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Abstract

Low Mass X-Ray Binaries (LMXBs) are systems in which a black hole or neutron star ac-

cretes matter from a stellar binary companion. The accreted matter forms a disk of material

around the compact object, known as an accretion disk. The X-ray properties of LMXBs

show strong variability over timescales ranging from milliseconds to decades. Many of these

types of variability are tied to the extreme environment of the inner accretion disk, and hence

an understanding of this behaviour is key to understanding how matter behaves in such an

environment. GRS 1915+105 and MXB 1730-335 (also known as the Rapid Burster) are

two LMXBs which show particularly unusual variability. GRS 1915+105 shows a large

number of distinct ‘classes’ of second-to-minute scale variability, consisting of repeated pat-

terns of dips and flares. The Rapid Burster on the other hand shows ‘Type II X-ray Bursts’;

second-to-minute scale increases in X-ray intensity with a sudden onset and a slower de-

cay. For many years both of these objects were thought to be unique amongst all known

LMXBs. More recently, two new objects, IGR J17091-3624 and GRO J1744-28 (also known

as the Bursting Pulsar) have been shown to display similar behaviour to those seen in GRS

1915+105 and the Rapid Burster respectively.

In this thesis, I first present a new framework with which to classify variability seen

in IGR J17091-3624. Using my set of independent variability classes constructed for IGR

J17091-3624, I perform a study of the similarities and differences between this source and

GRS 1915+105 to better constrain their underlying physics. In GRS 1915, hard X-ray emis-

sion lags soft X-ray emission in all variability classes; in IGR J17091, I find that the sign

of this lag is different in variability classes. Additionally, while GRS 1915+105 accretes at

close to its Eddington Limit, I find that IGR J17091-3624 accretes at only ∼ 5–33% of its

Eddington Limit. With these results I rule out any models which require near-Eddington

accretion or hard corona reacting to the disk. I also perform a study of the variability seen

in the Bursting Pulsar. I find that the flaring behaviour in the Bursting Pulsar is significantly

more complex than in the Rapid Burster, consisting of at least 4 separate phenomena which

may have separate physical origins. One of these phenomena, ‘Structured Bursting’, con-

sists of patterns of flares and dips which are similar to those seen in GRS 1915+105 and

IGR J17091-3624. I compare these two types of variability and discuss the possibility that

they are caused by the same physical instability. I also present the alternative hypothesis

that Structured Bursting is a manifestation of ‘hiccup’ variability; a bimodal flickering of the

accretion rate seen in systems approaching the ‘propeller’ regime.
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Chapter 1

Introduction

Light thinks it travels faster than
anything but it is wrong. No matter how
fast light travels, it finds the darkness
has always got there first, and is
waiting for it.

Terry Pratchett – Reaper Man

In this thesis, I discuss the physics of matter in close proximity to neutron stars and black

holes. These astrophysical entities, collectively referred to as ‘compact objects’, are the

densest objects known to exist in our universe, and are formed in the death throes of

massive stars.

When a star with a mass between ∼ 8–10 M�[1] (e.g. Bildsten and Strohmayer, 1999) runs

out of nuclear fuel in its core, it is no longer able to support its own weight and collapses

inwards. This collapse generates a shockwave which disrupts the star, resulting in most of

the star being ejected in an event known as a supernova. The core of the star survives this

disruption and continues collapsing. The core of a massive star is supported by electron

degeneracy pressure; a pressure caused by the fact that no two fermions can occupy the

same quantum state (Pauli, 1925). However, during the collapse of the core in a supernova,

even electron degeneracy pressure cannot support the star; when the core has a mass greater

than 1.4 M� (the Chandrasekhar Limit, Chandrasekhar, 1931), electrons merge with protons

via inverse β-decay, forming an object supported mostly by neutron degeneracy pressure.

The resulting ‘neutron star’ is an extremely dense object, with a mass of several M�
compressed into a sphere with a radius of ∼ 20 km. Additionally as the core collapses, it

spins up to conserve angular momentum until it is rotating at a rate of ∼ 100 Hz. The

extreme gravitational field in the proximity of such a strong object results in a region of

space which is strongly affected by the effects predicted by general relativity (Einstein,

[1]1 M� ≈ 2 × 1030 kg, or one times the mass of our Sun.
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1916). The extremely rapid rotation of neutron stars, and the associated high-velocity

electron and proton populations present in their cores (e.g. Alpar and Sauls, 1988), can

result in magnetic fields as strong as ∼ 1015 G[2] (Woltjer, 1964; Gold, 1968; Kaspi and

Beloborodov, 2017). For a collapsing star with a mass of greater than ∼ 10 M�, the end

product is even more extreme. The core of such a star can become so dense during a

supernova that even neutron degeneracy pressure cannot support it, and instead it collapses

into a black hole; a region of space with such a strong gravitational field that no information

can escape it.

Unfortunately, compact objects are inherently faint objects. In fact, an isolated black hole is

theoretically only visible via the effects its gravitational well has on the light from stars

located behind it. As such, observational research into these objects tends to focus one of

two types of system: Active Galactic Nuclei (AGN) and X-Ray Binaries (XRBs). In both of

these types of system a compact object gravitationally attracts matter from its surrounding

enviroment, a process known as ‘accretion’. The act of matter falling into such a steep

gravitational well causes large amounts of energy to be released; as such, these systems

shine brightly in high-energy regions of the electromagnetic spectrum such as the X-rays

and γ-rays.

AGN contain supermassive black holes with masses upwards of ∼ 106 M� (e.g. Miyoshi

et al., 1995). These black holes are believed to be present at the centre of all large galaxies

but many, such as Sagittarius A? in our Milky Way, are currently dormant and not

significantly accreting (Lynden-Bell, 1969; Schödel et al., 2002). AGN are the brightest

persistent sources of electromagnetic radiation in the universe, and they launch powerful

‘jets’ of matter out to distances of many kiloparsec (kpc[3]). AGN have been implicated as

having an important role in the development of their host galaxies via a process known as

AGN feedback, in which mechanical and electromagnetic power from the AGN is ‘fed

back’ into its host galaxy and influences its evolution.

Active Galactic Nuclei are very distant systems. Because of the large size of these objects,

they also only evolve over timescales of thousands of years. These facts make studying

some of the properties of matter in a relativistic regime difficult to determine by only

observing AGN. Thankfully, there exists a population of bright, accreting compact objects

much closer to home: XRBs.

1.1 Anatomy of an X-Ray Binary

In this thesis, I will be focusing on XRBs. These systems are physically much smaller than

AGN, with compact objects no more massive than ∼ 20 M�, but in many ways they can be

[2]1 Gauss, or 1 G, is equal to 10−4 Tesla, where Tesla is the SI-derived unit of magnetic field strength.
[3]1 kpc= 1000 parsec ≈ 3 × 1019 m. A parsec is the distance of an object that shows a parallax of 1” (1

arcsecond, or 1
3600 of a degree) against background objects when viewed from opposing points along the orbit of

the Earth.
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more extreme. The gravitational tidal forces close to the compact object are greater than in

AGN and, due to their small size, XRBs can evolve rapidly over timescales of seconds or

less.

An XRB is a system containing a compact object[4] and a main sequence or giant

companion star. By various processes, matter is lost from the companion star and

transferred onto the compact object. In order to conserve angular momentum, matter cannot

simply fall onto the compact object; instead this matter spirals inwards, forming a large disk

of material. Frictional forces in the inner portions heat this ‘accretion disk’ to extreme

temperatures & 1 keV[5]. In some XRBs, so much X-ray radiation is released in this process

that the pressure from photons, which is negligible but non-zero under standard conditions,

becomes important to describe the equation of state of the disk.

1.1.1 Types of X-Ray Binaries: High and Low-Mass

XRBs are divided into two broad categories depending on the mass of the companion star

and, in turn, the predominant mechanism responsible from transferring matter from the star

to the compact object. High Mass X-ray Binaries (HMXBs) have a companion star with a

mass & 10 M�. High mass stars tend to be unstable, and these objects can eject large

quantities of matter in a stellar wind. In a HMXB, part of this stellar wind is gravitationally

captured by the compact object and feeds the accreting compact object.

Low Mass and Intermediate Mass X-Ray Binaries (LMXBs/IMXBs), systems in which the

mass M of the companion star is M . 1 M� and 1M� & M . 10M� repsectively, accrete

matter in a different way. Each object in an astrophysical binary system has a Roche Lobe:

a teardrop-shaped region of space in which it is gravitationally dominant. Inside the Roche

Lobe matter is gravitationally bound to the central star, while matter outside of the lobe is

free to escape.

Under some circumstances, it is possible for a star to become larger than its Roche lobe.

This can happen in two main ways:

1. The radius of the binary orbit decreases, shrinking the Roche Lobe of each object.

2. The radius of the star increases. This can happen, for example, when the star evolves

from the Main Sequence onto the Giant branch.

In either scenario, a portion of the star ends up within the Roche lobe of the compact object.

This matter is free to spiral onto the compact object, forming the accretion disk (e.g. Lewin

and Joss, 1981).

[4]A black hole or a neutron star. Similar systems with a white dwarf as their compact object are referred to as
Cataclysmic Variables (CVs).

[5]1 keV= 1000 eV= 1.6 × 10−16 J . 1 eV (electron-Volt) is the amount of energy an electron gains by crossing
a potential difference of 1 V. Although this is a unit of energy, it is often used in high-energy physics to denote
temperature by describing the energy at which the emission of a black body at that temperature is peaked. 1 keV
corresponds to a temperature of ∼ 1.16 × 107 K
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Figure 1.1: A cartoon illustrating the basic geometry of a simple low mass X-ray binary. Not shown
is the non-thermal corona of material which can be inferred from spectroscopy, as the geometry of
this feature is disputed. Diagram not to scale.

1.1.2 Components of a Low Mass X-Ray Binary

As well as the accretion disk, there are several additional features present in a typical X-Ray

Binary; I show a schematic of an LMXB in Figure 1.1. Radio observations of nearby XRBs

(e.g. Mirabel and Rodríguez, 1994; Geldzahler et al., 1983) have shown that these systems

can show axial jets of material similar to those seen in AGN; in Figure 1.2 I show a radio

image from Fender et al. (1999) showing a jet being launched from the LMXB GRS

1915+105. These jets can eject matter at velocities approaching the speed of light c (e.g.

Mirabel and Rodríguez, 1994).

X-ray spectral studies of LMXBs find that, in addition to a black-body[6] like accretion disk,

the systems must each contain a non-thermal ‘corona’ component. The corona is a region of

non-thermal electrons somewhere in the vicinity of the compact object, and it emits X-rays

via Compton upscattering. In this process, photons emitted from the disk collide with

energetic electrons in the corona. The photons, on average, gain energy from these

collisions and are scattered back into space; some in the direction of observers on the Earth.

This leads to a characteristic power-law[7] energy distribution signature at high energies,

which can be seen in the spectra of LMXBs. As I show in the simulated LMXB energy

spectrum in Figure 1.3, the emission from the corona tends to dominate above energies of

∼ 10 keV.

Models of the geometry of the coronal region have evolved over the years. While the

corona has been historically treated as if it was a single point fixed above the centre of the

[6]The radiative power per unit frequency of a black body at temperature T is given by

FT (ν) =
Nν3

e
hν

kBT − 1

for some constant N (Planck, 1914). kB is the Boltzmann Constant, and c is the speed of light in a vacuum.
[7]A power-law distribution is any distribution with the functional form f (x) = cxk for some constants c and k.
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Figure 1.2: A series of 5 GHz radio images, advancing in time from top to bottom, showing a two-
lobed jet of material flowing away from GRS 1915+105 (at 0 milliarcseconds) at speeds approaching
c. Figure adapted from Fender et al. (1999).
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Figure 1.3: Two simulated, simplified spectrum of an LMXB, showing the two main components
visible in X-ray: the accretion disk (blue) and the corona (orange). The disk is generally modelled as
a disk black body, a sum of black bodies at different temperatures corresponding to different annuli in
the disk (e.g. Mitsuda et al., 1984), while the corona is modeled as a power law. The left panel shows
a typical spectrum of an LMXB in the high/soft state, while the right panel shows a typical spectrum
of an LMXB in the low/hard state: see Section 1.2 for a discussion of accretion states. These spectra
are based on spectral fits to the LMXB MXB 1658-298, performed by Sharma et al. (2018).

disk (the so-called ‘Lamp Post’ model, e.g. Różańska et al., 2002), more recent models tend

to treat it either as an optically thin[8] flow of material onto the compact object or equate it

with the base of the radio jet (e.g. Skipper et al., 2013).

Another important component of an X-ray binary is the disk wind (van Paradijs et al.,

1994). Due to the high temperatures and pressures in the inner part of the accretion disk,

matter on the surface of the disk can obtain enough energy to escape the gravitational well

of the compact object. This matter is ejected from the system in large-scale, high velocity

winds. Studies of the spectral lines present in these winds have shown that they can have

speeds approaching the speed of light (e.g. Ponti et al., 2012; Degenaar et al., 2014a).

Neutron Star X-ray Binaries

The geometry of an X-ray binary is somewhat more complicated when the compact object

is a neutron star. Unlike black holes, neutron stars are in general highly-magnetised

systems, and the introduction of a large, strong magnetic field to an XRB has implications

for the geometry of the accretion flow. At some radius in the inner accretion disk, it is

possible that the pressure exerted by this magnetic field becomes dominant over the gas and

photon pressures. At this point, ionised material becomes ‘frozen-in’ to the magnetic field

lines, and is only able to freely move along them. Due to the extreme temperatures present

in the inner portion of the accretion disk, the vast majority of material in this region is

ionised. This acts to disrupt the flow of material in the inner part of the accretion disk, and

matter is funneled along field lines and onto the poles of the neutron star. This causes the

poles of the neutron star to become extremely hot. As the neutron star spins, it appears to

[8]An optically thin medium is defined as a medium in which an average photon interacts < 1 times while
passing through.
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pulse as seen by an external observer due to the highly radiating magnetic poles coming in

and out of view. These objects are referred to as accreting X-ray pulsars.

In addition to the effects of the magnetic field, there is another significant difference

between neutron star and black hole binaries. Black holes are surrounded by an event

horizon from which no light can emerge, therefore there can be no direct emission from the

compact object in a black hole X-ray binary. Neutron stars on the other hand have a visible

surface. As such the surface of the neutron star itself, and any phenomena that take place

there, can in principle be seen.

One of the most spectacular events that can occur on the surface of a neutron star is a Type I

X-ray burst (Grindlay et al., 1976). These occur when matter accreted onto the surface of

the neutron star reaches a critical temperature and density (∼ 2.2 × 109 K and

3 × 106 g cm−3, Joss, 1978), and nuclear fusion is triggered. This results in a flash of energy,

which causes a runaway thermonuclear explosion across most or all of the neutron star

surface. Type I bursts appear in data as a sudden increase in X-ray flux (1–2 orders of

magnitude), followed by an power-law decay as the neutron star surface cools. As Type I

bursts are distinctive features which require a surface on which to occur, they are often used

as a diagnostic tool to identify an unknown compact object as a neutron star.

1.2 Low Mass X-Ray Binary Behaviour

LMXBs are not static systems, and most show variations in their luminosities over

timescales of milliseconds to years. Broadly speaking, LMXBs can be divided into

persistent systems and transient systems. Persistent systems have always observed to be

bright since their discovery, implying a high rate of accretion at all times. In some objects,

this bright, high-accretion rate state has persisted for ≥ 20 years (e.g. GRS 1915+105,

Deegan et al., 2009).

Transient LMXBs have a somewhat more complicated life cycle. These objects spend most

of their time in a ‘quiescent’ state, during which they are faint in X-rays and only a

relatively small amount of material is being accreted. However these objects also undergo

‘outbursts’, during which their luminosity increases by many orders of magnitude for a

period of days to years (e.g. Frank et al., 1992). The frequency of these outbursts varies

widely between sources, ranging from one every month or so to one every few decades or

longer.

XRB outbursts tend to follow predictable evolutionary paths, evolving through a number of

different ‘states’ as they progress. I show some of the states associated with black hole

LMXB outbursts in Figure 1.4 on a so-called ‘hardness-intensity diagram’, which traces

how the brightness and the spectral shape of a source evolve over time (see Section 3.2.3 for

more information on hardness-intensity diagrams). At the start of a typical black hole

LMXB outburst emission from the source is spectrally hard, i.e. dominated by
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higher-energy photons. This part of the outburst is referred to as a Low/Hard State

(bottom-right of Figure 1.4), and a radio jet is generally visible at this time. The luminosity

of the source gradually increases until it reaches some maximum, and then emission begins

to become softer as the system heads towards the High/Soft State (top-right of Figure 1.4).

During this transition, the system crosses the so-called ‘jet line’, and the radio jet switches

off. Sources tend to spend a large portion of their outbursts in the high/soft state, appearing

to meander in the hardness-intensity diagram. This meandering may include additional

crossings of the jet line, causing the radio jet to flicker on and off during this period. The

X-ray luminosity of the source then decreases, before the source returns to the hard state

along a path of approximately constant luminosity. The source then fades back into

quiescence. This typical outburst behaviour forms a distinctive ‘q’ shape in the

hardness-intensity diagram, as I show in Figure 1.4, and can be thought of as the inner

accretion disk filling with matter before draining onto the compact object or flowing out of

the system in winds or a jet (e.g. Fender et al., 2004). I show typical spectra of an XRB in

the low/hard and high/soft states in Figure 1.5, taken from Yamada et al. (2013).

Neutron Star LMXBs on the other hand tend to follow one of two patterns during outburst,

dividing them into so-called ‘Z sources’ and ‘atoll sources’ (e.g. van der Klis, 1989b). In

Figure 1.6 I show examples of colour-colour diagrams (which plots two different hardness

ratios against each other, see Section 3.2.3) for typical Z-type and atoll-type sources. Z

sources trace out a number of ‘branches’ during outburst, each corresponding to a period of

different source behaviour. Atoll sources on the other hand spend most of the time in the

so-called ‘banana branch’ on the colour-colour diagram, occasionally jumping over to the

‘island state’ at larger values of hard and soft colour. Unlike black hole LMXBs which trace

out their characteristic evolutionary pattern once per outburst, Z and atoll sources trace out

their evolutionary paths many times per outburst. Z sources can complete the entire ‘z’ over

timescales of days. Most Z sources are classified as persistent objects, although some Z

sources are transient (Homan et al., 2007). On the other hand most atoll sources are

transient, but some have been observed to be persistent (e.g. Hasinger and van der Klis,

1989). In addition to this, at least one source is known to change between Z- and atoll-like

evolutionary patterns over time (Barret and Olive, 2002). This complex evolution over the

course of each outburst highlights the fact that accretion is not a simple process, and that

understanding accretion gives us better understanding of a areas of the physics of matter in

extreme environments.

1.3 Relativistic Effects

One of the most obvious exotic physical environments that accretion physics sheds light on

is, of course, extreme gravitational fields. General relativistic effects around compact
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Figure 1.4: A schematic hardness-intensity diagram adapted from Fender et al. (2004), showing
the evolutionary path of a typical black hole LMXB outburst and roughly indicating the positions
of quiescence (Q) and the the Low/Hard (L/H) and High/Soft (H/S) States. The jet line roughly
demarcates the portion of the outburst in which a jet is observed (right of the line) from the portion in
which it is not observed (left of the line).
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Figure 1.5: Suzaku energy spectra of the black hole HMXB Cygnus X-1 in its low/hard (black) and
high/soft (red) states, presented as typical spectra of a black hole XRB in these states. Figure taken
from Yamada et al. (2013).

Figure 1.6: Colour-colour diagrams from van der Klis (1989b), showing evolutionary paths of typical
outbursts of Atoll-type and Z-type neutron star LMXBs (GX 13+1 and Cyg X-2 respectively). On
the right-hand panel, the typical ‘branches’ of a Z-type source are marked: the High Branch (HB),
Normal Branch (NB) and Flaring Branch (FB).
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objects are often expressed in relation to the gravitational radius rg, defined as:

rg =
GM
c2 (1.1)

Where G is the gravitational constant, c is the speed of light and M is the mass of the

compact object. 2rg is equal to the Schwarzchild radius, or the radius of the event horizon

of a non-rotating black hole with mass M (Schwarzschild, 1916).

One result of general relativity which is important when considering compact object

accretion disks is the existence of an Innermost Stable Circular Orbit, or ISCO (e.g. Misner

et al., 1973). This radius is at 6rg from the centre of a non-rotating object, placing it well

outside the event horizon of a black hole and possibly above the surface of some neutron

stars. It can be shown that any non-interacting point mass crossing this boundary from the

outside will continue into the black hole, whereas any point mass crossing it from the inside

will continue to infinity; as such, no stable orbit can exist with a periastron smaller than this

radius. It can be shown that an accretion disk is also bounded by this radius (Kozlowski

et al., 1978), such that XRB accretion disks must all have an inner truncation radius at least

this far from the compact object. Within this radius, matter falls directly onto the compact

object.

A black hole can be described with 3 parameters[9]: mass, angular momentum (or spin) and

charge (Israel, 1967). As the precursor stars to black holes are neutrally charged, it is

expected that all astrophysical black holes are very close to being neutral as well. However,

these precursor stars also possess non-zero angular momentum. As such, it is expected that

most if not all astrophysical black holes are spinning. This spin is generally expressed as a

number between 0 and 1, where 0 denotes a non-rotating black hole and 1 is the maximum

permitted angular momentum the object can possess.

General relativity predicts that this spin will also have a significant effect on accretion

physics. First of all, this spin changes the position of the ISCO; moving it to a maximum of

9rg for a retrograde black hole with spin of 1 (Kerr, 1963). A spinning black hole also

distorts the space time around it, in a process known as frame-dragging (Lense and

Thirring, 1918). This forces matter close to the black hole to orbit in the same plane as it.

As there is no reason to assume the outer disk orbits in the same plane as the black hole, this

can lead to situations in which the accretion disk is warped, which in turn has implications

for the flow of matter within it.

It is clear that general relativity should have observable implications on the flow of matter

onto the accretion disk. Studying the physics of accretion therefore allows us to measure

parameters such as the spin of black holes that would otherwise be inaccessible to us.

Additionally, a full understanding of the accretion onto the compact objects would allow us

[9]This conjecture is often referred to as the ‘No-Hair’ theorem.
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to look for discrepancies between what is observed and what is expected from relativity.

Therefore, a full understanding of accretion is one route to testing the theory of general

relativity itself under some of the most extreme conditions in the universe.
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Chapter 2

The Physics of Accretion

A black hole consumes matter, sucks it
in, and crushes it beyond existence.
When I first heard that, I thought that’s
evil in its most pure.

Alice Morgan – Luther

The extreme environments in accreting systems lead to a variety of somewhat unintuitive

physical effects and phenomena. In this chapter I describe a number of these effects, and

delve into the history of physical and mathematical models which have been proposed to

explain the effects seen in X-ray binaries.

2.1 The Shakura-Sunyaev Disk Model

To try and understand the behaviour of accretion disks, a number of authors have

constructed models. Much of our understanding of the physics of astrophysical accretion

disks stems from one of the earliest of these models, proposed by Nikolai Shakura and

Rashid Sunyaev in 1973 (Shakura and Sunyaev, 1973). This model specifically considered

the effects of accretion onto a black hole. By showing that this would result in a system

which would be bright in the X-ray, and describing how such a system would appear, this

model proved pivotal in the scientific community’s acceptance of the earliest XRB

identifications (e.g. Bolton, 1972).

Shakura and Sunyaev model the accretion disk as a structure held up by centrifugal forces,

generated by the large amount of angular momentum possessed by infalling matter due to

the orbit of the binary system. Frictional forces cause this angular momentum to be

transferred outwards, heating up the disk and allowing matter to fall in towards the black
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hole. The efficiency with which this angular momentum is transferred can be thought of as

a measure of the viscosity of the disk.

Shakura and Sunyaev base their calculations on Newtonian mechanics; as such they ignore

the region of the disk inwards of the ISCO at r = 3rg, where relativistic effects become

important. They also assume that the disk in a steady state, that it is geometrically thin

(such that height of the disk H � r everywhere) and that it is cylindrically symmetric. The

last two assumptions allow us to write down formulae for the surface density Σ, mean radial

bulk velocity ur and accretion rate Ṁ of the disk as a functions of radius r:

Σ(r) =

∫ H

−H
ρ(r, z)dz (2.1)

ur(r) =
1

Σ(r)

∫ H

−H
ρ(r, z)vr(r, z)dz (2.2)

Ṁ(r) = −2πrΣ(r)ur(r) (2.3)

Where ρ(r, z) is the density at a radius r and height z, and vr is the radial velocity of the gas

at this point.

Now consider the Euler equations of hydrodynamics:

∂ρ

dt
+ ∇(ρv) = 0 (2.4)

ρ

(
∂v
dt

+ (v · ∇)v
)

= −∇p (2.5)

Where Equation 2.4 is the conservation of mass and Equation 2.5 is a differential form of

Newton’s second law of motion. These equations can be cast in cylindrical co-ordinates to

give 4 equations: the recast continuity equation and one motion equation for each of the

radial (r), vertical (z) and azimuthal (θ) directions:

∂ρ

∂t
+

1
r
∂(rρvr)
∂r

+
1
r
∂vθ
∂θ

+
∂vz

∂z
= 0 (2.6)

ρ

∂vr

∂t
+ vr

∂vr

∂r
+

vθ
r
∂vr

∂θ
+ vz

∂vr

∂z
−

v2
θ

r

 =
−∂p
∂r

(2.7)

ρ

(
∂vθ
∂t

+ vr
∂vθ
∂r

+
vθ
r
∂vθ
∂θ

+ vz
∂vθ
∂z

+
vrvθ

r

)
=
−∂p
∂θ

(2.8)

ρ

(
∂vz

∂t
+ vr

∂vz

∂r
+

vθ
r
∂vz

∂θ
+ vz

∂vz

∂z

)
=
−∂p
∂z

(2.9)

By assuming that the disk is in a steady state and cylindrically symmetric, we can set all ∂
∂θ
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and ∂
∂t terms to zero, simplifying equations 2.7 to 2.9:

ρ

vr
∂vr

∂r
+ vz

∂vr

∂z
−

v2
θ

r

 =
−∂p
∂r

(2.10)

ρ

(
vr
∂vθ
∂r

+ vz
∂vθ
∂z

+
vrvθ

r

)
= 0 (2.11)

ρ

(
vr
∂vz

∂r
+ vz

∂vz

∂z

)
=
−∂p
∂z

(2.12)

We can average the density term on left-hand side of Equation 2.6 in the z-direction, and

substitute in the results from Equations 2.1 to 2.3 to find:

1
r

d
dr

(
r
∫ H

−H
ρvrdz

)
= 0 (2.13)

1
r

d(rΣur)
dr

= 0 (2.14)

−1
2πr

dṀ
dr

= 0 (2.15)

Therefore the rate of inwards matter flow Ṁ, or the accretion rate, is constant at all r.

Using the fact that the angular velocity ω of an element in the gas can be written as

ω = vθ/r, we can re-write Equation 2.10 as:

ρ

(
vr
∂vr

∂r
− ω2r

)
= −

∂p
∂r
− ρvz

GM
r2 (2.16)

Where the term GM
r2 has been introduced to account for the fact that the gradient of the

gravitational field in the r direction is non-zero. This leads to:

ρ

(
vr
∂vr

∂r
− ω2r

)
= −

∂p
∂r
− ρω2

kr (2.17)

Assuming that is thin and angular momentum is only transferred slowly, i.e. vr
∂vr
∂r � ω, this

leads to:

ω ≈ ωk (2.18)

Showing that gas elements in the disk orbit at Keplerian speeds.

Using similar logic, Equation 2.12 becomes:

ρω2
kz =

−∂p
∂z

(2.19)
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The ideal gas law p = ρRT [1] can then be used to rewrite equation 2.19:

p
RT

ω2
kz =

−∂p
∂z

(2.20)

If we assume that the disk is chemically homogeneous and isothermal in the z-direction,

then neither R nor T depend on z. Equation 2.20 then admits the solution:

ρ = ρ0(r)e

(
−z2ω2

k
2RT

)
= ρ0(r)e

−z2

2H2
s (2.21)

Where ρ0 is the density at radius r when z = 0. As such, the density of the disk has a

Gaussian profile in the z-direction, with a scale-width Hs given by:

Hs =

√
RT
ωk

(2.22)

This shows that the scale height of the disk is finite for all r. As the integral between −∞

and +∞ of a Gaussian with a finite scale-width is finite, the disk contains a finite amount of

matter.

Finally, Shakura and Sunyaev looked at the solutions to Equation 2.11. As every term in

this equation depends on either vθ or a derivative thereof, this equation admits the solutions

ρ = 0 or vθ = 0. Both of these solutions imply accretion rates of zero, as any matter in the

disk must have a non-zero density and angular momentum. In order to resolve this problem,

Shakura and Sunyaev (1973) add the divergence of the viscous stress tensor (Landau and

Lifshitz, 1959) to the right-hand side of Equation 2.11 to represent the effects of viscosity

within the disk. By doing this, they find the following two results:

Ṁ =
4πHsηbr

ω

∂ω

∂r
(2.23)

Ṁ = 6πηbHs (2.24)

Equation 2.23 confirms that the disk is a differential rotator, while Equation 2.24 confirms

that accretion can only take place when ηb (the bulk viscocity) is non-zero.

Shakura and Sunyaev (1973) found that molecular viscosity alone cannot be high enough to

result in the high values of Ṁ inferred for observed XRBs. Instead, the authors assume that

turbulence is present in the disk. Using formulae pertaining to turbulent hydrodynamics,

and by ignoring supersonic perturbations, they find an upper bound on bulk viscosity η:

ηb ≤
2
3
ρ0H
√

RT (2.25)

[1]R is the specific gas constant, equal to the Boltzmann Constant kB divided by the mean molar mass of the
gas.
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As such, they define a dimensionless viscosity parameter α as:

α ≡
3ηb

2ρ0H
√

RT
0 < α ≤ 1 (2.26)

2.1.1 The source of Turbulence

Shakura and Sunyaev (1973) do not answer the question of what physical process causes

the turbulence required to stabilise accretion disks. Balbus and Hawley (1991) were among

the first to propose the Magnetorotational Instability (MRI, Velikhov, 1959; Chandrasekhar,

1961) as the source of this turbulence. MRI is a process which occurs in an ionised and

differentially rotating disk. Fluctuations in the material in the disk generate internal

magnetic fields. The field lines associated with these fields, in general, extend a finite

distance in the radial direction, thus connecting gas elements at different radii. As gas

elements in a Shakura-Sunyaev accretion disk orbit the compact object at Keplerian speeds,

elements of gas at different radii move at different orbital speeds. As such, these internal

magnetic field lines become stretched as gas orbits the compact object. This field line

stretching imparts a torque on the gas elements, causing the outer, slower element to speed

up and the inner, faster element to slow down. As such, the net result of this process is an

outwards transfer of angular momentum.

Balbus and Hawley (1991) found that the angular momentum transfer due to MRI was more

significant than that due to friction, hydrodynamic turbulence or other sources in an

accretion disk. They suggest therefore that MRI is the main component of outwards angular

momentum transfer, and thus of α, in astrophysical accretion disks.

2.2 Accretion Phenomena

The extreme physics involved in accretion onto compact objects leads to a number of

non-intuitive physical phenomena. In this section I describe a number of these theoretical

effects, and explain how these phenomena manifest in physical LMXBs.

2.2.1 The Eddington Limit

Consider an element of gas at distance r from a compact object, with mass m. This element

of gas is acted on by a inwards-pointing gravitational force given by:

FG =
GMm

r2 (2.27)

Where M is the mass of the compact object.
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If we assume that a luminosity L is emitted isotropically from the compact object, then the

electromagnetic flux at distance r is given by:

φ(r) =
L

4πr2 (2.28)

Electromagnetic radiation exerts a pressure on material corresponding to φ/c. As such, the

radiation from the X-ray binary exerts an outwards force on our gas element corresponding

to:

FL =
κmφ(r)

c
=

Lκm
4πr2c

(2.29)

Where κ is the opacity of the cloud, or its surface area per unit mass.

If FG and FL are equal, then no net force is exerted on our cloud of matter and it will not

accrete onto the compact object. This happens when:

FG = FL (2.30)

GMm
r2 =

Lκm
4πr2c

(2.31)

L =
GMm

r2

4πr2c
κm

(2.32)

L =
4πGMc

κ
(2.33)

This luminosity, denoted as LE , is the Eddington luminosity; the theoretical maximum

isotropic luminosity an object can emit and still have spherically symmetric accretion take

place. It only depends on the mass of the compact object M and the opacity of the accreting

material κ, which in turn depends on the chemical composition of the accretion disk. As

accretion disks tend to be dominated by ionised hydrogen, κ is usually assumed to be

σT/mp, where σT is the Thomson scattering cross-section of an electron and mp is the mass

of a proton. This assumption yields the final formula which only depends on the mass of the

compact object:

LE =
4πGMmpc

σT
(2.34)

The luminosity due to matter falling into a compact object can be expressed as:

L = ηṀc2 (2.35)

Where Ṁ is the accretion rate and η is the efficiency at which the gravitational potential

energy of infalling matter is converted to outgoing radiation. As such, LE also corresponds

to a limiting accretion rate ṀE .

However, a number of X-ray binaries have been seen to shine at luminosities far above this
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limit; in one of the most extreme cases, the confirmed neutron star XRB M82 X-1 has a

luminosity of ∼ 100LE (Bachetti et al., 2014). This super-Eddington accretion is possible

due to the fact that a number of assumptions made when calculating the Eddington limit do

not apply to physical XRBs. In particular, the calculation performed above assumes that

both accretion on to the compact object, as well as electromagnetic emission from it, are

isotropic. An object may exceed the Eddington Limit if it is accreting anisotropically, as is

the case for XRBs as these systems accrete from near-planar disks. In this case the

assumptions behind the calculation of the Eddington Limit break down, and more radiation

can be emitted away from the plane of the disk, decreasing the radiation pressure on

infalling material. Anisotropically emitting systems may appear to further exceed the

Eddington limit via beaming effects. An XRB beaming its radiation in the direction of the

Earth would lead us to infer an artificially high value of L, and thus overestimate its

luminosity with respect to the Eddington Limit.

Despite these setbacks, the Eddington Luminosity is a useful tool to compare XRBs with

different compact object masses. By expressing the luminosity of an object as a fraction of

its Eddington Limit, objects can be rescaled in such a way that we can compare how

dominant radiation pressure must be in each accretion disk.

2.2.2 The Propeller Effect

Another limit on accretion rate arises when one considers the effect of a strong neutron star

magnetic field. To understand this effect, we must first define two characteristic radii of

such a system.

First, assume that the magnetic field of the neutron star can be approximated as a set of

rigid field lines which are anchored to points on the neutron star surface. The magnetic field

can then be thought of as a ‘cage’ which rotates with the neutron star at its centre. The

straight-line speed of a point on this rotating cage is given by:

vν(r) = 2πrν (2.36)

Where r is the distance from the neutron star centre and ν is the rotation frequency of the

neutron star. This can be compared with the Keplerian speed, or the speed of a particle in a

Keplerian orbit around the compact object. This is given by:

vK(r) =

√
GM

r
(2.37)

Where M is the mass of the neutron star. By setting these equal, we can find the radius at
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which the magnetic field is rotating at the same speed as a particle in a Keplerian orbit:

vν(r) = vK(r) (2.38)

2πrν =

√
GM

r
(2.39)

r3 =
GM

4π2ν2 (2.40)

r =
3

√
GM

4π2ν2 (2.41)

This radius is denoted as rc, the co-rotation radius. Inside of this radius, a particle in an

equatorial Keplerian orbit has a greater velocity than the magnetic field lines; outside this

radius, the magnetic field lines are moving faster. To understand the significance of this

radius, we must define another characteristic radius of the system.

In a neutron star accretion disk, there are three significant sources of pressure: gas (or ram)

pressure Pg, radiation pressure Pγ and magnetic pressure Pµ. Whichever pressure is

dominant in a given location will govern the physics of matter in that region.

Photon pressure falls off sharply outwards from the inner disk, so it can be assumed to be

negligible in the region of the disk considered here. We can then calculate where in the disk

each of the remaining two pressures dominates.

Assuming that the neutron star behaves as a magnetic dipole, the magnetic pressure at a

point a distance r above its equator can be given as:

Pµ =
B2

2µ0
(2.42)

B(r) = B0

(RNS

r

)3
(2.43)

∴ Pµ =
B2

0

2µ0

(RNS

r

)6
(2.44)

Where µ0 is the vacuum permeability, B0 is the equatorial magnetic field strength at the

neutron star surface, RNS is the radius of the neutron star and Equation 2.43 is the equation

for the magnetic field strength above the equator of a dipole.

The functional form of the ram pressure depends on the assumed accretion geometry of the

system. As when calculating the Eddington Limit, one can assume the simplest possible

case of spherically accreting free-falling matter. The ram pressure is then given by:

Pg =
Ṁ

4πr2

√
2GM

r
(2.45)

When Pµ > Pg, accreting material is dominated by magnetic pressure in such a way that
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material is ‘frozen’ onto magnetic field lines (Alfvén, 1942); this results in material flowing

onto the neutron star surface along magnetic field lines onto the poles, as described in

section 1.1.2. It is possible to express the region of the accretion disk within which matter is

magnetically dominated:

Pg < Pµ (2.46)

Ṁ
4πr2

√
2GM

r
<

B2
0

2µ0

(RNS

r

)6
(2.47)

GMṀ2

8π2r5 <
B4

0

4µ2
0

(RNS

r

)12
(2.48)

r7 <
2π2

Gµ2
0

B4
0R12

NS

MṀ2
(2.49)

r <
7

√√
2π2

Gµ2
0

B4
0R12

NS

MṀ2
(2.50)

The critical radius, the magnetospheric or Alfvén radius, is denoted as rµ.

Now it is possible to consider what happens to matter approaching rµ in two different

physical regimes. First of all, consider a system in which the corotation radius rc > rµ. In

this case, which we show diagrammatically in panel A of Figure 2.1, magnetic field lines at

rµ are moving slower than the Keplerian speed. An element of matter approaching this

radius from a Keplerian orbit will experience a torque slowing it down as it freezes onto the

field lines. This decrease in orbital speed causes the element’s altitude above the neutron

star surface to decrease. This in turn pulls the element further into the

magnetically-dominated regime and allows it to accrete freely along the field line onto the

neutron star.

Now we can consider what happens when rc < rµ. In this case, which we show

diagrammatically in panel B of Figure 2.1, field lines at rµ are moving faster than the

Keplerian speed. An element of matter approaching rµ will therefore experience a torque

speeding it up as it becomes frozen onto magnetic field lines. This will increase its altitude,

driving it back away from rµ. In this case, the magnetospheric radius acts as a barrier to

infalling matter, repelling any gas that approaches it and stopping accretion onto the neutron

star surface. This set of circumstances is known as the ‘propeller regime’, due to the rapidly

rotating field lines acting like a ‘propeller’ which blows the inner part of the disk away.

As the propeller regime is expected to occur only for rc < rµ, it is possible to work out what
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Figure 2.1: Diagrams showing the path of an element of gas in a neutron star accretion disk for
different arrangements of the corotation (rc) and magnetospheric (rµ) radii. In panel a), the gas falls
freely inwards until it reaches rµ, at which point it freezes onto a magnetic field line. As rµ < rc, the
magnetic field lines (grey lines) are rotating more slowly than the gas element at this point. As such,
the gas element experiences torque which slows it down, decreasing its altitude above the neutron
star surface (black circle) and causing it to accrete along the magnetic field line. In panel b), rµ < rc.
As such, the magnetic field lines are rotating faster than the gas element at rµ. The gas element
experiences a torque which speeds it up at this point, increasing its altitude and preventing it from
accreting onto the neutron star.
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kind of system this should be observed in:

rc < rµ (2.51)

( GM
4π2ν2

)1/3
<

 2π2

Gµ2
0

B4
0R12

NS

MṀ2

1/7

(2.52)

M10/21Ṁ2/7 < kν2/3B4/7
0 R12/7

NS (2.53)

Where k is a constant. Assuming that the radius and mass of neutron stars does not vary

much, this inequality tells us that the propeller regime is more likely to be observed in

neutron star XRBs with a high spin frequency and a high magnetic field. The inequality

shown in 2.53 also tells us that the propeller effect places a lower limit on accretion in such

systems: accretion is not possible unless infalling matter can apply enough ram pressure to

push the magnetospheric radius inside the corotation radius.

There are numerous problems with this relatively simplistic view of accretion in a highly

magnetic regime. Much like the formulation of the Eddington Limit I present in Section

2.2.1, the above formulation of the propeller effect depends on an unphysical spherical

accretion geometry. It also includes the assumption that the magnetic field lines can in no

way be warped by the movement of ionised matter on them.

White and Stella (1988) have shown that, in neutron stars, the magnetospheric radius may

be close enough to the compact object that photon pressure cannot be safely neglected.

White and Stella find two different possible behaviours of the magnetospheric radius in

such a regime, depending on how α varies with r and how the disk reacts to the magnetic

field. For a perfectly diamagnetic disk, they show that the magnetospheric radius should not

depend on the accretion rate, preventing the formation of a propeller regime entirely. For a

case in which gas pressure is the dominant contributor to viscous stress, they find that the

magnetospheric radius is up to ∼ 30 times smaller than that calculated by equation 2.50.

Additionally, Ertan (2017) has analytically shown that an optically thick accretion disk can

only be in a stable propeller regime when the inner disk radius is & 15 times smaller that the

rµ naïvely calculated in equation 2.50. This in turn results in a several orders of magnitude

reduction in the critical accretion rate at the onset of the propeller regime in a given system,

raising questions as to whether the effect would be observable at such low luminosities.

Despite these difficulties, an effect observationally similar to the propeller effect is observed

in a number of astrophysical neutron star XRBs (e.g. the cessation of pulsed emission while

the source is still in outburst and the neutron star is actively spinning up or down, Fabian,

1975; Fürst et al., 2017) and other systems (e.g. the observation of a sudden steepening in

lightcurves during the decays of outbursts, interpreted by e.g. Campana et al., 2017 as the

onset of the propeller phase). Therefore it is likely that a propeller effect in some form is

likely able to explain what we see in nature.
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2.2.3 Disk Instabilities

A number of effects can cause an accretion disk, or portions of it, to become unstable.

Some of these instabilities can set up limit cycles of behaviour in the disk, resulting in

quasi-periodic fluctuations in the object’s intensity or colour as seen from Earth. I describe

a number of these instabilities here.

One of the first such instabilities to be described was discovered by Lightman and Eardley

(1974). Using the assumptions present in the thin disk models of Shakura and Sunyaev

(1973) and Novikov and Thorne (1973), Lightman and Eardley calculate the diffusion of the

gas in such a disk. They show that the diffusion coefficient in the radial direction of

radiatively dominated disk is negative. As such, any initially smooth disk under these

conditions tends to separate into thin, dense annuli. As such any sufficiently thin disk, with

α consistent with the prescription of Shakura and Sunyaev (1973) is unstable.

Shakura and Sunyaev (1976) described another instability which takes place in the radiation

pressure-dominated region near the inner edge of accretion disks. They find that steady

state accretion in such a regime is only possible for a single value of α, and hence this

region is unstable under small perturbations of viscosity. They argue that an instability due

to this effect may take the form of propagating wavefronts in the inner disk, which in turn

may cause some of the quasiperiodic fluctuations which are observed in these objects.

A further disk instability arises by considering the propeller effect (see Section 2.2.2), and

specifically considering neutron star LMXBs in which the magnetopsheric radius and

co-rotation radius are similar (rc ≈ rµ, e.g. Spruit and Taam, 1993). At this boundary, a

small increase in global accretion rate from the donor star pushes rµ inwards such that

rµ < rc. In this regime, the neutron star accretes freely, and the system is relatively bright in

X-rays. However, a slight decrease in global accretion rate causes rµ < rc: in this regime,

accretion onto the compact object’s surface is halted and the system is relatively faint in

X-rays. This effect causes a small fluctuation in accretion rate to convert to a large

fluctuation in luminosity between two quasi-stable values. This effect is believed to be

behind the so-called ‘hiccup accretion’ seen in X-ray binaries such as IGR J18245-2452

(Ferrigno et al., 2014) and 1RXS J154439.4-112820 (Bogdanov and Halpern, 2015).

2.3 GRS 1915+105 and IGR J17091-3624

One famous system in which disk instabilities are extremely apparent is the black hole

LMXB GRS 1915+105. GRS 1915+105 (Castro-Tirado et al., 1992), hereafter GRS 1915,

is a black hole LMXB which accretes at between a few tens and more than 100% of its

Eddington Limit (e.g. Vilhu, 1999; Done et al., 2004; Fender and Belloni, 2004). The

system lies at a distance of 8.6 ± 2.0 kpc (Reid et al., 2014), and consists of a 12.4±2.0 M�
black hole and a < 1 M� K-class giant companion star (Reid et al., 2014; Ziółkowski and

Zdziarski, 2017).
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The components of GRS 1915 have the longest known orbital period of any LMXB

(Greiner et al., 2001), in turn implying that this system has the greatest orbital separation

and the largest accretion disk. GRS 1915 has been in outburst since its discovery in 1992

(Castro-Tirado et al., 1992), and the extreme length of this ongoing outburst is believed to

be related to the large size of its accretion disk.

GRS 1915 is also notable for the incredible variety and complexity of behaviours it exhibits

over timescales of seconds to minutes (e.g. Yadav et al., 2000; Belloni et al., 2000). In total,

at least 15 distinct ‘variability classes’ have been described (Belloni et al., 2000; Klein-Wolt

et al., 2002; Hannikainen et al., 2007; Pahari and Pal, 2009), a number of which I show

lightcurves[2] of in Figure 2.2. The system tends to stay in one variability class for no more

than a few days but similar patterns are often repeated many months or years later,

suggesting some capacity of the system to ‘remember’ which variability classes it can show.

The variability classes of GRS 1915 consist of repeating patterns of flares, dips and periods

of noisy fluctuation, with a range of amplitudes and timescales. The behaviour of the source

during these classes, which are usually denoted by the Greek letter names assigned to them

by Belloni et al. (2000), can range from highly quasi-periodic to apparently entirely

unstructured. The ρ class, also referred to as the ‘heartbeat’ class due to the similarity of its

lightcurve to the output of an electrocardiagram, consists of sharp quasiperiodic flares with

a recurrence time of a few tens of seconds (Middle-right panel of Figure 2.2). Other classes,

such as class κ shown in the top-left panel of Figure 2.2, consist of quasiperiodic

fluctuations between two quasistable count rates: in the case of class κ, there is also a period

of highly structured sub-second variability at each transition between these two classes.

Finally, two classes (χ and φ, an example of the latter is shown in the bottom-right panel of

Figure 2.2) show no significant variability other than red noise; these classes are separated

from each other based on their spectral properties. It has been suggested they they may be

equivalent to the hard state seen in other outbursting LMXBs (van Oers et al., 2010),

providing a possible link between the behaviour of GRS 1915 and the behaviour of more

typical LMXBs.

The dramatic variability seen in GRS 1915 was long thought to be unique, driven by its

unusually high accretion rate (e.g. Belloni et al., 1997b). However in 2011, Altamirano

et al. (2011b) unambiguously identified GRS 1915-like variability in a second object: the

black hole LMXB IGR J17091-3624 (hereafter IGR J17091). This object is much fainter

than GRS 1915: Altamirano et al. (2011b) showed that, assuming that this object accretes at

its Eddington Limit by analogy with GRS 1915, the object may either be out in the halo of

the Galaxy (at & 20 kpc) or harbour the smallest mass black hole known to science

(. 3 M�). The companion star to the black hole in this system has not been definitively

identified (Chaty et al., 2008).

Much like GRS 1915, IGR J17091 displays a number of distinct classes of variability over

time, and a number of these have been identified as being similar to the classes seen in GRS

[2]A plot showing how the intensity of an object varies over time.
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Figure 2.2: Typical lightcurves of a selection of variability classes seen in GRS 1915, taken by the
PCA instrument aboard RXTE. The classes are labelled according to the Greek letter names assigned
to them in Belloni et al. (2000).
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1915 (e.g. Altamirano et al., 2011b; Zhang et al., 2014). Unlike GRS 1915, IGR J17091

displays the pattern of outbursts and quiescence more commonly seen in LMXBs; known

outbursts of IGR J17091 occurred in 2011 and 2016, and GRS 1915-like variability was

observed in both (Reynolds et al., 2016).

There are a number of notable differences between variability classes in GRS 1915 and IGR

J17091. In general, variability classes in IGR J17091 occur over shorter timescales than

their counterparts in GRS 1915. In addition to this, hard emission tends to lag soft emission

in the variability classes of GRS 1915 (e.g. Janiuk and Czerny, 2005), while the opposite

trend has been found in the ‘heartbeat’-like class of IGR J17091 (Altamirano et al., 2011b).

In addition to GRS 1915 and IGR J17091, there have been claims that a third LMXB

displays GRS 1915-like variability. Bagnoli and in’t Zand (2015) report on two

observations of MXB 1730-335, also known as the ‘Rapid Burster’, which show lightcurve

patterns remarkably similar to those seen in the ρ and θ classes of GRS 1915. The presence

of GRS 1915-like variability in the Rapid Burster is significant for a number of reasons:

unlike GRS 1915 or IGR J17091, the Rapid Burster is known to contain a neutron star

accreting at no more than 20% of its Eddington Limit, thereby ruling out any black

hole-specific or near-Eddington-specific explanations for this behaviour. In addition to this,

the Rapid Burster is one of only 2 objects known to undergo so-called Type II X-Ray bursts

(see Section 2.4), suggesting a possible link between these two phenomena. However, as it

has only been observed twice in the ∼ 30 years since the object was discovered, the true

nature of the apparent GRS 1915-like variability in the Rapid Burster remains unclear.

2.3.1 A History of Models of GRS 1915-like Variability

Over the years, a number of models and physical scenarios have been suggested to explain

the complex variability seen in GRS 1915-like systems. Successful models must also be

able to explain why this type of variability is not seen in a wider array of sources.

One of the most best-studied classes of GRS 1915-like variability is Class ρ, the ‘heartbeat’

class. This variability class is present in both GRS 1915 and IGR J17091 (e.g. Altamirano

et al., 2011b), and has been the focus of many of the models proposed to explain GRS

1915-like variability. It has been shown that hard X-ray photons lag soft X-ray photons in

this class (e.g. Janiuk and Czerny, 2005; Massaro et al., 2010), suggesting that hard

emission from this source is somehow caused by the softer emission. Other classes in GRS

1915 which show quasi-periodic flaring behaviour also exhibit this phase lag. Previous

authors have established models to explain both the hard photon lag as well as the

‘heartbeat’-like flaring itself, generally based on the instability in a radiation-dominated

disk first formulated by Shakura and Sunyaev (1976) (see Section 2.2.3).

Belloni et al. (1997a) first proposed an empirical model for flaring in GRS 1915. They

suggested that this behaviour is due to a rapid emptying of a portion of the inner accretion

disk, followed by a slower refilling of this region over a viscous timescale. Belloni et al.
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divided data from a given observation into equal-sized 2-Dimensional bins in count

rate-colour space. A spectral model was then fit to each of these bins independently to

perform ‘pseudo’-phase-resolved spectroscopy (compare with the method outlined in

Section 3.2.3). They showed that the time between flaring events correlates with the

maximum inner disk radius during the flare; i.e., a correlation between the amount of the

disk which is emptied and the time needed to refill it. They go on to suggest that their

model is able to explain all flaring-type events seen in GRS 1915.

The scenario proposed by Belloni et al. (1997a) was mathematically formalised by

Nayakshin et al. (2000), who found that it was not consistent with a ‘slim’ accretion disk

(Abramowicz et al., 1988) or with a disk in which viscosity α is constant with respect to

radius. As such, their model consists of a cold accretion disk with a modified viscosity law,

a non-thermal electron corona and a transient jet of discrete plasma emissions which are

ejected when the bolometric luminosity approaches the Eddington Limit. Using their

model, Nayakshin et al. (2000) found that some formulations of α(r) result in the disk

oscillating between two quasi-stable branches in viscosity-temperature space, over

timescales consistent with those seen in the flaring of GRS 1915; they found that this occurs

for accretion rates greater than 26% of the Eddington limit. They also found that by varying

the functional form of α(r), their model gives rise to a number of lightcurve morphologies

which generally match what is seen in data from GRS 1915. Janiuk et al. (2000) built on

this model further by including the effect of the transient jet in cooling the disk; an effect

not considered in the model by Nayakshin et al. (2000). In this formulation, Janiuk et al.

(2000) found that GRS 1915-like variability should occur at luminosities as low as 16% of

Eddington. The criteria of a relatively low accretion rate in these models suggests that many

more black hole LMXBs should show GRS 1915-like behaviour, which is at odds with

observations. Additionally, they are unable to explain GRS 1915-like behaviour in objects

with even lower accretion rates, such as the ρ-like behaviour reported by Bagnoli and in’t

Zand (2015) in the Rapid Burster.

Belloni et al. (2000) found that variability in GRS 1915 can be empirically described by

transitions between three phenomenological states, which differ in luminosity and hardness

ratio:

1. State B: high rate, high 5–13/2–5 keV hardness ratio.

2. State C: low rate, low 5–13/2–5 keV hardness ratio, variable 13–60/2–5 keV hardness

ratio.

3. State A: low rate, low 5–13/2–5 keV hardness ratio, lowest 13–60/2–5 keV hardness

ratio.

Belloni et al. find that no variability class shows a transition from state C to state B, and

they suggest that this transition is forbidden. The phenomenological scenario they establish

is at odds with the model of Nayakshin et al. (2000), which only results in two quasi-stable

states; one high rate and one low rate state.
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Nobili (2003) tried to account for the hard X-Ray lag by considering a scenario in which a

significant proportion of the X-Ray disk variability comes from a single hotspot. They

suggest that the lag corresponds to a light travel time, after which a portion of this emission

is Comptonised by the jet. In this case, the geometric location of this hotspot determines the

magnitude of this lag. This scenario goes some way to explaining why GRS 1915 is special,

as it requires the presence of a jet during a soft-like state.

Tagger et al. (2004) propose a magnetic explanation for the ejection of the inner accretion

disk required by Nayakshin et al. (2000) and Janiuk et al. (2000). In their scenario, they

suggest the existence of a limit cycle in which a poloidal magnetic field is advected towards

the inner disk during the refilling of this region. Associated field lines are then destroyed in

reconnection events, releasing energy which results in the expulsion of matter from the

inner disk. They suggest that the three quasi-stable states proposed by Belloni et al., 2000

can be explained as states in the inner accretion disk with different values of plasma β[3].

Janiuk and Czerny, 2005 attempt to explain the hard lag in the heartbeats of GRS 1915 more

simply, by proposing a model in which it is caused by the non-thermal corona smoothly

adjusting to changes in luminosity from the disk. They base the variability of the disk on the

model of Nayakshin et al., 2000, and show that the presence of a non-thermal corona which

reacts to this variability naturally reproduces the lag behaviour seen in Class ρ in GRS 1915.

Merloni and Nayakshin, 2006 also propose a magnetic explanation for the reformulation of

α(r) required by the model of Nayakshin et al., 2000. Assuming that the viscosity in the

accretion disk is dominated by turbulence due to the magnetorotational instability, they find

that allowing for a magnetically dominated corona naturally allows for the forms of α(r)

required by Nayakshin et al., 2000.

Zheng et al., 2011 propose a model which suggests that, when the effects of a magnetic field

are included, the accretion rate threshold for GRS 1915-like variability should be ∼ 50% of

Eddington; significantly higher than the 16% or 26% reported by Janiuk et al., 2000 or

Nayakshin et al., 2000. Zheng et al. go on to suggest that this type of variability is only

seen in GRS 1915 due to this source having the highest accretion rate of all permanently

soft-state sources. As such, this scenario still relies on a high accretion rate to trigger GRS

1915-like variability, but it is more consistent with observations than the models of Janiuk

et al., 2000 or Nayakshin et al., 2000.

Neilsen et al., 2011 performed phase-resolved spectroscopy of the ρ class in GRS 1915.

They find a hard ‘spike’ after each flare, which they associate with the hard lag in this class

previously noted by e.g. Janiuk and Czerny, 2005. They propose a scenario in which

high-velocity winds formed by the ejection of matter from the inner disk interact directly

with the corona after a light travel time. The corona then re-releases this energy as a hard

bremsstrahlung pulse, causing the hard count rate spike seen in phase-resolved spectra. This

scenario is outlined in Figure 2.3. The authors expand on this scenario in Neilsen et al.,

[3]The ratio of the plasma pressure to the magnetic pressure in an ionised medium.
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2012 to suggest that this mechanism can explain all classes in GRS 1915 which display

ρ-like flaring. However, this scenario still relies on the model of Nayakshin et al., 2000 to

generate the instability in the disk, and it implies that hard photons should always lag soft

photons in heartbeat-like variability classes. Significantly, this scenario is therefore unable

to explain the soft lags which have been observed in ρ-like variability in IGR J17091

(Altamirano et al., 2011b).

Neilsen et al., 2011 also perform phase-resolved spectroscopy (see Section 3.2.3) of the

flaring during ρ variability. In their fitting, Neilsen et al., 2011 consider three spectral

models:

1. An absorbed disk black body with a high energy cutoff, of which some fraction has

been Compton upscattered

2. An absorbed disk black body with a high energy cutoff, plus a Compton component

with a seed photon spectrum tied to the emission from the disk

3. An absorbed disk black body plus a Compton component with a seed photon

spectrum tied to the emission from the disk and a bremsstrahlung component

They find that the first of these models (Model 1) is the best fit to the data.

Mineo et al., 2012 also performed psuedo-phase-resolved spectroscopy of the ρ class in

GRS 1915, using a number of different spectral models to Neilsen et al., 2011 but a

significantly lower phase resolution. In this work, the authors consider six models:

1. A multi-temperature disk black body plus a corona containing both thermal and

non-thermal electrons (as formulated by Poutanen and Svensson, 1996).

2. A multi-temperature disk black body plus a multi-temperature disk black body plus a

power law.

3. A multi-temperature disk black body plus an independent Compton component.

4. A multi-temperature disk black body plus a power law plus reflection from the outer

disk.

5. A model of Comptonization due to the bulk-motion of matter in the disk.

6. A multi-temperature disk black body plus a power law plus a standard black body.

With the exception of Models 1 and 6, the authors find that none of these models are able to

satisfactorily fit the data in each of their phase bins independently. As there is no reasonable

physical explanation behind Model 6, the authors only consider Model 1. Their results

suggest a large reduction of the corona luminosity during each heartbeat flare, which they

interpret as the corona condensing onto the disk. They also find that their results are

consistent with GRS 1915 having a slim disk, but inconsistent with the hard lag being

caused by photon upscattering in the corona.
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Figure 2.3: A schematic diagram illustrating the the process described by Neilsen et al., 2011 to
describe the ρ variability class in GRS 1915+105. 1) The X-ray emission from the system originates
from both the accretion disk truncated at an inner radius rin (grey) and a corona of non-thermal elec-
trons (white ellipse). At some time t, an overdensity in the accretion disk (formed by the instability
described by Shakura and Sunyaev, 1976) propagates inwards towards rin. 2) As the inner disc heats
up, rin begins to slowly increase due to an increase in photon pressure. This destabilises the disc. 3)
At some critical density, the disc becomes too unstable and collapses inwards, greatly decreasing rin

and raising the inner disc temperature. 4) The sudden increase in emission exceeds the local Edding-
ton limit at rin, ejecting matter from the inner accretion disc in the form of extreme winds. 5) Having
been excited by matter in the winds passing through it, the non-thermal electron cloud emits a hard
Brehmsstrahlung ‘pulse’.
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Massa et al., 2013 found that the magnitude of the lag between hard and soft photons in the

ρ-class of GRS 1915 is not constant. They found that the lag varies between ∼ 3–10 s, and

correlates strongly with count rate. The magnitude of the lag, therefore, is too large to be

simply due to a light travel time to the corona from the disk. The authors suggest that their

results are instead consistent with the thermal adjustment of the inner disk itself as part of

the instability limit cycle invoked to explain the flares.

Massaro et al., 2014a constructed a set of differential equations to mathematically model

the behaviour of the oscillator underlying ρ-like flaring in GRS 1915. They find that a

change between variability classes likely corresponds to a a change in global accretion rate,

but that the global accretion rate within the ρ class is constant. This model reproduces the

count rate-lag correlation reported by Massa et al., 2013, as well as a previously reported

correlation between flare recurrence time and count rate (Massaro et al., 2010).

Mir et al., 2016 instead propose a model of variability in the outer disk propagating inwards

to the hotter inner disk. They propose a model that explains both the hard lag of the

fundamental frequency associated with the heartbeat flares, but also the hard lag of the first

harmonic. In contrast to the findings of Massaro et al., 2014a, their scenario requires a

sinusoidal variation in the global accretion rate as a function of time.

More recently, Zoghbi et al., 2016 found that the reflection spectrum from GRS 1915 does

not match what would be expected from the inner disk behaviour assumed by e.g.

Nayakshin et al., 2000. They again perform phase-resolved spectroscopy and fit a number

of complex spectral models, finding that their data is best-described by a scenario involving

the emergence of a bulge in the inner disk which propagates outwards during each flare.

The models and scenarios proposed for GRS 1915-like variability all suffer from being

based on observations of a single object: GRS 1915. In Chapter 4 I perform a study of the

variability in the GRS 1915-like object IGR J17091. Using my results from this second

object, I discuss which of these scenarios are likely to best describe the physics of GRS

1915-like variability.

2.4 Type II Burst Sources

Type II Bursts are another dramatic form of second-to-minute scale X-Ray variability

which are thought to be caused by disk instabilities (e.g. Lewin et al., 1976b). They are

named by analogy to Type I X-Ray bursts; second-scale flashes of X-rays which are caused

by thermonuclear explosions on the surface of neutron stars (van Paradijs, 1978; Lewin

et al., 1993).

In general, Type II bursts can be defined as second-to-minute scale X-ray bursts from

neutron star LMXBs which are non-thermonuclear in origin; specifically, they lack the

power-law-like decay profile (in’t Zand et al., 2014) and spectral cooling (Hoffman et al.,

1979) seen in Type I bursts. In Figure 2.4, I show lightcurves of a number of Type II bursts
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Figure 2.4: An RXTE/PCA lightcurve of MXB 1730-335 (also known at the ‘Rapid Burster’, showing
a number of typical Type II X-ray bursts.

from the LMXB MXB 1730-335 (Bagnoli et al., 2015). Type II bursts have a fast rise and a

slow decay, and occur with separation times from tens of seconds to hours.

Type II bursts have definitively been observed in only two objects: the neutron star LMXBs

MXB 1730-335 (also known as the ‘Rapid Burster’, Lewin et al., 1976b) and GRO

J1744-28 (also known as the ‘Bursting Pulsar’, Paciesas et al., 1996). In both objects, Type

II bursts have been observed during the soft state portion of multiple outbursts; this in turn

suggests that the ability to produce Type II bursts is a property of the system, rather than the

property of a specific outburst. There have been claims of Type II-burst-like features during

outbursts of a number of other LMXBs, such as SMC X-1 (Angelini et al., 1991), but

whether these features are the same phenomenon remains unclear.

The Rapid Burster is an LMXB located in the globular cluster Liller 1 (Lewin et al., 1976b).

No pulsations have been detected from the system, and as such the spin of its compact

object is not known. However, the presence of Type I bursts from this object confirms that

the compact object is a neutron star (Hoffman et al., 1978). Due to its location in a globular

cluster, a number of infrared sources are consistent with the X-ray position of the Rapid

Burster, and it is unclear which, if any, is the companion star in the system (Homer et al.,

2001). However, also due to its association with Liller 1, the distance to the Rapid Burster

is known to be 8.9–10 kpc (Ortolani et al., 2007). Using this information, it has been shown

that the persistent emission from the object during outburst peaks at no more than 20% of

its Eddington Limit (Bagnoli and in’t Zand, 2015). The X-ray luminosity of the system at

the peak of a Type II burst is around 100% of its Eddington Limit (Tan et al., 1991; Bagnoli

et al., 2015). In addition to Type I and Type II bursts, variability has been observed in the

Rapid Burster which is remarkably similar to that associated with GRS 1915 and IGR

J17091 (see Section 2.3), suggesting a possible link between these types of variability.

The Bursting Pulsar is an LMXB located in a region of the sky very close to the Galactic

centre. Although Type I bursts have not been observed from this system, a coherent 2.14 Hz

X-ray pulsation seen from the object proves that the compact object is a pulsar

(Kouveliotou et al., 1996a) and hence a neutron star. The distance to the object is

∼ 3.4–4.1 kpc (Sanna et al., 2017c), and the nature of the companion star is unknown. The

33



persistent emission from the Bursting Pulsar is believed to peak at ∼ 100% of its Eddington

limit during outbursts, while its peak luminosity during Type II bursts greatly exceeds the

Eddington limit (Sturner and Dermer, 1996).

2.4.1 A History of Models of Type II Bursts

No models have been proposed which can fully explain Type II bursting behaviour, but

several models have been proposed in the context of Type II bursting from the Rapid

Burster MXB 1730-33. A number of models invoke viscous instabilities in the inner disk as

the source of cyclical bursting: for a more detailed review of these models, see Lewin et al.

(1993).

One such model was presented by Taam and Lin (1984). They show that a disk that would

be expected to be unstable due to the instability described by Shakura and Sunyaev, 1976

can be stabilised by non-local energy transfer. However they find that this effect is not

sufficient to stabilise a disk in the case where viscous stress in the disk scales with local

pressure. In this case, they instead find that a limit cycles of behaviour can be set up,

resulting in quasiperiodic flaring which the authors argue is similar to that seen in the Rapid

Burster.

Walker (1992) suggests that, for a neutron star with a radius less than its ISCO, a similar

cycle of accretion can be set up when considering the effects of a high radiative torque. In

their scenario, Walker find that pressure in the inner accretion disk of such an ultra-compact

neutron star is entirely dominated by radiation stresses. This leads to an unstable and highly

non-linear region of the disk, leading to strong aperiodic variability.

Spruit and Taam (1993) (see also D’Angelo and Spruit, 2010, 2012) use a different

approach. Their model shows that, in some circumstances near the boundary of the

propeller regime, the interaction between an accretion disk and a rapidly rotating

magnetospheric boundary can naturally set up a cycle of discrete accretion events rather

than a continuous flow (for a description of this instability in a more general context, see

Section 2.2.3). The authors specifically discuss this flaring in the context of the Rapid

Burster, noting a number of similarities between the output of their models and the

properties of flares seen from the Rapid Burster. However, they note a number of key ways

in which their model differs from observations: the flares produced by their model are

strictly periodic for a given accretion rate, and consequently the observed relationship

between burst waiting time and burst fluence in the Rapid Burster cannot be reproduced.

In Chapter 5 I perform a population study of bursts from the Rapid Burster-like Bursting

Pulsar, and use my results to better evaluate the models proposed to explain the Rapid

Burster. In Chapter 6 I also consider an instability similar to that proposed by Spruit and

Taam (1993) to explain a previously undiscovered variability during the late stages of

outbursts from thr Bursting Pulsar.
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Chapter 3

Tools & Methods

The infinite is obvious and everywhere.
To engage the finite takes courage.

Hunter Hunt-Hendrix – Transcendental
Black Metal

In this Chapter, I describe the tools and methods I employed as part of my studies. In

Section 3.1 I describe the scientific instruments which were used to take the data I present

in this thesis. In Section 3.2 I describe a number of methods and algorithms created by

others which I make use of in my analysis. I also present algorithms I have created as part

of my studies.

3.1 Instrumentation

The atmosphere of the Earth is opaque to X-rays and gamma-rays, so we must use

space-based observatories in order to study high-energy astrophysical phenomena. A

number of satellites dedicated to the study of X-rays have been launched over the years,

starting with Uhuru in 1970 (Giacconi et al., 1971) and culminating, most recently, with

NASA-operated NICER (Gendreau et al., 2012) and the Chinese-operated Insight (Li,

2007) in 2017. I use data from a number of these missions in the research reported in this

thesis; in particular I use data from the NASA satellites RXTE, Swift, Chandra and NuSTAR,

the European satellites XMM-Newton and INTEGRAL, and the Japanese satellite Suzaku.

This section introduces the instruments used in my studies, as well as the tools used to

extract their data for further analysis.

35



3.1.1 The Rossi X-Ray Timing Experiment

The Rossi X-Ray Timing Experiment, more commonly known as RXTE, was a

NASA-operated satellite launched from Cape Canaveral in the United States on December

30, 1995 (Bradt et al., 1993). RXTE was primarily an X-ray observatory, constructed

specifically to study X-ray variability seen in X-ray Binaries (Bradt et al., 1990). The

observatory operated until January 5, 2012, when it was decommissioned. RXTE likely

re-entered Earth’s atmosphere over Venezuela on April 30, 2018.

RXTE carried three scientific instruments. The main instruments were a pair of X-ray

telescopes: the Proportional Counter Array (PCA, Jahoda et al., 1996) and the High Energy

X-Ray Timing Experiment (HEXTE, Gruber et al., 1996). The satellite also carried an

X-ray All-Sky Monitor (ASM, Levine et al., 1996). PCA consisted of 5 Proportional

Counting Units (PCUs) which were sensitive between ∼ 2–60 keV. The instrument had an

excellent time resolution approaching 1 µs, and an energy resolution of ∼ 18% at 6 keV.

X-rays were guided onto the detectors by a collimator, resulting in an instrumental field of

view with a full-width half-maximum of 1◦. PCA had a 6500 cm2 collecting area, and no

angular resolution (Jahoda et al., 1996).

The HEXTE instrument (Gruber et al., 1996) provided complimentary coverage at higher

energies, being sensitive in the ∼ 15–250 keV range. This instrument consisted of 8

detectors on two separate arms, with a total collecting area of 1600 cm2, and had a similar

field of view to that of PCA. The time resolution was 8 µs, and the energy resolution was

15% at 60 keV (Gruber et al., 1996).

Finally, ASM was a medium-energy X-ray all sky-monitor which covered 80% of the sky

every 90 minutes. It was sensitive in the range 2–10 keV, with a total collecting area of

90 cm2 and a spatial resolution of 3′ × 15′ (Levine et al., 1996). Due to its near continual

coverage of the sky, ASM was excellent for long-term monitoring of transients in the soft

X-ray sky.

Data Formatting

Much of the work in this thesis is based largely on data from RXTE/PCA, which is freely

available through the HEASARC archive maintained by NASA’s Goddard Space Flight

Centre[1]. PCA, as well as many other X-ray instruments, records data in one of two forms:

• Event-Mode Data: A list of photon arrival times. Depending on the instrument and

observing mode, each of these times will have an associated channel, information

about where in the detector the photon hit and a flag indicating the pattern that the

photon made on the detector.

[1]https://heasarc.gsfc.nasa.gov/cgi-bin/W3Browse/w3browse.pl
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• Binned Data: A list of evenly spaced time bins with the number of photons which

arrived during each. Depending on the instrument and observing mode, this may be

accompanied by some information on the channel distribution of photons arriving in

each bin.

Both event-mode and binned-mode data are stored in a Flexible Image Transit System

(.fits) format. This is a hierarchical data format consisting of a number of ‘Header Data

Units’ (HDUs), each of which contains data in some format and a header with details of the

format. In addition to either an event list or a table of binned data, astronomical FITS files

also contain a list of Good Time Intervals (GTIs) during which the satellite was functioning

normally, as well as an amount of housekeeping information such as the start and end times

of the observation.

The channel a photon falls into is determined by its energy, although the channel-to-energy

conversion for a particular instrument changes over time as the instrument degrades or

settings are altered. The approximate channel-to-energy conversions for PCA can be found

at https://heasarc.gsfc.nasa.gov/docs/xte/e-c_table.html.

For PCA observations of faint objects, event mode data with full energy information

(referred to as goodxenon-mode data) is generally available. However when brighter

objects were observed, telemetry constraints sometimes prevented this full information

from being transmitted to Earth. In all observations, a number of alternative data products

are available; Standard1 data (binned data with 0.125 s time resolution but no energy

information), Standard2 data (binned data with 16 s time resolution, divided into 129 bins

by channel) and a number of other data products with various time and energy resolutions.

Standard2 data are useful for studying spectral variability over long timescales, while

Standard1 data are useful for studying fluctuations in X-ray luminosity over shorter

timescales. I use goodxenon data when available, as this allowed me to use the maximum

possible time and energy resolutions. When goodxenon was not I available I used various

other datamodes, including Standard1 and a number of different event-mode datamodes.

Data Extraction & Background Correction

To perform science with PCA or other instruments, one must extract science products (such

as lightcurves, power spectra and energy spectra) from the raw data. Tools to create

lightcurves and power spectra from PCA data are available as part of FTOOLS [2], a free

NASA-maintained suite of software for manipulating .fits formatted data. These scripts

make use of CALDBs: freely available databases of calibration files provided by NASA for

a number of active and historical X-ray telescopes (e.g. Graessle et al., 2006). I also wrote

my own software PANTHEON (Python ANalytical Tools for High-energy Event-data

manipulatiON, presented in Appendix E) to extract a number of additional products, such

as power spectra and spectrograms.

[2]https://heasarc.gsfc.nasa.gov/ftools/
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In astronomy, the general way to subtract background from data is by selecting an empty

piece of sky from the same observation as the source of interest, and then subtract the

counts in one from the other. However as PCA had no imaging capability, this is not

possible with data from this instrument. Instead, the RXTE Guest Observatory Facility

provides background models, which estimate the background of an observation based on

the known X-ray background near the pointing direction and how the radiation environment

of the spacecraft changes over its orbit. Two background models are available, for faint[3]

(< 40 cts s−1 PCU−1) and bright[4] (> 40 cts s−1 PCU−1) sources; these can be used in

conjunction with the pcabackest tool in FTOOLS to estimate the background as a function

of time and energy. This spectral model can then be subtracted from binned PCA data.

As the PCA background models do not subtract the contributions from other sources in the

field of view, I also use a different technique to subtract background from observations of

GRO J1744-28 (which is in a very crowded region of the sky near the Galactic centre). To

try and account for these other sources, I instead chose an observation of the region of GRO

J1744-28 taken while this source was in quiescence; I assume that all photons in this

observation must be from the particle background, the cosmic background or another

source in the field of view. Although this method does subtract some of the background

contributed from other sources in the field, it must be treated with caution as these other

sources are likely also variable.

To compare photometry data from PCA with data from other instruments, I normalise the

data by the flux from the Crab nebula. The Crab is a commonly used reference source in

astronomy due to its apparent brightness and low variability across a wide portion of the

electromagnetic spectrum. To Crab-normalise PCA data from a given observation, I take

the PCA observation of the Crab which is closest in time to the observation of interest and

in the same gain epoch. This follows the method employed in Altamirano et al. (2008b).

In addition to PCA, I also make use of data from RXTE/ASM. Long-term lightcurves from

ASM are available on the ASM Light Curves Overview web page

(http://xte.mit.edu/asmlc/ASM.html) maintained by MIT.

3.1.2 The Neil Gehrels Swift Observatory

The Neil Gehrels Swift Observatory, formerly and more commonly known as Swift, is a

NASA-operated satellite launched from Cape Canaveral on November 20, 2004 (Gehrels,

2004). Swift was specifically designed to study Gamma Ray Bursts (GRBs), and is notable

for its fast slew speed.

Swift carries three instruments: the X-Ray Telescope (XRT, Burrows et al., 2003), the wide

[3]http://heasarc.gsfc.nasa.gov/FTP/xte/calib_data/pca_bkgd/Faint/pca_bkgd_
cmfaintl7_eMv20051128.mdl

[4]http://heasarc.gsfc.nasa.gov/FTP/xte/calib_data/pca_bkgd/Sky_VLE/pca_bkgd_
cmbrightvle_eMv20051128.mdl
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field-of-view hard X-ray Burst Alert Telescope (BAT, Krimm et al., 2013) and an

UltraViolet/Optical Telescope (UVOT, Roming et al., 2004). XRT is the primary instrument

on Swift: it is a focusing telescope with an effective energy range of 0.2–10 keV. Unlike

PCA, XRT has imaging capabilities, with a field of view with a radius of 23.6’ and an

angular resolution of 18”. The telescope has a minimum time resolution of 1.8 ms and a

minimum energy resolution of ∼ 5% at 6 keV. XRT is operated in one of a number of

‘operating modes’ during each observation, depending on the requirements of the observer.

The two main observing modes are:

1. Proportional Counting (PC) Mode: a full 2-dimensional image every 2.5 s.

2. Windowed Timing (WT) Mode: a 1-dimensional image every 2.8 ms.

Both PC and WT modes also contain full energy information.

The main purpose of the wide area BAT telescope is to identify gamma ray bursts as soon as

possible after their onset, so that Swift can then slew to them for follow-up observation with

XRT. Due to its large field of view (1.4 sr) and effective energy range of 15–150 keV, BAT

also provides us with long-term hard X-ray lightcurves of many bright sources in the X-ray

sky. It has a detecting area of 5200 cm2 and, when operating in survey mode, a time

resolution of 5 minutes.

The final instrument, UVOT, is intended to take simultaneous optical and ultraviolet

observations of sources observed with XRT. It observes in the wavelength range between

170–650 nm.

Data Extraction

XRT and BAT data on non-GRB transients are available via online portals maintained by

the University of Leicester[5] and the Goddard Space Flight Centre[6] respectively. The

University of Leicester portal automatically extracts lightcurves, energy spectra, images and

source positions from raw XRT data of a given target, using the xrtpipeline provided in

FTOOLS. The Goddard Space Flight Centre provides ready-made 15–50 keV lightcurves of

1023[7] X-ray transients, with cadences of either 1 per day or 1 per Swift orbit.

3.1.3 The X-Ray Multi-Mirror Mission

The X-Ray-Multi Mirror Mission (XMM-Newton, Jansen et al., 2001) is an ESA-operated

satellite which was launched from Kourou, French Guiana on December 10, 1999, and is

still operating almost 20 years later. Like RXTE and Swift, XMM-Newton also carries a

number of separate instruments: namely the European Photon Imaging Camera (EPIC,

[5]http://www.swift.ac.uk/user_objects/
[6]https://swift.gsfc.nasa.gov/results/transients/
[7]Count as of October 2018.
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Bignami et al., 1990), the Reflection Grating Spectrometer (RGS, den Herder et al., 1994)

and an Optical Monitor (OM, Mason et al., 1996). In the research presented in this thesis, I

only make use of data from EPIC.

EPIC consists of three CCD cameras which work independently: two metal-oxide

semiconductor CCD cameras (EPIC-MOS1 and EPIC-MOS2) and a single pn CCD camera

at the focus of the telescope (EPIC-pn). All cameras observe in the energy range

0.15–15 keV, with a Field of View of 30’, an angular resolution of 6” and a maximum

energy resolution of ∼ 5%. The detectors can be operated in full frame, partial window or

timing mode, each of which has a greater time resolution but narrower field of view than the

last. The maximum time resolution achievable by EPIC is 7 µs which EPIC-pn is operated

in burst mode; a special pn-only variant of timing mode.

Data Extraction & Processing

XMM-Newton data are extracted and processed using the SAS software (Ibarra et al., 2009)

provided by ESA[8]. These make use of the continuously updated Current Calibration Files

(CCF), also provided by ESA.

The process of extracting basic data products from the EPIC instruments can be reduced to

a number of steps:

• Use the SAS command cifbuild to create a Calibration Index File (CIF), containing

pointers to the information in the CCF needed to reduce the chosen dataset.

• Use the SAS command odfingest to create a summary file, containing data

corrected by the CCF and by the EPIC housekeeping files.

• Construct a photon event list from EPIC-MOS1 and EPIC-MOS2 using the SAS

command emproc, or from EPIC-pn using the command epproc.

The event lists that result from this process can then be filtered using evselect, which

allows the user to sort photons by arrival time, spatial co-ordinate and energy channel,

among other parameters. These filtered event lists can then be used to create science data

products, such as lightcurves and energy spectra.

3.1.4 Chandra

The Chandra X-Ray Observatory (Chandra, Weisskopf, 1999) is a NASA-operated satellite

which was launched from Cape Canaveral on July 23, 1999 aboard Space Shuttle

Columbia. The mission is considered to be one of NASA’s ‘Great Observatories’, along

with the Hubble Space Telescope (HST, e.g. Holtzman et al., 1995), the Compton Gamma

Ray Observatory (CGRO, Gehrels et al., 1994) and the Spitzer Space Telescope (Spitzer,

[8]https://www.cosmos.esa.int/web/xmm-newton/sas
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Fanson et al., 1998), which collectively observed the sky between infrared and gamma-ray

wavelengths. Chandra was designed to study the X-ray sky between ∼0.1–10 keV, and

contains two instruments: the High Resolution Camera (HRC, Kenter et al., 2000) and the

Advanced CCD Imaging Spectrometer (ACIS, Nousek et al., 1987). The spacecraft also

carries High and Low Energy Transmission Gratings (HETG and LETG respectively,

Markert et al., 1994; Brinkman et al., 1986), which can be used in conjunction with the

aforementioned detectors to produce high-resolution energy spectra.

HRC contains two detectors: the HRC Imager (HRC-I) and the HRC Spectrogram

(HRC-S). HRC-I has the largest field of view of any instrument aboard Chandra (30×30’),

but no time resolution and only poor spectral resolution. HRC-S is a long-thin detector strip

which is intended to be used as the readout for the LETG. This detector can also be used in

Continuous Clocking mode, in which it has no energy resolution but a timing resolution of

16 µs.

ACIS is intended for use either as an imaging camera or as a detector for the output of the

HETG. It has a primary field of view of 16.9 × 16.9’, and operates at a maximum time

resolution of 2.85 ms.

Data Extraction & Processing

Like XMM-Newton, Chandra data are analysed using a purpose-built suite of tools. The

software for Chandra analysis is named CIAO (Fruscione et al., 2006), and is freely

provided by Harvard University[9]. Ciao filters and bins data based on any of the four

possible parameters stored for a photon event (time, energy and two spatial co-ordinates),

and facilitates the production of lightcurves, images and energy spectra.

3.1.5 Suzaku

Suzaku (Mitsuda et al., 2007) was a JAXA-operated satellite which operated from its launch

from the Uchinoura Space Center, Japan on July 10, 2005 until being decomissioned on

September 2, 2015. The mission was intended for X-ray spectroscopy; however the

satellite’s primary instrument, the X-Ray Spectrometer (XRS, Kelley et al., 1999), lost all

of its liquid helium coolant within the first month of operation, rendering it effectively

unusable. The remaining instruments aboard Suzaku, namely the X-Ray Imaging

Spectrometers (XIS, Koyama et al., 2007) and the Hard X-Ray Detector (HXD, Takahashi

et al., 2007) were unaffected by the malfunction and continued to operate normally

throughout the spacecraft’s lifetime.

XIS consists of four X-ray cameras, with a total field of view of 17.8 × 17.8’ and a spatial

resolution of ≥ 1.6”. One of these cameras (XIS2) was damaged by a micrometeorite, and

was switched off on November 9, 2006. The instrument has a good spectral resolution over
[9]http://cxc.harvard.edu/ciao/
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its operational energy range of 0.2–10 keV, peaking at ∼ 170 eV at the upper end of this

range. Standard XIS observation modes provide a time resolution of 8 s, corresponding to

the duration of a single CCD exposure. This timing resolution can be improved by a factor

of a few by sacrificing imaging information in other observation modes, such as the

one-dimensional P-sum mode with a timing resolution of 7.8 ms.

HXD complements XIS at higher energies, with an effective energy range of 12–600 keV.

The instrument has an energy resolution of ∼ 3 keV below 60 keV, and ∼ 7–8
√

E% above

60 keV, where E is the energy in MeV. The instrument has an optimum time resolution of

61 µs.

As with most instruments, there exist standard procedures when reducing and analysing

data from Suzaku. First of all, the data must be reprocessed using the aepipeline script

available as a part of FTOOLS. Lightcurves, images and spectra can then be extracted using

the standard multimission tools also available in FTOOLS. Note that, for XIS, backgrounds

for each of the four detectors should be extracted separately due to differential degradation

over the lifetime of the mission.

3.1.6 The Nuclear Spectroscopic Telescope Array

The Nuclear Spectroscopic Telescope Array (NuSTAR, Harrison et al., 2013) is a

NASA-operated satellite launched from the Stargazer aircraft off the coast of the Marshall

Islands on June 13, 2012. The satellite carries two co-pointing X-ray telescopes, which are

matched with Focal Plane Modules referred to as FPMA and FPMB. These detectors are

sensitive and calibrated in the range 3–78 keV, and each has an effective area of ∼ 450 cm2

at ∼ 10 keV. The telescopes have a field of view of 12.2 × 12.2’, and a full-width

half-maximum angular resolution of & 18”. Events are detected by NuSTAR with a time

resolution of 2 µs, while the energy resolution at 50 keV is around 0.4 keV.

NuSTAR is the first instrument able to focus hard X-rays (& 10 keV) to produce relatively

clear images. Additionally NuSTAR does not suffer from issues due to pile-up (an

instrumental effect in most instruments which overestimates the hard flux from bright

objects, see Section 3.1.8), but it does suffer from significant dead-time (which

underestimates flux from bright objects, see also Section 3.1.8). See also Bachetti et al.

(2015).

For the research presented in this thesis, I reduce data from NuSTAR using the nupipeline

script from the freely available NuSTAR Data Analysis Software (NuSTARDAS[10]). This

script automatically runs all of the relevant tasks required to reduce NuSTAR data, including

flagging of events, flagging of bad pixels and correcting for detector gain. It also calculates

sky co-ordinates and energy for each event.

[10]https://heasarc.gsfc.nasa.gov/docs/nustar/analysis/nustar_swguide.pdf
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3.1.7 The International Gamma-Ray Astrophysics Laboratory

The INTernational Gamma-Ray Astrophysics Laboratory (INTEGRAL, Winkler, 1996) is an

ESA-operated satellite which was launched from Kazakhstan’s Baikonur Cosmodrome on

October 17, 2002. The primary purpose of the mission is the spectroscopy of astrophysical

sources in the hard X-ray and soft gamma-ray bands, between ∼ 4–10,000 keV.

INTEGRAL carries two main scientific instruments: the SPectrometer on INTEGRAL (SPI,

Vedrenne et al., 2003) and the Imager on-Board INTEGRAL (IBIS, Winkler et al., 2003).

The spacecraft also carries an X-ray monitor (JEM-X, Schnopper et al., 1996) and an

optical camera (OMC, Gimenez and Mas-Hesse, 1998). SPI is a high-resolution gamma-ray

spectrometer, with an energy resolution of ∼2.2 keV at 1.33 MeV and an energy range of

18 keV to 8 MeV. It has a field of view of > 14◦, an angular resolution of 2.5◦, a time

resolution of 0.129 ms and a collecting area of ∼ 500 cm2.

IBIS has a wider energy range than SPI, from 15 keV to 10 MeV, and a larger collecting

area at 2600 cm2 at 100 keV. The timing accuracy is 61 µs, but the energy resolution peaks

at only 8% at ∼ 100 keV. As IBIS is an imager, it has a good angular resolution of ∼ 12’ and

a fully-coded field of view of 8 × 8”. IBIS contains two detector planes stacked on top of

each other; the top layer (ISGRI, Lebrun et al., 1996) is designed to detect low-energy

gamma rays, while the lower layer (PICsIT, Labanti et al., 1996) is designed to detect the

higher-energy gamma rays which pass through ISGRI undetected.

Data products from all four instruments are available via the INTEGRAL Heavens portal

(Lubiński, 2009) maintained by the INTEGRAL Science Data Centre [11]. This portal

provides images, lightcurves and spectra of data taken from archived INTEGRAL

observations.

3.1.8 Dead-time and Pile-up

All X-ray telescopes suffer from a number of instrumental biases, caused by a number of

instrumental effects. Two of the most significant of these are dead-time and pile-up, which

are both caused by the limitations of CCD detectors. When a photon is detected, a CCD

takes a finite time to respond to it to form a digital signal. During this response time, known

as the ‘dead-time’, the instrument is unable to respond to any additional photons. This

means that the instrument is ‘blind’ to photons for a period of time after each registered

event. The dead-time of a given instrument is generally of the order of a few µs per event.

For high incident count rates, dead-time can lead to a significantly reduced reported count

rate. In addition to this there is an effect on the statistics of photon arrival times. Photon

arrival times from an astrophysical source are generally Poisson distributed; however, the

existence of dead-time means that two consecutive reported photon arrival times are no

[11]https://www.isdc.unige.ch/heavens/
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longer independent of each other. This in turn can effect the level and the shape of the noise

component seen when analysing Fourier spectra of the data (see Section 3.2.2).

Similarly, pile-up is an effect which is mostly seen in data from bright sources. Pile-up

occurs when two photons coincide both temporally and spatially in such a way that the

detector interprets them as a single event. This causes two photon events to be recorded as a

single photon event with an energy equal to the sum of the two. This effect causes the hard

emission from a source to be over-reported, and the soft emission to be under-reported. The

exact magnitude of the effects from dead-time to pile-up varies from detector to detector;

for most detectors the effects are well understood and can therefore be estimated and

corrected for.

3.2 Methods & Techniques

To extract meaningful physics from the data provided by the space-based observatories

described in Section 3.1, I use a number of mathematical and analytical techniques. In a

nutshell, I analyse three main properties of the data:

1. Lightcurve Morphology: Describing how the intensity of an object in a given

energy band varies as a function of time.

2. Timing Analysis: Using Fourier and Lomb-Scargle analyses to identify periodic and

quasi-periodic variability in the data, and how these change with energy and time.

3. Energy Spectral Analysis: Measuring the shape of the energy spectrum of an object,

particularly by using hardness ratios (see e.g. Section 3.2.3), and analysing how this

changes over time.

Some of the techniques I used to explore these properties are detailed in this section.

3.2.1 Lightcurve Morphology

The morphology of a lightcurve, how the brightness of a source varies over time, can tell us

about the physical processes at work in a system. For example, the rise and fall-times of an

X-ray burst can be matched with characteristic physical timescales of an accreting system

to better understand which of them play roles in generating the bursts. However,

quantifying these shapes over short timescales, or in low-quality datasets, can be difficult.

As such, methods exist to help analyse the morphology of these difficult datasets, and I

employ a number of them in the research presented in this thesis.
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Lightcurve Folding

In systems with periodic or quasi-periodic behaviour, it is important to understand the

morphology of a single cycle of the behaviour. In order to improve the statistics on such

data, one can take the average of many cycles, resulting in a single averaged cycle with a

greatly increased signal-to-noise ratio. The process of obtaining this average cycle is known

as ‘folding’ data.

To fold a periodic dataset with a known period p, the time t associated with each datapoint

must be converted into a phase φ (for 0 ≤ φ < 1) such that datapoints at the same stage of

different oscillations have the same φ. This can be done using the formula:

φ(t) = Φ(t) mod 1 = (t − t0)/p mod 1 = (t − t0)/p − Nt (3.1)

Where Φ(t) is the fractional number of cycles which have elapsed between times t0 and t for

an arbitrary start time t0, and Nt is the integer number of complete cycles which have

occured between times t0 and t.

This procedure can also be thought of as cutting a lightcurve into a number of segments

each of length p. Each datapoint in each segment can then be assigned a φ value, where φ

corresponds to the datapoint’s fractional position within its segment. Once this information

has been found for all datapoints, the data can be rebinned in φ-space to ‘stack‘ every cycle

on top of one another. I illustrate this process visually in Figure 3.1. This method is useful

for finding mean oscillation profiles when p is very close to a constant, such as finding the

mean pulse profile of a pulsar over a small number of rotations. However in many cases,

such as in quasi-periodic oscillations (QPOs), p is not a constant. More complex methods

must then be used to find the mean pulse profile.

Flare-Finding Algorithm

To fold a quasi-periodic oscillation, such as the ‘heartbeat’ flares seen in GRS 1915+105

and IGR J17091-3624, it is first important to find the time-coordinates which characterise

the beginning, end and peak of each flare. To this end, I have created an algorithm to locate

individual flares in a dataset containing non-periodic high-amplitude flares. The algorithm

is performed as such:

1. Choose some threshold values TL and TH . Set the y-value of all datapoints with

y < TL to zero.

2. Retrieve the time co-ordinate of the highest value remaining in the dataset. Call this

value tm and store it in a list.

3. Set the y-value of the point at tm to zero.

4. Scan forwards from tm by selecting the datapoint at tm + ∆t, where ∆t is the time
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Figure 3.1: A cartoon illustrating the process of folding a periodic lightcurve with a known period,
which I describe mathematically in Section 3.2.1. 1: a simulated lightcurve with errors. 2: Divide
the lightcurve into sections by cutting it at every time coordinate N p, where p is the known period
and N is any integer. Each data point may now be given a phase coordinate φ in addition to its time
coordinate t, where φ = (t/p) − N for N such that 0 ≤ φ < 1. 3: The lightcurve segments can be
realigned in phase-space, such that points with the same value of φ sit at the same x-coordinate. 4: All
points within given bins in φ-space are averaged to create a lightcurve corresponding to the averaged
oscillations of the original lightcurve. The folding has revealed a peak at φ = 0.75 which was not
apparent in the unfolded data.
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resolution of the data. If the selected point has a nonzero value, set it to zero and

move to the next point. If the selected point has a zero value, move to step 5.

5. Scan backwards from tm by selecting the datapoint at tm − ∆t. If the selected point has

a nonzero value, set it to zero and move to the previous point. If the selected point has

a zero value, move to step 6.

6. Retrieve the y-co-ordinate of the highest value remaining in the dataset. Call this ym.

7. If ym > TH , repeat steps 2–7. If ym < TH , proceed to step 8.

8. Restore the original dataset.

9. Retrieve the list of tm values found in step (ii). Sort them in order of size.

10. For each pair of adjacent tm values, find the t-coordinate of the datapoint between

them with the lowest y-value. Call these values tc.

11. This list of tc can now be used to demarcate the border between peaks.

The process can be thought of as using TL to divide the data into a number of discrete

segments of non-zero data, and treating the peak of each segment as the peak of a flare. I

illustrate this process visually in Figure 3.2.

The threshold values TL and TH can also be procedurally generated for a given dataset:

1. Select a small section of the dataset or a similar dataset (containing ∼ 20 peaks by

eye) and note the time-coordinates te of all peaks found by eye.

2. Let PL and PH be two arbitrary values in the range [0, 100].

3. Let TL (TH) be the PLth (PHth) percentile of the y-values of the subsection of dataset.

4. Run the flare-finding algorithm up to step 9. Save the list of tm.

5. Split the dataset into bins on the x-axis such as the bin width b � p, where p is the

rough x-axis separation between peaks.

6. For each bin, note if you found any value in tm falls in the bin and note if any value of

te falls in the bin.

7. Using each bin as a trial, compute the Heidke Skill Score (Heidke, 1926) of the

algorithm with the method of finding peaks by eye:

HS S =
2(AD − BC)

(A + B)(B + D) + (A + C)(C + D)
(3.2)

Where A is the number of bins that contain both te and tm, B (C) is the number of bins

that contain only tm (te) and D is the number of bins which contain neither (Kok,

2000).

8. Repeat steps (iii)–(vii) for all values of PH > PL for PL and PH in [1, 100]. Use a

sensible value for the resolution of PL and PH . Save the HSS for each pair of values
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Figure 3.2: A cartoon illustrating the procedure of my algorithm which I describe in section 3.2.1.
From top-left: (i) An untouched lightcurve. (ii) The lightcurve with all y < TL removed. (iii) The
lightcurve with all contiguous nonzero regions with max(y) < TH removed. (iv) The t-coordinates of
peak y-values tm. (v) The restored lightcurve with the tm highlighted. (vi) The boundaries between
adjacent peaks.

48



9. Locate the maximum value of HSS, and note the PL and PH values used to generate

it. Use these values to generate final TL and TH values.

Variable Period Lightcurve Folding

With the values tm and tc found using the algorithm described above, it is possible to recast

Equation 3.1 to fold data over a high-amplitude but quasi-periodic oscillation. I detail my

method below:

1. Take the ascending list of peak t-coordinates tm. Assign the first element a value

Φ = 0.

2. Assign each other point in tm an integer value Φ(t), such that the Φ value of the ith

value of tm is defined as:

Φ(ti
m) = Φ(ti−1

m ) + 1, i ≥ 2 (3.3)

3. If the troughs between peaks are well-defined, proceed to step 4. Otherwise, skip to

step 6.

4. If the t-coordinate of the first datapoint in tc is less than the t-coordinate of the first

datapoint in tm, assign Φ(t1
c ) = −0.5. Otherwise, assign Φ(t1

c ) = 0.5.

5. Assign each other point in tm a value Φ(x), such that the Φ value of the ith value of tc
is defined as:

Φ(ti
c) = Φ(ti−1

c ) + 1, i ≥ 2 (3.4)

6. Create a general function defining Φ for all t by fitting the t and Φ values of tm (and

tc, if used) with a monotonically increasing univariate cubic spline[12] S (t).

7. Define the phase φ(t) of an arbitrary time t as φ(t) = S (t) mod 1.

With a phase defined for all points in time, the data can be manipulated as if it had been

folded in the usual way. If the trough times in addition to the peak times are used to

construct the spline, then the folded data are more accurate: however, by definition the

rising part of each flare will occupy phases 0.5–1.0, while the falling part will occupy

0.0–0.5, so any asymmetry in the rise and fall times of the average flare is lost.

This method assumes that dφ/dt is continuous at all t, but this assumption is not necessarily

true for cases in which each flare is a discrete event. Consider for example the path of a

juggling ball. During each throw, the ball takes some time τ to complete its arc, moving

from φ = 0 to φ = 1. However, the value of τ, and hence the value of dφ/dt, depends on the

impulse given to the ball at the moment of being thrown. As such, dφ/dt is discontinuous at

[12]Computationally realised as PchipInterpolator in the scipy package for Python (Jones et al., 2001).
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the point of the ball being thrown, and my method outlined here would not correctly fold a

curve of its height as a function of time.

3.2.2 Timing Analysis

Another way of looking at the variability of an astrophysical source is by looking in the

frequency domain. Well-established mathematical techniques, in particular Fourier

spectroscopy, are able to deconvolve a time series into series of sine waves. The amplitudes

of these sine waves indicate how much variability in the system takes place at a given

frequency.

Fourier Analysis

Fourier analysis (Fourier, 1822) is the most common way to perform frequency analysis on

a time series. The Fourier transform f̂ (ν) of a time series f (t) is defined as:

f̂ (ν) =

∫ ∞

∞

f (t)e−2πitνdt (3.5)

Where ν is the frequency to be probed and i ≡
√
−1. The magnitudes of the complex values

f̂ (ν) describe the amplitude of the sine wave deconvolution at frequency ν, while the

arguments describe the relative phase of each of these sine waves. As such, a plot of | f̂ (ν)|

against ν, known as a Fourier spectrum, can highlight the frequencies at which the time

series shows oscillations. A strictly periodic oscillation shows up in a Fourier spectrum as a

delta spike at a single frequency νp; if the oscillation is not strictly sinusoidal, then there

may also be spikes present at the harmonic frequencies Nνp for any N ∈ N.

An oscillation which is not strictly periodic is known as a quasi-periodic oscillation, or

QPO. The non-periodic component in a QPO can be related to its frequency (such as a

spinning object which slows down over time), its amplitude (such as a damped harmonic

oscillator) or some internal phase drift (such as the X-ray flux from an accreting X-ray

pulsar on which the hotspot is migrating, see e.g. Patruno et al., 2010). A quasi-periodic

oscillation shows up in a Fourier spectrum as a Lorentzian, defined by its amplitude and its

quality factor q. Quality factor is in turn defined as peak frequency divided by full-width

half-maximum[13]; for a QPO with a wandering frequency, this represents approximately

the number of oscillations over which the QPO remains coherent.

Fourier analysis was envisioned to analyse continuous, infinite data. However, physical data

differs from this ideal case in two important ways:

[13]The full-width half-maximum, or FWHM, of a QPO or spectral line is a measure of the width of the feature.
First calculate the amplitude A of the feature above the local continuum level k. The width of the feature in the
x-direction at y = k + A

2 is its FWHM.
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Figure 3.3: A representation of how a continuous variable y(t) is convolved with a windowing func-
tion w(t) and a sampling function s(t) to yield physical data. I describe the effects of these convolu-
tions in Section 3.2.2. The bottom panel shows how aliasing arises, showing that sine waves of two
different frequencies can be fit to the data: one with a frequency ν equal to that in the original dataset,
and one of frequency σ − ν where σ is the sampling frequency. This explains the presence of aliased
peaks in discrete data.

1. Physical data are discrete rather than continuous, consisting of samples taken at a

finite rate σ.

2. Physical data are finite rather than infinite, being taken in some window of length w.

As such, as I show in Figure 3.3, physical data consists of a time series convolved with both

a windowing function and a sampling function. Each of these convolutions adds spurious

features to the power spectrum produced from the data.

The convolution with a sampling function adds so-called ‘aliased’ peaks to the power

spectrum of a given dataset. For each peak in the power spectrum at frequency ν, there will

also be a peak present at a frequency of σ − ν, where σ is the sampling frequency. This

peak can be understood as the beat frequency between the oscillation in the data and the

sampling frequency (see also the lower panel of Figure 3.3 for a visual explanation), and

contains no additional information on the system. To avoid these aliased peaks, values of

f̂ (ν) outside of the range 0 < ν ≤ σ/2 are discarded. The frequency σ/2, the maximum

frequency at which one can extract useful information on a parameter sampled at constant

frequency σ, is known as the Nyquist frequency.
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In general, the convolution with a windowing function causes peaks in the power spectrum

to be broadened; an effect known as ‘spectral leakage’. The form of this broadening

depends on the windowing function which is being used. Generally, physical data has been

convolved with a so-called ‘boxcar’ window; i.e., a function which takes a value of 1 during

the period of measurement and 0 elsewhere. A convolution with a boxcar window causes

each peak in the power spectrum to be accompanied by a number of lower-amplitude

sidelobes either side of it in frequency space; this serves to smear out a power spectrum and

causes some information to be lost. Other windows can be applied to data to attempt to

lessen this effect; for example, convolving a dataset with a triangular or Gaussian window

instead of a boxcar. Many non-boxcar windows have been formulated to lessen the effect of

spectral leakage, but it is impossible to remove the effect completely when working with a

finite dataset.

Fast Fourier Transform

Taking the Fourier transform of a time series is a computationally expensive procedure. As

such, it is common practice to instead use Fast Fourier Transform (FFT) algorithms;

computationally fast algorithms which specialise in finding the Fourier transform of

evenly-spaced series.

One such FFT algorithm is the Cooley-Tukey[14] algorithm (Cooley and Tukey, 1965). The

Cooley-Tukey algorithm speeds up the Fourier transform process by recursively dividing a

dataset in half to make many segments. It uses the fact that the discrete Fourier transform of

a single point is equal to itself, and then reconstructs the complete Fourier spectrum from

these results. Unlike the basic Fourier transform, the Cooley-Tukey algorithm is only able

to transform series which are evenly spaced in time and consisting of 2N datapoints, for

N ∈ N.

The amplitude error of a Fast Fourier Transform of a noise process is 100%. There are two

ways to reduce this error to a level at which the data can be meaningfully analysed:

1. The original time series can be split into a number of equal-length windows. The Fast

Fourier-Transforms of these windows can be calculated independently of each other,

and then averaged to create the mean FFT of the dataset.

2. The resultant power spectrum can be rebinned in frequency space.

Propagating errors in the usual way, this results in a final error on Fourier power amplitude

δ| f̂ (ν)|2 of:

δ| f̂ (ν)|2 =
| f̂ (ν)|2
√

MW
(3.6)

Where W is the number of windows the original dataset was divided into, and M is the

[14]Computationaly realised as fft in the scipy.fftpack package for Python (Jones et al., 2001).
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number of frequency bins which were averaged to obtain the Fourier power at frequency ν.

Increasing W increases the minimum frequency at which the Fourier power of the dataset

can be probed, while increasing M decreases the resolution of the spectrum in frequency

space.

Normalising the Fourier Transform

To understand the statistical significance of features in a power spectrum, it is important to

normalise the results in a standard and well-understood way. One such method of

normalisation is the ‘Leahy’ normalisation (Leahy et al., 1983), defined as:

L(ν) =
2 × | f̂ (ν)|2

np
(3.7)

Where np is the total number of photon counts in the original dataset. This normalisation

has the property that pure Poisson noise has a Leahy-normalised power of 2[15].

I use one additional power spectrum normalisation in the work presented in this thesis: the

RMS normalisation. This is defined as:

R(ν) =
(L(ν) − 2)rs

(rs − rb)2 =
2
(
| f̂ (ν)|2 − Trs

)
T (rs − rb)2 (3.8)

Where T is the total time duration of all data used to produce the power spectrum, rs is the

mean source count rate and rb is the mean background rate. In this normalisation,

uncorrelated Poisson noise corresponds to a power of zero. Additionally, the power

spectrum has the property that the integral of R(ν) between two frequencies is equal to the

squared root-mean squared amplitude (RMS2) of the variability of the original time series

in that frequency band.

Lomb-Scargle Periodograms

Fast Fourier transforms are unable to process unevenly spaced time series. Additionally,

while mathematical Fourier transforms can in general process unevenly spaced datasets, the

effects of aliasing become increasingly complex and difficult to disentangle from real

signal. In these cases, a method known as the Lomb-Scargle periodogram, based on

proposals by Lomb (1976) and Scargle (1982), can be used.

The Lomb-Scargle periodogram can be thought of as the result of fitting sinusoids of

frequency ν to a time series, and constructing a spectrum using the χ2 value of the fit of the

sinusoid at each ν. Unlike a Fourier spectrum of unevenly spaced data, the Lomb-Scargle

[15]In practise, due to instrumental dead-time effects meaning photon arrivals are not strictly independent, Pois-
son noise in astrophysical data tends to yield a Leahy-normalised power of slightly less than 2
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periodogram of unevenly spaced data is statistically well-behaved as long as the noise

component of the dataset is uncorrelated.

Unfortunately, due to dead-time effects present in all X-ray telescopes, white noise in real

datasets is not uncorrelated and so the statistical properties of the Lomb-Scargle

spectrogram are generally not well-defined. In this case, bootstrapping techniques can be

used to estimate the significances of features in the power spectrum.

3.2.3 Energy Spectral Analysis

Energy spectral analysis is another powerful tool available to understand the physical

processes at work in astrophysical systems. The distribution of arriving photons as a

function of energy can be fit to physical models which, assuming a given system geometry,

can provide estimates of various system parameters.

The disadvantage of spectral fitting is the aforementioned assumptions that one has to

make. A number of well-studied spectral models of LMXBs exist, which are able to return

estimates for values such as inner disk radius, black hole mass and spin when fit to data.

However, the values that different models return often contradict each other, and thus the

values that a study infers for these parameters depend heavily on the system physics and

geometry that the modeller assumes.

Hardness-Intensity Diagrams

A model-independent way to study the spectral properties of a source is by using colours,

also known as hardness ratios. To obtain the colour of a source, I define two

non-overlapping energy bands A and B with B > A. The hardness ratio is then defined as

H(t) = rB(t)/rA(t), where rX(t) is the photon arrival rate in the band X. The hardness ratio

gives basic information on the shape of the energy spectrum without assuming a physical

model.

Hardness ratios are often paired with intensity (the total flux of the object in some energy

band which includes A and B) to create ‘hardness-intensity diagrams’ (HIDs) to explore

how the source spectrally varies over time. To explain what the shape of an HID can tell us

about the spectral evolution of a source, consider the following examples of HIDs for a

black body spectrum with temperature T (t) and normalisation n(t):

1. T (t) = 1, n(t) = sin(t): in this example, the brightness of the source changes over time

but the shape of its spectrum does not change. As such the hardness is a constant, and

the system traces a vertical line in hardness-intensity space (Figure 3.4, Panel 1).

2. T (t) = sin(t), n(t) = 1: in this example, the spectrum of the source changes over time,

resulting in a curved track in hardness-intensity space (Figure 3.4, Panel 2).
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Figure 3.4: Hardness-Intensity diagrams of black bodies with temperatures and normalisations de-
scribed by various functional forms T (t) and n(t) which I give in Section 3.2.3. The plots show how
HIDs differ between sources with 1) changing brightness but no spectral change, 2) changing tem-
perature, 3) changing temperature and normalisation in antiphase, and 4) changing temperature and
normalisation out of phase. The shape of and direction of a loop in a HID can therefore give us
information about the physical processes underlying spectral variability.
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3. T (t) = sin(t), n(t) = sin(t − π): if two or more spectral parameters are varying at once,

the track can become move complex. If these parameters are varying in phase or

antiphase, a single track is traced (Figure 3.4, Panel 3).

4. T (t) = sin(t), n(t) = sin
(
t + π

3

)
: when parameters are varying out of phase with each

other, the track of the object in a HID can take the form of a closed loop (Figure 3.4,

Panel 4). I useπ3 here as an arbitrary phase shift.

Case 4 is interesting, as it indicates the presence of a phase lag between two or more

physical components of the system. The direction in which the loop is executed over time

can be used to infer the sign of this lag. This in turn can give constraints on the causal links

between components of a system, in turn giving constraints on physical models proposed to

describe them. The tracing of a loop in a hardness-intensity diagram is known as hysteresis.

Phase-Resolved Spectroscopy

Like lightcurves, HIDs and time-resolved spectra can be difficult to analyse when

constructed from data with poor statistics. If the flux from a source is variable in a periodic

or quasi-periodic way, a modified version of the folding algorithms detailed in Section 3.2.1

can be used to analyse the spectral evolution of an average cycle:

• Obtain the function φ(t) to describe how phase varies as a function of time.

• Split the interval [0, 1) into a number of sub-intervals i.

• For each sub-interval i, compile a list of good time intervals (GTIs) denoting periods

of time during which φ(t) ∈ i.

• For each list of GTIs, filter the original dataset such that it only contains photons

which arrived during one of the intervals.

• From each new filtered dataset, a spectrum or hardness ratio can be calculated. This

can be compared with the spectra or hardness ratios taken from the other filtered

datasets to analyse how the spectrum of the source varies as a function of phase.

This technique is known as phase-resolved spectroscopy. An example of the use of this

method with the algoritm I describe in Section 3.2.1 is presented in Wang et al. (2018).
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Chapter 4

Variability in IGR J17091-3624:
Classification

Song and call are useful aids to
identification, and reference is made to
vocalisation for each species.

Paul Sterry – Collins Guide to British
Birds

Accounting for the unusual X-ray variability observed in LMXBs is required for a complete

understanding of the physics of matter in their accretion disks. The first step is to describe

and categorise the types of variability in these objects, and to look for similarities and

differences which may shed light on their physical origins.

In 2000, Belloni et al. performed a complete model-independent analysis of variability

classes in GRS 1915. This work highlighted the breadth and diversity of variability in GRS

1915, and allowed these authors to search for features common to all variability classes. For

example, Belloni et al. (2000) found that every variability class can be expressed as a

pattern of transitions between three quasi-stable phenomenological states.

Previous works have noted that some of the variability classes seen in IGR J17091 appear

very similar to those seen in GRS 1915 (e.g. Altamirano et al., 2011b; Zhang et al., 2014).

However, although ρ-like classes in the two objects both show lags between hard and soft

X-rays photons, these lags appear to possess different signs (Altamirano et al., 2011b).

Additionally, at least two variability classes have been reported in IGR J17091 which have

not yet been reported in GRS 1915 (Pahari et al., 2012). Previous works have described

some of the behaviour seen in IGR J17091 in the context of the variability classes described

by Belloni et al. 2000 for GRS 1915 (e.g. Altamirano et al., 2011b; Pahari et al., 2014). To

further explore the comparison between GRS 1915 and IGR J17091, here I perform the first
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comprehensive model-independent analysis of variability classes in IGR J17091 using the

complete set of RXTE data taken of the 2011-2013 outburst of the object. I also use data

from all other X-ray missions that observed the source during this time to analyse the

long-term evolution of the outburst.

The results I present in this chapter have been published as Court et al. (2017).

4.1 Data and Data Analysis

In this chapter, I report data from RXTE, INTEGRAL, Swift, Chandra, XMM-Newton and

Suzaku covering the 2011-2013 outburst of IGR J17091. Unless stated otherwise, all errors

are quoted at the 1σ level.

In Figure 4.1 I present long-term lightcurves from RXTE, INTEGRAL and Swift to show the

behaviour of the source during this outburst. I indicate when during the outburst Chandra,

XMM-Newton and Suzaku observations were made.

4.1.1 RXTE

For this variability study, I focus on the data from RXTE/PCA. I analysed all PCA

observations of IGR J17091 during 2011, corresponding to ObsIDs[1] 96065-03, 96103-01

and 96420-01. The observations taken for proposals 96065-03 and 96103-01 were

contaminated by the nearby X-ray source GX 349+2 (Altamirano et al., 2011b; Rodriguez

et al., 2011b). As such I only use observations performed for proposal 96420-01,

corresponding to a total of 243 orbits from 215 separate observations. This in turn

corresponds to 470 ks of data, which is ∼ 2% of RXTE’s operational time over the duration

of the observation period. These were offset by 25’ such that GX 349+2 was not in the 1◦

PCA field of view. RXTE was decommissioned during a period of Sun constraint centred on

MJD[2] 55907, and hence the last observation of IGR J17091 was taken on MJD 55879.

I extracted data from the native FITS format using my own PANTHEON software (presented

in Appendix E). To perform medium- to high-frequency (& 1 Hz) timing analysis, I merged

files formatted in PCA’s ‘Good Xenon’ data mode and extracted their data at the maximum

time resolution (∼ 9.5 × 10−7 s) without accounting for the background. I divided these data

into 128 s segments as this allowed us to reach frequencies below ∼ 0.015 Hz, partly

sampling the high amplitude quasi-periodic flaring behaviour seen in many classes. Using

the Fast Fourier Transform (FFT), I produced the power spectrum of each segment

separately. I then averaged these spectra to create a one co-added Power Density Spectrum

(PDS) for each observation.

[1]Observations IDs.
[2]Modified Julian Date: the number of days since 0h00, November 17, 1858.
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Figure 4.1: RXTE /PCA (Panel a), Swift/XRT (Panel b), Swift/BAT (Panel b) and INTEGRAL/IBIS
(Panel d) lightcurves of IGR J17091-3624 during its 2011-2013 outburst. Arrows mark times at
which XMM-Newton (blue), Chandra (red) or Suzaku (magenta) observed IGR J17091-3624. The
cyan line represents MJD 55963, the approximate time IGR J17091-3624 transitions from the soft
to the hard state (Drave et al., 2012). RXTE/PCA (Jahoda et al., 1996) data are for the 2–16 keV
energy band and taken from (Altamirano et al., 2011b), Swift/BAT (Barthelmy, 2000) data are for 15–
50 keV, Swift/XRT (Burrows et al., 2003) data are for 0.3–10 keV and INTEGRAL/ISGRI (Ubertini
et al., 2003) data are for 20-40 keV. Note that the data from Swift/XRT (Panel B) are shown with a
logarithmic y-axis to better show the late time progression of the outburst. Data points are coloured
according to the observing mode used. The Swift/XRT data from times later than MJD 56422 are
shown to a different scale to better represent the post-outburst evolution of the source. All data are
presented in 1 day bins, except for data from Swift/BAT which is presented in 4 day bins. See also
Figure 4.2, in which data from RXTE/PCA is presented on a smaller scale. The Crab count rates used
to normalise these data were 2300 cts s−1 PCU−1, 747.5 cts s−1, 0.214 cts s−1 and 183.5 cts s−1 for
RXTE, Swift/XRT, Swift/BAT and INTEGRAL/ISGRI respectively. RXTE data have not been corrected
for the 25’ offset to avoid contamination from GX 349+2, and for all instruments D.A. and I implicitly
assume that IGR J17091 presents a Crab-like spectrum.
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For low-frequency (≤ 1 Hz) timing and correlated spectral/timing analysis, I rebinned the

data to 0.5 s and normalised count rates by the number of proportional counters (PCUs)

active in each observation. My choice of 1 Hz allows us to analyse high amplitude flaring

behaviour (seen at frequencies . 0.5 Hz) separately from the lower-amplitude behaviour

seen at & 5 Hz.

I split the data into three energy bands: A (PCA channels 0–14, ∼ 2–6 keV), B (PCA

channels 15–35, ∼ 6–16 keV) and C (PCA channels 36–255, ∼ 16–60 keV). I chose these

energy bands to be consistent with the energy bands used by the model-independent

classification of variability classes of GRS 1915 in Belloni et al. (2000). For each of the

energy-filtered lightcurves produced I estimated background using pcabackest from the

FTOOLS package (Blackburn, 1995) with the PCA faint source background model[3]. In all

observations, I found that counts in the C band were consistent with background. I then

created Lightcurves LA and LB from background-subtracted photons counted in the A and B

bands respectively. I used these lightcurves to define the full-band lightcurve

(LT = LA + LB) and the soft colour (C1 = LB/LA) of each observation. To complement the

Fourier spectra, I also constructed Generalised Lomb-Scargle Periodograms of LT from

each dataset, a modified version of the standard Lomb-Scargle periodogram (Lomb, 1976;

Scargle, 1982) that takes into account errors in the dataset (Irwin et al., 1989). Using the

Lomb-Scargle periodogram instead of the Fourier periodogram here allows us to sample the

low-frequency behaviour of lightcurves with data gaps. This is important, for example, in

lightcurves which show two populations of flares, as it allows each population to be studied

independently by cropping the other from the lightcurve.

I also used data from Altamirano et al. 2011b to sample the long-term colour evolution of

IGR J17091. I use 2 hardness ratios defined by Altamirano et al.: HA1 and HA2,

corresponding to the ratios of the 3.5–6 keV band against the 2–3.5 keV band and the

9.7–16 keV band against the 6–9.7 keV band respectively.

When possible, if low-frequency peaks were present in the Lomb-Scargle spectrum of an

observation, I used the position of the highest-amplitude peak to define a value for a period.

This period was then used to fold the data to search for reccurent hysteretic patterns in the

hardness-Intensity diagram (hereafter HID1, a plot of LT against C1). I found that

quasi-periodic oscillations in the observations I used tended to show significant frequency

shifts on timescales shorter than the length of the observations. As such, I employed the

variable-period folding algorithm outlined in Section 3.2.1 where appropriate. For cases in

which this algorithm was not appropriate, I considered small sections of each lightcurve,

with a length equivalent to small number of periods, before performing folding.

Additionally, in observations which showed a pattern of high-amplitude X-ray flaring in LT ,

I used my own algorithm to find individual flares (this algorithm is described in Section

3.2.1) and collect statistics on the amplitude, duration and profile of these events.

[3]http://heasarc.gsfc.nasa.gov/FTP/xte/calib_data/pca_bkgd/Faint/pca_bkgd_
cmfaintl7_eMv20051128.mdl
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A list of all observations used in this study can be found in Appendix A.

4.1.2 Swift

IGR J17091 was observed with Swift/XRT for a total of 172 pointed XRT observations

between MJDs 55575 and 56600, corresponding to Target IDs 31921, 34543, 30967,

30973, 31920, 35096, 67137, 81917, 522245, 677582 and 677981. These observations

were interrupted during sun constraints centred on MJDs 55907 and 56272. I created a

long-term 0.3–10 keV Swift/XRT light curve, with one bin per pointed observation, using

the online light-curve generator provided by the UK Swift Science Data Centre (UKSSDC;

Evans et al., 2007). I have also created a long-term 15–50 keV lightcurve using the publicly

available Swift/BAT daily-averaged lightcurve[4]. These are shown in Figure 4.1 Panels (b)

and (c) respectively.

4.1.3 INTEGRAL

Dr. Chris Boone (C.B.) and I analyse all available observations of IGR J17091 with

INTEGRAL/IBIS (Ubertini et al., 2003) between MJD 55575–55625 where the source is

less than 12 degrees from the centre of the field of view and where there is more than 1 ks of

good ISGRI time per 2 ks Science Window. This corresponds to the spectrally hardest

period of the 2011-2013 outburst. The filtering of observations results in a total of 188

Science Windows which were processed using the Offline Science Analysis (OSA) software

version 10.2 following standard data reduction procedures[5] in four energy bands (20–40,

40–100, 100–150, 150–300 keV). These bands were selected as they are standard energy

bands used in the surveys of Bird et al. (2016) and Bazzano et al. (2006) and allow

comparison to these previous works. Images were created at the Science Window level, as

well as a single mosaic of all Science Windows in each energy band.

4.1.4 XMM-Newton

XMM/Newton observed IGR J17091 thrice during the period from 2011–2013 (represented

by the blue arrows in Figure 4.1). One of these observations (ObsID 0721200101) was

made on 12 September 2013; I do not consider this observation further as IGR J17091 had

returned to quiescence by this time (Altamirano et al., 2013). The remaining two

observations, corresponding to ObsIDs 0677980201 and 0700381301 respectively, were

taken on March 27 2011 (MJD 55647) and September 29 2012 (MJD 56199).

During observation 0677980201, EPIC-pn was operating in burst mode and EPIC-MOS

was operating in timing mode. Given the low efficiency of burst mode, I only consider data

[4]http://swift.gsfc.nasa.gov/results/transients/weak/IGRJ17091-3624/
[5]http://www.isdc.unige.ch/integral/analysis
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ObsID Instrument Grating Exposure (ks) Mode MJD

12505 HRC-I NONE 1.13 I 55626
12405 ACIS-S HETG 31.21 C 55774
12406 ACIS-S HETG 27.29 T 55840

Table 4.1: Chandra observations log covering the three observations considered in this chapter. I
refers to Imaging mode, C refers to CC33_Graded mode and T refers to Timed Exposure Faint mode.
HETG refers to the High Energy Transmission Grating.

from EPIC-MOS for this observation. During observation 0700381301, EPIC-pn was

operating in timing mode, and thus I use data from EPIC-pn for this observation.

I used the XMM-Newton Science Analysis Software version 15.0.0 (SAS, see Ibarra et al.,

2009) to extract calibrated event lists from EPIC in both observations. I used these to

construct lightcurves to study the X-ray variability, following standard analysis threads[6].

4.1.5 Chandra

Chandra made 7 observations of IGR J17091 during the period 2011–2013. Four of these

observations were taken after IGR J17091 returned to quiescence, and I do not consider

these further in this chapter. The Chandra observations log is reported in Table 4.1.

Dr. Margarita Pereyra (M.P.) analysed these data using CIAO version 4.8 (Fruscione et al.,

2006), following the standard analysis threads. In order to apply the most recent calibration

files (CALDB 4.7.0, Graessle et al., 2006), M.P. reprocessed the data from the three

observations using the chandra_repro script[7], and used this to produce data products

following standard procedures.

The first Chandra observation (ObsID 12505) of this source was made shortly after it went

into outburst in February 2011. It was a 1 ks observation performed to refine the position of

the X-Ray source, using the High-Resolution Camera in Imaging mode (HRC-I). M.P.

created the 0.06–10 kev light curve accounting for the Dead-Time Factor (DTF), to correct

the exposure time and count rate using the dmextract tool in the CIAO software.

Two additional observations (ObsIDs 12405 and 12406) were performed within 214 days of

this first observation, using the High Energy Transmition Grating Spectrometer (HETGS)

on board Chandra. The incident X-Ray flux was dispersed onto ACIS using a narrow strip

array configuration (ACIS-S). Continuous Clocking and Time Exposure modes were use in

each observation respectively (see King et al., 2012 for further details). M.P. excluded any

events below 0.4 keV, since the grating efficiency is essentially zero below this energy. In

the case of the ObsID 12405 observations M.P. also excluded the Flight Grade 66 events in

the event file, as they were not appropriately graded. M.P. extracted the 0.5-10 kev HEGTS

light curves, excluding the zeroth-order flux, adopting standard procedures.

[6]http://www.cosmos.esa.int/web/xmm-newton/sas-threads
[7]See e.g. http://cxc.harvard.edu/ciao/ahelp/chandra_repro.html
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4.1.6 Suzaku

Suzaku observed IGR J17091 twice during the period 2011–2013; a 42.1 ks observation on

October 2–3, 2012 (MJD 56202–56203, ObsID: 407037010) and an 81.9 ks observation on

February 19–21, 2013 (MJD 56342–56344, ObsID: 407037020). XIS consists of four X-ray

CCDs (XIS 0, 1, 2 and 3), and all them except for XIS 2 were operating in the 1/4 window

mode which has a minimum time resolution of 2 seconds.

Professor Kazutaka Yamaoka (K.Y.) analysed the Suzaku data using HEASOFT 6.19 in the

following standard procedures after reprocessing the data with aepipeline and the latest

calibration database (version 20160607). K.Y. extracted XIS light curves in the 0.7–10 keV

range, and subtracted background individually for XIS 0, 1 and 3 and then summed these to

obtain the total background. K.Y. created power density spectra (PDS) using powspec in the

XRONOS package.

4.2 Results

4.2.1 Outburst Evolution

The onset of the 2011-2013 outburst of IGR J17091 can be seen in the Swift/BAT lightcurve

(Figure 4.1 Panel c). In a 22 day period between MJDs 55584 and 55608, the 15–50 keV

intensity from IGR J17091 rose from ∼ 9 mCrab to a peak of ∼ 110 mCrab. This onset rise

in intensity can also be seen in 0.3–10 keV Swift/XRT data and 20–40 keV

INTEGRAL/ISGRI data.

After peak intensity, the 15–50 keV flux (Swift/BAT) began to steadily decrease, until

returning to a level of ∼20 mCrab by MJD 55633. A similar decrease in flux can be seen in

the data obtained by INTEGRAL at this time (Figure 4.1 Panel (d). However, there was no

corresponding fall in the flux at lower energies; both the long-term 2–16 keV RXTE /PCA

data and Swift/XRT data (Panels a and b respectively) show relatively constant fluxes of

45 mCrab between MJDs 55608 and 55633.

The significant decrease in high-energy flux during this time corresponds to IGR J17091

transitioning from a hard state to a soft/intermediate state (Pahari et al., 2014). This

transition coincides with a radio flare reported by Rodriguez et al. (2011a) which was

observed by the Australian Telescope Compact Array (ATCA).

Altamirano et al., 2011c first reported a 10 mHz QPO in RXTE data on MJD 55634 ,

evolving into ‘Heartbeat-like’ flaring by MJD 55639 (Altamirano et al., 2011a). Between

MJDs 55634 and 55879, the global RXTE /PCA lightcurve shows large fluctuations in

intensity on timescales of days to weeks, ranging from a minimum of ∼ 20 mCrab on MJD

55731 to a maximum of ∼ 66 mCrab on MJD 55756. The Swift/XRT lightcurve shows
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fluctuations that mirror those seen by RXTE during this period, but the amplitude of the

fluctuations is significantly reduced.

Swift/XRT was unable to observe again until MJD 55952. Between this date and MJD

55989, Swift/XRT observed a gradual decrease in intensity corresponding to a return to the

low/hard state (Drave et al., 2012).

Between MJD 55989 and the end of the outburst on MJD 56445, there are secondary peaks

in the Swift/XRT, Swift/BAT and INTEGRAL/ISGRI lightcurves that evolve over timescales

of . 100 days. Similar humps have been seen before in lightcurves from other objects, for

example the black hole candidate XTE J1650-500 (Tomsick et al., 2003) and the neutron

stars SAX J1808.4-3658 (Wijnands et al., 2001) and SAX J1750.8-2900 (Allen et al.,

2015). These humps are referred to as ‘re-flares’ (also as ‘rebrightenings’, ‘echo-outbursts’,

‘mini-outbursts’ or a ‘flaring tail’, e.g. Patruno et al., 2016). I identify a total of 3 apparent

re-flares in the Swift/BAT data, centred approximately at MJDs 56100, 56220 and 56375.

The observation with XMM-Newton/EPIC-pn on MJD 56547 (12 September 2013) recorded

a rate of 0.019 cts s−1. An observation with EPIC-pn in 2007, while IGR J17091 was in

quiescence (Wijnands et al., 2012), detected a similar count rate of 0.020 cts s−1. Therefore

I define MJD 56547 as the upper limit on the endpoint of the 2011-2013 outburst. As such

the outburst, as defined here, lasted for .952 days.

After the end of the 2011-2013 outburst, IGR J17091 remained in quiescence until the start

of a new outburst around MJD 57444 (26 February 2016, Miller et al., 2016).

4.2.2 RXTE

Using the RXTE data products described in Section 4.1, I assigned a model-independent

variability class to each of the 243 RXTE/PCA orbits during which IGR J17091 was

observed. To avoid bias, this was done without reference to the classes defined by Belloni

et al. (2000) to describe the behaviour of GRS 1915.

Classes were initially assigned based on by-eye analysis of lightcurve profiles, count rate,

mean fractional RMS (Vaughan et al., 2003), Fourier power spectra and Lomb-scargle

periodograms,Lomg-Scargle periodogram and hardness-intensity diagrams. For

observations with significant quasi-periodic variability at a frequency lower than ∼ 1 Hz, I

also attempted to fold lightcurves to analyse count rate and colour as a function of phase.

When flares were present in the lightcurve, I used my algorithm (described in Section 3.2.1)

to sample the distribution of parameters such as peak flare count rate, flare rise time and

flare fall time. All parameters were normalised per active PCU, and fractional RMS values

were taken from 2–60 keV lightcurves binned to 0.5 s. I identify nine distinct classes,

labelled I to IX; I describe these in the following sections.

Although the criteria for assigning each class to an observation was different, a number of

criteria were given the most weight. In particular, the detection, q-value and peak frequency
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of a QPO in the range 2 Hz–10 Hz were used as criteria for all classes, as well as the

presence or absence of high-amplitude quasi-periodic flaring with a frequency between

0.01–1 Hz. The folded profile of these flares, as well as the presence of associated

harmonics, were also used as classification diagnostics in observations. Additionally, the

presence or absence of low count-rate ’dips’ in a lightcurve was used as a criterion for

Classes VI, VIII and IX. Detailed criteria for each individual class are given below in

Sections 4.2.2 to 4.2.2. As each observation lasted less than . 3 ks, significantly shorter

than the timescale over which IGR J17091-3624 evolved between classes, a single class

could be assigned to all observations[8].

For hardness-intensity diagrams, I describe looping behaviour with the terms ‘clockwise’

and ‘anticlockwise’; in all cases, these terms refer to the direction of a loop plotted in a

hardness-intensity diagram with colour on the x-axis and intensity on the y-axis. I did not

study these hysteretic loops until after I had established my set of variability classes, and

hence the presence or direction of a loop was not used as a diagnostic feature to assign a

class to an observation.

In Appendix A, I present a list of all orbits used in the study along with the variability

classes I assigned to them.

In Figure 4.2, I show global 2–16 keV lightcurves of IGR J17091 during the 2011-2013

outburst. In each panel, all observations of a given class are highlighted in red. A

characteristic lightcurve is also presented for each class. In Figure 4.3 panel (a), I show a

plot of average hardness HA2 against HA1 for each observation, showing the long-term

hysteresis of the object in colour-colour space. Again, observations belonging to each

variability class are highlighted. In Figure 4.3 panels (b) and (c), I show global

hardness-intensity diagrams for HA1 and HA2 respectively.

In Figure 4.3 Panel (a), we see that IGR J17091-3624 traces a two branched pattern in

colour-colour space corresponding to a branch which is soft (∼ 0.9) in HA1 and variable in

HA2 and a branch which is soft (∼ 0.5) in HA2 and variable in HA1. The ‘soft’ HID shown in

Figure 4.3 Panel (b) is dominated by a branch with a wide spread in HA1 and intensities

between ∼ 40–60 mCrab. A second branch exists at lower intensities, and shows an

anticorrelation between intensity and HA1. Finally, the ‘hard’ HID shown in Figure 4.3

Panel (c) shows an obvious anticorrelation between HA2 and intensity, but there is also a

secondary branch between HA2 ≈ 0.7–0.9 at a constant intensity of ∼ 40 mCrab.

For characteristic count rates and colours in each class, I quote the upper and lower quartile

values (Kenney, 1939) instead of the mean. This is due to the presence of high-amplitude

but short-lived flares in many of the classes I describe. Using the upper and lower quartiles

as my measure of average and distribution means that my values will be less susceptible to

outlier values of count rate and colour present in these flares. All count rates have been

background corrected (see Section 4.1.1).
[8]See however Figure 4.25 for an example lightcurve of an observation which appeared to capture a transition

between two classes.
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Figure 4.2: Global 2–3.5 keV Lightcurves of IGR J17091-3524 during the 2011-2013 outburst, with
each point corresponding to the mean Crab-normalised count rate of a single RXTE observation of the
object (in turn corresponding to between 0.4 and 3.6 ks of data). In each lightcurve, every observation
identified as belonging to a particular class (indicated on the plot) is highlighted. These are presented
along with a characteristic lightcurve (inset) from an observation belonging to the relevant class.
Each lightcurve is 250 s in length, and has a y-scale from 0 to 250 cts s−1 PCU−1. Data taken from
Altamirano et al. 2011b.
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Figure 4.3: A global colour-colour diagram (a), ‘soft’ hardness-intensity diagram (b) and ‘hard’
hardness-intensity diagram (c) of the 2011-2013 outburst of IGR J17091, using the colours HA1 and
HA2 defined previously. Observations belonging to different classes have been highlighted in different
colours. Data taken from Altamirano et al. 2011b.
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Class LQ Rate UQ Rate Frac. RMS Median C1

(cts s−1) (cts s−1)

I 84–108 106–132 0.13–0.19 0.4–0.68
II 43–57 59–71 0.15–0.23 0.4–0.68

III 64–84 80–110 0.17-0.23 0.35–0.45
IV 63–81 92–122 0.27–0.37 0.32–0.4
V 49–67 88–134 0.44–0.54 0.28–0.46

VI 64–98 111–155 0.29–0.47 0.33–0.61
VII 65–79 128–140 0.45–0.57 0.32–0.42

VIII 62–88 142–178 0.42–0.52 0.36–0.49
IX 87–111 114–144 0.16–0.24 0.42-0.6

Table 4.2: Lower and upper quartile count rates, fractional RMS and median colour averaged across
all observations belonging to each class. Count rates and fractional RMS are taken from the full
energy range of RXTE/PCA, and fractional RMS values are 2–60 keV taken from lightcurves binned
to 0.5 s. Count rates are normalised for the number of PCUs active during each observation. All
values are quoted as 1σ ranges.

Class Orbits Total Time (s) Fraction

I 31 69569 14.8%
II 26 50875 10.8%
III 14 26228 5.6%
IV 31 69926 14.9%
V 35 72044 15.3%
VI 29 54171 11.5%
VII 11 19241 4.1%
VIII 16 26553 5.7%
IX 50 81037 17.3%

Table 4.3: A tally of the number of times I assigned each of my nine Variability Classes to an RXTE
orbit. I have also calculated the amount of observation time corresponding to each class, and thus
inferred the fraction of the time that IGR J17091 spent in each class. Note: the values in the Total
Time column assume that each orbit only corresponds to a single variability Class.

I have obtained mean values for these count rate quartiles, as well as values for colour C1

and fractional RMS, by calculating these values individually for each orbit. Histograms

were then constructed from these datasets for each class, such that the mean and standard

deviation of these values could be measured for each class. These values are presented in

Table 4.2.

I describe QPOs in terms of their q-value; a measure of coherence defined by the ratio of

peak frequency and full-width half-maximum of each QPO. I collected these values by

fitting my power spectra with Lorentzians.

For each class, I present three standard data products; a 500 s lightcurve, a variable-length

lightcurve where the length has been selected to best display the variability associated with

the class and a Fourier PDS. Unless otherwise stated in the figure caption, the 500 s

lightcurve and the Fourier PDS are presented at the same scale for all classes. In Table 4.3 I

present a tally of the number of times I assigned each Variability Class to an RXTE orbit.
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Figure 4.4: Plots of the Class I observation 96420-01-01-00, orbit 0. Top-left: 1000 s lightcurve
binned on 2 seconds to show lightcurve evolution. Top-right: Fourier Power Density Spectrum.
Bottom: 500 s lightcurve binned on 2 seconds.

Class I – Figure 4.4

In the 2 s binned lightcurve of a Class I observation, there is no structured second-to-minute

scale variability. The Fourier PDS of all observations in this class show broad band noise

between ∼ 1–10 Hz, as well as a weak QPO (with a q-value of ∼ 5) which peaks at around

5 Hz.

Class II – Figure 4.5

Class II observations are a factor of ∼ 2 fainter in the LT band than Class I observations.

They also occupy a different branch in a plot of hardness HA2 against intensity (see Figure

4.3, panel c). The PDS shows no significant broad band noise above ∼ 1 Hz unlike that

which is seen in Class I. The ∼5 Hz QPO seen in Class I is absent in Class II.

Class III – Figure 4.6

Unlike Classes I & II, Class III lightcurves show structured flaring, with a peak-to-peak

recurrence time of 42–80 s. Most flares consist of a steady ∼ 60 s rise in count rate and then
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Figure 4.5: Plots of the Class II observation 96420-01-11-00, orbit 0. Top-left: 1000 s lightcurve
binned on 2 seconds to show lightcurve evolution. Top-right: Fourier Power Density Spectrum.
Bottom: Lightcurve binned on 2 seconds.
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Figure 4.6: Plots of the Class III observation 96420-01-04-01, orbit 0. Top-left: 1000 s lightcurve
binned on 2 seconds to show lightcurve evolution. Top-right: Fourier Power Density Spectrum.
Bottom: Lightcurve binned on 2 seconds. Note that, to emphasise the behaviour of the lightcurve in
this class, I have magnified the 500 s lightcurve y-scale by a factor of 2 compared with the lightcurves
presented for other classes.
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Figure 4.7: The Lomb-Scargle periodogram of Class III observation 96420-01-19-01, orbit 0, with
significance levels of 1, 2 and 3σ plotted. The peak at 0.31 Hz was used to define a QPO frequency
when folding the data from this observation.

an additional and sudden rise to a peak count rate at & 200 cts s−1 PCU−1which lasts for

.0.5 s before returning to continuum level (I have magnified the y-scaling in the lightcurve

of Figure 4.6 to emphasise this behaviour). This sudden rise is not present in every flare; in

some observations it is absent from every flare feature. No 5 Hz QPO is present in the PDS

and there is no significant variability in the range between ∼ 1–10 Hz.

As this class has a well-defined periodicity, I folded data in each observation to improve

statistics using the best-fit period obtained from generalised Lomb-Scargle Periodogram

Analysis; I show a representative Lomb-Scargle periodogram in Figure 4.7. I find an

anticlockwise hysteretic loop in the folded HID1 of all 15 Class III orbits. In Figure 4.8 I

show an example of one of these loops.

Class IV – Figure 4.9

The lightcurves in this class show regular variability with a peak-to-peak recurrence time of

25–39 s. I performed peak analysis (see Section 3.2.1) on observations belonging to this

class, finding that each flare has a rise time with lower and upper quartile values of 19.5 and

33.5 s, a fall time with lower and upper quartile values of 4.6 and 13.5 s and a peak count

rate of 159–241 cts s−1 PCU−1 . There are no significant QPOs in the Fourier PDS above
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Figure 4.8: The hardness-intensity diagram (HID1) of the Class III observation 96420-01-04-01,
orbit 0. The data have been folded over a period of 79.61 s, corresponding to the peak frequency in
the Lomb-Scargle periodogram of this observation. Inset is the folded lightcurve of the same data.
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Figure 4.9: Plots of the Class IV observation 96420-01-05-00, orbit 0. Top-left: 1000 s lightcurve
binned on 2 seconds to show lightcurve evolution. Top-right: Fourier Power Density Spectrum.
Bottom: Lightcurve binned on 0.5 seconds.
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∼ 1 Hz.

I folded individual Class IV lightcurves and found anticlockwise hysteretic loops in the

HID1 of 14 out of 30 Class IV observations. In the top panel of Figure 4.10 I show an

example of one of these loops. However, I also find clockwise hysteretic loops in 6 Class IV

observations, and in 10 orbits the data did not allow us to ascertain the presence of a loop. I

provide an example of both of these in the lower panels of Figure 4.10. I note that the

structure of clockwise loops are more complex than anticlockwise loops in Class IV,

consisting of several lobes[9] rather than a single loop (Figure 4.10, bottom-left).

Compared with Class III, the oscillations in Class IV occur with a significantly lower

period, with a mean peak-to-peak recurrence time of ∼ 30 s compared to ∼ 60 s in Class III.

In Figure 4.3 I show that Classes III and IV can also be distinguished by average hardness,

as Class III tends to have a greater value of HA2 than Class IV.

Class V – Figure 4.11

The lightcurves in this class, like in Classes III and IV, show flaring behaviour, with flares

separated by a few tens of seconds. At higher frequencies, the PDS shows a prominent QPO

centred at ∼ 4 Hz with as q-value of ∼ 3. There is also significant broad band noise between

∼ 0.1–1 Hz

In Figure 4.12 I show that the flaring in this class is more complex than that seen in Classes

III and IV. Class V lightcurves consist of short strongly peaked symmetrical flares

(hereafter Type V1) and a longer more complex type of flare (hereafter Type V2). The Type

V2 flare consists of a fast rise to a local maximum in count rate, followed by a ∼ 10 s period

in which this count rate gradually reduces by ∼ 50% and then a much faster peak with a

maximum count rate between 1 and 2 times that of the initial peak. In both types of flare, I

find that the increase in count rate corresponds with an increase in soft colour. The

two-population nature of flares in Class V can also clearly be seen in Figure 4.13, where I

show a two-dimensional histogram of flare peak count rate against flare duration.

I folded all individual Class V lightcurves, in each case cropping out periods of V2 flaring. I

find clockwise hysteretic loops in the HID1 of 30 out of 33 Class V observations,

suggesting a lag in the aforementioned relation between count rate and soft colour. In the

upper panel Figure 4.14 I present an example of one of these loops. In one observation

however, I found an anticlockwise loop in the HID1 (shown in Figure 4.14 lower-left panel).

I was unable to ascertain the presence of loops in the remaining 2 orbits; for the sake of

completeness, I show one of these in the lower-right panel of Figure 4.14.

[9]In HIDs with multiple lobes, the loop direction I assign to the observation corresponds to the direction of
the largest lobe.
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Figure 4.10: Top: The hardness-intensity diagram (HID1) of the Class IV observation 96420-01-
05-00, orbit 0 showing an anticlockwise loop. The data have been folded over a variable period
found with the algorithm described in Section 3.2.1. Inset is the folded lightcurve of the same data.
Bottom Left: The hardness-intensity diagram of Class IV observations 96420-01-24-02 orbit 0, an
example of a clockwise loop. Bottom Right: The hardness-intensity diagram of Class IV observation
96420-01-06-00 orbit 0, in which I was unable to ascertain the presence of a loop.
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Figure 4.11: Plots of the Class V observation 96420-01-06-03, orbit 0. Top-left: 750 s lightcurve
binned on 2 seconds to show lightcurve evolution. Top-right: Fourier Power Density Spectrum.
Bottom: Lightcurve binned on 0.5 seconds.
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Figure 4.12: A portion of the lightcurve of observation 96420-01-06-03, orbit 0, showing Type V1
flares (highlighted in cyan) and Type V2 flares (highlighted in red).

78



Figure 4.13: Every flare in all observations identified as Class V, plotted in a two-dimensional his-
togram of flare peak count rate against flare duration to show the two-population nature of these
events.
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Figure 4.14: Top: The hardness-intensity diagram (HID1) of a type V1 flaring period in Class V
observation 96420-01-07-00, orbit 0 showing a clockwise loop. The data have been folded over a
variable period found with the algorithm described in Section 3.2.1. Inset is the folded lightcurve of
the same data. Bottom Left: The hardness-intensity diagram of Class V observation 96420-01-25-05
orbit 0, an example of an anticlockwise loop. Bottom Right: The hardness-intensity diagram of Class
V observation 96420-01-25-06 orbit 0, in which I was unable to ascertain the presence of a loop.
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Figure 4.15: Plots of the Class VI observation 96420-01-09-00, orbit 0. Top-left: 750 s lightcurve
binned on 2 seconds to show lightcurve evolution. Top-right: Fourier Power Density Spectrum.
Bottom: Lightcurve binned on 1 second.

Class VI – Figure 4.15

The lightcurves of observations of this class show large dips in count rate; this can be seen

in Figure 4.15 at, for example, t ≈ 125–150 s . These dips vary widely in duration, from ∼ 5

to ∼ 50 seconds, and the count rate in both LA and LB fall to a level consistent with

background. The dips’ rise and fall times are fast, both lasting no longer than a second.

They do not appear to occur with any regular periodicity.

Aside from the dips, Class VI observations show other structures in their lightcurves. Large

fluctuations in count rate, by factors of . 3, occur on timescales of ∼ 1–5 s; no periodicity

in these oscillations could be found. This behaviour is reflected in the PDS, which shows

high-amplitude broad band noise below ∼ 0.5 Hz with RMS-normalized power (Belloni and

Hasinger, 1990) of up to ∼ 1.1 Hz−1. As can be seen in Figure 4.15, this feature takes the

form of a broad shoulder of noise which shows either a weak peak or no clear peak at all.

The ∼ 5 Hz QPO seen in the PDS of other classes is not present in Class VI observations.

I attempted to fold all individual Class VI lightcurves, ignoring the sections of data

corresponding to the large count rate dips described above. In general, folding lightcurves

belonging to this class is difficult; many orbits showed low-amplitude oscillations which

were difficult to fold using my flare-finding algorithm (see Section 3.2.1), while many
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others only showed oscillatory behaviour for a small number of periods between each pair

of dips. As such, I only succesfully folded 23 of the 40 Class VI orbits. Of these, 19

showed clockwise loops in the HID1 (top panel, Figure 4.16), 3 showed anticlockwise loops

(bottom-left panel, Figure 4.16). In the remaining 1 observation, the data did not allow us to

ascertain the presence of loops (bottom-right panel, Figure 4.16).

Like in Class VI, I note that the clockwise loops in Class VI appear more complex than

clockwise loops. Again, the clockwise loop shown in Figure 4.16 appears to have a 2-lobe

structure; this is repeated in all clockwise loops found in this class.

Class VII – Figure 4.17

Class VII shows high-amplitude flaring behaviour with a peak-to-peak recurrence time of

6–12 s. In Figure 4.18 I show a dynamical Lomb-Scargle spectrogram of a Class VII

observation, showing that the fast flaring behaviour has a frequency which moves

substantially over time. This in turn accounts for the large spread in the value of the flare

peak-to-peak recurrence time.

In Figure 4.18 I show that the peak frequency of the QPO also varies in a structured way. I

also suggest that the variabilitity of the frequency is itself a QPO with a period of ∼ 150 s.

At higher frequencies, the PDS shows a weak QPO centred at ∼ 8 Hz, with a q-value of ∼ 2.

I used my flare-finding algorithm (see Section 3.2.1) to perform variable-frequency folding

of Class VII orbits. I find clockwise loops in 9 out of 11 Class VII orbits. In the remaining

two observations, the oscillations were extremely fast. As a result, the errors in the HID1 of

these two observations were too large to succesfully select peaks, and I am unable to

confirm or reject the presence of loops.

Class VIII – Figure 4.19

The lightcurve of this variability class shows the dipping behaviour seen in Class VI, as can

be seen in Figure 4.19 at t ≈ 125–150 s. The dips are less frequent than in Class VI. The

behaviour outside of the dips is dominated by highly structured high-amplitude oscillations

consisting of flares with a peak to peak separation of 3.4 ± 1.0 s. The PDS shows this

behaviour as a very significant (q-value > 20) QPO; two harmonics of this QPO are also

visible. The PDS also shows a strong (q-value∼ 5) QPO at ∼ 9 Hz.

I attempted to fold Class VIII lightcurves, ignoring the portions of data corresponding to

dips, using my flare-finding algorithm. The high frequency of the dominant oscillation in

Class VIII resulted in large errors in the peak times of individual flares, which translated to

large errors in all HID1s; however, I was able to ascertain the presence in loops in 8 out of

16 orbits. All 8 of these loops are clockwise.
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Figure 4.16: Top: The hardness-intensity diagram (HID1) of the Class VI observation 96420-01-30-
03, orbit 0 showing a clockwise loop. The data have been folded over a variable period found with
the algorithm described in Section 3.2.1. Inset is the folded lightcurve of the same data. Bottom
Left: The hardness-intensity diagram of Class VI observation 96420-01-30-04 orbit 0, an example
of an anticlockwise loop. Bottom Right: The hardness-intensity diagram of Class VI observation
96420-01-09-03 orbit 0, in which I was unable to ascertain the presence of a loop.
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Figure 4.17: Plots of the Class VII observation 96420-01-18-05, orbit 0. Top-left: 750 s lightcurve
binned on 2 seconds to show lightcurve evolution. Top-right: Fourier Power Density Spectrum.
Bottom: Lightcurve binned on 0.5 seconds.
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Figure 4.18: A sliding window Lomb-Scargle periodogram of Class VII observation 96420-01-18-
05, showing power density spectra from an overlapping 32 s window moved 1 s at a time. The peak
frequency of this low frequency QPO itself appears to oscillate with a frequency of ∼ 5mHz.
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Figure 4.19: Plots of the Class VIII observation 96420-01-19-03, orbit 0. Top-left: 300 s lightcurve
binned on 2 seconds to show lightcurve evolution. Top-right: Fourier Power Density Spectrum.
Bottom: Lightcurve binned on 0.5 seconds. Inset is a zoom of the 25 s portion of the lightcurve
highlighted in cyan, to show the second-scale structure in the lightcurve.
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Figure 4.20: Plots of the Class IX observation 96420-01-35-02, orbit 1. Top-left: 1200 s lightcurve
binned on 2 seconds to show lightcurve evolution. Top-right: Fourier Power Density Spectrum.
Bottom: Lightcurve binned on 2 seconds.

Class IX – Figure 4.20

The 1 s lightcurve of a Class IX observation is superficially similar to the lightcurve of a

Class I observation, with little obvious structured variability at timescales larger than 2 s;

however, large count rate dips like those seen in Classes VI and VIII (e.g. the feature at

t ≈ 410 s in the lightcurve of Figure 4.20) are very occasionally observed. These dips may

in turn be coupled to short second-scale flares in which count rate briefly increases by a

factor of 2–3.

Outside of these dips and flares, the lightcurve of a Class IX observation is

indistinguishable from the lightcurve of a Class I or Class II observation. However, in

Figure 4.3, I show that Class IX occupies a very different part of the global HA2/HA1

colour-colour diagram. Class IX observations show a significantly larger HA2 than Class I

and II observations, but a significantly lower HA1.

The PDS reveals significant broad band noise peaked at ∼0.3 Hz, and the ∼ 5 Hz QPO seen

in other classes is absent. Altamirano and Belloni (2012) discovered high frequency

(∼ 66 Hz) QPOs in observations corresponding to this variability class.
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Energy Intensity Significance Exposure Flux Flux
(keV) (cts/s) σ (ks) (mCrab) (10−10ergs s−1 cm−2)
20–40 12.39±0.05 247 115 93.5±0.38 7.08±0.03
40–100 7.06±0.05 157 163 83.5±0.60 7.87±0.06
100–150 1.05±0.03 40 173 66.9±1.91 2.14±0.06
150–300 0.23±0.03 7.6 179 46.6±5.96 2.24±0.29

Table 4.4: Results from the IBIS/ISGRI analysis of the 2011–2013 Outburst of IGR J17091. The
20–40 keV flux is given in units of mCrab and (10−11 ergs s−1 cm−2). Conversion between counts and
mCrab was obtained using an observation of the Crab taken during Revolution 1597 between MJD
57305.334 and 57305.894 and the conversion factors of Bird et al. (2016) and Bazzano et al. (2006).

4.2.3 Swift

Observations with Swift took place throughout the 2011-2013 outburst of IGR

J17091-3624. Between MJDs 55622 and 55880, 17 Swift/XRT were at least partly

simultaneous with an RXTE observation, corresponding to at least one observation of all 9

classes. In each case, the Swift and RXTE lightcurves were similar. The remainder of the

Swift/XRT observations during this time were also consistent with belonging to one of my

nine classes. Given that the RXTE data have higher count rate and time resolution, I do not

further discuss the Swift observations taken before MJD 55880.

Between MJD 55952 and 56445, Swift observations showed IGR J17091-3624 decreasing

in flux. For all observations longer than 500 s, I rebinned the lightcurves to 10 s and

calculated the fractional RMS. I find the lower and upper quartiles of the fractional RMS in

these measurements to be 18.3% and 21.7% respectively. INTEGRAL observations taken as

part of a scan programme of the Galactic Plane (Fiocchi et al., 2012) and reported by Drave

et al. (2012) suggest that IGR J17091-3624 returned to the hard state between MJDs 55952

and 55989. Therefore these observations sample IGR J17091-3624 in the hard state.

4.2.4 INTEGRAL

The results of the INTEGRAL/IBIS analysis are presented in Table 4.4. C.B. finds clear

detections of IGR J17091-3624 in all energy bands during the hardest period (MJD

55575–55625) of the 2011–2013 outburst. Conversion from detected counts to flux was

achieved using an INTEGRAL/IBIS observation of the Crab taken between MJD 57305.334

and 57305.894. Conversion from Crab units to standard flux units was obtained by

conversion factors listed in Bird et al. (2016) and Bazzano et al. (2006).

Comparing these results with those of Bazzano et al. (2006), we see that IGR J17091 is

detected for the first time above 150 keV with a detection significance of 7.6σ,

corresponding to a flux of 2.24 ± 0.29 × 10−10 ergs s−1 cm−2 (Figure 4.21).
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Figure 4.21: INTEGRAL/ISGRI 150–300 keV significance map of a 2◦ region centred on the posi-
tion of IGR J17091-3624, showing the first significant detection of this source above 150 keV. The
detection significance is 7.6 σ.
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Figure 4.22: 1 ks segments of lightcurves taken from Chandra observations 12505, 12405 and 12406,
showing Class I, Class VII and Class IX variability respectively. The lightcurve presented for obser-
vation 12505 is for the energy range 0.06-10 keV, while the other two lightcurves are for the energy
range 0.5-10 keV. All three lightcurves are binned to 0.5 s.

4.2.5 Chandra

In Figure 4.22, I present lightcurves from the three Chandra observations considered in this

chapter (see also Table 4.1 for details of these observations).

Observation 12505 was performed within 24 hours of RXTE observation 96420-01-02-01,

which showed Class I variability. No structured variability is seen in the lightcurve of

ObsID 12505 (Figure 4.22, upper panel), which is consistent with Class I. Note that I

consider the energy range 0.06-10 keV for this observation but 0.5-10 keV for observations

12405 and 12406.

Observation 12405 was performed within 24 hours of RXTE observation 96420-01-23-03,

which showed Class V variability. The two observations were not simultaneous; ObsID

12405 began ∼ 8.4 ks after ObsID 96420-01-2303 finished. The lightcurve of Chandra
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ObsID 12405 (shown in Figure 4.22, middle panel) shows a mean count rate of 41 cts s−1.

The lightcurve shows fast flaring behaviour (with a recurrence time on the order of 10s of

seconds) in which the frequency changes widely on timescales of ∼ 1000 s. This

observation strongly resembles a Class VII lightcurve, but with its characteristic timescales

increased by a factor of ∼ 4. This leads to the possibility that the low number of Class VII

RXTE observations I identify is due to a selection effect; we would not have been able to see

this observation’s long-term Class VII-like behaviour if the observation had been shorter

than ∼ 2 ks.

Observation 12406 was performed within 24 hours of RXTE observation 96420-01-32-06,

which showed Class IX variability. The lightcurve presented for Chandra ObsID 12406

shows a mean count rate (36 cts s−1), which is consistent with IGR J17091 being harder in

this observation than in Observation 12505. This, combined with the lack of variability seen

in its lightcurve, suggests that Observation 12505 is consistent with Class IX.

4.2.6 XMM-Newton

In Figure 4.23 I show lightcurves from two XMM-Newton observations. The lightcurve of

XMM-Newton observation 0677980201, shown in the upper panel of Figure 4.23, shows the

regular flares characteristic of Class IV variability. A simultaneous RXTE observation

(ObsID 96420-01-05-000) also showed Class IV variability.

XMM-Newton observation 070038130, shown in the lower panel of Figure 4.23, was made

after the end of RXTE observations IGR J17091-3624. As such it cannot be compared with

contemporaneous RXTE data. The 5 s binned lightcurve shows no apparent variability, but a

Fourier PDS of the observation (shown in Figure 4.24) reveals a QPO centred at around

∼ 0.15 Hz and a broad band noise component at lower frequencies. Drave et al. (2012)

reported that IGR J17091 transited to the hard state in February 2012, seven months before

this observation was taken. As such, I find that observation 0677980201 samples the hard

state in IGR J17091 and is thus beyond the scope of my set of variability classes.

4.2.7 Suzaku

The two Suzaku observations of IGR J17091-3624 considered here, ObsIDs 407037010 and

407037020, were performed during the 2nd and 3rd re-flares of the hard state phase of the

2011–2013 outburst. ObsID 407037010 was taken simultaneously with XMM-Newton

observation 0700381301. The XIS 0 count rates are 7.8 cts s−1 and 2.5 cts s−1 respectively.

Neither lightcurve shows ‘heartbeats’ or any other type of GRS 1915-like variability.

However, K.Y. and I find evidence of a low frequency QPO feature at ∼0.15 Hz in the

ObsID 407037010; this QPO is also seen in XMM-Newton observation 0700381301 (Figure

4.24). The presence of a QPO below 1 Hz and flat-topped power density spectrum confirm

that IGR J17091 was in the hard state at this time.
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Figure 4.23: Lightcurves of XMM-Newton observations 0677980201 and 0700381301, showing
Class IV variability and the hard state respectively. Both lightcurves binned to 2 s. Data for ob-
servation 0677980201 is taken from EPIC-MOS2 and data for observation 0700381301 is taken from
EPIC-pn.
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Figure 4.24: RMS-normalised co-added power density spectra of XMM-Newton observation
0700381301 and Suzaku observation 407037010. Both observations were taken simultaneously on
September 29 2012 (MJD 56199). I sample observation 0700381301 up to a frequency of 10 Hz,
while the 2 s time resolution of observation 407037010 results in a Nyquist frequency of 0.25 Hz.

4.3 Discussion

Using observations from XMM-Newton, RXTE and Chandra, I describe the complex

variability seen in IGR J17091 as a set of nine variability ‘classes’, labelled I to IX. These

classes are distinguished from each other by values of upper and lower quartile (i.e. 25th and

75th percentile) count rates, mean RMS, the presence of QPOs in Fourier PDS, the shape of

flare and dip features in the lightcurve and the presence of loops in the 6–16/2–6 keV

hardness-intensity diagram HID1. See Section 4.2 for a full description of these classes.

The classification of some observations is clearer than others. Some orbits were too short to

definitively quantify the behaviour of the source, whereas some other orbits contain a

transition between two classes. An example lightcurve showing a transition from Class III

to Class IV is presented in Figure 4.25.

My set of classes is analogous to, but not based upon, the set of variability classes defined

by Belloni et al. 2000 to describe the behaviour of the similarly complex LMXB GRS 1915.

This ensures that my set of classes is not biased by an a priori assumption that the two

objects are similar. However if we do assume that wide range of variability seen in these

two objects are driven by the same physical processes, a direct comparison between the

variability classes in the two systems can further our understanding of the physics that drive

these exotic objects.
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Figure 4.25: A lightcurve of observation 96420-01-06-02, orbit 0, showing a transition in behaviour
between Class III (in cyan, see Section 4.2.2) and Class IV (in red, see Section 4.2.2).
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Table 4.5: The nine variability classes of IGR J17091-3624, showing the name of the closest corre-
sponding variability class in GRS 1915+105. The names of GRS 1915+105 classes are taken from
Belloni et al. (2000), where more detailed descriptions can be found. Eight additional classes of GRS
1915+105 have been described; I do not find analogies to these classes in IGR J17091-3624.

IGR J17091-3624 Class GRS 1915+105 Class
I χ

II φ

III ν

IV ρ

V µ

VI λ

VII None
VIII None
IX γ

4.3.1 Variability Classes: IGR J17091 vs. GRS 1915

As observations of IGR J17091 and GRS 1915 suffer from different values of interstellar

absorption NH
[10], I cannot directly compare the absolute colours of these two objects.

However, I can compare the evolution of colour both over time and as a function of count

rate. I therefore use these parameters, along with power spectra and lightcurve morphology,

when comparing GRS 1915 with IGR J17091.

For seven of my classes, I was able to assign the closest matching class described by

Belloni et al. 2000 for GRS 1915 (see Table 4.5). I am unable to find analogues to my

classes VII and VIII in observations of GRS 1915, and I suggest that these classes are

unique to IGR J17091.

Below, I evaluate my mapping between GRS 1915 and IGR J17091 classes, and interpret

the differences between each matched pair.

Classes I and II – Figures 4.4, 4.5

Classes I and II both show low count rates and little structure in their lightcurves. The two

classes in GRS 1915 that also show this lightcurve behaviour are Class χ[11] and Class φ.

Belloni et al. 2000 differentiate between Classes φ and χ based on the hard colour

(corresponding to C2), as Class χ has a significantly higher value for this colour than Class

φ.

[10]NH , or the interstellar absorption, is a measure of the surface density of hydrogen atoms along a column
between the object in question and the Earth. A high value of NH causes low-energy X-rays to be supressed
more than high-energy X-rays, increasing the apparent colour of a source. NH can be estimate by fitting models
to the energy spectrum of a source.

[11]Note that, in GRS 1915+105, Class χ is further subdivided into four classes based on hard colour (Belloni
et al., 2000; Pahari et al., 2013a). As I cannot obtain hard colour for IGR J17091, I treat χ as a single variability
class here.
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Data from RXTE indicates that the transition from the hard state to the soft intermediate

state between MJDs 55612 and 55615 (Drave et al., 2012). This was confirmed by a radio

spectrum taken on MJD 55623 which was consistent with an observation of discrete ejecta

(Rodriguez et al., 2011a). This observation of discrete ejecta at the transition between the

hard state and the intermediate state has been reported in other LMXBS (e.g. XTE

J1550-564, Rodriguez et al., 2003), and has also been associated with transitions to the χ

Class in GRS 1915 (Rodriguez et al., 2008, see also review by Fender, 2006).

Using Fourier PDS, I conclude that Class I is analogous to Class χ in GRS 1915, while

Class II is analogous to Class φ. In Class χ observations of GRS 1915, broad band noise

between ∼ 1 − 10 Hz and a QPO at around 5 Hz are seen in the PDS. I find that both of

these are present in Class I observations of IGR J17091. On the other hand, I find that Class

φ observations of GRS 1915 do not show this broad band noise, and show either a weak

(q-value . 3) QPO at ∼ 5 Hz or no QPO at all. I find that the weak QPO and lack of broad

band noise are also seen in the PDS of Class II observations.

Classes III and IV – Figures 4.6, 4.9

Classes III and IV both show highly regular flaring activity in their lightcurves, but they

differ in terms of timescale and pulse profile. As can be seen in lightcurves in Figure 4.9,

flares in Class IV occur every ∼ 32 s and are nearly identical to each other in shape. On the

other hand, as can be seen in Figure 4.6, flares in Class III occur every ∼ 61 s and may or

may not end in a much faster sharp peak which is never seen in Class IV. In Figure 4.26 I

show a two-dimensional histogram of flare peak count rate against flare duration, showing

all flares in all observations classified as Class III or Class IV. In this figure, I can see that

flares tend to group in one of two regions in count rate-duration space; a region between

∼ 90–110 cts s−1 PCU−1and ∼ 35–55 s, corresponding to flares seen in Class III, and a

region between ∼ 150–250 cts s−1 PCU−1and ∼ 20–55 s, corresponding to flares seen in

Class IV. From this plot, I conclude that the flares seen in Class III exist in a different

population to the flares seen in Class IV.

The GRS 1915 classes that show behaviour most similar to these are ρ and ν; both produce

similar structures in their lightcurve, but Class ν is differentiated from Class ρ by the

presence of a secondary count rate peak which occurs ∼ 5 s after the primary (Belloni et al.,

2000).

The secondary peak is present in most Class III observations and some Class IV

observations (Figure 4.27), suggesting that both classes consist of a mix of ρ-like and ν-like

observations. However, the poor statistics sometimes make the presence of this secondary

peak difficult to detect. As such, I do not use the presence or absence of this peak as a

criterion when assigning classes. Instead I choose to separate Classes III and IV based on

the larger-scale structure in their lightcurves (see Section 4.2.2). Due to the aforementioned

difference in burst populations between the two classes, I suggest that classes III and IV do
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Figure 4.26: Every flare in all observations identified as Class III or Class IV, plotted in a two-
dimensional histogram of flare peak count rate against flare duration to show the two-population
nature of these events. Flares belonging to Class IV occupy the distribution at higher peak rate and
lower duration, whereas flares belonging to Class III occupy the distribution at lower peak rate and
higher duration.
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Figure 4.27: Lightcurve from Class III observation 96420-01-10-01 of IGR J17091-3624, with pairs
of primary and secondary count rate spikes highlighted in cyan and red respectively. The yellow
region highlights a primary count rate spike that did not produce a secondary.

represent two distinct classes rather than a single class with a period that drifts over time. I

suggest that Classes ρ and ν in GRS 1915 could also be re-partitioned in this way.

However, HID1 loops are found to generally execute in an anticlockwise direction in

Classes III and IV (previously noted by e.g. Altamirano et al., 2011b); the opposite

direction to the clockwise loops in Classes ρ and ν reported by e.g. Belloni et al., 2000 and

repeated by us using the same method I apply to data from IGR J17091-3624 (see Section

4.1). This suggests that Classes III and IV could be generated by a different physical

mechanism to Classes ρ and ν. Alternatively, Classes III and IV could be generated by the

same mechanism as ρ and ν if some other unknown process was able to alter the spectral

evolution of flares in these classes.

Class V – Figure 4.11

The lightcurve of a Class V observation appears similar to that of a Class µ observation of

GRS 1915, as both are characterised by rapid ρ-like flares which occur less regularly than in

Class ρ. In addition to this, flares in Class µ fall into two clear populations, as do the flares

in Class V. However, significant differences exist between Class V and Class µ. Class µ

observations are characterised by long (∼ 100 s) excursions to plateaus of high count rate, a
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behaviour which is not seen in any Class V observation thus far.

I note that the HID1 in Class V observations displays a loop in the clockwise direction; the

opposite direction to the looping seen in Classes III and IV but the same direction seen in

Class µ.

Regarding the two-population nature of flares seen in this class (see Section 4.2.2), I suggest

that V2 flares may simply be two V1 flares that occur close together in time, such that the

second flare starts during the decay of the first flare. This would result in an apparent

two-peaked flare structure, as we see in type V2 flares. This interpretation also accounts for

the bimodal distribution of flare duarations shown in the 2D histogram of Figure 4.13, as

this could be caused by the misinterpretation of two-flare V2 events as a single event. This

also accounts for the Gaussian distribution of peak flare intensities seen in Figure 4.13), as

the constituents of each V2 event would be from the same population as V1 flares.

Class VI – Figure 4.15

Class VI is dominated by long flaring periods which separate periods of low count rate, as

can be seen in the lightcurve presented in Figure 4.15. Similar behaviour is seen in the

lightcurves of observations of GRS 1915 belonging to Classes λ and ω (Klein-Wolt et al.,

2002). However, the long count rate ‘dips’ are far less regular in Class VI than in Classes λ

and ω, and I also note long periods of medium count rate during which neither flares nor

dips occur. This variability class is noted by Pahari et al. (2012) who suggest that this class

is unique to IGR J17091[12]. However, Pahari et al. (2013b) show that, in a plot of burst

decay time against burst rise time, Classes VI and λ fall in a straight line, suggesting a

similar physical origin for both.

While it is cetainly true that Class VI is not a perfect analogue of either Class λ or Class ω

Class VI only differs noticeably from Class λ during the extended low-variability portions

of its lightcurves. As such, I associate Class VI with Class λ.

Class VII – Figure 4.17

I am unable to find an analogue of Class VII in observations of GRS 1915. This class, and

its apparent uniqueness, have previously been noted by Pahari et al., 2012[13]. Pahari et al.

found that the C2 hard colour in this class increases during count rate dips and decreases

during count rate peaks. Here I reproduced the results of Pahari et al. and found that the

anti-correlation between hard-colour and intensity is not physical, but due to the definition

of C2: the count rate in band LC is approximately constant and consistent with background,

and therefore C2 = LC/LA ∝ L−1
A , which will naturally anticorrelate with intensity.

[12]Pahari et al. (2012) refers to Class VI as Class C2.
[13]Pahari et al. (2012) refers to Class VII as Class C1.
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Class VIII – Figure 4.19

I am unable to find an analogue of Class VIII in observations of GRS 1915. When it is

flaring, the lightcurve waveform is similar to that seen in Class ρ, with rapid regular spikes

in count rate. The lightcurve also shows irregular dips in count rate similar to those seen in

Class VI and in Class λ in GRS 1915.

However, the amplitude of the flares in Class VIII is much larger, and the frequency much

higher, than in Classes VI or λ. The amplitude of the flares in Class VIII can approach

∼ 350 cts s−1 PCU−1, while the flare separation time of 4–5 s makes Class VIII the fastest

flaring activity seen in any class of IGR J17091 or GRS 1915. As such, I consider this

variability class distinct from both Class VI and Class λ.

Class IX - Figure 4.20

Class IX is defined by long periods of high amplitude but unstructured variability (with a

broad peaked noise component in the Fourier spectrum peaked at ∼0.3 Hz) punctuated with

infrequent irregular short-duration ‘spikes’ in which the count rate increases by a factor of

∼ 2–3. A similarity between this Class and Class γ in GRS 1915 has been previously noted

by Altamirano and Belloni (2012). However, the irregular spikes seen in some Class IX

lightcurves are not reproduced in Class γ lightcurves of GRS 1915.

4.3.2 General Comparison with GRS 1915+105

Overall, variability in IGR J17091 tends to be faster than structurally similar variability in

GRS 1915, as can be noted in Classes III and IV compared to Classes ρ and ν (see also

Altamirano et al., 2011b). Additionally, IGR J17091 also displays highly structured

variability unlike anything yet seen in GRS 1915, with classes VII and VIII in particular

showing very fine detail in their lightcurves.

In total I find 2 variability classes which are seen in IGR J17091 but not in GRS 1915,

compared with 8 that are seen in GRS 1915 but not in IGR J17091. As relatively little data

exists on GRS 1915-like variability in IGR J17091, the presence of classes in GRS 1915

that are not seen in IGR J17091 could simply be an observational effect. It is unknown how

long each variability class lasts for and, as such, additional variability classes could have

occurred entirely while IGR J17091 was not being observed. However, GRS 1915 has

displayed variability classes consistently since its discovery in 1992 (see e.g. see

Huppenkothen et al., 2017), implying that the two classes seen only in IGR J17091 are

either completely absent in GRS 1915 or that they occur with a much lower probability. In

either case, this implies physical differences between methods of generating GRS 1915-like

variability in the two objects.
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As noted in section 4.3.1, variability classes seen in both IGR J17091 and GRS 1915 show

differences between the different objects. In particular, I note the presence of irregular flares

in Class IX which are not seen in the analogous Class γ. If these classes are indeed

generated by the same processes in both objects, the differences between them must

represent physical differences between the objects themselves.

It has previously been noted that, while the hardness ratios in IGR J17091 and GRS 1915

during ρ-like classes are different, the fractional hardening between the dip and peak of

each flare is consistent with being the same in both objects (Capitanio et al., 2012). This

suggests that the same physical process is behind the ‘heartbeats’ seen in both objects.

I note the presence of hysteretic HID1 loops in some classes of both objects. Although these

loops are always clockwise in GRS 1915, they can be executed in either direction in IGR

J17091. Classes in IGR J17091 that show loops all have a preferred loop direction:

anticlockwise in Classes III and IV and clockwise in classes V, VI, VII and VIII. In cases

where the loop direction was opposite to that expected for a given class, loop detections

were generally only marginally significant. In particular, I note that Classes IV and V tend

to show loops in opposite directions, despite the similarities between their lightcurves and

the ρ, ν and µ classes in GRS 1915. The fact that IGR J17091 can show HID1 loops in both

directions suggests that an increase in soft emission can either precede or lag a correlated

increase in hard emission from IGR J17091. Whether soft emission precedes or lags hard

emission is in turn is dependent on the variability class.

There are also non-trivial similarities between variability in the two objects. I note the

presence of a ∼ 5 Hz QPO in many of the classes seen in IGR J17091, and this same 5 Hz

QPO is seen in data from GRS 1915. Similarly Altamirano and Belloni (2012) reported the

discovery of a 66 Hz QPO in IGR J17091; a very similar frequency to the 67 Hz QPO

observed in GRS 1915 (Morgan et al., 1997). It is not clear why these QPOs would exist at

roughly the same frequencies in both objects when other variability in IGR J17091 tends to

be faster.

4.3.3 Comparison with the Rapid Burster

In 2015, Bagnoli and in’t Zand (2015) reported the discovery of two GRS 1915-like

variability classes in the neutron star binary MXB 1730-335, also known as the ‘Rapid

Burster’. Specifically, Bagnoli and in’t Zand (2015) note the presence of variability similar

to Classes ρ and θ in GRS 1915.

Class θ-like variability, seen in RXTE observation 92026-01-20-02 of the Rapid Burster, is

not closely matched by any of the classes I identify for IGR J17091. However, the

lightcurves of a Class θ observation feature large dips in count rate similar to those seen in

Classes VI and VIII in IGR J17091.

Conversely, Class ρ-like variability is seen in all three objects. Bagnoli and in’t Zand (2015)
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Table 4.6: The six IGR J17091-3624 ObsIDs explicitly classified in Altamirano et al. (2011b). I also
present the GRS 1915 class with which I implicitly label each ObsID in this chapter.

ObsID Altamirano et al. My Class
Class (implied)

96420-01-04-03 α ρ/ν

96420-01-05-00 ν ρ/ν

96420-01-06-00 ρ ρ/ν

96420-01-07-01 ρ µ

96420-01-08-03 β/λ λ

96420-01-09-06 µ λ

note that the variability of the ρ-like flaring is slower in the Rapid Burster than in either

GRS 1915 or IGR J17091. It has previously been suggested that the maximum rate of

flaring in LMXBs should be inversely proportional to the mass of the compact object (e.g.

Belloni et al., 1997b; Frank et al., 2002). In this case, the fact that variability is faster in

IGR J17091 than in GRS 1915 could simply be due to a lower black hole mass in the

former object (Altamirano et al., 2011b). However if variability in the Rapid Burster is

assumed to be physically analogous to variability in these two black hole objects, then a

correlation between central object mass and variability timescale no longer holds.

4.3.4 Comparison with Altamirano et al., 2011b

Altamirano et al. (2011b) identify 5 GRS 1915 variability classes in a subset of

observations from the 2011-2013 outburst of IGR J17091: six of these observations are

presented in Table 4.6 along with the best-fit GRS 1915 class that I assign it in this chapter

(see also Table 4.5).

I acknowledge differences between the classifications assigned by me and by Altamirano

et al. (2011b). I ascribe these differences to the different approaches we have used to

construct our classes. In particular while I have constructed an independent set of

variability classes for IGR J17091 which I have then compared to the Belloni et al. classes

for GRS 1915, Altamirano et al. applied the Belloni et al. classes for GRS 1915 directly to

IGR J17091.

In general, the variability classes I find to be present in IGR J17091 are broadly the same as

those noted by Altamirano et al. (2011b). I do not associate any class with Class αin GRS

1915, but I find examples of all of the other variability classes posited by Altamirano et al.

to exist in IGR J17091.

Altamirano et al., 2011b noted the presence of an anticlockwise loop in the HID of

‘heartbeat’-like observations of IGR J17091, opposed to the clockwise loop seen in HIDs of

ρ-class observations of GRS 1915. This is consistent with my finding that hysteretic loops

in classes III and IV also tend to execute in an anticlockwise direction. However, I

additionally find that hysteretic loops in classes V, VI, VII and VIII tend to execute in a
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clockwise direction. This is also different from GRS 1915, in which the loop is executed in

the same direction in all classes. I also additionally report that clockwise loops tend to be

more complex than anticlockwise loops in IGR J17091, with many showing a multi-lobed

structure not seen in GRS 1915. This apparent inconsistency between the objects

strengthens the suggestion in Altamirano et al., 2011b that the heartbeat-like classes in GRS

1915 and IGR J17091 may be generated by physically different mechanisms.

4.3.5 New Constraints on Accretion Rate, Mass & Distance

The constraints that Altamirano et al., 2011b placed on the mass and distance of IGR

J17091 assumed that the object emitted at its Eddington luminosity at the peak of the

2011–2013 outburst. They report a peak 2–50 keV flux of 4 × 10−9 ergs s−1 cm−2 during

flares in ‘heartbeat’-like lightcurves during this time. The correction factor CBol,Peak to

convert 2–50 keV flux to bolometric flux is not well constrained, but Altamirano et al.,

2011b suggest an order-of-magnitude estimate of . 3, corresponding to a peak bolometric

flux of . 1.2 × 10−8 ergs s−1 cm−2.

Maccarone, 2003 performed a study of the soft to hard transitions in 10 LMXBs with

well-constrained distances and compact object masses. They found that all but one perform

this transition at a luminosity consistent with between 1% and 4% of their Eddington limit.

By assuming that all LMXBs complete their soft-to-hard transitions at Eddington fractions

of ∼ 1 − −4%, it is then possible to estimate the Eddington fraction of an object at any point

during its outburst, even if its distance and compact object mass are not known.

I use Swift observation 00031921058 taken on MJD 55965 to create a spectrum of IGR

J17091 during the approximate time of its transition from a soft to a hard state (Drave et al.,

2012). I fit this spectrum above 2 keV with a power-law, and extrapolated to find a 2–50 keV

flux of 8.56× 10−10 ergs s−1 cm−2. Assuming that the transition bolometric correction factor

CBol,Tran is also . 3, this corresponds to a bolometric flux of . 2.5 × 10−9 ergs s−1 cm−2.

By comparing this with the results of Maccarone, 2003 and Altamirano et al., 2011b, I find

that IGR J17091 was likely emitting at no more than ∼ 5–20% of its Eddington Limit at its

peak. This number becomes ∼ 6–25% if I instead use CBol,Tran = 2.4, or ∼ 8–33% if

CBol,Tran = 1.8. With this new range of values, I am able to re-derive the compact object

mass as the function of the distance (Figure 4.28). I find that for a black hole mass of

∼ 10M�, as suggested by Iyer et al., 2015b, IGR J17091 is within the Galaxy at a distance

of 6–17 kpc. This is consistent with the estimated distance of ∼ 11–17 kpc estimated by

Rodriguez et al., 2011a for a compact object mass of 10M�.

4.3.6 Implications for Models of ‘Heartbeat’ Variability

I have found that hysteretic HID loops can execute in both directions in IGR J17091 (e.g.

Section 4.3.4), as well as found a revised estimate that IGR J17091 accretes at . 20%
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Figure 4.28: Mass of the compact object in IGR J17091-3624 plotted against its distance, for values
of peak Eddington fractions of FEdd =0.05, 0.1, 0.2 and 0.33.
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Eddington (Section 4.3.5). Both of these findings have implications for physical models of

GRS 1915-like variability in this source.

Firstly, I find that Eddington-limited accretion is neither necessary nor sufficient for GRS

1915-like variability. The discovery of GRS 1915-like variability in the sub-Eddington

Rapid Burster (Bagnoli and in’t Zand, 2015; Bagnoli et al., 2015) provided the first

evidence that Eddington-limited accretion may not be a driving factor in this type of

variability. I strengthen this case by finding that IGR J17091-3624 is also likely

sub-Eddington. As such, I further rule out any scenario in which Eddington-limited

accretion is required for GRS 1915-like variability in black hole LMXBs specifically.

Secondly, by using the direction of hysteretic HID loops, I find that hard photon lag in

‘heartbeat’-like classes of IGR J17091 can be either positive or negative. This could mean

that we must rule out the causal connection between soft and hard emission being common

to all classes.

In either case, I find that scenarios that require high global accretion rates or predict a

consistent hard photon lag (e.g. Neilsen et al., 2011; Janiuk and Czerny, 2005), are not able

to explain GRS 1915-like variability in IGR J17091 unless they also feature geometric

obscuration in a subset of variability classes. I note that simulations by Nayakshin et al.,

2000 require an Eddington fraction of & 0.26 before GRS 1915-like variability occurs, a

value which falls in the range ∼ 0.05–0.33 that I find for the peak Eddington fraction of

IGR J17091.

An alternative way to explain the reversal of the direction of HID hysteresis is by

considering the information propagation timescales in GRS 1915 and IGR J17091. A

number of proposed models and scenarios to explain GRS 1915-like variability, such as the

scenario of Neilsen et al. (2011) which we describe in Section 2.3.1, rely on information

being propagated from one component of the LMXB system to another; in the scenario of

Neilsen et al., this propagation takes the form of a disk wind which interacts with a

geometrically displaced corona. Such a propagation takes a finite time. If the timescale of

the propagation of information is similar to or greater than the characteristic timescale of

heartbeat flares, then each hard pulse from the corona could take place immediately before

the flare subsequent to the flare which triggered it. As heartbeats are a relatively coherent

quasiperiodic phenomenon, it would appear to an observer that each hard pulse precedes a

soft flare, even though in reality the causality is reversed. If this scenario was behind the

hysteretic reversal seen in IGR J17091, then we would expect to see that only the fastest

variability classes exhibited loops in the ‘wrong’ direction, indicating soft lags. However, I

find that loops in Classes V, VI, VII and VIII in IGR J17091 show hard lags, whereas the

slower classes III and IV show soft lags. Therefore I rule out an information propagation

timescale-based explanation for the difference in HID hysteresis between IGR J17091 and

GRS 1915.

In addition to being near its Eddington limit GRS 1915 also has the largest orbital period of
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any known LMXB (e.g. McClintock and Remillard, 2006). Sa̧dowski, 2016 have also

shown that thin, radiation dominated regions of disks in LMXBs require a large-scale

threaded magnetic field to be stable, and the field strength required to stabilise such a disk

in GRS 1915 is higher than for any other LMXB they studied. I suggest that one of these

parameters is more likely to be the criterion for GRS 1915-like variability. If better

constraints can be placed on the disk size and minimum stabilising field strength in IGR

J17091, it will become clear whether either of these parameters can be the unifying factor

behind LMXBs that display GRS 1915-like variability.

4.4 Conclusions

I have constructed the first model-independent set of variability classes for the entire

portion of the 2011–2013 outburst of IGR J17091 that was observed with RXTE. I find that

the data are well-described by a set of 9 classes; 7 of these appear to have direct

counterparts in GRS 1915, while two are, so far, unique to IGR J17091. D.A. and I find that

variability in IGR J17091 is generally faster than in the corresponding classes of GRS 1915,

and that patterns of quasi-periodic flares and dips form the basis of most variability in both

objects. Despite this, I find evidence that ‘heartbeat’-like variability in both objects may be

generated by different physical processes. In particular, while hard photons always lag soft

in GRS 1915, I find evidence that hard photons can lag or precede soft photons in IGR

J17091 depending on the variability class.

I also report on the long-term evolution of the 2011–2013 outburst of IGR J17091, in

particular noting the presence of 3 re-flares during the later part of the outburst. Using an

empirical relation between hard-soft transition luminosity and Eddington luminosity

(Maccarone, 2003), I estimate that IGR J17091 was likely accreting at no greater than

∼ 33% of its Eddington limit at peak luminosity.

I use these results to conclude that any model of GRS 1915-like variability which requires a

near-Eddington global accretion rate is insufficient to explain the variability we see in IGR

J17091. As such I suggest that an extreme value of some different parameter, such as disk

size or minimum stabilising large-scale magnetic field, may be the unifying factor behind

all objects which display GRS 1915-like variability. This would explain why sub-Eddington

sources such as IGR J17091 and the Rapid Burster do display GRS 1915-like variability,

while other Eddington-limited sources such as GX 17+2 and V404 Cyg do not.
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Chapter 5

The Evolution of X-ray Bursts in the
‘Bursting Pulsar’ GRO J1744–28

The fountains of the great deep came
bursting through, and the windows of
heaven were open.

Genesis 7:11

In Chapter 4, I present a new way to classify variability in the LMXB IGR J17091-3624. I

compare this object with GRS 1915; although I find a number of differences between

variability in the two systems, I conclude that the same broad phenomenon is likely behind

variability in both. I also find that IGR J17091 is likely significantly sub-Eddington during

periods in which it displays GRS 1915-like variability. This result can be seen as yet

another piece of evidence that near-Eddington accretion is neither sufficient or necessary for

GRS 1915-like behaviour.

To try and better constrain what does unite GRS 1915-like objects, the next step is to look

for analogous behaviour in other systems. As previously mentioned, Bagnoli and in’t Zand

(2015) reported variability similar to GRS 1915 in RXTE lightcurves from the Rapid

Burster. As such the Rapid Burster, and its sister system the Bursting Pulsar, are natural

places to look for evidence of GRS 1915-like variability. Type II bursts seen in the Rapid

Burster and the Bursting Pulsar are believed to be caused by viscous instabilities in the

accretion disk (Lewin et al., 1976b), as is the X-ray variability seen GRS 1915 and IGR

J17091. However, as I discuss in Section 2.4.1, the exact details of the mechanism

responsible for Type II bursts remain unclear.

The Type II bursting behaviour in the Rapid Burster has been extensively studied (see e.g.

Lewin et al., 1976b; Hoffman et al., 1978). Bagnoli et al. (2015) performed a full

population study of all Type II bursts observed in this object by RXTE. Their results suggest
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that gating of the accretion by a strong magnetic field plays some role in the creation of

Type II bursts: as this scenario requires a highly magnetised compact object, it cannot be

employed to explain the variability seen in the black hole-primary GRS 1915 or IGR

J17091. To further probe the physics behind Type II X-ray bursts, in this chapter I perform

a similar population study on bursts from the Bursting Pulsar.

Previous work by Giles et al. (1996) indicated that Type II bursts in the 1995–1996 outburst

of the Bursting Pulsar could be separated into a number of distinct populations based on

peak flux. This is a notable difference from the Rapid Burster, in which all Type II bursts

have peak fluxes approximately equal to or less than object’s Eddington Luminosity (Tan

et al., 1991). In this chapter I expand on the work of Giles et al. (1996) and analyze RXTE,

NuSTAR, Chandra, XMM-Newton, Swift and INTEGRAL data to fully quantify the

population of Type II bursts in the Bursting Pulsar during all 3 outbursts in which they have

been observed. I study how the bursting in this object evolves over time throughout each

outburst, and I link this behaviour to the long-term evolution of the source. I also perform

basic timing, morphology and spectral analysis on bursts, to try and understand the physical

processes behind these phenomena.

The results I present in this chapter have been published as Court et al. (2018a).

5.1 Data and Data Analysis

Since discovery, the Bursting Pulsar has undergone three bright outbursts, which began in

1995, 1997 and 2014. I refer to these outbursts as Outbursts 1, 2 and 3. I do not consider the

faint outburst in 2017 in this chapter (Sanna et al., 2017b), as no Type II bursts were

observed during this time, nor do I analyse data taken while the source was in quiescence.

See Daigne et al. (2002), Wijnands and Wang (2002) and Degenaar et al. (2012) for studies

of the Bursting Pulsar during quiescence.

I analysed data from all X-ray instruments which observed the Bursting Pulsar during these

outbursts. Specifically, I analysed lightcurves, the evolution of hardness ratios as a function

of time and of count rate, and performed statistical analysis of properties associated with

each individual burst.

5.1.1 RXTE

I analysed data from RXTE/PCA corresponding to the Outbursts 1 & 2 of the Bursting

Pulsar. This in turn corresponded to observation IDs starting with 10401-01, 20077-01,

20078-01, 20401-01 and 30075-01, between MJDs 50117 and 51225. This resulted in a

total of 743 ks of data over 300 observations, which I have listed in Appendix B. Lightcurve

data were extracted from fits files using FTOOLS[1]. Errors were calculated and quoted at

[1]https://heasarc.gsfc.nasa.gov/ftools/ftools_menu.html
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the 1σ level.

I also use data from the RXTE/ASM to monitor the long-term evolution of the source. ASM

data were taken from MIT’s ASM Light Curves Overview website[2].

Long-Term Evolution

To analyse the long-term evolution of the source during its outbursts, I extracted 2–16 keV

count rates from the Standard2 PCA data in each observation. Following Altamirano et al.

(2008b), I normalised the intensity estimated in each observation by the intensity of the

Crab nebula, using the Crab observation that is the closest in time but within the same PCA

gain epoch as the observation in question (see Jahoda et al., 2006).

Burst Identification and Analysis

To perform population studies on the Type II bursts in the Bursting Pulsar, I first extracted

lightcurves from the Standard1 data in each observation, as this data is available for all

RXTE/PCA observations. I used my own PANTHEON software to search these lightcurves

and return a list of individual bursts, using the algorithm described in Section 3.2.1. I

manually cleaned spurious detections from my sample. I defined a ‘burst’ as an event that

lasted at least 3 seconds during which the 1 s binned count rate exceeded 3 standard

deviations above the persistent emission level and reached a maximum of at least five

standard devations above the persistent emission level. I did not subtract background, as all

count rate-related parameters I analyse are persistent emission subtracted, automatically

removing background contribution.

During the analysis, Arianna Albayati (A.A.) and I discovered a number of different burst

‘classes’, similar to the multiple classes of burst described by Giles et al. (1996). Our

classes varied significantly in terms of overall structure, and as such needed to be treated

separately; I show representative lightcurves from each of our classes in Figure 5.3. These

classes were separated from one another by a number of criteria including peak count rate

and recurrence time (the time between peaks of consecutive bursts).

The vast majority of detected bursts resembled the Type II bursts seen in the Rapid Burster

(referred to as ‘Normal Bursts’ in Section 5.2) in terms of shape, duration and amplitude. I

rebinned the data corresponding to these Normal Bursts to 0.5 s. I sampled the persistent

emission before the burst, and defined the start of the burst as the first point at which count

rate exceeded 5 standard deviations above the persistent emission before the burst. The end

of the burst was defined similarly, but instead sampling the persistent emission after the

burst; by doing this, I avoid making the implicit assumption that the persistent emission is

equal before and after the burst. I fitted phenomenologically-motivated lightcurve models to

each of these bursts (described in detail in Section 5.2.3), and used these fits to extract a
[2]http://xte.mit.edu/ASM_lc.html
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number of parameters which characterise the shape and energetics of a burst (such as burst

duration, total photon counts associated with a burst and persistent emission count rate).

Due to the high peak count rates of Normal Bursts, data were affected by dead-time

(compare e.g. GRANAT data presented in Sazonov et al., 1997). I calculate the approximate

Dead-Time Factors (DTFs) for a number of the brightest Normal Bursts in my sample,

using 1 s binned data, using the following formula in the RXTE Cookbook[3]:

∆ =
CXe + CV p + CRc + 15CVL

NPCU
× 10−5 (5.1)

Where ∆ is the fractional detector deadtime, CXe is the Good Xenon count rate, CV p is the

coincident event count rate, CRc is the propane layer count rate, CVL is the very large event

count rate and NPCU is the number of PCUs active at the time.

I estimate that dead-time effects reduce the peak count rates of Normal Bursts by no more

than ∼ 12%; however, due to the sharply-peaked nature of bursts from the Bursting Pulsar,

the deadtime effect depends on the binning used. Due to this ambiguity I do not correct for

dead-time in Normal Bursts. The dead-time corrections required for the count rates seen in

other classes of burst are minimal, as they are orders of magnitude fainter (Giles et al.,

1996).

To test for correlations between parameters in a model-independent way, I used the

Spearman’s Rank correlation coefficient (as available in Scipy, Jones et al., 2001). This

metric only tests the hypothesis that an increase in the value of one parameter is likely to

correspond to an increase in the value of another parameter, and it is not affected by the

shape of the monotonic correlation to be measured. Although dead-time effects lead to

artificially low count rates being reported, a higher intensity still corresponds to a higher

reported count rate. As such, using this correlation coefficient removed the effects of

dead-time on my detection of any correlations.

To calculate the distribution of recurrence times between consecutive bursts, I considered

observations containing multiple bursts. If fewer than 25 s of data gap exists between a pair

of bursts, I considered them to be consecutive and added their recurrence time to the

distribution. I choose this maximum gap size as this is approximately the timescale over

which a Normal Burst occurs.

When SB_62us_0_23_500ms and SB_62us_24_249_500ms data were available, I divided

my data into two energy bands: A (PCA channels 0–23, corresponding to ∼ 2–7 keV[4]) and

B (channels 24–249, corresponding to ∼ 8–60 keV[5]). The evolution of colour (defined as

the ratio of the count rates in B and A) throughout a burst could then be studied. Due to the

very high count rates during Normal Bursts, I did not correct for background. During

[3]https://heasarc.gsfc.nasa.gov/docs/xte/recipes/pca_deadtime.html
[4]In RXTE gain epoch 1, corresponding to dates before MJD 50163. This corresponds to ∼ 2–9 keV in epoch

2 (MJDs 50163–50188) and ∼ 2–10 keV in epoch 3 (MJDs 50188–51259).
[5]In RXTE gain epoch 1. This corresponds to ∼ 9–60 keV in epoch 2 and ∼ 10–60 keV in epoch 3.
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fainter types of burst I estimate the background in different energy bands by subtracting

count rates from RXTE observation 30075-01-26-00 of this region, when the source was in

quiescence. Unlike using the RXTE background model, this method subtracts the

contributions from other sources in the field. However, as it is unclear whether any of the

rest of these sources are variable, the absolute values of colours I quote should be treated

with caution. I created hardness-intensity diagrams to search for evidence of hysteretic

loops in hardness-intensity space.

Following Bagnoli et al. (2015), I used the total number of persistent emission-subtracted

counts as a proxy for fluence for all bursts other than Normal Bursts. As the contribution of

the background does not change much during a single observation, this method also

automatically subtracts background counts from my results.

Detecting Pulsations

The Bursting Pulsar is situated in a very dense region of the sky close to the Galactic centre,

and so several additional objects also fall within the 1◦ RXTE/PCA field of view. Therefore

it is important to confirm that the variability I observe in my data does in fact originate from

the Bursting Pulsar.

To ascertain that all bursts considered in this study are from the Bursting Pulsar, Dr. Andrea

Sanna (A.S.) analysed the coherent X-ray pulse at the pulsar spin frequency to confirm that

the source was active. A.S. first corrected the photon time of arrivals of the RXTE/PCA

dataset, and barycentred this data using the faxbary tool available in FTOOLS (DE-405

Solar System ephemeris). A.S. corrected for the binary motion by using the orbital

parameters reported by Finger et al. (1996a).

For each PCA observation A.S. investigated the presence of the ∼ 2.14 Hz coherent

pulsation by performing an epoch-folding search of the data using 16 phase bins and

starting with the spin frequency value ν = 2.141004 Hz, corresponding to the spin

frequency measured from the 1996 outburst of the source (Finger et al., 1996a), with a

frequency step of 10−5 Hz for 10001 total steps. A.S. detected X-ray coherent pulsations in

all PCA observations performed during Outbursts 1 & 2.

5.1.2 Swift

In this study, I made use of data from XRT and BAT aboard Swift. I extracted a long-term

0.3–10 keV Swift/XRT lightcurve of Outburst 3 using the lightcurve generator provided by

the UK Swift Science Data Centre (UKSSDC, Evans et al., 2007). I also make use of

Swift/BAT lightcurves from the Swift/BAT Hard X-ray Transient website[6] (see Krimm

et al., 2013).

[6]https://swift.gsfc.nasa.gov/results/transients/
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OBSID Exposure (ks) MJD Reference

16596 10 56719 Younes et al. (2015)
16605 35 56745 Degenaar et al. (2014a)
16606 35 56747 Degenaar et al. (2014a)

Table 5.1: Information on the three Chandra observations of the Bursting Pulsar during Outburst 3.
All other observations of the Bursting Pulsar in the Chandra archive were obtained at times that the
source was in quiescence.

5.1.3 INTEGRAL

I also made use of data from IBIS aboard INTEGRAL. I extracted 17.3–80 keV IBIS/ISGRI

lightcurves of the Bursting Pulsar during Outburst 3 using the INTEGRAL Heavens portal.

This is provided by the INTEGRAL Science Data Centre (Lubiński, 2009).

5.1.4 Chandra

The Bursting Pulsar was targeted with Chandra three times during Outburst 3 (Table 5.1).

One of these observations (OBSID 16596) was taken simultaneously with a NuSTAR

observation (80002017004). In all three observations data were obtained with the HETG,

where the incoming light was dispersed onto the ACIS-S array. The ACIS-S was operated

in continued clocking (CC) mode to minimize the effects of pile-up. The Chandra/HETG

observations were analysed using standard tools available within ciao v. 4.5 (Fruscione

et al., 2006). Dr. Nathalie Degenaar (N.D.) extracted 1 s binned lightcurves from the evt2

data using dmextract, where the first order positive and negative grating data from both

the Medium Energy Grating (MEG; 0.4-5 keV) and the High Energy Grating (HEG;

0.8–8 keV) were combined.

5.1.5 XMM-Newton

A single pointed XMM-Newton observation of the Bursting Pulsar was taken during

Outburst 3 on MJD 56722 (OBSID 0729560401) for 85 ks. I extracted a 0.5–10 keV

lightcurve from EPIC-PN at 1 s resolution using SAS version 15.0.0. During this

observation, EPIC-PN was operating in Fast Timing mode. I use EPIC-PN as the statistics

are better than in MOS1 or MOS2.

5.1.6 Suzaku

Suzaku observed the Bursting Pulsar once during Outburst 3 on MJD 56740 (OBSID

908004010). To create a lightcurve, K.Y. reprocessed and screened data from the X-ray

Imaging Spectrometer (XIS, Koyama et al., 2007) using the aepipeline script and the

latest calibration database released on June 7, 2016. The attitude correction for the thermal
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OBSID Exposure (ks) MJD Reference

80002017002 29 56703 D’Aì et al. (2016)
80002017004 9 56719 Younes et al. (2015)

Table 5.2: Information on the two NuSTAR observations of the Bursting Pulsar during the main part
of Outburst 3.

wobbling was made by aeattcor2 and xiscoord (Uchiyama et al., 2008). The source was

extracted within a radius of 250 pixels corresponding to 260” from the image center. The

background was extracted from two regions near either end of the XIS chip, and subtracted

from the source.

5.1.7 NuSTAR

NuSTAR observed the Bursting Pulsar three times during its outbursts, all times in Outburst

3. One of these observations was taken while the Bursting Pulsar was not showing X-ray

bursts, and the other two are shown in Table 5.2. I extracted lightcurves from both of these

observations using nupipeline and nuproducts, following standard procedures[7].

5.2 Results

5.2.1 Outburst Evolution

I show the long-term monitoring lightcurves of Outbursts 1, 2 and 3 in Figure 5.1, as well as

mark the dates of pointed observations with various instruments.

The Bursting Pulsar was discovered already in outburst on December 12 1995 (Fishman

et al., 1995); CGRO/BATSE data suggest that this outburst began several days earlier on

December 3 (Paciesas et al., 1996; Bildsten et al., 1997). The main outburst ended around

May 10 1996 (Woods et al., 2000). I show the global lightcurve of this outburst in Figure

5.1, Panel 1. As RXTE did not observe the object before or during the peak of Outburst, I

can only obtain a lower limit of ∼ 1.75 Crab for the peak 2–16 keV flux.

There are at least two major rebrightening events in the tail of Outburst 1, which can be

seen clearly in Figure 5.1 centred at MJDs of ∼ 50235 and ∼ 50280. During these

rebrightening events, the 2–16 keV flux peaked at ∼ 0.10 and ∼ 0.18 Crab respectively.

Outburst 2 began on December 1 1996 and ended around April 7 1997 (Woods et al., 1999).

The 2–16 keV flux peaked at 1.02 Crab on MJD 50473; I show the global lightcurve of this

outburst in Figure 5.1, Panel 2. Type II-like bursts are seen in RXTE/PCA lightcurves from

Outburst 2 between MJDs 50466 and 50544. One rebrightening event occurred during the

tail of Outburst 2, centred at an MJD of ∼ 50615 with a peak 2–16 keV flux of ∼ 54 mCrab.

[7]See https://www.cosmos.esa.int/web/xmm-newton/sas-threads.
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Figure 5.1: Comparisons of the three outbursts of the Bursting Pulsar reported on in this chap-
ter. Times corresponding to pointed observations with Chandra, NuSTAR, Suzaku, Swift and XMM-
Newton are marked.

A second possible rebrightening event occurs at MJD 50975, with a peak 2–16 keV flux of

11 mCrab, but the cadence of RXTE/PCA observations was too low to unambiguously

confirm the existence of a re-flare at this time.

Outburst 3 began on January 31, 2014 (Negoro et al., 2014; Kennea et al., 2014) and ended

around April 23 (e.g. D’Aì et al., 2015). The daily 0.3–10 keV Swift/XRT rate peaked at

81 cts s−1 on MJD 56729, corresponding to 0.4 Crab. I show the global lightcurve of this

outburst in Figure 5.1, Panel 3.

During the main part of Outburst 3, Swift, XMM-Newton and Suzaku made one pointed

observation each, Chandra made four observations, and NuSTAR made three observations.

The Chandra observation on March 3 2014 was made simultaneously with one of the

NuSTAR observations (see Younes et al., 2015). After the main part of the outburst, the

source was not well-monitored, although it remained detectable by Swift/BAT, and it is

unclear whether any rebrightening events occured. A single NuSTAR observation was made

during the outburst tail on August 14 2014.

As can be seen in Figure 5.1, the main section of all three outbursts follow a common

profile, over a timescale of ∼ 150 days. A notable difference between outbursts 1 & 2 is the

number of rebrightening events; while I find two re-flares associated with Outburst 1, I only

find one associated with Outburst 2 unless I assume the event at MJD 50975 is associated

with the outburst. Additionally, Outburst 2 was at least a factor ∼ 1.7 fainter at its peak than

Outburst 1 (see also Woods et al., 1999), while Outburst 3 was a factor of & 4 fainter at
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Figure 5.2: 2–16 keV RXTE/PCA lightcurves of Outbursts 1 & 2 of the Bursting Pulsar (solid blue),
overlaid with plots showing how the fractional RMS of the 2.4 Hz pulsation associated with the pulsar
changes as a function of time during these outbursts (orange crosses).

peak than Outburst 1.

Pulsations

A.S. found pulsations in PCA data throughout the entirety of Outbursts 1 & 2. This

confirms that the Bursting Pulsar was active as an X-ray pulsar in all of my observations,

leading us to conclude that all the types of X-ray burst that we see are from the Bursting

Pulsar. In Figure 5.2, I show that the amplitude of these pulsations approximately followed

the intensity of the source in both outbursts, but there were significant deviations from this

trend. These deviations will require further investigation, and a comparison with other

accreting pulsar systems. Previous studies have shown that pulsations were also present

during Outburst 3 (e.g. Sanna et al., 2017c).
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Bursting Behaviour

Bursts are seen in RXTE/PCA lightcurves from the start of the Outburst 1 (e.g. Kouveliotou

et al., 1996b). These bursts occur until around MJD 50200, as the source flux falls below

∼ 0.1 Crab in the 2–16 keV band.

During the latter part of the first rebrightening after Outburst 1, between MJDs 50238 and

50246, A.A. found Type II-like bursts with amplitudes ∼ 2 orders of magnitude smaller than

those found during the main outburst event. These gradually increased in frequency

throughout this period of time until evolving into a period of highly structured variability

which persisted until MJD 50261.

In Outburst 2, Type II bursts occured between MJDs ∼ 50466 and 50542. Low-amplitude

Type II-like bursts were seen during the latter stages of the main outburst, between MJDs

50562 and 50577. These again evolved into a period of highly structured variability; this

persisted until MJD 50618, just after the peak of the rebrightening event.

High-amplitude Type II bursts were also seen in Outburst 3 (e.g. Linares et al., 2014). As

no soft (. 10 keV) X-ray instrument was monitoring the Bursting Pulsar during the latter

part of Outburst 3, it is unknown whether this Outburst showed the lower-amplitude

bursting behaviour seen at the end of Outbursts 1 & 2. Low amplitude bursting behaviour is

not seen in the pointed NuSTAR observation which was made during this time.

5.2.2 Categorizing Bursts

A.A. and I found that bursts in the Bursting Pulsar fall into a number of discrete classes,

lightcurves from which I show in Figure 5.3. These classes are as follows:

• Normal Bursts (Figure 5.3, Panel a): the brightest bursts seen from this source, with

peak count 1 s binned rates of ∼ 10000 cts s−1 PCU−1, and recurrence timescales of

order ∼ 1000 s. These bursts are roughly Gaussian in shape with durations of ∼ 10 s,

and are followed by a ‘dip’ in the persistent emission count rate with a duration of

order 100 s (see also e.g. Giles et al., 1996).

• Minibursts (Figure 5.3, Panel b): faint bursts with 1 s-binned peak count rates of ∼ 2

times the persistent emission count rate. Minibursts are variable, with duration

timescales between ∼ 5–50 s. These bursts are also sometimes followed by dips

similar to those seen after Normal Bursts.

• Mesobursts (Figure 5.3, Panel c): Type II-like bursts. These bursts differ from

Normal Bursts in that they do not show well-defined subsequent ‘dips’. They are also

fainter than Normal Bursts, with peak count 1 s binned count rates of

∼ 1000 cts s−1 PCU−1. Their burst profiles show fast rises on timescales of seconds,

with slower decays and overall durations of ∼ 50 s. The structure of the bursts is very

non-Gaussian, appearing as a small forest of peaks in lightcurves.
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Figure 5.3: 2–49 keV lightcurves for the four classes of bursting behaviour identified in this chapter:
a) Normal Burst, b) Miniburst, c) Mesoburst, d) Structured Bursts. Note that Panel d is plotted with
a different time scaling to the other panels so as to better show the behaviour of Structured Bursting.
On all figures the median count rate, which I use as a proxy for the persistent emission, is plotted in
cyan. Lightcurves a-c are binned to 0.125 s, while lightcurve d is binned to 1 s.
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• Structured Bursts (Figure 5.3, Panel d): the most complex class of bursting behaviour

we observe from the Bursting Pulsar, consisting of patterns of flares and dips in the

X-ray lightcurve. The amplitudes of individual flares are similar to those of the

faintest Mesobursts. The recurrence timescale is of the order of the timescale of an

individual flare, meaning that is it difficult to fully separate individual flares of this

class.

In the upper panel of Figure 5.4 I show a histogram of persistent-emission-subtracted peak

count rates for all Normal and Mesobursts observed by RXTE. I split these two classes based

on the bimodal distribution in peak count rate as well as the lack of dips in Mesobursts. In

the lower panel of Figure 5.4, I show the histogram of peak count rates for all Normal and

Minibursts observed by RXTE as a fraction of the persistent emission at that time. I split

these two classes based on the strongly bimodal distribution in fractional amplitude.

I also find 6 bursts with fast (∼ 1 s) rises and exponential decays that occur during the

lowest flux regions of the outburst (. 50 mCrab). Strohmayer et al. (1997) and Galloway

et al. (2008) have previously identified these bursts as being Type I X-ray bursts from

another source in the RXTE field of view. To show that these unrelated Type I bursts would

not be confused with Minibursts, I add examples of the Type I bursts to lightcurves from

observations containing Minibursts. I find that the peak count rates in Type I bursts are

roughly equal to the amplitude of the noise in the persistent flux in these observations,

hence they would not be detected by my algorithms.

I show when in Outbursts 1 & 2 each type of burst was observed in Figures 5.5 and 5.6

respectively. Normal Bursts and Minibursts (red) occur during the same periods of time

from around the peak of an outburst until the persistent emission falls beneath ∼ 0.1 Crab;

assuming an Eddington Limit of ∼ 1 Crab (e.g Sazonov et al., 1997), this corresponds to an

Eddington ratio of ∼ 0.1. After this point, bursting is not observed for a few tens of days.

Mesobursts (blue) begin at the end of a rebrightening event in Outburst 1 and during the

final days of the main part of the outburst in Outburst 2. Structured Bursts (yellow) occur

during the first part of a rebrightening event in both outbursts. Although there was a second

rebrightening event after Outburst 1, neither Mesobursts nor Structured Bursts were

observed at this time. Based on this separation, as well as differences in structure, I treat

each class of burst separately below.

5.2.3 Normal Bursts

I define Normal Bursts as the set of all bursts with a persistent-emission-subtracted peak 1 s

binned RXTE/PCA-equivalent count rate above 3000 cts s−1 PCU−1. Normal Bursts account

for 99 out of the 190[8] bursts identified for this study. They are observed during all three

outbursts covered in this study. They occurred between MJDs 50117 and 50200 in Outburst

1, and between 50466 and 50542 in Outburst 2; during these intervals, RXTE observed the

[8]This number does not include Structured Bursts as their complex structure makes them difficult to separate.
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Figure 5.4: Upper Panel: A histogram of the peak 1 s binned peak count rates of the joint population
of all Normal and Mesobursts seen by RXTE. The dashed line indicates the position of the threshold
above which I consider a Type II-like burst to be a Normal Burst. The resultant split of the population
into Normal and Mesobursts is indicated by blue and red shading respectively. The skewed shape
of the distribution of Normal Bursts is due to the effects of dead-time putting an effective cap on
their maximum observed intensity. Lower Panel: A histogram of the peak 1 s binned peak count
rates of the joint population of all Normal and Minibursts seen by RXTE, divided by the persistent
emission count rate at that time. The dashed line indicates the position of the threshold below which
I consider a burst to be a Miniburst. The resultant split of the population into Normal and Minibursts
is indicated by blue and green shading respectively. Note that the x-axis of both plots is logarithmic,
and so number density is not preserved.
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Figure 5.5: Central panel shows the global 2–16 keV RXTE/PCA lightcurve of the 1995–1996 out-
burst of the Bursting Pulsar, highlighting periods of time during which Mesobursts (blue) Structured
Bursts (yellow) or Normal and Mini bursts (red) are observed. A single Mesoburst was also observed
on MJD 50253, during the period of the outburst highlighted in yellow (see Figure 5.18). Other panels
show example lightcurves which contain the aforementioned types of bursting behaviour. See section
5.2.2 for a detailed treatment of burst classification. Fluxes reported in units of Crab.
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Figure 5.6: Central panel shows the global 2–16 keV RXTE/PCA lightcurve of the 1997–1999 out-
burst of the Bursting Pulsar, highlighting periods of time during which Mesobursts (blue) Structured
Bursts (yellow) or Normal and Mini bursts (red) are observed. Other panels show example lightcurves
which contain the aforementioned types of bursting behaviour.
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Bursting Mode Bursts Total Exposure (ks) Duration (d)

Normal Bursts 99 192 76
Minibursts 48 192 76
Mesobursts 43 44 25
Structured Bursts - 80 54

Table 5.3: Statistics on the population of bursts I use for this study, as well as the duration and
integrated RXTE/PCA exposure time of each mode of bursting. All numbers are the sum of values
for Outbursts 1 and 2. As Normal and Minibursts happen during the same period of time in each
outburst, the exposure time and mode duration for these classes of bursting are equal.

source for a total of 192 ks. See Table 5.3 to compare these with numbers for the other

classes of burst identified in this study. Normal Bursts occur during the same time intervals

in which Minibursts are present. In both of these outbursts, the period of Normal and

Minibursts correspond to the time between the peak of the outburst and and the time that the

persistent intensity falls below ∼ 0.1 Crab.

Recurrence Time

Using Outburst 3 data from Chandra, XMM-Newton, NuSTAR and Suzaku, I find minimum

and maximum Normal Burst recurrence times of ∼ 345 and ∼ 5660 s respectively[9]. I show

the histogram of recurrence times from Outburst 3 in Figure 5.7, showing which parts of the

distribution were observed with which observatory. Compared to data from Chandra and

XMM-Newton, data from Suzaku generally suggests shorter recurrence times. This is likely

due to Suzaku observations consisting of a number of ∼ 2 ks windows; as this number is of

the same order of magnitude as the recurrence time between bursts, there is a strong

selection effect against high recurrence times in the Suzaku dataset.

From the RXTE data I find minimum and maximum Normal Burst recurrence times of

∼ 250 and ∼ 2510 s during Outburst 1, and minimum and maximum recurrence times of

∼ 250 and ∼ 2340 s during Outburst 2. As the length of an RXTE pointing (. 3 ks) is also of

the same order of magnitude as the recurrence time between bursts, selection effects bias us

against sampling pairs of bursts with longer recurrence times, and hence this upper value is

likely an underestimate.

To test whether consecutive Normal Bursts are independent events, I tested the hypothesis

that bursts are randomly distributed in time in a Poisson distribution (Poisson, 1837).

Assuming my hypothesis, as well as assuming that the frequency of Normal Bursts does not

change during an outburst (e.g. Aptekar et al., 1998), I could concatenate different

observations and the resultant distribution of burst times should still be Poissonian. For

each of Outbursts 1 & 2, I concatenated all RXTE data during the Normal Bursting part of

the outburst into a single lightcurve. I split this concatenated lightcurve into windows of

[9]To avoid double-counting peak pairs, I do not use NuSTAR observation 80002017004, which was taken
simultaneously with Chandra observation 16596.
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Figure 5.7: The distribution of recurrence times between consecutive Normal Bursts seen in pointed
Chandra, XMM-Newton, NuSTAR and Suzaku observations of Outburst 3 of the Bursting Pulsar.
Distributions of bursts observed by different instruments are stacked on top of each other and colour
coded.
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length w and counted how many bursts were in each, forming a histogram of number of

bursts per window for the combined set of all bursts. I fit this histogram with a Poisson

probability density function, obtaining the value λ which is the mean number of bursts in a

time w. λ/w is therefore an expression of the true burst frequency per unit time, and should

be independent of my choice of w. I tried values of w between 100 and 10000 s for both

outbursts, and found that in all cases λ/w depends strongly on w. Therefore my

assumptions cannot both be valid, and I rejected the hypothesis that these bursts are from a

Poisson distribution with constant λ. This in turn suggests at least one of the following must

be correct:

1. The average recurrence time of bursts was not constant throughout the outburst. Or:

2. The arrival time of a given burst depends on the arrival time of the preceding burst,

and therefore bursts are not independent events.

Burst Structure

In the top panel of Figure 5.8 I show a plot of all Normal Bursts observed with RXTE

overlayed on top of one another. I find that all Normal Bursts follow a similar burst profile

with similar rise and decay timescales but varying peak intensities. In the lower panel of

Figure 5.8 I show a plot of Normal Bursts overlaid on top of each other after being

normalised by the persistent emission count rate in their respective observation. The bursts

are even closer to following a single profile in this figure, suggesting a correlation between

persistent emission level in an outburst and the individual fluence of its bursts.

The structure of the lightcurve of a Normal Burst can be described in three well-defined

parts:

1. The main burst: roughly approximated by a skewed Gaussian (see e.g. Azzalini,

1985).

2. A ‘plateau’: a period of time after the main burst during which count rate remains

relatively stable at a level above the pre-burst rate.

3. A ‘dip’: a period during which the count rate falls below the persistent level, before

exponentially decaying back up towards the pre-burst level (e.g. Younes et al., 2015).

The dip is present after every Normal Burst in my RXTE sample from Outbursts 1 & 2,

whereas the plateau is only seen in 39 out of 99. I show example lightcurves of bursts with

and without plateaus in Figure 5.9, which also show that the dip is present in both cases.

In order to study Normal Bursts, I fit the burst profiles with phenomenologically-motivated

mathematical functions. In Figure 5.10 I show a schematic plot of my model, as well as

annotations explaining the identities of the various parameters I use. I fit the main burst

with a skewed Gaussian, centred at t = x0 with amplitude ab, standard deviation σB and
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Figure 5.8: Top: a lightcurve of every Normal Burst, centred by the time of its peak, overlaid on top
of each other to show the existence of a common pulse profile. Bottom: a lightcurve of every Normal
Burst in which count rates have been normalised by the persistent emission count rate during the
observation from which each burst was observed. As the bursts are on average closer to the average
pulse profile in this metric, this suggests that the intensity of a burst is roughly dependent on the
persistent emission rate. Some persistent emission-normalised count rates may be artificially low due
to dead-time effects.
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Figure 5.9: RXTE lightcurves of Normal Bursts with (top) and without (bottom) ‘plateau’ features,
showing the burst structure in each case. The median count rate, which I use as a proxy for the
persistent emission, is plotted in cyan to highlight the presence of the count rate ‘dip’ after each burst.
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skewness[10] c, added to the persistent emission rate k. I fit the ‘dip’ with the continuous

piecewise function ‘Dipper function’ f (t):

f (t) =


k −

ad(t − t0)
d − t0

, if t ≤ d

k − ad exp
(
d − t
λ

)
, otherwise

(5.2)

Where t is time, t0 is the start time of the dip, ad is the amplitude of the dip, d is the time at

the local dip minimum and λ is the dip recovery timescale. This function is based on the

finding by Younes et al. (2015) that dip count rates recover exponentially, but has the added

advantage that the start of the recovery phase can also be fit as an independent parameter.

Using this fit, I can estimate values for burst fluence φB, burst scale-length σB, ‘missing’

dip fluence φD and dip scale-length λ and compare these with other burst parameters. When

present, I also calculate the fluence of the plateau φp by summing the persistent

emission-subtracted counts during the region between the end of the burst (as defined in

Section 5.1.1) and the start of the dip. For each pair of parameters, I do not consider

datapoints when the magnitude of the error on a parameter is greater than the value of the

parameter.

I only extract these parameters from Normal Bursts observed by RXTE during Outbursts 1

& 2. This ensures that the resultant parameter distributions I extracted are not affected by

differences between instruments.

Parameter Distributions

I extracted a total of ten parameters from my fit to each burst: the parameters ad, d and λ of

the fit to the dip, the missing fluence φD of the dip, the parameters ab, σB and c of the

skewed Gaussian fit to the main burst, the main burst fluence φB, the maximum persistent

emission-subtracted rate in the plateau ap and the plateau fluence φP.

Using my RXTE sample of Normal Bursts, I can construct distributions for all of the burst

parameters described in Section 5.2.3 for bursts in Outbursts 1 & 2. I give the mean and

standard deviation for each parameter in each outburst in Table 5.4, and histograms for each

can be found in Appendix C.

The mean value of most parameters differs by no more than ∼ 50% between outbursts.

Notable exceptions are d, φp, φd and ap, which are ∼ 2.5, ∼ 2.5 ∼ 1.5 and ∼ 1.7 times

greater in Outburst 1 than in Outburst 2 respectively. The less significant differences

between values of φB and aB in Outbursts 1 & 2 are expected, as the amplitude of a burst

correlates with persistent rate k which was generally higher in Outburst 1 than in Outburst 2.

[10]A measure of how far the peak of the Gaussian is displaced from its centre.
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Figure 5.10: A schematic explaining the origin of the 12 Normal Burst parameters used in this study,
as well as showing the functional forms of both the skewed Gaussian fit to a burst and the ‘dipper
function’ (Equation 5.2) fit to a dip. Note that I do not fit a function to the plateau, and I calculate
its fluence by summing the persistent rate-subtracted counts. Diagram is for explanation only and the
burst pictured is neither based on real data nor to scale.

Outburst 1 Outburst 2 Outbursts 1&2

Mean S.D. Mean S.D. Mean S.D.
φB 2.74e6 7.8e5 2.25e6 7.6e5 2.43e6 8.0e5
aB 3.18e5 8.4e4 2.72e5 9.9e4 2.90e5 9.6e4
σB 3.39 0.35 3.42 0.59 3.41 0.52

c 2.68 1.9 2.79 2.0 2.75 2.0
φd 1.74e6 1.3e6 1.17e6 3.6e5 1.38e6 8.7e5
ad 550 335 536 307 541 318
d 49 46 20 22 31 36
λ 294 176 229 124 254 150
φp 1.89e5 2.3e5 7577 5707 1.4e5 1.8e5
ap 1289 1113 767 463 1063 928

Table 5.4: A table showing the mean and standard deviation of 10 Normal Burst parameters of
RXTE-sampled bursts. In each case, I give the values for populations from only Outburst 1, from only
Outburst 2 and from the combined population from both outbursts. Histograms for each parameter
can be found in Appendix C.
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Correlations

In total, I extracted 12 parameters for each Normal Burst in my RXTE sample: the 10 burst

parameters listed in Section 5.2.3, the recurrence time st until the next burst and the

persistent emission rate k at the time of the burst.

As the amplitude of all 3 components in a burst scale with the persistent emission level, I

rescaled my values of ab, ad, φB, φD and φP by a factor 1
k . I show the covariance matrix

with all 66 possible pairings of these normalised parameters in Figure 5.11 (we present the

covariance matrix of these parameters before being rescaled in Appendix D). Using the

Spearman’s Rank Correlation Coefficient, I find the following ≥ 5σ correlations which are

highlighted in Figure 5.11:

• Persistent emission k anticorrelates with normalised burst fluence φB/k (> 10σ) and

normalised burst amplitude ab/k (> 10σ).

• Normalised burst fluence φB/k correlates with normalised burst amplitude aB/k

(8.0σ).

• Normalised dip fluence φd/k correlates with dip recovery timescale λ (6.3σ).

• Normalised dip amplitude ad/k anticorrelates with dip falltime d (5.7σ) and dip

recovery timescale λ (7.1σ).

• Normalised plateau fluence φp/k correlates with normalised plateau amplitude ap

(6.4σ).

As φB can be approximated to first order as a product of aB and σ, the correlation between

φB and aB is expected as they are not independent parameters. Similarly, the correlations

between φd & λ and φp and ap are likely due to these pairs of parameters not being

independent.

Colour Evolution

To explore the spectral behaviour of Normal Bursts, Toyah Overton (T.O.) and I studied the

evolution of the hardness (the ratio between count rate in the energy bands ∼ 2–7 and

∼ 8–60 keV energy bands) as a function of count rate during the individual bursts. Plotting

hardness-intensity diagrams allow us to check for spectral evolution in a model-independent

way. We do not correct them for background as the count rates in both bands are very high.

T.O. and I find evidence of hysteretic loops in hardness-intensity space in some, but not all,

of the Normal Bursts in my sample; see Figure 5.12 for an example of such a loop. The

existence of such a loop suggests significant spectral evolution throughout the burst. This

finding can be contrasted with results from previous studies in different energy bands (e.g.

Woods et al., 1999 from ∼ 25–100 keV) which suggested no spectral evolution during Type

II bursts in this source.
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Figure 5.12: A 1 s-binned hardness-intensity diagram of a Normal Burst from RXTE/PCA observa-
tion 10401-01-08-00, with an inset 2–60 keV lightcurve. Significant colour evolution can be seen
during the burst, taking the form of a loop.
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5.2.4 Minibursts

I define Minibursts as the set of all bursts with a peak 1 s binned RXTE/PCA-equivalent

count rate of < 300% of the persistent rate. Minibursts account for 48 out of the 190 bursts

identified for this study. They are observed during all 3 Outbursts, and occur during the

same times that Normal Bursts are present. Minibursts occurred between MJDs 50117 and

50200 in Outburst 1, and between 50466 and 50542 in Outburst 2; during these intervals,

RXTE observed the source for a total of 192 ks. These intervals correspond to the times

between the peak of each outburst and and the time that the persistent intensity falls below

∼ 0.1 Crab.

Recurrence Time

There are only 10 observations with RXTE which contain multiple Minibursts. Using these,

I find minimum and maximum Miniburst recurrence times of 116 and 1230 s.

I find 17 RXTE observations which contain both a Miniburst and a preceding Normal Burst,

and find minimum and maximum Normal Burst→Miniburst recurrence times of 461 and

1801 s.

Structure

In Figure 5.13, I show the lightcurve of a representative Miniburst, and I show all

Minibursts overplotted on each other in Figure 5.14. These bursts are roughly Gaussian in

shape with a large variation in peak count rate; as can be seen in Figure 5.14, however, the

persistent-normalised peak count rates of Minibursts are all roughly consistent with 2.

Minibursts are all ∼ 5 s in duration, and some show signs of a ‘dip’ feature similar to those

seen in Normal Bursts. I find that the timescales of these dips are all . 10 s. I estimate

‘missing’ fluence in each dip by integrating the total persistent-rate-subtracted counts

between the end of the burst and a point 10 s later. If this ‘missing fluence’ is less than half

of the standard deviation in count rate multiplied by 5 s, which represents the smallest

< 10 s triangle-shaped dip which would be detectable above noise in a given dataset, I treat

the dip in that outburst as not being detected.

Due to the relatively short duration and low amplitudes of Minibursts, I am unable to

reliably discern whether they contain a single peak or multiple peaks. For this reason I do

not fit them mathematically.

Parameters & Correlations

For each Miniburst, I extract the following parameters:
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Figure 5.13: A representative RXTE/PCA lightcurve of a Miniburst from OBSID 20077-01-03-00 in
Outburst 2.

• Total burst fluence and burst fluence divided by persistent emission.

• Peak 1 s binned rate and peak rate divided by persistent emission.

• Rise time, fall time and total time.

The mean and standard deviation of each of these parameters, calculated from RXTE data,

is presented in Table 5.5 for Outburst 1, Outburst 2 and the combined population of

Minibursts from Outbursts 1 & 2. The standard deviations on the fluence and peak rates of

Minibursts are very large, suggesting that these parameters are distributed broadly.

Using the Spearman’s Rank metric, I find only two correlations above the 5σ level:

Outburst 1 Outburst 2 Outbursts 1&2

Mean S.D. Mean S.D. Mean S.D.
Fluence 6792 5776 4474 3307 5422 4627

Peak Rate 3501 2851 2473 1664 2902 2293
Fluence/k 3.67 1.13 3.58 1.47 3.61 1.34

Peak Rate/k 1.90 0.37 1.76 0.28 1.82 0.32
Rise Time 2.33 0.8 2.03 1.1 2.15 1.0
Fall Time 2.32 0.9 2.35 1.0 2.32 0.9
Tot. Time 4.61 1.0 4.38 01.0 4.47 1.0

Table 5.5: A table showing the mean and standard deviation of 7 parameters of RXTE-sampled
Minibursts from Outburst 1, Outburst 2 and both outbursts combined. Fluence is given in cts PCU−1,
peak rate is given in cts s−1 PCU−1 and rise, fall and total time are given in s. k is the persistent
emission rate during the observation in which a given burst was detected.
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Figure 5.14: Top: a plot of every Miniburst, centred by the time of its peak, overlaid on top of each
other. Bottom: a plot of every Miniburst in which count rates have been normalised by the persistent
emission count rate during the observation from which each burst was observed.

134



• Fluence is correlated with peak rate (7.3σ).

• Fluence divided by persistent rate is correlated with peak rate divided by persistent

rate (7.1σ).

As in Normal Bursts, a correlation between peak rate and fluence is to be expected.

However, due to the poor statstics associated with Miniburst parameters, it is likely that

other parameter pairs are also correlated.

Colour Evolution

Minibursts show the greatest magnitude of evolution in colour of all the classes of burst. In

Figure 5.15, I show how the hardness ratio between the 4–10 and 2–4 keV energy bands

changes during an observation containing both a Miniburst and a Normal Burst. I find that

the hardness ratio increases by ∼ 50% in a Miniburst, significantly more than the change in

hardness during Normal or Mesobursts. The statistics in minibursts were too poor to check

for the presence of hysteresis.

5.2.5 Mesobursts

I define Mesobursts as the set of all bursts with a persistent-emission-subtracted peak 1 s

binned RXTE/PCA-equivalent count rate below 3000 cts s−1 PCU−1 in which the peak of the

burst reaches at least 300% of the persistent rate. Mesobursts account for 43 out of the 190

bursts identified for this study. They are observed in RXTE data from both Outbursts 1 & 2;

in both cases they occur after the main outburst and before or during a rebrightening event.

Mesobursts occurred between MJDs 50238 and 50248 in Outburst 1, and between 50562

and 50577 in Outburst 2; during these intervals, RXTE observed the source for a total of

44 ks. As no soft X-ray instrument monitored the Bursting Pulsar during the latter stages of

Outburst 3, it is unclear whether Mesobursts occurred during this outburst. The one pointed

observation of NuSTAR made during this time did not detect any Mesobursts.

Recurrence Time

Only 6 RXTE observations in Outburst 1, and 4 in Outburst 2, contain multiple Mesobursts.

From my limited sample I find minimum and maximum recurrence times of ∼ 230 and

∼ 1550 s in Outburst 1 and minimum and maximum recurrence times of ∼ 310 and ∼ 2280 s

in Outburst 2.

Structure

The structure of the main part of a Mesoburst is significantly more complex than in Normal

Bursts, consisting of a large number of secondary peaks near the main peak of the burst.
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Figure 5.15: A portion of observation 10401-01-16-00, featuring a Normal Burst (∼ 30 s) and a
Miniburst (∼ 410 s). The top panel shows the total 2–10 keV lightcurve. The middle panel shows
lightcurves from two different energy bands; the count rates from the soft energy band have been
multiplied by 5.4 so they can more easily be compared with the hard energy band. The bottom panel
shows the evolution over time of the ratio between the rates in the two bands. As can be seen in
panels 2 and 3, the Miniburst has a significantly higher fractional amplitude in the 4–10 keV energy
band than in the 2–4 keV band.
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Figure 5.16: A lightcurve from RXTE/PCA observation 20078-01-17-00 from Outburst 2, showing
an apparent ‘plateau’ feature after a Mesoburst.

Mesobursts never show the post-burst ‘dip’ feature that we see in Normal Bursts or

Minibursts, but they can show ‘plateaus’. In Figure 5.16 I show an example of a Mesoburst

with a plateau similar to those seen after Normal Bursts, suggesting a connection between

the two classes.

In Figure 5.17 I show the lightcurves of all Mesobursts observed by RXTE overlayed on top

of each other before (top panel) and after (bottom panel) being renormalised by persistent

emission rate. It can be seen that the intensity and structure of these bursts is much more

variable than in Normal Bursts (see Figure 5.8). However, each Mesoburst has a fast rise

followed by a slow decay, and they occur over similar timescales of ∼ 10–30 s.

Parameters & Correlations

Due to the complexity structure of Mesobursts, I do not fit them mathematically as I did for

Normal Bursts. Instead I extract the same parameters as for Minibursts (see the list in

Section 5.2.4). The mean and standard deviation of each of these parameters, calculated

from RXTE/PCA data, is presented in Table 5.6. Due to the relative low number of

Mesobursts compared to Normal Bursts, I only present the results from the combined set of

bursts in both Outbursts 1 & 2. In general, Mesobursts are longer in duration than Normal

Bursts, and have significantly smaller amplitudes and fluences (compare e.g. Table 5.4).

Using the Spearman’s Rank metric, I find a number correlations above the 5σ level:

• Fluence is correlated with peak rate (> 10σ), peak rate divided by persistent rate

(6.7σ), fall time (6.8σ) and total time (6.0σ).

• Fluence divided by persistent rate is correlated with peak rate divided by persistent
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Figure 5.17: Top: a lightcurve of every Mesoburst, centred by the time of its peak, overlaid on top
of each other. Bottom: a plot of every Mesoburst in which count rates have been normalised by the
persistent emission count rate during the observation from which each burst was observed.
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Mean Standard Deviation
Fluence (cts PCU−1) 6067 6707
Peak Rate (cts s−1 PCU−1) 665.4 658.4
Fluence/k 48.6 32.8
Peak Rate/k 5.32 4.0
Rise Time (s) 6.95 4.9
Fall Time (s) 18.28 10.8
Total Time (s) 25.88 13.3

Table 5.6: A table showing the mean and standard deviation of 7 burst parameters of RXTE-sampled
Mesobursts from Outbursts 1 & 2. k is the persistent emission rate during the observation in which a
given burst was detected.

rate (7.3σ).

• Peak rate is also correlated with peak rate divided by persistent rate (7.4σ), fall time

(5.8σ) and persistent level (6.2σ).

• Rise time correlates with total time (5.4σ).

• Fall time correlates with total time (> 10σ).

Again, the correlation between fluence and peak rate is expected, as is the correlation

between peak rate and peak rate divided by persistent rate.

Colour Evolution

The hardness ratio of the emission from the source decreases significantly during

Mesobursts, with the PCA 8–60/2–7 keV colour decreases from ∼ 0.6 between bursts to

∼ 0.2 at the peak of a burst. Due to the poor statistics of these features compared with

Normal Bursts, I was unable to check for evidence of hardness-intensity hysteresis.

5.2.6 Structured ‘Bursts’

I define Structured Burst observations as observations in which the recurrence time between

bursts is less than, or approximately the same as, the duration of a single burst. Structured

Bursts constitute the most complex behaviour I find in my dataset. Unlike the other classes

of burst A.A. and I identify, Structured Bursts are not easily described as discrete

phenomena. I find Structured Bursts in 54 observations which are listed in Appendix B.

In both outbursts covered by RXTE, Structured Bursts occur in the time between the end of

the main outburst and the start of a rebrightening event. In both cases these periods of

Structured Bursts are preceded by a period populated by Mesobursts. Mesobursts occurred

between MJDs 50248 and 50261 in Outburst 1, and between 50577 and 50618 in Outburst

2; during these intervals, RXTE observed the source for a total of 81 ks. Notably, as I show
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Figure 5.18: A lightcurve from RXTE/PCA observation 10401-01-57-03, showing a Mesoburst oc-
curing during a period of Structured Bursting.

in Figure 5.18, one Outburst 1 RXTE lightcurve containing Structured Bursting also

contains a bright Mesoburst.

In both outbursts, the amplitude of Structured Bursting behaviour decreases as the outburst

approaches the peak of the rebrightening event. This amplitude continues to decrease as the

Structured Burst behaviour evolves into the low-amplitude noisy variability associated with

the source’s evolution towards the low/hard state.

Colour Evolution

I produce hardness-intensity diagrams for a number of Structured Bursting observations; I

show a representative example in Figure 5.19. I find that hardness is strongly correlated

with count rate during this class of bursting, but that the magnitude of the change in

hardness is no greater than ∼ 30%. This is less than the change in hardness that I find

during Normal or Minibursts. I also find no evidence of hysteretic hardness-intensity loops

from Structured Bursts.
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Figure 5.19: A 1 s-binned hardness-intensity diagram from RXTE observation 20078-01-23-00,
showing that hardness tends to correlate with intensity during Structured Bursting. Data are binned to
8 s, and background has been estimated by subtracting mean count rates in the relevant energy bands
from RXTE OBSID 30075-01-26-00.
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Types of Structured Bursting

In Figure 5.20, I present a selection of lightcurves which show the different types of

variability that can be seen during periods of Structured Bursting. These consist of a variety

of patterns of flares and flat-bottomed dips, and both RXTE-observed outbursts show several

of these different patterns of Structured Bursting. As all types of Structured Bursting have

similar amplitudes and occur in the same part of each outburst, I consider them to be

generated by the same physical process. I do not seperate these patterns into separate

subclasses in this thesis.

5.3 Discussion

I analyse all available X-ray data from the first 3 outbursts of the Bursting Pulsar. The

bursting behaviour evolves in a similar way during these outbursts, strongly associating

them with the Bursting Pulsar and suggesting an underlying connection between the classes

of burst. I also find that both Outbursts 1 & 2 showed ‘rebrightening events’ similar to those

seen in a number of other LMXBs (e.g. Wijnands et al., 2001; Patruno et al., 2016),

including IGR J17091.

I find that the X-ray bursts from these data can be best described as belonging to four

phenomenological classes: Normal Bursts, Minibursts, Mesobursts and Structured Bursts.

For each of these four classes, I collect a number of statistics to shed light on the physical

mechanisms that generate these lightcurve features.

Normal Bursts and Minibursts both represent the ‘Type II’ bursting behaviour which is

observed most commonly from this source. Mesobursts occur much later on in the outburst

and show fast-rise slow-decay profiles; they are generally much fainter and more structured

than Normal Bursts. Finally, Structured Bursts form continuous highly structured regions of

variability over timescales of days. All Normal Bursts and some Minibursts show count rate

‘dips’ after the main burst, while Mesobursts and Structured Bursts do not. In addition to

this, some Normal and Mesobursts show count rate ‘plateaus’; regions of roughly stable

count rate above the persistent level which last for ∼ 10s of seconds. These features are also

sometimes seen in Mesobursts, while Minibursts and Structured Bursts never show these

structures.

Here I discuss these results in the context of models proposed to explain Type II bursting. I

also compare my results with those of previous studies on bursting in both the Bursting

Pulsar and the Rapid Burster.
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Figure 5.20: A selection of RXTE lightcurves from Structured Bursting observations of the Bursting
Pulsar. Top: a lightcurve from Outburst 1 showing flaring on timescales of ∼ 10 s. Middle: a
lightcurve from Outburst 1 showing the same flaring behaviour with an additional slower modulation
over ∼ 50 s. Bottom: a lightcurve from Outburst 2 showing a regular sequence of flat-bottomed
dips and multi-peaked flaring. These show the wide variety of variability patterns that I classify as
‘Structured Bursting’.
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5.3.1 Evolution of Outburst and Bursting Behaviour

In general, Outburst 1 was brighter than Outburst 2, with the former having a peak

2–60 keV intensity a factor of ∼ 1.7 greater than the latter. However, in Figure 5.1 I show

that both outbursts evolve in a similar way. In both outbursts, the intensity of the Bursting

Pulsar reaches a peak of order ∼ 1 Crab before decreasing over the next ∼ 100 days to a

level of a few tens of mCrab. A few 10s of days after reaching this level, the lightcurves of

both outbursts show a pronounced ‘rebrightening’ event, during which the intensity

increases to ∼ 100 mCrab for ∼ 10 days. Outburst 1 shows a second rebrightening event

∼ 50 days after the first. It is unclear whether any rebrightening events occurred in Outburst

3 due to a lack of late-time observations with soft X-ray telescopes. X-ray ‘rebrightening’

events have been seen after the outbursts of a number of other LMXBs with both neutron

star and black hole primaries: including SAX J1808.4-3658 (Wijnands et al., 2001), XTE

J1650-500 (Tomsick et al., 2003) and IGR J17091-3624 (see Section 4.2.1).

As I have shown in Figures 5.5 & 5.6, the nature of bursts from the Bursting Pulsar evolves

in a similar way in both Outbursts 1 & 2. Starting from around the peak of each outburst,

both Normal and Minibursts are observed. The fluence of these bursts decrease over time as

the X-ray intensity of the source decreases, before bursting shuts off entirely when the

2–16 keV flux falls below ∼ 0.1 Crab. After a few 10s of days with no bursts, bursting

switches back on in the form of Mesobursts; this occurs during the tail of a rebrightening

event in Outburst 1, but in the tail of the main outburst in Outburst 2. Mesobursting

continues until the 2–16 keV source flux falls below ∼ 0.03 Crab, at which point I observe

the onset of Structured Bursting. In both Outbursts, Structured Bursting stops being visible

a few 10s of days later during the start of a rebrightening event. Because this evolution is

common to both of the outbursts observed by RXTE, this strongly indicates that the nature

of bursting in the Bursting Pulsar is connected with the evolution of its outbursts.

Additionally, with the exceptions of Normal and Minibursts, I show that each class of burst

is mostly found in a distinct part of the outburst corresponding to a different level of

persistent emission.

In Figure 5.21, I show lightcurves from Outburst 2 taken a few days before and after the

transition from Mesobursts to Structured Bursting. We can see that, as the system

approaches this transition, Mesobursts become more frequent and decrease in amplitude.

Additionally in Figure 5.18 I show a lightcurve which contains both a Mesoburst and

Structured Bursting. I find that, instead of a well-defined transition between these bursting

classes, there is a more gradual change as Mesobursting evolves into Structured Bursting.

The transition between Normal Bursts and Mesobursts, however, is not smooth; in both

outbursts these two classes of bursting are separated by ∼ 10 day gaps in which no bursts of

any kind were observed at all. If all my classes of burst are caused by the same or similar

processes, any model to explain them will also have to explain these periods with no bursts.
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Figure 5.21: A series of lightcurves from RXTE/PCA observations of Outburst 2, showing a gradual
evolution from Mesobursts to Structured Bursting over a period of ∼ 30 days. Each inset lightcurve
is plotted with the same y-scaling, and each corresponds to 2 ks of data.

5.3.2 Parameter Correlations

I extracted a number of phenomenological parameters from each Normal Burst, Miniburst

and Mesoburst. For Normal Bursts, I extracted a large number of parameters by fitting a

phenomenological model described in Section 5.2.3. For Minibursts and Mesobursts I

extracted recurrence times and persistent emission-subtracted peak rates; I also calculated

burst fluences by integrating the persistent emission-subtracted rate over the duration of the

burst. I do not extract similar parameters for Structured Bursts due to their complex nature.

In all three of the classes of burst I consider, I found that fluence and peak rate correlate

strongly with persistent emission. For each type of burst, the slope of these correlations is

consistent with being equal during Outbursts 1 & 2.

I also compared the Normal Bursts in Outburst 1 with the Normal Bursts in Outburst 2. The

only significant statistical differences I found between these two populations were in the

burst peak rate and the burst fluence; both of these parameters are generally higher for

Normal Bursts in Outburst 1. As both of these parameters strongly depend on the persistent

emission, both of these differences can be attributed to the fact that Outburst 1 was

significantly brighter at peak than Outburst 2.

For Normal Bursts, I found additional correlations. Of particular note, I found that both the

fall time and the recovery timescale of a ‘dip’ is proportional to its amplitude, which has

implications for the possible mechanism behind these features. I discuss this further in

Section 5.3.5.

My findings strongly suggest that the properties of Normal, Mini and Mesobursts all depend

on the persistent luminosity of the Bursting Pulsar. Assuming that this persistent luminosity

is proportional to Ṁ, this suggests that all classes of bursting are sensitive to the accretion

rate of the system. Additionally, with the exceptions of Normal and Minibursts, I find that
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My Class Giles et al. Class

Normal Bursts G1
Mesobursts G1
Minibursts G2

Structured Bursts -
- G3

Table 5.7: A table showing how my burst classes map to those described in Giles et al. (1996). Giles
et al. do not consider the times during the outburst when Structured Bursts appear, and I consider G3
bursts described by Giles et al. to be consistent with flicker noise.

each class of burst is mostly found in a distinct part of the outburst corresponding to a

different level of persistent emission. I suggest that Normal, Meso and Structured Bursts

may in fact be manifestations of the same physical disk instability but at different accretion

rates. This is supported by the observation of a Mesoburst during a period of Structured

Bursting, which I show in the lightcurve in Figure 5.18. This shows that the conditions for

both Mesobursts and Structured Bursting can be met at the same time.

5.3.3 Comparison with Previous Studies

In their study of bursts in the Bursting Pulsar, Giles et al. (1996) found evidence for three

distinct classes of Type II bursts in the Bursting Pulsar:

• ‘Bursts’ (hereafter G1 Bursts to avoid confusion), the common Type II bursts seen

from the source.

• ‘Minibursts’ (hereafter G2 Bursts), with smaller amplitudes up to ∼ 2 times the

persistent emission level.

• ‘Microbursts’ (hereafter G3 Bursts), second-scale bursts with amplitudes of

∼ 50–100% of the persistent level.

We find that Giles et al.’s G1 category contains the bursts that I identify as Normal Bursts,

while my Miniburst category contains the same bursts as Giles et al.’s G2 category. Giles

et al. only consider bursts up to MJD 50204 in their classification, and they could not

classify any bursts that I identify as Mesobursts; under their framework, I find that

Mesobursts would also be categorised as G1. I present the full mapping between Giles

et al.’s classes and my classes in a schematic way in Table 5.7.

Giles et al. (1996) note the presence of both dips and plateaus in Normal Bursts. To

calculate the fluence of each main burst and its associated dip, Giles et al. integrate the total

persistent-emission-subtracted counts in each feature. They calculate that ratio between

burst fluence and ‘missing’ dip fluence (φB/φd) is between 0.26 and 0.56 in Outburst 1

before correcting for dead-time effects. Using bursts in which my mathematical fit gave

well-constrained (> 5σ) values for both burst and dip fluence, I find that φB/φd is between

1.3 and 2.0 in Outburst 1 and between 1.3 and 2.9 in Outburst 2. My values differ
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significantly from those reported from Giles et al.; this is likely due to differing definitions

of the persistent emission level and the start and end times of each dip, as Giles et al. do not

report how they define these features.

My values for the ratios between burst and dip fluences, as well as those of Giles et al., are

affected by dead-time. These effects cause the fluence of bursts to be under-reported, as can

be inferred from Figure 5.23, but the integrated counts in dips are not significantly affected

(Giles et al., 1996). Therefore correcting for dead-time can only increase the value of

φB/φd, and my result shows that the fluence of a burst is always greater than the fluence

‘missing’ from a dip.

T.O. and I find evidence of significant colour evolution during both Normal Bursts and

Minibursts, which is strongly indicative of a spectral evolution (see also e.g. Woods et al.,

1999). Further work on the time-resolved spectra of this source will likely allow us to better

understand the underlying physics of its behaviour.

Using data from the KONUS experiments aboard the GGS-Wind and Kosmos-2326

satellites, Aptekar et al. (1998) have previously found that the recurrence times between

consecutive bursts in Outburst 1 are distributed with a constant mean of ∼ 1776 s. This is

substantially longer than the value of 1209 s that I find for Outburst 1, but my value is likely

an underestimate due to a selection bias caused by the relatively short pointings of RXTE.

Using Chandra and XMM-Newton data, I find a mean recurrence time for Outburst 3 of

1986 s; as pointings with these instruments are significantly longer than the burst recurrence

timescale, windowing effects are negligible. As this value is close to the value that Aptekar

et al. (1998) find for mean recurrence time, my result is consistent with the burst rate in all

three outbursts being approximately the same.

Previous studies with CGRO/BATSE have found that the burst rate during the first few days

of Outbursts 1 & 2 was significantly higher than during the rest of each outburst

(Kouveliotou et al., 1996b; Woods et al., 1999). As RXTE did not observe either of these

times, I am unable to test this result with my dataset.

5.3.4 Comparison with other objects

Another natural comparison to the Bursting Pulsar is the Rapid Burster (Lewin et al.,

1976a), a neutron star LMXB in the globular cluster Liller I. This object is the only LMXB

other than the Bursting Pulsar known to unambiguously exhibit Type II bursting behaviour

during outbursts. Rappaport and Joss (1997) have previously proposed that the Bursting

Pulsar, the Rapid Burster and other neutron star LMXBs form a continuum of objects with

different magnetic field strengths.

I compare my study of bursts in the Bursting Pulsar with studies of Type II bursts in the

Rapid Burster, particularly the detailed population study performed by Bagnoli et al.

(2015). Bagnoli et al. (2015) found that Type II bursting begins during the decay of an
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Figure 5.22: RXTE lightcurves of representative Long (top) and Short (bottom) Type II bursts from
the Rapid Burster. These bursts were identified and classified by Bagnoli et al. (2015).

outburst in the Rapid Burster. This is the same as what we see in the Bursting Pulsar, where

I find Normal Bursting behaviour starts during the outburst decay. Bagnoli et al. (2015)

found that all bursting in the Rapid Burster shuts off above an Eddington Fraction of & 0.05,

whereas I find that bursting in the Bursting Pulsar shuts off below a 2–16 keV flux of

Eddington fraction of ∼ 0.1 Crab: assuming that the peak persistent luminosity of the

Bursting Pulsar was approximately Eddington Limited (e.g. Sazonov et al., 1997), this

value corresponds to an Eddington fraction of order ∼ 0.1. This suggests that Type II

bursting in these two objects happen in very different accretion rate regimes.

Bagnoli et al. (2015) showed that bursting behaviour in the Rapid Burster falls into a

number of ‘bursting modes’, defined by the morphology of individual Type II bursts. In

particular, they find that Type II bursts in the Rapid Burster fall into two classes (see also

Marshall et al., 1979), lightcurves of which I reproduce in Figure 5.22:

• Short near-symmetric Bursts with timescales of ∼ 10s of seconds and peak rates near

the Eddington Limit.

• Long bursts with a fast rise, a long ∼ 100 s plateau at peak rate followed by a fast

decay. The level of the plateau is generally at or near the Eddington Limit.

Short bursts are very similar in shape to Normal Bursts in the Bursting Pulsar, but I find no

analogue of long bursts in my study. Bagnoli et al. (2015) suggests that the ‘flat-top’ profile
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of long bursts could be due to the effects of near-Eddington accretion, and they show that

the intensity at the top of these bursts is close to Eddington limit. Previous works have

shown that the persistent emission of the Bursting Pulsar is Eddington-limited at peak, and

therefore bursts from the Bursting Pulsar are significantly super-Eddington (Sazonov et al.,

1997). I suggest, therefore, that Long Bursts cannot occur in systems with a persistent rate

approaching the Eddington Limit. This could explain why Long Bursts are not seen during

periods of Normal Bursting in the Bursting Pulsar (during which the persistent emission is

& 20% of Eddington), but it remains unclear why these features are not seen later in each

outburst when the Bursting Pulsar is fainter. Alternatively, all the differences we see

between bursts produced by the Rapid Burster and the Bursting Pulsar could be explained if

the physical mechanisms behind these bursts are indeed different between the objects.

Bagnoli et al. (2015) also find a number of correlations between burst parameters in the

Rapid Burster, which I can compare with my results for the Bursting Pulsar. I find a number

of similarities between the two objects:

• The fluence of a burst correlates with its amplitude.

• The duration of a burst does not correlate[11] with the persistent emission.

• The recurrence time between consecutive bursts does not depend on the persistent

emission.

There are also a number of differences between the set of correlations between burst

parameters in these two systems:

• Burst duration is correlated with burst fluence in the Rapid Burster, but these have not

been seen to correlate in the Bursting Pulsar.

• Burst duration, peak rate and burst fluence are all correlated with burst recurrence

time in the Rapid Burster. I have not found any of these parameters to correlate with

burst recurrence time in the Bursting Pulsar.

• Peak rate and burst fluence correlate with persistent emission in the Bursting Pulsar,

but this is not true for bursts of a given type in the Rapid Burster.

As the neither the fluence nor the class of a burst in the Rapid Burster depend strongly on

persistent emission, and hence Ṁ, this suggests that the process that triggers Type-II bursts

in this source is not strongly dependent on the global accretion rate. However the strong

correlations between persistent emission and burst peak and fluence I find in the Bursting

Pulsar show that the energetics of individual bursts strongly depend global accretion rate at

that time.

It has previously been noted that consecutive Normal Bursts in the Bursting Pulsar do not

show a strong correlation between recurrence time and fluence (Taam and Lin, 1984; Lewin

et al., 1996, however see Aptekar et al., 1997). This correlation would be expected if the

[11]We state two parameters do not correlate if their Spearman Rank score corresponds to a significance < 3σ.
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instability took the form of a relaxation oscillator, as it does in the Rapid Burster (Lewin

et al., 1976b). However, I also find that the arrival times of Normal Bursts from the Bursting

Pulsar are not consistent with a Poisson distribution with constant mean. This implies either

that bursts are also not independent events in the Bursting Pulsar, or that the frequency of

these bursts is not constant throughout an outburst as reported by Aptekar et al. (1998).

In Chapter 6 I discuss the possibility that some of the behaviour in the Bursting Pulsar

could be due to fluctuations in the magnetospheric radius of the system close to the

co-rotation radius. This behaviour, referred to in this thesis as ‘hiccup’ accretion, (e.g.

Bogdanov et al., 2015; Ferrigno et al., 2014) is also seen in ‘Transitional Millisecond

Pulsars’ (TMSPs): objects which alternate between appearing as X-ray pulsars and radio

pulsars (see e.g. Archibald et al., 2009; Papitto et al., 2013a).

5.3.5 Comparison with Models of Type II Bursts

All of the models of Type II bursting which we discuss in Section 2.4.1 are able to

reproduce some of the features we see from bursts in the Bursting Pulsar. In particular, the

‘dip’ we see after Normal Bursts has previously been interpreted as being caused by the

inner disk refilling after a sudden accretion event (e.g. Younes et al., 2015). As these dips

are also seen after some Minibursts, we could also interpret Minibursts as being caused by a

similar cycle. To test this idea, in Figure 5.23 I present a scatter plot of the burst and dip

fluences for all Normal Bursts and Minibursts. In both classes of burst, there is a strong

correlation between these two parameters. I find that a power law fit to the Normal Bursts in

this parameter space also describes the Minibursts. This suggests that the same relationship

between burst fluence and missing dip fluence holds for both types of burst, although the

two populations are not continuous. This suggests that Minibursts are energetically

consistent with being significantly fainter versions of Normal Bursts.

The models of Spruit and Taam (1993) and Walker (1992) have shortcomings when used to

describe the Bursting Pulsar. Walker (1992) state that their model only produces Type II

bursts for a very specific set of criteria on the system parameters. One of these criteria is an

essentially non-magnetic (B = 0) neutron star. This is inconsistent with observations of

cyclotron lines from the Bursting Pulsar and the presence of a persistent pulsar, both of

which suggest a surface field strength of order 1011 G (Doroshenko et al., 2015).

Unlike models based on viscous instability, the model of Spruit and Taam (1993) does not

impose a correlation between burst fluence and burst recurrence time (see e.g. the

evaluation of this model in the context of the Rapid Burster performed by Bagnoli et al.,

2015). However, it does predict a strong correlation between burst recurrence time and

mean accretion rate, which is not consistent with my results for the Bursting Pulsar.

In general, I find that models established to explain bursting in the Rapid Burster are poor at

explaining bursting in the Bursting Pulsar. Any model which can produce Type II bursting

in both systems fails to explain why other systems do not also show this behaviour. My
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Figure 5.23: A scatter plot showing the relationship between burst fluence and ‘missing’ dip fluence
for Normal Bursts (black) and Minibursts (Red), with the best fit power law plotted in solid blue. A
power law fit to just the Normal Bursts (blue dashed line) also approaches the Minibursts. Note that
the Normal Bursts plotted in grey were not used to calculate this latter fit, as the effects of instrumental
dead-time cause high burst fluences to be under-reported. Upper limits on Miniburst dip fluences are
shown with arrows.
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results suggest that Type II bursts in the Rapid Burster and the Bursting Pulsar may require

two separate models to be explained.

Evidence of Thermonuclear Burning

I also consider the possibility that some of my observations could be explained by

thermonuclear burning on the Bursting Pulsar. A thermonuclear origin for the main part of

Normal Bursts has been ruled out by previous authors (e.g. Lewin et al., 1996), but it is less

clear that associated features could not be explained by this process.

It has been shown that, above a certain accretion rate, thermonuclear burning on the surface

of a neutron star should be stable; below this rate, thermonuclear burning takes place in the

form of Type I bursts (e.g. Fujimoto et al., 1981; Bildsten, 1995). Bildsten and Brown

(1997) have previously studied which form thermonuclear burning on the Bursting Pulsar

would take. They find that the presence and profile of a thermonuclear burning event on the

Bursting Pulsar would be strongly dependent on both the accretion rate Ṁ and the magnetic

field strength B. They predict that, for B & 3 × 1010 G, burning events would take the form

of a slowly propagating burning front which would result in a low-amplitude X-ray burst

with a timescale of several minutes. Measurements of the Bursting Pulsar taken during

Outburst 3 suggest a surface field strength of > 1011 G, in turn suggesting that the Bursting

Pulsar exists in the regime in which this burning behaviour is possible.

The ‘plateau’ events after Normal Bursts are consistent with the slow burning predicted by

Bildsten and Brown (1997). This picture is consistent with models for Type II X-ray bursts

involving spasmodic accretion events (e.g. Spruit and Taam, 1993; Walker, 1992), as

plateaus always occur after a Type II-like burst has deposited a large amount of ignitable

material onto the neutron star surface. However in this picture it would be unclear why

many Normal Bursts do not show this plateau feature. Mesobursts can also exhibit plateaus,

and are therefore may also be products of spasmodic accretion onto the neutron star.

However, the interpretation of Mesobursts as being caused by discrete accretion events is

difficult to reconcile with the fact that these features never show dips. Bildsten and Brown

(1997) show that, at smaller values of Ṁ, nuclear burning on the Bursting Pulsar could

become unstable. Mesobursts are only seen during the latter stages of Outbursts 1 & 2,

when the accretion rate is well below 0.1 Eddington. An interesting alternative possibility is

that Mesobursts are a hybrid event, consisting of a flash of unstable thermonuclear X-ray

burning followed by a slower quasi-stable burning of residual material in the form of a

propagating burning front.

This picture would also be able to explain why Mesobursts are only seen during the latter

parts of each outburst. As the accretion rate onto the Bursting Pulsar approaches Eddington

during the peak of its outbursts, it is likely that the accretion rate is high enough that only

stable burning is permitted. During the smaller rebrightening events after the main part of

each outburst, the accretion rate is ∼ 1–2 orders of magnitude lower, and hence the system
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may then be back in the regime in which Type I burning is possible. Additional studies of

the spectral evolution of Mesobursts will be required to further explore this possibility.

Previous authors have discussed the possibility of a marginally stable burning regime on the

surface of neutron stars (not to be confused with the previously mentioned quasi-stable

burning). In this regime, which occurs close to the boundary between stable and unstable

burning, Heger et al. (2007) showed that an oscillatory mode of burning may occur. They

associated this mode of burning with the mHz QPOs which have been observed in a number

of neutron star LMXBs (e.g. Revnivtsev et al., 2001; Altamirano et al., 2008c). These QPOs

only occur over a narrow range of source luminosities, show a strong decrease in amplitude

at higher energies, and they disappear after a Type I burst (e.g. Altamirano et al., 2008c).

Lightcurves of objects undergoing marginally stable burning qualitatively resemble those of

Structured Bursting in the Bursting Pulsar, raising the possibility of a thermonuclear

explanation for Structured Bursting. However, as I show in Figure 5.5, Structured Bursting

during Outburst 1 occurred during a period of time in which the Bursting Pulsar’s

luminosity changed by ∼ 1 order of magnitude. In addition to this, in Figure 5.18 I show an

example of a Mesoburst during a period of Structured Bursting. If Mesobursts can be

associated with Type I bursts, any marginally stable burning on the surface of the Bursting

Pulsar should have stopped after this event. Due to these inconsistencies with observations

of marginally stable burning on other sources, it is unlikely that Structured Bursting is a

manifestation of marginally stable burning on the Bursting Pulsar.

Linares et al. (2012) observed yet another mode of thermonuclear burning during the 2010

outburst of the LMXB Terzan 5 X-2. They observed a smooth evolution from discrete Type

I bursts into a period of quasi-periodic oscillations resembling Structured Bursting. This

behaviour resembles the evolution I observe between Mesobursts and Structured Bursting

in Outbursts 1 & 2 of the Bursting Pulsar (as shown in Figure 5.21; compare with Figure 1

in Linares et al., 2012). However there are a number of differences between the evolutions

seen in both objects. In Terzan 5 X-2 the recurrence timescale of Type I bursts during the

evolution is strongly related to the accretion rate of the source at the time, whereas there is

no such strong relation between the two in Mesobursts from the Bursting Pulsar.

Additionally, the quasi-periodic oscillations in Terzan 5 X-2 evolved smoothly back into

Type I bursts later in the outburst, whereas Structured Bursting does not evolve back into

Mesobursts in the Bursting Pulsar. As such, it is unclear that Mesobursts and Structured

Bursting can be associated with the unusual burning mode seen on Terzan 5 X-2.

5.4 Conclusions

I analyse all X-ray bursts from the Bursting Pulsar seen by RXTE/PCA during its first and

second outbursts, as well as bursts seen by other missions during the third outburst of the

source. I conclude that these bursts are best described as belonging to four separate classes
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of burst: Normal Bursts, Mesobursts, Minibursts and Structured Bursts. I find that the

bursting behaviour in these four classes evolves in a similar way throughout the first two

outbursts of the Bursting Pulsar. I present a new semi-mathematical model to fit to the

Normal Bursts in this object. Using this new framework, I will be able better quantify

Bursting-Pulsar-like X-ray bursts when they are observed in other objects in the future.

I find the bursts in the Rapid Burster and the Bursting Pulsar to be different in burst profile,

peak Eddington ratio, and durations. While the fluence of bursts in the Bursting Pulsar

depend strongly on the persistent emission at the time, this is not the case in the Rapid

Burster. Additionally the waiting time between bursts in the Rapid Burster depends heavily

on the fluence of the preceding burst, but I do not find this in the Bursting Pulsar. Therefore,

it would be reasonable to conclude that the bursting in these two objects is generated by two

different mechanisms.

However, it is also important to note a number of similarities between the Bursting Pulsar

and the Rapid Burster. Bursting behaviour in both objects depends on the global accretion

rate of the system and the evolution of its outbursts. Additionally, the recurrence times of

bursts do not depend on persistent emission in either object, and nor does the duration of an

individual burst. Notably while Type II bursts in the Rapid Burster only occur at

luminosities L . 0.05LEdd, I find that Normal bursts in the Bursting Pulsar only occur at

L & 0.1LEdd. There is no overlap between the luminosity regimes, in terms of the

Eddington Luminosity, at which bursting is observed in the two objects. This leads to the

alternative hypothesis that bursts in the two systems may be caused by similar processes,

but that these processes take place in very different physical regimes.
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Chapter 6

The Bursting Pulsar GRO J1744-28:
the Slowest Transitional Pulsar?

I’ll keep the sun behind us. You’ve spent
your entire life in the dark, I doubt that
seeing something that bright would do
you any good.

Lance Abell - Take the Sky

In Chapter 5, I performed a detailed analysis of all archival X-ray data of bursting

behaviour in the Bursting Pulsar (including RXTE, Swift, Chandra, XMM-Newton, Suzaku,

NuStar, and INTEGRAL). I found that the bursting phenomenology in the Bursting Pulsar is

much richer than previously thought (e.g. Giles et al., 1996): the characteristics of the

bursts evolve with time and source luminosity. Near the end of this evolution, I observed

periods of highly-structured and complex high-amplitude X-ray variability. I refer to this

variability as ‘Structured Bursting’, and it is unlike what is seen in most other LMXBs.

In Section 5.3.5, I discuss the possibility that Structured Bursting is a manifestation of

quasi-stable nuclear burning on the surface of the neutron star. However as other types of

burst can occur during periods of Structured Bursting without disrupting this behaviour (see

e.g. Figure 5.18), I consider this scenario to be unlikely. As such, we must consider

alternative explanations. In this chapter I present the hypothesis that Structured Bursting is

related to so-called ‘hiccup accretion’, a phenomenon seen in Transitional MilliSecond

Pulsars (TMSPs).

The results I present in this chapter have been published as Court et al. (2018b).
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6.1 Transitional Millisecond Pulsars

Millisecond Pulsars are old radio pulsars with spin periods of order ∼ 10 ms (Backer et al.,

1982). They have long been believed to be the end product of systems containing a neutron

star in an LMXB. In these systems, matter from a Roche-lobe overflowing star donates

angular momentum to a Neutron star, spinning it up to frequencies of several 100 Hz (Alpar

et al., 1982). A number of fast-spinning X-ray pulsars (accreting Millisecond Pulsars, or

AMXPs) have been found in LMXBs (e.g. Wijnands and van der Klis, 1998; Altamirano

et al., 2008a; Patruno et al., 2017; Sanna et al., 2017a), seemingly confirming this physical

picture. At the end of this so-called ‘recycling’ process, the system should transition from

an accretion-powered pulsar to a rotation-powered pulsar. As such, it has long been

expected that such a transition could be observed by finding a system which changes its

character from an accreting Neutron star at one time to a radio pulsar at some later time.

Subsequently a small family of 7 candidate objects have been discovered or proposed: these

are referred to as Transitional Millisecond Pulsars (TMSPs).

The first of these objects, PSR J1023+0038, was identified by Archibald et al., 2009.

Although it appeared as a non-accreting radio pulsar at the time of identification in 2009,

previous optical studies showed that this system contained an accretion disk in 2002

(Szkody et al., 2003). As such, the pulsar in this system must have switched from an

accreting phase to a radio pulsar phase at some point between 2003 and 2009, confirming

the identification of this system as a TMSP. The pulsar in this system has a spin period of

1.69 ms, and the companion is a star with a mass between ∼0.14–0.42 M�. Archibald et al.,

2009 suggested that the low X-ray luminosity of PSR J1023+0038 in its accreting phase

was due to accretion taking place in the propeller regime (see Section 2.2.2). As previously

discussed, whether a system is in the propeller regime depends on its spin and its magnetic

field strength (see also Lewin et al., 1988). Additionally, below a certain accretion rate, no

stable balance between ram pressure and radiation pressure can form and any disk is ejected

from the system (e.g. Campana et al., 1998). Archibald et al., 2009 suggested that the

current accretion rate in PSR J1023+0038 is only slightly below this critical value, and that

any small increase in accretion rate could cause accretion in this system to resume. They

suggested the possibility of TMSP systems which flip back and forth between accreting and

radio pulsar phases multiple times.

Papitto et al., 2013a identified IGR J18245-2452 as the first known pulsar to switch from a

radio pulsar to an AMXP and back to a radio pulsar. This source was first observed as a

radio pulsar (Manchester et al., 2005), before being observed several years later by

XMM-Newton (Eckert et al., 2013) as an AMXP. Several months after the XMM-Newton

observation, Papitto et al., 2013b found that the source had reactivated as a radio pulsar

during X-ray quiescence. The pulsar in this system has a period of 3.93 ms, and the

companion star has a mass of > 0.17 M� (Papitto et al., 2013a). During the 2013 outburst of

IGR J18245-2452, Ferrigno et al., 2014 reported the presence of high-amplitude variability
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in the X-ray lightcurve. They interpreted this as being due to the accretion rate Ṁ being

very close to the critical rate at which the propeller effect begins to dominate the flow

geometry. In this regime, small fluctuations in Ṁ cause so-called ‘hiccups’, in which matter

alternates between being ejected by the propeller effect and being accreted onto the neutron

star poles (see our discussion of this effect in Section 2.2.3). Similar X-ray variability has

subsequently been found in lightcurves from outbursts during the accreting phase of PSR

J1023+0038 (Bogdanov et al., 2015), suggesting that this variability is somehow intrinsic to

TMSPs as a class of objects.

1FGL J1227.9-4852 was first identified in the first Fermi/LAT source catalogue (Abdo

et al., 2010). Hill et al., 2011 found that the γ-ray spectral characteristics of this source are

consistent with known millisecond radio pulsars, although no radio pulsations were found.

They suggested that this object could be associated with the X-ray source XSS

J12270-4859. Before 2009, XSS J12270-4859 showed optical emission lines typical of an

accretion disk (Pretorius, 2009). Hill et al., 2011 suggested that XSS J12270-4859 may also

be a TMSP, which switched from an accreting phase to a radio pulsar millisecond pulsar

phase between 2009 and 2011. Subsequent studies have found pulsations in both the radio

(Roy et al., 2015) and γ-ray (Johnson et al., 2015) emissions of this source, confirming the

system contains a pulsar and establishing its spin period at 1.69 ms.

XMM J174457-2850.3 is a neutron star X-ray binary. Although no X-ray or radio

pulsations have been detected due to the faintness of the source, Degenaar et al., 2014b have

found that the X-ray variability properties of this source are similar to those seen in other

TMSPs. This object also exhibits extended low-luminosity states during outbursts, which

Degenaar et al., 2014b suggest may be symptomatic of TMSPs.

3FGL J1544.6-1125 was also first identified in Fermi/LAT data. Bogdanov and Halpern,

2015 associated this object with the X-Ray source 1RXS J154439.4-112820. Due to the

presence of γ-rays, as well as the presence of variability in the X-ray lightcurve similar to

IGR J18245-2452, they proposed that this object is a TMSP in the accreting state. However,

no pulsations from this system have been detected in the X-ray or the radio, so the pulsar

period is not known. Bogdanov and Halpern, 2015 found a bimodality in count rate during

the period of X-ray variability, suggesting that this behaviour can be explained as quick

transitions between three quasi-stable accretion modes which they refer to as ‘low’ , ‘high’

and ‘flaring’. This effect has also been seen in the TMSP IGR J18245-2452 (Ferrigno et al.,

2014).

Strader et al., 2016 identified the γ-ray source, 3FGL J0427.9-6704, as a TMSP. They

found that this source also displays X-ray variability similar to what is seen from the other

known TMSPs. Finally, Rea et al., 2017 have proposed that the X-ray source XMM
J083850.4-282759 may also be a TMSP. Although this source has not been detected in the

gamma or the radio, the authors argued that X-ray variability coupled with X-ray flaring

seen from this object is reminiscent of similar behaviour seen in other TMSPs during

subluminous disk states.
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Figure 6.1: Top: 2–15 keV XMM lightcurve from the TMSP PSR J1023+0038. Middle: 2–60 keV
RXTE lightcurves from the Bursting Pulsar during its 1996 and 1997 outbursts, showing similar vari-
ability patterns to those seen in PSR J1023+0038. Bottom: 2–15 keV XMM lightcurve from the
TMSP IGR J18245-2452. XMM lightcurves are shown from 2–15 keV so that they can be more
directly compared with RXTE.

The phenomenology of currently known TMSPs is varied, and different methods have been

used to conclude (or propose) that each individual system belongs to this class. The fact

that 6 of the 7 objects show similar patterns of X-ray variability during outburst suggests

that this variability can be used as an indication that a system may be a TMSP.

6.2 Comparison: TMSPs vs. the Bursting Pulsar

Rappaport and Joss, 1997 have previously suggested that the Bursting Pulsar represents a

slow X-ray pulsar nearing the end of its accreting phase. As such it is natural to compare

this system with TMSPs, which are also believed to be systems approaching this

evolutionary stage. In addition to this, Degenaar et al., 2014b have previously noted that the

Bursting Pulsar shows extended low-luminosity states during outburst, similar to those seen

in the TMSP candidate XMM J174457-2850.3.

In Figure 6.1, I show RXTE lightcurves of ‘Structured Bursting’ from the Bursting Pulsar

alongside lightcurves from periods of ‘hiccup’ variability observed in the confirmed TMSPs

PSR J1023+0038 and IGR J18245-2452. All three sources show similar patterns of X-ray

variability:

• Plateaus: periods of approximately constant count rate with high-amplitude flicker

noise (all plateaus in a given observation have approximately the same mean rate),
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Figure 6.2: Histograms of the 1 s binned count rates from all RXTE observations of Structured Burst-
ing in the 1996 (left) and 1997 (right) outbursts of the Bursting Pulsar. For the 1996 outburst, I fit the
distribution with three Gaussians, while for the 1997 outburst I fit the distribution with 2 Gaussians.
The individual Gaussians are plotted in solid lines, while the combined total is plotted in a dashed
line.

• Dips: Periods of low count rate (. 0.5 of the rate in plateaus) with significantly less

flicker noise, and

• Flares: Relatively short-lived increases of the count rate to values & 2 times greater

than the rate during plateaus.

In TMSPs, these features are interpreted as representing three quasi-stable accretion modes:

the ‘high’, ‘low’ and ‘flaring’ modes respectively (e.g. Bogdanov et al., 2015). The most

significant difference is that, in general, the variability in the Bursting Pulsar occurs on

timescales ∼ 1 order of magnitude longer than those in TMSPs.

In Figure 6.2 I show histograms of the 1 s-binned count-rate from all RXTE observations of

Structured Bursting in the 1996 (left) and 1997 (right) outbursts of the Bursting Pulsar. As

is the case for TMSPs, the histograms can be described with a number of log-Normally

distributed populations: 3 populations in the 1996 outburst and 2 in the 1997 outburst. It is

unclear why a population would be absent from the 1997 outburst, but some TMSPs have

been observed to miss the ‘high’ mode during hiccup accretion (e.g. IGR J18245-2452,

Ferrigno et al., 2014).

Detailed works on the low and high modes observed in the lightcurves of TMSPs show that

X-ray pulsations are seen during both modes. Pulsations are fractionally weaker in the low

state than the high state (for example varing between 4.0 ± 0.2% and 16.8 ± 0.2% in the

TMSP IGR J18245-2452, Ferrigno et al., 2014). In the case of the Bursting Pulsar, analysis

by A.S. detects pulsations both during the low and the high modes; much like in TMSPs,

the pulsations are weaker in the low mode. For example in RXTE OBSID 10401-01-59-00
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(in 1996), the pulsations had amplitudes of 3.5 ± 0.2% and 4.9 ± 0.2% respectively, while in

OBSID 20078-01-23-00 (in 1997), the pulsations had amplitudes of 4.5 ± 0.1% and

6.0 ± 0.1% respectively. A reduction in pulse fraction in accreting pulsars has been

interpreted as a change in accretion geometry due to a sudden decrease in the amount of

matter reaching the neutron star (e.g. Ibragimov and Poutanen, 2009), and as such this

result provides direct evidence that the Structured Bursting in the Bursting Pulsar is caused

by switches between accretion and propeller-driven outflows.

TMSPs are amongst the only LMXBs which are also significant γ-ray sources (e.g. Hill

et al., 2011). The Fermi point source 3FGL J1746.3–2851c is spatially coincident with the

Bursting Pulsar. While the field is too crowded to unambiguously associate 3FGL

J1746.3–2851c with the Bursting Pulsar, the existence of a γ-ray point source at this

location is consistent with the possibility that the Bursting Pulsar and TMSPs show the

same phenomenology.

The spectral evolution of known TMSPs is varied. In PSR J1023+0038, the low, high and

flaring modes all present similar spectra (Bogdanov et al., 2015). However in IGR

J18245-2452, Ferrigno et al., 2014 have found a strong correlation between spectral

hardness and intensity during hiccups, showing that there is spectral evolution over time in

this source. In Figure 6.3 I show the hardness-intensity diagram of the Bursting Pulsar

during periods of Structured Bursting. I find a significant correlation, similar to what is seen

in IGR J18245-2452 (Ferrigno et al., 2014). This is in contrast with other slow accreting

pulsar systems such as Vela X-1, which show an anticorrelation between these parameters

during periods of variability (Kreykenbohm et al., 2008).

6.3 Discussion

In this chapter I compare the lightcurve, spectral and timing properties of the Bursting

Pulsar at the end of its 1996 and 1997 outbursts with those observed from Transitional

Millisecond Pulsars. The data suggest that the Bursting Pulsar may have undergone

‘hiccup’ accretion similar to that seen in TMSPs, during which matter donated to the

neutron star by the companion star alternates between being accreted onto the poles of the

neutron star and being ejected from the system by the propeller effect (e.g. Ferrigno et al.,

2014). This similarity raises the exciting prospect of studying the physics of TMSPs in a

completely different regime.

Recently Campana et al., 2017 proposed a universal relation between magnetic moment,

spin frequency, stellar radius and luminosity at the boundary between accretion and the

propeller effect. Any object that exists on one side of this boundary should be able to

accrete, whereas objects on the other side should be in the propeller phase or not accreting

at all. In Figure 6.4 I reproduce Campana et al., 2017’s results and include my estimates for

the Bursting Pulsar during the periods of Structured Bursting. I find that the Bursting Pulsar
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Figure 6.3: A 7–60/2–7 keV hardness-intensity diagram for RXTE observation 10401-01-59-00 of
the Bursting Pulsar; the lightcurve of this observation is shown in the inset. To correct for the high
background of the region, I subtract the median count rate of RXTE/PCA observation 30075-01-24-
00 from each band; at this time, the Bursting Pulsar was in quiescence. I find a strong correlation
between hardness and count rate, with a Spearman Rank Correlation Coefficient of 0.93. Data for the
hardness-intensity diagram are binned to 10 s, while data for the lightcurve are binned to 5 s.

is consistent with lying on or near the boundary between propeller-mode and direct

accretion, clustering with High Mass X-ray Binaries (as expected due to the Bursting

Pulsar’s high magnetic field), and supporting the link between ‘hiccups’ and Structured

Bursting.

If the ‘hiccups’ in the Bursting Pulsar show that the system is transiting to a radio pulsar,

then the Bursting Pulsar should not lie in the P-Ṗ ‘graveyard’ region (e.g. van den Heuvel,

1993). To my knowledge, there is no measurment yet of the neutron star spin down during

the Bursting Pulsar’s X-ray quiescent state. Under the assumption that the Bursting Pulsar

becomes a radio pulsar, and that the possible spin down during that period is due to the

same mechanism as those of the known radio pulsars, I can position the Bursting Pulsar in

the P-Ṗ diagram (the plot of pulsar spin P against spin-down rate Ṗ, shown in Figure 6.5)

by using the orbital period and estimates of its magnetic field. At B ∼ 2 × 1011G, the

Bursting Pulsar falls well outside of the pulsar graveyard. I note that Pandey-Pommier et al.

(2014) and Russell et al. (2017) did not detect a significant radio source at the location of

the Bursting Pulsar during X-ray outburst. To my knowledge, there is no report of Radio

detection/non-detection during X-ray quiescence.
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Figure 6.4: A plot of a number of objects ranging in scale from LMXBs and High-Mass X-ray Bina-
ries (HMXBs) to Cataclysmic Variables (CVs) and Young Stellar Objects (YSOs) (blue diamonds).
In each case, the object is plotted at the luminosity which defines its transition between propeller-
mode accretion and free accretion. Campana et al., 2017 suggest that any object above the line of best
fit accretes freely, whereas all objects below are in the propellor regime. The Bursting Pulsar (red cir-
cle) is consistent with approaching this line during periods of Structured Bursting. Errorbars on the
Bursting Pulsar represent the range of the reported magnetic fields as well as a range of stellar radii
between 10–20 km. The range in luminosity for the Bursting Pulsar is calculated using 1.5-25 keV
RXTE/PCA flux, assuming a distance of between 4–8 kpc (e.g. Kouveliotou et al., 1996b; Gosling
et al., 2007; Sanna et al., 2017c) and a bolometric correction factor of 1–3. Data on the other objects
taken from Campana et al., 2017. L is the bolometric luminosity of the object in ergs s−1, P is the
period in s, R is the radius in cm and µ is the magnetic moment in Gauss cm3.
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Figure 6.5: A plot of spin period against rate of spin-down for the population of all radio pulsars,
generally referred to as a P–Ṗ diagram. Diagonal lines indicate the estimated age and surface mag-
netic field strength of a typical radio pulsar at any given position on the diagram. Any pulsars to the
right of the ‘graveyard’ line on this plot are expected to be inactive in the radio, whereas objects to
the left are expected to be observable as radio pulsars (e.g. van den Heuvel, 1993). The position of
the Bursting Pulsar, estimated from its surface field strength and spin period, is shown in red; well
outside of the pulsar graveyard. Figure adapted from Lorimer and Kramer (2004), and is accurate as
of the time of its first publication.
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6.3.1 Comparison with other Objects

In addition to the Bursting Pulsar, several additional sub-10 Hz accreting X-ray pulsars have

been discovered (e.g. GX 1+4 and 4U 1626-67, Lewin et al., 1971; Rappaport et al., 1977).

The reason behind the slow spins of these objects is poorly understood, but a number of

these systems have been seen to undergo ‘torque reversal’ events, during which Ṗ switches

sign (e.g. Chakrabarty et al., 1997b,a). In some sources, the magnitude of the spin-down

during an event is of the same order of magnitude as the preceding period of spin-up,

resulting in little or no net spin change. Torque reversal events occur irregularly, but the

recurrence timescale varies between objects from weeks to decades (e.g. Bildsten et al.,

1997).

The slow accreting pulsar Vela X-1 has been found to show an anticorrelation between

hardness and intensity (Kreykenbohm et al., 2008), whereas I find a strong positive

correlation between these parameters in the Bursting Pulsar during periods of Structured

Bursting (Figure 6.3). This significant spectral difference, combined with the other

phenomenological differences between these objects reinforces the idea that the Bursting

Pulsar exists in a very different physical state from the other known slow accreting pulsars.

Given that the Bursting Pulsar has a strongly stripped stellar companion (Bildsten and

Brown, 1997), a high magnetic field and shows significant spin-up during outburst (e.g.

Finger et al., 1996b; Sanna et al., 2017c), it is difficult to explain its low spin by suggesting

the system is young or that the angular momentum transfer is inefficient. Rappaport and

Joss, 1997 suggest that the magnetic field and spin could be explained if much of the mass

transfer in the system occurred before the primary became a neutron star, but they note that

this scenario is inconsistent with the low mass of the donor star.

Torque reversal events in the Bursting Pulsar (similar to those seen in other slow accreting

pulsars, e.g. Bildsten et al., 1997) could explain why the pulsar has failed to reach a spin

rate on par with TMSPs. Although no torque reversal event has been reported from the

Bursting Pulsar, it is feasible that the recurrence timescale of such an event is longer than

the ∼ 20 years for which the object has been studied (this is consistent with the recurrence

timescales seen in other slow accreting pulsars). The discovery of torque reversal in the

Bursting Pulsar would strongly link it with the other known slow accreting pulsars.

The Rapid Burster is often compared to the Bursting Pulsar due to the presence of regular

Type II X-ray bursts in both objects (e.g. Lewin et al., 1996). This system also contains an

accreting neutron star. Iaria et al., 2018 have suggested that the vast majority of matter

transferred in this system is ejected, similar to a scenario suggested by Degenaar et al.,

2014a to explain high-velocity winds from the Bursting Pulsar. However it remains unclear

why the Rapid Buster does not show pulsations or display the ‘hiccup’ behaviour seen in

the Bursting Pulsar.
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6.4 Conclusion

The Bursting Pulsar has a spin rate ∼ 2 orders of magnitude less than previously known

TMSPs, and a magnetic field ∼ 2 orders of magnitude stronger, but it still shows lightcurve,

timing and spectral behaviour which are remarkably similar to TMSPs. This raises the

exciting prospect of exploring the physics of TMSPs in a previously unexplored physical

regime. If the Bursting Pulsar itself is a transitional pulsar, it should emit radio pulsations

during X-ray quiescence. Future detections of radio pulsations from this object would

unambiguously confirm it as a transitional pulsar.
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Chapter 7

Discussion

These thoughts are constructive
criticisms. Pyramidical. I try to
suppress these thoughts, but they leak
out...

George Saden – Zardoz

In Chapters 4 and 5 I discuss new ways of classifying variability in the unusual LMXBs

IGR J17091 and the Bursting Pulsar. I use the new classification frameworks I have created

to compare these objects with the similar LMXBs GRS 1915 and the Rapid Burster. While

I find a number of similarities between these objects, I also highlight a number of

differences. For example, I find that the spectral evolution during variability in IGR J17091

is very different to in GRS 1915, and the bursts in the Bursting Pulsar evolve in a very

different way to those seen from the Rapid Burster.

A common theme throughout the work presented in this thesis is that the variability in these

unusual objects is even more complex than had previously been thought. Application of

Occam’s razor (of Ockam, 1495) suggests that the similar variability from these objects is

generated by similar physics, but I have found that it is difficult to unify the diverse

behaviours of these unusual systems. I also compare the four objects that I focus on with

other unusual XRBs such as Terzan 5 X-2 and, in Chapter 6, TMSPs. In this chapter I

further discuss the relationships between these seemingly disparate objects, and how my

findings fit in to the more general picture of accretion in these extreme and bizarre systems.
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7.1 General Observations

7.1.1 Variability Evolution throughout an Ouburst

One feature common to at least 3[1] of the unusual LMXBs discussed in this thesis is that

variability changes in a predictable way over the course of an outburst. This effect is most

apparent in the results I present in Chapter 5, where I discuss an evolution of bursting which

is observed in both the 1996 and 1997 outbursts of the Bursting Pulsar:

• Normal Bursts and Minibursts begin to occur shortly after the peak of each outburst.

• Bursting shuts off entirely when the persistent intensity of the source decreases below

∼ 0.1 Crab.

• The persistent flux of the system increases in a rebrightening event, at which point

Mesobursts begin to occur.

• Mesobursts evolve into Structured Bursting.

A predictable evolution of variability throughout an outburst has also been identified in the

Rapid Burster (e.g. Bagnoli et al., 2015). In this system, Type II bursts near the start of each

outburst are Eddington-Limited and persist for ∼ 100s of seconds (see e.g. the upper panel

of Figure 5.22). As the outburst evolves, these bursts become shorter, fainter and more

sharply peaked (see e.g. the lower panel of Figure 5.22). This evolution is qualitatively very

different from the evolution of variability seen in the Bursting Pulsar. However, the fact that

bursting in both objects changes in a predictable way throughout each outburst shows that

bursting in both objects is dependent on the accretion rate in the system and on the state of

its accretion disk.

There is also some evidence of an evolution of the variability displayed by IGR J17091. In

Figure 4.2 I show a number of lightcurves of the 2011 outburst of IGR J17091, highlighting

when in the outburst each of our 9 variability classes was observed. Although the evolution

between classes apparently not as strict as in the Bursting Pulsar, it is easy to identify a

number of patterns in the data, such as:

• Class I[2] only occurs near the start of the outburst, within 25 days of the onset of

variability.

• Class II only occurs during two dips in the persistent flux to a level of ∼ 20 mCrab.

• Class VII only occurs while the persistent flux of IGR J17091 is in a narrow band

centred on ∼ 70 mCrab.

It is unclear whether a similar evolution occurs during the 2016 outburst of IGR J17091, as

a variability population study for this outburst has not yet been performed. However these

[1]As GRS 1915 has been in outburst since its discovery, it is unknown how its variability classes vary over the
duration of an outburst.

[2]See Section 4.2.2 for a description of each class.
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Figure 7.1: 0.3–10 keV Swift/XRT lightcurve of IGR J17091-3624 during its 2016 outburst. The
black bar shows the typical size of errors. This lightcurve shows Class III variability, which I identify
in the 2011 outburst of this source and describe in Section 4.2.2.

results from the 2011 outburst suggest that variability in IGR J17091 also depends strongly

on the accretion rate and the state of the disk, as it is in the Rapid Burster and the Bursting

Pulsar, and therefore variability should evolve in a predictable way over the course of each

outburst.

7.1.2 Criteria for Exotic Variability

As we show in Figure 7.1, the 2016 outburst of IGR J17091 displayed similar variability to

that which it showed in 2011 (e.g. Reynolds et al., 2016), meaning that variability was not

unique to the source’s 2011 outburst. Additionally Type II bursting has been seen in the

1996, 1997 and 2014 outbursts of the Bursting Pulsar, and the Rapid Burster goes into

outburst regularly every ∼100–200 days and always displays Type II bursts. Therefore 3 of

the 4 objects I discuss in this thesis have produced their characteristic variable behaviour

during multiple separate outbursts[3]. This observation strongly suggests that the ability to

produce such variability is a property of the system rather than of an individual outburst. In

these systems some set of parameters, which persist between outbursts, are just right to

allow these exotic types of variability to occur.

Compact objects are relatively simple, and they can be well-defined with only a few

parameters:

[3]As GRS 1915 has been in outburst since discovery, it is not possible to tell whether its variability is repeated
in subsequent outbursts.
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• The type of compact object (neutron star or black hole).

• Mass.

• Spin and rate of change of spin.

• Radius.

• Magnetic Field Strength.

Where the last two parameters only apply if the object is a neutron star. In addition to these,

one only has to describe the companion star (mass, mass loss rate, spectral type etc.), the

parameters of the system orbit (eccentricity, semi-major axis, inclination and misalignment

from the spin axes of both stars) and the mass transfer rate to fully describe an LMXB

system. Due to this relative simplicity, there are not many candidates for parameters which

govern the existence of exotic variability.

GRS 1915+105 contains the highest mass black hole confirmed in an LMXB[4]

(12.4 ± 2.0 M�, Reid et al., 2014), although many other LMXBs are believed to contain

black holes with comparable masses (e.g. V404 Cyg, Shahbaz et al., 1994). The black hole

in GRS 1915 also has a very high spin, with a spin parameter of 0.98 ± 0.01 (Miller et al.,

2013), but a number of other XRBs are also believed to harbour near-maximal spin black

holes (see e.g. Fragos and McClintock, 2015). Therefore it seems unlikely that mass or spin

alone provide the criteria for GRS 1915-like variability.

Lense-Thirring precession in the disk, a frame-dragging effect caused by the misalignment

of the orbital and spin axes of the compact object, has been used to explain some of the

variability seen in LMXBs (e.g. Stella and Vietri, 1998). However, the timescale of the

variability this generates is no slower than ∼ 0.1 s (Ingram et al., 2009), too fast to be linked

with the . 0.1 Hz variability seen from GRS 1915. Instead the other parameters on the list,

or a combination thereof, must be the determining factors in whether or not an object can

display exotic variability.

GRS 1915 has a very long orbital period of ∼ 30 days (Neil et al., 2007), and this is

believed to result in it having the largest accretion disk of all known X-ray binaries. This

likely explains how GRS 1915 has been in outburst for such a long period of time (& 20

years, compared to the . 2 year outbursts seen in most black hole LMXBs). The orbital

periods of IGR J17091 and the Rapid Burster are unknown, but the Bursting Pulsar also has

a relatively long orbital period of 11.8 days (e.g. Finger et al., 1996b), suggesting that a

large disk may also be a factor in the generation of exotic variability.

Another property to consider is the magnetic field strength in the disk. Although

astrophysical black holes do not have a magnetic field, magnetic fields in a black hole can

still arise from one of two sources:

[4]At least one HMXB, Cyg X-1, is believed to contain a black hole with higher mass (Orosz et al., 2011).
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• The field of the system’s donor star, including field lines advected into the disk by

accretion.

• The movement of ionised material within the disk.

The presence of such a magnetic field may be able to stabilise an accretion disk against the

instabilities described in Section 2.2.3 (e.g. Sa̧dowski, 2016. Sa̧dowski calculates the

minimum magnetic field strength which, when threaded through a radiation-dominated disk

undergoing the instability described by Shakura and Sunyaev (1976), would be able to

stabilise the disk. Assuming that such a field in an LMXB is provided by the companion

star, they find that this minimum value in an LMXB depends mostly on the luminosity of

the system and the mass of the compact object. They estimate the value of the minimum

stabilising field strength in a number of black hole X-ray binaries, and find that the field

required to stabilise GRS 1915 is ∼ 5.7 × 1023 G cm2; this is over twice as large as the

second highest value they find for an LMXB (1.9 × 1023 G cm2 for XTE J1550-564). This

high value is due to the large black hole mass in GRS 1915, and the fact that this black hole

accretes at a near-Eddington rate and, thus, a high luminosity. In this picture, therefore,

GRS 1915-like variability may simply be a manifestation of the Shakura and Sunyaev

(1976) instability which is suppressed in most LMXBs. One could test the viability of this

scenario by calculating the minimum stabilising field for IGR J17091. Unfortunately at

time of writing the companion star to IGR J17091 has not been conclusively identified, and

the mass and distance (and hence luminosity) of the system remain poorly constrained.

It is worth noting that the scenario suggested by Sa̧dowski (2016) by itself is unable to

account for Type II bursts as, in these systems, the neutron star is able to provide more than

enough magnetic flux to stabilise the inner disk in the scenario of Sa̧dowski. However, the

scenario of Sa̧dowski does not take into account the effects of the magnetic disruption of the

inner disk, nor does it account for any effects caused by the disk’s interaction with the

rapidly spinning neutron star magnetic field.

7.1.3 Evidence of System Memory

Another notable observation from these objects is that variability in both GRS 1915 and

IGR J17091 falls into a discrete set of variability classes. In both objects, a variability class

could be observed on one day, not be observed for weeks and then reappear in a later

observation. Somehow, the physics that governs variability in these systems only permit the

system to occupy one of a discrete set of variability classes. In Figure 7.1 I show evidence

that at least one of the variability classes I identified in the 2011 outburst of IGR J17091

occurred again in 2016. This suggests that GRS 1915-like systems are somehow able to

‘remember’ which variability classes they can occupy, and that this memory persists

between outbursts. This in turn means that, in addition to determining whether or not GRS

1915-like variability can occur, the simple parameters that define a black hole LMXB also

determine which classes of GRS 1915-like variability can occur.
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In Section 4.3.1, I report that two of the classes of variability I find in IGR J17091 (Classes

VII and VIII) are unlike anything which has ever been seen in GRS 1915 (see also Table

4.5). This leads to one of three possibilities:

• Class VII and VIII-like variability has occurred in GRS 1915 since its discovery, but

coincidentally we have never observed it. As GRS 1915 has been observed

extensively during its ongoing & 20 year-long outburst, this is unlikely to be true.

• Class VII and VIII variability preferentially occurs during a specific disk

configuration which occurs at a specific point in the evolution of an outburst, and

GRS 1915 is not currently in this state.

• Some set of system parameters in IGR J17091 are different from in GRS 1915 in

such a way that many variability classes can appear in both objects, but a small set of

different variability classes are permitted in each object.

The final possibility is of great interest. Future observations of IGR J17091 will aim to

better constrain the parameters that define the system. If these parameters are then

compared to the already well-constrained parameters of GRS 1915, then we may be able to

learn exactly which physical properties of the system govern which set of variability classes

can be displayed.

There is also evidence of some degree of system memory in the Type II bursting systems.

The near-identical evolutions of variability in the 1996 and 1997 outbursts of the Bursting

Pulsar indicate that the factors governing this evolution persist between outbursts in this

object as well.

The Normal Bursts and Minibursts of the Bursting Pulsar, which I describe in Sections

5.2.3 and 5.2.4 respectively, also provide evidence of system memory in the Bursting

Pulsar. Both types of burst display a number of similar features and they occur

interchangeably during the same period of each outburst, leading to the possibility that they

are generated by the same physical instability. As I show in Figure 5.23, Minibursts and

Normal Bursts fall into two clear populations when plotted by their amplitudes: we find no

Normal or Minibursts with fluences between ∼ 104 and ∼ 105 2–60 keV PCA counts. Due

to the large number of Minibursts and Normal Bursts observed in my study, it is highly

likely that this gap is real. Observations of future outbursts of the Bursting Pulsar will allow

us to see whether this fluence gap always spans the same range, or whether this gap changes

between outbursts as a function of the longer-term evolution of the system.

7.2 IGR J17091 vs. the Bursting Pulsar: A Comparison

It is clear that there are a number of significant similarities between objects which display

Type II bursts and GRS 1915-like variability. What remains unclear is how, if at all, the

physics of GRS 1915-like variability and Type II bursting are related to each other. Many of
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the models proposed to explain GRS 1915-like variability and Type II bursts rely on similar

viscous disk instabilities (see Sections 2.3.1 and 2.4.1), and the discovery of GRS 1915-like

patterns in lightcurves of the Rapid Burster strongly suggests a link between these two

classes of object (Bagnoli and in’t Zand, 2015).

Historically, the Bursting Pulsar has been considered a ‘twin’ system to the Rapid Burster

(however, see Lewin et al., 1996), but the many differences I find between these object calls

this comparison into doubt. In Chapter 6 I consider the possibility that some of the bursting

seen in the Bursting Pulsar is a result of the object being similar to TMSPs. In this section, I

consider the alternative possibility that bursting in the Bursting Pulsar is instead a

manifestation of GRS 1915-like variability.

7.2.1 Variability Classes and Burst Classes

A number of disparate features in data from the Bursting Pulsar are at least superficially

similar to behaviours I identify in IGR J17091-3624. In Figures 7.2 and 7.3 I identify

features in IGR J17091 data which resemble Normal Bursts and Structured Bursting in the

Bursting Pulsar. As discussed in Section 7.1, there are a number of system similarities

between IGR J17091 and the Bursting Pulsar, so perhaps the similarities in their lightcurves

should not be surprising. However, any attempt to compare Bursting classes in the Bursting

Pulsar with variability classes in IGR J17091 encounters a number of difficulties:

• Variability in IGR J17091 is likely caused by some instability in the inner,

radiation-dominated part of its accretion disk. The inner region of the disk in the

Bursting Pulsar is dominated by magnetic pressure rather than radiation pressure,

leading to different possible instabilities.

• IGR J17091 can evolve from one variability class to another quickly (over timescales

of . 1 day), whereas Normal Bursts and Minibursts occur continuously in the

Bursting Pulsar for many weeks during each outburst.

• IGR J17091 shows complex variability from the peak of each outburst until the time

it enters the low/hard state, whereas the Bursting Pulsar shows a large gap with no

bursts between the end of Normal Bursts and the onset of Mesobursts.

• All complex variability in IGR J17091 occurs over a relatively narrow range of

luminosities (a factor of ∼ 3, see e.g. Figure 4.2). Bursting in the Bursting Pulsar

occurs at luminosities spanning more than an order of magnitude.

• All complex variability in IGR J17091 occurs during the main high-soft portion of its

outbursts, whereas Mesobursts and Structured Bursting are seen during rebrightening

events in the Bursting Pulsar.

Because of these differences, it is unlikely that Burst Classes in the Bursting Pulsar can be

considered as being generated by the exact same phenomenon as variability classes in IGR
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Figure 7.2: Lightcurves from GRS 1915, IGR J17091 and the Bursting Pulsar, each showing heart-
beat-like variability over timescales of 10s to 1000s of seconds. Black bars indicate average error in
each case. GRS 1915 and IGR J17091 data taken from RXTE/PCA, Bursting Pulsar data taken from
Chandra.
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Figure 7.3: Lightcurves from GRS 1915, IGR J17091 and the Bursting Pulsar, each showing a
Structured Bursting-like variability over timescales of 10s to 100s of seconds. Black bars indicate
average error in each case. Data taken from RXTE/PCA.
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J17091. Some of the apparent similarities between the phenomena could instead be

explained by phenomenological limit cycles common to both. For example, if both Class IV

variability and Normal Bursts involve the filling and depletion of a portion of the inner part

of the accretion disk, then it is to be expected that the flares in both types of variability have

similar morphologies.

7.2.2 Structured Bursting

Structured Bursting in the Bursting Pulsar on its own can also be compared with the

variability classes observed in IGR J17091. As discussed in Section 5.2.6, and shown in

Figure 5.20, Structured Bursting is a highly variable phenomenon. Like variability in IGR

J17091, Structured Bursting in the Bursting Pulsar consists of flares, flat-bottomed dips in

flux and periods of seemingly unstructured noise. As such, an alternative hypothesis to the

‘hiccup’ scenario presented in Chapter 6 is that Structured Bursting is an example of GRS

1915-like variability manifesting in a neutron star LMXB.

There are a number of problems with simply equating Structured Bursting with GRS

1915-like variability classes. Variability in GRS 1915 and IGR J17091 shows hysteresis in

hardness-intensity diagrams, indicating a finite lag between hard and soft emission from the

source. However no such hysteresis exists in Structured Bursting from the Bursting Pulsar:

as we show in Figure 6.3, hardness and intensity simply correlate during periods of

Structured Bursting. In addition to this, the source intensities involved in GRS 1915-like

variability and Structured Bursting are very different; GRS 1915 is a near-Eddington

source, but Structured Bursting in the Bursting Pulsar occurs at a luminosity no greater than

0.5% of its Eddington Luminosity.

If however Structured Bursting and GRS 1915-like variability are the same phenomenon,

then these issues may be resolved in a number of ways. While the hard lag in GRS 1915 is

positive in every variability class, I find that its sign can vary in different variability classes

in IGR J17091. Therefore, it is feasible to imagine a GRS 1915-like system in which this

lag is always close to zero, resulting in a simple correlation between rate and hardness in a

HID rather than a hysteretic loop. Notably, the GRS 1915-like lightcurves reported from the

Rapid Burster (Bagnoli and in’t Zand, 2015) also show no hysteretic loops.

The apparent different luminosity regimes of GRS 1915 and the Bursting Pulsar can be

resolved if GRS 1915-like variability does not require near-Eddington accretion. I discuss

this possibility in Section 7.1.2. The Rapid Burster is known to accrete at ∼ 20% of its

Eddington Limit, and I find that IGR J17091 likely accretes at 5–33% of its Eddington

Limit (Section 4.3.5), so these systems set possible precedents for GRS 1915-like

variability in systems which are not near-Eddington limited.

To further investigate the similarities between GRS 1915-like variability and Structured

Bursting, the natural next step would be to perform phase-resolved spectroscopy on

Structured Bursting data. Archival data of Structured Bursting from the Bursting Pulsar
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only exists from the 1996 and 1997 outbursts of the source, as no observations were taken

during the latter stages of its outbursts in 2014 or 2017. The Bursting Pulsar is a faint

source during periods of Structured Bursting, and is in a crowded region of the sky

populated by many other X-ray sources, and such a study is difficult to perform on data

from instruments launched before 1996. As such, it remains unclear whether Structured

Bursting is a neutron star manifestation of GRS 1915-like variability or whether it is a

manifestation of ‘hiccup’ accretion as I suggest in Chapter 6.

7.3 Future Research

A number of recently-launched and planned satellites have sensitivities, collecting areas

and energy resolutions which exceed those of the instruments I use in this study. For

example, the currently operational Neutron Star Interior Composition Explorer (NICER,

Gendreau et al., 2012) has a 0.5–10 keV X-ray sensitivity around 30 times greater than that

of RXTE, with an energy resolution comparable to XMM-Newton and Chandra. The

European Advanced Telescope for High Energy Astrophysics (ATHENA, Johnson et al.,

1995), planned for launch in the 2030s, is expected to have a sensitivity around 2 orders of

magnitude greater than XMM-Newton or Chandra. This generation of highly sensitive

instruments will allow us to perform phase-resolved spectroscopy of variability from fainter

objects, such as IGR J17091 and the Bursting Pulsar during periods of Structured Bursting.

A phase-reolved spectroscopic study of the variability classes in IGR J17091 will allow us

to identify the physical changes in the accretion disk that occur during each class. This

study will be able to be compared to the phase-resolved spectral study of GRS 1915 by

Neilsen et al. (2011), allowing us to further understand the similarities and differences

between these two systems.

Phase-resolved spectral studies will also be possible to perform on the fainter classes of

bursting seen in the Bursting Pulsar. These will allow us to understand the physical

mechanisms underlying each class of burst, in particular identifying which bursts if any are

a result of thermonuclear burning on the surface of the neutron star. This information will

allow us to better understand whether bursting in the Bursting Pulsar is a manifestation of

the same instabilities seen in GRS 1915 and IGR J17091, and will allow us to understand

where all of these systems fit in a picture of accretion disk instability as a whole.
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Chapter 8

Conclusions

And this goes on and on and back and
forth for 90 or so minutes, until it just
sort of... ends.

Dennis Reynolds – It’s Always Sunny in
Philadelphia

In this thesis, I have presented the results of phenomenological studies of the X-ray

variability seen in two unusual LMXBs: IGR J17091-3624 and GRO J1744-28 (the

“Bursting Pulsar”). I have analysed these results in the context of previous studies of

variability in GRS 1915+105 and MXB 1730-335 (the “Rapid Burster”), systems which are

often compared to IGR J17091 and the Bursting Pulsar respectively. In doing so I have

discovered a number of new similarities and differences between these objects. On the back

of this analysis, I have evaluated the physical models and scenarios which have been

proposed to explain the variability in these objects. In doing so, I have brought us closer to

an understanding of the accretion physics that underlies this exotic behaviour.

In Chapter 4, I have presented a new set of variability classes to describe IGR J17091: these

classes are analogous to, but independent from, the classes presented by Belloni et al.

(2000) to describe GRS 1915. Comparing my set of variability classes to those of Belloni

et al., I found a number of variability classes which are only seen in one of the two objects,

as well as a number of types of variability which are seen in both. When studying the

spectral timing properties of both objects, I found another significant difference: while hard

photons lag soft photons in every variability class of GRS 1915, the sign of this lag varies

from class to class in IGR J17091. This finding rules out any physical picture in which the

hard lag is caused by a corona reacting to changes in the flux from the disk, instead

suggesting that the hard lag is generated by a spectral change in the emission from the disk.

In Chapter 5, I have presented a new set of classifications for Type II-like X-ray bursts from
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the Bursting Pulsar. In doing so, I have discovered previously unreported bursting

behaviour in the late stages of outbursts of the Bursting Pulsar, namely ‘Mesobursts’ and

‘Structured Bursting’. I find that Mesobursts may be a manifestation of quasi-stable

thermonuclear burning on the surface of the neutron star; a phenomenon which has long

been predicted to occur on the Bursting Pulsar but which has never been conclusively

identified (e.g. Bildsten and Brown, 1997). There are similarities between lightcurves of

Structured Bursting and the lightcurves of another form of quasi-stable nuclear burning

predicted by Heger et al. (2007). However I find that at least one Mesoburst occured during

a period of Structured Bursting without disrupting it, suggesting that Structured Bursting is

non-nuclear in nature. Instead, in Chapter 6 I have identified similarities between Structured

Bursting and variability seen in Transitional Millisecond Pulsars. This raises the possibility

that Structured Bursting is a manifestation of ‘hiccup’ accretion; spasmodic accretion onto

a neutron star caused by small perturbations of its magnetospheric radius near the boundary

of the propeller regime.

From a phenomenological standpoint, I find that the variability seen in IGR J17091 and the

Bursting Pulsar is generally even more complex than previously thought. IGR J17091 and

the Bursting Pulsar have often been considered ‘twin systems’ of GRS 1915 and the Rapid

Burster respectively, but I find a number of differences between each pair of twins which

makes such a simple picture seem unlikely. Variability in GRS 1915 has traditionally been

thought to be tied to its near-Eddington accretion rate; however, I find that IGR J17091

likely accretes at . 33% of its Eddington Limit. The Rapid Burster shows Type II bursts

which transition smoothly between 2 classes over the course of an outburst, whereas I find

that bursts in the Bursting Pulsar can be described in no less than 4 classes which take place

at different periods of each outburst. Rather than suggesting that these pairs of objects are

unrelated, I suggest that further study of their differences will lead to better understanding

of the physics behind the instabilities that they present.

In Chapter 7 I discuss the relationship between GRS 1915-like variability and Type II X-ray

bursts. While there are a number of problems with assuming that these two types of

variability are the same, I find a number of similarities between them that suggest at least

some of the physics underlying these phenomena are similar. Finally, I suggest that

phase-resolved spectral studies by the next generation of space telescopes will allow us to

fully understand the relationships, or lack thereof, between these four enigmatic objects.

I also present a number of results unconnected to the variability seen in these objects. In

Chapter 4 I provide new constraints on the distance of IGR J17091-3624 and the mass of its

black hole, and I also present the first INTEGRAL detection of the object above 150 keV.

Additionally in Chapters 4 and 5 I report the discovery of ‘re-flares’ in the tails of outbursts

in both IGR J17091 and the Bursting Pulsar. I have also created a number of algorithms to

identify bursts or flares, and to ‘fold’ datasets which show repeating variability with a

non-constant frequency (Chapter 3). These are encoded as part of my own suite of

computational tools to analyse X-ray data (PANTHEON, see Appendix E).
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In conclusion, the work I present in this thesis provides a comprehensive framework for

future study of variability in IGR J17091 and the Bursting Pulsar. Using this framework, I

have been able to rule out a number of models and physical scenarios which have been

proposed to explain the behaviour seen in these systems. Further studies of the key

properties of these systems will allow us to better understand the exotic instabilities which

can be present in accretion disks and, as such, improve our knowledge of the physics of

accretion in general.
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Appendix A

Model-Independent Classification of
each Observation of IGR J17091-3624

In Table A.1, I present observation IDs, and orbit IDs, for every RXTE observation and

observation segment that was used in my study of variability in IGR J17091-3624 (Chapter

4). Note that not all of every observation was used; in many cases, large spikes caused by

PCA PCUs switching off or on rendered ∼ 100 s unusable. As these often occurred very

close to the beginning or end of an observation segment, small sections of data before or

after these spikes was also sometimes discarded. Every observation segment is presented

along with the variability class assigned to it by this study.
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Table A.1: Here is listed the Observation IDs for every RXTE observation that was used in my
analysis of variability in IGR J17091-3624, along with the variability class which has been assigned
to it. Orb. is the orbit ID (starting at 0) of each observation segment, Exp. is the exposure time in
seconds and X is the prefix 96420-01. This table is continued overleaf in Tables A.2-A.4.

MJD OBSID Orb. Class Exp. MJD OBSID Orb. Class Exp.
55622 X-01-00 0 I 1840 55643 X-04-01 0 III 1190
55622 X-01-000 0 I 3480 55644 X-04-03 0 III 2903
55622 X-01-000 1 I 1656 55645 X-05-02 0 I 3578
55622 X-01-000 2 I 3384 55647 X-05-00 0 IV 2872
55622 X-01-000 3 I 3400 55647 X-05-000 0 IV 3472
55622 X-01-000 4 I 3384 55647 X-05-000 1 IV 3520
55623 X-01-01 0 I 1240 55647 X-05-000 2 IV 3512
55623 X-01-01 1 I 752 55647 X-05-000 3 IV 3520
55623 X-01-01 2 I 992 55647 X-05-000 4 IV 3512
55623 X-01-01 3 I 1184 55647 X-05-000 5 IV 648
55623 X-01-01 4 I 1056 55649 X-05-03 0 IV 2409
55623 X-01-010 0 I 2080 55650 X-05-01 0 IV 1473
55623 X-01-010 1 I 1832 55651 X-05-04 0 IV 2954
55623 X-01-010 2 I 1648 55653 X-06-00 0 IV 2723
55623 X-01-010 4 I 1424 55654 X-06-01 0 IV 3388
55623 X-01-010 5 I 400 55656 X-06-02 0 IV 2908
55623 X-01-02 0 I 3056 55657 X-06-03 0 V 1842
55623 X-01-02 1 I 2792 55661 X-07-00 0 V 1754
55623 X-01-02 2 I 2432 55662 X-07-01 0 V 3365
55623 X-01-020 0 I 3456 55663 X-07-02 0 V 3373
55623 X-01-020 1 I 3464 55666 X-08-00 0 V 3338
55623 X-01-020 2 I 3512 55669 X-08-01 0 V 3368
55623 X-01-020 3 I 3520 55670 X-08-03 0 VI 2489
55623 X-01-020 4 I 3512 55671 X-08-02 0 VI 2609
55623 X-01-020 5 I 464 55673 X-09-03 0 VI 1011
55624 X-02-00 0 I 1758 55674 X-09-00 0 VI 1386
55626 X-02-01 0 I 1380 55675 X-09-05 0 IX 1148
55628 X-02-02 0 I 3305 55676 X-09-06 0 VI 3540
55630 X-02-03 0 I 1876 55677 X-09-01 0 V 1676
55632 X-03-00 0 I 1712 55678 X-09-04 0 V 2090
55634 X-03-01 0 III 3590 55679 X-09-02 0 V 2306
55639 X-04-00 0 IV 3099 55680 X-10-02 0 V 952
55642 X-04-02 0 IV 2972 55681 X-10-00 0 V 3725
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Table A.2: A continuation of Table A.1. This table is continued overleaf in Tables A.3 and A.4.

MJD OBSID Orb. Class Exp. MJD OBSID Orb. Class Exp.
55682 X-10-03 0 V 1157 55720 X-15-04 0 IV 1486
55684 X-10-01 0 III 1504 55721 X-15-05 0 IV 1500
55686 X-10-04 0 III 1127 55722 X-16-00 0 IV 900
55686 X-10-05 0 II 2179 55723 X-16-01 0 III 1004
55687 X-11-00 0 II 3537 55724 X-16-02 0 II 1923
55688 X-11-01 0 II 1153 55725 X-16-03 0 II 1919
55690 X-11-02 0 II 1408 55726 X-16-04 0 III 1935
55691 X-11-03 0 II 886 55727 X-16-05 0 II 730
55692 X-11-04 0 II 3566 55728 X-16-06 0 II 1953
55693 X-11-05 0 II 1817 55729 X-17-00 0 II 2735
55694 X-12-00 0 II 2761 55730 X-17-01 0 II 3556
55695 X-12-01 0 II 1374 55731 X-17-02 0 II 3605
55695 X-12-02 0 II 2041 55732 X-17-03 0 II 1647
55696 X-12-03 0 II 1456 55733 X-17-04 0 II 1459
55698 X-12-04 0 II 1916 55734 X-17-05 0 III 1736
55698 X-12-05 0 II 3139 55735 X-17-06 0 III 3653
55700 X-12-06 0 II 1189 55736 X-18-00 0 III 2317
55701 X-13-00 0 II 1214 55737 X-18-01 0 IV 1387
55702 X-13-01 0 II 980 55738 X-18-02 0 V 1291
55704 X-13-02 0 II 732 55739 X-18-03 0 V 2178
55705 X-13-03 0 III 1217 55740 X-18-04 0 V 1478
55706 X-13-04 0 III 1161 55741 X-18-05 0 VII 782
55707 X-13-05 0 IV 2763 55743 X-19-00 0 VII 1412
55708 X-14-00 0 IV 1188 55744 X-19-01 0 VIII 1938
55709 X-14-01 0 IV 3342 55745 X-19-02 0 VII 2172
55710 X-14-02 0 IV 1094 55747 X-19-03 0 VIII 1691
55712 X-14-03 0 IV 1404 55748 X-19-04 0 VI 1283
55713 X-14-04 0 V 871 55749 X-19-05 0 VIII 1417
55714 X-14-05 0 V 1311 55751 X-20-05 0 VI 1726
55715 X-15-00 0 IV 1241 55752 X-20-01 0 VIII 1079
55716 X-15-01 0 IV 1262 55753 X-20-02 0 VIII 1433
55717 X-15-02 0 III 1557 55754 X-20-03 0 VII 1122
55718 X-15-03 0 III 1334 55756 X-20-04 0 VIII 1486
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Table A.3: A continuation of Table A.1. This table is continued overleaf in Table A.4.

MJD OBSID Orb. Class Exp. MJD OBSID Orb. Class Exp.
55757 X-21-00 0 VIII 3372 55790 X-25-05 0 V 1473
55758 X-21-01 0 VIII 3383 55791 X-25-06 0 V 922
55759 X-21-02 0 VI 1938 55792 X-26-00 0 V 2336
55761 X-21-04 0 VII 1497 55794 X-26-01 0 V 1385
55762 X-21-05 0 VII 1548 55795 X-26-02 0 VIII 1458
55763 X-21-06 0 VII 2202 55796 X-26-03 0 VI 1325
55764 X-22-00 0 VII 1682 55798 X-26-04 0 VI 2075
55765 X-22-01 0 VII 1221 55799 X-27-00 0 VI 1396
55766 X-22-02 0 V 720 55800 X-27-01 0 VI 2684
55767 X-22-03 0 V 1801 55801 X-27-02 0 VI 1016
55768 X-22-04 0 VIII 1983 55802 X-27-03 0 VI 1179
55769 X-22-05 0 VIII 999 55803 X-27-04 0 VI 1304
55770 X-22-06 0 VIII 667 55805 X-27-05 0 VI 1663
55771 X-23-00 0 VIII 2075 55806 X-28-00 0 VI 1456
55772 X-23-01 0 VII 3385 55808 X-28-01 0 VIII 577
55773 X-23-02 0 VII 2218 55810 X-28-02 0 VI 1251
55774 X-23-03 0 V 1811 55811 X-28-03 0 VI 2000
55775 X-23-04 0 V 3356 55813 X-29-00 0 VIII 1309
55776 X-23-05 0 V 2603 55819 X-29-04 0 VIII 1686
55777 X-23-06 0 IV 912 55820 X-30-00 0 VI 1488
55777 X-23-06 1 IV 1544 55821 X-30-01 0 VI 1503
55778 X-24-00 0 IV 1309 55822 X-30-02 0 VI 1417
55779 X-24-01 0 IV 3599 55823 X-30-03 0 VI 1290
55779 X-24-02 0 IV 2013 55824 X-30-04 0 VI 1489
55782 X-24-03 0 V 1761 55825 X-30-05 0 VI 2581
55782 X-24-04 0 V 1725 55826 X-30-06 0 VI 2747
55784 X-24-05 0 V 3144 55827 X-31-00 0 VI 1559
55784 X-24-06 0 V 2591 55828 X-31-01 0 VI 2954
55785 X-25-00 0 V 2366 55829 X-31-02 0 IX 3005
55786 X-25-01 0 V 1804 55830 X-31-03 0 IX 1472
55787 X-25-02 0 V 1951 55830 X-31-03 1 IX 288
55788 X-25-03 0 V 1619 55831 X-31-04 0 IX 1586
55789 X-25-04 0 V 2601 55832 X-31-05 0 VI 3812
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Table A.4: A continuation of Table A.1.

MJD OBSID Orb. Class Exp. MJD OBSID Orb. Class Exp.
55833 X-31-06 0 IX 3675 55867 X-36-05 0 IX 1732
55834 X-32-00 0 IX 1217 55868 X-36-06 0 IX 1657
55835 X-32-01 0 IX 1445 55871 X-37-00 0 IX 815
55836 X-32-02 0 IX 1591 55871 X-37-02 0 IX 1460
55837 X-32-03 0 IX 2155 55872 X-37-03 0 IX 1683
55838 X-32-04 0 IX 2641 55873 X-37-04 0 IX 1402
55838 X-32-05 0 IX 2077 55874 X-37-05G 0 IX 1536
55840 X-32-06 0 IX 3392 55875 X-37-06 0 IX 1536
55840 X-32-06 1 IX 3512 55876 X-38-00 0 IX 1497
55840 X-32-06 2 IX 3934 55877 X-38-01 0 IX 1134
55840 X-32-06 3 IX 3880 55878 X-38-02 0 IX 1289
55840 X-32-06 4 IX 1896 55879 X-38-03 0 IX 1433
55841 X-33-00 0 IX 1188
55842 X-33-01 0 IX 855
55843 X-33-02 0 IX 1156
55845 X-33-04 0 IX 1713
55846 X-33-05 0 IX 934
55847 X-33-06 0 IX 717
55848 X-34-00 0 IX 1159
55849 X-34-01 0 IX 973
55851 X-34-02 0 IX 2261
55852 X-34-03 0 IX 1092
55853 X-34-04 0 IX 741
55856 X-35-00 0 IX 797
55857 X-35-01 0 IX 1912
55859 X-35-02 0 IX 200
55859 X-35-02 1 IX 1296
55860 X-35-03 0 IX 1372
55861 X-35-04 0 IX 836
55862 X-36-00 0 IX 1145
55863 X-36-01 0 IX 1322
55865 X-36-03 0 IX 1485
55866 X-36-04 0 IX 1795
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Appendix B

List of RXTE Observations of the
Bursting Pulsar

In Table B.1 we present a table of all RXTE observations used in our study of burst

evolution in the Bursting Pulsar. The prefixes A, B, C, D and E correspond to OBSIDs

beginning with 10401-01, 20077-01, 20078-01, 20401-01 and 30075-01 respectively.
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Obsid Exp. Date Obsid Exp. Date Obsid Exp. Date

A-01-00 3105 119 A-34-00 1831 213 A-59-00 1152 257
A-02-00 1655 117 A-35-00 2563 216 A-59-01 2203 257
A-03-00 6724 122 A-36-00 3683 219 A-59-02 768 257
A-03-000 2372 122 A-37-00 3446 215 A-60-00 1907 260
A-03-01 768 122 A-38-00 1536 217 A-60-01 3376 260
A-04-00 639 128 A-39-00 2317 218 A-60-02 1783 260
A-05-00 1990 129 A-40-00 1239 220 A-60-03 1559 260
A-06-00 1280 134 A-41-00 1363 221 A-61-00 3292 262
A-08-00 2431 142 A-42-00 2728 224 A-61-01 3035 262
A-09-00 640 138 A-43-00 2079 225 A-61-02 2013 262
A-10-00 2470 143 A-44-00 2076 226 A-62-00 2390 264
A-11-00 2381 148 A-45-00 2050 228 A-62-01 1703 264
A-12-00 3352 151 A-47-00 2687 232 A-62-02 2719 264
A-13-00 3480 155 A-48-00 2267 234 A-63-00 517 266
A-14-00 1839 158 A-49-00 35 236 A-63-01 3077 266
A-15-00 1595 161 A-50-00 3719 238 A-64-00 2381 268
A-16-00 3470 156 A-51-00 3590 240 A-64-01 3110 268
A-17-00 4481 164 A-52-00 2518 241 A-65-00 2003 270
A-18-00 384 171 A-53-00 3063 243 A-65-01 2744 270
A-19-00 128 172 A-55-00 3328 245 A-65-02 4331 270
A-20-00 2087 178 A-55-01 3395 245 A-66-00 2203 272
A-21-00 2711 181 A-55-02 2667 245 A-66-01 1723 272
A-22-00 2816 183 A-56-00 512 250 A-66-02 2533 272
A-22-01 2911 185 A-56-01 1280 250 A-67-00 395 274
A-23-00 1678 187 A-56-02 1664 250 A-67-01 3533 274
A-24-00 2509 189 A-56-03 1920 250 A-67-02 3466 274
A-25-00 2846 192 A-57-00 2432 250 A-68-00 1841 276
A-26-00 768 194 A-57-01 894 253 A-69-00 3659 278
A-27-00 2923 196 A-57-02 1408 253 A-70-00 2022 280
A-28-00 6839 199 A-57-03 1792 253 A-71-00 3474 283
A-29-00 3478 201 A-58-00 1024 255 A-72-00 5687 285
A-30-00 5906 203 A-58-01 1401 255 A-73-00 3109 287
A-31-00 6170 206 A-58-02 1679 255 A-74-00 1659 289
A-32-00 2712 209 A-58-03 1683 255 A-75-00 1798 291

Table B.1: A list of all RXTE observations of the Bursting Pulsar used in this study. Exposure is given
in seconds, and date is given in days from MJD 50000. The prefixes A, B, C, D and E correspond to
OBSIDs beginning with 10401-01, 20077-01, 20078-01, 20401-01 and 30075-01 respectively. This
table is continued in Tables B.2-B.3
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Obsid Exp. Date Obsid Exp. Date Obsid Exp. Date

A-76-00 1558 293 B-10-00 1009 482 C-11-00 2330 527
A-77-00 1738 295 B-11-00 2864 487 C-11-01 290 527
A-78-00 463 297 B-12-00 1847 489 C-11-02 2399 527
A-79-00 1024 299 B-13-00 2805 497 C-12-00 3345 534
A-80-00 5818 301 B-14-00 3741 499 C-12-01 2048 534
A-81-00 6898 303 B-15-00 384 501 C-13-00 1735 541
A-82-00 3537 306 B-16-00 768 503 C-13-01 1691 541
A-83-00 512 308 B-17-00 2399 509 C-14-00 3579 549
A-84-00 6361 310 B-18-00 2306 511 C-14-01 2785 549
A-85-00 10391 312 B-19-00 3477 516 C-15-00 7494 579
A-86-00 9232 314 B-20-00 1922 520 C-16-00 4941 562
A-87-00 3109 316 C-01-00 8200 389 C-16-01 671 561
A-88-00 6630 318 C-02-00 1408 400 C-16-02 1159 562
A-89-00 2569 320 C-02-01 896 401 C-17-00 3537 568
A-90-00 2209 323 C-02-02 512 401 C-18-00 2981 576
A-91-00 2317 325 C-03-00 3409 465 C-18-01 3103 576
A-92-00 2199 327 C-03-01 2635 466 C-19-00 3286 582
A-93-00 3720 331 C-03-02 2645 466 C-19-01 2893 582
A-94-00 3216 332 C-04-00 2620 478 C-19-02 470 582
A-95-00 9487 333 C-04-01 2956 477 C-20-00 3460 589
A-96-00 2627 337 C-04-02 2515 476 C-20-01 1126 589
A-97-00 3341 340 C-05-00 1421 484 C-21-00 3659 596
A-98-00 99 343 C-05-01 1995 484 C-21-01 2907 596
A-99-00 2783 345 C-05-02 2505 485 C-21-02 1086 596
A-99-01 1001 344 C-06-00 2770 492 C-22-00 1967 602
B-01-00 1664 467 C-06-01 2375 492 C-22-01 3086 602
B-02-00 1920 468 C-06-02 2203 492 C-22-02 1024 602
B-03-00 2982 469 C-07-00 1258 494 C-23-00 3697 607
B-04-00 3530 470 C-08-00 3305 505 C-23-01 3091 607
B-05-00 2025 472 C-08-01 777 505 C-24-00 1152 618
B-06-00 2677 473 C-09-00 1377 513 C-24-01 2300 618
B-07-00 3365 473 C-09-01 1536 513 C-24-02 1386 618
B-08-00 3113 475 C-10-00 1664 517 C-25-00 4069 626
B-09-00 2868 480 C-10-01 3796 518 C-25-01 1920 626

Table B.2: A continuation of Table B.1. This table is further continued in Table B.3.
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Obsid Exp. Date Obsid Exp. Date Obsid Exp. Date

C-25-02 768 626 C-39-01 4690 723 D-19-00 3158 650
C-26-00 2071 633 C-40-00 3419 730 D-20-00 751 672
C-26-01 4043 633 C-40-01 3419 730 E-01-00 512 831
C-27-00 1792 638 C-40-02 896 764 E-02-00 1836 845
C-27-01 2495 638 C-41-00 5255 735 E-03-00 1871 859
C-27-02 3082 638 C-41-01 2387 735 E-04-00 1927 873
C-28-00 3454 644 C-41-02 1141 744 E-05-00 2088 889
C-28-01 1359 644 C-42-00 1476 744 E-06-00 2003 901
C-28-02 756 644 C-43-00 5277 764 E-07-00 1536 914
C-29-00 1535 652 C-44-00 6712 769 E-08-00 967 935
C-30-01 3435 658 D-01-00 2688 523 E-09-00 1598 949
C-31-00 1920 662 D-02-00 3469 525 E-10-00 1835 961
C-31-01 1152 662 D-03-00 3026 528 E-11-00 1741 975
C-31-02 1012 657 D-04-00 3050 531 E-12-00 1032 991
C-32-00 4646 678 D-05-00 3485 536 E-13-00 1231 1001
C-32-01 2803 678 D-06-00 1367 538 E-14-00 1608 1016
C-33-00 4334 747 D-07-00 3196 543 E-15-00 1712 1030
C-33-01 3534 748 D-08-00 2617 548 E-16-00 1440 1045
C-33-02 2957 748 D-09-00 2598 553 E-17-00 1888 1057
C-34-00 3477 687 D-10-00 4069 560 E-18-00 1847 1071
C-34-01 1008 687 D-11-00 2686 572 E-19-00 1792 1086
C-34-02 2831 687 D-12-00 2867 565 E-20-00 1904 1101
C-35-00 1497 756 D-13-00 2021 585 E-21-00 1921 1115
C-35-01 1959 755 D-13-01 765 585 E-22-00 1769 1129
C-35-02 2023 755 D-14-00 2640 594 E-23-00 1892 1135
C-36-00 2825 702 D-14-01 1719 594 E-24-00 1943 1197
C-36-01 1592 702 D-15-00 3226 621 E-25-00 2237 1210
C-37-00 2092 709 D-15-01 1373 621 E-26-00 1396 1224
C-37-01 384 710 D-16-00 2432 609
C-38-00 1752 716 D-16-01 1562 609
C-38-01 1536 716 D-17-00 1790 628
C-38-02 1144 716 D-17-01 1291 628
C-38-03 338 717 D-18-00 1959 641
C-39-00 2756 723 D-18-01 2614 641

Table B.3: A continuation of Table B.1.
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Appendix C

Normal Burst Histograms

In Figures C.1–C.10, we present histograms showing the distributions of φB, aB, σB, c, φd,

ad, d, λ, φp and ap we find in our population study of Normal Bursts in the Bursting Pulsar.

Each of these is a parameter we used to fit the Normal Bursts in our sample: see Section

5.2.3 for a full explanation of these parameters. In Figures C.11–C.16 we show the

distributions of φB, aB, φd, ad, φp and ap after being normalised by the persistent emission

rate k at the time of each burst.
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Figure C.1: A histogram showing the distribution of burst fluence φB amongst our sample of Normal
Bursts.
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Figure C.2: A histogram showing the distribution of burst amplitude aB amongst our sample of
Normal Bursts.
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Figure C.3: A histogram showing the distribution of burst width σB amongst our sample of Normal
Bursts.

−6 −4 −2 0 2 4 6 8
c 

0

5

10

15

20

25

30

N
u
m

b
e
r

Figure C.4: A histogram showing the distribution of burst skewness c amongst our sample of Normal
Bursts.
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Figure C.5: A histogram showing the distribution of dip fluence φd amongst our sample of Normal
Bursts.
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Figure C.6: A histogram showing the distribution of dip amplitude ad amongst our sample of Normal
Bursts.
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Figure C.7: A histogram showing the distribution of dip fall-time d amongst our sample of Normal
Bursts.
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Figure C.8: A histogram showing the distribution of dip recovery timescale λ amongst our sample
of Normal Bursts.
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Figure C.9: A histogram showing the distribution of plateau fluence φp amongst our sample of
Normal Bursts.
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Figure C.10: A histogram showing the distribution of plateau amplitude ap amongst our sample of
Normal Bursts.
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Figure C.11: A histogram showing the distribution of persistent-emission-normalised burst fluence
φB/k amongst our sample of Normal Bursts.
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Figure C.12: A histogram showing the distribution of persistent-emission-normalised burst ampli-
tude aB/k amongst our sample of Normal Bursts.
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Figure C.13: A histogram showing the distribution of persistent-emission-normalised dip fluence
φd/k amongst our sample of Normal Bursts.
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Figure C.14: A histogram showing the distribution of persistent-emission-normalised dip amplitude
ad/k amongst our sample of Normal Bursts.
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Figure C.15: A histogram showing the distribution of persistent-emission-normalised plateau fluence
φp/k amongst our sample of Normal Bursts.
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Figure C.16: A histogram showing the distribution of persistent-emission-normalised plateau ampli-
tude ap/k amongst our sample of Normal Bursts.
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Appendix D

Parameter Correlations in Normal
Bursts

Before normalizing for persistent rate, we find > 5σ correlations between 12 pairs of the

parameters we use to describe Normal Bursts in the Bursting Pulsar:

• Persistent emission k correlates with burst fluence φB (> 10σ), burst amplitude ab

(> 10σ), dip fluence φD (> 10σ) and dip amplitude ad (7.2σ).

• Burst fluence φB also correlates with burst amplitude aB (> 10σ), dip fluence φD

(> 10σ) and dip amplitude ad (7.1σ).

• Burst amplitude φB also correlates with dip fluence φD (6.2σ) and dip amplitude ad

(5.7σ).

• Burst width σB correlates with burst skewness c (5.8σ).

• Dip amplitude ad anticorrelates with dip recovery timescale λ (5.0σ).

• Plateau fluence φp correlates with plateau amplitude ap (6.6σ).

The full correlation matrix can be found in Figure D.1, in which these pairs with > 5σ

correlations are highlighted.
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Figure D.1: Covariance Matrix with a scatter plot of each of the 66 pairings of the 12 Normal Burst
parameters listed in section 5.2.3. Pairings which show a correlation using the Spearman Rank metric
with a significance ≥ 5σ are highlighted in red.
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Appendix E

PANTHEON suite

In this section I present the headers and internal command lists of every piece of code in

PANTHEON (Python ANalytical Tools for High-energy Event data manipulatiON), that

suite of tools that I created and used during the work presented in this thesis. The full code

is available at https://github.com/jmcourt/PANTHEON. PANTHEON makes use of

the Astropy (Astropy Collaboration et al., 2013), Matplotlib (Hunter, 2007), Numpy, Scipy

(Jones et al., 2001) and Numba (Lam et al., 2015).

E.1 FITS Genie

FITS Genie is a script that allows the user to extract data from raw FITS files. The script

was designed to interface with RXTE data, but there is also limited implementation with

Suzaku. The script produces .plotd and .speca files, which can be further processed with

Plot Demon and Spec Angel.

#! /usr/bin/env python

# |----------------------------------------------------------------------|

# |-----------------------------FITS GENIE-------------------------------|

# |----------------------------------------------------------------------|

# Call as ./fitsgenie.py FILE1 PROD_REQ [LCHAN] [HCHAN] [BINNING] [FOURIER RES]

# [FOURIER SEP] [BGEST] [FLAVOUR]

#

# Takes 1 FITS Event file and produces .speca and .plotd formatted products to be

# analysed by plotdemon and specangel.

#

# Arguments:

#

# FILE1

# The absolute path to the file to be used.

#

# PROD_REQ

# The products requested by the user. The following inputs are valid:

# ’spec’,’speca’,’s’ will cause FITSGenie to produce only a .speca file as output

# ’plot’,’plotd’,’p’ will cause FITSGenie to produce only a .plotd file as output
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# ’both’,’all’,’b’,’a’,’sp’,’ps’ will cause both files to be output

#

# [LCHAN]

# Optional: The lowest channel on the PCA instrument on RXTE which will be used to

# populate the data. Default of 0 (minimum).

#

# [HCHAN]

# Optional: The highest channel on the PCA instrument on RXTE which will be used to

# populate the data. Default of 255 (maximum).

#

# [BINNING]

# Optional: The size, in seconds, of bins into which data will be sorted. Takes the

# value of the time resolution of the data if not specified by the user. Default

# of 2^-15s

#

# [FOURIER RES]

# Optional: The size of the individual time windows in which the data is to be split.

# Fourier spectra will be made of each of these windows. Default of 128s.

#

# [FOURIER SEP]

# Optional: The separation of the startpoints of individual time windows in which the

# data is to be split. Fourier spectra will be made of each of these windows.

# Default of 128s.

#

# [BGEST]

# Optional: The approximate average background count rate during the observation in

# cts/s. Default of 30cts/s.

#

# [FLAVOUR]

# Optional: A useful bit of text to put on plots to help identify them later on.

E.2 Plot Demon

Plot Demon is a script for manipulating the .plotd files output by Fits Genie, as well

as time series stored in comma-separated variable files (CSVs). The script allows the user to

produce lightcurves, hardness-intensity diagrams and colour-colour diagrams, among other

products. The script also allows the user to modify the data by rebinning, clipping or

folding it using the algorithms I detail in Section 3.2.1.

#! /usr/bin/env python

# |----------------------------------------------------------------------|

# |------------------------------PLOT DEMON------------------------------|

# |----------------------------------------------------------------------|

# Call as ./plotdemon.py FILE1 [FILE2] [FILE3] BINNING

#

# Takes 1-3 .plotd files and plots relevant astrometric plots

#

# Arguments:

#

# FILE1

# The absolute path to the first file to be used (generally the lowest energy band)

#

# [FILE2]
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# The absolute path to the second file to be used

#

# [FILE3]

# The absolute path to the third file to be used (generally the highest energy band)

#

# [BINNING]

# Optional: the size, in seconds, of bins into which data will be sorted.

def give_inst(): # Define printing this list of

# instructions as a function

print ’COMMANDS: Enter a command to manipulate data.’

print ’’

print ’DATA:’

print ’* "rebin" to reset the data and load it with a different binning.’

print ’* "clip" to clip the data.’

print ’* "norm time" to renormalise the times by the start time of the data’

print ’* "mask" to remove a range of data.’

print ’* "rms" to return the fractional rms of the data.’

print ’* "fold" to fold data over a period of your choosing’+(’ (requires PyAstron’+

’omy module!)’ if not module_pyastro else ’’)+’.’

print ’* "autofold" to automatically seek a period over which to fold data’+(’ (re’+

’quires PyAstronomy module!)’ if not module_pyastro else ’’)+’.’

print ’* "varifold" to fold over a non-constant period using an algorithm optimise’+

’d for high-amplitude quasi-periodic flares.’

print ’* "plot bursts" to plot the results of the peak-finding algorithm used in v’+

’arifold.’

print ’’

print ’1+ DATASET PLOTS:’

print ’* "lc" to plot a simple graph of flux over time.’

print ’* "bg" to plot background over time, if background has been estimated for t’+

’hese files.’

print ’* "animate" to create an animation of the lightcurve as the binning is incr’+

’eased.’

print ’* "circanim" to create an animation of the lightcurve circularly folded as ’+

’the period is increased.’

print ’* "lombscargle" to create a Lomb-Scargle periodogram of the lightcurve.’

print ’* "autocor" to plot the auto-correlation function.’

print ’* "rmsflux" to plot the rms-flux relationship of the data.’

if nfiles>1: # Only display 2-data-set inst-

# -ructions if 2+ datasets given

print ’’

print ’2+ DATASET PLOTS:’

print ’* "hardness21" to plot a hardness/time diagram of file2/file1 colour ove’+

’r time.’

print ’* "hardness12" to plot a hardness/time diagram of file1/file2 colour ove’+

’r time.’

print ’* "hid21" to plot a hardness-intensity diagram of file2/file1 colour aga’+

’inst total flux.’

print ’* "hid12" to plot a hardness-intensity diagram of file1/file2 colour aga’+

’inst total flux.’

print ’* "calcloop21" to return the probability of a null hysteresis in the 12 ’+

’HID.’

print ’* "col21" to plot file2/file1 colour against time.’

print ’* "col12" to plot file1/file2 colour against time.’

print ’* "band" to plot the lightcurve of a single energy band.’

print ’* "bands" to plot lightcurves of all bands on adjacent axes.’

print ’* "xbands" to plot lightcurves of all bands on the same axes.’

print ’* "compbands21" to plot lightcurves of bands 2 and 1 against each other.’

print ’* "crosscor21" to plot the cross-correlation function of band 1 with ban’+
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’d 2.’

print ’* "timeres crosscor21" to plot the time-resolved cross-correlation funct’+

’ion of band 1 with band 2’

print ’* "all" to plot all available data products.’

if nfiles==3: # Only display 3-data-set inst-

# -ructions if 3 datasets given

print ’’

print ’3 DATASET PLOTS:’

print ’* "hardness32" to plot a hardness/time diagram of file3/file2 colour ove’+

’r time.’

print ’* "hardness23" to plot a hardness/time diagram of file2/file3 colour ove’+

’r time.’

print ’* "hardness31" to plot a hardness/time diagram of file3/file1 colour ove’+

’r time.’

print ’* "hardness13" to plot a hardness/time diagram of file1/file3 colour ove’+

’r time.’

print ’* "hid32" to plot a hardness-intensity diagram of file3/file2 colour aga’+

’inst total flux.’

print ’* "hid23" to plot a hardness-intensity diagram of file2/file3 colour aga’+

’inst total flux.’

print ’* "calcloop32" to return the probability of a null hysteresis in the 32 ’+

’HID.’

print ’* "hid31" to plot a hardness-intensity diagram of file3/file1 colour aga’+

’inst total flux.’

print ’* "hid13" to plot a hardness-intensity diagram of file1/file3 colour aga’+

’inst total flux.’

print ’* "calcloop31" to return the probability of a null hysteresis in the 31 ’+

’HID.’

print ’* "col32" to plot file3/file2 colour against time.’

print ’* "col23" to plot file2/file3 colour against time.’

print ’* "col31" to plot file3/file1 colour against time.’

print ’* "col13" to plot file1/file3 colour against time.’

print ’* "compbands31" to plot lightcurves of bands 3 and 1 against each other.’

print ’* "compbands32" to plot lightcurves of bands 3 and 2 against each other.’

print ’* "ccd" to plot a colour-colour diagram (3/1 colour against 2/1 colour).’

print ’* "timeres crosscor31" to plot the time-resolved cross-correlation funct’+

’ion of band 3 with band 1’

print ’* "timeres crosscor32" to plot the time-resolved cross-correlation funct’+

’ion of band 3 with band 2’

print ’* "crosscor31" to plot the cross-correlation function of band 3 with ban’+

’d 1.’

print ’* "crosscor32" to plot the cross-correlation function of band 3 with ban’+

’d 2.’

print ’’

print ’BURST ANALYSIS:’

print ’* "burst get" to interactively extract burst data for analysis.’

print ’* "burst peaks" for a histogram of peak heights of extracted bursts.’

print ’* "burst risetimes" for a histogram of rise times of extracted bursts.’

print ’* "burst falltimes" for a histogram of fall times of extracted bursts.’

print ’* "burst lengths" for a histogram of durations of extracted bursts.’

print ’* "burst help" for further information on burst analysis.’

print ’’

print ’SAVING DATA TO ASCII:’

print ’* "export" to dump the lightcurve and colour data into an ASCII file.’

print ’* "bgdump" to export background lightcurve to an ASCII file.’

print ’* "timenorm" to toggle absolute or relative time values on x-axis.’

print ’’

print ’TOGGLE OPTIONS:’

print ’* "errors" to toggle whether to display errors in plots.’

208



print ’* "lines" to toggle lines joining points in graphs.’

print ’* "ckey" to toggle colour key (red-blue) for the first five points in all p’+

’lots.’

print ’* "save" to save to disk any plots which would otherwise be shown.’

print ’’

print ’ADVANCED OPTIONS:’

print ’* "burstalg" to select algorithm for finding pulse peaks in lightcurve.’

print ’’

print ’OTHER COMMANDS:’

print ’* "info" to display a list of facts and figures about the current PlotDemon’+

’ session.’

print ’* "reflav" to rewrite the flavour text used for graph titles.’

print ’* "help" or "?" to display this list of instructions again.’

print ’* "quit" to quit.’

give_inst() # Print the list of instructions

E.3 Spec Angel

Spec Angel is a script to allow users to produce power spectra from .speca files output

by Fits Genie. These power spectra can be linearly or logarithmically binned, and can be

normalised in a number of different ways.

#! /usr/bin/env python

# |----------------------------------------------------------------------|

# |------------------------------SPEC ANGEL------------------------------|

# |----------------------------------------------------------------------|

# Call as ./specangel.py FILE1 [LBINNING]

# Takes 1 RXTE FITS Event file and produces an interactive spectrogram

#

# Arguments:

#

# FILE1

# The absolute path to the file to be used.

#

# [LBINNING]

# Optional- the logarithmic binning factor ’x’; frequency data will be binned into

# bins which have their lefthand edges defined by the formula 10**(ix) for integer i.

#

def give_inst(): # Define printing this list of

# instructions as a function

print ’COMMANDS: Enter a command to manipulate data.’

print ’’

print ’DATA:’

print ’* "rebin" to reset the data and load it with a different normalisation and ’+

’ binning.’

print ’* "clip" to clip the range of data.’

print ’* "reset" to reset data.’

print ’’

print ’SPECTROGRAM:’

print ’* "sg plot" to plot the spectrogram currently being worked on.’

print ’* "sg floor" to set a minimum value for the spectrogram’+"’"+’s z-axis colo’+
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’ur key.’

print ’* "sg ceil" to set a maximum value for the spectrogram’+"’"+’s z-axis colou’+

’r key.’

print ’* "sg auto" to automatically set colour floor and ceiling.’

print ’* "sg log" to toggle logarithmic spectrogram plotting.’

print ’’

print ’POWER SPECTRA:’

print ’* "aspec" to plot the average spectrum and return the frequency of its high’+

’est peak.’

print ’* "gspec" to get an individual spectrum at any time and plot it.’

print ’* "peaks" to plot a graph of the frequency of the strongest oscillation aga’+

’inst time.’

print ’* "rates" to get a simple lightcurve of the data.’

print ’* "fqflux" to plot "peaks" against "rates".’

print ’’

print ’TOGGLE OPTIONS:’

print ’* "errors" to toggle errorbars on power spectra plots.’

print ’* "save" to save to disk any plots which would otherwise be shown.’

print ’’

print ’OTHER COMMANDS:’

print ’* "info" to display a list of facts and figures about the current SpecAngel’+

’ session.’

print ’* "reflav" to rewrite the flavour text used for graph titles.’

print ’* "export" to create an ASCII file of the average power density spectrum.’

print ’* "help" or "?" to display this list of instructions again.’

print ’* "quit" to Quit’

give_inst() # Print the list of instructions

E.4 Back Hydra

Back Hydra is a script to subtract the background from the data in a .plotd file. It

requires a background lightcurve created by the pcabackest tool available from NASA’s

FTOOLS suite.

#! /usr/bin/env python

# |----------------------------------------------------------------------|

# |-----------------------------BACK HYDRA-------------------------------|

# |----------------------------------------------------------------------|

# Call as ./bckghydra.py DATA_FILE BACK_FILE SAVE_FILE

# Takes a .plotd file and a background file created with PCABACKEST and returns

#

# Arguments:

#

# DATA_FILE

# The absolute path to the file to be used as data.

#

# BACK_FILE

# The file to be used as background; does not need to be the same binning as File 1.

# suggest using pcabackest from FTOOLS to produce this file.

# FTOOLS can be found at http://heasarc.gsfc.nasa.gov/ftools/

#

# SAVE_FILE
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# The location to save the resultant background-subtracted file

#

E.5 PAN Lib

PAN Lib is a library of functions. I use this library extensively in the other scripts in this

suite.

#! /usr/bin/env python

# |----------------------------------------------------------------------|

# |-------------------------------PAN_LIB--------------------------------|

# |----------------------------------------------------------------------|

# A selection of useful functions which are placed here to reduce clutter in the other

# files of

# PANTHEON.

#

# Contents:

#

# ARGCHECK - compares the list of arguments against a value given as the minimum

# allowed number of arguments. If the list of arguments is too short,

# throw a warning and kill the script.

#

# BINIFY - takes a x-series with its associated y-axis data and y-axis errors.

# Rebins the data into larger linear bins with a width of the user’s

# choosing, and returns the tuple x,y,y_error.

#

# BOOLVAL - takes a list of Boolean values and, interpreting it as binary, returns

# its integer value.

#

# EQRANGE -

#

# EVAL_BURST-

#

# FILENAMECHECK - checks to see whether a proposed input file has the correct file

# extension.

#

# FOLDIFY - takes a time series with its associated y-axis data and y-axis errors.

# Folds this data over a time period of the user’s choosing, and returns

# them as the tuple x,y,y_error.

#

# FOLD_BURSTS - uses GET_BURSTS to obtain burst locations then interpolates to

# populate phase information for all other points

#

# GET_BURSTS- takes an array of data, looks for bursts and returns an array of tuples

# containing the start and end points of these bursts.

#

# GET_DIP - returns the index of the lowest point between two user-defined flags in

# a dataset.

#

# GTIMASK - returns a data mask when given a time series and a GTI object

#

# LBINIFY - takes a linearly binned x-series with associated y-axis data and y-axis

# errors and rebins them into bins of a constant width in logx space.
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# In places where the logarithmic bins would be finer than the linear

# bins, the linear bins are retained.

#

# LEAHYN - takes the raw power spectrum output from the scipy FFT algorithm and

# normalises it using Leahy normalisation.

#

# LH2RMS - takes a Leahy-normalised power spectrum and converts it to an

# (RMS/Mean)^2-normalised power spectrum.

#

# LHCONST - returns the normalisation of the white noise component in a Leahy-

# normalised power spectrum with no features in the range 1.5kHz - 4kHz.

#

#

# MXREBIN - takes a 2-dimensional set of data and corresponding errors linearly

# binned on the x-axis and rebins them by an integer binning factor of

# the user’s choice.

#

# NONES - like np.zeros, but with None.

#

# PDCOLEX - extracts colours from a set of 2 or 3 lightcurves

#

# PLOTDLD - load and unpickle a .plotd file and extract its data.

#

# PLOTDSV - collect a selection of data products as a library, pickle it and save

# as a .plotd file.

#

# RMS_N - takes the raw power spectrum output from the scipy FFT algorithm and

# normalises it using (RMS/Mean)^2 normalisation.

#

# SAFE_DIV - Divides two arrays by each other, replacing NaNs that would be caused

# by div 0 errors with zeroes.

#

# SIGNOFF - prints an dividing line with some space. That’s all it does.

#

# SINFROMCOS- calculates the sines of an array of values when also passed their co-

# sines. If both sines and cosines of the array are required, this method

# is faster than calling both trig functions.

# Also contains function COSFROMSIN.

#

# SLPLOT - plots an x-y line plot of two sets of data, and then below plots the

# same data on another set of axes in log-log space.

#

# SPECALD - load and unpickle a .speca file and extract its data.

#

# SPECASV - collect a selection of data products as a library, pickle it and save

# as a .speca file.

#

# SRINR - calculates whether a value given by a user is within an existant evenly

# spaced array and, if it is, returns the index value of the closest

# match to this value within the array.

# Intended for validating subranges specified by user.

#

# TNORM - takes a list of times, and subtracts the lowest value from each entry

# such that a new list starting with 0 is produced. Large number

# subtraction errors are avoided by checking that every entry is an

# integer number of time-resolution steps from zero.

#

# UNIQFNAME - checks if a proposed filename is currently in use and, if so, proposes

# an alternative filename to prevent overwrite.
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#

# XTRFILLOC - takes a filepath and outputs the file name and its absolute(ish)

# location

#
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Sánchez-Fernández, C., Chenevez, J., Motta, S., van der Klis, M., Granot, J., Gehrels, N.,

Kuulkers, E., Tomsick, J. A., and Walton, D. J. (2016). Detection of Very Low-Frequency

Quasi-Periodic Oscillations in the 2015 Outburst of V404 Cygni. ArXiv e-prints.

Iaria, R., Gambino, A. F., Di Salvo, T., Burderi, L., Matranga, M., Riggio, A., Sanna, A.,

Scarano, F., and D’Aı, A. (2018). A possible solution of the puzzling variation of the

orbital period of MXB 1659-298. MNRAS, 473:3490–3499.

227



Ibarra, A., Calle, I., Gabriel, C., Salgado, J., and Osuna, P. (2009). XMM-Newton Science

Analysis Software: How to Bring New Technologies to Long-life Satellite Missions. In

Bohlender, D. A., Durand, D., and Dowler, P., editors, Astronomical Data Analysis

Software and Systems XVIII, volume 411 of Astronomical Society of the Pacific

Conference Series, page 322.

Ibragimov, A. and Poutanen, J. (2009). Accreting millisecond pulsar SAX J1808.4-3658

during its 2002 outburst: evidence for a receding disc. MNRAS, 400:492–508.

Icke, V. (1979). Disk accretion in a soft potential well. A&A, 78:21–24.

Illarionov, A. F. and Sunyaev, R. A. (1975). Why the Number of Galactic X-ray Stars Is so

Small? A&A, 39:185.

Ingram, A., Done, C., and Fragile, P. C. (2009). Low-frequency quasi-periodic oscillations

spectra and Lense-Thirring precession. MNRAS, 397:L101–L105.

in’t Zand, J. J. M., Cumming, A., Triemstra, T. L., Mateijsen, R. A. D. A., and Bagnoli, T.

(2014). The cooling rate of neutron stars after thermonuclear shell flashes. A&A,

562:A16.

Irwin, A. W., Campbell, B., Morbey, C. L., Walker, G. A. H., and Yang, S. (1989).

Long-period radial-velocity variations of Arcturus. PASP, 101:147–159.

Israel, W. (1967). Event Horizons in Static Vacuum Space-Times. Physical Review,

164:1776–1779.

Iyer, N., Nandi, A., and Mandal, S. (2015a). Determination of the Mass of IGR

J17091-3624 from ”Spectro-temporal” Variations during the Onset Phase of the 2011

Outburst. ApJ, 807:108.

Iyer, N., Nandi, A., and Mandal, S. (2015b). Estimating the mass of IGR J17091-3624:

statistical challenges and methods. In Astronomical Society of India Conference Series,

volume 12 of Astronomical Society of India Conference Series.

Jahoda, K., Markwardt, C. B., Radeva, Y., Rots, A. H., Stark, M. J., Swank, J. H.,

Strohmayer, T. E., and Zhang, W. (2006). Calibration of the Rossi X-Ray Timing

Explorer Proportional Counter Array. ApJS, 163:401–423.

Jahoda, K., Swank, J. H., Giles, A. B., Stark, M. J., Strohmayer, T., Zhang, W., and

Morgan, E. H. (1996). In-orbit performance and calibration of the Rossi X-ray Timing

Explorer (RXTE) Proportional Counter Array (PCA). In Siegmund, O. H. and Gummin,

M. A., editors, EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy VII, volume

2808 of Proc. SPIE, pages 59–70.

Janiuk, A. and Czerny, B. (2005). Time-delays between the soft and hard X-ray bands in

GRS 1915+105. MNRAS, 356:205–216.

228



Janiuk, A., Czerny, B., and Siemiginowska, A. (2000). Radiation Pressure Instability as a

Variability Mechanism in the Microquasar GRS 1915+105. ApJ, 542:L33–L36.

Jansen, F., Lumb, D., Altieri, B., Clavel, J., Ehle, M., Erd, C., Gabriel, C., Guainazzi, M.,

Gondoin, P., Much, R., Munoz, R., Santos, M., Schartel, N., Texier, D., and Vacanti, G.

(2001). XMM-Newton observatory. I. The spacecraft and operations. A&A, 365:L1–L6.

Johnson, T. J., Ray, P. S., Roy, J., Cheung, C. C., Harding, A. K., Pletsch, H. J., Fort, S.,

Camilo, F., Deneva, J., Bhattacharyya, B., Stappers, B. W., and Kerr, M. (2015).

Discovery of Gamma-Ray Pulsations from the Transitional Redback PSR J1227-4853.

ApJ, 806:91.

Johnson, W. N., Dermer, C., Kroeger, R. A., Kurfess, J. D., Gehrels, N. A., Grindlay, J. E.,

Leising, M. D., Prince, T. A., Purcell, W. R., Ryan, J. M., and Tumer, T. O. (1995).

Advanced telescope for high-energy nuclear astrophysics (ATHENA). In Siegmund,

O. H. and Vallerga, J. V., editors, EUV, X-Ray, and Gamma-Ray Instrumentation for

Astronomy VI, volume 2518 of Proc. SPIE, pages 74–84.

Jones, E., Oliphant, T., Peterson, P., et al. (2001). SciPy: Open source scientific tools for

Python.

Joss, P. C. (1978). Helium-burning flashes on an accreting neutron star - A model for X-ray

burst sources. ApJ, 225:L123–L127.

Kaspi, V. M. and Beloborodov, A. M. (2017). Magnetars. ARA&A, 55:261–301.

Kelley, R. L., Audley, M. D., Boyce, K. R., Breon, S. R., Fujimoto, R., Gendreau, K. C.,

Holt, S. S., Ishisaki, Y., McCammon, D., Mihara, T., Mitsuda, K., Moseley, S. H., Mott,

D. B., Porter, F. S., Stahle, C. K., and Szymkowiak, A. E. (1999). ASTRO-E

high-resolution x-ray spectrometer. In Siegmund, O. H. and Flanagan, K. A., editors,

EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy X, volume 3765 of

Proc. SPIE, pages 114–127.

Kennea, J. A. and Capitanio, F. (2007). Swift/XRT Observations of IGR J17091-3624 and

IGR J17098-3628. The Astronomer’s Telegram, 1140.

Kennea, J. A., Kouveliotou, C., and Younes, G. (2014). GRO J1744-28: Swift XRT

confirmation of outburst. The Astronomer’s Telegram, 5845.

Kenney, J. (1939). Mathematics of Statistics. Number v. 1 in Mathematics of Statistics. D.

Van Nostrand Company, Incorporated.

Kenter, A. T., Chappell, J. H., Kraft, R. P., Meehan, G. R., Murray, S. S., Zombeck, M. V.,

Hole, K. T., Juda, M., Donnelly, R. H., Patnaude, D., Pease, D. O., Wilton, C., Zhao, P.,

Austin, G. K., Fraser, G. W., Pearson, J. F., Lees, J. E., Brunton, A. N., Barbera, M.,

Collura, A., and Serio, S. (2000). In-flight performance and calibration of the Chandra

high-resolution camera imager (HRC-I). In Truemper, J. E. and Aschenbach, B., editors,

X-Ray Optics, Instruments, and Missions III, volume 4012 of Proc. SPIE, pages 467–492.

229



Kerr, R. P. (1963). Gravitational field of a spinning mass as an example of algebraically

special metrics. Phys. Rev. Lett., 11:237–238.

King, A. L., Miller, J. M., Raymond, J., Fabian, A. C., Reynolds, C. S., Kallman, T. R.,

Maitra, D., Cackett, E. M., and Rupen, M. P. (2012). An Extreme X-Ray Disk Wind in

the Black Hole Candidate IGR J17091-3624. ApJ, 746:L20.

King, A. L., Miller, J. M., Raymond, J., Reynolds, M. T., and Morningstar, W. (2015).

High-resolution Chandra HETG Spectroscopy of V404 Cygni in Outburst. ApJ, 813:L37.

Klein-Wolt, M., Fender, R. P., Pooley, G. G., Belloni, T., MigliariF, S., Morgan, E. H., and

van der Klis, M. (2002). Hard X-ray states and radio emission in GRS 1915+105.

MNRAS, 331:745–764.

Kok, C. (2000). On the Behaviour of a Few Popular Verification Scores in Yes No

Forecasting. Scientific report. Koninklijk Nederlands Meteorologisch Insutuut.

Kommers, J. M., Fox, D. W., Lewin, W. H. G., Rutledge, R. E., van Paradijs, J., and

Kouveliotou, C. (1997). Postburst Quasi-periodic Oscillations from GRO J1744-28 and

from the Rapid Burster. ApJ, 482:L53–L56.

Kouveliotou, C., Kommers, J., Lewin, W. H. G., van Paradijs, J., Fishman, G. J., Briggs,

M. S., Hurley, K., Harmon, A., Finger, M. H., and Wilson, R. B. (1996a). GRO

J1744-28. IAU Circ., 6286.

Kouveliotou, C., van Paradijs, J., Fishman, G. J., Briggs, M. S., Kommers, J., Harmon,

B. A., Meegan, C. A., and Lewin, W. H. G. (1996b). A new type of transient high-energy

source in the direction of the Galactic Centre. Nature, 379:799–801.

Koyama, K., Tsunemi, H., Dotani, T., Bautz, M. W., Hayashida, K., Tsuru, T. G.,

Matsumoto, H., Ogawara, Y., Ricker, G. R., Doty, J., Kissel, S. E., Foster, R., Nakajima,

H., Yamaguchi, H., Mori, H., Sakano, M., Hamaguchi, K., Nishiuchi, M., Miyata, E.,

Torii, K., Namiki, M., Katsuda, S., Matsuura, D., Miyauchi, T., Anabuki, N., Tawa, N.,

Ozaki, M., Murakami, H., Maeda, Y., Ichikawa, Y., Prigozhin, G. Y., Boughan, E. A.,

Lamarr, B., Miller, E. D., Burke, B. E., Gregory, J. A., Pillsbury, A., Bamba, A., Hiraga,

J. S., Senda, A., Katayama, H., Kitamoto, S., Tsujimoto, M., Kohmura, T., Tsuboi, Y.,

and Awaki, H. (2007). X-Ray Imaging Spectrometer (XIS) on Board Suzaku. PASJ,

59:23–33.

Kozlowski, M., Jaroszynski, M., and Abramowicz, M. A. (1978). The analytic theory of

fluid disks orbiting the Kerr black hole. A&A, 63:209–220.

Kraft, R. P., Chappell, J. H., Kenter, A. T., Meehan, G. R., Murray, S. S., Zombeck, M. V.,

Donnelly, R. H., Drake, J. J., Johnson, C. O., Juda, M., Patnaude, D., Pease, D. O.,

Ratzlaff, P. W., Wargelin, B. J., Zhao, P., Austin, G. K., Fraser, G. W., Pearson, J. F.,

Lees, J. E., Brunton, A. N., Barbera, M., Collura, A., and Serio, S. (2000). In-flight

230



performance and calibration of the Chandra high-resolution camera spectroscopic

readout (HRC-S). In Truemper, J. E. and Aschenbach, B., editors, X-Ray Optics,

Instruments, and Missions III, volume 4012 of Proc. SPIE, pages 493–517.

Kreykenbohm, I., Wilms, J., Kretschmar, P., Torrejón, J. M., Pottschmidt, K., Hanke, M.,

Santangelo, A., Ferrigno, C., and Staubert, R. (2008). High variability in Vela X-1: giant

flares and off states. A&A, 492:511–525.

Krimm, H. A., Barthelmy, S. D., Baumgartner, W., Cummings, J., Fenimore, E., Gehrels,

N., Kennea, J. A., Markwardt, C. B., Palmer, D., Sakamoto, T., Skinner, G., Stamatikos,

M., Tueller, J., and Ukwatta, T. (2011). Swift/BAT reports renewed activity from IGR

J17091-3624. The Astronomer’s Telegram, 3144.

Krimm, H. A., Holland, S. T., Corbet, R. H. D., Pearlman, A. B., Romano, P., Kennea, J. A.,

Bloom, J. S., Barthelmy, S. D., Baumgartner, W. H., Cummings, J. R., Gehrels, N., Lien,

A. Y., Markwardt, C. B., Palmer, D. M., Sakamoto, T., Stamatikos, M., and Ukwatta,

T. N. (2013). The Swift/BAT Hard X-Ray Transient Monitor. ApJS, 209:14.

Krimm, H. A. and Kennea, J. A. (2011). Swift/XRT Observations Confirm that IGR

J17091-3624 is in Outburst. The Astronomer’s Telegram, 3148:1.

Krivonos, R., Tsygankov, S., Lutovinov, A., Revnivtsev, M., Churazov, E., and Sunyaev, R.

(2015). INTEGRAL 11-year hard X-ray survey above 100 keV. MNRAS,

448:3766–3774.

Kuulkers, E., Homan, J., van der Klis, M., Lewin, W. H. G., and Méndez, M. (2002). X-ray

bursts at extreme mass accretion rates from GX 17+2. A&A, 382:947–973.

Kuulkers, E., Lutovinov, A., Parmar, A., Capitanio, F., Mowlavi, N., and Hermsen, W.

(2003). Igr J17091-3624. The Astronomer’s Telegram, 149.

Kuulkers, E., Shaw, S., Paizis, A., Mowlavi, N., Courvoisier, T., Ebisawa, K., Kretschmar,

P., Markwardt, C., Oosterbroek, T., Orr, A., and Wijnands, R. (2005). Announcement of

INTEGRAL Galactic Bulge monitoring program and (re)brightening of GRO J1655-40.

The Astronomer’s Telegram, 438.

Kuulkers, E., Shaw, S. E., Paizis, A., Chenevez, J., Brandt, S., Courvoisier, T. J.-L.,

Domingo, A., Ebisawa, K., Kretschmar, P., Markwardt, C. B., Mowlavi, N., Oosterbroek,

T., Orr, A., Rísquez, D., Sanchez-Fernandez, C., and Wijnands, R. (2007). The

INTEGRAL Galactic bulge monitoring program: the first 1.5 years. A&A, 466:595–618.

Labanti, C., Di Cocco, G., Malaguti, G., Mauri, A., Rossi, E., Schiavone, F., and Traci, A.

(1996). PICsIT: the high-energy detection plane of the IBIS instrument onboard

INTEGRAL. In Ramsey, B. D. and Parnell, T. A., editors, Gamma-Ray and Cosmic-Ray

Detectors, Techniques, and Missions, volume 2806 of Proc. SPIE, pages 269–279.

231



Lam, S. K., Pitrou, A., and Seibert, S. (2015). Numba: a llvm-based python jit compiler. In

LLVM ’15 Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in

HPC.

Lamb, D. Q., Miller, M. C., and Taam, R. E. (1996). GRO J1744-28: Last Gasps of a Dying

Low-mass X-ray Binary. ArXiv Astrophysics e-prints.

Landau, L. D. and Lifshitz, E. M. (1959). Fluid mechanics.

Leahy, D. A., Darbro, W., Elsner, R. F., Weisskopf, M. C., Kahn, S., Sutherland, P. G., and

Grindlay, J. E. (1983). On searches for pulsed emission with application to four globular

cluster X-ray sources - NGC 1851, 6441, 6624, and 6712. ApJ, 266:160–170.

Lebrun, F., Blondel, C., Fondeur, I., Goldwurm, A., Laurent, P., and Leray, J. P. (1996).

ISGRI: a CdTe array imager for INTEGRAL. In Ramsey, B. D. and Parnell, T. A.,

editors, Gamma-Ray and Cosmic-Ray Detectors, Techniques, and Missions, volume 2806

of Proc. SPIE, pages 258–268.

Leiter, D. (1983). Electron-positron processes and spectral evolution in black hole accretion

disk dynamo models for AGN sources of the cosmic X-ray and gamma ray backgrounds.

In Burns, M. L., Harding, A. K., and Ramaty, R., editors, Positron-Electron Pairs in

Astrophysics, volume 101 of American Institute of Physics Conference Series, pages

337–342.

Lemiere, A., Terrier, R., Jouvin, L., Marandon, V., and Khelifi, B. (2015). Study of the

VHE diffuse emission in the central 200 pc of our Galaxy with H.E.S.S. In 34th

International Cosmic Ray Conference (ICRC2015), volume 34 of International Cosmic

Ray Conference, page 838.

Lense, J. and Thirring, H. (1918). Über den Einfluß der Eigenrotation der Zentralkörper auf

die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie.

Physikalische Zeitschrift, 19.

Levine, A. M., Bradt, H., Cui, W., Jernigan, J. G., Morgan, E. H., Remillard, R., Shirey,

R. E., and Smith, D. A. (1996). First Results from the All-Sky Monitor on the Rossi

X-Ray Timing Explorer. ApJ, 469:L33.

Lewin, W. H. G., Clark, G., and Doty, J. (1976a). X-Ray Bursts. IAU Circ., 2922.

Lewin, W. H. G., Doty, J., Clark, G. W., Rappaport, S. A., Bradt, H. V. D., Doxsey, R.,

Hearn, D. R., Hoffman, J. A., Jernigan, J. G., Li, F. K., Mayer, W., McClintock, J.,

Primini, F., and Richardson, J. (1976b). The discovery of rapidly repetitive X-ray bursts

from a new source in Scorpius. ApJ, 207:L95–L99.

Lewin, W. H. G. and Joss, P. C. (1981). X-ray bursters and the X-ray sources of the galactic

bulge. Space Sci. Rev., 28:3–87.

232



Lewin, W. H. G., Ricker, G. R., and McClintock, J. E. (1971). X-Rays from a New Variable

Source GX 1+4. ApJ, 169:L17.

Lewin, W. H. G., Rutledge, R. E., Kommers, J. M., van Paradijs, J., and Kouveliotou, C.

(1996). A Comparison between the Rapid Burster and GRO J1744-28. ApJ, 462:L39.

Lewin, W. H. G., van Paradijs, J., and Taam, R. E. (1993). X-Ray Bursts. Space Sci. Rev.,

62:223–389.

Lewin, W. H. G., van Paradijs, J., and van der Klis, M. (1988). A review of quasi-periodic

oscillations in low-mass X-ray binaries. Space Sci. Rev., 46:273–378.

Li, T.-P. (2007). HXMT: A Chinese High-Energy Astrophysics Mission. Nuclear Physics B

Proceedings Supplements, 166:131–139.

Lightman, A. P. and Eardley, D. M. (1974). Black Holes in Binary Systems: Instability of

Disk Accretion. ApJ, 187:L1.

Lin, D., Remillard, R. A., and Homan, J. (2009). Spectral States of XTE J1701 - 462: Link

Between Z and Atoll Sources. ApJ, 696:1257–1277.

Linares, M., Altamirano, D., Chakrabarty, D., Cumming, A., and Keek, L. (2012).

Millihertz Quasi-periodic Oscillations and Thermonuclear Bursts from Terzan 5: A

Showcase of Burning Regimes. ApJ, 748:82.

Linares, M., Kennea, J., Krimm, H., and Kouveliotou, C. (2014). Swift detects bursting

activity from GRO J1744-28. The Astronomer’s Telegram, 5883.

Liu, Q. Z., van Paradijs, J., and van den Heuvel, E. P. J. (2007). A catalogue of low-mass

X-ray binaries in the Galaxy, LMC, and SMC (Fourth edition). A&A, 469:807–810.

Lomb, N. R. (1976). Least-squares frequency analysis of unequally spaced data. Ap&SS,

39:447–462.

Lorimer, D. R. and Kramer, M. (2004). Handbook of Pulsar Astronomy.
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