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We extend our recently developed QM/MM approach [J. Dziedzic et al.,

J. Chem. Phys 145, 124106 (2016)] to enable in situ optimization of the localized

orbitals. The quantum subsystem is described with onetep linear-scaling DFT, and

the classical subsystem – with the AMOEBA polarizable force field. The two sub-

systems interact via multipolar electrostatics, and are fully mutually polarizable. A

total energy minimization scheme is employed for the Hamiltonian of the coupled

QM/MM system. We demonstrate that, compared to simpler models using fixed ba-

sis sets, the additional flexibility offered by in situ optimized basis functions improves

the accuracy of the QM/MM interface, but also poses new challenges, making the

QM subsystem more prone to overpolarization and unphysical charge transfer due to

increased charge penetration. We show how these issues can be efficiently solved by

replacing the classical repulsive van der Waals term for QM/MM interactions with

an interaction of the electronic density with a fixed, repulsive MM potential that

mimics Pauli repulsion, together with a modest increase in the damping of QM/MM

polarization. We validate our method, with particular attention paid to the hydrogen

bond, in tests on water-ion pairs, the water dimer, first solvation shells of neutral and

charged species and on solute-solvent interaction energies. As a proof of principle,

we determine suitable repulsive potential parameters for water, K+ and Cl−. The

mechanisms we employed to counteract the unphysical overpolarization of the QM

subsystem are demonstrated to be adequate and our approach is robust. We find that

the inclusion of explicit polarization in the MM part of QM/MM improves agreement

with fully QM calculations. Our model permits the use of minimal size QM regions

and, remarkably, yields good energetics across the well-balanced QM/MM interface.

a)Corresponding author. Email: c.skylaris@soton.ac.uk
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I. INTRODUCTION

Molecular dynamics (MD) is a well-established technique for simulating the structure and

properties of systems at the atomic scale, with over four decades of applications in biochem-

istry and materials science, among other fields. The aim of MD is to predict macroscopic

behavior from microscopic interactions1, and the validity of results strongly depends on how

accurately these interactions are described by the molecular mechanics (MM) potential.

The continual increase of available computational power not only extends the scope of

MD to larger systems and longer timescales, but also enables the refinement of MM models

describing inter- and intramolecular interactions. The last two decades have witnessed the

emergence of force fields that directly capture many-body polarization effects, setting out

to circumvent well-known deficiencies of pairwise-additive, fixed point charge models2–5.

Unable to directly account for polarization, fixed point charge force fields struggle to describe

e.g. the interactions of ions with π-electron systems or polar solutes in low-dielectric media6,

and they are typically poorly transferable to environments or phases different from those

that they were parametrized for, such as interfaces7.

The non-additive, many-body nature of polarization interactions makes polarizable mod-

els more involved and computationally demanding. Consequently, a variety of competing

treatments of polarization exists (see Refs. 7–9 for a review): Drude oscillators10,11, fluctuat-

ing charges12,13, induced point dipoles14–21 or even induced multipoles of higher order22. The

AMOEBA force field15–18, which is of particular significance to this work, describes polariza-

tion interactions using damped, induced, point dipoles, while for permanent electrostatics

it employs fixed multipoles up to a quadrupole in lieu of point charges.

Purely classical models, however sophisticated, cannot describe electronic properties, such

as band gaps or solvent shifts, or processes that intrinsically depend on the electronic degrees

of freedom, such as bond-breaking. To properly model electronic phenomena it becomes

necessary to employ quantum-mechanical (QM) methods. In practical applications, density

functional theory (DFT) is arguably the most commonly used approach23, owing to its

relatively low computational cost. Even so, length scales (∼ 10 − 100 nm) and time scales

(∼ 1µs) typically used in classical MD simulations remain beyond the scope of DFT today.

QM/MM combines the quantum and classical descriptions, exploiting the fact that the

properties of interest are often localized to a part of the system that can be described

quantum mechanically, such as a molecule, embedded in an environment that can be de-
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scribed more approximately with MM, e.g. a solvent. Since the seminal work of Warshel and

Levitt24, a profusion of QM/MM approaches have been proposed, targeting different types

of systems, and varying in the level of sophistication (see e.g. Refs. 25–36). Even a brief

review of QM/MM methods is beyond the scope of this paper; however, we refer interested

readers to reviews of QM/MM methods and applications in enzymology37, biochemistry38

and materials science39.

Recent improvements in force fields promptly become integrated into QM/MM method-

ologies, and several approaches combining QMwith polarizable forcefields (dubbed QM/MM-

pol) have already been proposed. Many of those approaches employ induced dipoles40–55

to model polarization, others use fluctuating charges56–59 or Drude oscillators60,61. Typ-

ically, the full QM density is used for all electrostatic QM/MM interactions5,52,55, but

using auxiliary multipolar representations of QM (for efficiency or convenience) has also

been proposed51,62. Several groups have developed models specifically focused on electronic

excitations, using polarizable embedding alongside time-dependent density functional the-

ory (TDDFT)42,43,45,46,50,54,57,59,63, where dynamic mutual polarization poses an additional

challenge46.

We recently presented51 a novel QM/MM approach (tinktep), which combines the DFT

methodology of onetep64,65, and the polarizable force field AMOEBA15,17,18,66, as imple-

mented in tinker16. In the tinktep approach the QM and MM subsystems are coupled

electrostatically, and undergo mutual polarization. The electrostatic effect of the MM sub-

system is included in the QM Hamiltonian, polarizing the QM subsystem by deforming its

electronic charge density. Conversely, the electric field of the QM subsystem is included in the

direct field that drives the polarization of the MM subsystem. A total energy minimization

scheme is employed for the Hamiltonian of the coupled QM/MM system. A distinguishing

feature of our approach is the use of linear-scaling DFT65,67 to describe the QM subsystem

with the aim of, ultimately, undertaking QM/MMpol calculations with QM regions spanning

thousands of atoms.

The main limitation of our first tinktep model, as presented in Ref. 51, was its use of

fixed localized orbitals, which represented a tradeoff between simplicity and energy accuracy.

In this work we describe an extension of tinktep to the case where the localized orbitals

are optimized in situ. The rationale for using optimized orbitals is the near-complete-basis-

set accuracy that they offer, even when a minimal basis is used. The resultant accuracy is
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comparable or superior to even very large bases with fixed orbitals68.

Incorporating in situ orbital optimization requires computing gradients of all energy

terms with respect to the expansion coefficients of the localized orbitals. We present the rele-

vant derivation and describe how the calculation can be implemented to run in linear-scaling

time. We subsequently focus on the difficulties that arise as a consequence of using optimized

orbitals – QM overpolarization and unphysical charge transfer from QM to MM – and dis-

cuss workable solutions to these two problems, using simple QM/MM systems to illustrate

our points. We finish by demonstrating the stability, robustness and accuracy of our model

on a number of test cases. We arrive at a robust, mutually polarizable QM/MM model

with linear-scaling QM cost, which we show to be more accurate than a non-polarizable

QM/GAFF approach, not only in terms of reducing the electrostatic disruption to the QM

subsystem, but also in terms of improved energetics across the QM/MM interface.

This paper is organized as follows. In Sec. II we recount the original (fixed-orbital)

tinktep approach. In Sec. III we outline the generalization to in situ optimized orbitals,

and describe the additional steps that we found to be necessary for obtaining a well-behaved

method. The additional steps are best justified using case studies, which, in the interest

of clarity of discussion, we relegated to the Appendix. Section IV is devoted to validation

and demonstration of the utility of the proposed approach on a number of carefully selected

systems. Conclusions and closing remarks are found in Section V.

II. METHOD

A. Conventions and notation

We follow the sign convention where electrons are positively charged. Atomic units are

used throughout the text, unless indicated otherwise. Quantities typeset in bold denote

Cartesian column vectors (positions r, electric fields E, dipoles µ, etc.) or Cartesian tensors

of rank 2 (e.g. T d-d
LM). Matrices with dimensions other than 3×3 are typeset with blackboard

capitals (e.g. K). Indices A, B and C always refer to atoms in the QM subsystem, and indices

L and M refer to atoms in the MM subsystem. Localized orbitals are indexed with Greek

symbols. By van der Waals interactions we will mean the sum of the repulsive and dispersive

terms, referring to the attractive term simply as “dispersion”.
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B. Initial (fixed-orbital) TINKTEP approach

We begin the exposition of the method by briefly recounting the general idea behind

tinktep – our first QM/MM approach proposed in Ref. 51. The system is separated into

a QM subsystem and an MM subsystem, with the assumption that the separation does not

cut through covalent bonds. The total energy of the coupled system is given by

E = EQM + EMM + EQM/MM. (1)

The QM region is described by the density matrix formulation of DFT in the pseudopotential

approximation:

EQM =

ˆ [
−1

2
∇2

r′ρ (r, r
′)

]
r′=r

dr (2)

+

ˆ
vext (r)n (r) dr

+
1

2

¨
n (r)n (r′)

|r− r′|
dr dr′ + EQM

XC [n]

+
1

2

NQM∑
A

NQM∑
B ̸=A

ZAZB

|RB −RA|

+ EQM
disp ({RA}) ,

with the above terms describing, respectively, the kinetic energy of valence electrons, the

Coulombic energy of valence electrons in the (pseudo)potential vext (r) of the ionic cores, the

Hartree energy, the exchange-correlation energy, the mutual Coulombic interaction of NQM

cores having charges {ZI} and positions {RI}, and empirical dispersion-correction. Open

boundary conditions have been assumed. ρ (r, r′) is the density matrix, given by

ρ (r, r′) =
∑
αβ

φα (r)K
αβφ∗

β (r
′) , (3)

where φα (r) are non-orthogonal generalized Wannier functions (NGWFs)69, which are

strictly localized within atom-centered spherical regions. K =
[
Kαβ

]
, termed the density

kernel, is the matrix representation of the density matrix in the duals of the NGWFs. The

electronic (pseudo)density n (r) is given by

n (r) = ρ (r, r) , (4)

where we assumed a closed-shell system in the interest of brevity. The last term, EQM
disp,

is an empirical dispersion-correction term, which accounts for the well-known deficiency of

6

http://dx.doi.org/10.1063/1.5080384


generalized gradient approximation (GGA) DFT in describing dispersion interactions70. The

exact expression depends on the model used, but the general form is that of a double sum

of pairwise terms. This work uses the Elstner71 formulation, with parameters determined

by Hill et al.70.

The MM subsystem is described by the AMOEBA18 polarizable force-field, as imple-

mented in the tinker16 code, with the following general energy expression:

EMM = EMM
perm + EMM

pol + EMM
val + EMM

vdW, (5)

with the four energy components accounting for: permanent electrostatic interactions, po-

larization, short-range valence interactions, and van der Waals interactions, respectively.

EMM
perm is a sum of purely Coulombic multipolar interactions between atoms in the MM

subsystem, with scaling factors17 used to attenuate or eliminate interactions between first-,

second-, third- and fourth-nearest neighbors (as determined by bond connectivity). The

full expression is given in Ref. 18, eqs. 1 and 10. The EMM
perm term is fully local to the

MM subsystem, that is to say it is insensitive to the presence of the coupling with a QM

subsystem.

EMM
pol is the polarization energy of the MM subsystem, given by (cf. Ref. 51, eq. A1):

EMM
pol =

1

2

NMM∑
L

NMM∑
M

µᵀ
LTLMµM −

NMM∑
L

Eᵀ
LµL

= −1

2

NMM∑
L

µᵀ
LEL, (6)

where EL is the direct electric field at site L, µL is the dipole induced at site L in response

to the total electric field, and TLM is a 3× 3 coupling tensor between sites L and M :

TLM =

−T d-d
LM , L ̸=M

α−1
L I, L =M

. (7)

Here, T d-d
LM is the Thole-damped, Cartesian dipole-dipole interaction tensor between induced

dipoles at sites L and M (cf. Ref. 51, eq. 28). Thole damping72–74 is a modification to

Coulombic electrostatics that helps prevent mutual positive feedback loops involving induced

point dipoles, known as a polarization catastrophe.

In a purely MM calculation, the direct electric field EL is simply the electric field due

to the permanent multipoles of MM sites. In a mutually polarizable QM/MM calculation,
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the direct electric field includes an additional contribution arising from the multipoles rep-

resenting the QM subsystem. We give the full expression in Ref. 51, eqs. 26-31, where we

also explain in detail how a classical multipolar representation of a distributed QM density

is obtained (Section II.D therein). We stress that the non-additive nature of polarization

means that the polarization of MM cannot be separated into additive terms due to QM and

MM, and so the entire polarization of the MM subsystem is included in EMM
pol , which explains

the absence of an EQM/MM
pol term.

EMM
val denotes all short-range valence interactions local to the MM subsystem. The detailed

expressions for these terms can be found in Ref. 18, eqs. 2-6, and we shall refrain from

recounting them here.

EMM
vdW accounts for van der Waals (dispersion-repulsion) interactions local to the MM

subsystem. AMOEBA uses the Halgren formulation75 of the buffered 14-7 potential:

EMM
vdW (Rij) = εij

(
1 + δ

ρij + δ

)7 (
1 + γ

ρ7ij + γ
− 2

)
, (8)

where ρij = Rij/R
0, δ = 0.07, γ = 0.12. The parameters of the potential are R0 and ε.

Mixing rules for obtaining pairwise values of the parameters and a description of nuances

surrounding hydrogen atoms (“reduction factors”) can be found in Ref. 18, eqs. 7-8.

The final term in (1), EQM/MM, accounts for all interactions between the two subsystems,

except for mutual polarization. As pointed out earlier, QM contributions to MM polariza-

tion have already been included in EMM
pol , because they are not separable from intra-MM

polarization. The effect of MM polarizing QM is automatically included in EQM [n (r)] by

the deformation of the electronic density n (r) in response to the electric field of the MM

subsystem.

The coupling is described by

EQM/MM = EQM/MM
perm + EQM/MM

vdW , (9)

where the first term accounts for the electrostatic coupling between QM and permanent

MM multipoles, and the second term accounts for dispersion-repulsion interactions between

QM and MM. In our model the electrostatic coupling involves the full QM charge density

interacting with the Coulombic (not damped) potential of the permanent MM charges,

dipoles and quadrupoles:

EQM/MM
perm =

ˆ
vMM
p (r)nQM (r) dr, (10)
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where

nQM (r) = n (r) +

NQM∑
A

δ (r−RA)ZA, (11)

and the expression for vMM
p (r) can be found elsewhere (Ref. 51, eqs. 37-38).

For the QM/MM van der Waals interaction, EQM/MM
vdW , our original model uses the same

classical, pairwise model that is used for MM/MM (cf. (8)), except the repulsive wall is

softened slightly by using δ = 0.21 (cf. Ref. 51, Section III.B.3). This has the advantage of

being straightforward, but has two disadvantages. First, it requires choosing vdW parameter

values for atoms in the QM subsystem. Second, and more importantly, this classical form

is insensitive to the electronic density of the QM subsystem and as such its contributions

to electronic density gradients vanish. This means it fails to provide the Pauli repulsion

that would otherwise prevent electrons from unphysically collapsing onto MM atoms. We

address this issue in the revised model presented in this paper.

III. THEORY

The main limitation of the original model described briefly above, and in detail in Ref. 51,

was that the localized orbitals {φα} were kept fixed and only the density kernel Kαβ was

optimized. Allowing {φα} to be optimized in situ constitutes the main improvement in our

revised model.

A. In situ optimized NGWFs

Optimizing the NGWFs necessitates deriving and implementing functional derivatives

of energy terms with respect to the NGWFs. Out of all the energy terms that make up

the total energy (1) the following terms are specific to our QM/MM model and have no

counterparts in standard onetep: EMM
val , EMM

vdW, EMM
perm, E

QM/MM
vdW , EQM/MM

perm , and EMM
pol . The

first three of these are local to the MM subsystem and do not depend on the electronic

degrees of freedom, their derivatives with respect to the NGWFs thus vanish. EQM/MM
vdW is, so

far, described by an electron-independent classical pairwise sum, so its derivative similarly

vanishes. We postpone the generalization of this term to an electron-dependent form until

later in the text. The remaining terms are EQM/MM
perm and EMM

pol , which we will consider now

in sequence.
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EQM/MM
perm is given by (cf. (10)-(11)):

EQM/MM
perm =

ˆ
vMM
p (r)n (r) dr (12)

+

ˆ
vMM
p (r)

NQM∑
A

δ (r−RA)ZAdr.

The potential of permanent MMmultipoles vMM
p does not depend on the electronic degrees

of freedom, so the second term above does not contribute to the derivative. The first term

represents an interaction of an electronic density with a fixed potential, and so has the same

form as the second term in (2). Thus it can be accounted for using usual onetep algorithms

by simply adding vMM
p (r) to vext (r).

The term due to EMM
pol is more complicated, since it involves differentiating the transfor-

mation from the QM density to the set of multipoles representing the QM subsystem that

take part in QM/MM polarization interactions. We refer the reader to Ref. 51, Section I.D.2

for a detailed exposition of this transformation, recounting here only the basics needed in

the derivation.

All pairs (products) of overlapping NGWFs φα and φβ are expanded in terms of truncated

spherical waves fs (r) centered on both NGWFs, with the coefficients of the expansion given

by

Cs
AB =

Nf∑
t

(∑
α∈A

∑
β∈B

φα (r)K
αβφ∗

β (r)
∣∣∣ft)V ts

AB

=
∑
α∈A

∑
β∈B

Kαβ

Nf∑
t

(
φα (r)φ

∗
β (r) |ft

)
V ts
AB

=
∑
α∈A

∑
β∈B

Kαβcsαβ, (13)

where s and t index the spherical waves originating on both atoms (of which there are Nf in

total), V ts
AB is an element of the inverse electrostatic overlap matrix between spherical waves

originating on atoms A and B, and the notation α ∈ A used in the summations is taken to

mean “all NGWFs α belonging to atom A”.

An alternative way to index the spherical waves, and in turn the coefficients Cs
AB, and

csαβ, is via their angular, magnetic and radial numbers: l, m, and q and a selector for the

site on which the spherical wave originates (1 for the first atom from the subscript or 2 for

the second atom). This indexing scheme is useful when using the expansion to calculate the
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spherical multipole moments {Mlm(A)} that constitute the classical representation of the

density:

Mlm(A) =
∑
B

SAB ̸=0

∑
q

C lmq,1
AB Jlq, (14)

where C lmq,1
AB correspond to Cs

AB originating only on atom A, and Jlq is a radial, analytical

integral given in Ref. 51, eq. 21. The notation B
SAB ̸=0 is taken to mean “atoms B whose

NGWFs overlap with those of atom A”.

The interaction energy between all multipoles representing the QM density and the in-

duced MM dipoles is given by

EMM
pol = tr[KP], (15)

where P is the polarization matrix, with matrix elements α ∈ A, β ∈ B given by:

Pαβ = −1

2

∑
lq

Jlq
∑
m

(
clmq,1
αβ wlm

A + clmq,2
αβ wlm

B

)
=
∂EMM

pol

∂Kβα
, (16)

where wlm
A captures the electrostatic effect of the entire system of MM induced dipoles on

the QM site at RA: w
00
A is the Thole-damped electrostatic potential of MM induced dipoles

interacting with the charge at RA, {w1,−1
A , w1,0

A , w1,1
A } is their Thole-damped electric field

interacting with the dipole at RA, and {w1,−2
A , . . . , w1,2

A } is their Thole-damped electric field

derivative (in spherical representation) interacting with the quadrupole at RA.

Taking the functional derivative of (15), we obtain (cf. Ref. 76, eq. 7.25):

δEMM
pol

δφ∗
γ (r)

= 2
δPαβ

δφ∗
γ (r)

Kβα + 2
δKβα

δφ∗
γ (r)

Pαβ, (17)

where the Einstein convention has been used for repeated Greek indices.

The non-vanishing derivative δKβα

δφ∗
γ(r)

appearing in the second term results from the use of

a so-called purifying transformation in onetep. It has already been derived (cf. Ref. 76,

eq. 7.29 or Ref. 77, eq. 4.4.6) and implemented in onetep and as such can be omitted

from further discussion. Instead, we focus on the more interesting first term, involving the

quantity
δPαβ

δφ∗
γ(r)

. From (16) we obtain

δPαβ

δφ∗
γ (r)

= −1

2

∑
lq

Jlq
∑
m

δ

δφ∗
γ (r)

(
clmq,1
αβ wlm

A + clmq,2
αβ wlm

B

)
, (18)

where we have used the fact that Jlq is independent of the NGWFs. The quantities wlm
A and

wlm
B involve induced MM dipoles and, as these induce in response to a combined QM+MM
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electric field, they depend on the NGWFs. However, a zero residual condition at induced

dipole self-consistency:

∀L

dEMM
pol

dµL

= 0 (19)

obviates the need to calculate
δµL

δφ∗
γ(r)

(compare Ref. 51, eq. 33), allowing us to only consider

the dependence of clmq,1
αβ and clmq,2

αβ on the NGWFs, and so

δPαβ

δφ∗
γ (r)

= −1

2

∑
lq

Jlq
∑
m

[
δclmq,1

αβ

δφ∗
γ (r)

wlm
A +

δclmq,2
αβ

δφ∗
γ (r)

wlm
B

]
. (20)

The remaining functional derivative
δclmq,1

αβ

δφ∗
γ(r)

can be calculated as follows:

δclmq,1
αβ

δφ∗
γ (r)

=

Nf∑
t

δ

δφ∗
γ (r)

(
φα (r)φ

∗
β (r) |ft

)
V t,lmq,1
AB

= δγβφα (r)

Nf∑
t

vt (r)V
t,lmq,1
AB , (21)

where vt (r) is the potential of a spherical wave (for which an analytical expression is avail-

able).
δclmq,2

αβ

δφ∗
γ(r)

is calculated analogously.

By combining (17), (20) and (21), and expressing the sums in the first term explicitly,

we obtain

δEMM
pol

δφ∗
γ (r)

=−
NQM∑
A

SAC ̸=0

∑
α∈A

Kγα
∑
lq

Jlq
∑
m

φα (r)

[
wlm

A

Nf∑
t

vt (r)V
t,lmq,1
AC + wlm

C

Nf∑
t

vt (r)V
t,lmq,2
AC

]

+ 2
δKβα

δφ∗
γ (r)

Pαβ, (22)

where atom C is the host to the NGWF with respect we differentiate, i.e. γ ∈ C. The

presence of both wlm
C and wlm

A in (22) indicates that the gradient with respect to a particular

NGWF γ ∈ C depends not only on the electrostatic effect of MM’s induced dipoles at RC ,

but also at all centres of overlapping NGWFs RA. This is a consequence of the two-center

spherical wave expansion scheme used in onetep.

To maintain linear scaling, an implementation must be able to evaluate (22) in O (1)

time, since this calculation must be repeated for all NGWFs γ, and the number of NGWFs
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is proportional to NQM. Our implementation in onetep does this by re-ordering (22) as

δEMM
pol

δφ∗
γ (r)

= −
NQM∑
A

SAC ̸=0

UAC (r)
∑
α∈A

Kγαφα (r) + 2
δKβα

δφ∗
γ (r)

Pαβ, (23)

where

UAC (r) =
∑
lq

Jlq
∑
m

[
wlm

A

Nf∑
t

vt (r)V
t,lmq,1
AC

+wlm
C

Nf∑
t

vt (r)V
t,lmq,2
AC

]
(24)

only needs to be evaluated in the intersection of the localization spheres of A and C (cf. (22)).

The cost of evaluating UAC for a single pair of atoms A-C is system-size independent (O(1)),

and only depends on the quality of the SW basis set. For any particular atom C, the number

of atoms A whose localization spheres overlap with it plateaus at a constant that depends

on the density of the system, even if the system size NQM is increased to arbitrarily large

values. This is made explicit by the A-C overlap condition in the first summation of (22).

That means that each evaluation of (22) has O(1) cost and, with O(N) such operations,

the approach is linear-scaling.

B. Increased polarization damping

Polarizable force-field models that rely on the induced point dipole approximation have

to contend with what is known as a polarization catastrophe. This well-known78 artifact

consists in an unbounded mutual polarization of two nearby sites through positive feedback,

and reflects the breakdown of the point-dipole model at short range. The polarization

catastrophe is typically mitigated by replacing Coulombic interactions involving induced

dipoles with interactions that are suitably attenuated at short range using schemes such as

Thole damping72–74. This is the case in AMOEBA15 and in our model51. The intensity of the

damping depends on the polarizabilities of the two atoms – i.e. interactions involving atoms

that polarize more readily are more aggressively damped. Beyond several Å the difference

between the Thole-damped and Coulombic quantities (potential, electric field, electric field

derivative) becomes negligible and the correct long-range behavior is recovered.

The rationale for using optimized NGWFs in our model, and in onetep in general, is

the near-complete-basis-set accuracy that they offer, comparable or superior to even very
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large bases with fixed orbitals68. However, this additional flexibility results in the basis

becoming more diffuse, which is problematic in the context of distributed multipole analysis

(DMA79,80) that we employ to obtain the multipole representation QM∗ (cf. (13)-(16)). More

diffuse bases are known81,82 to engender instabilities in the DMA procedure, and lead to

increased charge penetration errors (CPE) due to discrepancies between the potential of

the original density and that of the multipolar expansion, although improved approaches

have recently been proposed82,83. Indeed, our initial tests revealed that once the NGWFs

are no longer fixed and are allowed to change shape during the SCF process, our QM/MM

model becomes prone to a QM/MM analog of polarization catastrophe, whereby the QM

subsystem becomes excessively polarized by a nearby MM site and vice versa. The problem

is particularly severe for MM sites carrying a charge (ions), as they provide a larger initial

polarization of QM. We devote a section in the Appendix (Sec. A) to an elucidation of this

mode of failure using a H2O:Cl− system as an example. In the same section we show that a

simple increase in the damping of QM/MM polarization interactions is sufficient to prevent

the QM/MM polarization catastrophe.

C. Repulsive MM potential

Like most QM/MM models, our initial model used a classical, atom-pairwise description

of QM/MM dispersion-repulsion (vdW) interactions (cf. (8)). This strictly classical descrip-

tion has the disadvantage of being insensitive to the electronic degrees of freedom in the

QM subsystem, that is to say the QM/MM vdW energy only depends on the positions and

species of the atoms. The most striking manifestation of this deficiency is that electrons

in the QM subsystem do not experience any Pauli repulsion from MM sites. This can be

especially problematic when the MM site is a cation, whose electrostatic potential attracts

the QM electrons. With no Pauli repulsion to balance this attraction, unphysical charge

transfer from QM to MM takes place.

A number of approaches have been proposed to circumvent the problem (see e.g.84–87), but

not in the context of linear-scaling QM methods, where it becomes particularly problematic.

This is because the spilled electrons accumulate near the peripheries of the localization

regions, disrupting SCF convergence, which assumes localized orbitals to be well-decayed at

the truncation point.

We refer the reader to the Appendix (Sec. B) for a case study of this undesired effect on
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a H2O:K+ system, where we also demonstrate the feasibility and accuracy of an improved

model which eliminates this issue. The improvement consists in replacing the repulsive

term of Halgren’s vdW potential with a density overlap model86 that is sensitive to the QM

electronic degrees of freedom, accounting for QM/MM Pauli repulsion. We retain Halgren’s

classical description for QM/MM dispersion interactions.

In an overlap model the Pauli repulsion energy is assumed to be proportional to the

overlap between densities, i.e.

EQM/MM
rep =

ˆ
n (r)

NMM∑
L

κLn
MM
L (r−RL) dr, (25)

where n (r) is the QM electronic density, nMM
L (r) is a model density centered on MM atom

L, and κL is a proportionality constant with a suitable unit.

A reasonable model density is that of a 1s Slater-type function:

nMM
L (r) = |ψ1s,L (r)|2 =

ζ3L
π
e−2ζLr. (26)

Instead of working with model densities we can think of MM atoms as equipped with a

model repulsive electrostatic potential, leading to an equivalent energy expression:

EQM/MM
rep =

ˆ
n (r)

NMM∑
L

vMMrep
L (r−RL) dr (27)

together with an equivalent MM repulsive potential

vMMrep
L (r) =

κLζ
3
L

π
e−2ζLr =

AL

π
e−2ζLr, (28)

characterized by two parameters – a magnitude A and an inverse-width ζ, both of which

depend on the chemical species of MM atom L.

The form of (27) is that of a static external potential acting on the electronic density,

which means vMMrep (r) =
∑NMM

L vMMrep
L (r−RL) can simply be added to vext (r) in (2), and

no new energy gradient expressions need to be derived for this term. Unless stated otherwise,

all results presented in this paper have been obtained with the model that includes the MM

repulsive potential (and excludes the repulsive contribution from the Halgren QM/MM vdW

expression).

As regards computational efficiency, we point out that the integral in (27) only needs to

be computed over the union of localization spheres of the QM subsystem (since n (r) vanishes

elsewhere). Furthermore, and more importantly, since vMMrep
L (r) decays exponentially, only
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those regions of the QM subsystem that are within a short cutoff radius (say, 5 Å) from any

MM atom need to be considered. Generating vMMrep
L (r) in a sphere around RL, with the

sphere radius system-size independent, is an O(1) operation for a single MM atom L. The

number of MM atoms within a cutoff radius from the QM subsystem will be proportional

to the surface area of the QM subsystem, and so to N
2/3
QM. The total cost of evaluating (27)

thus scales O(N
2/3
QM).

Naturally, physically reasonable values for AL and ζL need to be determined for all species

of interest appearing in the MM subsystem. As a proof of concept, in Sec. IVA we show

how suitable values can be found for Cl−, K+ and H2O.

IV. RESULTS

In this section we demonstrate the accuracy and viability of the proposed approach on

a number of systems. In all QM calculations we used the PBE88 exchange-correlation func-

tional, with an empirical dispersion correction in the Elstner71 formulation, with parameters

determined by Hill et al.70. The NGWF localization radius was set to 3.7 Å.

A. Interaction energy curves

We begin by examining the interaction energy curves of three simple systems: H2O:K+,

H2O:Cl− and a water dimer. The latter two systems were studied in our earlier works5,52,

using a different QM/MM model, and using energy decomposition analysis (EDA) to com-

pare AMOEBA against a high-quality DFT functional ωB97X-V89. For each of the systems

we compare the predictions of the QM/MM model that is the focus of this paper, and those

of AMOEBA, against reference results obtained from fully QM calculations (i.e. PBE-D as

described above). All QM calculations used a kinetic energy cutoff of 1290 eV.

By performing a parameter scan in the space of {A, ζ} we established MM repulsive

potential parameters for K+ that, for this system, are optimal in the sense of minimizing

the mean squared difference between the interaction energy curves from QM/MM and fully

QM calculations. The values we obtained are AK+ = 230Ha/e and ζK+ = 1.379 a−1
0 . The

interaction energy curves are compared in Fig. 1. AMOEBA (green curve) is seen to model

this interaction faithfully, with the position of the minimum accurate to 0.007 Å and only

very slight underbinding (less than 1 kcal/mol). This degree of agreement is expected, since
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Figure 1. Interaction energy for a H2O:K+ system as a function of the O··K+ distance. QM/MM

results (blue) are compared against full QM (black). Pure MM results obtained with AMOEBA

are shown in green.

the charge density of K+ is tightly localized and thus well-approximated by a point multipole

model, with very little charge penetration error. The QM H2O/MM K+ description is in

even better agreement with full QM – the position of the minimum is accurate to 0.002 Å

and the energy is no further than 0.3 kcal/mol from the fully QM result for all interatomic

separations.

We now turn our attention to the H2O:Cl− system, which we expect to be more dif-

ficult for a polarizable point dipole model due to the larger electronic delocalization of

Cl−, which increases the charge penetration error. By following the same protocol as for

the H2O:K+ system, we established optimal parameters for the repulsive MM potential for

Cl−: ACl− = 250Ha/e and ζCl− = 1.140 a−1
0 , which, compared to K+, represent a marginally

stronger and somewhat less localized potential, consistent with expectations.

The interaction energy curves are compared in Fig. 2. Compared to our QM reference,

AMOEBA is seen to underbind at all interatomic separations, particularly at short distances,

where the magnitude of the error increases from ≈ 1 kcal/mol to over 5 kcal/mol. A large

fraction of this error can be attributed to the neglect of charge transfer. In our reference fully

QM calculations as much as 0.22 e is transferred from the Cl− ion to the water molecule at the

shortest studied separation (2.8 Å), corresponding to a stabilizing effect of ≈ −5 kcal/mol.

As the separation is increased, this charge transfer becomes less pronounced – at 4 Å only

0.05 e is transferred and the corresponding change in energy is only about −0.2 kcal/mol.

However, we must acknowledge the fact that the QM reference curve against which

AMOEBA is benchmarked is too a result of a physical model. DFT calculations involve
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Figure 2. Interaction energy for a H2O-Cl− system as a function of the O··Cl− distance. QM/MM

results (blue) are compared against full QM (black). Pure MM results obtained with AMOEBA

are shown in green.

a number of approximations, chief among which are the use of an approximate exchange-

correlation functional, the pseudopotential approximation, the use of a finite basis, and –

in linear-scaling DFT – the use of finite radii for the localized orbitals. Different choices

for these parameters will lead to slightly, but noticeably, different interaction energy curves,

particularly since the water molecule is well-known to be difficult to describe with GGA

DFT (see e.g. Refs. 90–92). For instance, when instead of PBE, ωB97X-V89 is used for

the same system (as reported by some of us in Ref. 5, cf. Fig. 3 therein), the reference

curve shifts upwards by ≈ 1 kcal/mol in the long range (practically matching AMOEBA),

and by as much as ≈ 3.2 kcal/mol at 2.8 Å, reducing AMOEBA’s perceived underbinding

at the shortest separation studied here to 2 kcal/mol. We thus caution against treating all

differences between MM and QM reported here strictly as deficiencies of the MM model.

Naturally, charge penetration error is also expected to be more significant for Cl− than for

K+. AMOEBA does not explicitly model charge transfer or account for charge penetration

and must resort to approximating these effects through polarization and vdW interactions.

More severe underbinding at short distances leads to a shift in the position of the minimum,

which, compared to our QM reference, AMOEBA overestimates by 0.08 Å (or 0.05 Å against

the QM reference of Ref. 5). Our QM/MM model achieves better agreement with fully QM

results, underbinding by less than 2 kcal/mol, with the magnitude of the error being almost

independent of the distance between Cl− and the water molecule. Thus, the predicted

interaction energy curve is very similar in shape to the reference one, only shifted by a

constant, and the position of the minimum is predicted very accurately (to 0.002 Å), showing
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the QM/MM interface to be well-balanced in this scenario.

We now turn our attention to the H2O dimer. In earlier work52 on the same system

we showed that charge penetration is significant at the equilibrium distance and below it,

making this system challenging for AMOEBA, which has to compensate for CPE by ar-

tificially softening the repulsive vdW wall, relying on cancellation of errors to model the

hydrogen bond. Thus (cf. Fig. 3), the agreement between AMOEBA and a fully QM calcu-

lation worsens at short separations, where AMOEBA underbinds by as much as 4 kcal/mol

(2.9 kcal/mol against the QM reference of Ref. 5), but is still remarkably good at the equi-

librium distance and beyond, where AMOEBA underbinds by only ≈ 0.5 kcal/mol. The

r.m.s. error across the entire curve is 1.1 kcal/mol. The position of the minimum is also

predicted accurately (to 0.004 Å).
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Figure 3. Interaction energy for a water dimer as a function of the O··O distance. QM/MM results

(blue) are compared against full QM (black). Pure MM results obtained with AMOEBA are shown

in green.

Determining suitable parameters for our model’s repulsive MM potential for O and H

atoms is more challenging than in the previous two cases. First, there are four parameters

to be simultaneously optimized (AH, ζH, AO, ζO), making the parameter scan more involved.

Second, if our model is to be well-transferable, it must accurately describe both the situation

where the hydrogen bond donor is described by QM (and the acceptor by MM), and the

situation where QM is used to describe the hydrogen bond acceptor (and MM – the donor).

After a thorough parameter scan we determined the following suitable values for the

parameters of the MM repulsive potential: AH = 35Ha/e, ζH = 2.40 a−1
0 , AO = 550Ha/e,

ζO = 1.58 a−1
0 . With these values the interaction energy curves predicted by our QM/MM
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model (Fig. 3, blue curves) are in very good agreement with fully QM results. When QM is

used to model the hydrogen bond donor (solid blue curve), the r.m.s. error in energy across

the entire curve is 0.7 kcal/mol and the position of the minimum is accurate to 0.002 Å. When

QM is used to model the hydrogen bond acceptor (dashed blue curve), the r.m.s. error in

energy is only 0.4 kcal/mol, but the position of the minimum is predicted less accurately and

is underestimated by 0.026 Å. Crucially, in both cases the interaction energy curve stays

within 1 kcal/mol from the reference curve obtained with fully QM calculations, even at

separations below the equilibrium distance. This indicates that the QM/MM interface in

our model is well-balanced even in the presence of hydrogen bonds.

The above examination of the performance of our QM/MMmodel for three representative

systems (MM cation, MM anion, MM neutral molecule with a hydrogen bond spanning the

QM/MM interface) can be considered a proof of concept. We showed that our QM/MM

model is stable for all studied intermolecular separations, even well below the equilibrium

distance, and that it gives reasonable predictions for interaction energy profiles, which we find

remarkable given that in the studied systems the crucial interactions crossed the QM/MM

boundary.

In all examples so far we used the H2Omolecule for the QM subsystem and so the question

of whether our QM/MM model is transferable, particularly concerning the parametrization

of the MM repulsive potential, remains open. In the text that follows we will examine

the model’s performance for a number of different molecules, both neutral and charged,

demonstrating that it is indeed transferable as its predictions remain accurate.

The need to determine suitable parameters for the repulsive MM potential of all MM

species of interest can be seen as a weakness of our model. Intuitively, one would hope that

the parameters AL and ζL could be derived from corresponding classical vdW parameters εL

and R0
L – e.g. we expected AL ∼ εL and ζL ∼ 1/R0

L. However, we found this not to be the

case. For instance, for the parameters we determined AH

AO
≈ 15.7, whereas εH

εO
≈ 8.1, that is,

our model uses a substantially weaker potential on H. Similarly, we have ζH
ζO

≈ 1.52, whereas
1/R0

H

1/R0
O
≈ 1.28, meaning the potential on H used in our model is also slightly tighter.

One reason is that while vMMrep
L (r) (cf. (28)) is linear in AL just like EMM

vdW (Rij) (cf. (8))

is linear in εL, the energy expression (27) for EQM/MM
rep is not linear in AL. This is because

n (r) implicitly depends on AL, that is to say, the electronic density responds to the MM

repulsive potential by deforming accordingly. Thus, not only is EQM/MM
rep not linear in AL,
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but also other energy terms are indirectly influenced by the repulsive MM potential through

the change in n (r). Another reason is that the vdW parameters adopted in AMOEBA

have been fitted to partially compensate for the deficiencies in the classical treatment of

electrostatics, some of which are no longer present in our QM/MM formulation. Finally,

AMOEBA employs additional “tweaks” in its vdW formulation, for instance the repulsive

sites of H atoms are slightly offset from the actual atomic sites (“reduction factor”).

While we plan to investigate routes for automatically obtaining AL and ζL in future work,

in this paper we will focus on MM water, for which we have obtained good parameters

already. In this way we can apply our model to a large class of systems that is of practical

interest – QM solutes embedded in MM water. We defer applications with different MM

species to a later time.

B. Interaction energies of solutes with water shells of increasing size

Table I. Comparison of interaction energy accuracy offered by fixed point charge (GAFF) and

multipolar polarizable (AMOEBA) force-fields in MM calculations and QM/MM calculations, and

by electrostatic embedding (QM+EE). The values shown are errors (kcal/mol) with respect to

DFT (PBE-D) reference calculations, averaged over systems with 200+ H2O molecules. RMSE:

root mean square error, MSE: mean signed error.

molecule MM MM QM+EE QM/MM QM/MM

GAFF AMOEBA (point-charge) GAFF AMOEBA (this work)

(–)-menthol 11.1 2.7 17.1 5.0 1.9

diphenylhydramine 15.3 1.5 36.4 10.8 −3.4

2-Cl-4-OH-3,5-dimethoxy-BALD 6.2 1.0 22.2 4.9 −1.4

NH3 3.1 1.9 0.9 1.3 2.9

NH+
4 5.7 1.7 −5.0 4.4 0.0

CN− −5.8 9.0 −2.2 −4.9 4.0

RMSE 8.9 4.0 18.9 5.9 2.6

MSE 5.9 3.0 11.6 3.6 0.7

We now set out to demonstrate the transferability of our model, turning our attention to

a number of QM solutes embedded in spherical shells of MM water. We will use the same

systems and the same methodology as in our earlier work51 – the QM subsystem will only

encompass the solute, and we will study the behavior of the QM/MM system as the size of

the MM H2O shell is increased (cf. Fig. 3 in Ref 51).
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Figure 4. Error in the solute-solvent interaction energy with increasing number of H2O molecules

surrounding the solute with reference to DFT calculation – with fixed point charge embedding

(red, ⋄), with GAFF embedding (orange, ×), with AMOEBA embedding (blue, �), and in purely

MM calculations with GAFF (grey, �) and AMOEBA (green, ◦). In QM/MM calculations only

the solute is included in the QM subsystem.
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Three of the solutes were chosen from the SAMPL4 blind challenge93: a) (–)-menthol,

b) diphenylhydramine, and c) 2-chloro-4-hydroxy-3,5-dimethoxybenzaldehyde. These moderately-

sized molecules (31, 40, and 23 atoms, respectively) encompass a number of chemical fea-

tures: a cyclohexane ring (a), an ether group (b), an aromatic ring (b), an amine group

(b), a halogen atom (c), and an aldehyde group (c). The remaining three molecules were d)

ammonia (NH3), e) the ammonium ion (NH+
4 ) and f) the cyanide ion (CN−) – were chosen

with the aim of verifying if our model correctly describes small and charged solutes.

We compared four computational approaches:

a) Fully QM calculations with no embedding (entire system treated at the DFT level of

theory), which serve as reference;

b) QM calculations using a purely electrostatic embedding, where the QM subsystem

encompassed only the solute, and H2O molecules were described with fixed partial

charges. In this set-up only a fixed, external potential is included in the QM Hamil-

tonian; we emphasize the neglect of vdW interactions between the QM and the em-

bedding;

c) QM/MM calculations with either a fixed point-charge embedding (GAFF v1.594) or a

polarizable embedding (AMOEBA). Here too the QM subsystem encompassed only the

solute, and all water molecules were described by a classical force field. For the fixed

point-charge (GAFF) embedding vdW interactions between the solvent and solute were

included at the MM level of theory (Lennard-Jones potential). Thus, the MM repulsive

potential introduced in Sec. III C was not used in this case. Similarly, polarization

damping (Sec. III B) was not relevant here as the force field was not polarizable. For

the polarizable embedding (AMOEBA) we used the final, refined QM/MM model, as

described in Secs. III B-III C;

d) Fully MM calculations, where the entire system was treated classically (with GAFF

or AMOEBA).

In fixed point charge QM/MM calculations and in QM calculations with fixed point-

charge embedding we used partial charges of 0.417 e for H atoms and −0.834 e for O atoms,

which are identical to the TIP3P95 model used in GAFF. All QM calculations used a kinetic

energy cutoff of 1000 eV. The configurations were prepared by solvating the solutes in ap-

prox. 660 explicit H2O molecules under periodic boundary conditions. Classical polarizable
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MD trajectories in the NpT ensemble (p = 1 atm, T = 298 K) were then obtained, and the

final configurations after 50 ps were used. Final densities were 1.00±0.01 g cm−3. For details

on how the configurations were processed for calculations under open boundary conditions,

details of cutoffs assumed and the models and parameters used for the solutes and water,

see Ref. 51, Sec. 3.B.1.

We begin by comparing the interaction energies between the QM solute and the MM water

shell as a function of the size of the shell (number of H2O molecules). To better elucidate the

long-range behavior, in Fig. 4 we only plot the error in the energy with respect to the fully

QM calculation that we use as reference. Even though the systems studied here are the same

as in our earlier work51, we point out that the energy error curves are not directly comparable

with those of Ref. 51, since in current work we used a more refined QM approach with in

situ optimized NGWFs both for QM/MM calculations and for the fully QM reference.

Our first observation is that for all six systems purely MM calculations with AMOEBA

(green circles) clearly outperform GAFF (grey diamonds). With the exception of NH3 and

CN−, typical errors in the GAFF description are at least three times larger than their

AMOEBA counterparts. Even in cases where GAFF fares relatively well (NH3), or where

AMOEBA’s error is rather large (CN−), long-range behavior is clearly much better described

by AMOEBA. This can be appreciated from the much flatter profiles of the AMOEBA

curves, which indicate an almost constant energy shift from the reference QM calculation.

The energy changes from adding subsequent water molecules are more erratic for GAFF

and the convergence with the number of H2O molecules is much worse. As expected, this is

particularly pronounced for charged solutes – in the case of CN−, for instance, the binding

energy is not well converged even at 400 MM H2O molecules. We attribute this to polar-

ization partly compensating for the boundary effects that result from truncating the water

shells.

The behavior of point-charge electrostatic embedding (QM+EE, red diamonds) is best

understood by comparing it against QM/MM with GAFF (orange crosses), since these two

approaches only differ by the neglect of QM/MM vdW interactions in the former. This

neglect leads to a very rapid accumulation of error at short range, particularly for larger

solutes (a, b, c), where this interaction is more significant. At longer range QM/MM vdW

interactions are well-decayed, which is reflected in the almost identical profiles of QM/MM-

GAFF and QM+EE curves starting at approx. 150 H2O molecules for large solutes (a, b, c)
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and as early as approx. 50 H2O molecules for small solutes (d, e, f). As expected, the ne-

glect of QM/MM vdW interactions makes the QM+EE approach inadequate for calculating

interaction energies between the QM solute and embedding, although occasionally (e.g. for

NH3 and CN−) the error fortuitously cancels out some of the errors in the electrostatics.

It is also worthwhile to compare the results of QM/MM-GAFF (orange crosses) against

purely MM GAFF calculations (grey diamonds), because it reveals the effect of treating the

solute at the QM level of theory, all other components of the two models being identical. For

all six solutes QM/MM-GAFF is more accurate, and, as the long-range profiles of the two

curves are almost identical, it is clear that this gain in accuracy is due to a much improved

description of short-range interactions, i.e. the ability of the QM subsystem to realistically

polarize in response to the MM environment.

Of greatest interest to this paper is, of course, the comparison between QM/MM-

AMOEBA (blue squares) and QM/MM-GAFF (orange crosses). In terms of absolute errors

in energy, our model outperforms QM/MM-GAFF in all cases except for NH3. Moreover,

the long-range behavior of QM/MM-AMOEBA is much better (flatter curves), particularly

for charged solutes, where all fixed-point charge approaches (MM-GAFF, QM/MM-GAFF,

QM+EE) clearly suffer from neglecting polarization. Out of all five models the QM/MM-

AMOEBA model has the lowest maximum error in the long range (4 kcal/mol for CN−,

compared with 9 kcal/mol of AMOEBA, and maximum errors in excess of 10 kcal/mol for

the other approaches). We summarize these results in Table I, from which it also becomes

clear that, when averaged over all six systems, our approach has the lowest signed and

unsigned errors of all the considered approaches.

C. Dipole moments of solutes in water shells of increasing size

Satisfied that the energetics of our QM/MM interface is accurate, we now focus on how

the QM solute is affected by the presence of the QM/MM interface. Naturally, we would like

the electronic structure of the QM solute in the presence of MM embedding to resemble the

electronic structure of the full QM system as much as possible, i.e. for the MM embedding

to faithfully mimic QM. Since we cannot compare electronic energy levels between QM/MM

and full QM, and comparing electronic densities would require density partitioning, we will

use the total dipole moment of the solute as a proxy.

In Fig. 5 we plot the magnitudes of the solute dipole moment for the same six solutes
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Figure 5. Comparison of solute dipole moments with increasing number of H2Omolecules surround-

ing the solute – with fixed point charge embedding (red, ⋄), with GAFF embedding (orange, ×),

with AMOEBA embedding (blue, �), and in purely MM calculations with GAFF (grey, �) and

AMOEBA (green, ◦). Reference QM calculations: black, +. In QM/MM calculations only the

solute is included in the QM subsystem.
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Table II. Comparison of solute dipole moment accuracy offered by fixed point charge (GAFF) and

multipolar polarizable (AMOEBA) force-fields in MM calculations and QM/MM calculations, and

by electrostatic embedding (QM+EE). The values shown are r.m.s. errors (debye) with respect to

DFT (PBE-D) reference calculations, averaged over all systems (solute + water shells). RMSE:

root mean square error.

molecule MM MM QM+EE QM/MM QM/MM

GAFF AMOEBA (point-charge) GAFF AMOEBA (this work)

(–)-menthol 0.31 1.13 1.19 1.14 0.77

diphenylhydramine 3.00 1.18 0.32 0.24 0.38

2-Cl-4-OH-3,5-dimethoxy-BALD 0.45 0.73 0.30 0.28 0.61

NH3 0.47 0.94 0.95 0.95 0.70

NH+
4 0.74 0.41 0.02 0.02 0.05

CN− 1.69 0.11 0.13 0.14 0.11

RMSE 1.47 0.84 0.65 0.63 0.52

as a function of the size of the water shell. In QM/MM calculations the solute (QM)

dipoles are immediately available. In fully QM calculations the solute dipoles were obtained

from DMA analysis. In fully MM calculations the solute dipoles are either obtained by a

suitable vector summation of permanent dipoles with induced dipoles (AMOEBA) or, in

the absence of polarization, are simply constant (GAFF). For neutral systems the dipole

moment is invariant to the choice of the reference point. For charged systems, and in fully

QM calculations where charge transfer between the solute and solvent can make the total

solute charge non-zero, we chose the centroid of the molecule as the reference point.

Our first observation is that, particularly for larger solutes, the solute dipole moment is

rather sensitive to the environment and can change abruptly depending on where subsequent

H2O molecules are added. The qualitative behavior of this sensitivity is captured to a

similar degree by all models, except of course MM-GAFF, which does not permit solute

polarization. The accuracy of the constant dipole moment of the GAFF solute is hit-

and-miss – e.g. GAFF’s prediction is excellent for (–)-menthol, severely underestimated

for diphenylhydramine and NH+
4 , and severely overestimated for CN−.

The predictions of QM+EE (red diamonds) and QM/MM-GAFF (orange crosses) are

expected to be identical, since the two approaches only differ by the absence/presence of

a classical QM/MM vdW term that does not affect the electronic degrees of freedom. In

practice we observe very small differences (< 0.1D) that are the consequence of different
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smearing of the singularities of the Coulombic permanent fixed-point charges of the embed-

ding on the Cartesian grid on which electronic density is evaluated in onetep.

For all six solutes the predictions of our QM/MM model are more accurate than those

of AMOEBA, indicating the expected superiority of a QM description of the solute (this is

most striking for NH+
4 , which is underpolarized with AMOEBA). For three of the six solutes

((–)-menthol, NH3, CN
−) the predictions of our model are closest to the fully QM results

in absolute terms. For the remaining three molecules our model is slightly less accurate

than QM/MM-GAFF, but not much so. Furthermore, this only happens when AMOEBA

itself fares worse (diphenylhydramine, 2-Cl-4-OH-3,5-dimethoxy-BALD, and NH+
4 ), possibly

implicating the polarizable water model, rather than the QM/MM interface, as the culprit.

When the errors are averaged over all the systems, our QM/MM model yields the lowest

RMSE. Details are summarized in Tab. II.

D. Interaction energies of solutes with 1st solvation shell
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Figure 6. Interaction energies (kcal/mol) between three solutes (H2O, Cl− and Na+) and their

first solvation shells – comparison of MM and QM/MM models (y axis) with fully QM reference

results (x axis) for 100 snapshots.

We now turn our attention to the interaction between three solutes: H2O, Cl−, Na+

and their first solvation shells. The three solutes are meant to be representative of neutral,

anionic, and cationic species, respectively. To benchmark our QM/MM approach we model

only the solute at the QM level of theory, while the solvent (water) is be described by

AMOEBA. We calculate solute-solvent interaction energies, comparing the performance of
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Table III. Comparison of accuracy offered by fixed point charge (GAFF) and multipolar polarizable

(AMOEBA) force-fields in MM calculations and QM/MM calculations for the interaction energies

between three solutes (H2O, Cl− and Na+) and their first solvation shells. ∆E are errors in energy

(kcal/mol) with respect to DFT (PBE-D) reference calculations, averaged over all 100 snapshots:

∆Erms – root mean square error, ∆Emse – mean signed error, ∆Emax – maximum error. r is

the Pearson correlation coefficient between Emodel and EQM, a is the slope of linear fit of Emodel

vs. EQM. Values in blue denote the most accurate model in each category, values in red denote

the least accurate model. Values in parentheses were obtained with alternative vdW parameters

for Cl− (see text).

system MM MM QM/MM QM/MM

GAFF AMOEBA GAFF AMOEBA (this work)

∆Erms 2.1 1.7 3.1 1.4

∆Emse −0.8 1.3 −2.4 0.9

H2O-H2O ∆Emax 6.2 4.6 7.3 3.7

r 0.88 0.96 0.91 0.95

a 1.05 0.91 1.17 0.85

∆Erms 15.8 (10.7) 6.6 3.9 4.1

∆Emse −12.7 (5.8) −1.1 −1.4 3.9

Cl−-H2O ∆Emax 40.2 (31.2) 20.7 9.4 7.1

r 0.47 (0.51) 0.53 0.92 0.98

a 0.77 (0.82) 0.57 1.23 0.97

∆Erms 10.4 1.0 10.5 13.5

∆Emse −9.2 0.5 −9.3 −13.3

Na+-H2O ∆Emax 19.2 2.9 19.3 19.4

r 0.95 0.99 0.95 0.95

a 1.50 0.96 1.50 0.99

our approach against a non-polarizable model (QM/MM-GAFF), and purely classical models

(where the entire system is described with GAFF or AMOEBA). Our aim is to verify

whether our QM/MM interface correctly reproduces the purely QM results obtained at

the same level of theory. Thus, our reference is pseudopotential DFT+D with PBE, the

limitations of which we acknowledged earlier. We caution the reader against interpreting

the discrepancies between MM results and our reference as “failures” of MM in absolute

terms.

To obtain meaningful statistics, we performed calculations for 100 configurations (for

each solute) obtained from MD runs, where each solute was solvated in 215 H2O molecules.

In each MD snapshot all but N1st H2O molecules closest to the solute were then stripped,
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leaving only the first solvation shell. The values of N1st were 4, 8 and 6 for H2O, Cl−, and

Na+, respectively. The configurations studied are the same as used in our earlier work52.

For a more detailed description of how the configurations were obtained, and the rationale

for choosing N1st, we refer the reader to Ref. 52, Sec. III.C.

The calculated solute-solvent interaction energies are plotted in Fig. 6, while Table III

reports crucial statistics. For the H2O solute our QM/AMOEBA model performs well, with

a general trend of underbinding by about 1 kcal/mol, and comparing favorably against

QM/GAFF in all five metrics (rms error, mean signed error, maximum error, correlation

coefficient and slope of linear fit to the model’s interaction energy vs. reference). We find this

rather remarkable, since QM/MMmodels are typically not very good at reproducing interac-

tion energies spanning the interface. The largest error for our model is 3.7 kcal/mol, which is

better than pure AMOEBA (4.6 kcal/mol), and much better than pure GAFF (6.2 kcal/mol)

or QM/GAFF (7.3 kcal/mol). The correlation between the model and reference is also very

good (r = 0.95), although pure AMOEBA does marginally better (r = 0.96).

The Cl− solute exposes the weaknesses of purely MM treatments. GAFF is particularly

inaccurate here, with rms and mean signed errors in excess of 10 kcal/mol and a maximum

error of over 40 kcal/mol, which is not surprising, given the likely importance of polarization

effects in this sytem, for both the solute and solvent. These results were obtained using the

vdW parameters proposed by Fox and Kollman96: R∗ = 1.948 Å, ε = 0.265 kcal/mol, which

we used for consistency with previous work. We note in passing that GAFF performs

slightly better here when vdW parameters tailored specifically for Cl− in TIP3P water are

used (Joung and Cheatham97: R∗ = 2.513 Å, ε = 0.0356 kcal/mol). The improved values

are shown in parentheses in Table III.

AMOEBA’s predictions are better (rms error of 6.6 kcal/mol), but it does not avoid

occasional embarrassments (max error of 20.7 kcal/mol). Both QM/MM models perform

significantly better, which highlights the importance of treating the Cl− ion at the QM level

of theory, in order to be consistent with the latter. Our QM/AMOEBA model correlates

better with pure QM (r = 0.98 against r = 0.92 for QM/GAFF, linear slope of 0.97 against

1.23 for QM/GAFF), but it is seen to underbind slightly across the board (rms error of

4.1 kcal/mol, compared to 3.9 kcal/mol for QM/GAFF). Its maximum error is 7.1 kcal/mol,

which is rather large, but still better than QM/GAFF (9.4 kcal/mol) and much better than

the double-digit errors of MM models.
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For Na+ and its first solvation shell AMOEBA performs very well, while all the re-

maining models are rather inaccurate. Since Na+ is a compact, barely polarizable ion,

it is well-described by MM methods. This explains why GAFF results are almost iden-

tical to QM/GAFF results. What is significantly more important in this system is the

description of the water solvent. GAFF’s water model cannot capture the polarization of

the solvent, which is highly relevant here, due to the charge on the Na+ solute. Thus

GAFF and QM/GAFF both yield a poor description of the whole system, with rms errors

above 10 kcal/mol and maximum errors of almost 20 kcal/mol. This is despite using vdW

parameters for Na+ that were specifically tailored for a sodium ion in TIP3P water (97,

R∗ = 1.369 Å, ε = 0.087439 kcal/mol). AMOEBA, in contrast, performs very well, with

an rms error of only 1 kcal/mol and good correlation with purely QM results (r = 0.96),

highlighting the importance of a polarizable description of the water solvent. Since our

QM/AMOEBA model shares its description of the solvent with AMOEBA, one would ex-

pect it to yield a similarly good description. However, this is not the case. While the

correlation with purely QM results is good (r = 0.95, slope of 0.99), there is significant

overbinding for all snapshots, leading to large errors in energy, dominated by a mean signed

error of -13.3 kcal/mol. This almost constant shift points to a deficiency of our QM/MM

interface in handling cationic solutes, presumably due to the repulsive MM potential having

been parametrized only using H2O-H2O interactions. We attribute the observed overbinding

to an insufficient repulsion between the compact Na+ and nearby MM oxygen atoms.
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Figure 7. Interaction energies (kcal/mol) between three solutes (H2O, Cl− and Na+) and their first

solvation shells – comparison of QM/AMOEBA using fixed pseudoatomic orbital basis and in situ

optimized minimal basis (y axis) with fully QM reference results (x axis) for 100 snapshots.

We will now briefly investigate the effect of using in situ optimized orbitals on the quality
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Table IV. Comparison of accuracy offered by the QM/AMOEBA model for the interaction energies

between three solutes (H2O, Cl− and Na+) and their first solvation shells depending on the quality

of the QM basis set. ∆E are errors in energy (kcal/mol) with respect to DFT (PBE-D) reference

calculations, averaged over all 100 snapshots: ∆Erms – root mean square error, ∆Emse – mean

signed error, ∆Emax – maximum error. r is the Pearson correlation coefficient between Emodel and

EQM, a is the slope of linear fit of Emodel vs. EQM. Nbasis is the number of QM basis functions for

the solute. Values in blue denote the most accurate model in each category, values in red denote

the least accurate model.

system QM/MM AMOEBA QM/MM AMOEBA QM/MM AMOEBA QM/MM AMOEBA

SZ DZP TZP in situ optimized minimal

∆Erms 34.1 4.8 4.1 1.4

∆Emse 31.2 4.2 3.6 0.9

H2O-H2O∆Emax 68.4 10.9 10.1 3.7

r −0.07 0.78 0.82 0.95

a −0.26 0.75 0.79 0.85

Nbasis 6 23 29 6

∆Erms 8.6 7.4 6.1 4.1

∆Emse −8.4 −7.2 −5.8 3.9

Cl−-H2O ∆Emax 13.9 12.0 10.0 7.1

r 0.96 0.97 0.97 0.98

a 0.99 1.00 1.00 0.97

Nbasis 9 13 17 9

∆Erms 12.8 12.9 12.9 13.5

∆Emse −12.6 −12.7 −12.8 −13.3

Na+-H2O∆Emax 18.1 18.5 18.5 19.4

r 0.95 0.95 0.95 0.95

a 0.99 0.99 0.99 0.99

Nbasis 8 21 29 8

of QM/AMOEBA. We calculated the interaction energies of the three systems from Fig. 6

using fixed pseudoatomic orbitals (single-zeta, double-zeta and polarization, triple-zeta and

polarization) and compared them with results obtained using an in situ optimized minimal

basis. We report the results in Fig. 7 and Table IV. As expected, for a compact Na+ cation

a minimal (SZ) basis is sufficient, and increasing the flexibility of the basis makes very

little difference, with the slope and correlation coefficients practically unchanged, and an

essentially rigid shift of the interaction energies by 0.5−0.7 kcal/mol compared to an in situ

optimized basis. Since our model systematically overbinds this system, the resultant shift

actually makes the fixed-basis results marginally better, owing to cancellation of a small
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fraction of the error. For a diffuse Cl− anion the effect of the basis size is more pronounced,

with a clear systematic improvement of about 1.5 kcal/mol in the MSE for each time the

basis set quality is increased, although the optimized basis “overshoots” by a small amount,

underbinding by 3.9 kcal/mol. Nevertheless, QM/MM with an in situ optimised basis yields

the most accurate results under all metrics, except for the slope (where the differences

between basis set qualities are marginal). For H2O the effect of using an optimized basis

is dramatic, which is expected, since we anticipate the orbitals in a molecule to be poorly

described with small basis sets. Consequently, a minimal fixed basis (SZ) yields entirely

wrong results, consistently predicting large and positive interaction energies, with an MSE as

large as 31.2 kcal/mol. The addition of polarization functions improves results dramatically,

but convergence with the size of the basis set is slow – DZP yields an MSE of 4.2 kcal/mol,

and TZP yields 3.6 kcal/mol, with correlation coefficients of only ∼ 0.8. Only when in

situ optimized orbitals are used do the results improve markedly – the MSE falls below

1 kcal/mol, the correlation coefficient exceeds 0.95, and maximum error diminishes by a

factor of 2.7 compared to TZP. The optimized orbital formulation of QM/AMOEBA is a

clear winner in this case, underscoring the advantages of using an in situ optimized basis

set for the QM subsystem.

E. Dipole moments of solutes with 1st solvation shell

Having examined the energetics of our model, in the last step of our analysis we will

verify how the QM subsystem (solute) is affected by the presence of the QM/MM interface.

Following the rationale of Sec. IVC, we will compare solute dipole moments as a proxy

for the shape of the electronic density. As reference we use fully QM calculations, where

we partitioned the dipole moments into atomic contributions using DMA98. We compare

the magnitudes of the total solute dipole between the two QM/MM approaches (where the

solute dipole is simply the total QM dipole), and the two purely MM approaches (where the

solute dipole is directly obtained from atomic dipoles (including induced dipoles in the case

of AMOEBA) and charges).

We begin our discussion with the water pentamer system. While an isolated water

molecule is charge-neutral, and its dipole moment is position-independent, in fully QM cal-

culations of a solvated water molecule we observe moderate charge transfer (below ±0.1 e)

between the central H2O molecule and the solvation shell, which makes the solute dipole
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Figure 8. Dipole moments (magnitudes) of the solute (H2O) embedded inside a first solvation shell

– comparison of MM and QM/MM models (y axis) with fully QM reference results (x axis) for 100

snapshots. Left panel – total dipole moment evaluated at the centroid of the solute. Middle panel

– atom-centered dipole moment of solute O atom. Right panel – atom-centered dipole moment of

solute H atoms. MM GAFF and MM AMOEBA atom-centered dipoles (not shown here) cannot

be meaningfully compared with QM/MM because in these MM models point charges are fixed.

Furthermore MM GAFF atom-centered dipoles are zero by construction.

position-dependent, and necessitates choosing a reference point. For consistency with the

rest of this work, we chose the centroid of the solute as the point, where we evaluate the

dipole moment. The total dipole moments, as well as individual atom-centered dipole mo-

ments (for O and H atoms separately) are plotted in Fig. 8 and summarized in Tab. V.

Qualitatively, the total dipole moment of the central H2O molecule (solute) is described

similarly by both MM and QM/MM approaches – with substantial scatter and overpolariza-

tion (of about 0.6 D) relative to the purely QM results. We attribute this to the differences in

the description of the four surrounding H2O molecules – here only the reference uses a DFT

description, while both MM and QM/MM approaches use a classical description. Given

that standard DFT GGA models are known to struggle to correctly describe the structure

and properties of water (cf. e.g. Refs. 90–92), and that we expect the dipole moment to be

larger than the gas phase value (1.85 D) and lower than the value for bulk water (≈ 2.7 D)99,

we believe that it is in fact the reference calculation that underpolarizes the solvated H2O

molecule. Neither of the MM or QM/MM models seems to have a particular advantage in
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Table V. Comparison of solute dipole moment accuracy offered by fixed point charge (GAFF)

and multipolar polarizable (AMOEBA) force-fields in MM calculations and QM/MM calculations.

The values shown are r.m.s. errors (debye) with respect to DFT (PBE-D) reference calculations,

averaged over 100 snapshots.

solute MM MM QM/MM QM/MM

GAFF AMOEBA GAFF AMOEBA

(this work)

H2O 0.521 0.713 0.612 0.624

H2O (O atom) − − 0.099 0.059

H2O (H atoms) − − 0.229 0.136

Cl− 0.232 1.140 0.584 0.330

Na+ 0.044 0.021 0.013 0.007

this case, although QM/AMOEBA correlates slightly better with the reference.

It is more interesting to examine the individual atom-centered dipoles. Here we expect

MM and QM/MM results to differ substantially, because both MM approaches are disadvan-

taged by the constraint of fixed charge on the atoms, while in QM/MM the charge density

is free to transfer between atoms. GAFF, being non-polarizable, additionally yields zero

atom-centered dipoles by construction. Thus, it is only meaningful here to benchmark the

two QM/MM approaches against one another. For the O atom we find QM/AMOEBA to

be superior to QM/GAFF in terms of correlation with the reference result and a lower rms

error (0.059 D vs 0.099 D). For the H atom QM/GAFF does not reproduce the change in the

dipole moment between the snapshots at all, while QM/AMOEBA shows the right trend,

although it mostly overpolarizes.

We finish with an examination of the two ionic solutes (Fig. 9, Tab. V). We evaluate

the dipole at the position of the ion. For Cl− we find all approaches, except for the non-

polarizable GAFF, to generally overpolarize the ion, which is again expected, given the

differences between classical and DFT treatments of the water solvent. AMOEBA is the least

accurate, possibly because of the large magnitude of charge penetration error for a diffuse Cl−

ion. QM/AMOEBA performs better than QM/GAFF (rms error of 0.330 D vs. 0.584 D).

For Na+, which barely polarizes at all (µ < 0.1 D) QM/AMOEBA turns out the be the

most accurate (rms error of 0.007 D vs. 0.013 D for QM/GAFF), although all models are

qualitatively correct.

We conclude that, at least for small hydrated solutes, our model is superior to QM/GAFF
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Figure 9. Dipole moments (magnitudes) of two ionic solutes (left: Cl−, right: Na+) embedded

inside their first solvations shell – comparison of MM and QM/MM models (y axis) with fully QM

reference results (x axis) for 100 snapshots. NB.: In MM GAFF atom-centered dipoles are zero by

construction.

not only in how the QM subsystem is affected by the QM/MM interface, but also in better

energetics across the interface.

V. CONCLUSIONS

We presented and benchmarked a new mutually polarizable QM/MM model, where the

QM subsystem is described using DFT with in situ optimized, localized orbitals (non-or-

thogonal generalized Wannier functions, NGWFs), and the MM subsystem is described

using the AMOEBA force field. By implementing our model in the onetep linear-scaling

DFT framework, we pave the way for affordable large-scale QM/MM calculations, with QM

subsystems spanning thousands of atoms. However, in this work we only studied small QM

subsystems (up to 40 atoms), which are outside the linear-scaling regime.

The rationale for optimizing NGWFs is the near-complete-basis-set accuracy that they

enable even with a minimal basis. This high accuracy is comparable or superior to even
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very large bases with fixed orbitals68. As part of this work we derived and implemented

the necessary gradients of the total QM+MM energy with respect to the NGWFs, enabling

their in situ optimization also in the context of QM/MM calculations. We demonstrated

how the additional flexibility of an in situ optimized basis exacerbates known problems of

polarizable QM/MMmethods – catastrophic overpolarization of the QM region (particularly

in the presence of MM ions), and unphysical charge transfer (“charge spilling”) from QM to

MM sites (particularly in the presence of MM cations).

We developed, presented and validated conceptually straightforward solutions to both of

these issues. We demonstrated that QM overpolarization can be mitigated by modifying

the value of the Thole damping parameter only for polarization interactions spanning the

QM/MM interface. This suitably attenuates QM/MM polarization at very short range while

having negligible medium-range and long-range effect. We addressed the charge spilling by

introducing a more refined model of QM/MM Pauli repulsion interactions. This refine-

ment replaces classical Halgren vdW repulsion with an electrostatic repulsive potential orig-

inating on MM atoms, which is parametrized to mimic Pauli repulsion. This approach is

functionally equivalent to a density-overlap-based Pauli repulsion energy model with fixed,

species-dependent densities placed on MM atoms, and, crucially, actual QM densities. This

formulation is sensitive to the electronic degrees of freedom, which prevents the electronic

density from excessive spilling.

Our modified approach requires parametrizing the repulsive potential with two values per

MM species. We demonstrated how suitable values could be determined for K+ and Cl−

ions and for the atomic components of water, giving us confidence that this can be done in

principle. We did not identify a simple relation that would enable us to easily derive the

sought parameters from classical vdW parameters, but we plan to investigate this further

in future work.

We performed extensive tests to evaluate the transferability and reliability of our model

with focus on the MM treatment of water. Using a variety of molecules, from small ions

and neutral systems, to larger molecules (up to 40 atoms), we showed that our model is in

general, although not universally, superior to nonpolarizable QM/MM and to purely MM

approaches. This was reflected in lower disruptive effect of the QM/MM interface on the

QM subsystem (which we assessed by comparing the dipole moments against a fully QM

reference), but also by better energetics, when calculating interaction energies between the
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QM and MM subsystems. We find the latter particularly promising, as QM/MM models

are typically very poor at describing interaction energies across the QM/MM boundary.
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Appendix A: QM/MM polarization catastrophe: diagnosis and prevention

In this section we elaborate on the QM/MM polarization catastrophe (cf. Sec. III B) that

can arise when NGWFs in the QM subsystem are optimized in situ. We use an H2O:Cl−

system as an example. Fig. 10 shows the magnitudes of atom-centered dipoles computed

from the DMA procedure for QM atoms, and the induced dipole of the MM Cl− ion (whose

permanent dipole is of course zero) in the course of SCF optimization. A mutual positive

feedback can be observed to intensify at about step 80, quickly leading to absurdly large

dipole moments (in excess of 1000 D). The sharp, step-like changes to the dipole values

correspond to NGWF optimization steps and the relatively flatter parts of the graph –

to the density kernel optimization steps. The classical degrees of freedom (MM induced

dipoles) are fully optimized for each energy evaluation. The expected dipole moments on all

atoms (as calculated from a fully QM reference calculation), shown with dashed lines, are

well below 1 D. It is clear that the MM site in particular is overpolarized from the very first

step of the optimization.

The main underlying reason for this is the inaccuracy of the multipolar approximation of
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Figure 10. Atom-centered dipoles (magnitudes) on atoms in the QM subsystem (red, blue) and

in the MM subsystem (green) in the course of SCF optimization for a H2O-Cl− system (shown in

inset). In the point-dipole model under standard Thole damping the two subsystems polarize one

another to infinity. Dashed lines denote reference values obtained from a fully QM calculation.

QM density at short range, i.e. charge penetration error (in this system the Cl− ion is 1.8 Å

away from the H atom, while localized NGWFs extend for 3.7 Å). This can be appreciated in

Fig. 11, where we plot the relevant component of the electric field due to the QM subsystem

along the line joining the MM Cl− ion and the leftmost H atom in the QM subsystem.
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Figure 11. Electric field due to the QM subsystem along the Cl−-H line in a H2O-Cl− system

(cf. Fig. 10). The field due to electrons alone is shown in red (solid line – full electronic density,

dashed line – point-multipole approximation). The total field is shown in blue (solid line – full

electronic density + core pseudopotential, dashed line – point-multipole approximation). The

multipole approximation breaks down at short range (here: ≈ 2 Å), leading to unphysical charge

transfer and lack of SCF convergence due to a polarization catastrophe.

39

http://dx.doi.org/10.1063/1.5080384


At first glance the field from the full electronic density (solid red line) seems to agree rather

well with the field from the multipole approximation (dashed red line), up to ≈ 1.5 Å, where

the multipole expansion starts to diverge. However, this field is to a large degree cancelled

out by the field of the QM core, making the relative error in the total (blue) much more

pronounced. Additionally, the shoulder to the left of the Cl− ion (a result of a small fraction

of the electronic density being attracted there by the electrostatic potential dip from Cl−’s

induced dipole) cannot be well-represented by the multipole expansion and contributes to

the charge penetration error. The issue is compounded by the fact that NGWF optimisation

is driven by a gradient expression (cf. (22)) that, for consistency with a multipolar energy

expression, has itself been derived via an intermediate step of a multipolar expansion. In

consequence, the NGWF gradient is only sensitive to the MM potential, field and field

derivative at the QM atom centres, rather than in the entire localization sphere (cf. comment

directly below (22)).
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Figure 12. Atom-centered dipoles (magnitudes) on atoms in the QM subsystem (red, blue) and

in the MM subsystem (green) in the course of SCF optimization for a H2O-Cl− system (shown in

inset of Fig. 10). With a suitable increase in polarization damping, the polarization catastrophe is

avoided. Dashed lines denote reference values obtained from a fully QM calculation.

One way to avoid the QM/MM polarization catastrophe is to simply reduce the NGWF

localization region (e.g. we found 3 Å to be sufficient) – this makes the orbitals less diffuse

and the point-multipole approximation more accurate. However, this would sacrifice some

accuracy in the QM calculation – onetep calculations typically use localization radii of

3.5− 5 Å.

What we propose instead is to slightly attenuate QM/MM polarization interactions,

leaving permanent QM/MM interactions and MM/MM polarization unchanged. We retain
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Figure 13. Electric field due to the QM subsystem along the Cl−-H line in a H2O-Cl− system

(cf. Fig. 10). The field due to electrons alone is shown in red (solid line – full electronic density,

dashed line – point-multipole approximation). The total field is shown in blue (solid line – full

electronic density + core pseudopotential, dashed line – point-multipole approximation). Once the

polarization catastrophe is avoided by increased polarization damping, the multipole approximation

remains accurate up to 1 Å and SCF convergence is achieved.

the Thole functional form of the damping but we reduce Thole’s a parameter by a factor

of 2.45, which has the effect of attenuating the interactions at very short range, having

negligible effect elsewhere. This modification can be effected without any changes to onetep

or tinker simply by rescaling the apparent polarizabilities of QM atoms as seen by tinker

by a square of the above factor. The value of 2.45 has been found by numerical experiments

on several small QM/MM systems and we do not claim it to be optimal (indeed for the

system studied here it leads to slight underpolarization, as seen in Fig. 12).

The practicability of the proposed solution is demonstrated in Fig. 12, which shows that

all dipoles now converge to reasonable, finite values, and in Fig. 13 which shows how the total

QM (electronic + core) electric field is now much better approximated by point multipoles,

up to well below 1 Å. The unexpected charge transfer from QM to the left of the Cl− ion

seen in Fig. 11 disappears, owing to the dipole on Cl− now being well-behaved.

Appendix B: Unphysical charge transfer from QM to MM: diagnosis and

prevention

In this section we elaborate on the unphysical charge transfer from QM to MM that

can manifest when QM/MM Pauli repulsion is not adequately taken into account. We will

demonstrate that our improved model (cf. Sec. III C) addresses this issue satisfactorily. We
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use an H2O:K+ system as an example.

Figure 14. Electronic density isosurface (0.1e/Å
3
) for a water-K+ system. Panel a): unphysical

charge transfer from the QM subsystem to the MM subsystem. Panel b): Repulsive potential

centered on the MM atom mimics Pauli repulsion, preventing the unphysical charge transfer.

Fig. 14, panel a) shows an isosurface of the electronic density at one point in the SCF

optimization, where the unphysical charge transfer is apparent. The density shown is not the

converged density, as the calculation fails to converge. This is because the spilled electrons

accumulate near the peripheries of the orbital localization regions, and a localized-orbital

formulation of DFT that assumes the orbitals to be well-decayed by the time they can be

truncated cannot cope well with this situation. This is illustrated in Fig. 15, where a radial

cross-section of one of the NGWFs on the QM oxygen atom (red curve) is seen to differ

markedly from its counterpart in a fully QM calculation (black curve).

Once a more physically sound model is used for QM/MM Pauli repulsion interactions

(what we propose in Sec. III C), the charge transfer is prevented (Fig. 14, panel b)) and

the orbitals reacquire the correct shape (Fig. 15, green curve). The parameters used in this

demonstration were AK+ = 230Ha/e and ζK+ = 1.379 a−1
0 .

42

http://dx.doi.org/10.1063/1.5080384


10−3

10−2

10−1

100

101

 0  0.5  1  1.5  2  2.5  3  3.5

|ϕ
o(

r)
|

r (Å)

Full QM
QM/MM, no repulsive potential

QM/MM, with repulsive potential

Figure 15. Radial cross-section of one of the p NGWFs on the QM oxygen atom for the system in

Fig. 14. The NGWF localization radius is 7 a0 ≈ 3.7 Å. In the absence of a repulsive potential the

NGWF is excessively delocalized (red curve). Adding the repulsive potential restores the correct

behavior (green curve), as seen by comparing against the fully QM result (black curve). The point

on the x axis indicates the position of the MM K+ ion.

REFERENCES

1W. F. van Gunsteren and H. J. C. Berendsen, Angewandte Chemie – International Edition

29, 992 (1990).

2O. Demerdash, L.-P. Wang, and T. Head-Gordon, Wiley Interdisciplinary Reviews: Com-

putational Molecular Science 8, e1355.

3P. S. Nerenberg and T. Head-Gordon, Current Opinion in Structural Biology 49, 129

(2018), Theory and simulation – Macromolecular assemblies.

4O. Demerdash, Y. Mao, T. Liu, M. Head-Gordon, and T. Head-Gordon, The Journal of

Chemical Physics 147, 161721 (2017).

5Y. Mao, O. Demerdash, M. Head-Gordon, and T. Head-Gordon, Journal of Chemical

Theory and Computation 12, 5422 (2016).

6W. L. Jorgensen, Journal of Chemical Theory and Computation 3, 1877 (2007).

7O. Demerdash, E.-H. Yap, and T. Head-Gordon, Annual Review of Physical Chemistry

65, 149 (2014).

8S. W. Rick and S. J. Stuart, Reviews in computational chemistry 18, 89 (2002).

9P. Cieplak, F.-Y. Dupradeau, Y. Duan, and J. Wang, Journal of Physics: Condensed

Matter 21, 333102 (2009).

10G. Lamoureux, A. D. MacKerell, and B. Roux, The Journal of Chemical Physics 119,

43

http://dx.doi.org/10.1063/1.5080384


5185 (2003).

11D. P. Geerke and W. F. van Gunsteren, The Journal of Physical Chemistry B 111, 6425

(2007).

12A. C. T. van Duin, S. Dasgupta, F. Lorant, and W. A. Goddard III, The Journal of

Physical Chemistry A 105, 9396 (2001).

13D.-X. Zhao, C. Liu, F.-F. Wang, C.-Y. Yu, L.-D. Gong, S.-B. Liu, and Z.-Z. Yang, Journal

of Chemical Theory and Computation 6, 795 (2010).

14G. A. Kaminski, H. A. Stern, B. J. Berne, R. A. Friesner, Y. X. Cao, R. B. Murphy,

R. Zhou, and T. A. Halgren, Journal of Computational Chemistry 23, 1515 (2002).

15P. Ren and J. W. Ponder, Journal of Computational Chemistry 23, 1497 (2002).

16P. Ren and J. W. Ponder, J. Phys. Chem. B 107, 5933 (2003).

17P. Ren, C. Wu, and J. W. Ponder, Journal of Chemical Theory and Computation 7, 3143

(2011).

18J. W. Ponder, C. Wu, P. Ren, V. S. Pande, J. D. Chodera, M. J. Schnieders, I. Haque,

D. L. Mobley, D. S. Lambrecht, J. Robert A. DiStasio, M. Head-Gordon, G. N. I. Clark,

M. E. Johnson, and T. Head-Gordon, The Journal of Physical Chemistry B 114, 2549

(2010).

19P. Cieplak, J. Caldwell, and P. Kollman, Journal of Computational Chemistry 22, 1048

(2001).

20P. N. Day, J. H. Jensen, M. S. Gordon, S. P. Webb, W. J. Stevens, M. Krauss, D. Garmer,

H. Basch, and D. Cohen, The Journal of Chemical Physics 105, 1968 (1996).

21N. Gresh, G. A. Cisneros, T. A. Darden, and J.-P. Piquemal, Journal of Chemical Theory

and Computation 3, 1960 (2007).

22A. Holt, J. Boström, G. Karlström, and R. Lindh, Journal of Computational Chemistry

31, 1583 (2010).

23K. Burke, The Journal of Chemical Physics 136, 150901 (2012).

24A. Warshel and M. Levitt, Journal of Molecular Biology 103, 227 (1976).

25J. Spence, Y. Huang, and O. Sankey, Acta Metallurgica et Materialia 41, 2815 (1993).

26X. Long, J. Nicholas, M. Guest, and R. Ornstein, Journal of Molecular Structure 412,

121 (1997).

27G. A. Cisneros, J.-P. Piquemal, and T. A. Darden, The Journal of Physical Chemistry B

110, 13682 (2006).

44

http://dx.doi.org/10.1063/1.5080384


28J. Q. Broughton, F. F. Abraham, N. Bernstein, and E. Kaxiras, Phys. Rev. B 60, 2391

(1999).

29H. Hu, Z. Lu, J. M. Parks, S. K. Burger, and W. Yang, The Journal of Chemical Physics

128, 034105 (2008).

30S. Ogata, E. Lidorikis, F. Shimojo, A. Nakano, P. Vashishta, and R. K. Kalia, Computer

Physics Communications 138, 143 (2001).
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43C. Curutchet, A. Muñoz-Losa, S. Monti, J. Kongsted, G. D. Scholes, and B. Mennucci,

Journal of Chemical Theory and Computation 5, 1838 (2009).

44S. Caprasecca, S. Jurinovich, L. Viani, C. Curutchet, and B. Mennucci, Journal of Chem-

ical Theory and Computation 10, 1588 (2014).

45C. B. Nielsen, O. Christiansen, K. V. Mikkelsen, and J. Kongsted, The Journal of Chemical

Physics 126, 154112 (2007).

46K. Sneskov, T. Schwabe, O. Christiansen, and J. Kongsted, Phys. Chem. Chem. Phys.

45

http://dx.doi.org/10.1063/1.5080384


13, 18551 (2011).

47S. Caprasecca, S. Jurinovich, L. Lagardère, B. Stamm, and F. Lipparini, Journal of

Chemical Theory and Computation 11, 694 (2015).

48E. G. Kratz, A. R. Walker, L. Lagardère, F. Lipparini, J.-P. Piquemal, and G. Andrés Cis-

neros, Journal of Computational Chemistry 37, 1019 (2016).

49S. Caprasecca, C. Curutchet, and B. Mennucci, Journal of Chemical Theory and Compu-

tation 8, 4462 (2012).

50N. M. Thellamurege, D. Si, F. Cui, H. Zhu, R. Lai, and H. Li, Journal of Computational

Chemistry 34, 2816 (2013).

51J. Dziedzic, Y. Mao, Y. Shao, J. Ponder, T. Head-Gordon, M. Head-Gordon, and C.-K.

Skylaris, The Journal of Chemical Physics 145, 124106 (2016).

52Y. Mao, Y. Shao, J. Dziedzic, C.-K. Skylaris, T. Head-Gordon, and M. Head-Gordon,

Journal of Chemical Theory and Computation 13, 1963 (2017).
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