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Abstract  

Many recent magnetic resonance imaging experiments involve spin states other than longitudinal or 

transverse magnetization. For example, singlet state imaging requires two-spin correlations to be 

taken into account, hyperpolarised imaging should correctly account for multi-spin dynamics, multi-

ple-quantum imaging must consider the dynamics of the corresponding coherences, etc. Simulation 

of such experiments requires accurate quantum mechanical treatment of spin processes together with 

an accurate treatment of classical processes, such as diffusion and convection.  

In this thesis I report the theoretical and software infrastructure for magnetic resonance simulations 

using the Fokker-Planck formalism, which simultaneously accounts for spatial dynamics and quantum 

mechanical spin processes. Fokker-Planck equation is superior to the usual Liouville - von Neumann 

equation formalism in that spatial dynamics processes (diffusion, hydrodynamics, magic angle spin-

ning, off-resonance pulses, etc.) are represented by constant matrices that are more convenient from 

the programming and numerical efficiency point of view than time-dependent Hamiltonians in the 

Liouville - von Neumann equation formalism. 

It is demonstrated below that NMR and MRI experiments with elaborate spatial encoding and compli-

cated spatial dynamics are no longer hard to simulate, even in the presence of spin-spin couplings and 

exotic relaxation effects, such as singlet state symmetry lockout. Versions 2.3 and later of Spinach 

library support arbitrary stationary flows and arbitrary distributions of anisotropic diffusion tensors in 

three dimensions simultaneously with Liouville-space description of spin dynamics, chemical kinetics 

and relaxation processes. The key simulation design decision that has made this possible is the aban-

donment of Bloch-Torrey and Liouville - von Neumann formalisms in favour of the Fokker-Planck equa-

tion. The primary factors that have facilitated this transition are the dramatic recent improvement in 

the speed and capacity of digital computers, the emergence of transparent and convenient sparse 

matrix manipulation methods in numerical linear algebra, and the recent progress in matrix dimension 

reduction in magnetic resonance simulations. 

The principal achievement of this thesis is in programming and software engineering – the reader is 

encouraged to take a look at the Fokker-Planck module of the Spinach library that the work described 

in this thesis has made possible, and that was programmed as a part of this work: most of the writing 

performed within this project was writing code. 
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Objectives and chapter outlines  

Simulation software is essential for the continued development of magnetic resonance imaging (MRI) 

instruments and experiments. On the instrumental side (electromagnetic waves, their propagation 

and detection) classical simulations using Maxwell's equations usually suffice. On the experiment side 

(spin dynamics), the current way is to use Bloch equations at each voxel and diffusion between voxels 

[1]. Sophisticated MRI simulation packages, some of them advanced enough to use GPU processing, 

have existed for some time. A major problem, however, is that all current MRI simulation packages 

are unable to handle situations when quantum mechanical spin interactions play a role in the dynam-

ics: J-couplings, nuclear quadrupolar effects, cross-relaxation and other quantum mechanical pro-

cesses cannot be described by Bloch equations [2].  

The need for quantum mechanical description of MRI is increasingly obvious: a number of research 

groups are developing singlet state MRI [3, 4], other groups are already performing clinical trials of 

hyperpolarized MRI [5, 6], and research is being carried out into selective excitation schemes using 

optimal control theory  [7]. Due to lack of institutional experience with quantum mechanics within the 

MRI community, no simulation packages exist that could handle the spin sub-space quantum mechan-

ically and this is the significance point of this work. Hence, the aim of this thesis is to investigate and 

implement quantum mechanical MRI simulation techniques. Specifically: 

1. To develop a physical theory that combines quantum mechanical description of nuclear 

spin dynamics, classical description of electrodynamics and classical description of spatial 

dynamics (diffusion and flow) into a single algebraic framework. 

2. To apply the resulting framework to simulation of magnetic resonance imaging experiments 

that essentially include quantum effects, such as singlet state MRI and metabolic MRI. 

3. To solve or mitigate the matrix dimension problem in quantum mechanical simulations of 

magnetic resonance imaging.    

The work is partitioned into the following chapters: 

Chapter 1:  

An introduction to spin in both classical and quantum approaches, Bloch equations and Liouville - von 

Neumann equation. A review the literature on MRI concepts such as frequency encoding, phase en-

coding, k-space trajectory, etc. NMR spectroscopy is also present in this review via ultrafast NMR and 

pure shift NMR. A brief review of spin Hamiltonians, relaxation process, spatio-temporal building 
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blocks of MRI, simulation of magnetic resonance imaging experiments using the Fokker-Planck equa-

tion and a description of the process of moving magnetic resonance simulations from Liouville - von 

Neumann equation to the Fokker-Planck equation.  

Chapter 2:  

Mathematical description of the simulation platform and solving the matrix dimension problem in the 

equation of motion. A detailed walk through the formal mathematics, including derivations for the 

various dynamics generators. A discussion of the merits of various numerical methods in the solution 

of the resulting equations. 

Chapter 3:  

Simulation of magnetic resonance imaging experiments using the Fokker-Planck equation. The chapter 

goes through different MRI contrast modes and describes the simulation of common MRI stages like 

slice selection, spin echo, etc. Examples involving complicated spatial dynamics are given: diffusion 

weighted MRI, localized NMR, and the bright fat effect. 

Chapter 5: 

In this chapter, a brief description of the whole thesis, the achievements and the limitations are also 

present. A future look to what I except for further developments.      

Chapter 6: 

A paper published in collaboration with L. Guduff, C. van Heijenoort, and J.N. Dumez. 

 

 

 

 

 

 

 

 

 

 



1        State of the art  

1.1 Classical description of NMR 

In 1937, Rabi discovered magnetic resonance in two different ways [8]: firstly, he concluded that the 

particle in the molecule beam was absorbing energy from an oscillating field and moving from one 

quantum state to another. Secondly, in the same beam, particles could precess around the external 

magnetic field. In 1945, Purcell, Torrey and Pound discovered a signal from protons in paraffin [9], 

while Bloch and his group at the same time observed a signal from protons in liquid water [2].  

Resonance happens in the nuclear spins when the electromagnetic radiation frequency matches the 

energy difference between the nuclear spin levels. However, not all nuclei resonate at the same fre-

quency due to the shielding effect of the electrons surrounding the nucleus. Electrons produce an 

opposite magnetic field to the applied magnetic field. As a consequence, the magnetic field at the 

nucleus is reduced.  This leads to a reduction in the energy gap and frequency required to achieve the 

resonance. The electron shielding effect is called ‘chemical shift’. If the nucleus is located in the chem-

ical group with high electron density, the NMR frequency will be shifted upfield, while if the nuclei is 

located in the lower electron density, then the RF frequency will be downfield. This is very useful to 

chemists and this is why magnetic resonance is so popular. 

1.1.1 Spin 

In classical physics, angular momentum L


 is defined as linear momentum p  rotating around the 

origin at position r : 

 L r p= ×


 

  (1) 

r  can be represented as r xi yj zk= + +


 



 where , ,i j k


 

 are unit vectors pointing along the three 

Cartesian axes. In the same way we can define the linear momentum x y zp p i p j p k= + +


 



. The an-

gular momentum can be written in terms of its components as well x y zL L i L j L k= + +



 

. As a result, 

the angular momentum can be written as [10]: 

 
z y x

x z y

x y z y x z

i j k yp zp L
L r p x y z zp xp L

p p p xp yp L

   −  
     = × = = − =     

    −    



 



    (2) 
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In order to understand the interaction between a spin and the external magnetic field, the circular 

current loop must be introduced [11]. Suppose we have a particle moving in a circular way, a circular 

loop of current I  and area A  will be produced. As a magnetic field is applied, the loop will feel torque 

[12]. In order to understand this mathematically, let us start by differentiating equation (1) with re-

spect to time: 

 
dL dp drr p
dt dt dt

= × + ×


 

 

  (3) 

Now using the definition of force F dp dt=


  (according to the Newton’s second law) and the defini-

tion of velocity v dr dt=
 

, we can re-write equation (3) as follows: 

 
dL r F v p
dt

= × + ×




  

  (4) 

The cross product of momentum p  with its associated velocity v  is zero because velocity and mo-

mentum are parallel, so the second term vanishes. 

 
dL r F
dt

= ×






  (5) 

From literature [12] we know that the torque N


can be written as: 

 N r F= ×
 



  (6) 

When we put equation (6) into equation (5), the result implies that the angular momentum is evolving 

according to equation below: 

 
dL N
dt

=




  (7) 

The formula for the net torque on any current distribution is [13]: 

 N Bµ= ×
 



  (8) 

Where µ  is magnetic dipole moment which can be defined for an infinitesimal loop as: 

 IAµ =




  (9) 

Where I  is the current, A


is area vector which is perpendicular to the plane of the loop.  

Proton spin can be thought of as a point magnetic dipole. The relation between spin and its magnetic 

moment µ can be written as [14]  
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 Lµ γ=




  (10) 

Where γ  is gyromagnetic ratio. By substituting equation (8) and (10) in equation (7) we obtain: 

 
1 d B

dt
µ µ

γ
= ×







  (11) 

By re-arranging equation (11) we get Bloch equation [2] 

  ( )d B
dt
µ γ µ= ×






  (12) 

For a macroscopic body, the spins can be introduced as their magnetic moment per unit volume V ; 

this is called nuclear magnetization ( ),M r t




: 

 
spins

1
i

i
M

V
µ

∈

= ∑




  (13) 

Applying equation (13) in equation (12) we will get: 

 ( )0
dM M B
dt

γ= ×


 

  (14) 

It is important to describe the magnetization in terms of parallel and perpendicular components to 

the external magnetic field which relax differently to their equilibrium values [15]. Parallel component, 

also called longitudinal component is zM  while the perpendicular (transverse) component is: 

 x

y

M
M

M⊥

 
=  
 

  (15) 

For non-interacting spins, the differential equation related to equation (15) is: 

 z 0dM
dt

=   (16) 

 ( )0
dM M B

dt
γ⊥

⊥= ×


 

  (17) 

where the external field  0B


  is always directed along the Z-axis and × represents the vector cross 

product. 
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1.1.2 Spin relaxation  

The constant interaction with lattice implies that the time derivative of longitudinal magnetization is 

proportional to the difference between the equilibrium value and the coherent magnetization: 

 ( ) ( )z z
0 z 0 z

1

1          dM dMM M M M
dt dt T

∝ − ⇒ = −
 

 

  (18) 

Where 1T is the longitudinal relaxation time, also called ‘spin-lattice’ relaxation time [16]. If the mag-

netization is perturbed, the solution of equation (18) shows the evolution from the initial state 

( )z 0M   to the equilibrium state 0M  :       

 ( ) ( ) ( )1 1/ /
z z 00 1t T t TM t M e M e− −= + −   (19) 

Where 1T  is the longitudinal relaxation time, ( )z 0M  is the initial magnetization, and 0M  is the equi-

librium magnetization.  

Moving to the transverse magnetization, equation (17) has an additional evolution term when spin-

lattice interaction happens. When the magnetization exists in the xy plane, it will to return to zero. 

Hence, equation (17) will acquire a relaxation term: 

 ( )0
2

1dM M B M
dt T

γ⊥
⊥ ⊥= × −



  

  (20) 

Where 2T  is the transverse relaxation time.  It is more complicated to follow the magnetization pre-

cessing around magnetic field and to simplify it we must rotate the observer together with spin vector. 

In this situation, equation (20) can be written as: 

 
2

1dM M
dt T

⊥
⊥= −





  (21) 

With following solution: 

 ( ) ( ) 20 t TM t M e−
⊥ ⊥=
 

  (22) 
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1.2 Liouville space description of NMR  

1.2.1 Quantum mechanical theory of spin  

In quantum mechanics, the description of spin is different from the description of angular momen-

tum, although similarities are significant. Uhlenbeck and Goudsmit realized in early 1920 that experi-

mental data cannot be described unless an intrinsic form of angular momentum is postulated in addi-

tion to the orbital angular momentum [13].  

Replacing quantities with their operators in equation (3) yields: 

 

x

y

z

ˆ
ˆ ˆ ˆ ˆ

ˆ

y z
z y Li j k

L r p i x y z i z x L
x z

x y z L
x y

y x

∂ ∂ − ∂ ∂     
   ∂ ∂ 

= × = − = − − =     ∂ ∂     ∂ ∂ ∂ ∂ ∂ ∂    ∂ ∂   − ∂ ∂ 



 



 

    (23) 

Then, the three components of the angular momentum vector can be written as: 

 X Y Z
ˆ ˆ ˆ;      ;      L i y z L i z x L i x y

z y x z y x
   ∂ ∂ ∂ ∂ ∂ ∂ = − − = − − = − −    ∂ ∂ ∂ ∂ ∂ ∂    
     (24) 

Components of equation (24), satisfy the following commutation properties: 

 x y z y z x z x y
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, ,  , ,  ,L L i L L L i L L L i L     

          
= = =     (25) 

Spin operators can be constructed as finite-dimensional matrices that obey these commutation rela-

tions. By analogy with angular momentum, the state space of a spin s  is 2 1s +  dimensional. The spin 

state vector therefore has 2 1s +  complex components. For spin ½, we have: 

 
2 21/2

1/2 1/2 1/2 1/2
1/2

1 0
,           1

0 1
c

c c c c
c − −
−

     
= + + =     

    
  (26) 

Let us assign the two orthogonal vectors to the two projection states of the spin, that is: 

 
1 0

,      
0 1

α β
   

= =   
   

  (27) 

This fixes the basis and allows us to build matrix representations of the spin operators. In particular, 

the two spin projection states should be eigenvectors of the total spin operator 2Ŝ  and the projection 
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operator ZŜ , which we introduce using the angular momentum analogy. This information yields ma-

trix representations for these operators: 

 

2 2 2

Z Z Z

1 1 0 0 3 / 4 01 1 1 1ˆ ˆ ˆ1 ;      1           
0 0 1 1 0 3 / 42 2 2 2

1 1 0 0 1/ 2 01 1ˆ ˆ ˆ;                
0 0 1 1 0 1/ 22 2

S S S

S S S

            = + = + ⇒ =            
            

         
= = − ⇒ =         −         

  (28) 

Furthermore, α  and β  basis vectors should be raised and lowered into each other. This gives 

matrix representations for the raising and lowering operators: 

 

1 0 0 1 0 1ˆ ˆ ˆ;                
0 0 1 0 0 0

1 0 0 0 0 0ˆ ˆ ˆ;                
0 1 1 0 1 0

S S S

S S S

+ + +

− − −

         
= = ⇒ =         

         
         

= = ⇒ =         
         

  (29) 

The remaining Cartesian operators can then be constructed from the raising and lowering operators 

using the relations from the angular momentum theory: 

 X Y

ˆ ˆ ˆ ˆˆ ˆ          
2 2

S S S SS S
i

+ − + −+ −
= =   (30) 

So the operators corresponding to the three Cartesian projections of spin ½ are: 

 X Y Z

0 1/ 2 0 / 2 1/ 2 0ˆ ˆ ˆ                    
1/ 2 0 / 2 0 0 1/ 2

i
S S S

i
−     

= = =     −     
  (31) 

These matrices are called Pauli matrices for spin ½. They are a two-dimensional matrix representation 

of the corresponding spin operators. For spins greater than ½, they have larger dimensions, but may 

still be constructed using the same method. For example, a spin-1 particle has: 

 X Y Z

0 1 0 0 0 1 0 0
1 1ˆ ˆ ˆ1 0 1 ,      0 ,      0 0 0
2 20 1 0 0 0 0 0 1

i
S S i i S

i

−     
     = = − =     
     −     

  (32) 

It is easy to check by direct inspection that the matrices in Equations (31) and (32) obey the same 

commutation relations as the angular momentum projection operators: 

 2
X Y Z Z X Y Y Z X {X,Y,Z}

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ , ] ;     [ , ] ;     [ , ] ;     [ , ] 0S S iS S S iS S S iS S S= = = =   (33) 

 



22 

 

Multiplication properties are also different between spin and angular momentum operators. 

1.2.2 Spin Hamiltonian 

Spin Hamiltonian is the energy operator of the spin system [17]. Hamiltonian eigenvalues are the en-

ergy levels of the system. The general spin Hamiltonian can be written as [18]: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

Zeeman scalar DD+HFC Q RF

,

RF X RF Y RF

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆˆ ˆ ˆ    = 2

ˆ ˆ ˆ ˆ2 cos sin

k k n k n n k k
nk

k n k n k

k k k k k k

k k

H H H H H H

L B J L S L S

L L a L t L t

π

π ω ω

≠ ≠

= + + + + =

⋅ ⋅ + ⋅ + ⋅ ⋅ +

 + ⋅ ⋅ + + 

∑ ∑ ∑

∑ ∑

Z D

Q

    

 

  (34) 

The first term is called Zeeman interaction, it is linear in spin operators. It comes from the interaction 

between spins and the external magnetic field. The full form is: 

 ( )
xx xy xz x

z x y z yx yy yz y

zx zy zz z

ˆˆ ˆ ˆ ˆ
z z z B

H L B L L L z z z B
z z z B

  
  = ⋅ ⋅ =   

    

Z
 

  (35) 

where the matrix elements are determined by the electronic structure of the system containing the 

nuclei, and L̂


 is a vector of operators, e.g. 

 X Y Z

0 1/ 2 0 / 2 1/ 2 0ˆ ˆ ˆ                    
1/ 2 0 / 2 0 0 1/ 2

i
L L L

i
−     

= = =     −     
  (36) 

The second and third terms in equation (34) are scalar coupling and dipolar (aka hyperfine) interac-

tion. They are bilinear in spin operators: 

 ( )
xxx xy xz

c x y z yx yy yz y

zx zy zz z

ˆ
ˆˆ ˆˆ ˆ ˆ ˆ

ˆ

Sa a a
H L S L L L a a a S

a a a S

    
= ⋅ ⋅ =   

     

A


  (37) 

where L̂


 and Ŝ


 are vectors of Pauli matrices and A is the interaction tensor; for a point dipolar 

coupling the expression is: 
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( )
( )

( )

( )

( ) ( )( ) ( )( )
( )( ) ( ) ( )( )
( )( ) ( )( ) ( )

20 01 2 1 2
DD 1 2 1 25 5

T 2 21
1 2 1 2 1 2 1 2 1 2X X

21 2
Y 1 2 1 2 1 2 1 2 1 2

21 2
Z 1 2 1 2 1 2 1 2 1 2

ˆ ˆ ˆ ˆˆ 3( )( ) ( )
4 4

ˆ ˆ3 3 3
ˆ 3 3 3
ˆ 3 3 3

H S r r S r S S
r r

x x r x x y y x x z zS S

S y y x x y y r y y z z

S z z x x z z y y z z r

µ µγ γ γ γ
π π

= − ⋅ ⋅ − ⋅ = − ×

   − − − − − −
  
 − − − − − − 
     − − − − − −   

   

  

( )

( )

( )

2

2
Y

2
Z

ˆ

ˆ
S

S

 
 
 
  
 

  (38) 

The next term in equation (34) is called electric quadrupole interaction. It is quadratic in spin operators 

– through a twist of mathematics (nuclear quadrupole moment is strictly collinear with spin) an elec-

trical interaction ends up manifesting as an interaction between the spin and itself: 

 ( )
xxx xy xz

Q x y z yx yy yz y

zx zy zz z

ˆ
ˆ ˆˆ ˆ ˆ ˆ ˆ

ˆ

Lq q q
H L L L L L q q q L

q q q L

  
  

= ⋅ ⋅ =   
     

Q
 

  (39) 

where L̂


 is a vector of Pauli matrices of dimension greater than two (spin-half Pauli matrices produce 

zeros or unit matrices when they are multiplied) and Q is the quadrupole coupling tensor. The explicit 

form is: 

 
( ) ( )2 2 2 2

Q Z X Y
ˆ ˆ ˆ ˆ ˆ3

4 2 1 2
H L L L L

I I
χ η = − − + − −  

  (40) 

 
2

ZZ XX YY

ZZ

          =e q Q q q
q

χ η −
=



  (41) 

where { }XX YY ZZ, ,q q q  are the eigenvalues of the electric field gradient tensor, e  is the electron 

charge, eQ  is the quadrupole moment of the nucleus, S  is the spin of the nucleus. Note that with 

spin‐½ Pauli matrices the Hamiltonian in equation (40) is proportional to the unit matrix and does not 

affect system dynamics – quadrupolar coupling only exists for spin‐1 nuclei and higher. 

The last term deals with external electromagnetic fields that are characterised by an amplitude and 

frequency. Common NMR and MRI instrument geometries cannot produce oscillating magnetic fields 

in the direction of the magnet, only transverse terms therefore appear in Equation (34). 

A large amount of research exists on the origins, various expressions and transformations of spin in-

teractions. Because this thesis is computational much more than theoretical, it operates at a level 

where the physical details of the various interactions are unimportant – they will not be reviewed 

here; for our purposes, these are simply matrices that chemists know more about. 
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1.2.3 Density operator formalism and equation of motion 

Consider now a simple system that has only spin 1/2, for example a proton. Let us assume that indi-

vidual protons behave independently. Such a group of independent isolated spins is called an ensem-

ble. Every proton has two polarization states. Some of these protons are the down state and some of 

them are in the up state, and some in a linear combination. In a calculation of the magnetization for 

all protons in the ensemble, the magnetization for each proton individually must be computed and 

added up, however this computation is difficult because of the huge number of protons. On the other 

hand, there is a formalism that calculates ensemble averages without computing individual spin states 

and this method called density operator formalism [17, 19].  

In order to define the density operator for a quantum mechanical system, we begin with the time-

dependent Schrödinger equation [20]: 

 ˆ ˆ  iH iH
t t
ψ ψ ψ ψ∂ ∂= − ⇔ = −
∂ ∂

  (42) 

Using Taylor series [21] to expand ( )tψ  at 0t = , we get 

 ( ) ( ) ( ) ( ) ( )2 3
2 3

2 3
0 0 0

1 10 ...
2 6

t t t

t t t
t t t t

t t t
ψ ψ ψ

ψ ψ
= = =

∂ ∂ ∂
= + + + +

∂ ∂ ∂
  (43) 

After substituting equation (42) into equation (43) to get all derivatives of the wavefunction, we get 

 ( ) ( ) ( ) ( ) ( ) ( )
( )

( )
2

0

ˆ1ˆ ˆ0 0 0 ... 0
2 !

n

n

iHt
t iHt iHt

n
ψ ψ ψ ψ ψ

∞

=

 − = + − + − + =  
  
∑   (44) 

Summation of the series produces a matrix exponential. Therefore, the general solution of the time 

dependent Schrödinger equation with a static Hamiltonian can be written as follows: 

 ( )
( )

( ) ( ) ( )
0

ˆ
ˆ0 exp 0

!

n

n

iHt
t iHt

n
ψ ψ ψ

∞

=

 − = = − 
  
∑   (45) 

The problem with this description is the arbitrariness of phase in quantum mechanics – the ensemble 

average of the wavefunction is zero: 

 
2

0

1 0
2

ie d
π

ϕψ ψ ϕ
π

= =∫   (46) 

However, if the following operator is defined: 



25 

 

 ρ̂ ψ ψ=   (47) 

its average does not vanish because the phase cancels: 

 
2

0

1 
2

i ie e d
π

ϕ ϕψ ψ ψ ψ ϕ ψ ψ
π

−= =∫   (48) 

The object in Equation (47) is an operator because when it acts on a wavefunction, it returns another 

wavefunction: 

 ˆ ,           a aρ ϕ ψ ψ ϕ ψ ψ ϕ= = =   (49)  

In addition, the density operator is idempotent: 

 2ˆ ˆρ ψ ψ ψ ψ ψ ψ ρ= = =   (50) 

The density operator may therefore be used to describe ensembles of spin systems. Hence, it is im-

portant to derive its equation of motion:  

 
( ) ( ) ( )( )

( ) ( ) ( ) ( )

ˆ

= 

t t t
t t

t t t t
t t

ρ ψ ψ

ψ ψ ψ ψ

∂ ∂
= =

∂ ∂
∂ ∂   +   ∂ ∂   

  (51) 

 After substituting equation (42) into equation (51): 

 
ˆ ˆˆ

ˆ ˆˆ ˆ= 

iH i H
t

iH i H

ρ ψ ψ ψ ψ

ρ ρ

∂
= − + =

∂
− +

  (52) 

From the definition of the commutator: 

 ˆ ˆ ˆˆ ˆ ˆ,A B AB BA  = −    (53) 

we can conclude that the equation of motion of the density operator is: 

 ( ) ( ) ( )ˆˆ ˆ,t i H t t
t
ρ ρ∂  = −  ∂

  (54) 

This is called Liouville - von Neumann equation. It is the foundation of quantum thermodynamics and 

of the quantum mechanical formalism of magnetic resonance. It is often formulated in terms of the 

Hamiltonian communication superoperator: 

 
ˆ̂ ˆ ˆ ˆˆ ˆ ˆ ˆ,H H H Hρ ρ ρ ρ = = −    (55) 
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1.2.4 Rotating frame transformation 

The Zeeman interaction is large in magnetic resonance, and it is technically difficult to calculate the 

spin system trajectory using the full Hamiltonian superoperator. For this reason we need a mathemat-

ical transformation to get rid of the large Zeeman terms in Liouville space. The transformation called 

rotating frame or interaction representation transformation. We will define the new operators: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )R
0 1 0 1 0

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆˆˆ exp                exp expt iH t t H t iH t H t iH tσ ρ= = −   (56) 

where σ̂  is the new density matrix, and 0
ˆ̂H  is the time-independent part of the Hamiltonian su-

peroperator. After substituting this into the Liouville – von Neumann equation: 

 ( ) ( ) ( )0 1
ˆ ˆˆ ˆˆ ˆd t i H H t

dt
ρ ρ= − +   (57) 

and going through a few rounds of simplifications, we get; 

 ( ) ( ) ( )R
1

ˆ̂ˆ ˆd t iH t t
dt
σ σ= −   (58)          

The result is that the time-independent Hamiltonian 0Ĥ  formally disappears form equation (58) while 

the time dependent Hamiltonian 1Ĥ   becomes more complicated, but retains its small norm because 

the transformation in Equation (56) is unitary. It is therefore easier to solve the equation of motion in 

the interaction representation rather than in the laboratory frame.      

1.2.5   Quantum mechanical treatment of spin relaxation  

The relaxation of the spin system to the equilibrium is present in all magnetic resonance experiments. 

Of all relaxation theories, Bloch-Redfield-Wangsness relaxation theory [22] is the one most commonly 

used in magnetic resonance. It is a second order time dependent perturbation theory.       

We shall start with the Liouville-von Neumann equation in Liouville space: 

 ( ) ( )( ) ( )0 1
ˆ ˆˆ ˆˆ ˆd t i H H t t

dt
ρ ρ= − +   (59) 

where 0
ˆ̂H  is the time-independent part of the Hamiltonian commutation superoperator and ( )1

ˆ̂H t  

is the time-dependent part. We shall assume a big difference between the norm of ( )1
ˆ̂H t  and the 

norm of 0
ˆ̂H : 
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 ( )1 0
ˆ ˆˆ ˆH t H   (60) 

and assume that the ensemble average of ( )1
ˆ̂H t  is zero. If it is not zero, the mean can be subtracted 

and put into 0
ˆ̂H . We will then move into the interaction representation with respect to 0

ˆ̂H  :  

 ( ) ( ) ( ) ( ) ( ) ( )R
1 0 1 0 0

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆˆexp exp               expH iH t H t iH t t iH t tσ ρ= − =   (61) 

As indicated in the previous section we can write the new Liouville ‐ von Neumann equation for ( )ˆ tσ  

 ( ) ( ) ( )R
1

ˆ̂ˆ ˆd t iH t t
dt
σ σ= −   (62) 

After integrating equation (62) we will get: 

 

( ) ( ) ( )

( ) ( ) ( ) ( )

R
1

0 0

R
1

0

ˆ̂ˆ ˆ  

                   

ˆ̂ˆ ˆ ˆ0  

t t

t

d t i H t t dt

t i H t t dt

σ σ

σ σ σ

= −

⇓

− = −

∫ ∫

∫

  (63) 

After taking Equation (63) and substituting back into Equation (62) we will get: 

 ( ) ( ) ( ) ( ) ( ) ( )R R R
1 1 1 1 1

0

ˆ ˆ ˆˆ ˆ ˆˆ ˆ ˆ0  
td t iH t H t H t t dt

dt
σ σ σ= − − ∫   (64) 

The first term of right hand side in equation (64) will go to zero after we will take the ensemble aver-

age, so equation (64) will become: 

 ( ) ( ) ( ) ( )R R
1 1 1 1

0

ˆ ˆˆ ˆˆ ˆ  
t

t H t H t t dt
t
σ σ∂

= −
∂ ∫   (65) 

Now we will represent the time dependent Hamiltonian in terms of time dependent coefficients ( )qf t

and time-independent operators ˆ̂
qA  as following:  

 ( ) ( ) ( )† *
1

ˆ ˆˆ ˆ ˆˆ   q q b b
q b

H t A f t A f t= =∑ ∑   (66) 

The time-independent operators ˆ̂
qA  can also be written in the rotating frame as: 
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 ( ) ( ) ( )R
0 0

ˆ ˆˆ ˆˆ ˆˆ ˆexp expq qA t iH t A iH t= −   (67) 

After putting equation (66) and equation (67) in equation (65) we will get:  

 ( ) ( ) ( ) ( ) ( ) ( )* R R †
1 1 1 1

0

ˆ ˆˆ ˆˆ ˆ  
t

q b q b
q b

t f t f t A t A t t dt
t
σ σ∂

= −
∂ ∑∑∫   (68) 

We assume lack of correlation between the spin system dynamics and the noise in the lattice, Equation 

(68) will therefore transform into: 

 ( ) ( ) ( ) ( ) ( ) ( )* R R †
1 1 1

0

ˆ ˆˆ ˆˆ ˆ  
t

q b q b
q b

t f t f t A t A t t dt
t
σ σ∂

= −
∂ ∑∑∫   (69) 

Second, we will define a correlation function which does not depend on the absolute time t because 

the noise in the system is stationary.    

 ( ) ( ) ( )*
1 1 q b qbf t f t g t t= −   (70) 

After putting Equations (68), (69) and (70) together we will get: 

 ( ) ( ) ( ) ( ) ( )R R †
1 1 1

0

ˆ ˆˆ ˆˆ ˆ  
t

qb q b
q b

t g t t A t A t t dt
t
σ σ∂

= − −
∂ ∑∑∫   (71) 

The next assumption is to take density matrix out of integral due to the time scale separation between 

spin dynamics and the autocorrelation function, and to perform a variable substitution 1t tτ = −  : 

 ( ) ( ) ( ) ( ) ( )R R †

0

ˆ ˆˆ ˆˆ ˆ  
t

qb q b
q b

t g A t A t d t
t
σ τ τ τ σ∂

= − −
∂ ∑∑∫   (72) 

The upper limit in the integral can now be extended to infinity due to the (assumed) rapid decay of 

the correlation functions: 

 ( ) ( ) ( ) ( ) ( )R R †

0

ˆ ˆˆ ˆˆ ˆ  qb q b
q b

t g A t A t d t
t
σ τ τ τ σ

∞ ∂
= − − ∂  

∑∑∫   (73) 

Using equations (59) and (61) to return back to the Schrödinger representation we will get: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )†
0 0 0

0

ˆ ˆˆ ˆ ˆˆ ˆˆ ˆ ˆˆ ˆ ˆ exp exp  qb q b
q b

t iH t t g A iH A iH d t
t
ρ ρ τ τ τ τρ

∞∂
= − − −

∂ ∑∑∫   (74) 

The final equation contains the relaxation superoperator and is called the master equation: 

 ( ) ( ) ( ) ( )0
ˆ ˆˆ ˆˆ ˆ ˆt iH t t R t

t
ρ ρ ρ∂

= − +
∂

  (75) 
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where: 

 ( ) ( ) ( )†
0 0

0

ˆ ˆˆ ˆ ˆˆ ˆˆ ˆ ˆ exp exp  qb q b
q b

R g A iH A iH dτ τ τ τ
∞

= − −∑∑∫   (76) 

Equation (76) is the commonly used Bloch-Redfield-Wangsness relaxation superoperator [23]. 

1.2.6 A simple analytical example: spin echo 

Spin echo pulse sequence contains two successive pulses to produce an echo signal. It was introduced 

in 1949 by Erwin Hahn. The pulse sequence contains a 90° pulse to flip the spins into the transverse 

plane. If an inhomogeneity is present in the magnetic field, it would result in some spins precessing 

faster (and thus gaining phase) relative to others.  

 

Figure 1. Schematic diagram of the spin echo pulse sequence. 

Then applying a 180° pulse to flip the spins and puts the faster spins behind, while the slower spins 

end up in front. As consequence, the faster spins catch up with the slower spins to generate a spin 

echo signal. The time between the middle of the 90° pulse and the echo signal is called the echo time 

“TE” in magnetic resonance imaging. 

In order to work out how the density operator varies with time we need to know the Hamiltonian 

(which is also an operator) which is acting during that time. The free precession Hamiltonian (i.e. that 

for a delay), freeH   , is 

 free 0
ˆ ˆ

zH Lω=   (77) 

In the quantum mechanical picture the Hamiltonian involves the z-angular momentum operator, zL̂ . 

The Hamiltonian for a pulse about the x-axis, xĤ  , is 

 x 1 x
ˆ ˆH Lω=   (78) 

and for a pulse about the y-axis it is: 

 y 1 x
ˆ ˆH Lω=   (79) 

Where 0ω and 1ω  are the frequencies in Hz. 
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To make use of the Liouville - von Neumann equation, we will put the initial magnetization on z-axis 

( ) z
ˆˆ 0 Lρ =  and apply a 90° pulse on y-axis:  

 y 1 y
ˆ ˆH Lω=    (80) 

We know that the dynamics of density operator can be written as: 

 ( ) ( )ˆ ˆˆ ˆ( ) exp (0)expt iHt iHtρ ρ= −   (81) 

When we substitute Equation (80) in Equation (81), we get: 

 ( ) ( ) ( )1 y z 1 y
ˆ ˆ ˆˆ exp expt i tL L i tLρ ω ω= − −   (82) 

Using an identity from the angular momentum theory: 

 ( ) ( ) ( ) ( )y z y z y
ˆ ˆ ˆ ˆ ˆexp exp cos sini L L i L L Lθ θ θ θ− − = +   (83) 

Replacing θ  by 1 ptω  : 

 ( ) ( ) ( ) ( ) ( )1 p y z 1 p y 1 p y 1 p y
ˆ ˆ ˆ ˆ ˆˆ exp exp cos sint i t L L i t L t L t Lρ ω ω ω ω= − − = +   (84) 

The first pulse is 90° pulse, so 1 p 2tω π= , and: 

 ( ) x
ˆˆ t Lρ =   (85) 

The magnetization is now in the transverse plane. Equation (85) will be the initial condition of the next 

stage which is the first delay τ  as follows:  

 ( )free 0 z x
ˆ ˆ ˆˆ           0    H L Lω ρ= =   (86) 

Equation (86) with these conditions is: 

 ( ) ( ) ( ) ( ) ( )0 z x 0 z 0 x 0 y
ˆ ˆ ˆ ˆ ˆˆ exp exp cos sint i L L i L L Lρ ω τ ω τ ω τ ω τ= − = +   (87) 

The next stage is to apply a 180° pulse on the x-axis. The 180° pulse will not affect the first term, and 

will flip the sign of the second term: 

 ( ) ( ) ( )0 x 0 y
ˆ ˆˆ cos sint L Lρ ω τ ω τ= −   (88) 

Then, for the second evolution period: 

 ( ) ( ) ( )free 0 z 0 x 0 y
ˆ ˆ ˆ ˆˆ                 0 cos sinH L L Lω ρ ω τ ω τ= = −   (89) 
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 ( ) ( ) ( ) ( )( ) ( )0 z 0 x 0 y 0 z
ˆ ˆ ˆ ˆˆ exp cos sin expt i L L L i Lρ ω τ ω τ ω τ ω τ= − −   (90)  

 
( ) ( ) ( ) ( )

( ) ( ) ( )
0 0 x 0 y

0 0 y 0 x

ˆ ˆˆ cos cos sin ...

ˆ ˆ            sin cos sin

t L L

L L

ρ ω τ ω τ ω τ

ω τ ω τ ω τ

 = + − 
 − 

  (91) 

After simplifying Equation (91) we get: 

 ( ) ( ) ( )2 2
0 0 x

ˆˆ cos sint Lρ ω τ ω τ = +    (92) 

We know 2 2cos sin 1x x+ = , and therefore: 

 ( ) x
ˆˆ t Lρ =   (93) 

The physical meaning of Equation (93) is spins rephasing in a way that does not depend on their fre-

quency. The evolution is completely refocused to the original state. 

Several spin echo based pulse sequences were implemented into Spinach as a part of the work de-

scribed in this thesis. Figure 2 shows the result of a simulation that broadly follows the dynamics de-

scribed above with the additional complication that the diffusion is present – the treatment of diffu-

sion processes is described in later chapters of this thesis. 

 

Figure 2. Spin echo under a magnetic field gradient in the presence of a diffu-
sion process with D = 10–6 m2/s in a one-dimensional sample 30 cm across. The 
time is counted from the edge of the second pulse. The simulation script that 
generated this figure is available as a part of the Spinach example set (exam-
ples/imaging/spin_echo_1d.m).  
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1.3 Singlet state NMR  

It is more convenient to introduce a system of two spins -1/2 in term of singlet and triplet states. These 

states are classified as α  and β  according to their angular momentum projection along z-axis: 

 
z

z

1ˆ
2

1ˆ
2

L

L

α α

β β

=

= −
  (94) 

These two spins-1/2 have two possible ways to combine: they may combine for total spin 0, which is 

called singlet state, or total spin 1, which is called triplet state, defined by [24]: 

 

( )

( )

1

0

1

1ˆ
2

ˆ

1ˆ
2

ˆ

S

T

T

T

αβ βα

αα

αβ βα

ββ

+

−

= −

=

= +

=

  (95) 

Where α  represents the projection +1/2 and β represents the projection –1/2 on the Z axis. 

A significant interaction inside any molecule that has two spins is the dipole-dipole interaction which 

is symmetric under exchange between the two nuclei [25]. The singlet state is antisymmetric with 

respect to spin exchange, whereas the triplet states are symmetric [24]. If the chemical shifts of the 

two spins are the same, the singlet state is invisible and it is difficult to observe it. On the other hand, 

if the chemical shifts of the two nuclei are different, the singlet state participates in the dynamics and 

indirectly becomes visible [24].  

In Liouville space, the equation of motion is [26]: 

 ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆˆ ˆ ˆ ˆˆ ˆ                t iL t t L t H t iR
t
ρ ρ∂

= − = +
∂

  (96) 

Where 
ˆ̂H  is the Hamiltonian commutation superoperator which contains the coherent interactions 

between the two spins, while 
ˆ̂R  is the relaxation superoperator which is responsible for relaxation. 

The coherent Hamiltonian contains the chemical shift CSĤ  and the spin-spin coupling JĤ :  
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 ( )
CS L z S z

J x x y y z z

ˆˆ ˆ

ˆ ˆ ˆˆ ˆ ˆ ˆ2

H L S

H J L S L S L S

ω ω

π

= +

= + +
  (97) 

Where ω  are the Zeeman frequencies of the two spins:  

 ( ) 01 Bω γ δ= − +   (98) 

and J  is the inter-nuclear J-coupling in Hz. Equation (97) can be written in terms of two-spin irreduc-

ible spherical tensor operators (IST) that are obtained by changing Cartesian coordinates to Cartesian 

spin operators in spherical harmonics [27]: 

 

Table 1. Definition of irreducible spherical tensor operators. 

l  m  ( ),lmY θ ϕ  ( ), ,lmY x y z  ( )l̂mT L  

0 0 1
4π

 1
4π

 Ê  

1 1 3 sin
8

ie ϕ θ
π

−  3
8

x iy
rπ
+

−  1 ˆ
2

L+−  

1 0 3 cos
4

θ
π

 3
4

z
rπ

 ZL̂  

1 –1 3 sin
8

ie ϕ θ
π

−  3
8

x iy
rπ
−  1 ˆ

2
L−  

2 2 2 25 sin
32

ie ϕ θ
π

 ( )2

2

15
32

x iy
rπ
+

 21 ˆ
2

L+  

2 1 5 sin cos
8

ie ϕ θ θ
π

−  
( )

2

5
8

x iy z
rπ
+

−  ( )Z Z
1 ˆ ˆ ˆ ˆ
2

L L L L+ +− +  

2 0 ( )25 3cos 1
16

θ
π

−  
2 2 2

2

5 2
16

z x y
rπ
− −  ( )2

Z
2 1ˆ ˆ ˆ ˆ ˆ
3 4

L L L L L+ − − +
 − + 
 

 

2 –1 5 sin cos
8

ie ϕ θ θ
π

−  
( )

2

15
8

x iy z
rπ
−

 ( )Z Z
1 ˆ ˆ ˆ ˆ
2

L L L L− −+  

2 –2 2 25 sin
32

ie ϕ θ
π

−  ( )2

2

15
32

x iy
rπ
−

 21 ˆ
2

L−  

 

The following table gives the coefficients required for translation between matrix representations and 

irreducible spherical tensor coefficients for a two-spin system. 

Table 2. Relationship between matrix representation and irreducible spherical tensor coefficients. 
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( ),l m
 

( )l
ma

 

( )ˆ l
mT

 

( )0,0
 ( )XX YY ZZ

1
3

a a a− + +
 

1 0 0
1 ˆˆ 0 1 0
3 0 0 1

L S
 
 − ⋅ ⋅ 
 
 



 

( )1,1
 ( )( )ZX XZ ZY YZ

1
2

a a i a a− − − −  

0 0 1
1 ˆˆ 0 0
2

1 0
L i S

i

− 
 − ⋅ − ⋅ 
 
 



 

( )1,0
 ( )XY YX2

i a a− −
 

0 0
1 ˆˆ 0 0
2 0 0 0

i
L i S

− 
 − ⋅ ⋅ 
 
 



 

( )1, 1−
 ( )( )ZX XZ ZY YZ

1
2

a a i a a− − + −  

0 0 1
1 ˆˆ 0 0
2

1 0
L i S

i

− 
 − ⋅ ⋅ 
 − 



 

( )2,2  ( )( )XX YY XY YX
1
2

a a i a a+ − − +  

1 0
1 ˆˆ 1 0
2

0 0 0

i
L i S
 
 + ⋅ − ⋅ 
 
 



 

( )2,1  ( )( )XZ ZX YZ ZY
1
2

a a i a a− + − +  

0 0 1
1 ˆˆ 0 0
2

1 0
L i S

i

 
 − ⋅ ⋅ 
 
 



 

( )2,0  ( )( )ZZ XX YY
1 2
6

a a a+ − +
 

1 0 0
1 ˆˆ 0 1 0
6 0 0 2

L S
− 
 + ⋅ − ⋅ 
 
 



 

( )2, 1−
 

( )( )XZ ZX YZ ZY
1
2

a a i a a+ + + +  

0 0 1
1 ˆˆ 0 0
2

1 0
L i S

i

 
 + ⋅ − ⋅ 
 − 



 

( )2, 2−
 

( )( )XX YY XY YX
1
2

a a i a a+ − + +  

1 0
1 ˆˆ 1 0
2

0 0 0

i
L i S

− 
 + ⋅ − − ⋅ 
 
 



 

 

The following commutation properties may be proven by direct inspection:   
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( )

( ) ( )

( ) ( )

0
J 0

1 1
cs 0 0

1 1
cs 0 0

ˆ ˆ, 0

ˆ ˆ ˆ, 0

ˆ ˆ ˆ, 0

H T

H T T

H T T

∑

∆

  = 
 + = 
 − ≠ 

  (99) 

where csĤ ∑  is the average chemical shift Hamiltonian of the two spins, csĤ ∆ is the difference in the 

chemical shift Hamiltonians, and indices 1 & 2 denote the first and the second spin respectively. That 

means there is no effect on the singlet state from  J-coupling because they commute with each other 

and the same applies to the sum of the chemical shifts. However the difference in the chemical shifts 

has an effect on the singlet state because the corresponding operators don’t commute with each 

other. Therefore, the singlet state only evolves under the difference in chemical shift in the coherent 

Hamiltonian.  

The incoherent side of the dynamics is described by the relaxation superoperator: 

 A B C A×B A×C
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ.........R R R R R R= + + + + +   (100) 

The total relaxation is the sum of the relaxation superoperator of different interactions ( )A, B, C, ...  

and their cross-correlations ( )A×B  [25]. In nuclear magnetic resonance this happens when a rigid 

molecule has two or more different anisotropic spin interactions. 

We can define the population operator as: 

 P̂Ψ = Ψ Ψ   (101) 

For the singlet state the population operator is:  

 ( ) ( )S
1 1ˆ
2 2

P αβ βα αβ βα= − ⋅ −   (102) 

Equation (102) can be expressed via a spherical tensor: 

 ( )0
S 0

ˆˆ ˆ3
4
EP T= +   (103) 

Where Ê  is a unit matrix, and ( )0
0̂T  is the irreducible spherical tensor operator of rank zero and pro-

jection zero defined in Table 1. ISTs have the following rotation property [28]:   

 ( ) ( ) ( ) ( ) ( )ˆ̂ ˆ ˆ, , , ,
l

l l l
m m m m

m l
R T T Dα β γ α β γ

+

′ ′
′=−

= ∑   (104) 
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Where ( )ˆ̂ , ,R α β γ  is the rotation superoperator, l̂mT  is the irreducible spherical tensor operator,

( ) ( ), ,l
m mD α β γ′  is a Wigner D-matrix element: 

 ( ) ( ), ,
ˆl

m m l m l mD Y R Y′ ′Ω = Ω   (105) 

If we are solving Equation (96) we can use: 

 ( ) ( ) ( )ˆ̂ˆ ˆ,t dt U t dt tρ ρ+ =   (106) 

 ( ) ( )( ) ( )
0

ˆ̂( )ˆ ˆˆ ˆ, exp
!

m m m

m

i L t dt
U t dt iL t dt

m

∞

=

−
= − = ∑   (107) 

By substituting Equation (96) in Equation (107) we can find: 

 ( ) ( )( ) ( )( )
0

( )ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ, exp
!

mm m

m

i dtU t dt iL t dt H t iR
m

∞

=

−
= − = +∑   (108) 

Redfield relaxation superoperator is fully derived above, and here can be written as: 

 ( ) ( )inc inc
0

ˆ ˆ ˆˆ ˆ ˆR RR H t H t dτ τ
∞

= − +∫   (109) 

where ( )inc
ˆ RH t  is the part of the Hamiltonian that contains incoherent noise in the rotating frame. If 

the noise has a very short autocorrelation time, this expression can be replaced by: 

 inc inc
ˆ̂ ˆ ˆˆ ˆ,R RR H Hρ ρ  =      (110) 

For example, for dipole-dipole interaction [29], we can write: 

 ( )20 1 2
DD 1 2 1 25

ˆ ˆ ˆ ˆˆ 3( )( ) ( )
4

H S r r S r S S
r

µ γ γ
π

= − ⋅ ⋅ − ⋅
   

  

  (111) 

Where 0µ  is the magnetic dipole moment, 1γ and 2γ  are the gyromagnetic ratio of two spins, r  the 

distance between two spins, 1Ŝ


and 2Ŝ


are the spin operator vectors of the spin one and spin two 

respectively. This form is not very convenient for the rotation properties, and therefore the irreducible 

spherical tensor form is commonly used instead: 

 ( ) ( ) ( )
2

2 2
DD

2

ˆ ˆ1 m
m m

m
H A T−

=−

= −∑   (112) 
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Where 2mA  are spatial coefficients and 2,
ˆ

mT −  are the irreducible spherical tensor operators. All spin 

interactions are second-rank, so the following general expression in terms of irreducible spherical ten-

sor operators covers all cases is [30]: 

 
{ }

( ) ( ) ( ) ( ) ( ) ( )
1 2

0 0 1 1 2 2
0 0
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The spatial tensor components for homonuclear dipole-dipole interaction are 

 0 1 2
20 36

4
A

r
µ γ γ
π

= −


  (115) 

Therefore, for dipolar relaxation:  

 ( ) ( ) ( )
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µ γ γ τ
π −

 
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  (116) 

Where 1  γ and 2γ  are magnetogyric ratios, cτ  is the rotational correlation time in the fast motion 

limit. If we look at the commutators and compare them with Equation (116), we can see the following: 

 ( ) ( )2 0
0

ˆ ˆ, 0mT T  =    (117) 

That means the singlet state cannot be changed by relaxation superoperator which appears from the 

dipolar interaction between two nuclei. Therefore, the dipole-dipole interaction which is the biggest 

cause of relaxation does not affect the singlet state which is therefore long-lived [31]. 

1.4 Ultrafast NMR  

Large range of disciplines such as chemistry, physics, biology and medicine using NMR as a tool for 

their applications. The reason is NMR considered as a highly multipurpose characterization technique. 

In biochemistry, for instance, NMR provides an excellent discerption for large molecule geometry by 

its self or even in complexes with drugs. In 1971, Jean Jeener [32] proposed a 2D NMR spectroscopy 
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for high resolution NMR in liquid.  This technique opens the wide range of applications in NMR spec-

troscopy. Nevertheless, 2D NMR suffers from numerous time increments required to sample the re-

sult.  Many strategies are applied to reduce the duration of 2D NMR but they still required 10-100 sec 

acquisition times to deliver their spectral correlations. Later, 2002 in specific, powerful analytical tool 

called “Ultrafast NMR” provide a rapid acquisition method to recorded any kind of 2D NMR spectrum 

in a single scan [33].    

Ultrafast NMR is a multidimensional fast single scan technique that parallelized the acquisition pro-

cess. This mean that ultrafast NMR can be used to obtain 2D,3D, and ND NMR spectra in under a 

second and within single scan. It does by encoding spin interactions using spatial gradient and then 

using the gradient again during the acquisition to achieve the encoded information [34]. 

2D NMR experiments involve the acquisition of multiple data scans regardless of sensitivity consider-

ations. The large number of scan implies that 2D experiments may take many minutes, partially be-

cause of number of scan and partially because of delay between scans. While in ultrafast NMR the 

sample is actually partition, using gradients, into different slices. Each slice evolves with different time 

after been excited, then the spatial encoded interactions are collected during the acquisition. At the 

heart of the method lies in extensive use of spatiotemporal encoding (SPEN) which is the key element 

used to address each slice individually [34].    

1.5 Pure shift NMR  

Pure shift method is a technique used to improve the resolution of NMR spectra [35].  the term pure 

shift NMR is also called chemical shift NMR which is designed to yield a pure chemical shift spectrum. 

Proton spectra are very important to understand many chemical information. However, due to their 

narrow chemical shift range (10-15 ppm), protons signals overlapped in spectrum which is leads to 

difficulties for analysis and interpretation. Pure shift NMR has proven to be a tool for the analysis of 

overpopulated spectra. Pure shift methods rely on the application of radiofrequency pulse sequences 

which is supress J-evolution effect for a short period of time. The idea behind these pulse sequences 

is to divide spins into active (observed) and passive (manipulated) spins to remove the effect of J-

coupling. Different methods are implemented to achieve the desired effects. Starting in 1982, Garbow 

et al. used a bilinear rotation decoupling (BIRD) [36] element to separate between the observed spins 

that are attached to 13C and the manipulated spins which are attached to 12C to produce a pure shift 

spectrum that contains only protons bound to 13C. In 1997, Zangger and Sterk [37] proposed a method 

that relies on application of frequency-selective 180° pulse, the selective pulse chosen should not ex-

cite protons that share couplings to avoid the evolution of the mutual coupling, simultaneously with 



39 

 

a weak pulsed field gradient (PFG). The application of PFG produce a signal have different frequencies 

depending on its positions.  As a result, a frequency selective 180° pulse refocuses different signals in 

different parts of the sample. All signals are refocused simultaneously, but each one arises from a 

particular narrow region of the sample, a slice [38]. 

1.6 Magnetic resonance Imaging   

MRI is a medical imaging technique. It is particularly useful for neurological conditions, for disorders 

of muscles and joints, for evaluating tumours, and for showing abnormalities in the heart and blood 

vessels [12, 39]. The principle of MRI involves the interaction of nuclei in biological tissue with elec-

tromagnetic fields. The most abundant atom in biology is hydrogen which contains a proton. The mag-

netic moments of these protons quantise along the direction of the magnetic field. While each indi-

vidual proton can only have specific states, an ensemble of protons can appear to behave as though 

they can have any alignment, and act as macroscopic magnetisation [17]. 

The picture is often simplified in the clinical literature relative to the rigorous treatment presented 

below. It is said that a radio frequency pulse is applied, which moves the magnetisation into the trans-

verse plane with respect to the magnet field. The precession of the bulk magnetic moment induces 

electric current in the coils, which is amplified and detected [40]. The frequency at which a proton or 

group of protons in a voxel resonates depends on the strength of the local magnetic field – a stronger 

field corresponds to a larger energy difference and therefore higher frequency of precession [12]. 

By applying additional coordinate-dependent magnetic fields (gradients) that vary linearly over space, 

specific slices can be selected, and an image obtained by taking the 2-D Fourier transform of the spatial 

frequencies of the signal [41]. Different tissues, including malignant ones, can be distinguished be-

cause the protons in different tissues return to their equilibrium state at different rates (i.e., they have 

different relaxation times). By changing the parameters of the experiment this effect may be used to 

create contrast between different types of tissue [39]. 

Contrast agents that accelerate spin relaxation may be injected intravenously to enhance the appear-

ance of blood vessels, tumours or inflammation [42]. Contrast agents may also be directly injected 

into a joint in the case of arthrograms, MRI images of joints. Unlike CT, MRI uses no ionizing radiation 

and is generally a safe procedure [43]. 

1.6.1 Magnetic field gradients  

A gradient can be defined as a change in the magnetic field along some direction in space. For example, 

if the gradient is applied in x direction (called Gx), the Z magnetic field will increase and decrease in x 
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direction depending on the strength of the gradient as shown in Figure 3. If a uniform magnetic field 

is applied, all protons will align in different orientation and start to precess at the same frequency. 

However, when a gradient is added, the magnetic field of the gradient will be added or subtracted 

from the main magnetic field. As a result, the spins will precess at different frequencies depending on 

their positions. This would allow us to distinguish the spin position in space.  

 

Figure 3. A schematic of magnetic field gradients in x, y and z directions, reproduced from [27]. 

Gradients play several roles in MRI. They may be used to either rephase or dephase the magnetic 

moment vectors of nuclei. They can also be used to perform slice selection by creating a narrowly 

localised resonance condition where only certain points of the sample are in resonance with the ap-

plied radiofrequency magnetic field.  

1.6.2 Slice selection  

The signal that comes from an MRI coil contains the information on the magnetisation of the whole 

body. Without special measures it would be difficult to select the signal from a specific tissue. The 

patient is positioned in a uniform external field  and that would lead to a uniform excitation of all 

protons in the body when we apply RF pulse. However, if we make  vary from one point to other, 

that would mean that each point has a different resonance frequency, and we can therefore apply an 

RF pulse that would excite a specific point and not excite the others.  

0B

0B
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Figure 4. A 3-dimensional axial slice through the sample. By varying gradient vector direction, slices can be excited in any 
orientation. Reproduced from [28]. 

 

A non-uniformity in the magnetic field may be achieved using X, Y, and Z gradient coils, as shown in 

Figure 4. Slice thickness can be controlled by varying the bandwidth of the excitation pulse and the 

strength of the gradient. The slope of the slice select gradient determines the difference in precession 

frequency between two points on the gradient. Steep gradient slopes result in a large difference in 

precession frequency between two points on the gradient, while shallow gradient slopes result in a 

small difference in precession frequency between the same two points.  

 

Figure 5. An illustration of slice thickness control in MRI. Reproduced from [29]. 

 

Once a certain gradient slope is applied, the RF pulse transmitted to excite the slice must contain a 

range of frequencies to match the difference in precession frequency between two points. This fre-

quency range is called the bandwidth, and as the RF is being transmitted at this point it is specifically 

called the transmit bandwidth as shown in Figure 5. 
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1.6.3 K-space  

K-space can be defined as the Fourier transform of the real space [44]. The data to fill k-space comes 

directly from the MRI signal. The latter comes from applying the gradients such as slice selection, 

phase encoding and frequency encoding as shown in Figure 6. 

 

Figure 6. K-space data (left) and resulting MR image after 2D-Fourier transformation (right). Reproduced from [31]. 

 

The easiest method to implement for most MR imaging sequences is the Cartesian filling of k-space, 

which means filling line by line in the corresponding k-space. This method considered slow, and other 

methods have been implemented such as spiral and echo planar techniques shown in Figure 7. 

 

Figure 7. K-space trajectory examples.(A) Echo planar trajectory, 
(B) Spiral trajectory, (C) conventional Cartesian trajectory, (D) Ra-
dial trajectory 

The echo planar trajectory is the most common technique these days due to the possibility of obtain-

ing individual MR slices in 50-100 ms which is useful to reduce patient motion effects [45]. The square 

echo planar technique [46] uses a train of echoes after a single RF excitation pulse with a positive and 
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negative gradient amplitudes to move from left to right and right to left respectively through the kx 

direction, while a short phase encoding gradient pulse gives a stepwise increase along the ky direction 

as shown in Figure 8.  

 

Figure 8. A schematic illustration of the set of readout echoes recorded for different values of the phase encoding gradient. 
The resulting data array is a two-dimensional diffractogram that is related to the image by the Fourier transform. 

1.6.4 Frequency encoding  

Frequency encoding refers to the fact that, once a gradient is applied, the frequency of the signal is 

directly linked to the location of the corresponding group of spins. This is illustrated schematically in 

Figure 9. Simply recording the free induction decay and running a Fourier transform is then sufficient 

to obtain a one-dimensional image. Frequency encoding is therefore the detection step in MRI. 

 

Figure 9. An illustration of the frequency encoding step in MRI. 

1.6.5 Phase encoding  

MRI samples are usually three-dimensional. After slice selection and frequency encoding, this leaves 

one more dimension to be taken care of. This step is called phase encoding, and it simply amounts to 

letting the system precess freely under a stepped gradient in the remaining direction. As the gradient 
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becomes stronger and stronger, greater amount of phase is accumulated, thus effectively collecting a 

Fourier image in the corresponding dimension (Figure 10). 

 

Figure 10. A schematic illustration of slice selection, 
phase encoding, and frequency encoding stages of an 
MRI pulse sequence. 

The result is the simplest possible MRI pulse sequence: a slice selection gradient and pulse are applied 

to excite a slice in Z, a stepped gradient is used to perform phase encoding in X, and finally a gradient 

echo detection is performed in Y. 

1.6.6 MRI parameters and contrast types  

Different types of images may be collected by varying the basic timing parameters of the MRI se-

quence [47]. Repetition Time (TR) is the amount of time between successive pulse sequence instances 

applied to the same slice. Time to Echo (TE) is the time between the delivery of the RF pulse and the 

receipt of the echo signal. These parameters have an influence on the resulting image due to the pres-

ence of spin relaxation. A parameter that only depends on spin concentration is proton density (PD). 

The amount of time it takes for protons to return to being aligned with B0 is determined by the spin-

lattice relaxation time (T1) of the tissue. The characteristic time of transverse plane dephasing is called 

spin-spin relaxation time (T2). The most common MRI sequences are T1-weighted and T2-weighted [43] 

. 
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Figure 11. A schematic [48] showing time parameters for best image con-
trast where short TE and TR gives T1 contrast while short TE and long TR 
gives PD contrast. However, long TE and sort TR gives poor contrast while 
long TE and TR gives T2 contrast.      

 

T1-weighted images are produced by using short TE and TR times. The contrast and brightness of the 

image are predominantly determined by T1 of tissue. The aim of short timing is to enhance the conse-

quences of T1 differences between tissues. Fluids which have long T1 will be dark because the signal 

from fluids did not have the enough time to relax. Water based tissues have shorter relaxation time 

than fluids and will appear grey. Fat based tissues have a short T1, and will therefore appear bright. 

T2-weighted images are produced by using longer TE and TR times. In these images, the contrast and 

brightness are predominantly determined by the T2 of tissue. On these images, the T2 time of fat is 

shorter than of fluids, so the transverse magnetisation of fat decays faster. The T2 in fluids is large. 

Fluids therefore have a high signal and appear bright on T2 contrast images. However, the T2 in fat is 

short, and fat therefore has low signal and appear dark on T2 contrast images. 

PD weighted images are produced by using short TE and long TR times. In PD images, higher signal 

intensities come from tissues that have higher proton density [43]. To get a PD weighted image we 

want to minimise the contribution of both T1 and T2 contrast. T1 contrast is minimised with a long TR 

that leads to complete longitudinal relaxation. T2 contrast minimised by using a short echo time. Tis-

sues with a high proton density, such as brain tissue, are bright on a proton density contrast image. 

Tissues with a low proton density, e.g. cortical bone, are dark on proton density contrast image. All 

three cases above are shown in Figure 11 and Figure 12 
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Figure 12. Difference between T1, T2 and PD weighted images in the brain with time 
required for each image. Reproduced from [48]. 

 

1.7 Current MRI simulation software  

MR imaging involves the nuclear spin system of an object to be imaged, the magnetic fields generated 

by the imager, the resonance and relaxation phenomena arising from the interaction nuclei / magnetic 

fields, and the signal detection and reconstruction. Sophisticated packages already exist for MRI sim-

ulations. In 1984, Bittoun et al. described their simulation program which uses Bloch equation for one 

point and one frequency for the object which is called “isochromat” (defined as ensemble of spins 

with same frequency) [49]. Summers et al. [50] and Olsson et al. [51] applied the same equation for 

2D and 3D grid. Afterwards, Shkarin, Pavel, and Spencer [52] proposed a method to increase the ac-

curacy of simulation be increasing the number of the isochromats per voxel. The most important lim-

itation in this method is that they do not include the effect of molecular diffusion on the MRI signal in 

a general way.  Jochimsen et al. solved this problem by using the partial derivatives (PDs) of the mag-

netization vector, with respect to position and frequency but still used Bloch equations [53]. 

In summary, the subject of single-spin MRI simulation using Bloch equations and Bloch-Torrey equa-

tion is very well researched. Even the computer science part of the matter is highly optimised – some 

of the existing codes already use GPU coprocessors to accelerate calculations [54, 55]. However, the 

limitation in all the packages is they are insufficient for systems with interacting spins.       

 

 

 

 



47 

 

2        Fokker-Planck formalism  

Nuclear magnetic resonance theory is traditionally based on the Liouville-von Neumann equation. This 

equation is of central importance in the description of the dynamics of quantum systems and is the 

dominant formalism in magnetic resonance simulations packages [56-58]. As demonstrated in the 

previous chapter, from the time-dependent Schrödinger equation we can easily derive the Liouville-

von Neumann equation: 

 ( ) ( ) ( )t i t t
t
∂

= −
∂
ρ H ρ  (118) 

Where ( )tρ  is the density operator and ( )tH  is the spin Hamiltonian commutation superoperator 

[59]. The latter can be defined as: 

 [ ],= = −Hρ H ρ Hρ ρH   (119) 

 In general, when relaxation and kinetics are present, equation (118) can be written as: 

 ( ) ( ) ( )t i t t
t
∂

 = − + + ∂
ρ H R K ρ   (120) 

Where ( )tH  is the ensemble average Hamiltonian, R  is the relaxation superoperator [23] which 

contains the effects of stochastic terms (for example, rotational diffusion) and K  is the chemical ki-

netics superoperator which is responsible in the chemical processes in the system. If the thermody-

namic equilibrium is non-trivial, we must add the relaxation target: 

 ( ) ( ) eq          t t → − Rρ R ρ ρ   (121) 

where  eqρ  thermal equilibrium density matrix. 

The problem with the current methods of magnetic resonance simulation is that spatial degrees of 

freedom are only introduced indirectly. For condensed phase spin systems it is commonly assumed 

that the spin state has no influence on spatial dynamics, but that spatial dynamics has an effect on the 

spin Hamiltonian. In other words, it is assumed that spatial coordinates are external parameters that 

make the spin Hamiltonian time-dependent.  

2.1.1 Merging spin and spatial degrees of freedom 

The Fokker-Planck equation is a partial differential equation describing the time evolution of the prob-

ability density of finding system in the state x  at time t  : 
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( ) ( ),

,
p t

t
t

∂
= −∇ ⋅

∂ x

x
j x   (122) 

Where ( ),p tx  is the probability density, ( ), tj x is the probability flux which is determined by the 

local velocity ( ), tv x : 

 ( ) ( ) ( ), , ,t t p t=j x v x x   (123) 

Equation (122) can be expanded to include the density matrix if we add the spin degrees of freedom: 

 
( ) ( ) ( ) ( ) ( ), ,

, , , , , , , ,
p t

t p t t p t
t

∂
 = −∇ ⋅ −∇ ⋅    ∂ x x ρ ρ

x ρ
v x ρ x ρ v x ρ x ρ   (124) 

We must take the integral over the probability density to get the expectation value: 

 ( ) ( ), , ,t p t dV= ∫ ρρ x ρ x ρ   (125) 

Where dVρ  is the volume element of the density matrix space. Taking the derivative of equation (125) 

with respect to t  produces the equation of motion: 

 ( ) ( ), , ,t p t dV
t t
∂ ∂ =  ∂ ∂ ∫ ρρ x x ρ ρ   (126) 

The time derivative of the joint probability density can therefore be written as: 

 
( ) ( ) ( ), ,

div , , div , ,
p t

p t p t
t

∂
 = −  −  ∂ ρ ρ xx

x ρ
x ρ v x ρ v   (127) 

For example, for a rotating NMR sample, the velocity at a point ρ  in spin space is given by: 

 ( ),i t= −ρ H xv ρ   (128) 

The lab space velocity at a specific point may be obtained from the equations of classical mechanics 

describing motion in three dimensions: 

 
( ) [ ] ( )

( ) [ ] ( ) ( )

exp 0           

exp 0           

t i t
d t i i t i t i
dt

= −

= − − = − ⇒ = −x

x M x

x M vM x Mx Mx
  (129) 

After placing equations (127), (128) and (129) in equation (126) we will get: 

 ( ) ( ) ( ) ( )[ ], div , , , div , ,t p t i t dV p t i dV
t
∂    = +     ∂ ∫ ∫ρ ρ x ρρ x x ρ H x ρ ρ x ρ Mx ρ   (130) 
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 After some calculations [60] we get: 

 
( ) ( ) ( ) ( ) ( ),

, , , ,
t

i t t t t
t

∂
= − +

∂
ρ x

L x ρ x M x ρ x   (131) 

in which ( ) ( ), ,t t i i= + +L x H x R K  is the Liouvillian that is responsible for spin dynamics and 

( ), tM x  is the spatial dynamics generator. The latter comes from classical mechanics. Some relevant 

examples are: 

1. Flow along a coordinate x  and circular motion with a phase ϕ  

 
( ) ( ) ( ) ( ) ( ) ( ), ,

, ,           ,
p x t p t

v t p x t t p t
t x t

ϕ
ω ϕ

ϕ
∂ ∂  ∂ ∂ = =   ∂ ∂ ∂ ∂   

  (132) 

where v  is linear velocity and ω  is angular velocity. 

2. Isotropic rotational diffusion in three dimensions 

 
( ) ( ) ( )2 2 2

R X Y Z

,
,

p t
D p t

t
∂ Ω  = + + Ω ∂

J J J   (133) 

where Ω  is a shorthand for Euler angles or other orientation parameters, { }X Y Z, ,J J J  are angular 
momentum operators and RD  is the rotational diffusion coefficient. 

2.1.2 Spin dynamics generators  

The spin component of the equation of motion is:  

 
( ) ( ) ( )

( ) ( ) ( )

,
, ,

, ,

t
i t t

t
t t i

∂
= −

∂
= +

ρ r
L r ρ r

L r H r R r
  (134) 

Where ( ), tρ r  is the spin density matrix at the spatial point r  at time t , ( ), tH r  is the spin Hamil-

tonian commutation superoperator, ( )R r  is the relaxation superoperator. The spin Hamiltonian con-

tains chemical shift terms, pulse field gradients, radiofrequency pulse terms, J-couplings, and a great 

variety of other complications that are discussed in magnetic resonance textbooks [59]: 
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∑ ∑
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  (135) 
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where 0B  is the primary magnet field (assumed to be directed along the Z axis), g  is the primary 

magnet field gradient vector, nδ  are nuclear chemical shifts, nγ  are nuclear magnetogyric ratios, 

( ) ( ) ( ){ }X Y Z, ,n n nS S S  are nuclear spin operators, nkJ  are inter-nuclear scalar couplings (traditionally pub-

lished in Hz, hence the 2π  in front), { }1 X,YB  are the Cartesian components of the radiofrequency mag-

netic field, which is assumed to have no Z component, et cetera – Equation (135) can be rather long, 

but for our purposes ( ), tH r  is simply a matrix that standard software packages can return on de-

mand. The same applies to the relaxation superoperator, which this communication is not a place to 

discuss. 

An important point from the computational efficiency point of view is that the dimension of the Hilbert 

space spanned by a realistic spin system trajectory is usually much smaller than the dimension of the 

full Hilbert space of the spin system [61-64]. A non-constructive proof may be obtained from the fact 

that the dimension of the space spanned by the simulation trajectory 

 { } [ ]2
0 0 0 0, , ,..., ,           expN i t= − ∆ρ Pρ P ρ P ρ P L   (136)  

is equal the number of linearly independent vectors in it, which is smaller or equal to the number of 

discrete time points in the trajectory [62]. At a more physically motivated level: 

1. Some spin states are not reachable from the initial condition under a given Hamiltonian 
and a given relaxation superoperator: 

 0 sim0     [0, ]i te t t− = ∀ ∈Lσ ρ   (137)  

All states that a priori do not occur in the system trajectory (or whose amplitude does 

not exceed a user-defined threshold) may be dropped from the basis [62] 

2. Some states are never populated to a significant extent because relaxation drains most 
of the amplitude en route. Any states that are reachable, but whose population stays 
below a set accuracy threshold, may also be dropped from the basis [64]. 

3. Some states are not reachable from the detection state. Any dynamics involving those 
states will never impact the observed parameter. For the purposes of simulating the 
dynamics of that parameter, such states may be dropped from the basis [65]. 

4. Some states are reachable, generally populated and connected to the detection state, 
but under specific conditions of a given simulation instance or stage happen to stay un-
populated or have no effect on the observed parameter. Once identified, such states 
may also be dropped from the basis [62, 65, 66]. 
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These observations are particularly relevant in liquid state magnetic resonance, where the dimension 

of the space spanned by the system trajectory was recently shown to be orders of magnitude smaller 

than the dimension of the full Hilbert space [67].  

Importantly, matrix representations of spin operators may be built directly in the reduced basis [67]. 

The procedure makes use of the fact that the Lie algebra of operators acting on a multi-spin system is 

spanned by direct products of basis operators of the Lie algebras of individual spins: 

 ( )
1

2 1
N

kk
s

=
⊗ +su   (138)  

where N  is the number of spins and ks  is the quantum number of each spin. The only consistent way 

to remove a specific generator mO   from a Lie algebra while preserving the rest of its structure is to 

modify the corresponding structure coefficients: 

 [ , ]i j ijk k
k

c=∑O O O   (139) 

by zeroing the coefficients ijmc  that lead into the “ignored” physical state. The resulting object is still 

a Lie algebra that now generates the time dynamics of the approximate physical model under the ex-

ponential map. Importantly, the structure coefficients of the direct product algebra are related to the 

structure coefficients of the single-spin algebras in a computationally friendly way because: 

 
( )

( ) ( )

†
†

1 1 1

† †

1 1

Tr Tr

Tr Tr

N N N

i j k in jn knn n n

NN

in jn kn in jn knn n

= = =

=
=

    = ⊗ ⊗ ⊗ =    
    

 = ⊗ =   ∏

O O O S S S

S S S S S S

  (140)  

where knS  is the k-th generator of the Lie algebra of the n-th spin – usually a 2×2 matrix! The cost of 

computing individual structure coefficients of the full spin system algebra is thus linear with respect 

to the total number of spins. When the restricted basis scales polynomially in the size of the spin 

system (true in all liquid state magnetic resonance experiments [64]), this yields an overall polynomi-

ally scaling simulation algorithm. 

The technical details of how reduced spin operator matrices are generated are outside the scope of 

this communications. The salient point is that the dimension of the Liouvillian that is realistically nec-

essary to describe an N-spin system is much smaller – usually orders of magnitude smaller – than 4N

. For your purposes here we would simply note that all relevant methods [61, 62, 64-68] are imple-

mented in Spinach [69] and the program simply provides the necessary matrices on demand. 
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2.1.3 Spatial dynamics generators  

In 1687, a description of viscous fluid motion had been proposed in “Principia” by Newton [70] in 

which dynamic behaviour of fluids of constant viscosity was investigated. Later, Bernoulli and Euler 

derived the equations for inviscid flow now known as Euler’s inviscid equations [71]. Even though 

Navier, Cauchy, Poisson, and St. Venant had carried out studies to explore the mathematical model of 

fluid flow [72], they had overlooked the viscous (frictional) force. In 1845, Stokes had derived the 

equation of motion of a viscous flow by adding Newtonian viscous terms[73], thereby the Navier-

Stokes equations had been brought to their final form which has been used to generate numerical 

solutions for fluid flow [74]. 

The Navier-Stokes equations are a set of nonlinear partial differential equations that describe the flow 

of fluids. They model weather, the movement of air in the atmosphere, ocean currents, water flow in 

a pipe, as well as many other fluid flow phenomena [75]. They depend on the combination of Newton’s 

second law with a fluid stress (due to viscosity) and pressure term. For almost all real situations, they 

result in a system of nonlinear partial differential equations; however, with certain simplifications 

(such as 1-dimensional motion) they can sometimes be reduced to linear differential equations [76]. 

Usually, however, they remain nonlinear, which makes them difficult or impossible to solve; this is 

what causes turbulence and strong dependence on initial conditions.  

The solution of the Navier-Stokes equations can be obtained with either analytical [77] or numerical 

methods [71] . The analytical method is only valid for simple cases such as Couette flow [78], Poiseuille 

flow [79], etc. On the other hand, almost every case in fluid dynamics comprises non-linear and com-

plex structures in the mathematical model which cannot be ignored without loss of accuracy [80]. 

Given the complexity and the non-linearity (which is not compatible with either Liouville - von Neu-

mann or with Fokker-Planck equation), a decision was made to only implement stationary flow in 

Spinach, because the dynamical generators associated with stationary flow are linear [81]: 

 ( ) ( ) ( )T T, , ,t t t= ∇ ⋅ + ⋅∇M r v r v r   (141) 

where [ ]Tx y z∇ = ∂ ∂ ∂ ∂ ∂ ∂  is the gradient (in the mathematical sense) operator, and ( ), tv r  

is the flow velocity. The latter rarely depends on time, meaning that the spatial dynamics generator in 

Equation (249) is time-independent and may be consigned to the background evolution operator – 

this is the primary advantage of the Fokker-Planck formalism over other simulation methods for the 

problem in question [81]. The use of the flow velocity in Equation (249) eliminates the thorny question 

of how to combine magnetic resonance simulations (where the equation of motion is linear) with 

hydrodynamics simulations (where it is not). Because spin degrees of freedom may be very accurately 
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assumed to have no influence on the spatial motion, any hydrodynamics solver may simply be used 

first to obtain ( ), tv r  and put it into Equation (249). In that way, the equation of motion stays linear 

with respect to the Fokker-Planck state vector ( ), tρ r . 

Given a concentration profile ( ),c tr , the diffusion flux is given by Fick’s first law [82], and the hydro-

dynamic flux is the product of concentration and velocity. The total flux therefore is: 

 ( ) ( ) ( ) ( ) ( ), , , , ,t t c t t c t= − ∇j r v r r D r r   (142) 

where [ ]Tx y z∇ = ∂ ∂ ∂ ∂ ∂ ∂  is the gradient operator, ( ), tv r  is the flow velocity and ( ), tD r  

is the translational diffusion tensor. Conservation of matter requires the local decrease in concentra-

tion to be equal to the divergence of its flux, and therefore: 

 ( ) ( ) ( ) ( ) ( ) ( )T T T, div , , , , ,c t t t t t c t
t
∂  = − = ∇ ⋅ + ⋅∇ +∇ ⋅ ⋅∇    ∂

r j r v r v r D r r   (143) 

At the matrix representation level, finite difference matrices [83] generally suffice for the gradient 

operator. The important point here is that all differential operators appearing in Equation (143) are 

direct products. For the gradient operator acting on the vectorised array of concentrations in every 

voxel: 

 
 

 

 

 

Y Z

X Z

X Y

          
x x
y y
z z

 ∂ ∂ ∂ ∂ ⊗ ⊗ 
  ∇ = ∂ ∂ ⇒ ∇ = ⊗ ∂ ∂ ⊗  
  ∂ ∂ ⊗ ⊗ ∂ ∂   

1 1
1 1
1 1

  (144) 

where 
 

x∂ ∂  denotes a matrix representation of x∂ ∂  on a finite grid. If the diffusion tensor is 

constant and isotropic, the generator only has three terms: 

 
2 2 2 2 2 2

Y Z X Z X Y2 2 2 2 2 2D D
x y z x y z

  ∂ ∂ ∂ ∂ ∂ ∂
+ + = ⊗ ⊗ + ⊗ ⊗ + ⊗ ⊗  ∂ ∂ ∂ ∂ ∂ ∂   

1 1 1 1 1 1
     

     

     

     

     

  (145) 

where D  is the diffusion coefficient. The dimension of each matrix is equal to the number of grid 

points along the corresponding dimension, typically of the order of 100. If the diffusion is anisotropic, 

the number of direct product terms in the sum rises to nine. Even if the entire ( ), tD r  array depends 

so strongly on r  that it must be stored explicitly on the finite grid, the direct product structure of 

Equation (144) still only acts on one dimension at a time. The same applies to the flow generator. 
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Assuming hundreds of grid points in each of the three spatial directions, the biggest matrix dimension 

one would encounter in the polyadic form of Equation (144), and consequently Equation (143), is in 

the hundreds. The worst-case memory requirements would come from the velocity vector array and 

the diffusion tensor array: (hundreds)3×(9 elements)×(64 bits per element) = about a gigabyte. This is 

well known to numerical hydrodynamics practitioners – the diffusion and flow problem in 3D is easily 

tractable. Finite difference derivative matrices are also sparse [83]. 

2.1.4 Matrix representations of spatial dynamics generators 

Methods for numerical solution of PDEs [84] can be classified into two types: 

1- Deterministic methods [85] where, for a given input, the output is always the same inde-

pendently of how many times one solves the problem and what computer is used to solve it. 

2- Stochastic methods [86] which rely on statistical principles. Monte Carlo method [87] is the 

most widely used stochastic method for solving PDEs.  

The finite difference method [88] is a deterministic method. The idea is to substitute a discrete linear 

combination of function values instead of derivatives. In order to understand how finite difference 

treat numerically partial differential equations, we must define a function only at a finite number of 

grid points. At a chosen grid, each derivative in the partial differential equation must be replaced by 

suitable divided difference of function values, for example:  

 ( ) ( ) ( ) ( ) ( ) ( )
0

lim           k k
kx

f x x f x f x f x h
f x f x

x h∆ →

+ ∆ − − −
′ ′= ⇔ ≈

∆
  (146) 

The equation above called a finite difference approximation. It can get an approximate solution at 

each grid point. The derivative operation may be written in a matrix-vector form, and this provides 

the necessary connection to matrix representations: 

 

( )
( )
( )

1

2

3

0 1 11
1 0 12

1 0 13

1 1 0

ff
ff
ff

′ + −    
    ′ − +    
    ′ − +

=    
    
    
        + −   

 


  (147) 

where periodic boundary condition is used. A large number of methods exist to generate finite differ-

ence matrices [89] of different types and accuracy levels. This is a technical subject that we will not 
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touch upon – we will simply observe here that matrix representations of controllable accuracy exist 

for any linear integro-differential operator on any finite grid. 

2.1.5 Diffusion generators 

Diffusion refers to the random motion of molecules caused by thermal fluctuations [90]. The physical 

law that describes this phenomenon is called Fick’s first law [91]: 

 =J D c− ∇
 

  (148) 

where J


 is the diffusion flux vector, D  is the diffusion coefficient, ∇


is the gradient operator and c

is concentration. The diffusion equation can be derived from Fick’s law as follows. According to the 

mass balance, for a short section { },x x x+ ∆  of a one-dimensional range: 

 ( ) ( )input output , ,cV J x t c J x x t c
t
∂

= − = − + ∆
∂

  (149) 

Since the total amount is V c x= ∆ , equation (149) can be rearranged: 

 
( ) ( ), ,J x t J x x tc

t x
− + ∆∂

=
∂ ∆

  (150) 

In the limit of 0x∆ →  , equation (150) can be written as: 

 
c J
t x
∂ ∂

= −
∂ ∂



  (151) 

Putting equations (148) and (151) together: 

 
c cD
t x x
∂ ∂ ∂ =  ∂ ∂ ∂ 

  (152) 

Finally (for a coordinate-independent diffusion coefficient): 

 2c D c
t
∂

= ∇
∂

  (153) 

Equation (153) is the diffusion equation. The form implemented in Spinach actually allows the diffu-

sion coefficient to be coordinate-dependent. 

2.1.6 Diffusion equation: solutions for unit testing 

Numerical implementations in Spinach were tested against the analytical solutions described in this 

section. In one dimension, the separation of variables yields  
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 ( ) ( ) ( ),c x t X x T t=   (154) 

One side of the equation (154) only depends on t , and the other only depends on x : 

 
( )
( )

( )
( )

1 T t X x
D T t X x

′ ′′
=   (155) 

Suppose each side equals λ . Hence we can write equation (155) as a system of two ODEs:  

 ( ) ( ) 0X x X xλ′′ + =   (156) 

 ( ) ( ) 0T t DT tλ′ + =   (157) 

The problem of finding the solution of equations (156) and (157) can therefore be reduced to solving 

linear ODEs and consideration of three different cases with respect to sign of λ  : 

 ( ) 1 20          x xX x C e C eλ λλ − −< ⇒ = +   (158) 

Taking the boundary conditions ( ) 0x ±∞ =  into account, one gets 1 2 0C C= = , so for λ   , only 

the trivial solution exists. 

 ( ) 1 20          X x C x Cλ = ⇒ = +   (159) 

Due to boundary conditions, this case also yields only trivial solution of the problem. 

 ( ) ( ) ( )1 20          cos sinX x C x C xλ λ λ⇒ = +   (160) 

On the interval [ ]0,x L∈  with some initial condition and (for example) zero boundary conditions: 

 ( ) ( ) ( )1 20 0               sin 0X C X L C Lλ= = = =   (161) 

  This yields the quantisation condition for the eigenvalues: 

 
2

,     1, 2,3,...n
n n

L
πλ  = = 
 

  (162) 

Hence, the solution can be written in the following general form: 

 ( ) sinn
nX x C x

L
π =  
 

  (163) 

where nC  are constants. The temporal part in equation (157) is also easily solved: 
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 ( ) ( ) ( )
2

0          expn
n nT t D T t T t B D t

L L
π π    ′ + = ⇒ = −         

  (164) 

Where nB   are constants. The general solution can therefore be written as: 

 ( )
2

1
, sin expn

n

n x nc x t A D t
L L
π π∞

=

    = −         
∑   (165) 

 where nA   are constants. To find nA  using the initial conditions [ ]0,x L∈  , we can write the initial 

condition function ( )f x  as a Fourier series:  

 ( ) ( )
1 0

2sin                sin
L

n n
n

n x n xf x A A f x dx
L L L
π π∞

=

   = =   
   

∑ ∫   (166) 

The final solution therefore is: 

 ( ) ( )
2

1 0

2, sin sin exp
L

n

n x n x nc x t f x dx D t
L L L L

π π π∞

=

       = −                
∑ ∫   (167) 

2.2 Numerical simulation examples  

A variety of initial condition functions can be handled using this formula and its higher dimensional 

equivalents, and the answers tested against finite difference numerical implementations. 

I will now illustrate the performance of the numerical solver that was implemented into Spinach dur-

ing this project. Consider the one-dimensional diffusion equation with a diffusion coefficient D : 

 
2

2

c cD
t x
∂ ∂

=
∂ ∂

  (168) 

At the trivial level, simply starting from a Gaussian function with periodic boundary conditions yields 

a series of pictures shown in Figure 13. 
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Figure 13. Evolution of the probability density function for increasing diffusion times in the case of one-dimensional diffusion. 
D = 5x10-5  m2/s, Gaussian initial condition, periodic boundary conditions. Spinach example set: diffusion_test_1.m 

 

Going a level up in complexity, for most fluids and some homogeneous solid materials like gels, diffu-

sion is the same in every direction. These systems are called isotropic, and the diffusion process is still 

characterised by a scalar coefficient: 

 
2 2

2 2

c c cD
t x y

 ∂ ∂ ∂
= + ∂ ∂ ∂ 

  (169) 

A simple two-dimensional simulation of this type is shown in Figure 14. 

 

 

Figure 14. Evolution of the probability density function for increasing diffusion times in the case of two-dimensional uniform 
and isotropic diffusion. Initial condition as shown in the left panel, periodic boundary conditions. Spinach example set: diffu-
sion_test_2a.m 

 

However, even for isotropic diffusion, the diffusion coefficient need not be equal in different parts of 

the sample. Additional derivatives appear in the diffusion equation in this case because D  is no 

longer-coordinate independent. The implementation in Spinach uses the full Equation (191) and 

therefore has no problem with this case – as illustrated in Figure 15. 
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Figure 15. Evolution of the probability density function for increasing diffusion times in the case of two-dimensional non-
uniform and isotropic diffusion. Initial condition as shown in the left panel, periodic boundary conditions. Spinach example 
set: diffusion_test_2b.m 

 

Biological tissues are highly structured and typically have different diffusion coefficients along differ-

ent directions – for example white matter is anisotropic because of the parallel orientation of the 

nerve fibre tracts. Other tissues with significant anisotropy are muscle and tendons. The diffusion ten-

sor is a matrix in these systems, and can vary in orientation as well as amplitude. An example of such 

a simulation for a two-dimensional phantom is shown in Figure 16. 

 

 

Figure 16. Evolution of the probability density function for increasing diffusion times in the case of two-dimensional uniform 
and anisotropic diffusion. Initial condition as shown in the left panel, periodic boundary conditions. Spinach example set: 
diffusion_test_2c.m 

 

The general three-dimensional case was implemented in Spinach during this project – see v2fplanck.m 

function for the technical details of the programming involved. 

2.3 Stationary flow and diffusion: numerical examples 

The illustrations for the numerical solver that accounts for the diffusion and stationary flow simulta-

neously (Figure 17) are generally similar to the ones already used for the pure diffusion – the software 

module is actually exactly the same, only the velocity field information is now provided. 
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Figure 17. A one-dimensional illustration of the combination between diffusion and flow simulated using the Fokker-Planck 
solver in Spinach. A uniform flow velocity field (0.2 m/s) is used, and the diffusion coefficient is 50 mm2/s. Spinach example 
set: flow_test_1a.m 

 

An important matter that must be tackled with flow simulations is that of the boundary conditions. 

The only type of boundary that is not a veritable minefield in terms of the associated numerical math-

ematics is the periodic boundary [92]. At this stage in the development I have therefore decided to 

only implement the periodic boundary condition, which is illustrated in Figure 18. 

 

 

Figure 18. Evolution of the probability density function for increasing diffusion times in the case of two-dimensional uniform 
and isotropic diffusion combined with a linear flow process. D = 5x10-5 m2/s, initial condition as shown in the left panel, 
periodic boundary conditions. Spinach example set: flow_test_2.m 

 

Because Spinach makes claims about being able to simulate three-dimensional MRI processes in rea-

sonable time, an example is required to that effect (Figure 19). 
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Figure 19. Frames from a three-dimensional diffusion and flow simulation with concentration spots of three different sub-
stances flowing in a circular flow field.The simulation takes a few minutes on a modern computer. Spinach example set: 
flow_test_3.m 

 

The summary for this section is that spatial dynamics generators were implemented in code and 

passed all necessary tests. 

As an illustration of Spinach syntax and generality, this section contains a walk through a specific sim-

ulation that combines quantum mechanics, diffusion, flow and imaging – a singlet state flow imaging 

experiment. We first specify the list of isotopes for a specific spin system: 

% Isotopes 
sys.isotopes={'13C','13C'}; 
 
then the applied magnet field in Tesla: 

% Magnetic induction 
sys.magnet=9.4; 
 
Chemical shift must be specified in ppm for nuclei: 

% Chemical shifts 
inter.zeeman.scalar={0.03,-0.03}; 
 
J-coupling between nuclei  

% J coupling 
inter.coupling.scalar=cell(2); 
inter.coupling.scalar{1,2}=55; 

 
Bloch-Redfield-Wangsness relaxation theory and its parameters: 

% Relaxation theory 
inter.relaxation={'redfield'}; 
inter.equilibrium='zero'; 
inter.rlx_keep='secular'; 
inter.tau_c={1e-9}; 
 
Liouville space formalism: 

% Basis set 
bas.formalism='sphten-liouv'; 
 
Complete basis set, since the spin system is small: 

bas.approximation='none'; 
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Any Spinach calculation must begin with a call to create.m and basis.m constructor functions. They 

process spin system and simulation formalism specifications and create the spin_system object – the 

primary data structure that is used to store spin system information in Spinach: 

% Spinach housekeeping 
spin system=create(sys,inter); 
spin_system=basis(spin_system,bas); 
 

Rotating frame assumptions. This setting determines the Hamiltonian:  

% Assumptions 
spin_system=assume(spin_system,'nmr'); 
 
Relaxation phantom – the same relaxation superoperator everywhere: 

% Relaxation phantom 
parameters.rlx_ph={ones(parameters.npts)}; 
parameters.rlx_op={relaxation(spin_system)}; 
 
NMR tube phantom – ones inside the tube, zeros outside: 

% NMR sample tube phantom 
tube=zeros(parameters.npts); tube(:,6:10)=1; 
 
The initial condition phantom – Lz everywhere inside the tube: 

% Initial state phantom 
parameters.rho0_ph={tube}; 
parameters.rho0_st={state(spin_system,'Lz','13C','cheap')}; 
 
The detection state phantom reflects the fact that different voxels might be detected at different an-

gles and with different sensitivity. We set the detection operator to be uniform L+ across the tube: 

% Detection state phantom 
parameters.coil_ph={tube}; 
parameters.coil_st={state(spin_system,'L+','13C','cheap')} 
 
X and Y components of the velocity vectors for each point in the sample – vertical flow: 

% Flow 
parameters.u=-6e-2*ones(parameters.npts); 
parameters.v=zeros(parameters.npts); 

 
3x3 diffusion tensor – assuming only longitudinal diffusion: 

% Diffusion  
parameters.diff=[3.6e-6 0 0; 0 0 0; 0 0 0]; 
 
Parameters of the slice selection pulse: 

               % Pulse phase 
        rf_phi=pi/2; 
  
        % Number of steps in the pulse 
        pulse_nsteps=25; 
  
        % Overall pulse duration 
        pulse_time=2e-3; 
  
        % Pulse frequency 
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        pulse_frq=2000; 
  
        % Pulse amplitude table 
        rf_amp_list=2*pi*100*pulse_shape('gaussian',pulse_nsteps); 
  
        % Pulse block duration table 
        rf_dur_list=(pulse_time/pulse_nsteps)*ones(1,pulse_nsteps); 
  
        % Gradient amplitude 
        grad_ampl=6e-3; % T/m 
 
When the sequence starts, we apply a pulse at the specified frequency under Gx using a shaped pulse 

in amplitude-frequency coordinates using Fokker-Planck formalism  

        % Apply a pulse at a specific frequency under Gx 
        rho=shaped_pulse_af(spin_system,L+grad_ampl*G{1},Lx,Ly,parameters.rho0,... 
                            pulse_frq*ones(1,pulse_nsteps),rf_amp_list,rf_dur_list,... 
                            rf_phi,2,'expv'); 
 
Parameters of the M2S sequence [93] are then calculated: 

        % M2S parameters 
        J=55; delta_v=6; 
        t=1/(4*sqrt(J^2+delta_v^2)); 
        m1=floor(pi*J/(2*delta_v)); 
        if mod(m1,2)~=0, m1=m1+1; end 
 

The M2S pulse sequence is run: 

        % M2S sequence 
        for k=1:m1 
            rho=step(spin_system,H,rho,t); 
            rho=step(spin_system,Lx,rho,pi); 
            rho=step(spin_system,H,rho,t); 
        end 
        rho=step(spin_system,Lx,rho,pi/2); 
        rho=step(spin_system,H,rho,t); 
        for k=1:m1/2 
            rho=step(spin_system,H,rho,t); 
            rho=step(spin_system,Lx,rho,pi); 
            rho=step(spin_system,H,rho,t); 
        end 
        rho_sing=-step(spin_system,H,rho,t); 
 
Because only a slice was excited, only a slice gets transformed into singlet. We then run the time 

evolution and obtain system trajectory: 

traj{1}=evolution(spin_system,L,[],rho_sing,0.01,100,'trajectory'); 

 
Another trajectory is also recorded for the situation when the M2S sequence is not run – meaning that 

simple magnetisation is being detected. We can then inspect the result by projecting the full Fokker-

Planck state vector into the phantom space:  

for n=1:100 
    tube_sing=fpl2phan(traj{1}(:,n),singlet(spin_system,1,2),parameters.npts); 
    tube_magn=fpl2phan(traj{2}(:,n),state(spin_system,'L+','all'),parameters.npts); 
    subplot(1,2,1); imagesc(real(tube_sing),25*[-2e-3 6e-3]/2); colorbar; title('singlet'); 
    subplot(1,2,2); imagesc(real(tube_magn),25*[-2e-3 6e-3]); colorbar; title('magnetization'); 
    drawnow; pause(0.01); 
end 
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The simulation parameters are shown in Table 3 and the result is shown in Figure 53 and published 

[94]. 

Table 3. Singlet state NMR simulation parameters 

Isotope 13C 

Chemical shift 6 ppm 

J-coupling 55 Hz 

Pulse time 2 ms 

Pulse frequency 2 kHz 

Gradient amplitude 6 mT/m 

Flow rate 60 mm/s 

Diffusion coefficient 3.6*10-6 m2/s 

 

A simulation of the singlet state diffusion and flow experiment from Figure 2 of the recent paper by 

Pileio et al. [95] shown in Figure 53 is particularly good example, because all of the complexities – 

shaped pulses, gradients, diffusion, flow, quantum mechanical spin evolution and complicated relax-

ation theory – are present simultaneously. 
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3   Simulation Platform 

3.1 Simulation requirements   

There are two well researched limits in the numerical simulation of magnetic resonance imaging: com-

plicated spatial dynamics of simple spin systems, and simple spatial dynamics of complicated spin sys-

tems. The former is diffusion and flow MRI of mostly water [96, 97], and the latter is spatially encoded 

NMR experiments [34, 98], and localised NMR spectroscopy [99]. Both cases are well covered by the 

existing simulation software. Both are also computationally straightforward because matrix dimen-

sions are manageable: ( ) ( )3 2⊗aut su  and ( )3 2N⊗ su  are both tractable, either directly or 

with reasonable approximations [61, 63] for the matrix representations of ( )2Nsu , where N  is the 

number of spins. 

The simulation problem becomes numerically intractable when complicated spatial dynamics (diffu-

sion, convection, and flow in three dimensions) is combined with complicated spin dynamics (spin-

spin coupling, cross-relaxation, chemical kinetics, etc.). A well digitised 3D phantom would have at 

least a hundred points in each of the three directions, meaning a dimension of at least 1003 = 106 for 

the spatial dynamics generator matrices. At the same time, a typical metabolite (e.g. glucose) contains 

upwards of ten coupled spins, meaning a Liouville space dimension of at least 410 ≈ 106. Direct products 

of spin and spatial dynamics generators would then have the dimension in excess of 1012 even before 

chemical kinetics is considered – clearly a non-starter, even if sparse matrix arithmetic is used. 

At the same time, sophisticated MRI and spatio-temporal NMR techniques are being increasingly 

called upon to report on neurotransmitters (e.g. acetylcholine [100] and γ-aminobutyric acid [101]), 

bioenergetic metabolites (e.g. pyruvate [102] and lactate [103]), osmolytes (e.g. sarcosine [104] and 

taurine [105]), cellular membrane components (e.g. triglycerides [106] and cholesterol), and other 

substances that, unlike water, feature non-trivial quantum mechanical spin processes in liquid phase. 

Metabolic imaging also implies the presence of chemical kinetics. Further away from the clinic, an 

increasing number of DNP [107], PHIP [108]and singlet [93] imaging experiments require accurate 

quantum mechanical treatment of spatially distributed spin dynamics, also including simultaneous 

contributions from spin-spin coupling, cross-relaxation, convection, diffusion, flow, and chemical ki-

netics.  
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Numerical simulation of such systems used to be impossible in particular because the available soft-

ware [56-58, 109] always insisted on opening the Kronecker products in the structure of the problem: 

 [space dynamics] [reaction kinetics] [spin dynamics]⊗ ⊗   (170) 

before running the simulation. If all three matrices are large, the resulting object has intractable di-

mensions. However, our long and careful look at the entire structure of the magnetic resonance sim-

ulation problem [69] produced an interesting observation: the only algebraic operation essentially re-

quired in any Liouville space magnetic resonance simulation is matrix-vector product, where the ma-

trix is a sum of objects with the structure shown in Equation (170). Even time propagation, which 

technically involves a matrix exponential, can be reformulated using only matrix-vector operations 

[110], for example: 

 ( ) ( ) ( ) ( ) ( )( )( )
0

exp ...
!

n

n

i t
t t i t t t

n

∞

=

− ∆
+ ∆ = − ∆ =   ∑ρ L ρ L L Lρ   (171) 

where ρ  is the state vector, L  is Liouvillian superoperator, and t  is time. The second important 

observation then comes from linear algebra – the action by a direct product on a vector may be com-

puted without opening the direct product, for example: 

 [ ] Tvec  ⊗ =  A B v BVA   (172) 

where A  and B  are matrices, V  is obtained by reshaping v  into a matrix of appropriate dimensions 

for the product on the right hand side, and vec stands for column-wise stretch of a matrix into a vector. 

The right hand side of Equation (172) is much cheaper to compute than the left hand side. The entire 

class of such relations is extensively researched [111]; they extend to multiple and nested direct prod-

ucts, as well as their sums. 

I postulate here that direct products are best left unopened in magnetic resonance simulations, par-

ticularly in MRI, where the most problematic product is between spatial and spin degrees of freedom. 

This hypothesis is explored in this work: I report the design and implementation of a quantum me-

chanical MRI and spatio-temporal NMR simulation module in Spinach [69] that uses polyadics (the 

formal name for a sum of direct products) without opening them up. It is demonstrated below that 

previously unthinkable MRI simulations now run in minutes. 

3.2 General simulation framework 

The general MRI simulation problem contains three principal factors: (a) spatial distributions and spa-

tial dynamics, including field maps of various coils, diffusion, and flow; (b) chemical kinetics; (c) spin 
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dynamics and relaxation. These factors are in a direct product relationship – each voxel may have 

different concentrations and transport velocities, each chemical species may have different spin dy-

namics, and spin dynamics may in turn be different in each voxel due to, for example, a magnetic field 

gradient or a different viscosity that affects relaxation. Mathematically speaking, the structure of the 

problem is captured by Equation (170), with the equation of motion consequently having the following 

algebraic form: 

 ( ) ( ) ( )nmk n m k
nmk

d t a t t
dt

 = ⊗ ⊗  
∑ρ M K S ρ   (173) 

where ( )tρ  is the state vector, ( )nmka t  are interaction amplitudes, nM  are spatial operators, mK  

are chemical kinetics operators (possibly themselves dependent on ρ  if the kinetics is non-linear), and 

kS  are spin dynamics operators. The formal solution is: 

 ( ) ( ) ( )exp nmk n m k
nmk

t dt a t dt t
  + = ⊗ ⊗    
∑ρ M K S ρ   (174) 

The problem of simulating each of the three compartments of Equation (170) individually is compre-

hensively solved and extensively studied, from theoretical foundations [59, 112, 113] all the way to 

numerical implementations [56-58, 109, 114, 115]. However, the composite problem runs into the 

matrix dimension issue described in the Introduction. The solutions offered here revolve around com-

pressing the dimensions of the three sub-problems to the maximum possible extent, and never open-

ing the Kronecker products in Equation (173). The insight that makes efficient simulation possible is 

empirical: the polyadic object appearing in Equation (173) is always low-rank. In other words, the sum 

is short and contains many unit matrices. 

3.3 Spinach infrastructure  

Consider the general case of a matrix-vector product where the matrix itself is a Kronecker product of 

smaller matrices, some of which may be unit matrices: 

 ( ) ( ) ( )1 2 ... N = ⊗ ⊗ ⊗ y A A A x  

The number of elements in x  is the product of column dimensions of ( )kA , and the number of ele-

ments in y  is the product of their row dimensions. The multiplication procedure, described in detail 

by Fernandes, Plateau, and Stewart [111] and first implemented for Matlab by David Gleich, is as fol-

lows. 
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1. Record column dimensions of ( )1N k− +A  into kc . 

2. Reshape x  into an N-dimensional array X  with dimensions kc . 

3. Loop index n  over the dimensions of X  

 Permute the dimensions of X  to make its thn  dimension left-most. 

 Reshape X  to into a matrix of column dimension nc  and row dimension m
m n

c
≠
∏ . 

 Perform reassignment ( )1N n− += ⋅X A X  and replace nc  by the row dimension of ( )1N n− +A . 

 Reshape X  back into an N-dimensional array X  with dimensions kc . 

 Put the dimensions of X  back into the original order. 

4. Reshape X  back into a vector and return it as y . 

This procedure is implemented in the kronm function supplied with Spinach versions 2.3 and later. 

Minor logistical optimisations are implemented: multiplication by unit matrices is skipped, and 

memory-intensive dimension reordering operations are avoided for the first and the last instance of 

the loop. 

A considerable amount of software engineering is required before the method above becomes useful 

for solving Equation (131). The first significant hurdle is addition: there is no way to add two Kronecker 

products without opening them up – direct products do not commute with summation. However, MRI 

Hamiltonians are always sums of direct products, and therefore a workaround is required. This is im-

plemented by simply buffering the terms of the sum as a pointer array: 

 { } { }{ }...                    , , , , ,...⊗ + ⊗ ⊗ + ⇔A B C D E A B C D E   (175) 

We rely here on the fact that MRI Hamiltonians are always short sums of Kronecker products: the 

number of terms is always much smaller than the dimension of the resulting matrix. A multiplication 

by the object in Equation (175) is then easy to implement as a loop over its constituent terms. 

The second significant hurdle is the norm – numerical implementations of Equation (171) in finite 

precision arithmetic require the knowledge of the matrix norm. However, the immediate definition of 

a matrix norm requires either extreme eigenvalues (2-norm), or sums across rows (infinity-norm) and 

columns (1-norm), or element-wise products (Frobenius norm). These are expensive operations. 

Thankfully, the Taylor series in Equation (171) has infinite convergence radius, and therefore only an 

estimate of the norm is actually required. The cheapest estimate we could find was published for 1-



 

69 

 

norm by Hager [116]. It requires a few matrix-vector products; usually fewer than the subsequent 

evaluation of Equation (171). 

A less problematic, but important observation is that the algorithm described in the previous section, 

particularly at the dimension reordering stages, has complicated memory access patterns. Non-se-

quential memory access can be expensive on modern CPU architectures. The algorithm described in 

the previous section may therefore be viewed as a different trade-off between capacity and latency 

requirements on the RAM. However, the savings in the arithmetical operation count are always sig-

nificant. 

The last hurdle is that a polyadic object is sometimes pre-multiplied or post-multiplied by diagonal 

matrices with unknown polyadic structures. Because the only operation the entire object needs to 

deliver is matrix-vector product, the best strategy is to simply buffer the multipliers, and apply them 

to the incoming vector before and after the polyadic is applied. The object structure is then extended 

as follows: 

 

[ ]

{ } { } { }{ }{ }

1 1

1 1

... ... ...

,..., , , , , ,... ,...,

N M

N M

⋅ ⋅ ⋅ ⊗ + ⊗ ⊗ + ⋅ ⋅ ⋅P P A B C D E Q Q

P P A B C D E Q Q
   (176) 

The entire product sequence is simply replayed from right to left every time a product into a vector is 

needed. Once the elements of this object are themselves allowed to be polyadic, the object can buffer 

an arbitrary sequence of additions, multiplications and Kronecker products. Importantly, this repre-

sentation is only computationally efficient when the number of terms is much smaller than the dimen-

sion of the matrix it represents, but this is always the case for MRI evolution generators. 

It should be noted that more sophisticated representations for tensor structured objects have existed 

for some time [117, 118]. We do have an MPS/TT object in Spinach [119], but it is certainly not a simple 

machine-precision parameter-free black box of the same kind as polyadics. Because the polyadic de-

composition in Equation (143) is known a priori, and is nearly always already canonical, the benefits 

of going to compressed tensor structured formats such as TT [117] are not worth having to deal with 

their harrowing logistics. 

The objects discussed above were implemented in Spinach. As a result, it currently contains a very 

general implementation of the Fokker-Planck formalism that is able to treat 3D diffusion and hydro-

dynamics simultaneously with Liouville-space spin dynamics, relaxation and chemical kinetics. This is 

dictated by the direction in which the field is moving: many emerging magnetic resonance methods 

(ultrafast NMR, singlet state imaging, spatially encoded NMR, metabolite-selective MRI, catalyst MRI, 
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hyperpolarised imaging, etc.) fall in between the established simulation frameworks: on the one hand, 

they require accurate simulation of three-dimensional diffusion, hydrodynamics and chemical pro-

cesses; on the other, it is essential that the spin evolution in every molecule is treated quantum me-

chanically in a way that accurately describes spin relaxation processes. At the same time, sophisticated 

spatially and temporally modulated radiofrequency pulses must be accounted for. Within the Fokker-

Planck formalism, things like three-dimensional diffusion, hydrodynamics and off-resonance radiofre-

quency appear in a very simple way – each of these is just another constant matrix to add to the 

background evolution Hamiltonian. 

3.4 Synthetic benchmarks 

Direct product component matrices for synthetic benchmarks were filled with normally distributed 

complex random numbers. The dimension of each matrix was chosen randomly between 1 and 64, 

and a random complex vector was generated to match the Kronecker product dimension. For sparse 

matrices, an optimistic non-zero density estimate was used: five complex non-zeroes per column. The 

matrix-vector multiplication operation was timed for 100 instances of this setup; the resulting statis-

tics is presented in Table 1. The source code for this benchmark is available in versions 2.3 and later 

of Spinach library [69] 

 

Table 4. Wall clock time benchmarks for matrix-vector multiplication using a single Xeon E5-2698 CPU core in Matlab on a 
computer equipped with 256 GB of RAM. 

Matrix-vector multiplication task Wall clock time, 
polyadic 

Wall clock time, 
flat 

[ ]⊗A B v  with ( )dim , 64≤A B , full 0.37 ± 0.01 ms 0.88 ± 0.12 ms 

[ ]⊗ ⊗A B C v  with ( )dim - 64≤A C , full 1.8 ± 0.3 ms Out of RAM 

[ ]⊗ ⊗ ⊗A B C D v  with ( )dim - 64≤A D , full 97 ± 14 ms Out of RAM 

[ ]⊗A B v  with ( )dim , 64≤A B , sparse 0.21 ± 0.01 ms 0.05 ± 0.01 ms 

[ ]⊗ ⊗A B C v  with ( )dim - 64≤A C , sparse 2.1 ± 0.3 ms 11.4 ± 1.6 ms 

[ ]⊗ ⊗ ⊗A B C D v  with ( )dim - 64≤A D , sparse 105 ± 16 ms Out of RAM 
 

It is clear that 3D MRI experiments with quantum mechanical description of spin cannot be simulated 

on a system with 256 GB of RAM – this confirms the estimates given in the Introduction. However, 

multiplications using the polyadic object are all in the milliseconds; they would remain realistic even 

if hundreds of terms are present in the sum in Equation (176). There is no wall clock time advantage, 
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but the memory problem is solved. From the computational feasibility point of view, the polyadic ob-

ject puts quantum mechanical 3D MRI simulations within reach. 

3.5 Numerical accuracy conditions  

Diffusion and flow operators on finite grids have two popular matrix representations: finite difference 

matrices /ref/ and spectral differentiation matrices /ref/. The accuracy of the former depends on the 

grid spacing and the choice of the finite difference coefficients; both methods require all spatial fre-

quencies to be below the Nyquist frequency of the grid. 

On the Nyquist condition side, for the expected cases of laminar flow and diffusion, the dominant 

source of high frequencies along spatial coordinates are pulsed field gradients. An accurate simulation 

is the one that guarantees correct treatment of diffusive and hydrodynamic transport for the tightest 

phase spiral that the pulse sequence can generate in any element of the spin density matrix. Because 

this includes unobservable as well as observable coherences, the upper bound on the highest spatial 

frequency   must assume that each gradient, even if intended to refocus some spin states, would con-

tinue defocusing some other states. Therefore, in each spatial direction: 

( )max Z 2
02

L g t dt
B

Ω ≤ ∫H   (177) 

where L  is the length of the sample in the chosen dimension, pulsed field gradients are assumed to 

be zero in the middle, 0B  is the magnet induction, Z 2
H  is the 2-norm (largest absolute eigenvalue) 

of the Zeeman Hamiltonian, ( )g t  is the gradient amplitude in the chosen dimension as a function of 

time, and the integral is taken over the duration of the experiment. The grid point spacing h  is limited 

by the Nyquist condition [120]to have more than two grid points per period of maxΩ : 

 maxh πΩ <   (178) 

For sequences that make extensive use of gradients, the bound in Equation (177) may be overly cau-

tious. An alternative is to perform spatial Fourier transforms after each gradient event in the pulse 

sequence, and to inspect the edges of the frequency domain representation. Non-zero amplitude at 

the edges would indicate that the number of points in the spatial grid must be increased. 

Equation (178) is the only accuracy condition when Fourier spectral differentiation matrices are used. 

However, they are expensive because they are not sparse. For diffusion and flow, it is therefore com-

mon to see finite difference matrices used instead; they have further accuracy conditions on the grid 



 

72 

 

point spacing. These conditions follow from Taylor series expressions for derivatives on finite grids. 

For the simplest example of the central first derivative: 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2
2

2
2

2 2

2 2

x h

x

x h

x

f x x h t
f x h f x f x h h f t dt

f x x h t
f x h f x f x h h f t dt

+

−

′′ + −
′ ′′′+ = + + +

′′ − −
′ ′′′− = − + +

∫

∫
  (179) 

where Lagrange’s remainders are used after second order. Solving this for ( )f x′  yields: 

 ( ) ( ) ( ) ( ),
2

f x h f x h
f x R x h

h
+ − −

′ = +   (180) 

The functions being differentiated are dominated by gradient spirals with the worst-case frequency 

obtained in Equation (177). The worst case is therefore ( ) ( )maxexpf x i x= − Ω . This permits a more 

detailed examination of the remainder ( ),R x h  in Equation (180). After taking the integrals and sim-

plifying the result, we obtain the following expression for the relative error when max 1hΩ < : 

 
( )
( )

( ) ( )2
max max

max

sin
1

6
,

1
R h hh
f h

x
x

Ω Ω
− ≈

Ω
=

′
   (181) 

This condition is more stringent than Equation (178) and necessitates a finer grid; this is the price to 

pay for the sparsity of the differentiation operators. 

 

 
Figure 20. A schematic illustration of the central finite-difference stencils implemented in the co-
ordinate derivative module of Spinach. 

A variety of other finite difference schemes (Figure 20) are available in the literature [83], usually 

accompanied by the accuracy estimate of the form nO h    where h  is the grid spacing and n  is a 

small integer. By following the same procedure as the one in Equations (179)-(181), it is easy to obtain 
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a more accurate estimate of the worst-case relative error on the derivative. In our context, it is 

( )max
nhO Ω 

   where maxΩ  is the maximum spatial frequency that occurs in the experiment. In prac-

tice, it is reasonable to start from max 1hΩ  , and to make the grid finer until the simulation result 

stops changing.  

A good practical example of this is the ideal Stejskal-Tanner experiment [121], for which the analytical 

expression for the signal attenuation due to isotropic diffusion is known: 

 ( ) ( ) ( )2 2 2 30 g DS g S e γ δ δ− ∆−=   (182) 

where ( )S g  is the signal intensity in an experiment with the gradient amplitude g , γ  is the magne-

togyric ratio (including any applicable chemical shift corrections) of the working spins, δ  is the dura-

tion of the gradient pulse, and D  is the diffusion coefficient. Running a numerical Stejskal-Tanner 

simulation on a finite grid and then fitting Equation (182) to extract the diffusion coefficient provides 

an illustration of how numerical accuracy depends on the grid spacing and the stencil size.  

 
Figure 21. Accuracy and run time statistics for a Stejskal-Tanner pulse sequence simulation followed by extraction of the 
known diffusion coefficient (18×10–10 m2/s, dashed line) from the simulated data. The 1.5 cm long sample contains a single 
type of protons with a chemical shift of 4.6 ppm at 11.74 Tesla. The Stejskal-Tanner pulse sequence simulation uses ideal 
radiofrequency pulses; perfectly rectangular gradients are assumed with no stabilisation delay. The duration of gradient 
pulses is δ=2 ms, and the duration of the diffusion delay is Δ=50 ms. Gradient amplitudes are varied from zero to 0.5 Tesla/m. 
Top: the diffusion coefficient extracted by fitting Equation (182) to the simulated data for three finite difference stencil sizes 
as a function of the spatial grid size. Bottom: wall clock time (2 x Intel Xeon E5-2698) for the pulse sequence simulation for 
three finite difference stencil sizes as a function of the spatial grid size. The stencil size refers to the number of points used in 
the finite difference approximation to the spatial coordinate derivative operator. 
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Figure 21 illustrates quantitatively the dilemma mentioned in the Introduction: accurate simulations 

of diffusion NMR experiments require thousands of points in each spatial dimension. Even with sparse 

matrix arithmetic, three-dimensional samples with complicated spin systems and chemical processes 

are beyond modern computers unless Kronecker products are left un-opened in equation (173). The 

minimum grid satisfying the Nyquist condition for spatial frequencies in Figure 2 has 1,280 points; 

Fourier spectral derivative operators become accurate from that size onwards. However, the wall 

clock time is actually much longer with a 2,000-point Fourier differentiation operator than with a 

10,000-point finite difference operator because Fourier operators are not sparse. 

The same accuracy analysis may be viewed from a different perspective: as the maximum accumulated 

gradient winding that a given spatial grid can support. This is illustrated in Figure 3, which shows a 

comparison between signal attenuation observed in the simulation and the exact analytical solution 

as a function of the grid size and the differentiation stencil. 

 
Figure 22. Simulated Stejskal-Tanner diffusion attenuation profiles as a function of spatial grid size. The 1.5 cm long sample 
contains a single type of protons with a chemical shift of 4.6 ppm at 11.74 Tesla. The Stejskal-Tanner pulse sequence simula-
tion uses ideal radiofrequency pulses; perfectly rectangular gradients are assumed with no stabilisation delay. The duration 
of gradient pulses is δ=2 ms, and the duration of the diffusion delay is Δ=50 ms. The diffusion coefficient is 18×10–10 m2/s. Top 
row: diffusion attenuation profiles for spatial grids and finite difference stencils of different sizes (the minimal grid that sat-
isfies the spatial Nyquist condition in this system has 1280 points). Bottom row: difference between the simulated diffusion 
attenuation profiles and the exact analytical answer for grids and finite difference stencils of difference sizes. 

The simulation monotonically becomes more accurate as the grid point count increases. The practical 

conclusion again is that it is reasonable to use a seven-point stencil, to start from about twice the point 

count dictated by the Nyquist condition, and to increase the point count until the simulation result 

stops changing to the accuracy required. Similar conclusions were reached for other diffusion NMR 

pulse sequences: pulsed gradient spin echo [122], pulsed gradient stimulated echo [123], bipolar pulse 

pair stimulated echo [124] and DOSY ONESHOT[125]. 
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An important consideration is the type of the boundary condition. Fourier differentiation matrices 

require periodic boundaries, and finite difference operators for diffusion and flow all have a particu-

larly simple form in periodic boundary conditions. The logistics of implementing other types of bound-

aries in a general simulation package is formidable, and therefore only the periodic boundaries are 

supported in version 2.3 of Spinach. In practice this means that sufficient margin must be left on either 

side of the sample concentration phantom to prevent diffusion and flow processes from folding over. 

3.6 Numerical efficiency  

3.6.1 Computationally efficient time propagation  

 The methods listed in Section 2.5 can be applied a priori in order to decide which spin correlations 

would in practice contribute to the dynamics. However, when the equations of motion are integrated 

in the resulting matrix-vector representation, there are further efficiency opportunities – problem di-

mension may be squeezed further by looking at the actual trajectory. These “trajectory level” methods 

[62] (implemented in Spinach 2.3 and later [69]) include: 

1. Krylov subspace analysis: all simulation trajectories have finite duration and finite step 
length. The space spanned by the trajectory vectors is known as the Krylov subspace of 
the propagator matrix [126, 127]. The dimension of that subspace (i.e. the number of 
linearly independent vectors in its basis) can in favourable cases be orders of magnitude 
smaller than the full state space dimension [62]. The minimal basis can only be gener-
ated a posteriori, after the full simulation is run, but it can facilitate subsequent calcula-
tions with similar physical parameters, for example for nearby orientations in a powder 
average. 

2. Zero track elimination: if a particular state has remained unpopulated within a certain 
initial period in the system evolution, rigorous bounds can be placed on its subsequent 
contribution to the system dynamics [62]. States that remain unpopulated up to a user-
specified tolerance can be dropped, and subsequent steps in the simulation would pro-
ceed faster. The dropped states can be re-introduced with their original indices and zero 
amplitudes if the return to the original basis is required for the next simulation stage. 

3. Liouvillian path tracing: spin dynamics generators are always very sparse [128]. The cor-
responding connectivity graphs between spin states often contain disconnected sub-
graphs that correspond to non-interacting subspaces [66] induced by unobvious or ac-
cidental symmetries and conservation laws. They may be simulated separately. Tarjan’s 
graph partitioning algorithm [129] scales linearly with respect to the number of non-
zeroes in the generator, but the resulting block-diagonalization that provides cubic ben-
efit in complexity. 
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4. Destination state screening: detection states in magnetic resonance are very simple – 
typically some form of transverse magnetisation. It is therefore advantageous to per-
form a part of the simulation in reverse – by starting from the detection state, going 
backwards in time, and meeting the evolving initial condition in the middle. This is pos-
sible even with dissipative dynamics [67]. The reduced state space for a simulation is the 
intersection of the reduced state spaces obtained from forward and backward propaga-
tion – that intersection is usually smaller than either of its operands [61]. 

We will not touch upon the technical matters of implementing all of the above, noting only that this 

was done [69], are set out in the papers cited above. Fully quantum mechanical simulations of protein-

size spin systems became possible as a result [67]. 

3.6.2  Optimal time stepping 

Consider the task of propagating a state vector ( )0ρ  for a time 0T >  under a sparse and possibly 

dissipative time-independent evolution generator L  of dimension N , where the final state vector 

( )Tρ  is required with machine precision accuracy on both phases and amplitudes. The solution: 

 ( ) ( ) ( )exp 0T i T= −ρ L ρ   (183) 

has significant efficiency caveats in situations when 1i T− L  . In the treatment below, the follow-

ing common magnetic resonance settings shall be assumed: 

1. The dimension of L is too large for diagonalisation or inversion. This, and the presence 

of dissipative terms, rules out Padé, Chebyshev, and Newton exponentiation methods, 

even in hypothetical cases where they could be superior to the scaled and squared Taylor 

series. 

2. The cost of a matrix-matrix product is Nα  multiplications, where 3α ≤ . 

3. The cost of a matrix-vector product is N β  multiplications, where 2β ≤ . 

4. Taylor series procedure with scaling and squaring [130] is used to compute the matrix 

exponential; the scaling is done using Hager’s estimate [116] of the 1-norm. 

With these settings in place, Equation (183) transforms into: 

 ( ) ( ) ( ) ( )2
2 1

exp 0 ,           2 ,           ceil log
n

nT i t t T n T = − ∆ ∆ = =    ρ L ρ L   (184) 

where n  is the number of propagator squaring operations that is dictated by the numerical accuracy 

condition for the Taylor series – that all eigenvalues of i t− ∆L  be scaled into the unit circle to make 
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sure that there is no hump [130]. Estimates of the largest eigenvalue are expensive, but the more 

easily estimated 1-norm [116] is an upper bound. 

The optimisation problem is then created by the following: 

1. A matrix-vector product is cheaper than a matrix-matrix product. Some of the exponen-

tials in Equation (184) may be sequentially multiplied into ( )0ρ  rather than squared. 

2. Propagator squaring increases the time step exponentially, whereas propagator-vector 

product only takes the system forward at a rate that is linear with respect to the number 

of matrix-vector products. 

An optimal point must therefore exist between the number of propagator squaring operations and 

the number of propagator-vector products; the cost functional is the total number of multiplications. 

The cost of 1-norm estimation and scaling is 5N β  multiplications [116]. The cost of computing the 

Taylor series indexed by j  and involving a matrix with eigenvalues scaled inside the unit circle is de-

termined by the upper bound on the magnitude of the last term, which is 1 !j , meaning that 

 ( ){ }1
max ceil 1 1j ε−= Γ −   (185) 

where ( )xΓ  is Euler's gamma function and max 18j ≈  for double precision arithmetic. The number of 

matrix-matrix products in the Taylor series procedure is therefore maxj  and the total cost of compu-

ting the Taylor series is maxj Nα  multiplications. The cost of squaring the propagator to compensate 

for the scaling of i t− ∆L  is nNα  multiplications. 

If we decide not to do m  propagator squaring operations and multiply the propagator into the state 

vector 2m  times instead, the total cost will be: 

 ( ) [ ]max 2 5mm j n m N N k Nα β βΩ = + − + +   (186) 

multiplications, where k  is the number of state vectors in ( )0ρ  – there may be several. The minimum 

of this function with respect to m  is: 

 [ ]( )max 22 0          log
ln 2

md Nj n m N N l m
dm k

α β
α β

− 
+ − + = ⇒ =  

 
  (187) 

It does not depend on the norm of the Liouvillian, the cost of its calculation, or machine precision. 

While α  and β  strongly depend on the sparsity of the matrix, their difference does not: 1α β− ≈ . 
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Imposing the non-negative integer constraint produces the optimal number of squaring operations to 

skip: 

 ( ){ }opt 2max 0 ceil log ln 2m N kα β− =     (188) 

where ceiling is preferred to the floor because sparse matrices fill up when multiplied, and each sub-

sequent propagator squaring will be more expensive than the previous one. Equation (188) is used in 

Spinach [69] whenever the explicit matrix representation of the evolution generator is available. 
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4 Fokker-Planck models of MRI 

4.1 Introduction 

This chapter describes the MRI simulation tools and examples that were implemented into Spinach as 

a part of this project. The reader is encouraged to look through the rather large body of source code 

in the imaging module of Spinach – most of it was written within this project. 

All previous MRI simulation packages appear to be based on Bloch equations [2] or Bloch-Torrey equa-

tions [1]. Many magnetic resonance imaging simulators are very well developed [49, 52, 131, 132], 

but still insufficient because they cannot handle coupled spin systems. On the NMR and EPR side, 

there is also a great variety of packages that, however, cannot handle the necessary spatial dynamics. 

The first quantum mechanics software package was called NMR-SCOPE [133]. It implemented product 

operator description coupled spin systems. It was followed by GAMMA [58] written in C++ program-

ming language. Many packages appeared afterwards, such as SIMPOSN [134], BlochLib [134], 

SPINEVOLUTION [56], SIMPLTN [135], NMRSIM[136], SpinDynamica [137], and Spinach [69].  

I would argue that the implementation presented here is currently unique in combining sophisticated 

quantum mechanical description of the entirety of magnetic resonance with a sophisticated descrip-

tion of three-dimensional coherent and dissipative dynamics. 

4.2 MRI pulse sequence implementation 

This section goes through the algebraic side of Spinach MRI module code implemented during this 

project. The corresponding source code is extensively annotated and should be read alongside. We 

begin with Fokker-Planck equation: 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
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ρ r
L r ρ r M r ρ r F r ρ r

L r ρ r H r ρ r Rρ r Kρ r
  (189) 

where ( ), tρ r  is the spin density matrix at the spatial point r  at time t , ( ), tH r  is the spin Hamilto-

nian, square brackets denote a commutator, R  is the thermalized relaxation superoperator, K  is the 

chemical kinetics superoperator, and ( ), tM r  is the spatial dynamics generator dealing with diffusion 

and flow [81]. 
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In liquid state spatially encoded NMR spectroscopy and imaging simulations, the laboratory frame spin 

Hamiltonian in Equation (247) contains the terms describing chemical shifts, pulsed field gradients, 

radiofrequency pulses and J-couplings [26]: 
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where 0B  is the primary magnet field (assumed to be directed along the Z axis), g  is the primary 

magnet field gradient vector, nδ  are nuclear chemical shifts, nγ  are nuclear magnetogyric ratios, 

( ) ( ) ( ){ }X Y Z, ,n n nS S S  are nuclear spin operators, nkJ  are inter-nuclear scalar couplings (traditionally pub-

lished in Hz, hence the 2π  in front) and { }1 X,YB  are the Cartesian components of the radiofrequency 

magnetic field, which is assumed to have no Z component. 

The spatial dynamics generator in Equation (247) has contributions from diffusion and flow [81]: 

 ( ) ( ) ( ) ( )T T T, , , ,t t t t= ∇ ⋅ + ⋅∇ +∇ ⋅ ⋅∇M r v r v r D r   (191) 

where [ ]Tx y z∇ = ∂ ∂ ∂ ∂ ∂ ∂  is the gradient (in the mathematical sense) operator, ( ), tv r  is 

the flow velocity and ( ), tD r  is the translational diffusion tensor.  

On a finite grid, the Fokker-Planck spin Hamiltonian has a block structure, with a different spin Hamil-

tonian in each voxel block: 
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  (192) 

where N  is the total number of voxels. Spin Hamiltonian generation is handled by the existing mod-

ules of Spinach, and the spatial dynamics generators are obtained as described above, and the initial 

condition is concentration-weighted longitudinal magnetisation: 

 ( )
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To make a functioning imaging simulation, we must add spatially variable relaxation to the dynamics 

generator in equation (189). This is accomplished using a polyadic decomposition: 
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 ... ...k k
k

= + ⊗ +∑F Ph R   (194) 

Where F  is the total Fokker-Planck evolution generator from Equation (189), kR  are the relaxation 

superoperators responsible for the individual relaxation processes (longitudinal, transverse, etc.), and 

kPh  are the corresponding “phantoms” – three-dimensional cubes of data describing the amplitude 

of each particular relaxation mechanism at each voxel in the sample. 

From this point on, the generality of the Fokker-Planck formalism shows its power and the general 

solution to equation (189) is very simple: 

 ( ) ( ) ( )expt dt i t dt t+ = −  ρ F ρ   (195) 

4.2.1 Slice selection and echo detection 

The sequence intended to diagnose slice selection is shown in Figure 23 and the simulation parame-

ters shown in Table 5. It involves a shaped pulse under the slice selection gradient and then a 1D spin 

echo readout using frequency encoding.  

 

 

Figure 23. One dimensional slice selection MRI sequence followed by con-
ventional spin echo. 
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Table 5. Slice selection simulation parameters 

Isotope 1H 

Pulse steps 50 

Pulse time 0.05 ms 

Pulse frequency 100 kHz 

Gradient amplitude 6 mT/m 

Flow rate 10 mm/s 

Diffusion coefficients 5*10-6 m2/s 

 

It is a good illustration of the amount of programming and software engineering done within this pro-

ject to go though the corresponding sequence implementation line by line.  

We start by specifying the isotope: 

% Isotopes 
sys.isotopes={'1H'}; 
 
Then the applied magnet field in Tesla: 

% Magnetic induction 
sys.magnet=5.9; 
 
Liouville space formalism: 

% Formalism 
bas.formalism='sphten-liouv'; 
 
Complete basis set, since the system only contains one spin: 

% Basis set 
bas.approximation='none'; 
 
Spinach housekeeping functions: 

% Spinach housekeeping 
spin_system=create(sys,inter); 
spin_system=basis(spin_system,bas); 
 
Relaxation theory phantom – no relaxation: 

% Relaxation phantom 
parameters.rlx_ph={zeros(parameters.npts,1)}; 
parameters.rlx_op={relaxation(spin_system)}; 

 
Initial condition phantom – Lz everywhere: 

% Initial state phantom 
parameters.rho0_ph={ones(parameters.npts,1)}; 
parameters.rho0_st={state(spin_system,'Lz','1H','cheap')}; 
 

Detection state phantom – L+ everywhere: 

% Detection state phantoms 
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parameters.coil_ph={ones(parameters.npts,1)}; 
parameters.coil_st={state(spin_system,'L+','1H','cheap')}; 

 
X component of the velocity vector for each point in the sample: 

% Flow 
parameters.u=1e-2*ones(parameters.npts,1); 

 
Diffusion constant for each point in the sample: 

% Diffusion  
parameters.diff=5e-6; 
 
The previous parts are exactly the same for the Gaussian pulse and the square pulse. However, the 

‘Pulse parameters’ block is different between these two examples. Gaussian pulse parameters: 

% Pulse parameters 
pulse_nsteps=50; pulse_time=0.5e-4; 
pulse_frq=+100e3; pulse_pwr=2*pi*20000; 
parameters.rf_phi=pi/2; 
parameters.rf_frq_list=pulse_frq*ones(1,pulse_nsteps); 
parameters.rf_dur_list=(pulse_time/pulse_nsteps)*ones(1,pulse_nsteps); 
parameters.max_rank=3; 
parameters.rf_amp_list=pulse_pwr*pulse_shape('gaussian',pulse_nsteps); 
time_grid=linspace(-2,2,npoints); 
waveform=normpdf(time_grid)/sqrt(2); 
 
Square pulse parameters: 

% Pulse parameters 
pulse_nsteps=50; pulse_time=0.5e-4; 
pulse_frq=+100e3; pulse_pwr=2*pi*20000; 
parameters.rf_phi=pi/2; 
parameters.rf_frq_list=pulse_frq*ones(1,pulse_nsteps); 
parameters.rf_dur_list=(pulse_time/pulse_nsteps)*ones(1,pulse_nsteps); 
parameters.max_rank=3; 
parameters.rf_amp_list=pulse_pwr*pulse_shape('rectangular',pulse_nsteps); 
time_grid=linspace(-2,2,npoints); 
waveform=ones(1,npoints); 

 
Slice selection pulse syntax is the same in both cases:  

% Slice selection pulse 
parameters.rho0=shaped_pulse_af(spin_system,L+parameters.ss_grad_ampl*G{1},Lx,Ly,... 
                parameters.rho0,parameters.rf_frq_list,parameters.rf_amp_list,... 
                parameters.rf_dur_list,parameters.rf_phi,parameters.max_rank); 
 
 

We then move to the edge of the k-space:            

% Rephasing gradient 
parameters.rho0=evolution(spin_system,L-parameters.ss_grad_ampl*G{1},[],... 
                          parameters.rho0,sum(parameters.rf_dur_list)/2,1,'final'); 
 
and call the one dimensional basic hard imaging sequence for acquisition: 

% Call to hard imaging 
fid=basic_1d_hard(spin_system,parameters,H,R,K,G,F); 

 
The resulting fid is Fourier transformed and plotted: 

mri=real(fftshift(fft(ifftshift(fid)))); 
figure(); plot_1d(spin_system,mri,parameters); 
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Figure 24. One-dimensional slice selection illustration using slice selection diagnostics function. The left figure was obtained 
using a rectangular shaped pulse while the right figure used a Gaussian shaped pulse. The simulation includes soft radiofre-
quency pulse, a field gradient, as well as identical amounts of flow and diffusion. The flow rate was is 0.01 m/s and the 
diffusion coefficient equal to 5 mm2/s. The pulse sequence is illustrated in Figure 23.    

 

The resulting slice selection diagnostics outputs are shown in Figure 24. It is clear that the accuracy of 

the calculation is rather high on the chosen spatial grid – even the sinc wobbles from the square pulse 

are visible. Note that a great amount of mathematics is hidden in the functions being called, for ex-

ample shaped_pulse_af.m function. Those are the subject of other chapters of this thesis. 

 

4.2.2 Phase and frequency encoded imaging 

The simplest possible MRI pulse sequence for 3D imaging is shown in Figure 10. It involves repeated 

slice selection, followed by echo detection with frequency encoding. The code below walks through a 

simple MRI simulation for a three-dimensional brain phantom. Furthermore, the simulation parame-

ters are listed in Table 6. 

 

     

Figure 25. The left panel shows a volumetric plot of a 3D brain phantom with a distribution in spin density and relaxation 
rates. Applying three spatial gradients and an explicit soft pulse to excite an arbitrary slice through the 3D volume results in 
the figure presented in the middle panel. The resulting image (right panel) is then acquired in a standard way.  
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Specify the isotope: 

% Isotopes 
sys.isotopes={'1H'}; 
 
Specify the applied magnet field: 

% Magnetic induction 
sys.magnet=5.9; 
 
Specify longitudinal and transverse relaxation rates: 

% Relaxation model 

inter.relaxation={'t1_t2'}; 
inter.rlx_keep='diagonal'; 
inter.equilibrium='zero'; 
inter.r1_rates=30; 
inter.r2_rates=70; 
 
Liouville space formalism: 

% Basis set 
bas.formalism='sphten-liouv'; 
 
Single spin system, hence no approximations: 

bas.approximation='none'; 
 
Construct the spin system object: 

% Spinach housekeeping 
spin_system=create(sys,inter); 
spin_system=basis(spin_system,bas); 
 
Load the brain phantom  

% Phantoms 
[R1,R2]=rlx_t1_t2(spin_system); 
[R1_Ph,R2_Ph,PD_Ph,dims,npts]=phantoms('brain-lowres'); 
 

Specify the relaxation phantoms as per Equation (194): 

% Relaxation phantom 
parameters.rlx_op={R1,R2}; 
parameters.rlx_ph={R1_Ph,R2_Ph}; 
 
The initial condition phantom reflects the proton density distribution: 

% Initial state phantom 
parameters.rho0_ph={PD_Ph}; 
parameters.rho0_st={state(spin_system,'Lz','1H','cheap')}; 
 
Uniform L+ for the detection state: 

% Detection state phantoms 
parameters.coil_ph={ones(prod(parameters.npts,1))}; 
parameters.coil_st={state(spin_system,'L+','1H','cheap')}; 
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X, Y and Z components of the velocity vectors for each point in the sample: 

% Flow 
parameters.u=zeros(parameters.npts); 
parameters.v=zeros(parameters.npts); 
parameters.w=zeros(parameters.npts); 
 
Diffusion coefficient for situations when this parameter is the same in every voxel: 

% Diffusion  
parameters.diff=0; 
 
Slice selection pulse parameters: 

% Pulse phase 
parameters.rf_phi=pi/2; 
  
% Number of steps in the pulse 
pulse_nsteps=50; 
  
% Overall pulse duration 
pulse_time=2.0e-4; 
  
% Slice selection pulse frequency table 
parameters.rf_frq_list=-5e3*ones(1,pulse_nsteps); 
  
% Slice selection pulse amplitude table 
parameters.rf_amp_list=2*pi*7500*pulse_shape('gaussian',pulse_nsteps); 
  
% Slice selection pulse duration table 
parameters.rf_dur_list=(pulse_time/pulse_nsteps)*ones(1,pulse_nsteps); 
 
Imaging sequence parameters, including slice selection, phase encoding and readout gradients ampli-

tude and time required for echo: 

 % Imaging parameters 
parameters.image_size=[51 51]; 
parameters.ss_grad_amp=32.0e-3;  % T/m 
parameters.ss_grad_dur=1.0e-4; 
parameters.pe_grad_amp=25.0e-3;  % T/m 
parameters.pe_grad_dur=2.0e-4; 
parameters.ro_grad_amp=25.0e-3;  % T/m 
parameters.ro_grad_dur=3.0e-4; 
parameters.t_echo=20e-3; 

 
Slice selection, phase encoding and readout gradient vectors. The three gradients must be orthogonal: 

% Slice selection gradient vector  
parameters.gs_ampl=[1 1 1]/sqrt(3); 
  
% Phase encoding gradient vector  
parameters.gp_ampl=[1 -2 1]/sqrt(6); 
  
% Readout gradient vector  
parameters.gr_ampl=[1 0 -1]/sqrt(2); 
 

Draw the 3 dimensional phantom 

% Draw the phantom 
figure(); dims=zeros(1,6);  
dims([1 3 5])=-parameters.dims; 
dims([2,4,6])=+parameters.dims; 
volplot(R1_Ph.^(1/16),dims); 
title('phantom'); drawnow(); 
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Call the 3D imaging pulse sequence: 

% Select a slice 
mri=imaging(spin_system,@slice_phase_enc,parameters); 
 
We will now go through the code of that sequence. We start with the slice selection gradient operator 

and the corresponding pulse: 

% Gradient operator for slice selection 
Gs=(parameters.gs_ampl(1)*G{1}+parameters.gs_ampl(2)*G{2}+parameters.gs_ampl(3)*G{3}); 

 
% Apply the slice selection pulse 
parameters.rho0=shaped_pulse_af(spin_system,L,Hx,Hy,parameters.rho0,... 
                                parameters.rf_frq_list,parameters.rf_amp_list,... 
                                parameters.rf_dur_list,parameters.rf_phi,2,'expv'); 

 
The phase must be restored after the slice selection gradient: 

 % Rollback operator 
L=B-parameters.ss_grad_amp*Gs;                              
       
% Run the rollback gradient 
parameters.rho0=evolution(spin_system,L,[],parameters.rho0,... 
                          sum(parameters.rf_dur_list)/2,1,'final'); 
 
We proceed to run the evolution during the echo time: 

% Evolve for the echo time 
parameters.rho0=evolution(spin_system,B,[],parameters.rho0,parameters.t_echo,1,'final'); 
 
Apply a 180° hard pulse and then evolve under echo time: 

% Apply 180-degree pulse 
parameters.rho0=step(spin_system,Hy,parameters.rho0,pi); 
  
% Evolve for the echo time 
parameters.rho0=evolution(spin_system,B,[],parameters.rho0,parameters.t_echo,1,'final'); 

 
Now that slice selection is complete, we draw the slice for diagnostic purposes: 

 % Draw the slice 
mri_slice=fpl2phan(parameters.rho0,state(spin_system,'L+','1H','cheap'),parameters.npts); 
dims=zeros(1,6); dims([1 3 5])=-parameters.dims; dims([2,4,6])=+parameters.dims; 
figure(); volplot(abs(mri_slice),dims); title('after slice sel. and echo'); drawnow(); 
 
Specify the phase encoding and readout gradients operators: 

% Gradient operator for phase encoding 
Ge=parameters.gp_ampl(1)*G{1}+parameters.gp_ampl(2)*G{2}+parameters.gp_ampl(3)*G{3}; 
  
% Gradient operator for readout  
Gr=parameters.gr_ampl(1)*G{1}+parameters.gr_ampl(2)*G{2}+parameters.gr_ampl(3)*G{3}; 
 
Now go forward to spatial encoding which is defined as the signals are returned with a particular fre-

quency and phase and these are slotted into their respective locations 

% Preallocate the image 
fid=zeros(parameters.image_size); 
  
% Loop over frequencies 
parfor n=1:parameters.image_size(2) %#ok<*PFBNS> 
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    % Phase encoding gradient 
    rho=evolution(spin_system,B+pe_grad_amps(n)*Ge,[],parameters.rho0,... 
                  parameters.pe_grad_dur,1,'final'); 
        
    % Get the timing parameters 
    nsteps=parameters.image_size(1)-1; step_length=parameters.ro_grad_dur/nsteps; 
     
    % Run the pre-roll gradient 
    rho=evolution(spin_system,B-parameters.ro_grad_amp*Gr,[],rho,step_length/2,... 
                  nsteps,'final'); 
     
    % Detect under the readout gradient 
    fid(:,n)=evolution(spin_system,B+parameters.ro_grad_amp*Gr,... 
                       parameters.coil,rho,step_length,nsteps,'observable');    
  
end 

 
Applying an apodization function: 

% Apodization 
fid=apodization(fid,'sqsinbell-2d'); 
 
Applying the Fourier transform: 

% Fourier transform 
mri=real(fftshift(fft2(ifftshift(fid)))); 

 
Plotting the result: 

% Plotting 
figure(); mri_plot_2d(mri); title('recorded image'); 
 
 
 
 
 

Table 6. Phase and frequency encoding simulation parameters 

Isotope 1H 

Echo time 20 ms 

Slice selection gradient 32 mT/m 

Phase encoding gradient 25 mT/m 

Readout Gradient  30 mT/m 
 
 
 

This is a simulation of a 100 x 100 x 100 voxel phantom with a three-spin system treated at the Liouville 
space level. As a result of the work presented in this thesis, the calculation takes only a few minutes. 
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4.2.3 Fast spin echo imaging 

One of the important disadvantages in the imaging is the time required to collect the data. This time 

is at least in part due to the longitudinal relaxation that determines the time before the spin system 

can be excited again. Many researches tried to reduce the time of imaging [46], and the current record 

is about ten milliseconds [138]. 

The “fast spin echo” is a pulse sequence that has a shorter scan time in comparison with the conven-

tional pulse sequence, which uses a 90° pulse followed by a 180° rephasing pulse and provides only 

one echo per transient – filling in only one line in k-space. 

 

 

Figure 26. Fast spin echo pulse sequence with τ delay and number of echoes 
n. image sampling representing by phase encoding gradient in x axis and fre-
quency encoded in y axis. The picture assumes that slice selection is already 
done. 

 

In the fast spin echo pulse sequence, the excitation 90° pulse is followed by a 180° echo pulse train 

that provides multiple lines in the k-space – one for each echo. For as long as the T2 relaxation has not 

completely destroyed the signal, it is possible to apply additional 180° pulses and generate additional 

echoes. The amplitude of each subsequent echo is smaller due to the T2 decay. The role of the Gx 

gradient in Figure 26 is to move in the k-space in the direction perpendicular to the readout direction.  

Fast spin echo is nearly always preferred to conventional imaging in T2 weighted MRI because more 

information may be collected per unit time, leading to better sensitivity and / or resolution. Another 

feature is that the chain of echoes partially refocuses the J-couplings with the result that fat remains 

bright. Muscles do however appear darker because of the transverse relaxation acceleration by the 

paramagnetic iron in myoglobin [41]. 
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Figure 27. MRI image of a brain phantom simulated using 2D fast spin echo pulse 
sequence. The simulation contains phase encoding gradient with 4.8 mT/m am-
plitude and 1 ms duration for the outer edge of k-space. The readout gradient 
was of 5.3 mT/m amplitude and 2 ms duration. 

 

As a part of this project, the fast spin echo sequence was implemented into Spinach. An example image 

is shown in Figure 27 and the simulation parameters shown in Table 7. 

 

Table 7. Fast spin echo simulation parameters 

Isotope 1H 

Phase encoding gradient 4.8 mT/m 

Readout Gradient  5.3 mT/m 

Phase encoding gradient 
duration 

1 ms 

Readout Gradient dura-
tion 

2 ms 

 

 A walk through the implementation is given below: 

We start with assembling the background Liouvillian that contains spin Hamiltonian, diffusion and 

flow, relaxation, and chemical kinetics: 

% Assemble the background 
B=H+F+1i*R+1i*K; 
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Pulse operators are made next and kroneckered up into the Fokker-Planck space: 
  
% Make pulse operators 
Lp=operator(spin_system,'L+',parameters.spins{1}); 
Ly=kron(speye(prod(parameters.npts)),(Lp-Lp')/2i); 
 

The sequence starts with a 90-degree pulse 
  
% Apply 90-degree pulse 
rho=step(spin_system,Ly,parameters.rho0,pi/2); 
 

A burst of readout gradient moves us to the left edge of the k-space: 
  
% Move to left edge of k-space 
rho=step(spin_system,B+parameters.ro_grad_amp*G{2},... 
         rho,parameters.ro_grad_dur/2); 
 

Some housekeeping calculations are done: 
  
% Preallocate k-space image 
fid=zeros(parameters.image_size); 
  
% Phase encoding gradient amplitudes 
pe_grad_amps=linspace(-parameters.pe_grad_amp,... 
                       parameters.pe_grad_amp,... 
                       parameters.image_size(2)); 
 

The outer loop of the sequence begins: 
  
% Phase encoding loop 
for n=1:parameters.image_size(2) 
 

We apply a 180-degree pulse: 
     
    % 180-degree pulse 
    rho=step(spin_system,Ly,rho,pi); 
 

We move to the current line of the k-space 
     
    % Kick up the k-space 
    rho=step(spin_system,B+pe_grad_amps(n)*G{1},... 
             rho,parameters.pe_grad_dur); 
 

And read out that line using Krylov propagation (matrix dimensions are expected to be large): 
  
    % Get trajectory using Krylov propagation 
    timestep=parameters.ro_grad_dur/(parameters.image_size(1)-1); 
    rho_stack=krylov(spin_system,B+parameters.ro_grad_amp*G{2},... 
                     parameters.coil,rho,timestep,... 
                     parameters.image_size(1)-1,'trajectory'); 
    rho=rho_stack(:,end); fid(:,n)=(parameters.coil'*rho_stack)'; 
 

We then move to the original location in the k-space: 
     
    % Kick down the k-space 
    rho=step(spin_system,B-pe_grad_amps(n)*G{1},... 
             rho,parameters.pe_grad_dur); 
     
end 
 

Finally, apodization and Fourier transform are applied: 
  
% Apodization 
fid=apodization(fid,'sqsinbell-2d'); 
  
% Fourier transform 
mri=-real(fftshift(fft2(ifftshift(fid)),1)); 
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4.2.4 Echo planar imaging  

One of the earliest attempts at rapid acquisition was by Mansfield in 1977 [45]. He proposed the echo 

planar imaging technique (EPI), which can provide a 2D image in 30-100 ms. EPI pulse sequence con-

tains a 90° pulse followed by spatial encoding gradients that fill the k-space as shown in Figure 28 

[139]. 

 

Figure 28. (A) the echo planar pulse sequence which contains a 90° pulse with slice selection gradient followed by phase 
encoding and readout gradients to move in k-space upward to downward and left to right respectively. (B) the k-space path 
traced by frequency and phase encoding gradients. 

 

This pulse sequence was implemented in Spinach. The code of the corresponding example file is highly 

indicative of the decision making that went into the user-end syntax and the internal architecture of 

the MRI module, and therefore merits detailed discussion. Noting that the simulation parameters are 

shown in Table 8. 

 

Table 8. Echo planar simulation parameters 

Isotope 1H 

Phase encoding gradient 4.8 mT/m 

Readout Gradient  5.3 mT/m 

Phase encoding gradient 
duration 

1 ms 

Readout Gradient dura-
tion 

2 ms 
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The user-end syntax begins with isotope specification: 

% Isotopes 
sys.isotopes={'1H'}; 
 
We then specify the applied magnet field in Tesla: 

% Magnetic induction 
sys.magnet=5.9; 
 
Relaxation superoperator is specified with unit relaxation rates (the actual rates are in the phantom): 
 
% Relaxation model 
inter.relaxation={'t1_t2'}; 
inter.rlx_keep='diagonal'; 
inter.equilibrium='zero'; 
inter.r1_rates=1; 
inter.r2_rates=1; 
 
This is a single-spin simulation; no approximations are necessary: 

% Basis set 
bas.formalism='sphten-liouv'; 
bas.approximation='none'; 
 
Spinach housekeeping functions use the above information to create the spin system object: 

% Spinach housekeeping 
spin_system=create(sys,inter); 
spin_system=basis(spin_system,bas); 

 

The user then specifies pulse sequence parameters: 

% Sequence parameters 
parameters.spins={'1H'}; 
parameters.decouple={}; 
parameters.offset=0.0; 
parameters.image_size=[101 105]; 
parameters.ro_grad_amp=5.3e-3; % T/m 
parameters.pe_grad_amp=4.8e-3; % T/m 
parameters.grad_dur=2e-3; 

 
The relaxation superoperator is requested from Spinach: 

% Relaxation superoperators 
[R1Op,R2Op]=rlx_t1_t2(spin_system); 
 

The relaxation theory phantom (a standard 3D brain) is loaded from disk and a 2D slice is taken: 

% Phantom library call 
[R1Ph,R2Ph,PDPh,dims,npts]=phantoms('brain-medres'); 
R1Ph=R1Ph(:,:,50); R2Ph=R2Ph(:,:,50); PDPh=PDPh(:,:,50); 

 
Sample geometry is set to match the phantom: 

% Sample geometry 
parameters.dims=dims([1 2]); 
parameters.npts=npts([1 2]); 
parameters.deriv={'period',3}; 
 

Relaxation superoperator is built out of phantoms: 

% Relaxation phantoms 
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parameters.rlx_ph={R1Ph,R2Ph}; 
parameters.rlx_op={R1Op,R2Op}; 
 

The initial state is modulated with proton density; the detection state is assumed to be uniform: 

% Initial and detection state phantoms 
parameters.rho0_ph={PDPh}; 
parameters.rho0_st={state(spin_system,'Lz','1H','cheap')}; 
parameters.coil_ph={ones(parameters.npts)}; 
parameters.coil_st={state(spin_system,'L+','1H','cheap')}; 
 

Diffusion and flow rates are set: 

% Diffusion and flow 
parameters.u=zeros(parameters.npts); 
parameters.v=zeros(parameters.npts); 
parameters.diff=0; 
 

And finally the pulse sequence is called within the imaging context: 

% Run the simulation 
mri=imaging(spin_system,@epi,parameters); 

 
The output is shown in Figure 29.  

 

Figure 29. An illustration of the performance of the pulse sequence shown in Figure 28. The simulation contains a relaxation 
phantom (R1 and R2) and proton density phantom, and takes only a few seconds. 

 

The pulse sequence itself starts with a hard 90° pulse: 

% Apply 90-degree pulse 
parameters.rho0=step(spin_system,Ly,parameters.rho0,pi/2); 
 
A preliminary gradient moves the system to the bottom left corner of the k-space:    

% Preroll the gradients 
rho=evolution(spin_system,B-parameters.pe_grad_amp*G{1}... 
                           -parameters.ro_grad_amp*G{2},[],rho,... 
                            parameters.grad_dur/2,1,'final'); 
 
A hard 180° hard pulse  

% Apply 180-degree pulse 
parameters.rho0=step(spin_system,Hy,parameters.rho0,pi); 
 

Propagators are precomputed for efficiency 

recorded image

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

R1 phantom

20 40 60 80

10

20

30

40

50

60

70

80

90

100

R2 phantom

20 40 60 80

10

20

30

40

50

60

70

80

90

100



 

95 

 

% Precompute propagators 
P_ro_p=propagator(spin_system,B+parameters.ro_grad_amp*G{2},... 
                  parameters.grad_dur/(parameters.image_size(1)-1)); 
P_ro_m=propagator(spin_system,B-parameters.ro_grad_amp*G{2},... 
                  parameters.grad_dur/(parameters.image_size(1)-1)); 
P_pe_p=propagator(spin_system,B+parameters.pe_grad_amp*G{1},... 
                  parameters.grad_dur/(parameters.image_size(2)-1)); 

 
Finally, the echo planar readout loop is executed exactly as shown in the right panel of Figure 28: 

% Phase encoding loop 
for n=1:parameters.image_size(2) 
     
    % Determine readout gradient sign 
    ro_grad_sign=2*mod(n,2)-1; 
     
    % Readout loop 
    for k=1:parameters.image_size(1) 
         
        % Detect under readout gradient 
        if ro_grad_sign>0 
            fid(k,n)=parameters.coil'*rho; 
            rho=P_ro_p*rho; 
        else 
            rho=P_ro_m*rho; 
            fid(parameters.image_size(1)-k+1,n)=parameters.coil'*rho; 
        end 
         
    end 
     
    % Propagate under encoding gradient 
    rho=P_pe_p*rho; 
     
end 

 
The result is apodised, Fourier transformed and plotted (Figure 29). 
 

4.2.5 Diffusion weighted imaging 

In the one-dimensional diffusion equation for a concentration profile ( ),c x t , the scalar diffusion co-

efficient D  can in principle depend on the spatial location: 

 ( ) ( ) ( ),
,

c x t
D x c x t

t x x
∂ ∂ ∂

=
∂ ∂ ∂

  (196) 

The three-dimensional version of equation (196) features a symmetric 3x3 diffusion tensor, all six in-

dependent components of which can have their own coordinate dependence: 

 ( ) ( ) ( )T,
,

c t
c t

t
∂

 = ∇ ⋅ ⋅∇ ∂
r

D r r
 

  (197) 

In real biological tissue this is often the case: even if microscopic diffusion is isotropic, the tissue itself 

is highly structured at the macroscopic level. If there is any barrier along molecular random walk (like 

a cell membrane), the observed effective value of D  will be different from the free motion case, and  

molecular mobility may not be the same in all directions. 
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The subject of diffusion was introduced into magnetic resonance by Hann 1950. They demonstrated 

that NMR is made sensitive to diffusion by adding magnetic field gradients [121]. The line of the argu-

ment is approximately as follows. 

To understand equation above, we start with a particular normalised gradient shape ( )s ε , where 

0 1ε≤ ≤ . The total effect of that gradient can be expressed by its shape factor σ  : 

 ( )
1

0

 s dσ ε ε= ∫   (198) 

Two further shape gradient parameters are relevant: 

 ( ) ( )
1 1

2
2

0 0

1 1            S d S dλ ε ε κ ε ε
σ σ

= =∫ ∫   (199) 

where ( )S ε  is a cumulative integral of ( )s ε : 

 ( ) ( )
0

 S s d
ε

ε ε ε= ∫   (200) 

The Gradient Shape Functions and Calculated Values of Shape Parameters could be found in [140] 

The coherence pathway order can be written according to the gradients applied in the spin echo pulse 

sequence: 

 ( ) ( )
( )

( )

            0
0                     

      

ga t t
P t G t t

ga t t

γ δ
δ

γ δ

≤ ≤ 
 

= ≤ ≤ ∆ 
 − − ∆ ∆ ≤ ≤ ∆ + 

  (201) 

Where ( )P t  is the coherence order as a function of time and effectively representing the coherence 

transfer pathway,  ( )G t  is the linear gradient varying strength over time, g  is the gradient field 

strength and ( )a t  is the shape of the pulse covering the pulse length δ  : 

 ( ) ( )ta t s δ=   (202) 

Substitute equation (202) in equation (201) 
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 ( ) ( )
( )

[ ]( )

            0
0                     

      

t

t

gs t
P t G t t

gs t

δ

δ

γ δ
δ

γ δ−∆

 ≤ ≤
  = ≤ ≤ ∆ 
 
− ∆ ≤ ≤ ∆ +  

  (203) 

Return to equation (200), we can find: 

 [ ]( ) [ ]( )
[ ]( )

[ ]( ) [ ]( )
0

0 0 0 0

0 0

  = 

t t
t

t t t t t t t t

t

s dt s d
δ

δ δ δ δδ δ

−

− − − −=∫ ∫   (204) 

Now we can introduce the function that can describe the amount of dephasing per unit length: 

 ( ) ( ) ( )
0

t

q t P t G t dt= ∫   (205) 

Put equation (203) in equation (205): 

 ( )
( )

[ ]( )

                     0
                           

       

t

t

gS t
q t g t

g S t

δ

δ

γδ δ
γδ σ δ

γ σ δ−∆

 ≤ ≤  = ≤ ≤ ∆ 
  − − ∆ ≤ ≤ ∆ +   

  (206) 

The square of ( )q t  is important because the Einstein diffusion relation contains a square root:  

 ( )
( )

[ ]( ) [ ]( )

2 2 2 2

2 2 2 2 2

2 2 2 2 2

                                         0

                                               

+  2        

t

t t

g S t

q t g t

g S S t

δ

δ δ

γ δ δ

γ δ σ δ

γ δ σ σ δ−∆ −∆

 ≤ ≤
  = ≤ ≤ ∆ 
 

− ∆ ≤ ≤ ∆ +  

  (207) 

At this point we should introduce the previously defined shape parameter λ  and κ  to evaluate the 

integral of equations (206) and (207) over all pulse sequence 

 

[ ]( ) ( ) ( )

[ ]( ) ( ) ( )

0

0

0

0

0

0

0

2 2 2

0

  = 

  = 

t
t t t t

t

t
t t t t

t

S dt S d

S dt S d

δ δ

δ δ δ

δ δ

δ δ δ

δ δσλ

δ δσ κ

+
−

+
−

=

=

∫ ∫

∫ ∫
  (208) 

The integral over ( )q t  required to assess the effects of unidirectional translation translE   
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 ( ) ( ) ( )


( ) ( )transl
0 0   

ln  
t t t

E q t dt g g
δ

δ δ δ

γδ δσλ δ σ δσ δσλ γδσ
∆+

≤ ≤ ≤ ≤∆ ∆≤ ≤∆+

 
 = = + ∆ − + − = ∆
  

∫
 

  (209) 

where: 

 ( )transl exp z
o

E iv q t dt
δ∆+ 

=  
 

∫   (210) 

 where  zv is the velocity of the tr anslation along the z-axis. 

Similarly, the integral of ( )2q t  , to assess the effects of diffusion, is evaluated as:

 

( ) ( )

( ) ( ) ( )

( )

2
diff

0

2 2 2 2 2 2 2 2

0   

2 2 2 2

ln  

               = g 2

              = g 2
tt t

E q t dt
δ

δδ δ

γ δ δσ κ δ σ δσ δσ κ δσ λ

γ δ σ κ λ δ
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≤ ≤∆≤ ≤ ∆≤ ≤∆+

=

 
 × + ∆ − + + −
 
 
∆ + −  

∫



 

  (211) 

where: 

 ( )2
transl exp

o

E D q t dt
δ∆+ 

= − 
 

∫   (212) 

For rectangular shape gradient, the shape parameters are equal to: 

 
1 11,  ,  =
2 3

σ λ κ= =   (213) 

By substituting equation (213) in equation (211), the complete ST equation become: 

 

2 2 2g
3

D

diffE e
δγ δ  − ∆− 

 =   (214)  

In which diffE is the signal intensity. The resulting attenuation is: 

 ( ) ( )2 2 2
0 exp                / 3c c b D b Gγ δ δ= − ⋅ = ∆ −   (215) 

Where c  and 0c  are signal intensities in the presence and absence the diffusion respectively, D  is 

the apparent diffusion coefficient where γ  is the magnetogyric ratio, G  is gradient amplitude, δ  is 
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gradient duration and ∆  is the diffusion interval. The b  factor characterises the diffusion sensitivity 

of the sequence. 

 

 

Figure 30. Diffusion weighted imaging sequence based on the Stejskal-Tanner 
pulse sequence.G is the strength of the gradient, δ is the duration of the gradient 
field and Δ is time interval between the first and the second gradients.     

 

This technique forms the basis for most modern DWI pulse sequences. Its core consists of two strong 

gradient pulses of magnitude G and duration δ, separated by time interval Δ. Pure imaging sequences 

must have low b  values, ideally around 1 s/mm2, so that the diffusion effects are negligible. However, 

when the diffusion-sensitive gradient pair is inserted, b  value must be higher. 

Programming a diffusion-sensitive pulse sequence into Spinach essentially amounts to inserting diffu-

sion-sensitive gradient pairs into standard imaging sequences. An example appears below. The se-

quence starts with a hard 90° pulse: 

% Apply 90-degree pulse 
parameters.rho0=step(spin_system,Ly,parameters.rho0,pi/2); 
 
after which the diffusion gradient is applied  

% Apply diffusion gradient 
parameters.rho0=step(spin_system,B+parameters.diff_g_amp(1)*G{1}+... 
                     parameters.diff_g_amp(2)*G{2},parameters.rho0,... 
                     parameters.diff_g_dur); 

 
A hard 180° pulse is intended to refocus the spin evolution 

% Apply 180-degree pulse 
parameters.rho0=step(spin_system,Hy,parameters.rho0,pi); 
 

The second diffusion gradient is then applied 
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% Apply diffusion gradient 
parameters.rho0=step(spin_system,B+parameters.diff_g_amp(1)*G{1}+... 
                     parameters.diff_g_amp(2)*G{2},parameters.rho0,... 
                     parameters.diff_g_dur); 

 
The rest is a standard phase encoding + frequency encoding imaging sequence: 

% Get phase encoding gradient range 
pe_grad_amps=linspace(-parameters.pe_grad_amp,... 
                       parameters.pe_grad_amp,... 
                       parameters.image_size(2)); 
  
% Get phase encoding stack 
rho_stack=zeros(numel(parameters.rho0),parameters.image_size(2)); 
parfor n=1:parameters.image_size(2) %#ok<*PFBNS> 
    rho_stack(:,n)=step(spin_system,B+pe_grad_amps(n)*G{1},... 
                        parameters.rho0,parameters.pe_grad_dur); 
end 
        
% Run the pre-roll gradient 
rho_stack=step(spin_system,B-parameters.ro_grad_amp*G{2},... 
               rho_stack,parameters.ro_grad_dur/2); 
     
% Get the timing parameters 
nsteps=parameters.image_size(1)-1;  
step_length=parameters.ro_grad_dur/nsteps; 
  
% Detect under the readout gradient 
fid=evolution(spin_system,B+parameters.ro_grad_amp*G{2},parameters.coil,... 
              rho_stack,step_length,nsteps,'observable'); 
  
% Apodization 
fid=apodization(fid,'sqsinbell-2d'); 
  
% Fourier transform 
mri=real(fftshift(fft2(ifftshift(fid)))); 

 

In the special case of isotropic diffusion, the diffusion coefficient is a scalar – an example of such an 

imaging simulation appears in Figure 31 and the simulation parameters are shown in Table 9. 

Table 9. Diffusion weighted simulation parameters 

Isotope 1H 

Diffusion gradient  1 mT/m 

Diffusion gradient duration 0.1 ms 

Phase encoding gradient 3.8 mT/m 

Readout Gradient  4.3 mT/m 

Phase encoding gradient duration 1 ms 

Readout Gradient duration 2 ms 
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Figure 31. A two-dimensional diffusion weighted image.The isotropic dif-
fusion coefficient is set to 1·10-3 m2/s in the dark areas and to zero in the 
bright areas. The initial condition is a uniform spin density phantom. 

 

The non-uniform and anisotropic diffusion case is more complicated because a diffusion image would 

be a distribution of a tensor quantity. The anisotropy must therefore be somehow reduced to a scalar. 

The most common way of doing this is to use the “fractional anisotropy” (FA) measure, which is de-

fined in the following way: 

 
( ) ( ) ( )2 2 2

1 2 3

2 2 2
1 2 3

3 1
2 3

FA
λ λ λ λ λ λ

λ λ λ

− + − + −
=

+ +
  (216) 

where kλ  are the eigenvalues of the diffusion tensor and λ  is their average. The resulting measure 

is a scalar between zero and one. The zero value means the diffusion is isotropic and one means max-

imum possible second rank anisotropy. 

The measure shown in Equation (216), along with the corresponding pulse sequence, were imple-

mented into Spinach as a part of this project, but the corresponding code is too long to realistically 

appear in this thesis. It is simply a variation on the themes already explored above; the reader is en-

couraged to inspect the source code of the fractional_anisotropy_2d.m example supplied with Spin-

ach, and the code of the pulse sequence that it calls. 
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Figure 32.  A two dimensional fractional anisotropy diffusion imaging simulation. 
The calculation includes the full Liouville space of a two-spin system; the full di-
polar relaxation superoperator is obtained using Redfield theory; diffusion is han-
dled using the explicit finite difference diffusion operator within the Fokker-Plank 
equation for simultaneous spin and spatial dynamics.   

 

The example of a sophisticated calculation combining non-trivial spin dynamics with a complicated 

diffusion process is shown in Figure 32: the calculation involves a J-coupled two-spin system with the 

full dipolar relaxation superoperator. 

 

4.3 Quantum effects in MRI 

4.3.1 Localised NMR of complex molecules 

It is very important for many medical and industrial applications to be able to record an NMR spectrum 

at a particular location. For example, in central nervous system diagnostics, neurological disorders 

such as dementia, schizophrenia, and ischaemic processes can be detected early by the metabolite 

concentration abnormalities [141]. Localised NMR can report on neurotransmitters (glutamate, aspar-

tate and gamma-aminobutyric acid), bioenergetic metabolites (creatine, lactic acid), osmolytes, mol-

ecules involved with membrane synthesis, sugars, and other CNS metabolites present at millimolar 

concentrations [142]. This gives valuable insight into the nature of disease metabolism [143]. 
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Figure 33. A T2-weighted FSE normal brain image. A, localized proton spectrum use the PRESS sequence. B, Location of voxel 
used for localized proton spectra. Reproduced from [144]. 

 

From the simulation point of view, this is exactly the nightmare scenario discussed in the Introduction 

– a large spin state space kroneckered into three-dimensional spatial dynamics. Even conservative 

estimates for the resulting matrix dimensions are in the millions. However, the prize is tempting: mod-

ern localised NMR is severely limited by the lack of sophistication in the localised excitation tech-

niques, and any improvements must necessarily rely on simulations. 
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Figure 34. PRESS pulse sequence.The sequence consists of 90°-180°-180° pulses with three gradients in x,y and z directions. 
The crusher gradients are required to dephase any unwanted signals. Three rounds of gradients define three orthogonal 
planes and excite a cubic voxel.

 

Better results can be obtained from point resolved spectroscopy sequence (PRESS) sequence which 

does not excite the whole body and results in a high resolution MR spectrum. PRESS pulse sequence 

[145] is one of the methods that detect signal from a localized voxel. The sequence consists of three 

slice selection pulses (90°, 180°, 180°) with three gradients in x, y, z directions. Each RF pulse applied 

with different gradients (Gx, Gy, Gz). The first 90° pulse is applied to excite protons in z direction to 

xy-plane. Following 180° pulses applied in x and y directions depending on their gradient in that direc-

tion. The PRESS echo can be generated by the sample located in three plane crossing point. It is formed 

at time TE=TE1+TE2. Additionally, crusher gradients may be applied to dephase any unnecessary sig-

nals produced from 180° refocusing pulses. 

PRESS sequence was implemented in Spinach. In this section we show some examples of a PRESS sim-

ulation for an AB spin system. The simulation was performed on a phantom containing three sub-

stances A,B and C with different chemical shifts and J-couplings. Simulated free induction decays were 

generated for 100 points over an acquisition time of 25 ms and NMR spectra obtained by Fourier 

transform of the free induction decays. Again, Spinach syntax is highly indicative of the software engi-

neering that was done. It is presented below and the simulation parameters are shown Table 10.   
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Table 10. 1D PRESS simulation parameters 

Isotope 1H 

Pulse time 0.05 ms 

Pulse frequency [-1 0 1] kHz 

Slice selection gradient  30 mT/m 

Readout gradient 30 mT/m 

 

We specify a non-trivial spin system: 

% Isotopes 
sys.isotopes={'1H','1H','1H','1H','1H','1H'}; 

 
Specify the magnet in Tesla  
 
% Magnetic induction 
sys.magnet= 3.0; 
 
The chemical shift for each spin is specified in ppm  
 
% Chemical shifts 
inter.zeeman.scalar={-3,3,-2,2,-1,1}; 
 
Specify the J-coupling between protons  
 
% J coupling  
inter.coupling.scalar=cell(6); 
inter.coupling.scalar{1,2}=10; 
inter.coupling.scalar{3,4}=20; 
inter.coupling.scalar{5,6}=30; 

 
The system is composed of three independent spin pairs that mimic three different substances. A 

connectivity-adaptive basis set is chosen to make use of this fact automatically: 

% Basis set 
bas.formalism='sphten-liouv'; 
bas.approximation='IK-2'; 
bas.space_level=1; 
bas.connectivity='scalar_couplings'; 
 
Spinach housekeeping is called: 

% Spinach housekeeping 
spin_system=create(sys,inter); 
spin_system=basis(spin_system,bas); 
 
Imaging experiment parameters are specified: 

 % Sequence parameters 
parameters.spins={'1H'}; 
parameters.decouple={}; 
parameters.offset=0; 
parameters.sweep=500000; 
parameters.npoints=128; 
parameters.axis_units='kHz'; 
parameters.invert_axis=1; 
parameters.ss_grad_ampl=30e-3; 
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parameters.ro_grad_ampl=30e-3; 
 
Pulse parameters are specified: 
 
% Pulse parameters 
parameters.rf_phi=pi/2; 
parameters.rf_frq_list=-100e3;       % change this to scan through the sample 
parameters.rf_amp_list=2*pi*5000; 
parameters.rf_dur_list=0.5e-4; 
parameters.max_rank=3; 
 
Relaxation is set to zero everywhere: 

% Relaxation phantom 
parameters.rlx_ph={zeros(parameters.npts,1)}; 
parameters.rlx_op={relaxation(spin_system)}; 
 
The initial condition phantom has substance A on the left, substance B on the right, and substance C 

spread across the entire sample: 

% Initial state phantom 
parameters.rho0_ph={[zeros(10,1); ones(30,1); zeros(60,1)]; 
                    [zeros(60,1); ones(30,1); zeros(10,1)]; 
                    [ones(60,1);  ones(30,1); ones(10,1)]}; 
parameters.rho0_st={state(spin_system,{'Lz'},{1})+state(spin_system,{'Lz'},{2}); 
                    state(spin_system,{'Lz'},{3})+state(spin_system,{'Lz'},{4}); 
                    state(spin_system,{'Lz'},{5})+state(spin_system,{'Lz'},{6})}; 
 
The detection state is uniform across the sample: 

% Detection state phantoms 
parameters.coil_ph={ones(prod(parameters.npts,1))}; 
parameters.coil_st={state(spin_system,'L+','1H','cheap')}; 
 
No diffusion and no flow: 

% Flow 
parameters.u=zeros(parameters.npts); 
 
% Diffusion  
parameters.diff=0; 
 
Finally, the PRESS sequence is called via the imaging context function: 
 
% Run PRESS 1D 
parameters.sweep=1000; 
parameters.axis_units='ppm'; 
fid=imaging(spin_system,@press_1d,parameters); 
 
The pulse sequence itself is quite simple in one dimension. It applies a slice selection pulse: 
 
% Slice selection pulse 
parameters.rho0=shaped_pulse_af(spin_system,L+parameters.ss_grad_ampl*G{1},Lx,Ly,... 
                parameters.rho0,parameters.rf_frq_list,parameters.rf_amp_list,... 
                parameters.rf_dur_list,parameters.rf_phi,parameters.max_rank); 
 
then rephases the spins: 
  
% Rephasing gradient 
parameters.rho0=evolution(spin_system,L-parameters.ss_grad_ampl*G{1},[],... 
                          parameters.rho0,sum(parameters.rf_dur_list)/2,1,'final'); 
 
Then runs the standard acquisition function: 
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% Call to acquisition 
fid=acquire(spin_system,parameters,H+F,R,K); 
 

The output is shown in Figure 35 for three different slice selection frequencies. 

 

 

 

 
 

Figure 35.  Simulation of one-dimensional PRESS. Three chemical substances were used containing pairs of protons with J=10 
Hz, J=20 Hz, and J=30 Hz. The first row uses the spatial location that excites substances A and C. The second row shows the 
excitation of B and C. Finally the third row shows excitation of only C. 

 

The two-dimensional version of the PRESS pulse sequence and simulation parameters are very similar. 

The same spin system specification block is run, but the sequence and pulse parameters are richer 

because we now have two spatial dimensions: 

% Sequence parameters 
parameters.spins={'1H'}; 
parameters.decouple={}; 
parameters.offset=0; 
parameters.sweep=1000; 
parameters.axis_units='ppm'; 
parameters.npoints=128; 
parameters.invert_axis=1; 
parameters.ss_grad_ampl=[25e-3 25e-3]; 
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parameters.image_size=[101 105];     
parameters.sp_grad_amp=5e-3; % T/m 
parameters.sp_grad_dur=5e-4; 
  
% Pulse parameters 
parameters.rf_phi={pi/2 pi/2}; 
parameters.rf_frq_list={-120e3 -100e3};       % change this to scan through the sample 
parameters.rf_amp_list={2*pi*5000 2*pi*5000}; 
parameters.rf_dur_list={0.5e-4 1.0e-4}; 
parameters.max_rank={3 3}; 
  
% Sample geometry 
parameters.dims=[0.30 0.25]; 
parameters.npts=[108 90]; 
parameters.deriv={'period',3}; 

 
The initial condition phantom is now three spots for the tree chemicals at random locations: 

% Initial state phantom 
[X,Y]=ndgrid(1:parameters.npts(1),1:parameters.npts(2)); 
parameters.rho0_ph={(X-15).^2+(Y-15).^2<10^2; 
                    (X-30).^2+(Y-40).^2<10^2; 
                    (X-70).^2+(Y-80).^2<10^2};    
parameters.rho0_st={state(spin_system,{'Lz'},{1})+state(spin_system,{'Lz'},{2});                              
                    state(spin_system,{'Lz'},{3})+state(spin_system,{'Lz'},{4}); 
                    state(spin_system,{'Lz'},{5})+state(spin_system,{'Lz'},{6})}; 

 
 
The pulse sequence runs the first slice selection with a 90-degrees pulse:  
 
% Slice selection pulse 
rho=shaped_pulse_af(spin_system,L+parameters.ss_grad_ampl(1)*G{1},Lx,Ly,... 
                    rho,parameters.rf_frq_list{1},parameters.rf_amp_list{1},... 
                    parameters.rf_dur_list{1},parameters.rf_phi{1},... 
                    parameters.max_rank{1}); 

 
This necessitates a rephasing gradient:  
  
% Rephasing gradient 
rho=evolution(spin_system,L-parameters.ss_grad_ampl(1)*G{1},[],... 
              rho,sum(parameters.rf_dur_list{1})/2,1,'final'); 
 

A crusher gradient is then applied as per Figure 34: 

% Apply a crusher gradient                        
parameters.rho0=evolution(spin_system,L+parameters.sp_grad_amp*(G{1}+G{2}),[],... 
                          parameters.rho0,parameters.sp_grad_dur,1,'final'); 
 

The slice in the orthogonal direction is selected with a 180-degree pulse:                
                       
% Slice selection 180 degree pulse 
parameters.rho0=shaped_pulse_af(spin_system,L+parameters.ss_grad_ampl(2)*G{2},Lx,Ly,... 
                parameters.rho0,parameters.rf_frq_list{2},2*parameters.rf_amp_list{2},... 
                parameters.rf_dur_list{2},parameters.rf_phi{2},parameters.max_rank{2}); 
 

with another crusher: 

% Apply a crusher gradient                        
parameters.rho0=evolution(spin_system,L+parameters.sp_grad_amp*(G{1}+G{2}),[],... 
                          parameters.rho0,parameters.sp_grad_dur,1,'final');    
                

The resulting excited and un-dephased pixel is submitted for acquisition: 

% Acquisition 
fid=acquire(spin_system,parameters,H+F,R,K); 
 

The result is shown in Figure 36. 
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Figure 36. Simulation of two-dimensional PRESS. The three spots on the phantom correspond to three substances, each con-
taining a pair of protons with J=10 Hz, J=20 Hz, and J=30Hz. Three sets of vertical and horizontal excitation profile intersections 
are used to excite the three substances individually. 

 

It is instructive to consider the Fokker-Planck state space dimensions for the examples covered within 

this section. It is clear from Table 11 that such calculations were previously completely impossible. 

Table 11. Matrix dimension statistics for the imaging example files supplied with Spinach. 

Example file FP space dimension Wall clock time 

diff_weighted_2d.m 38880 Minutes  

fractional_anisotropy_2d.m 155520 Minutes 

singlet_imaging_1.m 180000 Minutes 

singlet_imaging_2.m 224000 days 
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4.3.2 Gradient-based selective suppression and excitation methods 

Local chemical information about human tissues is valuable in clinical diagnostics [146], but the cor-

responding NMR spectra are crowded and dominated by very intense peaks (mostly water and fat 

[147]). This makes localised NMR relatively insensitive to metabolites [148]. They have concentrations 

in the millimolar range that are hard to detect alongside much stronger signals. Water and fat sup-

pression is therefore necessary to obtain accurate quantification. The same applies to biological NMR 

spectroscopy where the residual water signal is also a problem [149]. 

Many techniques are used to supress strong signals [150]. Most of them, like chemical shift selective 

suppression (CHESS), use excitation pulses followed by dephasing gradients to reduce the water mag-

netization [151]. A particularly successful technique is Double Pulse Field Gradient Spin Echo (DPFGSE) 

pulse sequence [152]. The DPFGSE scheme consists of two selective 180° pulses, each one flanked by 

two gradients (G1-S-G1-G2-S-G2). By using different values for G1 and G2, only the selected reso-

nances will be refocused at the end of the echo whereas all other signals are defocused. The phase 

properties of the DPFGE scheme depend only on the inversion profile of the refocusing pulse, while 

the amplitude is scaled both by the inversion profile of the refocusing pulse and by the unavoidable 

losses due to relaxation during the spin echo[152]. 

 

 

Figure 37. DPFGSE pulse sequence. The gradients G1 and G2 are different in amplitude or du-
ration. The 180° shaped pulses are signal selection pulses. The rectangular shapes represent 
the hard pulses. 

 

As a spatio-temporal pulse sequence involving complicated spin systems, DPFGSE is an excellent ex-

ample of the functionality that was implemented in Spinach within this project. In this section we show 

DPFGSE-based selective excitation and selective suppression of signals of γ-aminobutyric acid, which 

is an important inhibitory neurotransmitter in the brain. Furthermore, Table 12 shows the simulation 

parameters for this example. Many brain disorders, such as depression, epilepsy, Alzheimer’s disease, 
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and schizophrenia could be early diagnosed by knowing the concentration of GABA [153]. Therefore, 

a method for in vivo assessment of GABA is useful for understanding the pathophysiology, diagnosis, 

and treatment of related disorders [154].  

 

Figure 38 Chemical structure of gamma-aminobutyric acid (GABA) 

 

Table 12. DPFGSE simulation parameters 

Isotope 1H 

Pulse time 10 ms 

Pulse frequency 750 Hz 

gradient  [1 1.5] mT/m 

Readout gradient 30 mT/m 

 

 

 

The specification for the GABA spin system is straightforward:  

% Isotopes 
sys.isotopes={'1H','1H','1H','1H','1H','1H'}; 
 
% Magnet (Tesla) 
sys.magnet=5.9; 
 
% Chemical shifts (ppm) 
inter.zeeman.scalar={3.00 3.00 1.88 1.88 2.28 2.28 4.80}; 
 
% J-couplings (Hz) 
inter.coupling.scalar{1,3}=7.36; 
inter.coupling.scalar{1,4}=7.36; 
inter.coupling.scalar{2,3}=7.36; 
inter.coupling.scalar{2,4}=7.36; 
inter.coupling.scalar{3,5}=7.58; 
inter.coupling.scalar{3,6}=7.58; 
inter.coupling.scalar{4,5}=7.58; 
inter.coupling.scalar{4,6}=7.58; 
inter.coupling.scalar{7,7}=0; 
 
A connectivity-adaptive basis set ensures that unimportant spin states are excluded: 

% Basis set 
bas.formalism='sphten-liouv'; 
bas.approximation='IK-2'; 
bas.space_level=1; 
bas.connectivity='scalar_couplings'; 

OH

O
H2N
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All of the above information is supplied to Spinach: 

% Spinach housekeeping 
spin_system=create(sys,inter); 
spin_system=basis(spin_system,bas); 
 
Imaging parameters including slice selection and readout gradients amplitudes are specified next: 

% Sequence parameters 
parameters.spins={'1H'}; 
parameters.decouple={}; 
parameters.offset=800; 
parameters.sweep=1200; 
parameters.npoints=512; 
parameters.zerofill=2048; 
parameters.axis_units='Hz'; 
parameters.invert_axis=1; 
parameters.g_amp=[1e-3 1.5e-3]; 
parameters.g_dur=1e-3; 
 
The shaped pulse in Figure 37 can be, for example, a Gaussian:   
 
% Signal selection 
pulse_nsteps=10; 
parameters.max_rank=2; 
parameters.rf_phi=0; 
parameters.rf_frq_list=750*ones(1,pulse_nsteps); 
parameters.rf_amp_list=2*pi*340*pulse_shape('gaussian',pulse_nsteps);      
parameters.rf_dur_list=(10e-3/pulse_nsteps)*ones(1,pulse_nsteps); 
 
Relaxation is set to zero, and all phantoms are uniform: 

% Relaxation phantom 
parameters.rlx_ph={zeros(parameters.npts,1)}; 
parameters.rlx_op={relaxation(spin_system)}; 
 
% Initial state phantom 
parameters.rho0_ph={ones(parameters.npts,1)}; 
parameters.rho0_st={state(spin_system,'Lz','1H')}; 
 
% Detection state phantoms 
parameters.coil_ph={ones(prod(parameters.npts,1))}; 
parameters.coil_st={state(spin_system,'L+','1H','cheap')}; 
 
There is no diffusion and no flow: 

% Flow 
parameters.u=zeros(parameters.npts); 
 
% Diffusion  
parameters.diff=0; 
 
Finally, the pulse sequence itself is called using the imaging context: 
 
% Run simulation 
fid=imaging(spin_system,@dpfgse_select,parameters); 
 
The pulse sequence itself is by now a fairly ordinary example of Spinach syntax. The walkthrough be-
low is given for DPFGSE signal selection. The suppression sequence only differs in the sign of one gra-
dient. We start with a hard 90° pulse: 
 
% Hard 90 on everything 
rho=step(spin_system,Ly,parameters.rho0,pi/2); 
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We proceed to dephase spins using positive gradient:  
  
% Gradient 
rho=step(spin_system,L+parameters.g_amp(1)*G{1},rho,parameters.g_dur); 

 
We then apply a shaped 180° pulse to rephase a specific signal: 

% Soft 180 on user-specified frequency 
rho=shaped_pulse_af(spin_system,L,Lx,Ly,rho,parameters.rf_frq_list-parameters.offset,... 
                    parameters.rf_amp_list,parameters.rf_dur_list,... 
                    parameters.rf_phi,parameters.max_rank,'expv'); 

 
Two gradients are then applied as per Figure 37:   

% Gradients 
rho=step(spin_system,L+parameters.g_amp(1)*G{1},rho,parameters.g_dur); 
rho=step(spin_system,L+parameters.g_amp(2)*G{1},rho,parameters.g_dur); 
 
A shaped 180° pulse is again used to rephase a specific signal: 

% Soft 180 on user-specified frequency 
rho=shaped_pulse_af(spin_system,L,Lx,Ly,rho,parameters.rf_frq_list-parameters.offset,... 
                    parameters.rf_amp_list,parameters.rf_dur_list,... 
                    parameters.rf_phi,parameters.max_rank,'expv'); 
 
The final gradient is applied:  

% Gradient 
rho=step(spin_system,L+parameters.g_amp(2)*G{1},rho,parameters.g_dur); 
 
and the signal is detected:  

% Run the evolution and watch the coil state 
fid=evolution(spin_system,L,parameters.coil,rho,... 
    1/parameters.sweep,parameters.npoints-1,'observable'); 
 

 

Figure 39. Water-GABA simulation spectrum.(Right): DPFGSE water suppression for GABA solution in water. 
The suppressed water signal was located at 1.2 kHz. (Left): DPFGSE signal selection, where only a specific 
frequency window is excited using the DPFGSE method. It has been shown in this figure that the use of 
DPFGSE in one-dimensional water-GABA simulation result in spectra of much high quality. Such high-quality 
spectra make it possible to measure very small GABA enhancements and also make it straightforward to 
measure.   
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4.3.3 Slice-selective M2S pulse sequence with diffusion and flow 

An emerging class of MRI experiments that essentially requires quantum mechanical treatment of spin 

processes is singlet state imaging [93, 155, 156]. One reason is the delicate interplay of symmetry, 

chemical shift anisotropy and dipolar coupling in the relaxation superoperator that makes the two-

spin singlet state long-lived. The other is the M2S and S2M pulse sequences that rely on the J-coupling 

to get the spin system in and out of the singlet state [157]. Accurate Liouville space description of the 

spin dynamics [158] is therefore essential. At the same time, recent proposals for using singlet states 

as a delivery vehicle for hyperpolarisation in MRI [93, 159] make it necessary to include diffusion and 

flow. The slice-selective singlet experiment is designed to extend the time scale in MRI and monitor 

slow motional process using singlet tagging [54]. 

M2S pulse sequence is the “magnetization to singlet” pulse sequence which is contains two blocks of 

180° pulses separated by time delay τ and 90° pulse at the beginning of the pulse sequence [155, 160]. 

It is built from spin echo blocks. 

 

 

Figure 40. M2S pulse sequence, where τ is the duration, m1 and m2 are the number of repetitions. 

 

M2S converts the magnetization into singlet when 2 Jω π∆  . For a pair of spins in a magnetic field, 

the basis is products of the Zeeman spin functions: 

 { }zB , , ,αα βα αβ ββ=   (217) 

In the case of two magnetically equivalent spins with the same Larmor frequency, the operator for the 

strong coupling can be diagonalised by choosing a different basis called singlet-triplet basis. It consists 

of the three triplet states: 

 ( )
1

0

1

1
2

T

T

T

αα

αβ βα

ββ

+

−

=

= +

=

  (218) 

And one singlet state: 
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 ( )0
1
2

S αβ βα= −   (219) 

Let us now understand what will happen to the singlet-triplet basis in that sequence. First, the Hamil-

tonian in the singlet-triplet basis is diagonal as shown below: 

 

3 0 0 0
2

10 0 0
2ˆ

10 0 0
2

10 0 0
2

J

J
H

J

J

π

ω π

π

ω π

 − 
 
 + 

=  
 
 
 
 − + 
 

  (220) 

Where J is the spin-spin coupling between the two coupled spin  

This may be represented using the following block structure: 

 

 

J-coupling only acts non-trivially on the central block. By isolating the singlet-triplet subspace 

{ }0 ,T S  and working only on this block, we obtain an object that behaves like a spin-1/2. For any 

pair of energy levels { }1 , 2  we can define the corresponding Pauli matrices as: 

 

( )

( )

( )
( )

12
x

12
y

12
z

12

1ˆ 1 2 2 1
2
1ˆ 1 2 2 1
2
1ˆ 1 1 2 2
2

ˆ 1 1 2 2

L

L
i

L

E

= +

= −

= +

= +

  (221) 

By using these formulas and considering the separated singlet-triplet block, we can define the ficti-

tious operators for the pseudospin: 
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( )
( )
( )

( )

12
x 0 0

12
y 0 0

12
z 0 0

12
0 0

1 ˆ ˆˆ ˆ ˆ
2
1 ˆ ˆˆ ˆ
2
1 ˆ ˆˆ ˆ ˆ
2

ˆ ˆˆ ˆ ˆ

L T S S T

L T S S T
i

L T T S S

E T T S S

= +

= −

= +

= +

  (222) 

The Hamiltonian can then be separated into: 

 0 1 -1T T Tˆ ˆ ˆSH H H= +   (223) 

Where 0STĤ  is the singlet-triplet Hamiltonian while 1 -1T TĤ  is the rest of the Hamiltonian. The first 

term of Equation (223) can be written as: 

 0 0 0 0ˆ ˆ ˆ ˆ
4

ST ST ST STJ
x J zH L L Eωω ω∆= + −   (224) 

Where: 

 
1 2

2J Jω π
ω ω ω∆

=
= −

   (225) 

 If we translate the singlet-triplet subspace { }0 ,T S  into a Bloch sphere: 

 

 

Figure 41. Bloch sphere representation of the singlet-triplet subspace. Pure and mixed states of the two-level system corre-
spond to points on the sphere. Incoherent mixtures of the basis states correspond to points along the Z axis. 
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The constituent operators of Equation (224) are infinitesimal rotations. The combined effect of the 

Hamiltonian in Equation (224) may be viewed as a rotation of 0ˆST
zL  around y  by angle 

( )Jarctan /θ ω ω= ∆  that we will denote ( )y
ˆ̂R θ . The role of 0

z
ˆSTL  is to increase the strength of the 

effective  field 2 2
e Jω ω ω= + ∆ . By putting that information into the 0ˆ STH , we can rewrite it as:  

 ( )0 0 0J
e y z

ˆˆ ˆ ˆ ˆ
4

ST ST STH R L Eωω θ= −   (226) 

We can now calculate the propagator for the free evolution: 

 ( ) ( ) ( )( )0 0 0
e y z

ˆˆ ˆ ˆ ˆexp expST ST STU i H i R Lτ τ τω θ= − = −   (227) 

This is a rotation parameterised in the angle-axis convention. When the two spins are nearly equiva-

lent ( )1θ  , this propagator has no effect on singlet order.  

A more effective way to implement the rotations on the singlet-triplet Bloch sphere is J-synchronised 

spin echoes that are used in M2S and S2M pulse sequences. If the echo delay is set to  

 e1 2τ ω=   (228) 

then for Jω ω∆ :  

 2 2
e J Jω ω ω ω∆= + =   (229) 

This connects the echo delay to the J-coupling:  

 
J

1 1
2 4 J

τ
ω π

= =   (230) 

It is convenient to pre-compute the π  pulse propagator: 

 
( ) ( )

1 0 0 1

x x

                                        T    T    S    T
0 0 0 1
0 1 0 0ˆ ˆexp
0 0 1 0
1 0 0 0

R i Lπ π

−

− 
 − = − =
 
 
− 

  (231) 
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As expected, the π  pulse has no effect on the singlet state 0S . It changes the sign of 0T  and also 

changes the sign and position of 1T  and 1T− . After looking at the Bloch sphere introduced above, we 

can rewrite the rotation operator as follows: 

 ( ) ( ) ( )0 1 1
x z x

ˆ ˆ ˆST T TR iR Rπ π π−= −   (232) 

Where 0
z

ˆ STR  is the rotation operator for singlet-triplet state along z-axis and 1 1
x

ˆT TR −  is the rotation 

operator of the triplet states along x-axis. Therefore, the full echo propagator is: 

 ( ) ( ) ( )0 1 1
echo echo

ˆ ˆ ˆ2 ST T TU U Uτ τ τ−=   (233) 

where: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 0 0 0 0 0 0 0 0
echo y z e y z y z e y

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆST ST ST ST ST ST ST ST ST STU iR R R R R R Rθ ω τ θ π θ ω τ θ= − − −   (234) 

Now let us analyse the full M2S sequence. We start with the thermal equilibrium population of zL̂ : 

 ( ) ( )z 1 1 1 1
ˆ ˆ ˆ ˆ ˆL T T T Tαα αα ββ ββ − −= − = −   (235) 

We start by applying a y90  pulse that converts longitudinal polarization into triplet-triplet coherence. 

Up to a constant multiplier, the system state becomes:  

 ( ) ( )x 1 1 0 0 1 1
ˆ ˆ ˆ ˆ ˆ ˆ ˆL T T T T T T− −= + + +   (236) 

After the first echo train, we have two options: 

1- If the number of echoes 1m  is even, the state will be: 

 1 1 0 0 1 1
ˆ ˆˆ ˆ ˆ ˆ

2
i T T S S T T− −
   + − +      (237) 

2- If the number of echoes 1m  is odd, the state will be:  

 1 1 0 0 1 1
ˆ ˆˆ ˆ ˆ ˆ

2
i T T S S T T− −
   + + +      (238) 

By a historical chance, 1m  is always chosen to be even. We can now apply the 90x
  pulse to convert 

T̂±  into 0̂T  and vice versa without affecting the singlet order: 
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 ( )
1 1 0

0 1 1

0 0

ˆ ˆ ˆ2

ˆ ˆ ˆ
2

ˆ ˆ

T T i T

iT T T

S S

−

−

+ → −

−
→ +

→

  (239) 

Up to a constant, our state will become: 

 0

1 1 0 0 1 1 0 0 x
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ          2 STT T S S T T T S S T L− −+ − + → + =              for even m   (240) 

 0

1 1 0 0 1 1 0 0 x
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ     2     STT T S S T T T S S T iL− −+ − + → − =           for odd m   (241) 

The result is a coherence between singlet and triplet state. After evolving it under the echo train prop-

agator  ( )Û τ  we would get: 

 0 0
x y

ˆ ˆ          ST STL L→   (242) 

Finally the second echo train of the M2S pulse sequence will accomplish a 90° rotation about the x-

axis of the { }0,S T  Bloch sphere:  

 ( )0 0
y z 0 0

1 ˆ ˆˆ ˆ ˆ ˆ          
2

ST STL L T T S S→ = −   (243) 

This state contains 0̂T , which has a lifetime of the order of 
1T , and  0Ŝ  which has a (hopefully) 

longer lifetime sT . The numerical equivalent of Equations (217)-(243) is fairly trivial, the challenge 

from the simulation point of view is to compute the outcome of an imaging experiment where the 

entire process is slice-selective. This means spatial degrees of freedom, gradients, and shaped pulses. 

Spinach implementation of the M2S sequence is literal and straightforward – just a sequence of calls 

to the step function that executes all the necessary pulses and other evolution events. The only dif-

ference that exists in the imaging context is that the initial excitation pulse should be slice-selective. 

         
        % M2S parameters 
        J=55; delta_v=6; 
        t=1/(4*sqrt(J^2+delta_v^2)); 
        m1=floor(pi*J/(2*delta_v)); 
        if mod(m1,2)~=0, m1=m1+1; end 
         
        % M2S sequence 
        for k=1:m1 
            rho=step(spin_system,H,rho,t); 
            rho=step(spin_system,Lx,rho,pi); 
            rho=step(spin_system,H,rho,t); 
        end 
        rho=step(spin_system,Lx,rho,pi/2); 
        rho=step(spin_system,H,rho,t); 
        for k=1:m1/2 
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            rho=step(spin_system,H,rho,t); 
            rho=step(spin_system,Lx,rho,pi); 
            rho=step(spin_system,H,rho,t); 
        end 
        rho_sing=-step(spin_system,H,rho,t); 
         

 

Spatial dynamics generators operate in the background – the entire mathematical infrastructure deal-

ing with them is transparent to the user. The outcome of a typical simulation is shown in Figure 43 – 

singlet state decays much slower when it is flow through an NMR tube. 

In this situation, the Fokker-Planck equation is clearly superior to the more traditional Liouville - von 

Neumann equation formalism because all spatial dynamics processes (diffusion, hydrodynamics, 

magic angle spinning, spatially selective pulses, etc.) are represented by constant matrices that are 

more convenient from the programming and numerical efficiency point of view than the time-depend-

ent Hamiltonians in the Liouville - von Neumann formalism [81]. 

This simulation is a particularly good example, because all of the complexities – shaped pulses, gradi-

ents, diffusion, flow, quantum mechanical spin evolution and complicated relaxation theory – are pre-

sent simultaneously: 

 ( ) ( ) ( ) ( )2
T z zt i t t D v t

t ϕω∂  = − + + + ∂
ρ L D D D ρ   (244) 

           N K z M K
NM zϕ ϕ

 ∂ ∂ = ⊗ ⊗ = ⊗ ⊗   ∂ ∂  
D 1 1 D 1 1   (245) 

Where L  the matrix representation of the spin Liouvillian, ϕD  is the matrix representation of the RF 

phase derivative operator, 2
zD  is matrix representation of the diffusion operator, zD  is the matrix 

representation of the flow operator, ( )tω  is the RF pulse frequency, TD  is the translational diffusion 

coefficient and v  is the flow velocity.  

An average over 100,000 Monte-Carlo instances had to be performed by the authors of the original 

paper, with only statistical guarantees of convergence [93]. The Fokker-Planck formalism performs the 

same simulation deterministically in a single run. This simulation is included with the standard exam-

ple set of Spinach library and the simulation parameters are shown in Table 13 

Table 13. Slice selective singlet state simulation parameters 

Isotope 1H 

Chemical shift  0.6 ppm 

J coupling  12 Hz 
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Pulse time 2 ms 

Pulse frequency [-20 20 0 10 -10] kHz 

gradient  [0.075 0.075] T/m 

 

Another interesting possibility is ultrafast singlet state relaxation measurement – an experiment 

where different slices of the sample have different amount of relaxation delay. One possible sequence 

in this class is shown below. 

 

 

Figure 42 A slice-selective equivalent of the M2S pulse sequence cast as a relaxation experiment 

 

 

We start with two protons at a distance with a J coupling: 

                       % Spin system and interactions 
                       sys.magnet=14.1; 
                       sys.isotopes={'1H','1H'}; 
                       inter.zeeman.scalar={-5e-4,5e-4}; 
                       inter.coupling.scalar=cell(2); 
                       inter.coupling.scalar{1,2}=12; 
                       inter.coordinates={[0.00 0.00 0.00]; 
                                          [2.43 0.00 0.00]}; 
 

Singlet state effects require accurate relaxation theory treatment: 

                       % Relaxation theory 
                       inter.relaxation={'redfield'}; 
                       inter.equilibrium='zero'; 
                       inter.rlx_keep='secular'; 
                       inter.tau_c={50e-12}; 
 

At two-spin system is too small to worry about restricted state spaces: 

                       % Basis set 
                       bas.formalism='sphten-liouv'; 
                       bas.approximation='none'; 
 

After specifying the spin system and setting the basis options, we create the spin system object and 

generate the basis set:  

                       % Spinach housekeeping 
                       spin_system=create(sys,inter); 
                       spin_system=basis(spin_system,bas); 
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The next stage is to specify simulation parameters: 

                       % Sample geometry 
                       parameters.spins={'1H'}; 
                       parameters.dims=0.02; 
                       parameters.npts=2000; 
                       parameters.deriv={'period',5}; 
 

Relaxation theory phantom contains relaxation superoperators in each voxel: 
                       % Relaxation phantom 
                       R=relaxation(spin_system); 
                       R=thermalize(spin_system,R,state(spin_system,'Lz','all')); 
                       parameters.rlx_ph={ones(parameters.npts,1)}; 
                       parameters.rlx_op={R}; 
 

The initial condition phantom reflects the fact that different voxels might start off in a different spin 
state. The detection state phantom reflects the fact that different voxels might be detected at differ-
ent angles and with different sensitivity. There is no flow, but diffusion is present: 
                       % Diffusion and flow 
                       parameters.u=zeros(parameters.npts,1); 
                       parameters.diff=1e-9; 
 

 Pulse sequence parameters contain all information that the sequence needs: 
% Pulse sequence parameters 
parameters.J=12.0; 
parameters.dv=0.6; 
parameters.pulse_nsteps=150; 
parameters.pulse_dur=2e-3; 
parameters.pulse_frq=[-2e4 -1e4 0e4 +1e4 +2e4]; 
parameters.rlx_time=10; 
parameters.fp_rank=3; 
parameters.offset=0; 

  
% Gradient amplitude 
parameters.grad_ampl=[0.075 0.075] ; % T/m 

 

The next thing is to call the imaging context function that generates the Hamiltonian, the relaxation 

superoperator, the kinetics superoperator, the Fokker-Planck spatial dynamics generator (including 

diffusion and flow), gradient operators, and passes all of that to the pulse sequence, which is supplied 

as a handle. 

                      % Simulation  
                      singlet_image=imaging(spin_system,@spen_singlet,parameters); 
 

The sequence itself treats all of those operators as given: 

function singlet_image=spen_singlet(spin_system,parameters,H,R,K,G,F) 
  
% Compute the M2S echo train time 
t=1/(4*sqrt(parameters.J^2+parameters.dv^2)); 
report(spin_system,['M2S echo train time: ' num2str(t) ' seconds']); 
  
% Get M2S echo train dimensions 
n_echoes=floor(pi*parameters.J/(2*parameters.dv));  
if mod(n_echoes,2)~=0, n_echoes=n_echoes+1; end 
report(spin_system,['M2S 1st echo train: ' num2str(n_echoes) ' pulses']); 
report(spin_system,['M2S 2nd echo train: ' num2str(n_echoes/2) ' pulses']); 
  
% Make sure the timing is sensible 
if t-3*parameters.pulse_dur/2<0 
    error('pulses are longer than M2S sequence permits.'); 
end 
  
% Assemble the background evolution generator 
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B=H+F+1i*R+1i*K; 
  
% Make pulse operators 
Lp=operator(spin_system,'L+',parameters.spins{1}); 
Ly=polyadic({{speye(prod(parameters.npts)),(Lp-Lp')/2i}}); 
Lx=polyadic({{speye(prod(parameters.npts)),(Lp+Lp')/2}}); 
  
% Build and normalize a 90-degree shaped sinc/hamming pulse 
rf_amp_list=pulse_shape('sinc3',parameters.pulse_nsteps).*hamming(parameters.pulse_nsteps)'; 
rf_amp_list=(pi/2)*rf_amp_list/(sum(rf_amp_list)*(parameters.pulse_dur/parame-
ters.pulse_nsteps)); 
rf_dur_list=(parameters.pulse_dur/parameters.pulse_nsteps)*ones(1,parameters.pulse_nsteps); 
  
% Get the initial condition 
rho=parameters.rho0; 
 

After all of these preliminaries, we run slice-selective M2S sequence in a loop with shifting slice fre-

quency and a fixed delay after each round: 

% Run the slice-selective M2S for each slice 
for n=1:numel(parameters.pulse_frq) 
  
    % Apply a 90-degree shaped Y pulse at a specific frequency under Gx 
    rho=shaped_pulse_af(spin_system,B+parameters.grad_ampl(1)*G{1},Lx,Ly,rho,... 
                        parameters.pulse_frq(n)*ones(1,parameters.pulse_nsteps),... 
                        rf_amp_list,rf_dur_list,pi/2,parameters.fp_rank,'expv'); 
     
    % Roll back the phase 
    rho=step(spin_system,B-parameters.grad_ampl(1)*G{1},rho,parameters.pulse_dur/2); 
    
    % Evolve the for an appropriate time 
    rho=step(spin_system,B,rho,t-3*parameters.pulse_dur/2); 
     
    % Apply a 180-degree shaped X pulse at a specific frequency under Gx 
    rho=shaped_pulse_af(spin_system,B+parameters.grad_ampl(2)*G{1},Lx,Ly,rho,... 
                        parameters.pulse_frq(n)*ones(1,parameters.pulse_nsteps),... 
                      2*rf_amp_list,rf_dur_list,0,parameters.fp_rank,'expv'); 
                   
    % Evolve the rest of the time 
    rho=step(spin_system,B,rho,t-parameters.pulse_dur/2); 
     
 
    % Run the first echo train 
    for k=1:(n_echoes-2) 
         
        % Let the system evolve 
        rho=step(spin_system,B,rho,t-parameters.pulse_dur/2); 
         
        % Apply a 180-degree shaped X pulse at a specific frequency under Gx 
        rho=shaped_pulse_af(spin_system,B+parameters.grad_ampl(2)*G{1},Lx,Ly,rho,... 
                            parameters.pulse_frq(n)*ones(1,parameters.pulse_nsteps),... 
                          2*rf_amp_list,rf_dur_list,0,parameters.fp_rank,'expv'); 
      
        % Let the system evolve 
        rho=step(spin_system,B,rho,t-parameters.pulse_dur/2); 
         
    end 
 
    % Let the system evolve 
    rho=step(spin_system,B,rho,t-parameters.pulse_dur/2); 
     
    % Apply a 180-degree shaped X pulse at a specific frequency under Gx 
    rho=shaped_pulse_af(spin_system,B+parameters.grad_ampl(2)*G{1},Lx,Ly,rho,... 
                        parameters.pulse_frq(n)*ones(1,parameters.pulse_nsteps),... 
                      2*rf_amp_list,rf_dur_list,0,parameters.fp_rank,'expv'); 
     
    % Evolve the for an appropriate time 
    rho=step(spin_system,B,rho,t-3*parameters.pulse_dur/2); 
     
    % Pre-roll the phase 
    rho=step(spin_system,B-parameters.grad_ampl(2)*G{1},rho,parameters.pulse_dur/2); 
     
    % Apply a 90-degree shaped X pulse at a specific frequency under Gx 
    rho=shaped_pulse_af(spin_system,B+parameters.grad_ampl(2)*G{1},Lx,Ly,rho,... 
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                        parameters.pulse_frq(n)*ones(1,parameters.pulse_nsteps),... 
                        rf_amp_list,rf_dur_list,0,parameters.fp_rank,'expv'); 
  
    % Evolve the for an appropriate time 
    rho=step(spin_system,B,rho,t-parameters.pulse_dur/2); 
 
    % Run the second echo train 
    for k=1:(n_echoes/2) 
         
        % Let the system evolve 
        rho=step(spin_system,B,rho,t-parameters.pulse_dur/2); 
         
        % Apply a 180-degree shaped X pulse at a specific frequency under Gx 
        rho=shaped_pulse_af(spin_system,B+parameters.grad_ampl(2)*G{1},Lx,Ly,rho,... 
                            parameters.pulse_frq(n)*ones(1,parameters.pulse_nsteps),... 
                          2*rf_amp_list,rf_dur_list,0,parameters.fp_rank,'expv'); 
      
        % Let the system evolve 
        rho=step(spin_system,B,rho,t-parameters.pulse_dur/2); 
         
    end 
 
    % Let the system evolve (relaxation period, assuming no coherent evolution) 
    rho=evolution(spin_system,F+1i*R,[],rho,parameters.rlx_time,1,'final'); 
  
end 
 
% Return the answer 
coil=singlet(spin_system,1,2); coil(1)=0; 
singlet_image=fpl2phan(rho,coil,[parameters.npts 1]); 
  
end 

Figure 43. A simulation of the outcome of five slice-selective M2S singlet state excitation sequences performed at equal time 
interval at different points along the length of a standard NMR sample tube. The sharp initial distribution of the singlet state 
amplitude (rightmost signal) is gradually broadened by diffusion (from right to left). The calculation was performed in Spinach 
1.9 and includes the full Liouville space of a two-spin system; the full dipolar relaxation superoperator is obtained using Red-
field theory; diffusion is handled using the explicit finite difference diffusion operator within the Fokker-Plank equation for 
simultaneous spin and spatial dynamics.   

 

The result is a pulse sequence that populates several slices with a singlet state. As the next slice is 

being converted into a singlet, the previous ones undergo relaxation, meaning that the pulse sequence 

is wasting no time – it is a discrete equivalent of an ultrafast relaxation measurement sequence. The 

continuous version is in the works at the Pileio lab.



 

125 

 

 

4.3.4 Bright fat effect in magnetic resonance imaging 

Many researchers looked at the best way to improve fat imaging [161]. The reason for bright fat in 

MRI is that the protons in lipids have slightly different chemical environments. The slightly different 

chemical shifts make the protons in lipid precess at slightly different frequencies. It should be noted 

that TE's of 60-80 ms are typically used to produce T2-weighed images in conventional spin-echo im-

aging. By choosing TE's in this range, the signal recorded from fat is actually lower due to J-coupling 

effects than it might have been should a shorter or longer TE have been chosen.  

In a sense, therefore, it might be said that fat on T2-weighted CSE imaging is abnormally dark, rather 

than the fat on FSE being abnormally bright. The point is bright fat effect is an essentially quantum 

mechanical effect that requires a multi-spin system to be present. It is therefore of interest as an 

application of the methods developed in this work. 

One way of preventing magnetisation loss from happening is to use a train of 180° pulses with a spac-

ing of 10 ms or less – which is enough to keep the spins collinear and thus to prevent the J-coupling 

evolution. In the early SE experiments by Hahn (1950) and Carr and Purcell (1954) [162] RF pulses were 

all applied along the same axis (usually x-direction).  In practice, this method resulted in measured T2 

values that were too short because of (1) cumulative phase errors from repetitive imperfect 180° 

pulses, and (2) B1 inhomogeneity effects that spread the magnetization out in a plane containing B1 

and Bo. In 1958 Meiboom and Gill [163] proposed that such pulse-related errors could be reduced if 

the 180°-pulses in a SE train were phase shifted 90° with respect to the initial 90° pulse.  In other 

words, if the 90°-pulse were applied along the x-axis, the 180°-pulses would be applied alternately 

along the ±y-axes.  This technique, subsequently known by the acronym CPMG (Carr-Purcell-

Meiboom-Gill), was extremely robust and is still employed on modern MR imagers when the SE tech-

nique is selected. It is the one of the techniques that is used to measure the relaxation times in liquid 

in the presence of diffusion. However, it was found later that CPMG pulse sequence is also useful to 

remove the effect of scalar coupling [164]. CPMG provided as 90° pulse followed by train of 180° pulses 

separated by uniform time intervalτ . 
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Figure 44. CPMG pulse sequence. The idea is to use RF pulses in the same direction and uniform delay between the π pulses 
spin flips to stop the build-up of phase accumulation for a given spin. The performance of the sequence is improved somewhat 
by changing the phase of the π  pulses relative to the initial π/2 excitation pulse. 

 

Figure 44 shows the details of CPMG pulse sequence. Recently, Uhrig [165] demonstrated that an 

optimized sequence of π pulses can increase the lifetime of coherence. After that, Warren et al. [166] 

showed the non-uniform time interval can improve fat signal. This technique is called Uhrig Dynamic 

decoupling (UDD). It is the same as CPMG in term of pulses but it’s different in that the intervals be-

tween pulses are not uniform. 

 

 

Figure 45. UDD pulse sequence. The key point in this pulse sequence is using non-uniform delay between π pulses and the 
timing can be calculated by Equation (246). The reason for that is recently found that unequal spacing can provide better 
refocusing than CPMG. 

 

It was observed that UDD technique can preserve electron spin coherence better than CPMG [167] 

followed that by a paper demonstrated that using Uhrig dynamic decoupling to single 43Ca+ trapped-

ion qubit can extend the coherence time of a single memory qubit [168]. However, more recent paper 

observed that CPMG can be better than UDD [169] in relaxometry results using tissue-mimicking gel 

phantoms. This is an interesting contradiction that we can try to resolve by high-fidelity simulations.  

More recently, Warren et al. observed that the uniform time is not ideal for this kind of refocusing 

and the best timing for nπ  pulses that the UDD spacing performs better when the thj  pulse should 

be located at time[166]: 

 ( )( ){ }2sin / 2 2 0.5j j nδ τ π= + −   (246) 

Warren demonstrated this fact experimentally by getting different T2-weighted contrast between 

UDD and CPMG in a live mouse tumour model.  
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I have therefore performed within this project a fully quantum mechanical numerical simulation using 

the methods described above.  

 

 

 

Figure 46. Illustration of magnetisation loss into multiple-quantum coherences as a result of J-couplings being present. A spin 
echo imaging simulation was performed for a three-spin system with J = 11, 13, 17 Hz and chemical shifts of 1.0, 2.0, 3.0 ppm 
at 3.0 Tesla. Echo train length was 70 milliseconds, there were 32 inversion pulses in the train. Simulation results contradict 
literature claims that the UDD train is superior to CPMG.  

 

Our numerical results do not support this experimental observation – Figure 46 illustrates that CPMG 

echo train yields a stronger signal for a J-coupled system. This supports the counter-claims that exist 

in the literature about the relative merits of CPMG and UDD [169] in relaxometry. 
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5 Research paper: spatio-temporal NMR 

 

Published as L. Guduff, A.J. Allami, C. van Heijenoort, J.N. Dumez, I. Kuprov, “Efficient simulation of 

ultrafast magnetic resonance experiments”, Physical Chemistry Chemical Physics 19, 17577-17586 and 

reproduced here without changes. 

 

 

5.1  Introduction 

Spatial coordinates are more convenient in magnetic resonance than temporal ones – unlike the in-

delible past, any voxel in the 3
  can be accessed repeatedly. The use of spatial coordinates as re-

placements for temporal ones was the key idea behind the “ultrafast” NMR methods proposed in 2002 

by the Frydman group [34]. Those methods enabled the study of chemical [170] and biological [171, 

172] processes on the time scale that was not previously accessible to multi-dimensional NMR [173]. 

Applied to MRI, the same approach enabled fast localised acquisition of 2D spectra [174]. Another 

useful application of the same idea is the family of “pure-shift” NMR experiments [175], fine-tuned at 

Manchester University around 2010 [176] – they finally achieved the dream of eliminating homonu-

clear J-couplings. 

Spatial dimensions do have their problems though – the biggest one is the presence of uncontrolled 

dynamics (e.g. diffusion and convection) that is coupled to quantum mechanical evolution [177, 178]. 

Pulse sequence design must therefore rely on detailed modelling of simultaneous spatial, chemical 

and quantum dynamics, which would be wonderful if only the required theory and software existed: 

the usual Liouville - von Neumann equation is not good enough because there is no easy way to com-

bine diffusion and hydrodynamics [179] with quantum mechanical spin evolution. The primary nui-

sance is the J-coupling [161, 180] – it dephases transverse magnetisation and generates undesirable 

modulations in echo trains [161, 181]. 

Very complicated systems of precisely this kind are emerging all over magnetic resonance: hyperpo-

larised pyruvate imaging [182] requires simultaneous modelling of quantum spin dynamics, diffusion, 

hydrodynamics, chemical kinetics and spin relaxation theory; the same applies to hyperpolarised sin-

glet state imaging [159]. Pure-shift NMR [176], ultrafast NMR [183], metabolite-selective imaging 

[184], PARASHIFT contrast agents [185] and other similar recent developments are all united by their 
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theory and simulation infrastructure requirements that are a level above anything that is currently 

available. 

The methods currently used in MRI (Bloch-Torrey equations [53, 186], distributed Bloch equations 

[187, 188], k-space Bloch equations [189], etc.) are very well developed [190], but insufficient for ul-

trafast NMR or singlet state MRI because all of those methods are built around Bloch equations for 

the spin degrees of freedom; this makes accurate treatment of coupled multi-spin systems impossible. 

Some methods (split propagation [191], random-walk averaging [95], etc.) do treat spin dynamics at 

the density matrix level, but introduce diffusion externally in an approximate way [192]. 

To our knowledge, the only formalism that simultaneously supports diffusion, hydrodynamics, chem-

ical kinetics and Liouville-space spin dynamics in a general and computationally affordable way is the 

Fokker-Planck equation [193-195]. In this communication, we present the corresponding algebraic and 

numerical framework, and illustrate its performance by simulating (on the MRI side) a singlet state 

diffusion and flow imaging experiment, and (on the ultrafast NMR side) single-scan diffusion-ordered 

spectroscopy (DOSY) experiments that rely on spatial encoding of the diffusion dimension.  

 

5.2  Simulation formalism 

The key feature of ultrafast magnetic resonance experiments is the delicate interplay of spin and spa-

tial dynamics. In designing the simulation methods for spatially encoded pulse sequences we will 

therefore be using the Fokker-Planck formalism [193, 194] discussed in detail by Kuprov [81, 196] and 

recently implemented in Spinach [197]. Its fundamental equation of motion is: 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

,
, , , ,

, , , , , , ,

t
i t t t t

t
t t t t i t i t

∂
= − +

∂
= + +  

ρ r
L r ρ r M r ρ r

L r ρ r H r ρ r Rρ r Kρ r
  (247) 

where ( ), tρ r  is the spin density matrix at the spatial point r  at time t , ( ), tH r  is the spin Hamilto-

nian, square brackets denote a commutator, R  is the relaxation superoperator, K  is the chemical 

kinetics superoperator, and ( ), tM r  is the spatial dynamics generator dealing with diffusion and flow 

[81]. 
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5.2.1 Fokker-Planck formalism for MRI and spatially encoded NMR 

In liquid state spatially encoded NMR spectroscopy and imaging simulations, the laboratory frame spin 

Hamiltonian in Equation (247) contains the terms describing chemical shifts, pulsed field gradients, 

radiofrequency pulses and J-couplings [26]: 

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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 − + + + + 

∑ ∑

∑ ∑

H r g r S S

S S S S S S S
  (248) 

where 0B  is the primary magnet field (assumed to be directed along the Z axis), g  is the primary 

magnet field gradient vector, nδ  are nuclear chemical shifts, nγ  are nuclear magnetogyric ratios, 

( ) ( ) ( ){ }X Y Z, ,n n nS S S  are nuclear spin operators, nkJ  are inter-nuclear scalar couplings (traditionally pub-

lished in Hz, hence the 2π  in front) and { }1 X,YB  are the Cartesian components of the radiofrequency 

magnetic field, which is assumed to have no Z component. 

The spatial dynamics generator in Equation (247) has contributions from diffusion and flow [81]: 

 ( ) ( ) ( ) ( )T T T, , , ,t t t t= ∇ ⋅ + ⋅∇ +∇ ⋅ ⋅∇M r v r v r D r   (249) 

where [ ]Tx y z∇ = ∂ ∂ ∂ ∂ ∂ ∂  is the gradient (in the mathematical sense) operator, ( ), tv r  is 

the flow velocity and ( ), tD r  is the translational diffusion tensor. The latter rarely depends on time; 

the flow is also often stationary, meaning that the spatial dynamics generator in Equation (249) is 

time-independent and may be consigned to the background evolution operator – this is the primary 

advantage of the Fokker-Planck formalism over other simulation methods for the problem in question 

[81]. 

The use of the flow velocity in Equation (249) eliminates the thorny question of how to combine mag-

netic resonance simulations (where the equation of motion is linear) with hydrodynamics simulations 

(where it is not). Because spin degrees of freedom may be very accurately assumed to have no influ-

ence on the spatial motion, any hydrodynamics solver may simply be used first to obtain ( ), tv r  and 

put it into Equation (249). In that way, the equation of motion that we actually need to solve at the 

spin dynamics simulation stage – Equation (247) – stays linear with respect to the state vector ( ), tρ r

. 
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Another advantage of the FP method the context of spatially encoded NMR and MRI is that RF pulses 

at any frequency have time-independent generators. The matter is discussed in detail in Kuprov’s re-

cent review of the subject [81]; here we will only note that the Fokker-Planck RF pulse generator is 

the derivative with respect to the RF phase, which is simply added to the spatial dynamics operator in 

Equation (249): 

 RFω
ϕ
∂

= +
∂

M 
  (250) 

where RFω  is the angular frequency of the RF field and the phase ϕ  occurs in the transverse magnetic 

field terms of Equation (248): 

 1X 1 1Y 1cos ,           sinB B B Bϕ ϕ= =   (251) 

The derivative term in Equation (250) has a simple physical meaning – its exponential is moving the 

radiofrequency phase forward at the rate RFω : 

 ( ) ( )RF RFexp t f f tω ϕ ϕ ω
ϕ

 ∂
= + ∂ 

  (252) 

and so the RF term looks like a static "interaction" within the Fokker-Planck dynamics generator. 

Spin relaxation may be introduced in two different ways. The more general and computationally ex-

pensive method is to include the molecular rotation and the internal motion into the spatial dynamics 

generator ( ), tM r , and to treat the corresponding spatial coordinates explicitly – this is known as the 

Stochastic Liouville Equation (SLE) formalism [198, 199]. A somewhat less general, but also less com-

putationally demanding formulation is to treat the molecular dynamics that drives the relaxation per-

turbatively, as an external stochastic process that rattles operator coefficients in the spin Hamiltonian 

– this is called Bloch-Redfield-Wangsness (BRW) theory [22, 23, 200]. BRW relaxation superoperator 

is added algebraically to the spin Hamiltonian commutation superoperator. The use of SLE becomes 

necessary in EPR systems where the BRW approach breaks down [201]. That is not the case here, and 

we are therefore using BRW relaxation theory in this work – its complete derivation and the technical 

details of its numerical implementation are published elsewhere [68, 202]. 

With all of this in place, Equation (247) has a simple general solution: 

 ( ) ( ) ( ){ } ( ), exp , , ,t dt i t t dt t+ = − +  ρ r L r M r ρ r   (253) 

for which a great variety of numerical evaluation methods exist [203]. We are using Krylov propagation 

[204] for short events and shaped pulses, and scaling and squaring matrix exponential propagation 
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[130] for extended evolution periods. The primary technical problem is the generation of sufficiently 

small and accurate matrix representations for all operators involved [81, 205] – that is the subject of 

the next section. 

5.2.2 Numerical implementation  

The choice of the procedure for the generation of spin operators for Equation (248) depends on the 

size of the spin system. With fewer than ten spins, the standard Pauli matrix product method [26] is 

appropriate  

 { }
( )

{ }X,Y,Z X,Y,Z
k = ⊗ ⊗ ⊗ ⊗ ⊗S 1 1 σ 1    (254) 

where 1  is a unit matrix of the dimension equal to the multiplicity of the corresponding spin and 

{ }X,Y,Zσ  are Pauli matrices [206] that occur in the k-th position in the direct product. Larger spin sys-

tems are best handled with the restricted state space approximation [64]; technical details of the spin 

operator generation process in restricted state spaces are given in our recent paper [205]. 

The most straightforward practical way of generating matrix representations for spatial derivative op-

erators occurring in Equations (249) and (250) is to discretise the spatial coordinates on finite grids. 

For periodic boundary conditions, Fourier differentiation matrices on uniform grids [92] are conven-

ient: 

 
( ) ( )1

cot
2

0

n k

nk

n k
n k

N
x

n k

π+ − − 
≠∂   =    ∂   =

  (255) 

Their disadvantage is high memory requirements – Fourier differentiation matrices have very few ze-

roes. A less memory-hungry alternative that is also compatible with non-periodic boundaries and non-

uniform grids is finite-difference matrices, for which general formulas to arbitrary accuracy order and 

arbitrary point spacing have been derived by Fornberg [83]. For complicated diffusion and flow do-

main topologies, more sophisticated differential operator representations exist [207, 208] – they are 

not discussed here, but the salient point is that all of these approaches are well developed, highly 

automated and simply produce a matrix in the end. Here and below, we will assume rectangular do-

mains with periodic boundaries. 

Standard accuracy considerations apply to discrete representations of spatial dynamics operators: the 

Fourier differentiation method must have a minimum of two points per period of the fastest oscillation 

(this means gradient spirals in spatial dimensions), and the finite difference method must satisfy the 
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accuracy conditions formulated by Fornberg [83]. In practical calculations the number of points is in-

creased from the minimum specified by the Larmor condition until convergence is achieved in the 

output. 

Assuming N, M and K discretisation points in X, Y and Z respectively, the differentiation matrices are 

multiplied up into the three-dimensional space in the standard way, for example: 

 [ ]X M KN
x= ∂ ∂ ⊗ ⊗1 1D   (256) 

where [ ]N
x∂ ∂  is a matrix representation of the derivative operator on an N-point grid, and 1  are 

unit matrices of the indicated dimension. Similar expressions apply for derivatives along other dimen-

sions. 

The density matrix and the spin Hamiltonian are mapped into the Liouville space in the standard way 

[26]: 

 
( )

T    
    vec

→ ⊗ − ⊗

→

H 1 H H 1
ρ ρ

  (257) 

where 1  is the unit matrix of the same dimension as the Hamiltonian, vec  denotes the vectorisation 

operation – the columns of the matrix are placed sequentially one under the other to make a vector. 

After the spin operators and the space operators are obtained individually, they are projected into the 

Fokker-Planck space by the final round of direct products, in which it is convenient to place spatial 

coordinates first. Therefore, the general form of a purely space operator is ⊗A 1 , the general form 

of a purely spin operator is ⊗1 B , and for operators that connect spin and space degrees of freedom 

(such as pulsed field gradients) we have ⊗A B . 

The numerical solution process for Equation (253) either involves a sparse matrix exponential (the 

exponentiation method [26]) or repeated multiplication of a full vector by a sparse matrix (the Krylov 

propagation method [204]). Both operations map well on GPU cards manufactured by Intel and NVidia 

using standard functionality implemented in Matlab R2017a and later. It bears notice that the com-

plexity of the software implementation process is formidable and falls far beyond the scope of this 

paper; we would advise the reader to make use of the extensively annotated and documented open-

source Matlab code that is freely available as a part of Spinach [197]. 
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5.3 Spatially encoded diffusion spectroscopy applications 

5.3.1 Ultrafast DOSY pulse sequence simulation 

A good example of classical spatial dynamics coexisting with quantum spin dynamics in the same equa-

tion of motion is given by the ultrafast DOSY [209] pulse sequence (Figure 47). The sequence is derived 

from the conventional stimulated-echo DOSY, in which diffusion-encoding gradients (separated by a 

delay ∆  so that spatial motion can have is effect on the spin precession phase) are replaced by fre-

quency-swept chirp pulses applied under a gradient. Such chirp-and-gradient pairs are the defining 

feature of ultrafast NMR in general [183]. The other key ingredient in UF NMR is the use of a spectro-

scopic imaging acquisition block to acquire, in a single scan, both the direct dimension and the spatially 

encoded information. 

 

 
Figure 47: SPEN DOSY pulse sequencefor (A) the real experiment executed on the NMR instrument. Gradients a to c are used 
for coherence selection around the chirp pulses, f is a spoiler gradient, g1, g2 and g3 are balancing pulses for lock signal reten-
tion, and g4 is the prephasing gradient. Te, Tp and Ta are the duration of the encoding gradient, the post-chirp gradient and 
the acquisition gradient respectively. Ga is the amplitude of the acquisition gradient, Ge is the amplitude of the encoding 
gradient. Chirp pulses combined with gradients pulsed are framing the diffusion delay of the stimulated echo so that the 
signal attenuation due to spin displacement during the diffusion delay Δ is position-dependent. (B) Simulated experiment, in 
which straightforward coherence selection steps had been replaced by analytical coherence selection commands (indicated 
by red dots) to improve the numerical performance. (C) coherence selection diagram. 
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The principal advantage of the Fokker-Planck formalism here is that the diffusion operator is a part of 

the static background Hamiltonian. Another convenient feature is that gradient operators are pre-

sented to the user in the same algebraic style as spin operators – in Fokker-Planck space, they are 

matrices [81] that may either be added to the background Hamiltonian, or used with shaped pulse 

functions in the same way as spin operators. At the pulse sequence level, this makes simulation code 

neat and easy to write. Multi-spin systems with internal interactions are also straightforward – Spinach 

modifies the Hamiltonian and changes all matrix dimensions as appropriate [197]; pulse program code 

remains the same. 

Figure 48a shows the simulated free induction decay obtained for the SPEN DOSY pulse sequence. It 

is an echo train created by the train of gradient pulses during acquisition. In order to extract the dif-

fusion information, the data is rearranged in the k-t space (Figure 48b) and Fourier transformed along 

both dimensions (Figure 48c). The diffusion decay curve is then obtained as a slice of the 2D matrix. 

When the diffusion constant is set to zero, the spatial profile (dotted black curve in Figure 48d) reflects 

the smoothed chirp excitation profile. Otherwise (blue curve in Figure 48d), the decay induced by the 

diffusion is observable in the spatial profile. The plateau of the chirp pulse can then be used for diffu-

sion coefficient determination. 
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Figure 48: SPEN DOSY simulation using the Fokker-Planck formalism. The free induction decay (a) is a series of gradient echoes 
induced by the bipolar gradients. At the processing stage, it is rearranged into a matrix (b) with horizontal dimension corre-
sponding to the t2 evolution period, and vertical dimension to the k-space. (b). The spectrum (c) is obtained after Fourier 
transforms in both dimensions. The extracted diffusion profile (blue curve) and the reference signal recorded in the absence 
of diffusion (black dotted curve) are shown in (d). Physical dimensions of the sample are shown in the figure. Encoding gradi-
ents of 0.2535 T/m were applied with a chirp pulse of 110 kHz bandwidth and a duration of 1.5 ms. The post-chirp gradient 
had a duration of 1.6 ms. The acquisition was performed train of 256 bipolar gradients, where each gradient had an amplitude 
of 0.52 T/m, and a duration of 192 μs and 256 points. Diffusion constant was set to 8.10-10 m2/s (blue curve) or 0 (grey curve). 

5.3.2 Numerical accuracy and convergence 

The formalism outlined in Section 4.2 is exact with respect to spin dynamics: the only accuracy param-

eter is the time step in Equation (253), which must be sufficiently small. In the spatial dynamics part, 

the essential factors that influence simulation accuracy are the spatial Nyquist condition (all gradient 

spirals must be adequately digitised) and the accuracy of the finite difference approximation to the 

spatial dynamics operators, in this case diffusion. The Nyquist condition [120] is that the spatial dis-

cretisation grid must have at least two points per period of the fastest gradient spiral. 

As illustrated in the left panel of Figure 49 and in Table 14, once the Nyquist condition is satisfied, 

distortions disappear abruptly and excellent convergence is achieved shortly thereafter. The accuracy 

of the finite difference approximation is controlled by the grid point spacing and the formal accuracy 

order of the finite difference stencil [83]. The effect of the accuracy order is illustrated, and compared 

to the formally exact (when Nyquist condition is satisfied) Fourier differentiation operator in the right 
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panel of Figure 49. Fourier differentiation operators are very accurate, but computationally expensive 

because they are not sparse. 

Practical experience indicates that periodic boundary conditions (PBC) on spatial degrees of freedom 

are easier to implement and simulate than absorptive or reflective boundaries. Technically, the for-

malism above is not restricted to periodic boundaries (finite difference operators may be built to ac-

count for other boundary types), but the implementation process is time-consuming. The use of PBC 

adds another accuracy consideration: for non-periodic systems, sufficient white space should be al-

lowed on all sides of the simulation box to avoid self-interaction across the periodic boundary. 

 

 
Figure 49: Left panel: the effect of the spatial Nyquist condition on the numerical accuracy of a SPEN DOSY simulation with 
the same physical parameters as in Figure 48: the grids with 500 and 1000 points are sub-Nyquist and result in catastrophic 
loss of accuracy. Grids with 2000 points and more satisfy the Nyquist condition and produce accurate results. Right panel: the 
effect of the accuracy order of the finite difference approximation [83] to the diffusion superoperator. The Fourier differenti-
ation matrix (marked “exact”) is formally exact on a given grid, but has a significantly longer run time (36 minutes) compared 
to the much sparser finite difference matrix (less than 2 minutes). 

  



 

138 

 

 

Table 14 Convergence of the diffusion coefficient retro-fitted (using Stejskal-Tanner equation) to the simulated SPEN DOSY 
profile in the left panel of Figure 3 as a function of the number of points in the spatial grid. 500-point and 1000-point grids 
are below the Nyquist condition for the gradient spirals. Note the linear scaling of the simulation time. 

Grid points Fitted value of the diffusion 
coefficient, ×10–10 m2s–1 

Wall clock simulation 
time, seconds 

500 –0.07 11.6 

1000 1.10 17.6 

2000 7.83 33.2 

3000 7.97 52.2 

4000 7.98 70.0 

5000 7.98 90.3 
 

It is impossible to give a general analytical formula for the minimum number of points in the spatial 
grid – each pulse sequence would have its own minimal grid size. However, a convenient practical 
diagnostic criterion may still be formulated: the spatial Fourier transform of the Fokker-Planck state 
vector should not have any probability density at the high-frequency edge points at any time in the 
simulation. 

5.3.3 Experimental parameter optimisation 

High-fidelity numerical simulations of the SPEN DOSY pulse sequence provide useful insight into the 

effects of pulse sequence parameters and instrumental imperfections. An example is shown in Figure 

50– the exact shape of the chirp pulses in Figure 47 determines the spatial profile of the excitation 

region. Normalisation by the spatial profile obtained in the absence of diffusion makes it possible to 

retrieve a larger range of attenuations for the diffusion decay, as illustrated in Figure 50. This also 

accounts for deviations from an ideal plateau due to factors like the 1B  field inhomogeneity, which is 

easy to model by assigning different amplitudes and directions of the control operators in Equation 

(248) to different voxels. 
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Figure 50. Diffusion-weighted DOSY lineshape obtained under a linear gra-
dient with (red line) and without (blue line) reference profile (dotted black 
line) correction. A significant increase in the usable signal area is evident 
in the background-corrected signal. 

 

Figure 5 shows the effect of the amplitude of the acquisition gradient Ga. It is clear that a sub-optimal 

choice of Ga can generate a bias (in this case, an over-estimation is produced) in the calculated diffu-

sion constant because it yields an oscillating lineshape when decreased too much. The cause of the 

oscillation is signal truncation in k-space. This effect can be corrected when the reference profile is 

taken into account (Table 15) by dividing the diffusion profile by the reference profile computed with 

the diffusion coefficient set to zero. In our real experiments, Ga of 0.20 T/m is used; this confirms that 

it is necessary to correct the diffusion weighted image by a reference image with no diffusion present. 

Since it is impossible to switch the diffusion off in an actual experiment, the reference profile is ob-

tained by cutting the corresponding pulses and evolution periods out of the pulse sequence in Figure 

47. 
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Figure 51. The effect of gradient amplitude on the shape of the sample image in the absence of spatial 
diffusion (left) and with a typical diffusion constant of 8·10–10 m2/s (right). The oscillatory distortions, 
called Gibbs ringing, are due the truncation of the k-space signal. 

  

Table 15 The effect of the acquisition gradient amplitude on the extracted diffusion coefficient (true value of 8.0 ·10–10 m2/s) 
with and without k-space truncation artefact correction. 

Acquisition Gradient (T/m) D (raw) × 10–10 m2/s D (corrected) × 10–10 m2/s 

0.52  7.97 7.98 

0.26  7.97 7.98 

0.20  8.06 7.98 

0.13  8.18 7.97 

 

In order to extract diffusion coefficients from the experimental SPEN DOSY data, the gradient-induced 

attenuation in the signal ( )S z  is usually fitted using the modified Stejskal-Tanner equation [209]:  

 ( ) ( )2 e p
0 exp

2
T T

S z S DK z
 + 

= − ∆ −  
  

  (258) 

where D  is the diffusion coefficient, ∆  is the diffusion delay, eT  is the duration of the encoding 

gradient, pT  is the duration of the post-chirp gradient, and ( )K z  is the effective gradient area at 

position z : 

 ( ) ( )
e p

d z
K z G T

dz
ϕ

γ= +   (259) 
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where eG  is encoding gradient amplitude, γ  is the magnetogyric ratio for the nuclei in question, and 

the phase ( )zϕ  imparted by the chirp pulse is: 

 ( ) ( ) ( )
e 2 2

0 e RF RF
0

T

z G z t t dtϕ γ ω = Ω − −Ω + ∫   (260) 

where 0Ω  is the frequency offset of the NMR signal, ( )RF tΩ  is the time-dependent frequency of the 

RF sweep, ( )RF tω  is the time-dependent amplitude of the RF field.  

Numerical simulations are also useful in assessing the effect of chemical shift offsets on the errors in 

the fitting of Equation (258) to the experimental SPEN DOSY data. Chemical shifts cause two types of 

signal displacements. The displacement upon encoding is accounted for in Equation (260),but the 

chemical shift displacement during acquisition also has to be taken into account, as it may otherwise 

results in significant errors. Figure 52 shows the spatial diffusion profiles obtained for several values 

of the chemical shift offset, and Table 16 gives the corresponding fitted values of the diffusion coeffi-

cients, for corrected and uncorrected z  values in Equation (258), with 

 0
corr

a

z z
Gγ
Ω

= −   (261) 

 

 
Figure 52. Simulated diffusion profile displacement for three differ-
ent chemical shift offsets of the working signal from the resonance 
frequency. All other parameters as in Figures 3-5.  

For typical proton chemical shifts and gradient amplitudes of the same order as in Table 2, the chem-
ical shift offset error in the diffusion coefficient is of the order of 5%; the decision on whether this is 
significant rests with the user, but Equation (261) is in any case straightforward to apply. 
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Table 16. Diffusion coefficients extracted from raw 
and corrected DOSY profiles for different values of 
NMR signal offset from the resonance. 

Chemical shift 
(ppm) 

D (raw) 
 × 10–10 m2/s 

D (corrected) 
× 10–10 m2/s 

0 7.97 7.97 

5 7.73 7.97 

10 7.52 7.97 

5.4 Quantum mechanical processes 

An emerging class of MRI experiments that essentially requires quantum mechanical treatment of spin 

processes is singlet state imaging [95, 210, 211]. One reason is the delicate interplay of symmetry, 

chemical shift anisotropy and dipolar coupling in the relaxation superoperator that makes the two-

spin singlet state long-lived [157]. The other is the M2S and S2M pulse sequences that rely on the J-

coupling to get the spin system in and out of the singlet state [160]. Accurate Liouville space descrip-

tion of the spin dynamics [212] is therefore essential. At the same time, recent proposals for using 

singlet states as a delivery vehicle for hyperpolarisation in MRI [95, 210, 213] make it necessary to 

include diffusion and flow. 

In this situation, the Fokker-Planck equation is clearly superior to the more traditional Liouville - von 

Neumann equation formalism because all spatial dynamics processes (diffusion, hydrodynamics, 

magic angle spinning, spatially selective pulses, etc.) are represented by constant matrices that are 

more convenient from the programming and numerical efficiency point of view  than the time-de-

pendent Hamiltonians in the Liouville - von Neumann formalism [81]. 

 
Figure 53. Fokker-Planck theory simulation of a singlet state NMR imaging experiment in the presence 
of diffusion and flow. The simulation includes soft radiofrequency pulses with simultaneous explicit 
simulation of flow, diffusion, magnetic field gradients and spin-spin coupling dynamics as prescribed 
by the Liouville - von Neumann equation, as well as full Redfield relaxation superoperator treatment. 
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The flow rate is set to 5 cm/s and the diffusion coefficient to 3.6·10-6 m2/s. The singlet imaging se-
quence used is described in the recent paper from the Pileio group [95]. It is clear that the very slowly 
relaxing singlet state flow (left panels) can be tracked at longer distances than magnetisation flow 
(right panels). 

 

A simulation of the singlet state diffusion and flow experiment from Figure 2 of the recent paper by 

Pileio et al. [95] shown in Figure 53 is particularly good example, because all of the complexities – 

shaped pulses, gradients, diffusion, flow, quantum mechanical spin evolution and complicated relax-

ation theory – are present simultaneously. An average over 100,000 Monte-Carlo instances had to be 

performed by the authors of the original paper, with only statistical guarantees of convergence [95]; 

here we demonstrate that the Fokker-Planck formalism performs the same simulation deterministi-

cally in a single run. 

 
Figure 54: A simulated ultrafast DOSY spectrum for a two-proton spin system at 600 MHz with 
diffusion (8·10–10 m2/s), flow (0.1 mm/s), chemical shift difference (0.5 ppm), strong J-coupling 
(15 Hz), full Redfield DD-CSA relaxation superoperator (2.5 Angstrom, CSA eigenvalues [-10 -
10 20] ppm on both spins, with the tensor on spin 1 being collinear to the distance vector and 
the tensor on spin 2 being perpendicular to it, rotational correlation time 1.0 ns), and a non-
symmetric chemical exchange process between the two spins (k+=5 Hz, k–=10 Hz). The calcu-
lation was set up in ten minutes and took less than five minutes to run with 3000 discretisation 
points in the spatial grid. 

 

Figure 54 illustrates the same point – within the Fokker-Planck formalism, diffusion and imaging sim-

ulations for systems with multiple coupled spins can be carried out in exactly the same way as for 

uncoupled spins – Equation (247) supports arbitrary spin Hamiltonian commutation superoperators, 

arbitrary relaxation theories and a host of other processes, such as chemical kinetics. 

5.5 Conclusions and outlook 

It is demonstrated above that NMR and MRI experiments with elaborate spatial encoding and compli-

cated spatial dynamics are no longer hard to simulate, even in the presence of spin-spin couplings and 

exotic relaxation effects, such as singlet state symmetry lockout. Versions 1.10 and later of Spinach 
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library [197] support arbitrary stationary flows and arbitrary distributions of anisotropic diffusion ten-

sors in three dimensions simultaneously with Liouville-space description of spin dynamics, chemical 

kinetics and relaxation processes. The key simulation design decision that has made this possible is 

the abandonment of Bloch-Torrey [53, 186] and Liouville - von Neumann [26, 161] formalisms in fa-

vour of the Fokker-Planck equation [81]. The primary factors that have facilitated this transition are 

the dramatic recent improvement in the speed and capacity of digital computers, the emergence of 

transparent and convenient sparse matrix manipulation methods in numerical linear algebra [214], 

and the recent progress in matrix dimension reduction in magnetic resonance simulations [197, 205]. 

In the more distant perspective, high-fidelity simulations that are free of significant approximations 

are expected to play an increasing role in magnetic resonance experiment design and in subsequent 

data processing. As optimal control theory [215, 216] illustrates, the understanding of the detailed 

dynamics taking place in a particular experiment is increasingly hard to achieve; it is slowly being re-

placed by the understanding of the factors generating the dynamics. Mathematically, this corresponds 

to the well-known relationship between a Lie group – usually an exceedingly complicated object – and 

the Lie algebra of its generators, which is fundamentally easier to understand and interpret. For com-

plicated systems and processes, numerical simulation is the only practical way of connecting the two. 
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Conclusions and future work  

It was previously impossible to simulate magnetic resonance experiments involving complex mole-

cules and three-dimensional diffusion and flow MRI / NMR. Singlet state imaging, metabolite imaging, 

pure shift NMR, and ultrafast NMR all required quantum mechanical treatment of spin and classical 

description of spatial dynamics at the same level. This work puts such simulations within reach: Fok-

ker-Planck formalism can deal with quantum mechanical treatment of spin and classical treatment of 

spatial dynamics simultaneously. This formalism is particularly convenient because stationary spatial 

dynamics generators (diffusion, stationary flow, fixed frequency off-resonance pulses, etc.) are repre-

sented by constant matrices that are more efficient from the programming point of view than the 

time-dependent Hamiltonians in the Liouville - von Neumann formalism. 

This is a major improvement on the state of the art – the currently dominant Bloch-Torrey formalism 

cannot handle spin interactions, and the Liouville - von Neumann equation has difficulties with spatial 

dynamics. Fokker-Planck formalism is free of such limitations. This is demonstrated here using spatially 

encoded magnetic resonance spectroscopy of large spin systems distributed and moving in three spa-

tial dimensions. Such systems can now be simulated in reasonable time, and essentially without ap-

proximations. Singlet imaging is one example; it requires shaped pulses, gradients, diffusion, flow, 

quantum mechanical spin evolution and complicated relaxation theory simultaneously. Further exam-

ples include ultrafast [94], spatially encoded pure‐shift [176], and diffusion [217] NMR spectroscopy 

where spatial dynamics is inextricably linked to multi‐spin processes. 

The principal limitation of the formalism and the software presented in this work is the mismatch 

between the level of mathematical formalism that is used, and the level that is taught to the practi-

tioners of NMR and MRI. The core insights that have made this work possible come from Lie groups 

and from the theory of spectral methods for partial differential equations. The equations are simple 

once written, but they are not easy to derive. The greatest challenge would therefore be in finding 

simple explanations that would allow chemists to use their intuition in the same way as they use it 

with the Bloch sphere and the product operator formalism. 

The mathematics and the programming are now done, and the future work is mostly in the applica-

tions. The following general areas appear promising: 

1- Sophisticated multi-spin effects in MRI applications are expected to become popular in 

the near future [218-220]. Attempts at writing in-house simulation packages are being 

made every year, but this is the first time when the complexity of the task is such that the 

auteurs might be put off and start using Spinach. 



 

146 

 

2- Spatial encoding in NMR spectroscopy is becoming increasingly popular [221]. While ul-

trafast variants of NMR correlation experiments will always be a niche market because of 

their sweep width limitations, spatial encoding in pure shift and diffusion spectroscopy 

will become more and more popular [222]. Again, this work is the only general simulation 

infrastructure in existence. 

3- Studies of spatially distributed and MRI-detected kinetics of complex metabolites [223] 

will necessitate detailed theoretical modelling of the pulse sequences, as well as fitting of 

sophisticated models to the experimental data. In almost any scenario, the use of simula-

tion techniques will increase. 

4- Bringing the simulation infrastructure into physical units. Much of the current body of 

magnetic resonance simulation tools work in dimensionless units that may be hard to re-

late to the real world - for example, the unit part of the density operator is routinely ig-

nored and the magnetisation part is scaled. Moving to software packages that make no 

simplifying assumptions would benefit the field.   
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