

the data for the statistical power analysis should be independent of the data being

analysed by the statistical test. This implies that the estimated covariance matrix S2

should be independent of the data in the 0-15 ms windows. Although this assumption

is questionable due to the spectral content of the data (see Figure 5.2), results from this

chapter suggests that specificity is still controlled as intended. This is further supported

by results from the Appendix (section A.11, and section A.11.3 in particular), which

show that the assumptions underlying the CGST remain satisfied when adapting test

parameters as a function of sample variance estimated from the inter-epoch intervals.

A potential explanation is that sample variance (or the sample covariance matrix) is

robust to independence violations as it takes the mean of the data into consideration.

Finally, there are various alternative methods available in the literature for choosing

N adaptively (e.g. Chow & Chang, 2007, Chapter 7; Proschan & Hunsberger, 1995;

Lehmacher & Wassmer, 1999; Chow & Chang, 2007; Mehta & Pocock, 2010). These

methods were not explored here, but might be compared to the adaptive approach

from this chapter in future work. There are two important differences between these

methods and the current adaptive approach: (i) the assumed response, and (ii) the

way in which the statistical power analysis is applied to the data. With respect to

the assumed response, this is not required for the methods from the literature, i.e.

both the response and the background activity are estimated from previously analysed

data. This has both an advantage (there is no need to complicate the approach by

assuming a response), and a disadvantage. The disadvantage is that uncertainty within

the estimated non-centrality parameter (directly related to the effect size) is increased,

which is detrimental towards test performance (see e.g. Levin & Subkoviak, 1977; Bruton

et al., 2000; Kanyongo et al., 2007). With respect to (ii), the methods in the literature

use a predictive power analysis, whereas the current adaptive approach uses an online,

post-hoc power analysis. A potential complication with predictive power analyses is that

the EEG background activity is assumed to be a stationary process. When stationariy

is violated, the true statistical power will be either smaller or higher than the predicted

power, which again introduces additional uncertainty, which is detrimental towards test
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performance. For the current adaptive approach, stationarity of the EEG background

activity is assumed for just the 0-30 ms windows, i.e. it is assumed that the power of

the EEG background activity within the 0-15 window is the same as the power within

the 15-30 ms windows.

9.5 Conclusion

A new adaptive sample size re-estimation procedure was proposed and briefly evaluated

for ABR detection. Results show that when compared to a non-adaptive approach,

reductions in mean test time of ∼10-30% are observed for the stimulus condition, and

∼25-45% for the no-stimulus condition, with a more or less equal test sensitivity. Besides

a reduced test time, the adaptive approach gives an improved control over the TPR and

the FNR, which can be used to help bring ABR examinations to an unambiguous test

outcome in terms of ‘ABR present’ or ‘ABR absent or abnormal’. Future work should

further test the approach for real data, and explore test performance across a wider

range of test conditions and design parameters.



Chapter 10

Conclusions, limitations, and

future work

This work aimed at improving sensitivity, reducing test time, and controlling specificity

for objective ABR detection methods. This was achieved by (1) developing, optimising,

evaluating, and comparing both new and existing objective detection methods across a

range of test conditions and pre-processing settings, (2) by developing, optimising, and

evaluating a novel adaptive sequential testing framework for ABR detection, and (3)

by developing and evaluating a new adaptive sample-size re-estimation procedure for

ABR detection. In what follows, the main conclusions associated with these topics are

covered in more detail, after which some directions for future work are layed out.

10.1 Conclusions

10.1.1 Improving the performance of objective ABR detection meth-

ods

To improve the performance of objective ABR detection methods, the focus was firstly

on an in-depth assessment of specificity (Chapter 5). The emphasis for the specificity

assessment was on the main assumptions underlying ABR detection methods, which were

evaluated across a range of pre-processing parameters deemed typical for ABR detection.

Results show that the main culprit for a poor control of specificity was the independence

assumption between epochs, which was violated as a function of the high-pass cut-off

frequency and the stimulus rate. Specific combinations of the high-pass cut-off frequency

and the stimulus rate resulted in relatively large deviations from the nominal α-level

of the test (ranging from 0.0385 to 0.0985 for α = 0.05; Figure 5.3), whereas other

combinations were found to be safe (e.g. when using a high-pass cut-off frequency of 100

Hz and a 33.3 Hz stimulus rate). Significant violations to the normality and stationarity

assumptions were also observed, which resulted in a tendency towards a conservative
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test performance with maximum deviations of 0.0161 and 0.0335 (for α = 0.05) for

normality (Figure 5.6) and stationarity (Figure 5.9) violations, respectively. Violations

to the normality assumption were furthermore attributed to excessive kurtosis due to

outliers, and were effectively dealt with through artefact rejection, whereas stationarity

violations were successfully removed (with no noticeable adverse effects) by normalising

the variances of the epochs. Finally, early results suggest that ‘bootstrapping in blocks of

epochs’ can be used for a more robust assessment of test significance under independence

violations (Figure 5.4). The bootstrap is also robust to normality and stationarity

violations, and might therefore provide a solution to all aforementioned violations, thus

giving an improved control of specificity.

In terms of sensitivity and test time, the focus was on developing, optimising, eval-

uating, and comparing new and existing methods across a range of feature sets and

test conditions. Throughout this work, the Hotelling’s T 2 test (applied in either the

time or frequency domain) gave a sensitive and robust performance across test condi-

tions. The performance of the Hotelling’s T 2 test was also optimised for ABR detection

in terms of which EEG features to use for the analysis (Appendix, section A.3). An

additional method worth mentioning is the bootstrapped correlation coefficient (CC),

which has the potential of providing a highly sensitive test statistic (Figure 6.2), under

the condition that the true ABR waveform morphology is known a priori. This infor-

mation is, however, typically not available (in practice the true waveform morphology

remains unknown). When the match between the template and the true ABR waveform

is poor, a low test sensitivity can be expected. A solution is to combine the CC with

a non-template specific method, such as the Hotelling’s T 2 test, and to evaluate test

significance using the bootstrap approach. Results from this work indeed demonstrate

a highly sensitive and robust performance for the ‘T2 Time + CC’ combination. When

compared to the Fsp (evaluated using theoretical F-distributions), a maximum increase

in test sensitivity of 70-75% was observed for the simulations, and ∼50% for the subject

recorded data (Figures 6.2 and 6.3).

10.1.2 Sequential testing

A novel method (the CGST) for finding the stage-wise critical decision boundaries and

controlling the FPR for sequential tests was proposed (chapter 7) and evaluated for ABR

detection (chapter 8). Results from simulations and real recordings of EEG background

activity first confirm that the CGST controls specificity as intended for ABR detection

(Figure 8.1, Table 8.1), under the condition that its underlying assumptions remain

satisfied. These include (1) that the stage-wise p value null distributions are independent,

and (2) that the stage-wise p value null distributions are uniform on the [0,1] interval.

As shown in chapter 8, the main concern for ABR detection is assumption (2), which

is only satisfied when the assumptions underlying the statistical detection method are

also satisfied. This emphasizes the importance of using suitable pre-processing and test
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parameters (e.g. the high-pass cut-off frequency and stimulus rate) in combination with

detection methods that have a good control of specificity, such as the Hotelling’s T 2 test

or bootstrapped statistics.

Sensitivity and test time of the CGST were explored using a sequentially applied Hotelling’s

T 2 test (chapter 8). Results demonstrate various trade-offs between statistical power and

test time, primarily as a function of the number of sequential stages K and the choice

for the stage-wise critical decision boundaries. Starting with the number of stages K,

simulation results demonstrate that the trade-off between statistical power and test time

is beneficial for ABR detection, with reductions in mean test time for K = 5 relative

to K = 1 of up to 40-45%, with no loss in statistical power (Figure 8.3, plot B). In

order to achieve these results, it is necessary to increase the maximum test time Figure

8.3, plot A). Hence, when used in practive, test time for some subjects test time will

be prolonged, yet the mean test time (across a cohort of subjects) will tend to be de-

creased (relative to the single shot test). The increased maximum test time (for K > 1),

however, has consequences for the no-stimulus condition, i.e. when a response is absent,

the test will proceed to the final stage of the trial in (1-α)100% of the cases. For the

no-stimulus condition, the mean test time is therefore close to the maximum test time,

which emphasizes the importance of futility stopping (early acceptance of H0) for the

sequential test. Results from chapter 8 indeed demonstrate large reductions in mean test

time for the no-stimulus condition when early stopping in favour of H0 was permitted,

potentially at the cost of a reduced test sensitivity (Figure 8.3, plots F and G).

10.1.3 Adaptive sample-size re-estimation

A new adaptive sample size re-estimation procedure was proposed and briefly evaluated

for ABR detection in chapter 9. The main advantage for the adaptive approach (over

a non-adaptive approach) is a reduced uncertainty with respect to the power of the

EEG background activity, i.e. the EEG background activity can be estimated for the

specific recording in question, which allows for a more informed decision with respect

to the ensemble size N . Simulation results show a reduced test time (relative to the

non-adaptive approach) of 10-30% for the stimulus condition and 25-45% for the no-

stimulus condition, with a more or less equal performance int terms of test sensitivity

(Figure 9.5). An additional advantage for the adaptive approach is an improved control

over the TPR and the FNR, which can now be specified explicitly by the user through

the γi values (the stage-wise TPRs) and the Γi values (the stage-wise FNRs). This

can help bring ABR examinations to an unambiguous test outcome in terms of ’ABR

present’ or ’ABR absent’ (or abnormal). In particular, when the test is stopped for

futility (Σk < Bk), it can be concluded with certainty > (1 −
∑K

i=1 Γi)100% that the

response is either absent or smaller than the assumed response, whereas when the test

is stopped for efficacy (Σk > Bk) it can be concluded with certainty > (1−α)100% that

a response is present.
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10.2 Limitations

A first limitation with this work is that the subject ABR threshold data was obtained

from just 12 normal hearing adults, and might therefore not be representative of the true

population of normal hearing adults. Consequently, many results from this thesis (which

were generated either directly or indirectly using this data set) need to be verified using

a much larger cohort of normal hearing adults. This is relevant primarily for the feature

optimisations in the appendix (section A.3) and the comparisons in sensitivity and test

time amongst detection methods (chapter 6). Results from the non-adaptive sequential

test procedure and the adaptive ensemble size re-estimation procedure (chapters 8 and

9, respectively) might also be data-dependent, and should similarly be verified using a

larger cohort of test subjects.

A second limitation for this work is that the simulations frequently used Gaussian, sta-

tionary, coloured noise for representing the EEG background activity, whereas real EEG

background activity is not a stationary, Gaussian process. That said, results from chap-

ter 5 suggest that violations to the stationariy and Gausianity assumptions are relatively

minor for ABR data (assuming suitable pre-processing and artefact rejection strategies

are used). It is also worth pointing out that simulations in this work were typically used

to provide additional verification or supporting evidence for results obtained from real

data, and that conclusions are seldom drawn from simulations alone. Chapter 9 is an

exception to the latter, i.e. the performance of the adaptive ensemble size re-estimation

procedure was explored with just simulations. As discussed in chapter 9, this is because

the available ABR data were not collected with a view to evaluate a sequential test

procedure, i.e. the maximum test time for the ABR data was too short. In future work,

the adaptive approach should also be tested using suitable real data sets.

More specific limitations for this work were summarised in the discussions and conclu-

sions of their respective chapters, and are not repeated here. Just to mention a few,

these limitations are in regards to how the underlying statistical assumptions were eval-

uated in chapter 5 (see also section 5.5.1), and in regards to the adaptive ensemble size

re-estimation procedure (see also the discussion in section 9.4).

10.3 Future work

10.3.1 The bootstrap

Additional work is required to test whether the bootstrap can be used for a more robust

evaluation of test significance under independence violations. In particular, the number

of epochs in each resampled block needs to be explored. Increasing the number of epochs

per block will presumably increase robustness to independence violations, which comes

at the cost of a reduced variation in the starting positions of the epochs. When this
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variation is too small, then the bootstrapped null distribution may be insufficiently dis-

perse, i.e. it may be an inaccurate representation of the true null distribution, resulting

in unreliable and/or biased critical decision boundaries.

10.3.2 The adaptive sequential test

Variability in AER waveform morphologies across subjects and stimuli means that the

optimal feature set for response detection (i.e. which EEG features to include in the

statistical test) will be both subject- and stimulus-dependent. Future work might ex-

plore different approaches for optimising both the selected features and the choice for

statistical test throughout the trial, with a view to increase test sensitivity and reduce

test time. It is envisioned that the bootstrap approach will play an important role here,

as this gives a large amount of freedom when choosing which test statistics to use for

AER detection. Moreover, the bootstrap allows multiple EEG features to be combined

efficiently into a single test statistic (section 3.6.2). The possibilities for potential feature

adaptations and/or optimisations are therefore vast.

10.3.3 Adaptive sample size re-estimation

Future work might further develop and evaluate the adaptive sample size re-estimation

procedure from chapter 9 across a wider range of design parameters and pre-processing

parameters. This includes different choices for the γi and Γi values (the stage-wise TPRs

and FNRs, respectively), the choice for the assumed response, and the adopted resam-

pling approach. The specificity of the approach should also be evaluated across a wider

range of pre-processing parameters (e.g. for different high-pass cut-off frequencies and

stimulus rates), and the approach should be tested in subject data. Finally, comparisons

in test performance with alternative methods from the literature might also be drawn

(e.g. Proschan & Hunsberger, 1995; Lehmacher & Wassmer, 1999; Chow & Chang,

2007; Mehta & Pocock, 2010).

10.3.4 Fast hearing threshold estimation using the CGST

Most test procedures for ABR audiometry aim at estimating the behavioural hearing

thresholds using a simple ‘up-down’ approach, i.e. stimulus intensity is decreased for

every correct response, or increased for a missed response. A more efficient approach

might be developed by continuously switching between stimulus intensities, such that

the amount of information gained (regarding the location of the behavioural hearing

threshold) is maximized. Future work might explore how the latter can be realised

within an adaptive CGST framework. In particular, at each stage of the trial, a post-

hoc power analysis can be conducted to choose the stimulus intensity for the next stage.
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10.3.5 New test paradigms for behavioural hearing threshold estima-

tion using the CGST

When using the CGST, the assumption that the response is deterministic is relaxed, i.e.

the response is assumed to be deterministic within each block, as opposed to across all

acquired data. As a result, the stimulus can potentially be adjusted at each stage of

the sequential analysis. This might have some use for CAEP detection, i.e. modifying

the type of stimulus at each stage of the analysis might help the subject to focus on the

stimuli, thus giving stronger CAEP responses.

Mismatch negativity

Mismatch negativity (MMN) is a response to an ‘odd ball’ in a sequence of regular events.

A MMN response might therefore be expected when changing the stimulus at each stage

of the analysis, which might be used as further indication that the subject can hear the

acoustic stimulus. In particular, test significance for both the ABR and the MMN could

be evaluated simultaneously using the bootstrap approach for multiple features (section

3.6.2). Note that an ‘oddball’ can potentially be inserted at any moment, not just at

the stage transitions. Note also that the bootstrap for multiple features does not require

the EEG pre-processing parameters to be identical for each feature, i.e. the MMN could

be pre-processing using a different set of parameters relative to the ABR.
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[5] Alpsan, D, & Özdamar, Ö. (1992a). Auditory brainstem evoked potential classi-

fication for threshold detection by neural networks. I. Network design, similarities

between human-expert and network classification, feasibility. Automedica, 15(1), pp.

67-82.
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Appendix

A.1 Central Limit Theorem

The Central Limit Theorem (coined by Polya in 1920, and built around the work of

Laplace in 1810) states that the sample mean is normally distributed, irrespective of

the true underlying distribution from which is was obtained. The only assumptions

underlying the Central Limit Theorem are that the samples are independent, and that

the sample size is sufficiently large. More formally, the Central Limit Theorem is defined

as:

√
N(X̄ − µ)

L→ N(0, σ2) (1)

where X̄ is the sample mean, µ is the true mean of the underlying population, σ2 is

the true variance of the underlying population, N is the sample size, N(0, σ2) denotes

a normal distribution with mean 0 and variance σ2, and L denotes Limit (as N goes to

∞).

A.2 The binomial distribution

A Bernoulli trial is a random experiment with exactly two possible outcomes, typically

interpreted as ‘success’ and ‘failure’. When X Bernoulli trials are performed and the

probability of a successful trial is P , then the binomial distribution gives the probability

densities of observing x successful trials. The distribution is given by:

B(x|X,P ) =
X!

x!(X − x)!
P x(1− P )X−x (2)

The binomial distribution is used extensively throughout this work when constructing

CIs for the nominal α-level of the test. A ‘successful’ Bernoulli trial is hence defined as
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a false-positive, where the probability of a successful trial P is equal to α. The total

number of Bernoulli trials X is furthermore given by the total number of independent

tests performed. The distribution is then used to generate the probability densities of

observing x false-positives.

As an example, say 10 000 independent tests are performed under H0 at nominal level

α = 0.05. The expected number of false-positives observed under H0 is then 500 (5%

of 10 000). In practice, deviations from the theoretical 500 false-positive observations

occur due to random fluctuations (it is assumed for now that the underlying statistical

assumptions of the test are satisfied). The binomial distribution describes the spread of

these random fluctuations. An example of a binomial distribution using X = 10000 and

P = 0.05 is presented in Fig. A.1. The two-sided 95% CIs are given by [459, 544], and

are also presented. Note that the binomial distribution is a discrete distribution, which

means that rounding errors occur when approximating the CIs. Throughout this work,

a slightly liberal approach is adopted, i.e. the boundaries are rounded ‘inwards’, giving

slightly too narrow CIs.

Figure A.2.1: The binomial distribution, representing the expected distribution for the number
of false-positives when 10 000 independent tests are performed at nominal significance level
α = 0.05. The two-sided 95% CIs (for the expected 500 false-positives) are also shown, and
are given by [459, 544]. Note that the binomial distribution is a discrete distribution, meaning
rounding errors occur when approximating the CIs.

Independent observations

An important underlying assumption of the binomial distribution is that the X ob-

servations are independent. In this work, the observations are essentially the p-values

generated by the statistical tests (giving a 1 for p < α and a 0 otherwise). The indepen-

dence assumption hence requires these p-values to be independent. When independence
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is violated, then the ‘effective number of observations’ is smaller than the assumed

number of observations. As a result, the estimated CIs will be too narrow.

Many sections throughout this thesis furthermore evaluate specificity using real EEG

background activity (data set D1). When doing so, one of the following two approaches

is typically adopted. In the first approach, each recording is split into ensembles of

epochs, using each EEG measurement at most once. The ensembles (and the resulting p-

values) can hence be considered more or less independent. In the second approach, blocks

of epochs are resampled repeatedly from within the continuous recording. Contrary to

the first approach, data can now be used multiple times, potentially resulting in a

violation of the independence assumption between ensembles.

A.3 Feature optimisations

This section uses simulations to optimise the sensitivity of various time and frequency

domain ABR detection methods. The data for this section consists of simulated coloured

noise along with ABR templates (data set D3) for simulating a response.

A.3.1 Time domain

Starting with the time domain methods, the goal for this section is to optimise sensitivity

in terms of the number of TVMs. The number of TVMs introduces a trade-off between

statistical robustness versus a potential loss of information. In particular, when the

number of TVMs are too low, then consecutive peaks and valleys within the ABR

waveform might cancel each other out. When the number of TVMs is too high, on the

other hand, then the TVMs will be highly correlated, resulting in redundant features,

and potentially a reduced statistical power. The time domain ABR detection methods

included in the optimisation are: (i) T2 Time (the Hotelling’s T 2 test applied in the

time domain), (ii) T2 RM (the Hotelling’s T 2 test when applied in the time domain

as a repeated measures approach), (iii) RM ANOVA, and (iv) Friedman’s test. When

using RM ANOVA, sphericity violations are accounted for by adjusting the DOF of the

F-distribution using a correction factor, as described in section A.4

Method

Simulated coloured noise was generated as described in section 4.4, using a band-pass

filter of 100-2000 Hz (a 3rd-order Butterworth filter, see also section A.16). A total of

5000 recordings were simulated, which were structured into ensembles of N 30.03 ms,

where the ensemble size N was set to 200. A -24 dB response was then simulated as

described in section 4.3, using the ABR templates from data set D3. The initial 15 ms

windows of the epochs were compressed into Q TVMs, where Q ranged from 2 to 75,

and the resulting TVMs were analysed (both before and after simulating a response)

using the aforementioned ABR detection methods.
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Results

The TPRs and FPRs are presented as a function of the number of TVMs in Fig. A.3.

For the no-stimulus condition (plot B), the nominal α-level and its two-sided 95% CIs is

also plotted. The mean correction factor (calculated across 5000 tests) for RM ANOVA

is furthermore presented in Fig. A.4, also as a function of the number of TVMs. Note

that a large correction factor implies a small violation to the sphericity assumption, and

vice versa for a small correction factor.

Figure A.3.1: The TPRs (plot A) and FPRs (plot B) as a function of the number of TVMs.

Figure A.3.2: The mean correction factor (calculated across 5000 tests) for RM ANOVA as a
function of the number of TVMs. Note that when the correction factor is relatively large (close
to one), that the sphericity violation was small.

Discussion

For both T2 Time and T2 RM, the optimal number of TVMs (for this data) was 35.

Further increasing the number of TVMs resulted in a loss of test sensitvitiy. For RM

ANOVA, the TPR peaked at ∼51% when using 32 TVMs, and again at ∼51-52% when

using anything between 57-63 TVMs. For Friedman’s test, the specificity was excep-

tionally poor when using anything more than three TVMs. It worth noting that the
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implementation for Friedman’s test was verified using the example presented in Fried-

man’s original paper (Friedman, 1937).

A.3.2 Frequency domain

This section explores how many and which spectral bands to include for the frequency

domain methods. In particular, it explores which spectral bands contain significant con-

tributions from the ABR, and how large the contribution should be before the spectral

band should be included in the analysis. Ideally, the spectral bands selected for the

analysis should include only those bands that contain significant contributions from the

ABR, whilst excluding others that contain pre-dominantly noise. The optimisation in

this section is furthermore restricted to just the Hotelling’s T 2 test.

Approach

Simulated coloured noise was generated as described in section 4.4, using a band-pass

filter of 100-2000 Hz. A total of 5000 recordings were simulated, which were structured

into ensembles of N 30.03 ms, where the ensemble size N was set to 200. A -24 dB

response was then simulated as described in section 4.3, using the ABR templates from

data set D3. The initial 15 ms windows of the epochs were then extended to 25 ms

using zero-padding, after which the Hotelling’s T 2 test was applied separately to each

spectral band (using the real and imaginary parts as features). The detection rate was

then calculated per spectral band, after which the spectral bands were ranked from high

to low (Table A.1). Finally, the Hotelling’s T 2 Test was applied to the top W ranked

spectral bands, where W was varied from 2 to 30, i.e. it was first applied to just the

top ranking spectral band, then the top 2 ranking spectral bands, etc., until all 30 top

ranking spectral bands had been analysed.

Table A.3.1: The top 30 ranked spectral bands, where the ranking was performed as a
function of the percentage of detected responses using the Hotelling’s T 2 test as detection
method

Rank Frequency Detection Rank Frequency Detection Rank Frequency Detection

1 120 27.3% 11 320 12.5% 21 1000 9.6%

2 440 21.8% 12 560 12.2% 22 840 9.6%

3 480 20.8% 13 1040 12.2% 23 720 9%

4 520 17.4% 14 640 12% 24 800 9%

5 200 16.4% 15 960 11.22% 25 1120 9%

6 240 15.3% 16 880 10.9% 26 760 8.8%

7 920 15.1% 17 600 10.6% 27 1320 8%

8 400 14.5% 18 1080 10.2% 28 1280 7.6%

9 280 13.1% 19 360 10% 29 1240 7%

10 160 13% 20 680 10% 30 1360 7%

Results

The detection rate is first plotted as a function of the spectral band being analysed in

Fig. A.4, both after (plot A) and before (plot B) simulating a response. For the no-

stimulus condition (plot B), the nominal α-level is also plotted along with its two-sided



154 Appendix

95% CIs. The detection rates are then also plotted as a function of the number of top

ranked spectral bands included in the Hotelling’s T 2 test, similarly before (plot D) and

after (plot C) simulating a response. Results show that detection peaks (for this data)

when using the top ∼24 ranked spectral bands in Table A.1.

Figure A.3.3: Results from the frequency domain optimisation for the Hotelling’s T 2 test. Plots
A and B: the detection rates as a function of the spectral band being analysed, both before (plot
B) and after (plot A) simulating a response. Plots C and D: the detection rate, now as a function
of the number of top-ranked spectral bands (see Table A.1), similarly before (plot D) and after
(plot C) simulating a response.

A.4 Corrections for sphericity violations

This section provides a brief description of the Greenhouse Geisser (GG) and Huyn

Feldt (HF) corrections for sphericity violations, denoted by ε̂ and ε̃, respectively. In

particular, sphericity violations are accounted for by multiplying the DOF of the F-

distribution with either ε̂ or ε̃. The GG correction has previously been found to be

conservative for ε̂ < 0.75 (Huyn & Feldt, 1976), whereas the HF correction ε̃ is slightly

liberal. Girden (1992) therefore recommends using the GG method for ε̂ > 0.75, and

the HF method otherwise, which is the adopted approach throughout this work.
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A.4.1 The Greenhouse Geiser correction

Following the original notation in Greenhouse & Geiser (1959), the GG correction ε̂ is

given by:

ε̂ =
p2(σ̄tt − σ..)2

(p− 1)
∑∑

σ2
ts − 2p

∑
σ̄t2 + p2σ̄2

..

(3)

where p is the number of within subjects levels (the number of TVMs), σts are the

elements of the feature covariance matrix S, σ̂tt is the mean of the diagonal of S, σ.. is

the overall mean of S, and σ̂t is the mean of row (or column) t of S.

A.4.2 The Huyn Feldt correction

Following the notation of Huyn & Feldt (1976), the HF correction ε̃ is found by modifying

the Greenhouse Geiser correction ε̂, and is given by:

ε̃ =
Nrε̂− 2

r(N − g − (rε̂))
(4)

where N is the total number of sampling units, r is the number of within subjects

factors (the number of TVMs), and g is the number of levels of the between subjects

factor (equal to 1 for evoked response detection).

A.5 Assumptions underlying the bootstrap and the per-

mutation test

The goal for this section is to provide a more in depth assessment of the performance

of the bootstrap approach for ABR detection. In particular, a brief assessment of the

reliability of bootstrapped CIs is first provided in section A.5.1 below, after which the

assumption that the ABR cancels out in the resampled data sets (i.e. that its SNR is

zero) is explored in section A.5.2. A minor variation to the standard approach (where

the ensemble coherent average is subtracted from the epochs prior to resampling) is

also explored. Finally, a very brief assessment of the independence assumption between

resampled epochs is provided in section A.5.3.
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A.5.1 The reliability of bootstrapped confidence intervals

This section briefly explores the reliability (the consistency or repeatability) of boot-

strapped critical decision boundaries, as a function of the number of resampled ensem-

bles M . Note that the expected type-I error rate for unreliable CIs will still be α. It

is instead the robustness (in terms of test performance) of the ABR detection method

that is affected. In particular, unreliable critical boundaries can contribute towards ei-

ther a conservative or a liberal evaluation of test performance for some subjects. The

reliability of bootstrapped CIs should hence ideally be as high as possible. Reliability is

furthermore directly related to the number of resampled datasets M . Increasing M will

increase the reliability of the CIs, which comes at the cost of an increased processing

time. The goal for this section is to explore how the reliability of bootstrapped CIs is

affected by M . Finally, the reader might have noticed that ‘CIs’ and ‘critical decision

boundaries’ are being used interchangeably, which is justified for this section as the CIs

are one-sided.

Method

The data for the assessment, say D, consists of a single ensemble containing N = 200

30.03 ms epochs. The epochs are composed of simulated coloured noise, generated as

described in section 4.4 (using a 3rd-order Butterworth band-pass filter of 100-2000 Hz).

The first step for the assessment is to approximate the true bootstrapped null distribution

(for the T 2 statistic). The latter is achieved by resampling M = 50 000 ensembles from

D, and calculating the T 2 statistic from each resampled ensemble. The histogram of the

resulting T 2 values (which is assumed to be the true bootstrapped null distribution due

to the large number of resampled data sets) is shown in Fig. A.5 (upper plot), along

with its 95% percentile (equal to 44.6419). Next, 200 critical values (α = 0.05) for the

T 2 statistic were calculated using M resampled data sets, where M took values of 500,

1000, 2500, 5000, 75000, or 10 000. To clarify, when using e.g. M = 500, a total of

500 ensembles of N = 200 epochs were resampled from D, which were analysed using

the T 2 test. A histogram was then constructed from the 500 T 2 values, which was used

to find the 95% percentile for the T 2 statistic. This procedure was repeated 200 times,

resulting in a distribution of critical values (for the M = 500 condition), which was

similarly repeated for each M .

Results

The resulting histograms (each constructed from 200 critical values) are shown in Fig.

A.5 for different M .

Discussion

The bootstrap controls the type-I error rate when evaluated across a large number of

tests, but can still result in unreliable CIs when the number of resampled data sets M is

too low. In particular, when using M = 500, the smallest estimated 95% CI was given

by 41.35 (note that the assumed true CI was 44.6419), corresponding to the 0.9148

percentile of the (assumed) true bootstrapped null distribution. The largest estimated
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Figure A.5.1: The histograms (each constructed from 200 critical values) for different M . The
assumed true bootstrapped null distribution for the T 2 statistic is also shown (upper plot). The
latter was generated using M = 50 000 resampled data sets.

95% CI was furthermore equal to 48.1772, corresponding to the 0.9741 percentile. Hence,

in the very unlikely scenario that all bootstrapped CIs are underestimated (<41.35), then

the expected type-I error rate will be <0.0259, whereas when all bootstrapped CIs are

overestimated (>48.1772) it will be >0.0852. The upper and lower boundaries for the

expected spread of the type-I error rate for a worst case scenario (using M = 500) is

hence given by [0.0259, 0.0852]. Increasing M reduces the spread, i.e. using M = 1000

gives [0.0345, 0.0736], M = 2500 gives [0.0387, 0.0645], M = 5000 gives [0.0421, 0.0581],

M = 7500 gives [0.0449, 0.0571], andM = 10000 gives [0.0449, 0.0559]. An exceptionally

reliable bootstrapped CI would hence require a relatively large number of resampled

datasets. When using α = 0.01, then M would ideally be even larger due to the

sparseness of the outer tails of the bootstrapped null distributions.

A.5.2 Subtracting the coherent average prior to resampling

An important assumption underlying Lv et al (2007) is that the ABR cancels out in

the resampled data sets, i.e. that its SNR is zero. When this is not the case, then the

bootstrapped ensembles will still contain a small response, meaning the resulting boot-

strapped null distribution will be slightly biased towards the alternative distribution.
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As a result, the critical boundary for rejecting H0 will be increased, and test sensitivity

reduced. This section explores the simple solution of subtracting the ensemble coher-

ent average from the epochs prior to resampling. Data for this section consists of the

recordings of EEG background activity (data set D1), along with ABR templates for

simulating a response (data set D3).

Method

The recordings of EEG background activity (data set D1) were structured into ensembles

of N = 200 30.03 ms epochs, resulting in a total of 5448 ensembles (note that these

ensembles can be considered more or less independent). A -27 dB response was then

simulated as described in section 4.3 using ABR templates from data set D3. The initial

15 ms windows of the epochs were analysed with the Hotelling’s T 2 test (applied in the

time domain) both before and after simulating a response. The significance of the T 2

statistic was then evaluated using either (i) theoretical F-distributions (the standard

approach), (ii) the bootstrap approach in Lv et al (2007, or (iii) the bootstrap approach

in Lv et al where the ensemble CA was subtracted from the epochs prior to resampling.

Results

The FPRs and TPRs (using α = 0.01) are first presented in Table A.2. The two-sided

99% confidence interval for α = 0.01 is furthermore given by [0.007, 0.0138] (5448 tests

were performed). The TPRs are then also plotted as a function of the theoretical α-level

in Fig 11.6, which is essentially a (modified) Receiver Operating Characteristic (ROC)

curve. Note that this ROC curve deviate from a standard ROC curve as it shows the

TPR as a function of the theoretical α-level as opposed to the observed type-I error

rate.

Table A.5.1: The FPRs and TPRs (using α = 0.01) when evaluating the test significance of
the T 2 statistic using either theoretical F-distributions, with the standard bootstrap approach
in Lv et al, or with the standard bootstrap approach when subtracting the ensemble CA from
the epochs prior to resampling. The two-sided 99% confidence interval for the theoretical 0.01
FPR is furthermore given by [0.007, 0.0138] (5448 tests were performed).

FPR (α = 0.01) TPR (α = 0.01)

T2 Time (F-distributions) 0.009 0.2150

T2 Time (bootstrapped) 0.0099 0.2034

T2 Time (bootstrapped, CA subtracted) 0.0101 0.2144

Discussion

Results from Fig. A.6 suggest a small increase in sensitivity by subtracting the CA from

the epochs prior to resampling, which suggests that the power of the evoked response

in the resampled data sets is not zero. Although results suggest that the benefit is

relatively small, additional simulations (details not presented) demonstrate that when

the inter-epoch intervals are decreased (i.e. the stimulus rate is increased) or when

the SNR of the response is increased, that the benefit of subtracting the CA prior to

resampling is larger, e.g. an increase in TPR from ∼0.3 to ∼0.36 was observed when

using a stimulus rate of ∼60 Hz.
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Figure A.5.2: The TPRs plotted as a function of the theoretical α-level of the test when
evaluating the significance of the T 2 statistic using either (1) theoretical F-distributions, (2) the
bootstrap approach in Lv et al (2007), or (3) the bootstrap in Lv et al (2007) when subtracting
the ensemble CA from the epochs prior to resampling.

A.5.3 Independence violations

The goal for this section is to provide a more powerful assessment of the specificity of the

Hotelling’s T 2 test when evaluating test significance using (i) theoretical F-distributions,

(ii) the standard bootstrap in Lv et al (2007), and (iii) the standard bootstrap where

the ensemble CA is subtracted from the epochs prior to resampling. The assessment is

conducted using 175 000 simulated tests, using a high-pass cut-off frequency of 100 Hz

and a (hypothetical) stimulus rate of 33.3 Hz.

The sub-goals for this section are furthermore three-fold. First, various sections through-

out this work suggest a very minor tendency towards a conservative test performance

when using a high-pass filter of 100 Hz and hypothetical stimulus rate of 33.3 Hz. The

large number of simulated tests used in this section is used to either verify or rule out

the possibility that this is due to a violation of the independence assumption between

epochs. Secondly, the resampling with replacement procedure used by the bootstrap

means that some EEG segments might be used multiple times, potentially resulting in

an additional violation of the independence assumption between (resampled) epochs,

and ultimately in an inaccurate approximation of the null distribution for the boot-

strapped test statistic. Because the independence violation is expected to be relatively

minor, a large number of tests may be required to expose it. Finally, subtracting the

ensemble coherent average from the epochs prior to resampling may result in a reduced

random variation for the resampled data sets (relative to the original data set), again

potentially resulting in an inaccurate estimation of the null distribution.

Method

Ensembles of coloured noise were simulated, as described in section 4.4 (using a band-
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pass filter of 100-2000 Hz). A total of 175 000 recordings were simulated, which were

structured into ensembles of N = 200 30.03 ms epochs. The initial 15 ms of the en-

sembles were then analysed using the Hotelling’s T 2 test (applied to 25 TVMs). The

test significance of the T 2 statistic was evaluated using one of the three aforementioned

methods, i.e. theoretical F-distributions, the standard bootstrap, or the bootstrap after

subtracting the ensemble CA from the epochs prior to resampling.

Results

The observed FPRs using either α = 0.01 or α = 0.05 are presented in Table A.3. The

95% CIs for α = 0.01 were given by [0.0095, 0.0105], and for α = 0.05 by [0.0490, 0.0510].

No significant deviations were observed.

Table A.5.2: The observed FPRs (calculated from 175 000 simulated tests) using either α = 0.01
or α = 0.05. The 95% CIs for α = 0.01 are given by [0.0095, 0.0105], and for α = 0.05 by [0.0490,
0.0510].

α = 0.01 α = 0.05

T2 Time (F-distributions) 0.0098 0.0496

T2 Time (bootstrapped) 0.0103 0.0497

T2 Time (bootstrapped, CA subtracted) 0.0102 0.0493

Discussion

Results for ‘T2 Time (F-distributions)’ firstly suggests that independence between epochs

was indeed satisfied when using a high-pass cut-off frequency of 100 Hz and a hypothet-

ical stimulus rate of 33.3 Hz. Results from ‘T2 Time (bootstrapped)’ suggest that the

independence violation between resampled epochs is also negligible for these settings.

Note however that the latter might not generalise to alternative stimulus rates. In partic-

ular, higher stimulus rates will reduce the inter-epoch intervals, resulting in an increased

probability of an overlap in data, and thus in increased independence violation within

the resampled data sets. Finally, results from ‘T2 Time (bootstrapped, CA subtracted)’

suggest that random variation is not significantly decreased (and that it otherwise has

no noticeable effect on the approximated null distribution) by subtracting the ensemble

CA from the epochs prior to resampling.

A.5.4 The permutation test

A potential competitor to the bootstrap is the permutation test, which dates back to

R.A. Fisher (1935), who introduced it as a theoretical argument in support for Students

t-test (Efron & Tibshirani, p 202, 1993). It is similar to the bootstrap in that it attempts

to construct a reference distribution for the parameter of interest, which can then be

used for statistical inference. It has also been used for evoked response detection by

Maris & Oostenveld (2007), who used it to evaluate clusters of t-statistics, also known

as the cluster mass test (Bullmore et al., 1999).

The permutation test differs from the bootstrap in that (i) it applies a resampling
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without replacement approach, and (ii) it requires two independent samples, say X1

and X2, as opposed to just a single sample. The permutation test may also require a

minor modification to the test statistic. Ideally, a two sample test should be used to

compare X1 and X2. Alternatively, a one-sample test can be applied to both X1 and

X2 separately, and the difference used as test statistic. The goal for the permutation test

is then to evaluate the null hypothesis H0, that X1 and X2 share the same underlying

distribution.

In practice, the permutation test can be implemented using a few simple steps (Maris

& Oostenveld, 2007): (1) X1 and X2 are pooled to construct a single pooled sample

space, (2) the pooled sampled space is randomly split amongst two new samples, which

is repeated many times, and (3) the statistic of interest is calculated from the resampled

data sets. Like this bootstrap, this allows a reference distribution to be constructed,

which can then be used to construct e.g. confidence intervals.

The main assumption underlying the permutation test is the equal probability of observ-

ing any subset from the pooled sample space of X1 and X2 under H0. This assumption

is somewhat questionable for evoked response detection. In particular, when one of the

samples (say X1) contains a response and the other (say X2) does not, then randomly

dividing X1 and X2 into two new samples will inevitably result in an unequal distri-

bution of X1 and X2 values for some of the resampled data sets. As a result, some

resampled data sets will contain a relatively large response, whereas others will contain

a relatively small response. Note that the resampled data sets are then representative

(to some degree) of the alternative hypothesis, which states that the resampled data sets

are obtained under different conditions. Note also that the core of the issue is that the

permutation test does not disrupt the time-locking between the epochs and the stim-

uli. A potential solution might therefore be to re-sample from within the continuous

recordings. It is, however, not clear how this might be achieved using a resampling

without replacement approach. Note also that if the permutation test is modified so

that it uses a resampling with with replacement approach (and that it resamples from

within the continuous recording), that it is essentially identical to the bootstrap in Lv

et al (2007), except that it still requires two independent samples as opposed to one.

Finally, note that obtaining two independent samples under similar test conditions is

problematic for evoked response detection due to non-stationary data and varying DOF

between recordings.

A.6 Detection rates using adjusted α-levels

This section presents the detection rates (from simulations in sections 6.1-6.3) when

using adjusted critical α-levels, i.e. the critical α-level (for a significant detection) was

adjusted, such that the FPRs were equal across methods, which thus allows a more fair

comparison in test sensitivity.
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Simulations I

For the first set of simulations (Simulations I, section 6.1), the critical α-levels were

adjusted, per method, such that the FPR (across all ensemble sizes) was 0.01. The

adjusted α-levels were 0.0087 (T2 Time), 0.0088 (T2 Freq), 0.021 (Fsp 5 dof), 0.0321

(Fmp 5 dof), 0.0071 (Fsp bootstrapped), 0.0074 (Fmp bootstrapped), 0.0088 (modified

q-sample V2) and 0.009 (Modified q-sample V4). The detection rates using the adjusted

α-levels are presented in Fig A.7.

Figure A.6.1: The detection rates for the methods from Simulations I (section 6.1) when using
the adjusted α-levels.

Simulations II

For the second set of simulations (section 6.2), the critical α-levels were also adjusted,

now per ensemble size. The adjusted α-levels (for obtaining FPRs of 0.01) are presented

in Table A.4, and the detection rates (using the adjusted α-levels) in Fig. A.8.

Table A.6.1: The required α-levels, per ensemble size N , for obtaining a FPR of 0.01 in
simulations presented in section 6.2.

Ensemble size –> 50 100 175 275 375 500 650 800

T2 Time (F-distributions) 0.0087 0.0112 0.0110 0.0125 0.0117 0.0104 0.0101 0.0089

T2 Time (bootstrapped) 0.0091 0.0111 0.0091 0.0101 0.0101 0.0091 0.0111 0.0080

CC (bootstrapped) 0.0071 0.0071 0.0071 0.0080 0.0061 0.0071 0.0080 0.0101

T2 Time & CC (bootstrapped) 0.0091 0.0091 0.0071 0.0080 0.0071 0.0071 0.0071 0.0080

Fsp (bootstrapped) 0.0080 0.0080 0.0080 0.0091 0.0091 0.0091 0.0091 0.0080

MP (bootstrapped) 0.0111 0.0101 0.0111 0.0071 0.0091 0.0091 0.0101 0.0080

Fsp (F-distributions) 0.0315 0.0367 0.0462 0.0429 0.0447 0.0524 0.0406 0.0447

A.7 Comparisons in sensitivity: additional simulations

This section uses simulations to compare the sensitivity of (i) the Hotelling’s T 2 test,

applied in both the time and frequency domain, (ii) RM ANOVA, using the GG and

HF corrections as compensation for sphericity violations (see section A.4), and (iii)
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Figure A.6.2: The detection rates for the methods from Simulations II (section 6.2) when using
the adjusted α-levels.

Friedman’s test. When used in the time domain, the Hotelling’s T 2 test is applied as

either a repeated measures approach (denoted by T2 RM; see also section 3.2.4), or as

the standard time domain approach (T2 Time). The statistical features used for this

section were chosen based on feature optimisations presented in the section A.3, and can

be considered close to optimal in this section. As was the case for section 6.1, the main

goal for these simulations is to provide a powerful comparison between the sensitivities

of the methods.

Method

Data for the simulations is similar to the data used in ‘Simulations I’ (section 6.1),

and consists of recordings of real EEG background activity (data set D1), along with

click-evoked ABR templates (data set D3) for simulating a response. The recordings of

EEG background activity were downsampled to 5 kHz and band-pass filtered (using a

3rd-order Butterworth filter) from 100 to 2000 Hz.

Specificity assessment

Ensembles of N epochs were constructed by randomly resampling N consecutive 30.03

ms epochs from within a randomly selected and pre-processed recording of EEG back-

ground activity. The ensemble size N took values of 50, 100, 175, 275, 375, 500, 650,

800 epochs. A total of 5000 ensembles containing just EEG background noise were con-

structed, per ensemble size. The initial 15 ms windows of the ensembles were analysed

using the aforementioned ABR detection methods.

Sensitivity assessment

A response was simulated by randomly selecting an ABR template (from data set D3),

rescaling it, and adding it to all epochs within the ensemble in question. The scaling
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factor was chosen such that the SNR of the response was -24 dB, calculated as described

in section 4.3. The initial 15 ms windows of the resulting ensembles were analysed using

the aforementioned detection methods.

Statistical features

The statistical features selected for the analysis were chosen based on results presented

in section A.3. The time domain features consist of 35 TVMs for both T2 Time and

T2 RM, and 32 TVMs for RM ANOVA. For Friedman’s test, just 3 TVMs were used,

which was based on results from the specificity assessment (section A.3), which show a

significantly liberal test performance for Friedman’s test when using anything more than

three TVMs. Frequency domain features for T2 Freq consist of the real and imaginary

parts of the Fourier components of the top 18 ranked spectral bands presented in Table

A.1.

Results

Specificity

The observed FPRs (using α = 0.01 or α = 0.05) for each ensemble size N are presented

in Table A.5. The binomial distribution was used to construct two-sided 95% CIs, giving

[0.0076, 0.013] for α = 0.01, and [0.0442, 0.0564] for α = 0.05. Note however that the re-

sampling with replacement procedure may have resulted in some segments being selected

multiple times, resulting in an independence violation between ensembles (underlying

the binomial distribution), giving too narrow CIs (see also section A.2). Significant

deviations from the nominal α-levels are nevertheless denoted in Table A.5 by red and

blue asterisks, indicating a liberal and conservative test performance respectively.

Sensitivity

The percentage of detected responses are presented in Fig. A.9 as a function of the

ensemble size N . Note that the performances of T2 Time, T2 Freq, and T2 RM is more

or less identical, and cannot easily be distinguished from each other through visual

inspection.

Adjusted critical α-levels

The critical α-levels were adjusted, per method, such that the FPR was 0.01, per en-

semble size. The adjusted critical α-levels are presented in Table A.6, and the detection

rates (using the adjusted α-levels) are presented in Fig. A.10.

Discussion

A brief discussion on the results from the specificity and sensitivity assessment follows.
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Table A.7.1: The FPRs of the methods (using either α = 0.01 or α = 0.05) for the
no-stimulus condition, per ensemble size N . Significantly (p<0.05) conservative and
liberal test performances are indicated by blue and red asterisks respectively.

Alpha = 0.01

Ensemble size –> 50 100 175 275 375 500 650 800

T2 Time 0.0074∗ 0.009 0.0086 0.0096 0.0072∗ 0.0072∗ 0.0074∗ 0.0112

T2 Freq 0.0068∗ 0.0102 0.0096 0.0074∗ 0.0084 0.0086 0.007∗ 0.0072∗
T2 RM 0.0074∗ 0.009 0.0094 0.0094 0.0064∗ 0.0076 0.0078 0.0106

RM ANOVA 0.0068∗ 0.0088 0.0104 0.0086 0.0104 0.012 0.0118 0.0132∗
Friedman 0.0082 0.0084 0.0102 0.0108 0.0094 0.0108 0.0102 0.0132∗

Alpha = 0.05

Ensemble size –> 50 100 175 275 500 650 800

T2 Time 0.0442 0.0468 0.0436∗ 0.0508 0.0444 0.0528 0.0554 0.0512

T2 Freq 0.0488 0.0476 0.0468 0.0472 0.0468 0.0492 0.053 0.054

T2 RM 0.0406∗ 0.0458 0.0442 0.0512 0.0454 0.0524 0.0522 0.0516

RM ANOVA 0.0356∗ 0.0422∗ 0.0408∗ 0.045 0.0514 0.0532 0.0562 0.0604∗
Friedman 0.0474 0.0582∗ 0.058 0.0516 0.0512 0.052 0.0634∗ 0.0614∗

Figure A.7.1: The percentage of detected responses as a function of the ensemble size N when
simulating a -24 dB response. Note that the performances of ‘T2 Time’, ‘T2 RM’, and ‘T2 Freq’
are all very similar, and may be difficult to distinguish from each other.

Table A.7.2: The adjusted α-levels for obtaining FPRs of exactly 0.01.

Ensemble size –> 50 100 175 275 375 500 650 800

T2 Time 0.0131 0.0122 0.0113 0.0115 0.0133 0.0134 0.0130 0.0085

T2 Freq 0.0146 0.0093 0.0102 0.0132 0.0110 0.0113 0.0130 0.0122

T2 RM 0.0126 0.0122 0.0093 0.0090 0.0106 0.0093 0.0099 0.0075

RM ANOVA 0.0141 0.0128 0.0097 0.0123 0.0092 0.0082 0.0081 0.0079

Friedman 0.0148 0.0110 0.0112 0.0106 0.0129 0.0121 0.0115 0.0092

Sensitivity

In terms of test sensitivity, RM ANOVA came out on top for the small ensemble sizes

(N = 50 and N = 100), but was outperformed by the Hotelling’s T 2 test for larger
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Figure A.7.2: Sensitivity when detecting a -24 dB simulated response using adjusted α-levels.

ensemble sizes (N > 100). This might be attributed to the sphericity assumption, i.e.

sphericity violations may have become more robust as the ensemble size was increased,

resulting in larger corrections to the DOF, and a loss of statistical power.

With respect to the Hotelling’s T 2 test, the performance of all three test statistics (T2

Time, T2 Freq, and T2 RM) was very similar, suggesting that time and frequency

domain analysis are more or less identical when using optimal feature sets. The very

small advantage for T2 Time over T2 Freq observed in section 6.1 (Fig. 6.1) can hence

be attributed to a sub-optimal feature set for T2 Freq. With respect to T2 Time and

T2 RM, note that, at least in theory, T2 Time should be the more sensitive approach,

as it can detect any voltage offset from 0, whereas T2 RM can only detect changes in

voltage over time. A potential advantage for T2 RM, on the other hand, is that it may

have superior specificity when the mean EEG background activity is not zero. Results

presented in this section nevertheless suggest that their performance is more or less

identical.

Finally, with respect to Friedman’s test, sensitivity was relatively poor, which was to be

expected when using just 3 TVMs as features (consecutive peaks and valleys in the ABR

waveform would have cancelled out, to some extent). The choice for three TVMs was

nevertheless necessary, as anything more than three resulted in a significantly liberal

test performance (see section A.3).

Specificity

Results from the specificity assessment now suggest a minor tendency towards a con-

servative test performance (as opposed to the liberal performance observed in section

6.1). Various factors contributing towards significantly liberal or conservative test per-
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formances were previously discussed in sections 6.1 and 6.2, and also apply here. With

respect to RM ANOVA, results (Table A.5) suggest that the FPR is somewhat depen-

dent on the ensemble size N , i.e. the FPR tends to increase with N . The latter might be

due to random variation. Alternatively, violations to the sphericity assumption might

have became more pronounced as the ensemble size was increased, meaning the correc-

tion for the sphericity violation (using the GG or HF methods) would be larger. Note

also that the GG and HF corrections are approximate, and might vary as a function

of the test condition (e.g. the ensemble size). A more robust test performance for RM

ANOVA might therefore be obtained by evaluating test significance with the bootstrap,

as opposed to using theoretical distributions. Finally, with respect to Friedman’s test,

results similarly suggest a (weak) correlation between the FPR and the ensemble size

N (Table A.5). As was the case with RM ANOVA, specificity might be improved using

the bootstrap approach, as opposed to using theoretical distributions.

A.8 Pre-determined thresholds from no-stimulus data

In the literature, statistical inference has been performed using thresholds calculated

from recordings of EEG background activity (Stürzebecher et al., 1996; Stúrzebecher

et al., 1999; Cebulla et al (2000); Cebulla et al., 2006). The caveat associated with

this approach is that the critical boundaries may not generalise well across recordings

with varying DOF. Moreover, the spread of the true critical decision boundaries (per

recording) might be large relative to the true mean critical decision boundary (obtained

across recordings), which is detrimental towards the consistency or robustness of the

performance of the ABR detection method. This section briefly evaluates the reliability

of pre-determined thresholds calculated from no-stimulus data.

Method

The recordings of EEG background activity (data set D1) were downsampled to 5 kHz,

band-pass filtered from 100-2000 Hz, and decomposed into ensembles of N = 500 30 ms

epochs. Each ensemble was then split in two: the first half consists of the initial 0-15

ms windows of the epochs, whereas the second half consists of the 15-30 ms windows.

Various statistical tests were applied to the resulting ensembles, giving a population or

histogram of values per method. The resulting histograms were then used to construct

95% or 99% critical thresholds for rejecting H0.

Results

The 95% or 99% critical thresholds are presented in Table A.6 for either the 0-15 ms

segments (Set 1) or the 15-30 ms segments (Set 2).

Discussion

Results suggest that the reliability of the thresholds for the rank-based methods (Modi-

fied q-sample V2 and the original q-sample test) was not too bad, i.e. thresholds differed
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Table A.8.1: The 95% or 99% coverage intervals calculated from two sets of no-stimulus
data for various detection methods.

99% interval 95% interval

Methods Set 1 Set 2 Set 1 Set 2

Fsp 2.37 2.53 1.81 1.78

Original q-sample 51.24 49.59 41.1 41.57

Modified q-sample V2 79.27 85.355 29.59 27.77

Modified q-sample V4 79.99 95.53 30.55 27.89

by ∼1-3%. The reliability for the Fsp and the modified q-sample V4 test was however

relatively poor, i.e. thresholds differed by ∼6-16%. Using a larger α level of 0.05 reduced

the variability (relative to α = 0.01), which is due to the sparseness of the tails of the

histograms. More consistent thresholds might therefore be obtained if a larger database

were to be used. It should however also be noted that the reliability of pre-determined

thresholds was most likely overestimated here. In particular, data set 1 was obtained

under identical test conditions (with more or less identical DOF) as data set two (set

one was obtained from the 0-15 ms windows whereas set two was obtained from the ad-

jacent 15-30 ms windows). In a more realistic scenario, the thresholds might vary more.

Finally, note that this analysis was based on just two critical values. A more robust

evaluation would require a larger number of observations before an accurate estimate of

the spread of pre-determined thresholds can be established.

A.9 Replicated simulations from Stúrzebecher et al (1999)

& Cebulla et al (2000a)

This section describes additional simulations, which were included to explore the sensi-

tivities of various frequency domain methods when detecting simulated ABRs in Gaus-

sian White Noise. The methods included in the analysis are the Hotelling’s T 2 test, the

original q-sample uniform scores test, and both the Modified q-sample V2 and V4 tests.

The simulations follow the same design as described in Stúrzebecher et al (1999) and

Cebulla et al (2000a).

Method

As described in Stúrzebecher et al (1999) & Cebulla et al (2000a), data for the simu-

lations consists of zero mean Gaussian random variables with a variance of one, where

each pair of random variables represents the real and imaginary parts of some spectral

band. Ensembles of 50 ‘epochs’, represented by the real and imaginary parts of W spec-

tral bands, were thus constructed. The signal to detect was furthermore a sine wave,
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multiplied by a Gaus curve, which is defined (in the time domain) as:

S(x) = Asin

(
2π.x

L

)
.e−a

2(x−L
2 )

2

(5)

where A was set to 0.25, a to 0.1, and L is the length of the signal (128 samples).

The signal S was then transformed to the frequency domain with the FFT. The real

and imaginary parts of 14 spectral bands containing the largest portion of the response

were then arbitrarily added to half of the epochs within each ensemble. A total of

5000 ensembles of 50 epochs were thus constructed, which were analysed using the

aforementioned detection methods.

Results

The ROC curve of each method is plotted in Fig. A.10. Note that the x-axis shows the

theoretical FPR, as opposed to the empirical FPR. The latter is justified, as all statistical

assumptions underlying H0 are satisfied for Gaussian zero-mean white noise. Results

show an almost identical performance between T2 Freq and the Modified q-sample V4

test, with a small advantage for the Modified q-sample V4 when α was smaller than

0.08, and vice versa when α was larger than 0.08. In second place came the Modified

q-sample V2 test, followed by the original q-sample test, as predicted by Stúrzebecher

et al (1999).

Figure A.9.1: The ROC curves for various frequency domain detection methods when detecting
a sine wave multiplied by a Gaus curve in Gaussian White noise. Note that the x-axis shows
the theoretical alpha-level, as opposed to the empirical type-I error rate, which is justified as all
underlying assumptions are satisfied by definition for Gaussian White Noise.
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A.10 βi values for the non-adaptive CGST

This section presents the βi values for the non-adaptive CGST. As described in Chapter

8 (section 8.1), the βi values are chosen as a function of the stage index i using various

‘futility functions’. The futility functions (described in section 8.1) include two cosine

ramps and two exponential ramps. The resulting βi values are shown in Table A.7 for

different K, per futility function.

Figure A.10.1: The ‘futility functions’ for relating stage index i to βi. Further details are
presented in Chapter 8.

A.11 Adaptation criteria for the CGST

In this section, various adaptation criteria for modifying test parameters in the CGST

are explored, which include (i) the number of stages K, and (ii) the stage-wise futility

boundaries, which are modified through the βi values. The aim for this section is

firstly to establish some intuition in regards to how certain adaptation criteria violate

the underlying assumptions of the CGST (in particular, the assumption that the null

distribution of the p-values is uniform on [0, 1]), and to explore the extent to which these

violations might be relevant for ABR detection. The latter is achieved by quantifying

the violation in terms of deviations from (1) the expected FPRs and (2) the expected

number of tests rejected for futility (given by βi). A second goal for this section is to

find a useful adaptation criteria where the underlying assumptions of the CGST remain

satisfied.

The first adaptation criteria explored in this section uses the stage-one p-value p1 to

modify either (1) the number of stages K, or (2) the βi values. The adaptation criteria

and test protocol are kept as simple as possible. In particular, the following adaptation

is used for K:
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Table A.10.1: The βi values used for the non-adaptive CGST in Chapter 8. The values are
chosen as a function of the stage index i. The relationship between stage index i and the βi
values is given by the adopted ‘futility function’ (see section 8.1). The futility functions adopted
for the analysis include two cosine ramps and two exponential ramps.

Exp 15

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7 Stage 8 Stage 9

K=2 0.9495 0.0005 - - - - - - -

K=3 0.9436 0.0064 0 - - - - - -

K=4 0.9275 0.0220 0.0005 0 - - - - -

K=5 0.9026 0.0450 0.0022 0.0001 0 - - - -

K=6 0.8714 0.0722 0.0059 0.0005 0 0 - - -

K=7 0.8381 0.0987 0.0116 0.0014 0.0002 0 0 - -

K=8 0.8038 0.1237 0.0191 0.0029 0.0004 0.0001 0 0 -

K=9 0.7696 0.1465 0.0275 0.0052 0.0010 0.0002 0 0 0

Exp 5

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7 Stage 8 Stage 9

K=2 0.8719 0.0717 - - - - - - -

K=3 0.7702 0.1459 0.0275 - - - - - -

K=4 0.6772 0.1947 0.0557 0.0159 - - - - -

K=5 0.6003 0.2210 0.0813 0.0299 0.0110 - - - -

K=6 0.5360 0.2342 0.1017 0.0442 0.0192 0.0083 - - -

K=7 0.4843 0.2374 0.1167 0.0569 0.0280 0.0136 0.0067 - -

K=8 0.4409 0.2363 0.1271 0.0676 0.0362 0.0195 0.0104 0.0056 -

K=9 0.4040 0.2332 0.1330 0.0768 0.0438 0.0253 0.0144 0.0083 0.0048

Cos 1

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7 Stage 8 Stage 9

K=2 0.6715 0.2785 - - - - - - -

K=3 0.4745 0.3481 0.1274 - - - - -

K=4 0.3629 0.3085 0.2062 0.0723 - - - -

K=5 0.2934 0.2647 0.2101 0.1350 0.0467 - - - -

K=6 0.2451 0.2294 0.1970 0.1511 0.0950 0.0324 - - -

K=7 0.2110 0.2005 0.1807 0.1502 0.1135 0.0702 0.0239 - -

K=8 0.1850 0.1779 0.1648 0.1437 0.1180 0.0881 0.0540 0.0183 -

K=9 0.1645 0.1604 0.1496 0.1360 0.1168 0.0953 0.0698 0.0431 0.0145

Cos 3

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7 Stage 8 Stage 9

K=2 0.3355 0.6145 - - - - - - -

K=3 0.1184 0.4985 0.3332 - - - - - -

K=4 0.0530 0.2825 0.4136 0.2009 - - - -

K=5 0.0280 0.1647 0.3098 0.3142 0.1333 - - - -

K=6 0.0163 0.1021 0.2171 0.2814 0.2393 0.0938 - - -

K=7 0.0104 0.0668 0.1529 0.2233 0.2414 0.1853 0.0699 - -

K=8 0.0070 0.0460 0.1099 0.1726 0.2098 0.2038 0.1470 0.0540 -

K=9 0.0049 0.0331 0.0804 0.1338 0.1742 0.1905 0.1708 0.1196 0.0428

K =

2 if p1 < pT

3 if p1 > pT

where pT is a freely chosen threshold. With respect to the βi values, the following

adaptation is used:
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β2 =

0.8 if p1 < pT

0.15 if p1 > pT

Hence, for each adaptation there are just two routes, denoted by Route A (for p1 < pT )

and Route B (for p1 > pT ). When adaptations to K are permitted, then the design for

the CGST is given by Fig. A.11 (note that adaptations to βi are not permitted here):

starting at stage one, data D1 is obtained, which is analysed using a statistical test,

giving p-value p1. When p1 < α1, the test is stopped, else the trial proceeds to the

‘adaptation phase’. When p1 < pT , the trial proceeds to stage two through Route A

(in which case K = 2), else the trial takes Route B (K = 3). In stage two, data D2 is

obtained, which is analysed using a statistical test, giving p-value p2. Fisher’s method

is then used to combine p-values, giving
∑

2 = −2ln(p1) − 2ln(p2). When
∑

2 exceeds

the critical decision boundary, the trial is stopped for efficacy, else the trial may proceed

to the third stage (under the condition that the trial took Route B). When adaptations

to the βi values are permitted, then the underlying CGST design is illustrated in Fig.

A.12. The design is more or less identical to Fig. A.11, except that K is now always set

to three. The only difference is that β2 is set to 0.8 for Route A, or to 0.15 for Route B.

The aforementioned designs are now used to evaluate different criteria for choosing

between Routes A and B. The first criteria has already been described, and is built

around the stage one p-values p1 (section A.11.1). In section A.11.2, the criteria is built

are the stage one sample variance σ2
1, and in section A.11.3, the criteria is built around

the feature covariance matrix estimated from inter-epoch intervals.

A.11.1 P-values as adaptation criteria

This section uses the stage one p-value p1 as criteria for adapting either K or β2. The

CGST designs are illustrated in Fig. A.11 and A.12 for adaptations to K and β2

respectively.

Method

The p-values from 100 000 trials were simulated by sampling from a uniform distribution

on the [0,1] interval. The simulated p-values were then evaluated using the CGST designs

presented in Fig. A.11 and A.12. The p-value threshold pT for choosing between Routes

A and B was set to either PT = 0.5 or to pT = 0.1. The total α level of the trial was

furthermore set to 0.03. When taking route A (K = 2), then α1 = 0.01 and α2 = 0.02.

When taking route B (K = 3), then α1 = α2 = α3 = 0.01. Note that when adapting

K, no futility stopping was used. Also, when adapting β2, no adaptations to K were

permitted.

Results
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Figure A.11.1: The test procedure used throughout section A.11.1 when adapting the total
number of stages K. The criteria is based on the stage one p-value p1, i.e. when p1 < PT , the
trial takes route A (K = 2), else the trial takes route B (K = 3). Sections A.11.2 and A.11.3
explore alternative criteria for choosing between routes A and B. Further details are presented
in the text.

The approximated underlying null distributions of the p-values for routes A and B are

displayed as histograms in Fig. A.13 when using either pT = 0.5 (two upper plots)

or pT = 0.1 (two lower two plots) as threshold. As expected, the null distribution for

Route A is uniform on the [α1,PT ] interval, whereas the null distribution for Route B is

uniform on the [PT , 1] interval. The stage-wise FPRs (given by the ratio of the number

of times the summary statistic exceeded the efficacy threshold, over the total number

of times the trial entered the route in question) and the fraction of tests rejected for

futility (calculated using a similar approach) are presented in Table A.8.

Discussion

Results (Table A.8) show that the FPRs for Route A tend to be liberal, whereas the

FPRs for Route B are conservative. Although the net result is still close to the nominal

α-level of the test, liberal and conservative stage-wise type-I error rates are still undesir-

able, as this will tend to decrease the robustness or reliability of the performance of the

ABR detection method. Ideally, both the stage-wise type-I error rates and the type-I

error rate of the full trial should be controlled as intended.
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Figure A.11.2: The test procedure used throughout section A.11.1 when adapting the stage
two futility boundary through β2. The criteria is based on the stage one p-value p1, i.e. when
p1 < PT , the trial takes route A (β2 = 0.8), else the trial takes route B (β2 = 0.15). Sections
A.11.2 and A.11.3 explore alternative adaptation criteria for choosing between routes A and B.
Further details are presented in the text.

A.11.2 Feature variance as adaptation criteria

For this section, the criteria for choosing between Routes A and B is given by the stage

one sample variance, i.e. Route A is chosen for σ2
1 < σ2

T , else route B is chosen, where

σ2
T is some chosen threshold.

Method

For the first stage of the trial, p-value p1 was generated using a t-test. Data consists

of 50 samples of simulated Gaussian White Noise (with a true mean of zero and a true

variance of one). The p-values for the remaining stages of the trial were simulated as

described in section A.11.1 above, i.e. by sampling from a uniform distribution on the

[0,1] interval. Upon entering stage two, the stage one sample variance σ2
1 was calculated,

which was used to choose between Routes A (σ2
1 < σ2

T ) and B (σ2
1 > σ2

T ). The threshold

σ2
T was set either 1 or to 0.75.

Results

The approximated underlying null distributions of the p-values for Routes A and B are

displayed as histograms in Fig. A.14 when using either σ2
T = 1 two upper plots) or

σ2
T = 0.75 (two lower two plots). Results show that the null distributions still deviate
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Figure A.11.3: The underlying null distributions of the stage one p-values when using p1 as
criteria for choosing between Routes A and B. The top upper plots show the approximated null
distributions when using pT = 0.5 as p1 threshold for choosing between Routes A and B. The
two lower plots show the approximated null distributions for when using pT = 0.1 as threshold.
Further details are presented in the text.

from the assumed [0.01, 1] uniform distributions, although the deviations are are much

less severe (relative to Fig. A.13). The stage-wise FPRs and the fraction of tests rejected

for futility are presented in Table A.9.

Discussion

Although the underlying null distributions for the stage-one p-values are still not uni-

formly distributed (Fig. A.4), the observed stage-wise FPRs are now relatively close

to the expected stage-wise FPRs. The total FPR for the full trial is now also closer to

the nominal α-level. Sample variance might therefore be a viable option for data-driven

adaptations to the critical decision boundaries. Additional analysis is however required

in order to (i) verify the results using real data, and (ii) to verify that these results

generalize to alternative CGST designs (e.g. designs that use more than three stages).

A.11.3 Feature variance estimated from inter-epoch intervals as adap-

tation criteria

The criteria for choosing between Routes A and B explored in this section is built around

the feature covariance matrix, estimated from the inter-epoch intervals (denoted by S2).



176 Appendix

Table A.11.1: An overview of the expected and observed stage-wise FPRs, along with the
expected and observed fraction of tests rejected for futility (at stage two), when using stage one
p-value p1 as criteria for choosing between Routes A and B. The threshold for choosing between
Routes A and B was set to either PT = 0.5 or PT = 0.1.

Adaptations to β2

P T = 0.5

Route A (49 089 tests) Route B (49 927 tests) 100 000 tests
Stage 1 Stage 2 Stage 3 Total route A FPR Stage 1 Stage 2 Stage 3 Total route B FPR Total FPR

Expected FPR 0.01 0.01 0.01 0.03 0.01 0.01 0.01 0.03 0.03
Observed FPR 0.0098 0.0179 0.0173 0.0450 0.0098 0.0033 0.0041 0.0172 0.0308
Expected futility - 0.8 - - 0.15 -
Observed futility - 0.6829 - - 0.2997 -

P T = 0.1

Route A (8992 tests) Route B (89 951 tests) 100 000 tests
Stage 1 Stage 2 Stage 3 Total route A FPR Stage 1 Stage 2 Stage 3 Total route B FPR Total FPR

Expected FPR 0.01 0.01 0.01 0.03 0.01 0.01 0.01 0.03 0.03
Observed FPR 0.0106 0.0532 0.0499 0.1137 0.0106 0.0051 0.0069 0.0226 0.0309
Expected futility - 0.8 - - 0.15 -
Observed futility - 0.1655 - - 0.1673 -

Adaptations to the number of stages K

P T = 0.5

Route A (49 050 tests) Route B (49 931 tests) 100 000 tests
Stage 1 Stage 2 Route A FPR Stage 1 Stage 2 Stage 3 Route B FPR Total FPR

Expected FPR 0.01 0.02 0.03 0.01 0.01 0.01 0.03 0.03
Observed FPR 0.0103 0.0342 0.0445 0.0103 0.0026 0.0046 0.0174 0.0307

P T = 0.1

Route A (9076 tests) Route B (89 929 tests) 100 000 tests
Stage 1 Stage 2 Route A FPR Stage 1 Stage 2 Stage 3 Route B FPR Total FPR

Expected FPR 0.01 0.02 0.03 0.01 0.01 0.01 0.03 0.03
Observed FPR 0.0101 0.1092 0.1191 0.0101 0.0053 0.0073 0.0226 0.0313

Table A.11.2: An overview of the expected and observed stage-wise FPRs, along with the
expected and observed fraction of tests rejected for futility (at stage two), when using stage one
sample varianceσ2

1 as criteria for choosing between Routes A and B. The threshold for choosing
between Routes A and B was set to either σ2

T = 1 or σ2
T = 0.75. Further details presented in

the text.

Adaptations to the futility boundaries

σ2
T = 1

Route A (52 008 tests) Route B (47 023 tests) 100 000 tests
Stage 1 Stage 2 Stage 3 Total route A FPR Stage 1 Stage 2 Stage 3 Total route B FPR Total FPR

Expected FPR 0.01 0.01 0.01 0.03 0.01 0.01 0.01 0.03 0.03
Observed FPR 0.0097 0.012 0.0123 0.034 0.0097 0.0093 0.009 0.028 0.0309
Expected futility - 0.8 - - 0.15 -
Observed futility - 0.7858 - - 0.1647 -

σ2
T = 0.75

Route A (9715 tests) Route B (89 280 tests) 100 000 tests
Stage 1 Stage 2 Stage 3 Total route A FPR Stage 1 Stage 2 Stage 3 Total route B FPR Total FPR

Expected FPR 0.01 0.01 0.01 0.03 0.01 0.01 0.01 0.03 0.03
Observed FPR 0.0101 0.0149 0.0141 0.0391 0.0101 0.0095 0.01 0.0296 0.0303
Expected futility - 0.8 - - 0.15 -
Observed futility - 0.757 - - 0.1559 -

Adaptations to the number of stages K

σ2
T = 1

Route A (52 054 tests) Route B (46 901 tests) 100 000 tests
Stage 1 Stage 2 Route A FPR Stage 1 Stage 2 Stage 3 Route B FPR Total FPR

Expected FPR 0.01 0.02 0.03 0.01 0.01 0.01 0.03 0.03
Observed FPR 0.0104 0.0240 0.0345 0.0104 0.0083 0.009 0.0277 0.031

σ2
T = 0.75

Route A (9705 tests) Route B (89 313 tests) 100 000 tests
Stage 1 Stage 2 Route A FPR Stage 1 Stage 2 Stage 3 Route B FPR Total FPR

Expected FPR 0.01 0.02 0.03 0.01 0.01 0.01 0.03 0.03
Observed FPR 0.0098 0.0285 0.0384 0.0098 0.0096 0.0095 0.0289 0.0296

Data in this section consists of simulated coloured noise, generated as described in section

4.4, using band-pass filter settings of 100-2000 Hz. Data was now furthermore analysed

using the Hotelling’s T 2 test (applied to 25 TVMs). To keep the adaptation criteria as
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Figure A.11.4: The underlying null distributions of the stage one p-values when using stage
one sample variance σ2

1 as criteria for choosing between Routes A and B. The top upper plots
show the approximated null distributions when using σ2

T = 1 as threshold (for σ2
1) when choosing

between Routes A and B. The two lower plots show the approximated null distributions when
using σ2

T = 0.75 as threshold. Further details are presented in the text.

simple as possible, it would also be useful to have a single value for representing the

feature covariance matrix. One option is to use the trace of the feature covariance matrix,

i.e. the sum of the diagonal components of the feature covariance matrix, henceforth

Tr(S2). Alternatively, the determinant of the feature covariance matrix can be used

(henceforth | S2 |), which gives a single value for multivariate scatter.

The first goal for this section is to explore the extent to which S2 is independent of the

feature covariance matrix estimated from the initial 15 ms analysis window (denoted by

S1). Note that independence between S1 and S2 implies that S2 can be used as adapta-

tion criteria without introducing a violation to the underlying CGST assumptions. The

second goal is to evaluate the underlying null distributions per route, and to quantify

potential violations in terms of increased or decreased stage-wise type-I error rates and

fraction of tests rejected for futility.

Independence assessment

Data consists of simulated coloured noise, generated as described in section 4.4 (using a

band-pass filter of 100-2000 Hz). A total of 10 000 recordings were simulated for each AR
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model. Independence between S1 and S2 was hence explored separately, per AR model

(there were 149 AR models, corresponding to the 149 recordings in data set D1)). The

simulated recordings were then structured into ensembles of N = 500 30.03 ms epochs,

after which feature covariance matrices S1 (extracted from the initial 0-15 ms windows

of the epochs) and S2 (extracted from the 15-30 ms windows) were calculated. Both

the trace and the determinant were then calculated from all feature covariance matrices,

and the resulting values were used to estimate CCs. A CC was hence calculated per AR

model, using either the traces or the determinants of the feature covariance matrices.

Results

The resulting CCs are presented in Fig. A.15, as a function of the index of the AR model

being simulated. Results suggest that independence is satisfied for all AR models, with

the exception of a single AR model, which gave CCs of 0.1117 and 0.1899 for the trace

and determinants respectively.

Figure A.11.5: The CCs for the trace and the determinant of feature covarience matrices S1

and S2 as a function of the AR model being simulated. Further details are presented in the text.

Performance assessment

This section evaluates the underlying null distributions and the specificity of the CGST

when using Tr(S2) as criteria for choosing between Routes A and B. Data in this section

consists of simulated coloured noise, generated using AR coefficients from just a single

AR model. In particular, the AR model selected for the assessment was the model that

resulted in a relatively high CC in Fig. A.15 (AR model located at index two). Results

from this section can hence be considered as a ‘worst case scenario’ for data set D1.

Method

A total of 100 000 recordings of coloured noise were simulated as described in section 4.4

(now using just a single AR model, as mentioned above), which were band-pass filtered
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from 100-2000 Hz. The simulated recordings were then structured into ensembles of

N = 1500 30.03 ms epochs, and the initial 0-15 ms windows of the ensembles were

analysed in K sequential stages using the Hotelling’s T 2 test. Upon entering stage two,

Tr(S2) was calculated from the inter-epoch intervals, which was then used as criteria

for choosing between Routes A and B. In particular, when Tr(S2) < TrT , the trial

took Route A, else the trial took Route B. The threshold TrT was set to either 46.5

(resulting in an approximate 1 to 1 entry ratio for Routes A and B respectively), or to

45.5 (resulting in an approximate 1 to 9 entry ratio of Routes A and B respectively).

Results

The approximated underlying null distributions of the p-values for Routes A and B

are displayed as histograms in Fig. A.6 when using either TrT = 46.5 (the two upper

plots) or TrT = 46.5 (the two lower two plots). No noticeable deviations from the

assumed uniform distributions are observed. The stage-wise FPRs and the fraction of

tests rejected for futility are presented in Table A.10. Results suggest that the stage-

wise type-I error rates and fraction of tests rejected for futility are now controlled as

intended.

Figure A.11.6: The approximated underlying null distributions of the stage one p-values when
using Tr(S2) as criteria for choosing between route A or route B. When Tr(S2) < TrT , the
trial takes route A, else the trial takes route B. The threshold TrT for choosing between routes
A and B was set to either 46.5 or to 45.5.

Discussion

Even though results from this section can be considered as a ‘worst case scenario’,
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Table A.11.3: An overview of the expected and observed stage-wise FPRs, along with the
expected and observed fraction of tests rejected for futility (at stage two), when using Tr(S2)
as criteria for choosing between Routes A and B. When Tr(S2) < TrT , the trial takes Route
A, else the trial takes Route B, where TrT takes value of either 46.5 or 45.5. Further details are
presented in the text.

Adaptations to the futility boundaries

TrT < 46.5

Route A (50 212 tests) Route B (48 780 tests) 100 000 tests
Stage 1 Stage 2 Stage 3 Total route A FPR Stage 1 Stage 2 Stage 3 Total route B FPR Total FPR

Expected FPR 0.01 0.01 0.01 0.03 0.01 0.01 0.01 0.03 0.03
Observed FPR 0.0101 0.01 0.0097 0.0298 0.0101 0.009 0.01 0.029 0.0292
Expected futility - 0.8 - - 0.15 -
Observed futility - 0.8105 - - 0.1575 -

TrT < 45.5

Route A (13 122 tests) Route B (85 858 tests) 100 000 tests
Stage 1 Stage 2 Stage 3 Total route A FPR Stage 1 Stage 2 Stage 3 Total route B FPR Total FPR

Expected FPR 0.01 0.01 0.01 0.03 0.01 0.01 0.01 0.03 0.03
Observed FPR 0.0102 0.0098 0.0089 0.0289 0.0102 0.0097 0.0094 0.0293 0.0291
Expected futility - 0.8 - - 0.15 -
Observed futility - 0.812 - - 0.1547 -

Adaptations to the number of stages K

TrT < 46.5

Route A (50 882 tests) Route B (48 172 tests) 100 000 tests
Stage 1 Stage 2 Route A FPR Stage 1 Stage 2 Stage 3 Route B FPR Total FPR

Expected FPR 0.01 0.02 0.03 0.01 0.01 0.01 0.03 0.03
Observed FPR 0.0095 0.0206 0.0301 0.0095 0.0097 0.0101 0.0292 0.0295

TrT < 45.5

Route A (12 786 tests) Route B (86 278 tests) 100 000 tests
Stage 1 Stage 2 Route A FPR Stage 1 Stage 2 Stage 3 Route B FPR Total FPR

Expected FPR 0.01 0.02 0.03 0.01 0.01 0.01 0.03 0.03
Observed FPR 0.0094 0.0205 0.0299 0.0094 0.0096 0.0095 0.0284 0.0284

the stage-wise type-I error rates and fraction of tests rejected for futility appear to

be controlled as intended. This suggests that data-driven adaptations to the stage-

wise critical decision boundaries are permitted, under the condition that they are built

around the feature covariance matrix estimated from inter-epoch intervals (S2), albeit

when using a high-pass cut-off frequency of 100 Hz and a stimulus rate of 33.3 Hz.

A.12 P-value combination functions for the CGST

This section explores the test sensitivity of a sequentially applied t-test for various p-

value combination functions. In particular, the summary statistic Σ2 is defined as either

a sum of p-values, given by:

Σ2 = p1 + p2 (6)

or as a sum of inverse χ2-distributed random variables, all with two DOF:

Σ2 = [χ2
2]−1(1− p1) + [χ2

2]−1(1− p2) (7)
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of by a sum of inverse F-distributed random variables, all with Q and N −Q DOF:

Σ2 = F−1
v1,v2

(1− p1) + F−1
v1,v2

(1− p2) (8)

The goal for this section is to compare test sensitivity for the aforementioned p-value

combination functions.

Method

Data for the assessment consists of simulated Gaussian White Noise (with a true mean

of 0 and a variance of 1). A total of 100 000 trials were simulated, where the sample size

per trial was set to 100. A response was then simulated by adding a constant amplitude

signal to the samples, where the amplitude to the signal ranged from 0 to 0.5, in steps

of 0.05 (these values were chosen as they gave a good coverage of TPRs). Each sample

was then analysed in two sequential stages (using N1 = N2 = 50) using a t-test. The

resulting p-values were then evaluated using critical decision boundaries estimated using

the CGST (using α1 = α2 = 0.025 and β1 = β2 = 0).

Results

The TPRs are plotted as a function of the signal amplitude per p-value combination

function in Fig. A.17. Results demonstrate a minor advantage for the sum of inverse

χ2 and the sum of inverse F-distributed random variables over a simple summation of

p-values.

Figure A.12.1: The TPR as a function of the amplitude of the simulated signal for different
p-value combination functions.

Discussion

Results from this section suggest an advantage for the sum of inverse χ2 and the sum

of inverse F-distributed random variables over a summation of untransformed p-values.
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However, it should be stressed that these results cannot be generalised to all test con-

ditions, as there is no single optimal method when combining p-values across all test

conditions, i.e. the optimal method will depend on the underlying distribution of the

p-values. Additional simulations (results not shown) in fact demonstrate an advantage

for a sum of untransformed p-values over e.g. the sum of inverse χ2-distributed random

variables, under the condition that the underlying p-value null distribution is uniform

on e.g. the [0, PT ] interval for 0 > PT < 1. For real world applications, the distribution

of the p-values will almost never be uniform under the alternative hypothesis, but will

instead be skewed towards small values. The latter was similarly the case for this sec-

tion, in which case using a sum of untransformed p-values results in a minor loss of test

sensitivity.

A.13 The stage-wise statistical powers γi

This section presents the γi values (for the adaptive approach in chapter 9) associated

with equal ensemble sizes Ni for all K stages, and where the TPR for the full sequential

analysis is equal to 0.95. In particular, 5000 ensembles with increasing or decreasing N

(split equally across the K stages) were simulated until a TPR of 0.95 was obtained.

The resulting stage-wise TPRs (the γi values) are shown in Table A.12 below.

Table A.13.1: The resulting TPRs (the γi values for chapter 9) when splitting the
available N equally across K stages, and where the TPR for the full sequential analysis
was equal to 0.95.

K=1 K=2 K=3 K=4 K=5 K=6 K=7 K=8 K=9

K=1 0.95

K=2 0.7745 0.1754

K=3 0.5571 0.3129 0.0795

K=4 0.4140 0.3329 0.1552 0.0481

K=5 0.3160 0.3125 0.1933 0.0943 0.0343

K=6 0.2485 0.2795 0.2054 0.1246 0.0650 0.0269

K=7 0.2014 0.2468 0.2038 0.1413 0.0871 0.0481 0.0218

K=8 0.1646 0.2154 0.1945 0.1490 0.1030 0.0657 0.0382 0.0190

K=9 0.1402 0.1916 0.1833 0.1500 0.1116 0.0774 0.0504 0.0303 0.0158

A.14 Estimating the non-centrality parameter δ

The equation for calculating statistical power (Eq. 9.1) assumes that the non-centrality

parameter δ is the true non-centrality parameter, which is typically unknown for real

world applications. Instead, δ is usually estimated from data, and can therefore be

contaminated by significant amounts of noise. As a result, the power calculation can

potentially be inaccurate. Uncertainty within δ̂ should hence be taken into account

when adapting test parameters. This section present a brief literature review on various
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methods in the literature for estimating δ when using the Hotellign’s T 2 test as detection

method.

There are various methods are available in the literature for approximating δ and/or its

underlying probability distribution. Some of these methods have been developed for the

non-central χ2 distribution (Meyer, 1967; Spruill, 1986; Li et al, 2009; Neff & Strawder-

man, 1976; Saxena & Alam, 1982; Shao & Strawderman, 1995), which might be appli-

cable to non-central F-distributions, under the condition that the F-distributed random

variable can be decomposed into two χ2-distributed random variables (a non-central χ2

and a central χ2). Rukhin (1993) has also proposed a method for estimating the non-

centrality parameter directly for a non-central F-distribution, but similarly assumes that

the F-statistic can be decomposable into two χ2-distributed random variables. Note that

it is not clear how or if the (F-transformed) T 2 statistic can be decomposed into two χ2-

distributed random variables. As shown in Wilk’s (1932), the T 2 statistic can actually be

decomposed (using maximum likelihood) into a ratio of two generalised variances (a ra-

tio of the determinants of two covariance matrices), of which the underlying distribution

is quite complex (and not χ2, see e.g. Mathai, 1972).

Hence, unless the T 2 statistic can be related to a ratio of a central and non-central

χ2-distributed random variable, the aforementioned methods appear to be inapplicable

when using the Hotelling’s T 2 test as detection method. Various alternative methods

for estimating δ and its accuracy are however available in the literature, and were not

explored in this work (Perlman & Rasmussen, 1975; Berger et al, 1998; Chow, 1987;

Kubokawa et al, 1993; Leung & Muirhead, 1987; Kubokawa et al, 2017). Future work

might explore these methods in an attempt to find a more accurate approach for quan-

tifying the uncertainty within δ̂.

An alternative route for approximating uncertainty within δ̂ is through reliability. In the

literature, reliability is typically described from a ‘classical test theory’ point of view (see

e.g. Levin & Subkoviak, 1977; Bruton et al., 2000; Kanyongo et al., 2007). In particular,

it is assumed that each observation (obtained from a single sampling unit) is composed

of a true score and an error score. The observed variance of a group of observations is

similarly assumed to be composed of a true variance σ2
t and an error variance σ2

e . The

‘true variance’ is hence the variance between sampling units, whereas the ‘error variance’

is the variance within sampling units (how this relates to evoked response detection is

further addressed below). A reliability coefficient R can then defined as (Kanyongo et

al., 2007):

R =
σ2
t

σ2
t + σ2

e

=
σ2
t

σo
(9)

where σo is the observed score variance. When measurements are made without error,

then the observations will consist of perfectly reliable scores, and R will equal one.



184 Appendix

Alternatively, R will approach zero as the measurement error grows to∞, in which case

the observations can be considered completely random.

The concept of reliability can be applied to evoked response detection as follows: each

observed value (each measurement within the EEG recording) consists of a true score

(given either by zero when no response is present, and otherwise by the amplitude of the

evoked response) and an error score (given by the EEG background activity). The true

score variance σ2
t is then given by the variance within the true ABR waveform, whereas

the error score variance σ2
e is given by variance due to the EEG background activity.

This is closely related to the SNR estimator given by Raz et al (1988):

ˆSNR =
σ̂o

2 − σ̂n2

σ2
n

(10)

where σ̂o
2 is the total estimated power, given by:

σ̂o
2 =

1

JN

J∑
j

N∑
i

d2
ij (11)

where dij is the jth value of the ith epoch, and where σ̂n
2 is the estimated power of the

noise, given by:

σ2
n =

1

N(J − 1)

N∑
i=1

J∑
j=1

(dij − X̄j)
2 (12)

where X̄j is the jth value of the ensemble coherent average.

A convenient property associated with the method in Raz et al (1988) is that it allows

confidence intervals to be constructed for the estimated SNR, which were shown by Raz

et al to be quite accurate. In future work, a method for incorporating uncertainty within

δ̂ in the presence of an a priori assumed minimum response might be designed around

the SNR estimator in Raz et al (1988).

A.15 Independence violations for Cortical Auditory Evoked

Potential Detection

This section explores the independence violation for CAEP detection, as a function of

the cut-off frequency for the high-pass filter and the (hypothetical) stimulus rate. The
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data used for this section consists of simulated coloured noise, generated by filtering

Gaussian White Noise with an all pole filter where the poles are the parameters of an

AR model, estimated from recordings of EEG background activity (see also section 4.4).

The recordings of EEG background activity used in this section are further described

below.

A.15.1 Data

Recordings of EEG background activity (no stimulus was used) were obtained from 19

subjects. All subjects had normal hearing levels (PTA thresholds <20 dB HL for the 500,

1000, 2000, 4000, and 6000 Hz frequencies) and normal tympanic membrane responses.

The subjects sat in an upright position in a comfortable chair, and were watching a DVD

on a monitor placed at eye level. EEG measurements were then obtained at a sampling

rate of 30 kHz with electrodes places at the high forehead, the right mastoid, and the

left mastoid which served as ground. The electrode impedances remained below 1 kΩ

throughout the recording. A total of 130 continuous EEG recordings were available

collected (approximately 6-7 recordings were collected per subject), with an average

duration of ∼2.5 minutes per recording, resulting in approximately 5.5 hours of EEG.

Each recording was then downsampled to 1 kHz and band-pass filtered from 0.1-100 Hz.

A 60th-order AR model was then fit to each pre-processed recording, as described in

section 4.4.

A.15.2 Method

Simulated coloured noise was generated as described in section 4.4, now using the afore-

mentioned AR models. Each simulated recording was then band-pass filtered using 3rd-

order Butterworth filters from fc to 100 Hz, and structured into ensembles of N = 50

500 ms epochs. The high-pass cut-off frequency fc was also varied from 0.1 to 10 Hz,

in steps of 0.3 Hz. The distance between the 500 ms epochs (denoted by τ) was also

varied from 0 to 500 ms, in steps of 50 ms. The latter corresponds to a (hypothetical)

stimulus rate of 500+τ
1000 . A total of 25 000 ensembles of N = 50 epochs were simulated

for each choice of τ and fc, all of which were analysed in the time domain using the

Hotelling’s T 2 test (applied to 10 TVMs).

A.15.3 Results

The FPRs (each calculated from 25 000 simulated tests using α = 0.05) are presented

in Fig. A.18 as a function of the high-pass cut-off frequency fc and the (hypothetical)

stimulus rate. The two-sided 95% CIs for α are given by [0.0474, 0.0528]. Significant

deviations from α are indicated in Fig. A.18 by blue (< 0.0474) and red (> 0.0528) cells

respectively, whereas green cells indicate that the observed FPR fell within the 95% CIs.
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Figure A.15.1: The FPRs (each calculated from 25 000 simulated tests using α = 0.05) as a
function of the high-pass cut-off frequency fc and the (hypothetical) stimulus rate. Significant
deviations from nominal level α = 0.05 are indicated by blue (< 0.0474) and red (> 0.0528)
cells, whereas green cells indicate that the observed FPR fell within the 95% CIs.

A.15.4 Discussion

Results demonstrate significant violations to the independence assumption as a function

of the high-pass cut-off frequency fc and the (hypothetical) stimulus rate. For a more

in-depth discussion on the independence assumption, the reader is referred to Chapter

5 (section 5.1).

A.16 Magnitude response of the filter

Throughout this thesis, digital filtering is achieved using 3rd order Butterworth filters.

The low-pass cut-off frequency is typically set to 1500 Hz, whereas the high-pass cut-

off frequency to set to either 30 or 100 Hz. In some sections, alternative high-pass

cut-off frequencies between 30-100 Hz are used. Digital filtering is furthermore always

realised using matlab’s ‘filtfilt’ function, which is a forward and reverse filtering technique

that introduces zero phase-shift to the filtered signals, i.e. the phase response of the

Butterworth filters is always zero. The magnitude response for a 30-1500 and 100-1500

Hz 3rd order Butterworth band-pass filter is shown in figure A.21 below.
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Figure A.16.1: The magnitude response of a 3rd order 30-1500 Hz Butterworth band-pass filter,
and a 3rd order 100-1500 Hz Butterworth band-pass filter.

A.17 Optimal stage-wise ensemble sizes for two and three

stage sequential tests

This section describes an approach for determining the optimal stage-wise ensemble

sizes for a sequentially applied Hotelling’s T 2 test, where optimal is defined as the

smallest possible test time for a fixed test sensitivity and specificity. For this section,

test sensitivity is fixed at 0.95, which is achieved by increasing or decreasing the total

ensemble size N until a TPR of 0.95 has been obtained. This is repeated using different

choices for the stage-wise ensemble sizes Ni. In particular, a specific percentage of the

total N is spent at each stage i. As an example, say N = 200, of which 25% is spent

at stages 1 (giving N1 = 50) and 75% at stage two (giving N2 = 150). If the TPR (for

some effect size, to be defined) is smaller than 0.95, then N is increased, after which

it is again split across N1 and N2 (using the same 1/4 ratio). This is repeated until a

TPR of 0.95 has been obtained, which is then also repeated for different Ni ratios.

Method

The total α-level is set to 0.05, which is spread equally across the K stages, giving stage-

wise αi values of α
K for all i. The summary statistic for evaluating the null hypothesis

of ‘no effect present’ is given by a sum of F-transformed p values, as defined in Eq. 9.8,

where v1 = 2 and v2 = Ni−2, and where Ni is the ensemble size for stage i. To keep the

approach as simple as possible, the following assumptions are also made: (1) the noise

is a white, Gaussian, zero mean process with a true of variance of 1, (2) the feature set

for the Hotelling’s T 2 test is two-dimensional, and (3) the true amplitude of the effect

to detect is 0.1.

Given the aforementioned assumptions and test parameters, statistical power can now

easily be calculated for different choices of N and Ni. Starting at stage one, statistical

power γ1 is given by (Bilodeau & Brenner, 1999):

γ1 = 1− Fnc
(
F−1(1− α1, 2, N1 − 1), 2, N1 − 2, δ1

)
(13)
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were δ1 is the non-centrality parameter, which (for the Hotelling’s T 2 test) is given by

(Bilodeau & Brenner, 1999):

δ1 = N1(µ− µ0)Σ−1(µ− µ0)H (14)

where µ is the true mean feature vector, µ0 is the vector of hypothesizes values to

test against (given by zeros), and Σ is the true feature covariance matrix. Note that µ

and Σ are now both known, and are given by [0.1, 0.1] and the 2-dimensional identity

matrix I, respectively. The stage i non-centrality parameter can therefore be simplified

to δi = Ni0.02, i.e. the effect size (given by δi
Ni

) is equal to 0.02.

For stage two, statistical power can be calculated with help from the CGST. The stage

two alternative distribution of the summary statistic (denoted by φ1
Σ2

, note that this is

now the true distribution of the summary statistic) is given by convolution φ
1,T [B1,A1]
1 ∗

φ1
2, where φ

1,T [B1,A1]
1 denotes the stage one alternative distribution, truncated to the

[B1, A1] interval, and where φ1
2 denotes the stage two alternative distribution (for the

F-transformed stage two p value). Stage two statistical power is then given by the area

under φ1
Σ2

to the right of A2. The total statistical power after stage two, say γΣ2 , is

now equal to γ1 + γ2. Statistical power for stage three (and indeed for all subsequent

stages) follows the exact same procedure. Once N and Ni have been found, such that

the total statistical power is equal to 0.95, then the mean number of samples tested (i.e.

the mean test time) is readily given by
∑K

i=1 γiNi.

Results

The mean number of samples used (for obtaining a TPR of 0.95) for a two stage design

is first plotted in Figure A.17.1 as a function of the percentage of N that was spent in

stage one. Results show that the minimum test time is obtained when 47% of N is spent

in stage one, and the remaining 53% in stage two. This corresponded to a stage one

statistical power of 68.19% and a stage two statistical power of 26.82% (giving a total

power of 95.01%). Results for a three stage design are then plotted in Figure A.17.2.

The mean number of samples used (for obtaining a TPR of 0.95) is now shown as a

function of the percentage of N spent in both stages one and stage two. Results show

that the minimum test time is obtained when spending 30% of N in stage one, 30%

in stage two, and the remaining 40% in stage three. This corresponded to a stage one

statistical power of 45.92%, a stage two statistical power of 32.36%, and a stage three

statistical power of 16.72%.

Discussion

Results suggest that for two and three stage sequential tests, test time is minimised

when statistical power in the early stages is relatively high, i.e. ∼68% in the first stage

for a two stage design, and ∼45% in stage one for a three stage design. This can be

attributed to the relationship between statistical power and the ensemble size, which
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Figure A.17.1: The mean number of samples used for a two stage design (such that the TPR
was 0.95), as a function of the percentage of N spent in stage one.

Figure A.17.2: The mean number of samples used for a three stage design (such that the TPR
was 0.95), as a function of the percentage of N spent in both stages one and stage two.

is shown in Figure A.17.3 for the single shot test. Note that a much larger increase

in N is required in order to increase statistical power from 0.95 to 0.99 (the ensemble

size then needs to be increased from ∼800 to ∼1050, or 250 additional samples need to

be collected), as opposed to increasing statistical power from 0.5 to 0.55 (in which case

the ensemble size should be increased from ∼250 to ∼280, or just 30 additional samples

need to be collected). Consequently, increasing the ensemble size for the earlier stages

is beneficial only up to a certain point, after which relatively large increases in test time

are required for relatively small increases in statistical power. Results from this section

also demonstrate that the relationship is close to optimal when the available N is split

equally across the K stages. Because the latter greatly simplifies the choice for Ni and

is still close to optimal, it was the adopted methodology throughout this thesis. Small
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increases in test performance might however still be gained by splitting the available N

differently across the K stages.

Figure A.17.3: Statistical power for the single shot test (using test parameters defined in this
section), as a function of the ensemble size.

Limitations and future work

There are many shortcoming with the approach described in this section. Perhaps most

importantly, three assumptions are made regarding the type of noise, the effect size,

and the feature set for the Hotelling’s T 2 test. Starting with the latter, this section

assumed a 2-dimensional feature set, whereas most sections throughout this work use a

25-dimensional feature set. In future work, the test time should be explored using more

realistic feature dimensions. With respect to the effect size, an important limitation

is that the current approach assumed just a single effect size, whereas in practice, a

distribution of effect sizes can be expected (due to varying SNRs across subjects and

recordings). It can be envisioned that the approach could be extended to a distribution

of effect sizes, e.g. by taking the percentiles of each effect size into account during

the optimisation. Finally, the amplitude of the response was assumed to be 0.1, and

the noise was assumed to be a Gaussian white process, both of which are unrealistic

in real world ABR examinations. Future work might also explore the approach using

more realistic background activity, along with real ABR waveforms for representing the

response.
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