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Abstract

Turbidity is an optical quality of water caused by suspended solids
that give the appearance of ‘cloudiness’. While turbidity itself does
not directly present a hazard to human health, it can be an indica-
tion of poor water quality and mask the presence of parasites such
as Cryptosporidium. It is, therefore, a recommendation of the World
Health Organisation (WHO) that turbidity should not exceed a level
of 1 Nephelometric Turbidity Unit (NTU) before chlorination. For a
drinking water supplier, turbidity peaks can be highly disruptive re-
quiring the temporary shutdown of a water treatment works. Such
events must be carefully managed to ensure continued supply; to re-
cover the supply deficit, water stores must be depleted or alternative
works utilised. Machine learning techniques have been shown to be
effective for the modelling of complex environmental systems, often
used to help shape environmental policy. We contribute to the litera-
ture by adopting such techniques for operational purposes, developing
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a decision support tool that predicts >1 NTU turbidity events up to
seven days in advance allowing water supply managers to make proac-
tive interventions. We apply a Generalised Linear Model (GLM) and a
Random Forest (RF) model for the prediction of >1 NTU events. AU-
ROC scores of over 0.80 at five of six sites suggest that machine learn-
ing techniques are suitable for predicting turbidity peaking events.
Furthermore, we find that the RF model can provide a modest per-
formance boost due to its stronger capacity to capture nonlinear in-
teractions in the data.
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1 Introduction

Turbidity can be defined as the “optical quality [of water| that causes light to
be scattered and absorbed rather than transmitted in straight lines through a
sample” [[I], p.200]. It can also be understood to be “the cloudiness of water
caused by suspended particles such as clay and silts, chemical precipitates
such as manganese and iron, and organic particles such as plant debris and
organisms” | 2], p.3].

While turbidity itself does not present a hazard to human health, it can
be an indication of poor water quality. Furthermore, high levels of turbid-
ity present during the treatment of raw water can limit the effectiveness of
filtration and chlorination processes designed to remove dangerous bacteria
and parasites such as Cryptosporidium [I]. It is therefore recommended by
the World Health Organisation (WHO) that turbidity should not exceed a
level of 1 Nephelometric Turbidity Unit (NTU) before chlorination [3].

Turbidity (NTU) levels can change slowly over time due to changes in
water catchments as part of an underlying trend, but it can also rapidly
peak over shorter periods, sometimes appearing random. Peaks in turbidity
are linked to environmental events such as heavy rainfall but can also be a
result of operational activities like pumping. The inherent solution features
at the site such as fissures within the aquifer can also lead to turbidity events
[2].

Peaks in turbidity (NTU) present a significant challenge to the operation
of a drinking water company. Turbidity is a naturally occurring a phenom-
ena and somewhat inevitable, however, for a drinking water supplier there
are many operational interventions which impact its ability to continue to



supply potable water. Depending on the treatment works, there may be
varying degrees of treatment activities used to reduce turbidity. Those most
resilient to turbidity will likely include a system of filters and settling tanks
that remove sediment before chlorination, but even so, these sites with more
complex processes will have a limited capacity before treatment must be sus-
pended for cleaning and maintenance. In response to short-term outages, a
water supplier may rely on storage reservoirs, alternative treatment works or
likely a combination of both. The challenge, however, is that turbidity peaks
can occur rapidly and therefore these mitigating activities must be actionable
immediately; storage reservoirs will need sufficient supplies, and alternative
sources will need to be able to meet the new additional requirement caused
by outages. Failure to do so will result in the company unable to meet its
demand, or, water entering supply that is not fit for consumption; either
instance would be damaging for a water supplier and its customers.

We propose a decision support system that provides drinking water sup-
pliers 7-days notice of a turbidity event, allowing time for remedial actions
to be prepared in advance of short term outages caused by turbidity peaking
events.

Our first objective is to explore the cause of daily turbidity (NTU) peaking
events by identifying candidate predictor variables which we test across each
of the six sites. We use this to confirm relevant variables from the literature,
but also further explore how operational features such as pumping activity
impact on turbidity levels at a treatment works. We apply a static correlation
analysis and a dynamic cross-correlation analysis which considers time lags
of some variables.

Our second objective is to assess the effectiveness of models from the
field of machine learning for the prediction of >1 NTU events. We use a
Generalised Linear Model (GLM) and a non-linear Random Forest (RF)
model to predict turbidity across the six treatment works. We use a linear
and non-linear model to assess the impact of any non-linearity that may
exist in the data; furthermore, they represent different aspects of the trade-off
between complexity and predictive capability [4]. We use the AUCROC score
to asses the performance of the models, models with a score of greater than
0.70 are considered satisfactory. The causation analysis is complemented
using the Variable Importance outputs from the GLM and the RF. We also
review the cut-off probability points for event classification.

To address the research problem, we first review how machine learning
has been applied to predict a range of other water quality parameters in the



literature, and, identify causal factors in turbidity peaking. We then the
illustrate the behaviour of turbidity peaking across the six sites and use the
static and dynamic correlation analysis to determine candidate variables for
the models. We consider the results in three parts: 1) the model performance
of the GLM and RF models are reviewed using the AUROC metric, 2) the
Variable Importance outputs of the models are examined to understand the
multivariate nature of turbidity prediction, complementing the earlier corre-
lation analysis and, 3) we then use a cost-based approach to define the cut-off
probability points for event classification for each of the sites. We conclude
by reflecting on the general findings for turbidity causation compared to that
of the literature and assess the viability of an operation turbidity prediction
model as a decision support system.

2 Background

Techniques from the field of Machine Learning have been applied to solve a
wide range of event prediction problems [5, 6] [7, [§]. In this section, we seek to
understand how statistical and machine learning tools and techniques have
been applied to understand and solve a variety of challenges surrounding
water quality. Some of the research is focused upon causal analysis while
other research attempts to predict and model systems to be tested under
different conditions, this, in turn, can be used to direct the management
policy of natural systems including lakes, rivers and dams. We note that
this differs from our research which is of the perspective of the operational
management of a drinking water supplier. We seek to understand how both
natural and operational features can be used in combination to predict future
turbidity events that can be implemented within a live operational system.
That said, there are many insights that we can draw from the field of hydro-
informatics that we exploit in our modelling.

Linear models have been used to predict water quality parameters which
have provided useful insights into the behaviour of a natural system, however,
have demonstrated relatively modest results. LeChevallier et al. [9], under-
took a comprehensive review of 66 water treatment plants across Canada and
the United States to understand the occurrence of Giardia and Cryptosporid-
ium organisms in the raw water supplies. A linear regression analysis was
applied to review which individual characteristics of raw water sources such
as turbidity levels, coliform levels, faecal coliform, temperature, pH and total



coliforms were influencing Giardia and Cryptosporidium levels in the source
waters. The linear regression on single variables showed a significant rela-
tionship between Turbidity and Total Coliforms for Giardia. A significant
relationship between Turbidity (NTU) and Cryptosporidium levels was also
present. The final multiple linear regression (MLR) models had corrected R?
scores of 0.491 and 0.468 for Giardia and Cryptosporidium respectively. In
this instance a linear model has demonstrated what seems relatively modest
results, we intend to use a GLM to confirm if a linear model can provide
us with an adequate decision support system, or if more advanced nonlinear
models can provide a superior result.

Other research has applied correlation analysis to identify if factors such
as land use can influence water quality parameters. Tong and Chen [10] un-
dertook a comprehensive study to look at how land use in conjunction with
hydrological factors could be used to explain the variance in many water
quality parameters. The study focused on surface water quality influenced by
surface ‘run-off” and determined that, depending on the land use, the runoff
may contain many different contaminants. The research considered five land
use types; Urban, Forrest, Agriculture, Barren Land and Water[body|. Us-
ing Spearman’s rank correlation analysis for watersheds in Ohio, the results
demonstrated that Faecal coliform levels have a strong positive correlation
with the commercial, residential, and agricultural land. Agricultural land-
use was strongly correlated with conductivity and PH. The residential and
commercial land was related to sodium, cadmium, lead, conductivity bio-
chemical oxygen demands (BOD) and zinc. These findings provide evidence
there can be significant differences between geographical areas, and since the
six sites included in our study are not co-located, it also suggests we will
require the development of separate models for our sites.

Random Forests (RF) have been shown to be suitable predictors for non-
linear data while providing useful insights. Read et al. [I1] sought to apply
RF models to understand how lake water quality across the US is affected
by both regional factors and lake specific drivers. The models attempted
to predict several water quality metrics including total phosphorus, total ni-
trogen, dissolved organic carbon, turbidity and conductivity. The inputs to
the model included eleven predictor variables in total, including regional,
basin and lake specific variables. Regional features included land type (for-
est/crops/agriculture), basin features included elevation and land coverage
(forest, conifer) and lake specific variables included maximum depth, sedi-
ment to volume ratio, latitude, longitude and elevation. The models pro-



duced what was considered promising results with the combined model of all
variables explaining 61%-66% of the variance. The model using a subset of
just the lake specific variables explained 54%-60% of the variance for four
of five of the predictions. The RF models were deemed to be successful by
Read et al. [11], not just for their predictive success, but also for the prac-
tical insights provided by examining the Variable Importance metric of the
models. Furthermore, the Random Forest models were considered robust to
the multi-collinearity and non-normal distributions of the predictor variables
and additionally effective for controlling overfitting.

Like Random Forests, Artificial Neural Networks (ANNs) have been shown
to be effective at predicting water quality parameters where the data is non-
linear, noisy and the statistical relationships between inputs and outputs are
not well understood. Muttil and Chau [12] applied an ANN model to predict
harmful algal blooms in Tolo Harbour, Hong Kong. The models used eight
input variables consisting of hydrogeological and weather factors including;
chlorophyll-a, Chl-a (pg/L), total inorganic nitrogen, TIN (mg/L); phospho-
rus, PO4 (mg/L); dissolved oxygen, DO (mg/L); secchi-disc depth, SD (m);
water temperature, Temp (°C); daily rainfall, Rain (mm); daily solar radia-
tion; SR (MJ/m?) and daily average wind speed; WS (m/s). The variables
were lagged seven days creating 63 input variables in total to capture the
dynamic element of algal blooms varying over time. A study of the variable
significance of both models suggested that chlorophyll-a, the measurement
of algal blooms itself, was sufficiently significant that it could be used to
model future events independently due to its autocorrelative nature. The
ANN model was considered suitable for predicting long-term trends of algal
blooms however the performance was relatively weak at short-term predic-
tion. The authors attributed the weakness in predicting short-term trends
to the fact only twice-weekly data was available. This research demonstrates
how more advanced analytical techniques were successful for prediction with
noisy and non-linear data. Furthermore, it demonstrates how the dynamic
nature of the data could be captured using lagged predictor variables, inter-
estingly including lags of the dependent variable which may also be relevant
for turbidity prediction.

In addition to algal bloom prediction, ANN models have also been used
to predict a broader array of water quality parameters. Najah et al.[13] de-
veloped six ANNs to predict three water quality parameters for the Johor
River and its tributary river. These parameters included electrical conduc-
tivity, dissolved solids and turbidity; however, this study does not consider
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turbidity peak prediction or the application of dynamic time-dependent vari-
ables. The ANN models could predict the water quality parameters to an
accuracy of 10% average mean percentage error (AMPE). Other studies such
as that by Elhatip and Kémiir [I4] have also found ANN models to be accu-
rate for water quality prediction. In their study, ANNs were used to predict
changes in electrical conductivity (EC) and dissolved oxygen (DO) with the
aim of creating a model for surface water management of the Mamasin dam in
Turkey. The models produced a Mean Average Percentage Error (MAPE)of
6.46% and 4.72% for EC and DO respectively. These two studies have shown
again that advanced non-linear techniques such as ANNs can be used to pre-
dict an array of water quality parameters. Both these studies, however, are
used to model a natural system, seeking to mimic these systems under dif-
ferent conditions and identify environmental management policies, they are
not decision support systems to be used as part of day-to-day operations for
a drinking water supplier as our study aims to.

The literature presented so far has only considered water quality param-
eters for surface water sources such as rivers, reservoirs and lakes. Further-
more, all have modelled water quality at a static snapshot in time or as an-
nual averages rather than as a time series, except for the research undertaken
by Muttil and Chau [I2]. The purpose of this paper is to model turbidity
(NTU) events seven days in advance to a daily frequency for groundwater
sources. The majority of the sites we model are located within a karst land-
scape whereby karst is defined as “distinctive landforms that develop on rock
types such as limestones, gypsum and halite that are readily dissolved by wa-
ter... typically characterised by a lack of permanent surface streams and
the presence of swallow holes and enclosed depressions” [[15, p.42].

Perhaps the most comprehensive time series study into turbidity (NTU)
within a karst aquifer was undertaken by Massei et al.[16]. The research
sought to investigate particle transportation using cross-correlation analy-
sis, spectral analysis and wavelet analysis for a spring source within a chalk
aquifer in the lower Seine Valley, France. They reflected on the behaviour
of turbidity (NTU) in the natural spring source highlighting that the system
behaves differently in the long-term and short-term. In the long-term, the
system behaves linearly as the aquifer is slowly infiltrated on mass through
the ‘karstic system’ with surface water. In the short-term, however, turbidity
(NTU) behaves ‘extremely’ non-linearly due to hydrogeological ‘quick-flow’
features in the aquifer such as sinkholes providing a fast route for turbidity
(NTU) to reach the source. The study considered three lagged input vari-
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ables in the analysis; rainfall, water level and conductivity and their ‘short-
term’ and ‘long-term’ memory effects on turbidity (NTU). The relationship
between these three variables and turbidity was found to be a complex one.
Rainfall had the greatest effect on turbidity in the short-term which is caused
by soil erosion and surface runoff entering ‘quick-flow’ features of the aquifer.
Rainfall was also shown to have some effect on water level and turbidity in
the longer term (up to 35 days), this was attributed to rainfall flooding the
karstic system and re-suspending particles. The wavelet analysis included the
deconstruction of water level into a long-term smoothed trend element cap-
turing a small amount of the variance and a short-term element capturing a
more substantial amount of the variation in water level. The longer-term wa-
ter level element had a smaller influence on turbidity but reflected the slower
rising and falling of turbidity levels as particles work through the karstic
system. The short-term/higher frequency element of water level had a clear
connection with the short-term fluctuations in turbidity (NTU) attributed to
surface water passing through quick-flow features. The study demonstrates
that the interactions between the rainfall, water level and turbidity are com-
plicated, the data is noisy, non-linear and time-dependent which we consider
for the build of a turbidity classification model.

3 Methodology

3.1 Data Description

Turbidity, the dependent variable, is obtained for each of the six sites from the
telemetry system of the water company. Turbidity (NTU) level is recorded
at least every 15 minutes using apparatus located at the water treatment
works, for this paper, only the daily maximum NTU level is required as it
always reveals whether turbidity has exceeded 1 NTU in each day. The record
for most sites extends back to at least 1 November 2007 up to the point of
extraction on to 15 September 2017. Therefore, there are 3606 days/data
points per site before the treatment of outliers and combination with other
data sets.

Groundwater levels have been shown to influence turbidity levels [16].
Like turbidity, the water company also records the water level in the bore-
hole sources a minimum of every 15 minutes. In this paper two sources of
level data are included in the analysis; 1) level in metres (m) at the source



and 2) level Metres Above Ordnance Datum (mAOD) at the company level
monitoring borehole at the centre of the company resource zone. Water
recorded at the source is measured ‘top-down’ whereby the measurement is
the distance between the water level and the borehole head pit. Since the
relationship with turbidity is most likely related to the lowest level of the wa-
ter in the borehole in each day, we use the daily maximum for local borehole
data representing the maximum air gap between the head pit and the water
level in each day. The water company also has a central monitoring borehole
specifically for recording level which has a long and consistent record. Unlike
the local level (m) data, level (mAOD) at the central monitoring borehole is
measured ‘bottom-up’ from sea level to the borehole water level; therefore,
we use the minimum water level (mAOD) instead. We use both the central
level (mAOD) and site-specific level (m) in the data exploration as candi-
date variables where we use the more significant of the two variables in the
modelling phase. For the two spring sites Site-D and Site-E, the central mon-
itoring borehole is local and therefore we only use the central level (mAOD)
in these two instances.

In addition to level data, we also utilise other data relating to the op-
eration of each of the sites. Each site has at least one pump used to lift
the water from the borehole or spring. For the daily pump record, we use a
binary 1/0 variable pumpX to represent if the pump had been running. Flow
(1/s) is also recorded by the water company at each of the sites and repre-
sents the rate at which a sourceworks has abstracted water. We obtain flow
(1/s) in daily maximums/minimums. We anticipate that flow (1/s) acts as a
proxy for how aggressive the pumping regime had been in each day which
is anecdotally linked to increased turbidity (NTU) at some sites. Flow and
pump data is limited or erroneous at several of the sites, and therefore it is
only included it if a sufficiently long and reliable record is available.

We obtained Rainfall (mm) data from the Centre for Ecology & Hydrol-
ogy [I7]. The full CEH-GEAR dataset includes 1 km-gridded estimates of
daily rainfall (mm) for Great Britain and Northern Ireland which are derived
from the Met Office national database of observed precipitation, the most re-
cent copy of the file at the time of writing extends from 1890 to the end of
2015. We extract the rainfall (mm) data from the national data set for the
location of each site.

The daily telemetry and rainfall (mm) data are combined for each site to
create a record extending from 2007 to the end of 2015, typically 2982 data
points per site.



Data Units ~ Summary Type Source

Turbidity NTU Max Continuous Water company telemetry
Water Level (Local) m Max Continuous Water company telemetry
Water Level (Central) mAOD Min Continuous Water company telemetry
Flow 1/s Min/Max Continuous Water company telemetry
Pump Operation 1/0 NA Categorical Water company telemetry
Rainfall mm Total Continuous Centre for Ecology & Hydrology (CEH)

Table 1: Summary of raw data

3.2 Data Treatment

Turbidity (NTU), Water Level (m, mAOD), and Flow (1/s) data is reliant
upon instrumentation at the abstraction site and can be subject to false
readings. Furthermore, the equipment can be recalibrated over time causing
step changes in the data thus inducing errors. We use a distribution based
analysis to identify and remove erroneous data. Based on the distribution,
we remove extreme outliers from the dataset as they likely indicate false
readings while we cap near outliers at an appropriate level for the site.

Flow (1/s), Level (m, mAOD) and Turbidity (NTU) data are time de-
pendent therefore outliers with temporal change are detected, removed and
imputed using time-series based methods. While the level (mAOD) data for
the central monitoring borehole is well maintained with few errors, the local
level (m) recordings contain both erroneous and missing data. Where local
level (m) data is erroneous, we remove the data. If the level (m) data is miss-
ing for more than seven consecutive days, a linear regression model is used to
impute the data rather than the time series based analysis as the time series
imputation produces unreliable results over large sections of missing data.
The linear regression models use flow (1/s) and the central level (mAOD) to
predict the local level, typically these models work suitably well and achieve
R? scores over 0.70. Across the sites, level was imputed in less than 5% of
all days.

For missing data relating to pump operation (pumpX ), we apply a Mul-
tivariate Imputation by Chained Equations (MICE) approach [18]. In cases
where more than 10% of the pump operation data was unavailable, the vari-
able was screened out.
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3.3 Descriptive Statistics

Table [2| and Table [3| show a summary of the extent of the levels of turbidity
(NTU) at each site. Site-D and Site-E experience the highest recorded levels
of turbidity with recorded levels of 8 NTU and 9 NTU respectively. These
two sites also have by far the highest frequency of events where turbidity is
greater than 1 NTU with Site-E experiencing such levels in 33% of all days.
The water company manages the high turbidity levels at Site-D and Site-E
by applying additional processing when the turbidity exceeds 0.7 NT'U at
a subsequent treatment plant to reduce the level of turbidity in the water
before chlorination.

There are some notable differences between the mean and median statis-
tics with the mean larger than the median in all instances. The turbidity
data is therefore non-normally distributed and positively skewed presenting
a challenge for the development of a predictive model.

Site-A  Site-B  Site-C  Site-D Site-E  Site-F

Min 0.03 0.00 0.02 0.01 0.09 0.02
Q1 0.07 0.04 0.04 0.34 0.35 0.08
Median 0.09 0.08 0.06 0.58 0.62 0.15
Mean 0.19 0.31 0.10 1.14 1.33 0.28
Q3 0.18 0.39 0.08 1.24 1.38 0.32
Max 1.30 2.40 1.20 8.00 9.00 2.20

Table 2: Summary Statistics of Turbidity (NTU)

Site Non-Event Events %

Site-A 2838 154 5%
Site-B 2735 257 9%
Site-C 2867 54 2%
Site-D 2123 933 31%
Site-E 2056 1000 33%
Site-F 2448 108 4%

Table 3: Event frequency by site

Behind Site-D and Site-E, Site-B has the most significant recordings of
turbidity of up to 2.4 NTU and experiences a turbidity event in 9% of all
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days.

Site-A, Site-C and Site-F have a >1 NTU turbidity event in less than
5% of all days over the recorded period and have relatively low maximum
recordings compared to other sites with values of less than 2.2 NTU.

Higher event frequencies at Site-D and Site-E can likely be attributed to
the location of these sites within the aquifer. The sites sit closer to the coastal
plain and are within an area deemed more vulnerable to sediment which can
easier permeate the surface and work its way to these treatment works. As a
result, we might expect rainfall to have a more significant impact on turbidity
as it is rainfall that transports the sediment to the treatment works. Site-
A also has similar geological properties however seems to experience fewer
events.

Figure [1] provides some insight into the behaviour of turbidity as a time
series at each of the six sites with the red line indicating the 1 NTU level of
turbidity. All of the sites demonstrate some form of seasonality with turbidity
rising and falling over time. Additionally, the spiking events tend to occur
close together.

This pattern is most prominent at Site-D and Site-E where the turbidity
level is typically rising towards the beginning or at the end of each year,
possibly reflecting the rising and falling of groundwater levels. Site-D, Site-E
and to a lesser extent Site-A experience turbidity events broadly around the
same periods. Site-A, Site-B, Site-C and Site-F have a noisier time series
than Site-D and Site-E with long periods where turbidity events >1 1 NTU
do not occur.

Notably at Site-B, although there are periods where turbidity (NTU)
remain low when turbidity (NTU) exceeds 1 NTU it tends to remain high
for an extended period giving signs of autocorrelation that we can exploit in
the predictive modelling.

3.4 Static Correlations

We apply a static correlation analysis to explore the relationships between
the independent variables and turbidity (NTU) at lag 0 so that we can derive
a subset of candidate variables for each site.

For the correlation analysis, turbidity (NTU) is treated as a raw contin-
uous variable rather than in a binary form. As turbidity (NTU) has been
shown to have a non-linear relationship to variables such as rainfall (mm)
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Figure 1: Time series Plots of Turbidity (NTU)

[16], a Spearman’s rank correlation coefficient is derived due to the nonpara-

metric nature of the measure [19].

Figure [2 presents the results of the correlation analysis. The blue colour-
ing indicates positive relationships while the red colouring indicates a nega-
tive relationship. Crosses presented in the circles can be interpreted to mean
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there is no significant relationship at a p=0.05 level.
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Figure 2: Static Correlations by Site

The static correlation analysis reveals that turbidity (NTU) responds to
the candidate predictor variables very differently across the six sourceworks.
Additionally, while at some sites specific variables demonstrate a more ex-
plicit relationship with turbidity (NTU), at no site does anyone one variable
show a strong correlation. At most sites, there tended to be a small rela-
tionship with level (m,mAOD) and rainfall (mm) while at site E, we observe
a modest relationship with Flow (1/s). Notably, at Site-C, no significant
correlations with turbidity (NTU) are present.

3.5 Dynamic Correlations

We consider autocorrelation for turbidity (NTU) and cross-correlation for
water level (m, mAOD) and rainfall (mm) with a lag of up to 35 days, the
period shown to be significant for rainfall (mm) in other karstic systems [16].

3.5.1 Rainfall and Turbidity

Rainfall can affect turbidity in two ways. In the short term, rainfall events
can cause surface waters to reach a site through ‘quick-flow’ features in the
aquifer that cause turbidity to respond non-linearly as particles in the aquifer
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Figure 3: Turbidity (NTU) and Rainfall (mm) Cross Correlation

are re-suspended. Over the longer term, up to 35 days, rainfall reaches a
source through turbidity via slower karstic flows resulting in a smooth linear
rising and falling of turbidity [16].

Rainfall (mm) was shown to have significant but weak positive lagged
correlations with turbidity (NTU) at all sites except for Site-F. The presence
of lagged correlations is significant to the modelling process as it suggests that
the effect of rainfall (mm) on turbidity (NTU) cannot necessarily be traced
to rainfall (mm) on one specific day, but instead it could have a cumulative
effect.

Site-D, Site-E and Site-A demonstrate a clear relationship between tur-
bidity (NTU) and rainfall (mm) reflecting the effect of the quick-flow (1/s)
features of the karstic aquifer. At Site-D and Site-E the most significant ef-
fect of rainfall (mm) was at lag 2 while at Site-A, and to some extent Site-B,
lag 1 was most significant.

The sites also respond differently to rainfall (mm) regarding how long
the effect of rainfall (mm) on turbidity (NTU) remains significant across the
lagged window. At Site-D and Site-E the relationship between rainfall (mm)
and turbidity (NTU) exponentially decays after lag 2 but remains significant
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throughout the 35-day window. At Site-A the correlation decays linearly and
quickly from lag 1 and ceases to be significant at lag 12. Site-B has a weaker
correlation but for a relatively extended period where rainfall (mm) remains
significant eventually becoming non-significant at lag 25.

At Site-C and Site-F the relationship between turbidity (NTU) and rain-
fall (mm) is less obvious. Site-C demonstrates a very weak positive correla-
tion which remains significant for just 3 lags while at Site-F rainfall (mm)
up to 35 days shows no significant relationship or apparent pattern. Anec-
dotally, this may be linked to the type of aquifer that these two sources sit
within that make them less susceptible to short-term rainfall events.

3.5.2 Level (m, mAOD) and Turbidity (NTU)

The cross-correlation between turbidity and water level is presented in Figure
[l The difference between whether the relationship is positive or negative is
a reflection of the measurement of level only; the top down measurement (m)
is negative while the bottom-up (mAOD) is positive.

Site-A Level Site-B Level Site-C Level
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Figure 4: Turbidity (NTU) and Level (m, mAOD) Cross Correlation

Rainfall causes surface water to permeate the karstic system and in turn,
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causes the groundwater levels to rise and fall accordingly; level is typically
highest at the beginning of the year after a prolonged period of winter rainfall
and lowest in the autumn after drier summers. The water level has been
shown to influence turbidity as a result of surface water containing particles
moving slowly through the karstic system [16].

Level (mAOD)

2012
e

Figure 5: Central Level (cenLev) 2008 to 2016

All sites demonstrate a significant relationship between lagged level (m)
and turbidity (NTU) up to the full 35-day period except Site-C which has a
weak correlation with a lag of up to 10 days.

Site-D and Site-E both demonstrate the strongest correlation with level
(m) and turbidity (NTU) of the six sites with a smooth linear decay. Site-B
also has a moderate relationship with lagged level (m) and interestingly has
a reversed effect to the other sites where further lags have a more significant
response, this could be a result of the difference in distance and geology
between the central monitoring borehole compared to that of the site itself.
At Site-A and Site-F, the relationship between lagged level (m) and turbidity
(NTU) is relatively weak but remains significant up to 35 days.

The smooth linear decay of in the correlation between level (m, mAOD)
and turbidity (NTU) at the sites may be an indicator of the ‘slow-flow’ fea-
tures of the aquifer causing turbidity (NTU) to rise and fall. It may also
indicate that later lags provide no further information than earlier lags.
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3.5.3 Auto Correlation of Turbidity

The autocorrelation for turbidity at each site is presented in Figure [6]

At all sites turbidity (NTU) is auto-correlated and significant up to 35
days as can be seen at most sites in the time series plots with the rising and
falling turbidity (NTU) over time. Each of the sites responds in a similar
manner whereby there is an exponential decay in the correlation. The corre-
lation tends to fall away very quickly in the first few lags before we observe
a smooth linear decay. Site-A differentiates slightly from the other five sites
as there is a comparatively slower decay in the autocorrelation up to lag 10

Site-A Turbidity ACF

Site-B Turbidity ACF

Site—C Turbidity ACF
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Figure 6: Autocorrelation of Turbidity (NTU)

when the correlation begins to level.

The higher correlations in the first few lags followed by a linear decay may
suggest that after turbidity levels have risen initially after a peaking event,
it takes several days for turbidity (NTU) level to fall back to background

levels.
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4 Modelling

For the prediction of >1 NTU turbidity events, we apply a Random Forest
(RF) and a Generalised Linear Model (GLM).

Several parameters require tuning in an RF model; miry, ntree and a cost
rule by which predictions are made in the training of each tree.

As recommended by Breiman [20], we use the square root of the total
number of variables mtry and this figure halved and doubled.

The number of trees used in the model is referred to as ntree. Breiman [21]
argues that the more trees there are in the model, the lower the generalisation
error. Furthermore, increasing the number of trees does not cause the model
to overfit, an advantage that the RF algorithm has over other tree-based
methods. We use a value of 1000 for ntree as this provides an adequate
number of trees with a practical runtime [22].

The turbidity data set at each site is imbalanced whereby 2% to 33%
of all data points experience turbidity (NTU) levels of less than 1 NTU
depending on the source works. This imbalance can lead to the accuracy
prediction metric to bias the more dominant class [23]. We use the Synthetic
Minority Oversampling Technique (SMOTE) approach to artificially balance
the dataset as this method has been shown to achieve superior AUROC
compared to other sample balancing techniques [24].

We also apply a logistic regression alongside the RF model. We use
the Glmnet algorithm which uses a penalised maximum likelihood to fit the
logistic regression [25]. We make all variables available to the model since
the Glmnet is efficient and can effectively screen irrelevant variables. The
purpose of the GLM is to provide a baseline performance of discriminative
ability for means of comparison against the RF. Furthermore, the variable
importance output from the GLM is also used to provide a multivariate
insight into the cause of turbidity prediction for each of the sites. We use the
same training and test dataset for the GLM and RF. Given that turbidity
responds non-linearly to rainfall, we expect the RF to outperform the GLM
given the linear constraints of the model, at least where rainfall is shown to
be a significant factor leading to a turbidity peaking event.
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5 Results

5.1 Model Performance

We present the AUROC performance of the RF and GLM models at each of
the six sites in table [} We use a randomly selected 25%/75% test/train split
with a 10 k-fold cross-validation and 10 repeats. For the cross-validation re-
sults, we present the mean AUROC across the 100 samples and the standard
deviation.

Table 4: AUROC of Generalised Linear Model (GLM) and Random Forest Model
(RF)

Training Holdout
GLM RF
GLM Std. D RF Std. D GLM RF
Site A 0.74 0.07 0.70  0.09 0.81 0.84
Site B 0.75 0.05 0.77 0.05 0.81 0.84
Site C 0.58 0.12 056 0.13 0.81 0.61
Site D 077 0.03 0.81 0.03 0.79 0.81
Site B 087 0.02 0.89 0.03 0.86 0.86
Site F 0.61 0.09 0.69 0.03 0.69 0.69

At five of six sites (Site-A, Site-B, Site-C, Site-D, Site-E), we obtained
an AUROC score of over 0.80 in the holdout sample suggesting that these
models have a ‘good’ discriminative ability. In all four instances, the most
successful model was the Random Forest although the difference in AUROC
performance when compared to the GLM is often marginal. The relatively
small difference in performance between the RF and GLM may suggest that
non-linearity may not be very strong. We note that there are some variations
between the cross-validation and holdout samples, especially so at Site-C,
though in all instances the result falls within the 95% confidence range.

The RF model provides the highest performance for Site-A in the holdout
sample; however, the cross-validation scores suggest that the GLM performs
better on average. Coupled with a higher standard deviation for the RF
model at Site-A, this indicates that the RF can obtain a good AUCROC,
but the model is more sensitive to the sample.

For Site-C the GLM model dramatically outperforms the RF model when
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tested on the holdout sample, however, in the cross-validation sample, the
performance is similar with both having notably high standard deviations.
The significant difference in the holdout result, and, a significant variance
in the cross-validation results suggest the models are sensitive to what is
included in the sample with the two models responding differently according
to the model inputs.

For Site-F, both models have an AUCROC of 0.69 in the holdout sample
suggesting that the models have a ‘fair’ discriminative ability, in the cross-
validation samples, however, we note that the RF model provides a larger
and more stable AUCROC score.

5.2 Variable Interactions

From both the GLM and the RF model useful insights can be obtained as
to the multivariate nature of turbidity causation. While in the static and
dynamic correlation analysis turbidity (NTU) was considered in continuous
form, in this section we review the predictor variables concerning their asso-
ciation with turbidity (NTU) in binary form. Events are classified as either
greater than or equal to 1 NTU (tEvent) or below 1 NTU (nonEvent).

The multivariate nature of turbidity prediction is considered using the
scaled variable importance output of the GLM and Random Forest model.
For the GLM the scaled importance is the normalised coefficients of the final
model while the Random Forest uses the ‘Mean Decrease in Gini’ which
reflects the average reduction of the impurity within each node in the model
when a node is split using a given variable [26]. We present the top 15
most important variables for each model. Since both models are capable of
filtering insignificant variables, all variables are made available to the models,
variable importance, therefore, provides insight as to which variables remain
important, or become more important, in the presence of other predictor
variables.

Between the two models, there appears to be some universal agreement
which mostly reflects the findings of the correlation analysis. For those sites
where a correlation between rainfall (mm) and turbidity (NTU) is present,
rainfall (mm) was also shown to be important. However, while rainfall (mm)
in the correlation analysis remained significant up to the maximum 35 lags,
the variable importance demonstrates that rainfall (mm) is most significant
within the first several lags depending on the site. Greater importance in
earlier lags likely shows the quick-flow elements of turbidity (NTU) Massei
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et al. [16].

We also find that at those sites where both level (m, mAOD) and turbid-
ity (NTU) lags are present, the variable importance top 15 ranking tended
to be dominated by lags of turbidity (NTU) rather than level (m, mAOD).
Although the dynamic cross-correlation of level (m, mAOD) and turbidity
(NTU) showed a moderate relationship to be present at most sites, the vari-
able importance suggests that with the presence of turbidity (NTU), level
(m, mAOD) becomes less important. Furthermore, level (m, mAOD) and
turbidity (NTU) lags both capture the slow-flow (1/s) features of the karstic
system representing the rising and falling of turbidity (NTU) that can con-
tribute towards a turbidity (NTU) peaking event. Furthermore, it could be
that while both variables capture the rising and falling of background lev-
els of turbidity (NTU), lagged turbidity (NTU) provides a more significant
amount of information than level (m, mAOD). Lagged turbidity (NTU) may
provide more information as it is also capturing the residual turbidity (NTU)
that exists after an initial peak in turbidity (NTU).

Site A: Glmnet Site A: RF
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Figure 7: Variables Importance: Sites A-C

The high importance lags of rainfall early in the lag window likely re-
flect the ‘quick-flow’ features causing spikes in turbidity (NTU) while level
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(m/mAOD) and turbidity (NTU) lags in the longer term causes a smooth
rise and fall of turbidity (NTU) more closely representing the karstic flows in
the aquifer. We suggest, therefore, that while the seasonal rising and falling
turbidity has some contribution towards a turbidity event, in most instances,
the event is most likely caused by rainfall events. This is not true at all sites,
however, at Site F' the RF variable importance is dominated by flow (1/s)
while at Site B the GLM importance suggests that the operation of pump 2
and pump 4 have the most significant contribution.

From the variable importance, we can also begin to understand why in
some instances the RF model can outperform the GLM. At Site-D and Site-E,
which have the most significant occurrence of events, the RF model consis-
tently outperforms the GLM. The RF model puts far more importance on
rainfall which is known to interact non-linearly with turbidity in the short
term; we, therefore, expected that the RF being the non-linear model would
be able to outperform the GLM. At Site-F, the RF performs better in cross-
validation. A review of the variable importance shows that while the RF
model attributes the most importance on flow (1/s), this variable does not
appear in the top 15 most important variables for the GLM suggesting there
is also a nonlinear relationship between flow (1/s) and turbidity (NTU).

6 Implementation of the Decision Support Sys-
tem

So far we have considered the performance of the models across the six sites
in terms of AUC performance. We now consider at which probability, from
0.00 to 1.00, that the decision support system positively classifies an event
and the water company takes mitigating steps. Mitigating actions might
include the decision ensure that the reservoirs are full before an event, or,
committing personnel to test the equipment at an alternative site to while
pumping at the site in question is temporarily suspended.

To determine an optimal cut-off point for each of the models, we apply
a cost-based approach to quantify the trade-off between the False Positive
(FP) and False Negative (FN) rate. A cost-based approach assigns a value
to the prediction of a FP against the prediction of a FN.

Through consultation with the water supply company, we apply a simple
costing rule. We assign a cost of predicting a FN as twice as expensive as the
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Figure 8: Variables Importance: Sites D-F

cost of a FP, that is to say, the cost of falsely predicting a turbidity (NTU)
event that doesn’t happen is less costly than falsely predicting a turbidity
(NTU) event that does happen but is not predicted. We assign a FP cost
of 1 and a FN a cost of 2. We present an example of the application of this
approach in Figure [9) where the optimal cut-off point for Site-D is 0.46 with
an optimised cost of 187.
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Figure 9: Cut-off Point for Site-D

We apply costs based approach to the final models at each site using the
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test dataset only. The cost assumptions are held constant across all sites,
and we only consider the model with the highest AUROC.

The baseline cost would reflect the total cost if no positive events were
predicted over the test set while the optimised cost is the reduction as a
result of the final cut-off probability. The absolute costs between the sites
should not be compared however due to the differing record lengths and the
rates that which >1 NTU turbidity events occur.

Table 5: Optimised Cut-Off points
Cut-off Baseline Cost Optimised Cost

Site A 0.73 560 50
Site B 0.60 481 39
Site C 0.98 2966 20
Site D 0.46 419 187
Site E - 0.40 405 166
Site ¥ 0.93 482 42

While the cut-off points for most of the sites seem reasonable, at Site-C
and Site-F' the optimal cut off point is close to a probability of 1.00, and
therefore very few cases would be classed as a >1 NTU event. The reason
for this is a function of both the reasonably weak discriminative ability of
these two models and, the cost-based approach to defining the cut-off point.
While ideally, it would be preferable to develop a stronger model, an alter-
native approach to determining the cut-off point is required as the current
cost-based approach always favours the dominant class ‘nonFvent’. At Site-
C and Site-F, because there are fewer positive cases of ‘tEvent’ (<=5%),
combined with the relatively weak discriminative ability of the model means
predicting ‘nonFEvent’ is always optimal. A revised costing strategy could be
applied to overcome the bias to ‘nonFvent’ by increasing the cost of predict-
ing False Positives. An alternative measure would be to use an acceptable
True Positive rule where the cut-off point based on a minimum allowable
percentage of True Positives that must be classified; a strategy commonly
applied in credit scoring [27]. For the two sites with unreasonable cut-off
points, we use a 70% True Positive rule.

By defining cut-off points for each of the sites, a practical insight is pro-
vided as to an appropriate level for establishing when an event is likely to
occur, and when implemented in a live environment it indicates at which
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Table 6: Revised Cut-Off Points with 70% True Positive Rate rule

Cut-off
Site C 0.59
Site F 0.28

point operational remedial activities should be applied. Furthermore, the
predicted model probabilities can be rescaled for improved interpretation on
the likelihood of an event occurring, for example from 0% to 100%.

7 Conclusion

7.1 Causation

The first aim of this paper was to identify the potential variables causing
daily turbidity (NTU) peaking events at groundwater sources for a water
company operating in the South Coast of England. Several approaches have
been used to understand the cause of turbidity (NTU) at six water sources
on the South Coast of England; a static correlation analysis, a dynamic
correlation analysis and an assessment of variable importance. We sought to
confirm the findings of the hydrological literature applied to our research and
investigate the impact of operational features. The combined output of the
variable analysis has shown that turbidity (NTU) can be noisy, dynamic with
association present between predictor variables. Furthermore, the response
of the sites to the predictor variables can differ significantly, and in most
instances, there is no one clear driver of >1 NTU turbidity (NTU) events.

The static correlation showed mostly weak to moderate relationships be-
tween turbidity (NTU) and the predictor variables with level (m, mAOD)
and rainfall (mm) showing significance at most sites. At three sites flow (1/s)
and pump operation were found to be significant. The significance of these
variables is notable as the literature has focused on the response of turbidity
to naturally occurring predictor variables in natural systems, but in a water
supply context, we find operational variables influence turbidity.

The dynamic cross-correlation demonstrated there is a requirement to
consider backward looking lags of level (m, mAOD) and rainfall (mm). Level
(m, mAOD) was shown to linearly decay over the 35-day lag window while
rainfall was most significant in the first several days followed by a linear decay.
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In the dynamic correlation analysis, we also reviewed the autocorrelation of
turbidity (NTU). Turbidity was shown to be significant over the 35-day lag
window and most significant in the first several lags. We propose that more
significance in early lags is the memory effect after a peaking event with
further lags capturing the slow rising and falling turbidity levels over the
year.

We also use Variable Importance outputs from the GLM and RF mod-
els to gain further insight into the multivariate nature of turbidity event
prediction. The multivariate analysis mostly confirmed the results of the
correlation analyses, with early lags of rainfall (mm) seeming to drive tur-
bidity events. We also found level (m, mAOD) to be less significant in the
models where lagged turbidity (NTU) was also present; this suggests that
while level and turbidity both capture the slow rising and falling of turbidity
over the year, turbidity lags can also capturing the memory effect after tur-
bidity peaking. Though during the significance testing the operational flow
variable was shown to be significant, we note that at only one of the sites
did the variable remain ‘important’, though at this site it was the primary
variable causing turbidity.

7.2 Prediction

The GLM and RF models were assessed using the AUCROC metric. The
performance of the final models ranged from 0.81 to 0.86 in the holdout
samples across the six sites leading us to conclude that machine learning
models can be used to successfully predict >NTU turbidity events up to 7
days in advance, and therefore suitable as a decision support tool for water
supply managers. At three of six sites, the RF model outperformed the
GLM. We argue that the outperformance of the RF is due to the model’s
ability to capture the nonlinearity that is known to exist between rainfall
(mm) and turbidity (NTU) [I6]. Furthermore, at the sites where rainfall
(mm) was less correlated with turbidity, the GLM outperformed or matched
the performance RF, although notably achieved a lower AUCROC compared
with the other sites where rainfall was a good predictor of a peaking event.

7.3 Implementation

We also considered probability cut-offs for the final selected model for each
of the sites for the live implementation of the models. At four of six sites, we
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applied a cost-based approach which led to a significant reduction in the base-
line costs. At two sites that demonstrated lower predictive performance, in
consultation with the water company, we discarded the cost-based approach
as the method led to too few events being captured by the system. We
instead implemented an alternative rule-based approach which ensured the
system would capture a reasonable percentage of turbidity peaking events.

7.4 Further analyses & Recommendations

There are several areas for further research that may provide further insight
into both the cause of turbidity (NTU) and the development of turbidity
(NTU) prediction models. We have focused on site-specific factors and the
development of models that can be used to predict future >1 NTU turbidity
events. We modelled the sites separately to overcome the difference in how
sites respond to the predictor variables. It may be of interest to explore why
the sites respond differently. Research such as that by Tong and Chen [10]
has examined broader influences such as land coverage and land usage in the
general causation of water quality parameters. Understanding why the sites
respond differently may allow the water company to take strategic action,
for example, if land coverage was found to be significant then more cover
crops nearby could be planted. It also may be of interest for further research
to explore extending the methods for prediction used in this paper. Other
binary classification models such as Artificial Neural Networks (ANNs) have
also been shown to perform well with noisy and non-linear data [13], and
have also demonstrated effectiveness with dynamic time series data [12].
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