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Abstract

Iterative learning control (ILC) is designed for applications involving multiple executions of the same task. Existing work
has applied ILC to point-to-point motion tasks, but has not fully exploited its design freedom to optimize performance
criteria other than the tracking accuracy. This paper extends the task description of the point-to-point ILC framework
for discrete-time systems by considering the tracking time instants of desired positions as changing variables (i.e. the
temporal location of each position can vary). This extension allows the optimization of an additional performance index
while maintaining the tracking accuracy. This optimization problem is solved using a two stage design framework, and
an iterative algorithm consisting of a norm optimal ILC update and a coordinate descent approach is then derived to
minimize an additional performance index, e.g. control effort, for the point-to-point motion tasks. This algorithm is
tested on a gantry robot to verify its effectiveness in the presence of model uncertainty and disturbances.

Keywords: iterative learning control, optimization, gantry robot.

1. Introduction

The technique of ILC was proposed for high perfor-
mance tracking in applications performing the same task
during a finite time horizon over multiple trials. It iter-
atively updates the next trial’s input signal based on the5

current trial information, e.g. input signal and tracking
error. Due to the employment of past data, ILC improves
the tracking performance with the aim of enabling zero
tracking error after sufficient trials even without using ac-
curate model information. This feature makes ILC typi-10

cally outperform other traditional feedback control meth-
ods in terms of high tracking accuracy, which has led to the
application of ILC in a wide range of areas, e.g. robotics
[1, 2, 3], wafer stage [4], inkjet printer [5] and rehabilitation
[6, 7]. See [8, 9] for a detailed overview.15

Existing research, e.g. [10, 11, 12, 13, 14, 15], has stud-
ied classical ILC aiming at tracking every point along the
whole reference trajectory. To achieve greater performance
and flexibility, a point-to-point ILC framework was devel-
oped in [16] to handle the class of applications performing20

point-to-point tracking tasks. In point-to-point ILC, it is
only necessary to track a subset of distinct positions, ri,
along the reference trajectory at time instants, ti. Due to
the elimination of unnecessary and redundant tracking re-
quirements on the reference trajectory, significant control25

design flexibility is provided by point-to-point ILC. This
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flexibility was exploited in [17, 18] to embed an additional
optimal performance index within the point-to-point ILC
framework. Researchers have applied point-to-point ILC
to increase the practical tracking performance of various30

robotic applications, e.g. positioning tables [19], manip-
ulators [20, 21], unmanned aerial vehicles [22], two-mass
systems [23], electro-mechanical systems [24], stroke reha-
bilitation [25] and motor systems [26].

In existing point-to-point ILC frameworks, the tracking35

time allocation of the distinct positions is fixed a priori.
However, the choice of tracking time allocation directly af-
fects the system performance, such as the required control
effort and the machine damage caused by transient ac-
celeration. There exists research attempting to optimize40

the tracking time allocation over the time horizon of given
point-to-point tracking tasks. In [27], the input energy is
minimized within a class of point-to-point motion planning
problems. However, its solution is obtained using only the
nominal system model without any model uncertainties,45

and has not incorporated any control technique like ILC,
which can improve the tracking accuracy by learning from
the real plant data. Therefore, its tracking performance is
highly dependent on the accuracy of the nominal system
model. In addition, the work in [28] minimizes the control50

effort of point-to-point ILC for continuous time systems
using a gradient approach. However, this method is not
applicable for discrete time systems, since the gradient is
only defined for continuous system.

Due to the limitations of the aforementioned work, this55

paper formulates the point-to-point ILC task description
for discrete time systems to consider the tracking time al-
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location as a changing variable, which is then optimized
over the trial index. The problem is formulated into an
optimization problem incorporating the desired optimal60

cost function and simultaneously preserves high point-to-
point tracking accuracy. A two stage design method is
used to solve this problem, and an iterative algorithm is
then developed using a norm optimal ILC update and a
coordinate descent approach. To demonstrate its practi-65

cal efficacy, this algorithm is verified on a gantry robot
test platform with the presence of model uncertainty and
disturbances.

The notation used in this paper is standard: N is the
set of non-negative integers; Rn and R

n×m denote the sets70

of n dimensional real vectors and n ×m real matrices re-
spectively; Sn++ is the set of all n×n real positive definite
matrices; 〈x, y〉 is the inner product of x and y in some
vector space.

2. Problem formulation75

This section presents the system dynamics, and intro-
duces a novel point-to-point ILC framework. The tracking
time allocation is incorporated into this framework as an
additional variable to formulate an optimization problem,
which minimizes a desired cost function while maintaining80

accurate point-to-point tracking.

2.1. System dynamics

Consider an ℓ-input, m-output discrete linear time-
invariant system with state space form S(A,B,C) as

xk(t+ 1) = Axk(t) +Buk(t),

yk(t) = Cxk(t),
(1)

where the subscript k ∈ N denotes the trial number; t ∈
[0, N ] is the time index (i.e. sample number) with N < ∞
being the finite trial length; xk(t) ∈ R

n, uk(t) ∈ R
ℓ and

yk(t) ∈ R
m are the state, input and output respectively;

A, B and C are system matrices of compatible dimensions.
At the end of each trial, the state is reset to an identical
initial value, i.e. xk(0) = x0, ∀k > 0. The system can be
represented in an equivalent matrix form

yk = Guk + d, (2)

where uk, yk represent the system input and output as

uk = [uk(0), uk(1), . . . , uk(N − 1)]⊤ ∈ R
ℓN ,

yk = [yk(1), yk(2), . . . , yk(N)]⊤ ∈ R
mN , (3)

and the matrix G is denoted as

G =











CB 0 · · · 0
CAB CB · · · 0

...
...

. . .
...

CAN−1B CAN−2B · · · CB











∈ R
mN×ℓN . (4)

The constant signal d(t) = CAtx0 represents the effect of
initial condition, which can be absorbed as a part of the
reference signal without loss of generality, i.e. d = 0.85

The input and output signals belong to vector spaces
R

ℓN and R
mN defined with induced norms

‖u‖[R] =

√

√

√

√

N−1
∑

i=0

u⊤(i)Riu(i), ‖y‖[S] =

√

√

√

√

N
∑

i=1

y⊤(i)Siy(i),

(5)
in which Ri ∈ S

ℓ
++ and Si ∈ S

m
++.

2.2. Point-to-Point ILC framework

The point-to-point ILC design objective is described
as iteratively updating the input signal, uk, such that the
associated output, yk, ultimately tracks given distinct po-
sitions, ri, i = 1, . . . ,M , at a subset of time instants

Λ = [t1, t2, . . . , tM ]⊤, (6)

which is the tracking time allocation of these distinct po-
sitions. Moreover, a secondary objective is stipulated such
that the input signal, uk, converges to a unique value, u∗.
Therefore, the point-to-point ILC problem is defined as

lim
k→∞

yk(ti) = ri, i = 1, . . . ,M, lim
k→∞

uk = u∗. (7)

The tracking time allocation Λ belongs to the set

Θ = {Λ ∈ R
M : 0 < t1 < t2 < . . . < tM 6 N}, (8)

which is the admissible set of all possible tracking time
allocation. For a matrix (or vector) M, and a vector
Λ = [t1, t2, ..., tM ]⊤ consisting of integer components, MΛ

is a matrix (or vector respectively) consisting of the corre-
sponding tthi (block) rows of M, e.g. for the output vector
y, yΛ is defined as follows:

yΛ =







y(t1)
...

y(tM )






∈ R

mM . (9)

The vector space R
mM is defined with induced norm

‖ω‖[Q] =

√

√

√

√

M
∑

i=1

ω⊤
i Qiωi, (10)

where
ω = [ω1, . . . , ωM ]⊤ ∈ R

mM ,

and the matrices Qi ∈ S
m
++ are the weighting parameters

with respect to each time instant. Using the above nota-
tion (9), the point-to-point ILC design objective (7) can be
equivalently described as iteratively updating the sequence
of input {uk} such that

lim
k→∞

yΛk = rp, lim
k→∞

uk = u∗, (11)
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where
rp = [r1, r2, . . . , rM ]⊤ ∈ R

mM . (12)

The point-to-point ILC problem (11) can be solved using
the following update law:

uk+1 = F(uk, e
p
k), (13)

where F is an update function involving the previous in-
put, uk, and epk = rp − yΛk represents the ‘point-to-point’
tracking error.90

2.3. Optimal tracking time allocation problem

In existing point-to-point ILC, the tracking time allo-
cation, Λ, is generally fixed a priori. To extend the task de-
scription of point-to-point ILC and fully exploit this extra
design freedom, the tracking time allocation will now be95

considered as a changing variable to optimize some desired
performance index while guaranteeing accurate point-to-
point tracking.

The Point-to-Point ILC with Optimal Tracking

Time Allocation Problem can be stated as: iteratively
updating the sequences of inputs, {uk}, outputs, {yk} and
tracking time allocation, {Λk} with the asymptotic prop-
erty that

lim
k→∞

(uk, yk, Λk) = (u∗, y∗, Λ∗),

where the corresponding extracted output, y∗, accurately
passes through the set of distinct positions, rp, i.e.

lim
k→∞

yΛk = rp,

and meanwhile a desired cost function, f(u, y), is opti-
mized, i.e. u∗, y∗ and Λ∗ are solutions of the problem

minimize
u,y,Λ

f(u, y)

subject to rp = GΛu, y = Gu, Λ ∈ Θ.
(14)

This problem formulation significantly extends the task
description of the point-to-point ILC framework in terms100

of releasing the flexible choice of the tracking time alloca-
tion, Λ, which enables the optimization of an additional
cost function whilst maintaining high tracking accuracy.

Remark 1. The desired cost function f(u, y) captures the
performance design requirement of many real life applica-
tions selected on the basis of specific design needs. For
instant, it can be written in the form of

f(u, y) = ‖u‖∞

to minimize the peak input. It can also be written as

f(u, y) = ‖ÿ‖S

to minimize the acceleration of a robotic movement.

However, as will be seen later, this problem formulation105

complicates the control design, and is addressed in the
following section.

3. A two stage design framework

In this section, a two stage design framework is formu-
lated to solve the optimization problem (14). Considering110

the control effort as an exemplary cost function, the solu-
tion of the two stages are given using a norm optimal ILC
update and a coordinate descent approach respectively.

3.1. Framework description

Problem (14) can be expressed as

min
Λ∈Θ

{min
u

f(u, y), subject to rp = GΛu, y = Gu}. (15)

This involves two steps, which first optimize the cost func-
tion over u and then optimize over Λ. The problem (15)
can be further expressed as

min
Λ∈Θ

{f̃(Λ) := f(u∞(Λ), Gu∞(Λ))}, (16)

where u∞(Λ) : RM → R
ℓN is the global minimizer of the

inner optimization problem of (15), i.e.

f̃(Λ) = {min
u

f(u, y), subject to rp = GΛu, y = Gu}. (17)

The above reformulation gives rise to a two stage design115

framework solving the optimization problem (14), i.e.

• Stage One: Consider tracking time allocation, Λ, as
a constant and solve the inner optimization problem

min
u

f(u, y), subject to rp = GΛu, y = Gu. (18)

• Stage Two: Substitute solution, u∞(Λ), of the in-
ner optimization problem (18) into problem (15) and
then solve the problem

min
Λ∈Θ

{f̃(Λ) := f(u∞(Λ), Gu∞(Λ))}. (19)

In this paper, the authors choose the control effort as the
desired cost function, i.e. f(u, y) = ‖u‖

2
, which corre-

sponds to the minimum energy. Moreover, there exists
a unique global minimum solution for the problem (18)120

as this cost function is convex. The solutions of the two
stages are provided in the following subsection.

3.2. Solution of the proposed framework

1). Solution of Stage One Design: For any constant
value of Λ ∈ Θ, Stage One problem (18) equates to finding125

the minimum control effort needed to perform a point-to-
point tracking task. The next theorem illustrates how the
norm optimal ILC update is used to solve this problem.

Theorem 1. If the system S(A,B,C) is controllable, C has
full row rank and initial input is set as u0 = 0, the norm
optimal ILC update

uk+1 = uk +GΛ∗(I +GΛGΛ∗)−1epk (20)
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proposed in [29] iteratively solves Stage One problem (18),
with analytic solution

u∞(Λ) = lim
k→∞

uk = GΛ∗(GΛGΛ∗)−1rp, (21)

where GΛ∗ is the adjoint of GΛ defined as

〈

rp, GΛu
〉

Q
=

〈

GΛ∗rp, u
〉

R
. (22)

Proof. The norm optimal ILC law (20) is the iterative so-130

lution to an optimization problem which has an identical
structure to that discussed in [30] except the definitions of
the operators, signals and underlying spaces. Similar to
the proof of the continuous time version in [29], it follows
that the ILC update law (20) solves the Stage One design135

objective with analytic solution (21) for u∞.

2). Solution of Stage Two Design: The next lemma
shows how Stage Two problem (19) is simplified using the
analytic solution (21).

Lemma 1. According to the analytic solution (21), Stage
Two problem (19) is expressed as

min
Λ∈Θ

f̃(Λ) = min
Λ∈Θ

‖u∞(Λ)‖2R

= min
Λ∈Θ

〈

rp, (GΛGΛ∗)−1rp
〉

Q
. (23)

140

Proof. See Appendix A.

When there is only one distinct position need to be
tracked, i.e. M = 1, the problem (23) can be solved ana-
lytically, which is shown in the next theorem.

Theorem 2. If M = 1, the problem (23) has an analytic
solution

Λ∗ = N

with the corresponding minimum control effort

min
Λ∈Θ

‖u∞(Λ)‖2R =
〈

rp, Ψ−1
N rp

〉

Q
,

where

Ψt =

t
∑

i=1

CAt−iBR−1(CAt−iB)⊤.

145

Proof. See Appendix B.

For this special case, the optimal solution, Λ∗ = N ,
allows the system output to change gradually to the de-
sired position until the terminal time of the time horizon.
However, while there exists more than one distinct posi-150

tions (M > 1), the cost function, f̃(Λ), of the problem
(23) is generally non-linear and non-convex with respect
to Λ. These properties give rise to difficulties in obtaining
a numerical solution using standard integer programming

solvers, which are mainly designed for linear and quadratic155

programming problems.
For discrete time systems, the number of elements in

the admissible set Θ is finite, which allows the potential ap-
plication of the blind search method over the whole space.
However, the total number of elements in Θ becomes ex-160

tremely large as the rise of tracking position number M .
This aspect makes it generally inefficient to use the blind
search method due to the high computational cost. To bal-
ance reliability and efficiency, the next theorem provides a
coordinate descent approach to problem (23).165

Theorem 3. If M > 2, the following update

Λj+1 = C(Λj) (24)

generates a sequence {f̃(Λj)} converging downward to a

limit f̃∗ with initial tracking time allocation Λ0, where
j ∈ N denotes the coordinate descent trial number, and

Λj = [tj1, tj2, . . . , tjM ]⊤.

The function C updates each time instant as

tj+1
i =

{

tj∗i , i = (j + 1) mod M,

tji , else,
(25)

where tj∗i is the optimizer of the problem

minimize
t

〈

rp, (GΛGΛ∗)−1rp
〉

Q

subject to Λ = [tj1, . . . , tji−1, t, tji+1, . . . , tjM ]⊤,

t ∈ (tji−1, tji+1).

(26)

Proof. See Appendix C.

Remark 2. Note that although the Stage Two optimization
problem (19) can be seen as a form of integer programming170

problem, the performance function is non-linear (and in
fact non-convex), preventing the use of standard integer
programming solvers, e.g. Matlab intlinprog designed
for mixed integer linear programming problems.

Remark 3. The coordinate descent approach provides a175

local optimal solution to the optimization problem (23),
and attempts to approximate the global optimal solution
by adjusting the tracking time allocation [31].

Remark 4. To accelerate the convergence rate, the coordi-
nate descent approach (24) allows multiple number of time180

instants to be updated within a single trial.

4. Implementation of design approach

This section first illustrates how to implement the so-
lutions of the two stages in practice, and then combines
them together to yield an efficient algorithm which itera-185

tively solves the optimization problem (14).
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4.1. Implementation of Stage One

The direct way of implementing the Stage One solu-
tion is to simply use the analytic solution (21). For rea-
sons of robustness, this solution should be implemented190

using feedforward ILC update (20) with the measured er-
ror information. Furthermore, the ILC update (20) can
be equivalently reformulated into a feedback and feedfor-
ward structure to improve the robust performance due to
the use of real-time state feedback. This reformulation195

exploits the special properties of the matrix GΛ and its
adjoint GΛ∗. The following lemma is needed.

Lemma 2. The adjoint GΛ∗ : ω ∈ R
mM → u ∈ R

ℓN has
the following analytic form

u(t) = R−1B⊤p(t), (27)

where p(t) is computed along the reverse time axis as

p(t) = A⊤p(t + 1), t ∈ [ti−1, ti), i = 1, . . . ,M, (28)

with boundary conditions

p(ti − 1) = p(ti) + C⊤Qωi, i = 1, . . . ,M,

p(N) = 0. (29)

Proof. See Appendix D.200

Based on Lemma 2, the next proposition describes the
feedback plus feedforward implementation in detail.

Proposition 1. The ILC update (20) is alternatively im-
plemented using the feedforward plus feedback solution

uk+1(t) = uk(t) +R−1B⊤pk+1(t), t = 0, . . . , N, (30)

with

pk+1(t) = −K(t)(I +BR−1B⊤K(t))−1A

(xk+1(t)− xk(t)) + ξk+1(t), (31)

where the Riccati feedback matrix K(t) is defined as

K(t) = A⊤K(t+ 1)(I +BR−1B⊤K(t+ 1))−1A, (32)

with boundary conditions

K(ti − 1) = K(ti) + C⊤QC, i = 1, . . . ,M,

K(N) = 0, (33)

and the predictive feedforward term ξk+1(t) at the (k+1)th

ILC trial is defined as

ξk+1(t) = (I +K(t)BR−1B⊤)−1A⊤ξk+1(t+ 1), (34)

with boundary conditions

ξk+1(ti − 1) = ξk+1(ti) + C⊤Qek(ti), i = 1, . . . ,M,

ξk+1(N) = 0. (35)

205

Proof. See Appendix E.

To improve the robust performance, the feedback plus
feedforward solution is preferred for practical implementa-
tion of the Stage One solution, as it incorporates the mea-
sured error and real-time state feedback. However, the210

real-time state feedback requires a state observer, which
may increase the computation load especially when the
number of states is large. Therefore, a balance or tradeoff
should be made between the robustness and computational
cost while implementing the Stage One solution.215

4.2. Implementation of Stage Two

The coordinate descent approach (24) solves the Stage
Two problem (19) in several steps, and it starts from an
initial tracking time allocation

Λ0 = [t01, t02, . . . , t0M ]T ∈ Θ. (36)

At each coordinate descent trial, it solves the problem (26)
and re-allocates the tracking time instant tji of each posi-
tion ri in order to reduce the control effort. In other words,
it picks a value of t from the finite number of points in the
discrete time interval (tji−1, t

j
i+1) at each trial to minimize

the control effort, i.e. tji−1 < t < tji+1, t ∈ N. In this
sense, the blind search method can be carried out to solve
this sub-problem with a total number of ηi computational
attempts, where

ηi = (tji+1 − tji−1 − 1). (37)

Remark 5. Within complex systems, the initial choice of
tracking time allocation, Λ0, may affect the convergence
performance of the coordinate descent approach. So an
appropriate value of Λ0 is suggested to be selected, which220

approximates the global minimum solution and reduces
the total number of computational update trials.

Remark 6. The coordinate descent approach splits the
problem (19) into a series of sub-problems, and its im-
plementation incurs a much smaller computational load225

than the direct blind search over the whole set Θ.

4.3. An iterative implementation algorithm

The aforementioned implementations of the two stages
can be combined together to generate an algorithm (Algo-
rithm 1), which iteratively solves the problem (14). The230

symbol Λ0 is a suitably chosen initial tracking time allo-
cation, and ǫ > 0, δ > 0 are small scalars which depend
on the tracking accuracy requirement and performance re-
quirement respectively.

In the ideal case, an accurate system model is avail-235

able. The analytic solution (21) can be used while com-
puting the converged input in Step 2 and 6, and solve the
problem (26) in Step 4 with the given value of rp. How-
ever, there exist model uncertainties and disturbances in
practice. To embed robustness, it is necessary to extract240

information from the real plant dynamics. Therefore, it
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Algorithm 1 Point-to-Point ILC with Optimal Tracking

Time Allocation

Import: Initial tracking time allocation, Λ0, system
model, S(A,B,C), set of distinct positions, rp, and
admissible set, Θ.

1: initialization: Coordinate descent trial number j = 0
2: Implement Stage One update (20) with Λ = Λ0 exper-

imentally until convergence, i.e. ‖epk‖ < ǫ‖rp‖; record

converged input uex
∞(Λ0) and control effort f̃(Λ0).

3: repeat

4: Implement Stage Two update (24) based on the
measured data, i.e. rp → GΛjuex

∞(Λj).

5: Set j → j + 1.
6: Implement Stage One update (20) with Λ = Λj ex-

perimentally until convergence, i.e. ‖epk‖ < ǫ‖rp‖;
record converged input uex

∞(Λj) and control effort

f̃(Λj).

7: until

∣

∣

∣
f̃(Λj)− f̃(Λj−1)

∣

∣

∣
< δ

∣

∣

∣
f̃(Λj−1)

∣

∣

∣

8: return Λj and uex
∞(Λj)

is suggested that the norm optimal ILC update in Step 2
and 6 should be implemented experimentally rather than
using the analytic solution (21), and the coordinate de-
scent approach in Step 4 should incorporate experimental245

measured data.

4.4. A discussion on robustness

In reality, the nominal system model, G, cannot per-
fectly represent the actual plant, Ĝ, due to model uncer-250

tainties. Therefore, it is necessary to perform robustness
analysis on Algorithm 1 to ascertain its convergence per-
formance in practice as shown in the next theorem.
Theorem 4. Suppose the actual system matrix, Ĝ, is in an
additive form

Ĝ = G+∆, (38)

where the unknown matrix ∆ ∈ R
mN×ℓN represents the

model uncertainty. If ∆ satisfies

∥

∥I −∆ΛGΛ∗
∥

∥ 6 1, (39)

then the sequence {epk}k>0 generated by the update (20),
monotonically converges to zero, i.e.

∥

∥epk+1

∥

∥ 6 λ ‖epk‖ , ∀ k > 0, (40)

where λ < 1 denotes the spectral radius of (I+GΛGΛ∗)−1.
Moreover, if G + ∆ does not lose rank, the cost function
f̃(Λ) in Stage Two problem (19) is bounded above as

f̃(Λ) 6
δ
2
λ

σ2
‖rp‖

2
, (41)

where δ and σ are the upper and lower bounds of
∥

∥GΛ
∥

∥

and
∥

∥

∥
ĜΛ

∥

∥

∥
respectively.255

Proof. See Appendix F.

Theorem 4 defines robust convergence properties of the
Stage One update (20), which guarantee the tracking er-
ror converges to zero and perfect point-to-point tracking
is achievable in practice. Moreover, the model uncertain-260

ties also affect the obtained control effort, f̃(Λ), of the
point-to-point tracking task, which has been shown in this
theorem to be bounded. However, strong results of the
control effort convergence can be guaranteed in specific
cases. The next corollary illustrates the robust conver-265

gence performance of Algorithm 1 in these specific cases.

Corollary 1. If the model uncertainty is in a scalar form,
i.e. ∆ = κG, where κ is a constant scalar and satisfies

0 6 κ 6
2

‖GΛ‖
2
∞

, (42)

then the sequence {epk}k>0 generated by the update (20),
monotonically converges to zero, i.e.

∥

∥epk+1

∥

∥ 6 λ ‖epk‖ , ∀ k > 0, (43)

and the sequence {f̃(Λj)}j>0 generated by the update (24)

monotonically converges to a limit f̃∗ as

f̃(Λj+1) 6 f̃(Λj), ∀ j > 0, lim
j→∞

f̃(Λj) = f̃∗. (44)

Proof. See Appendix G.

The above corollary provides the robust convergence
properties of Algorithm 1 for a specific class of systems.270

In general, it is advisable that users monitor the control
effort at each coordinate descent trial, and terminate the
algorithm once they observe a rise in the control effort.
The robust performance of this algorithm will be illus-
trated experimentally in the next section.275

5. Verification on a gantry robot

In this section, a three-axis gantry robot is used as the
test platform to show the performance of Algorithm 1.

5.1. Task specification

The gantry robot shown in figure 1 is required to per-
form a point-to-point motion task, and the authors focus
on the motion of the z-axis among all three axes. This
task is specified as enforcing that the end-effector to pass
through five distinct positions (M = 5) represented by

rp = [0.0048, 0.0029, − 0.0029, − 0.0048, 0]⊤ (45)

along the z-axis during a given time period, T = 2s. The
distinct positions are shown in figure 9 as the dots, and
the a priori tracking time allocation is

Λr = [30, 60, 120, 150, 200]⊤. (46)
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Figure 1: Three-axis gantry robot test platform.

It is often expensive and infeasible to perform system
identification on practical systems, and the system model
might also change due to environmental issues, such as
temperature and humidity. Therefore, a nominal model is
used to represent the system dynamics of the z-axis, i.e.

Gz(z) =
3× 10−4

z − 1
, (47)

with a sampling time Ts = 0.01s. In addition, the weight-280

ing matrices of the ILC update in Step 2 and 6 are taken
as diagonal matrices, i.e. Qi = qI and Ri = rI, satisfying
q/r = 1, 000, 000 where q and r are positive scalars.

5.2. Numerical tests

A numerical test is first carried out to verify the per-
formance of Algorithm 1 in the ideal case, i.e. the nominal
model (47) is sufficiently accurate, Ĝ = Gz(z). Algorithm
1 is implemented using the nominal model (47) with five
choices of initial allocations, Λ0, i.e.

Λ1
0 = [20, 60, 100, 140, 180]⊤, Λ2

0 = [10, 50, 100, 150, 190]⊤

Λ3
0 = [30, 70, 100, 130, 170]⊤, Λ4

0 = [10, 50, 90, 130, 170]⊤

Λ5
0 = [30, 70, 110, 150, 190]⊤,

for a total number of 50 coordinate descent trials. Note285

that the final solutions starting from the five choices all
converge to [49, 68, 128, 148, 200]⊤, and the corresponding
control effort at each trial are plotted in figure 2. For com-
parison, a blind search has been carried out to check all the
possible tracking time allocations to find the global solu-290

tion [50, 70, 130, 150, 200]⊤, and the corresponding global
minimum control effort is plotted as the dashed magenta
line in the same figure.

It is clear from the figure that, although the solution
of Algorithm 1 is different form the global solution, it can295

reduce the control effort of the given task to the value
204.939, which is extremely close to global minimum value
204.807 (only 0.06% difference). This numerical test con-
firms the argument made in Remark 3, such that the local
optimal solution approximates the global one. In addi-300

tion, Algorithm 1 requires less than 3, 000 computational
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Figure 2: Numerical control effort results at each trial for nominal
model test.

attempts of control effort comparison in total, while the
blind search requires more than one billion computational
attempts. This test further confirms the statement about
the efficiency of this algorithm in Remark 6.305
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Figure 3: Numerical control effort results at each trial for robust
test.

To simulate the robust performance of Algorithm 1,
the accurate system model Ĝ is considered as

Ĝz(z) =
2.52× 10−4

z − 1
. (48)

The above simulation procedures are repeated using the
same nominal model (47). The control effort at each trial
with respect to the five choices of initial allocations are
plotted in figure 3, and the final solutions all converge
to [48, 67, 128, 148, 200]⊤. The control effort (288.448) for310

the theoretical obtained solution [49, 68, 128, 148, 200]⊤ is
plotted as the dashed magenta line in the same figure. It is
clear that the converged control effort (288.416) is 0.011%
smaller than that corresponding to the theoretical value.

The input and output at Λ1
0 and the converged solu-315

tion are plotted in figure 4, and it is obvious that the out-
put trajectories accurately pass the given distinct positions
even with the existence of model uncertainties. These sim-
ulation results support the statement that Algorithm 1 has
a certain level of robust performance against model uncer-320

tainties, which not only reduces the control effort, but also
keeps a high level of point-to-point tracking accuracy.
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Figure 4: Numerical converged input and output trajectories for
initial and final trials in robust test.
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Figure 5: Experimental control effort results at each trial with accu-
rate model.

5.3. Experimental results

Algorithm 1 is next implemented to perform the point-
to-point tracking task on the gantry robot. An identified
system model

G̃z(z) =
(36.48z2 + 3.569z + 0.217)× 10−5

z3 − 0.9941z2 − 0.005046z − 0.0008451
(49)

is obtained to represent the system dynamics of the z-
axis in [32] via system identification technique. To provide
baseline tracking, disturbance rejection and smooth edge
tracking, a feedback proportional controller with a gain of
150 is added to the real plant to give

G =
G̃z(z)

1 +KG̃z(z)
, K = 150, (50)

which can be equivalently written in minimal state space
form S(A,B,C). The initial allocation is chosen as Λ0 =325

[20, 60, 100, 140, 180]⊤, which is equally distributed along
the time horizon, [0, N ].

A total number of 30 coordinate descent trials are per-
formed until the control effort converges, and the control
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Figure 6: Experimental time-point position results at each trial with
accurate model.

effort, f̃(Λj), at each trial is plotted in figure 5 with the330

converged value, f̃(Λ30) = 1018.3. Also, the point-to-point
norm optimal update in [29] is performed with the a priori
allocation, Λr, to obtain the corresponding control effort,
f̃(Λr) = 1326.6, which is plotted in the same figure as the
red dashed line. From this figure, it is clear that the con-335

verged energy provided by Algorithm 1 is 23.2% less than
the control effort respect to the a priori allocation, which
confirms that this algorithm can significantly reduce the
control effort. For more details, the corresponding track-
ing time allocation at each trial is also plotted in figure 6340

with the minimum solution, Λ30 = [53, 58, 132, 139, 200]⊤.
The theoretical minimum solution is obtained using the

model (50) in simulation as Λ∗ = [51, 59, 132, 140, 200]⊤.
This theoretical solution is plotted as the dashed black
lines in figure 6, and it is clear that it is close to the ex-345

perimentally obtained solution, Λ30, as the model uncer-
tainty of identical system model (49) is sufficiently small.
For further comparison, the gantry robot’s control effort,
f̃(Λ∗) = 1025.6, with respect to the theoretical optimal
tracking time allocation is also plotted in figure 5. There350

is only 0.7% difference in control effort between the solu-
tions obtained from practical implementation and theoret-
ical calculation.

The above verifications have also been conducted using
the nominal model (47) to test the robust performance of355

Algorithm 1 in practice. The results are plotted in figure
7 and 8. From figure 7, a 23.8% reduction of control effort
is achieved via practical implementation compared to the
value, f̃(Λr) = 1378.2, respect to the a priori allocation,
Λr. Also, it is obvious from figure 8 that as the model360

(49) is not accurate enough, the theoretical solution Λ∗ =
[48, 58, 130, 140, 200]⊤ is not exactly the same as the ex-
perimentally obtained one, Λ30 = [54, 59, 128, 137, 200]⊤.
As a result, in figure 7, the control effort, f̃(Λ∗) = 1102.1,
at Λ∗ is 4.4% less than the control effort, f̃(Λ30) = 1053.4,365

at Λ30. This fact confirms the necessity of experimental
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Figure 7: Experimental control effort results at each trial.
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Figure 8: Experimental time-point position results at each trial.

implementation and its advantages over theoretical com-
putation using a nominal model.

To check the tracking performance under the existence
of model uncertainties, the input and output of the initial370

and final trials have been selected and plotted in figure
9. From this figure, the converged output trajectories of
both trials accurately pass through the given distinct posi-
tions marked as red and green dots, i.e. perfect tracking is
achieved (note that there only exists 0.00053 mean square375

point-to-point tracking error at the final trial). Therefore,
Algorithm 1 can still reduce the control effort and guar-
antee high point-to-point tracking accuracy at the same
time against model uncertainties. This test of Algorithm
1 on the gantry robot platform further confirms its robust380

performance in practice.
Experiments with other initial tracking time alloca-

tions and other Ri, Qi values provide varying convergence
speed but similar monotonic convergence performance to
the above results. For brevity, these results are omitted.385
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Figure 9: Experimental converged input and output trajectories for
initial and final trials.

6. Conclusion and future work

This paper significantly extends the task description
of point-to-point ILC by enabling the tracking time allo-
cation of distinct positions as a changing variable. This
allows the employment of an additional optimal perfor-390

mance index, e.g. control effort, within the point-to-point
ILC framework. A point-to-point tracking problem has
been formulated in this paper to achieve accurate point-
to-point tracking as well as optimization of an additional
cost function. A Two Stage design framework is derived to395

solve this problem in two steps. This framework has been
exemplified to obtain the minimum control effort, which
yields an iterative algorithm based on a norm optimal ILC
update and a coordinate descent approach. To verify its
practical performance, a gantry robot is used to test the400

performance of the proposed algorithm in practice.
From the experimental results, a certain degree of ro-

bustness has been confirmed within the scope of the pro-
posed algorithm in terms of reducing control effort. How-
ever, the Two Stage design framework can optimize other405

cost functions than control effort, and corresponding al-
gorithms will be developed in the future. The ILC prob-
lem formulation in this paper can be generalized to other
systems, such as continuous linear time-invariant systems
and discrete linear time varying systems, without difficulty410

by extending the signal space definition to Hilbert space
formalism. Moreover, the system constraints will be con-
sidered in the design problem. The above constitutes part
of our future research and will be reported separately.

Appendix A. Proof of Lemma 1415

As the control effort is chosen as the desired cost func-
tion, it follows that

f̃(Λ) = ‖u∞(Λ)‖2R. (A.1)
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Then, substitute the analytic solution (21) into the prob-
lem (19), and explore the properties of adjoint in vector
space to give

min
Λ∈Θ

f̃(Λ) = min
Λ∈Θ

‖u∞(Λ)‖2R = min
Λ∈Θ

〈u∞(Λ), u∞(Λ)〉R

= min
Λ∈Θ

〈

GΛ∗(GΛGΛ∗)−1rp, GΛ∗(GΛGΛ∗)−1rp
〉

R

= min
Λ∈Θ

〈

GΛGΛ∗(GΛGΛ∗)−1rp, (GΛGΛ∗)−1rp
〉

Q

= min
Λ∈Θ

〈

rp, (GΛGΛ∗)−1rp
〉

Q
,

which completes the proof.

Appendix B. Proof of Theorem 2

At this special case, there is a single distinct position,
i.e. M = 1 and Λ = t1. Denote Ψt1 = Gt1Gt1∗ which is
explicitly written as

Ψt1 =

t1
∑

0

CeA(t1−t)BR−1(CeA(t1−t)B)⊤. (B.1)

The optimization problem (23) becomes

min
Λ∈Θ

‖u∞(Λ)‖2R = min
Λ∈Θ

〈

rp, Ψ−1
t1

rp
〉

Q
. (B.2)

For any x, there exists

〈x, (ΨN −Ψt1)x〉Q

= 〈x, (

N
∑

t1

CeA(t1−t)BR−1(CeA(t1−t)B)⊤)x〉Q > 0,

which gives rise to

Ψt1 6 ΨT , ∀ t−1 6 t1 6 t+1 = N.

The above positive properties yield Ψ−1
t1

> Ψ−1
N , and thus

〈

rp, Ψ−1
t1

rp
〉

Q
>

〈

rp, Ψ−1
T rp

〉

Q
. (B.3)

It follows from (B.3) that t1 = t+1 = N is the minimum
solution of the problem (23), which completes the proof.

Appendix C. Proof of Theorem 3420

The coordinate descent approach splits the problem
(23) into several sub-problems. At each trial, it solves
a sub-problem (26) to update a single time instant ti,j
while keeping the others as fixed values. The definition of
each sub-problem gives rise to the monotonically decreas-
ing property of the sequence {f̃(Λj)}, i.e.

f̃(Λj+1) 6 f̃(Λj). (C.1)

Furthermore, as the energy function f̃(Λ) is non-negative
and bounded below, the sequence {f̃(Λj)} converges to a

non-negative value f̃∗.

Appendix D. Proof of Lemma 2

The matrix GΛ has the following structure

GΛu = [G1u, . . . , GMu]⊤, (D.1)

where

Giu =

ti−1
∑

t=0

CAti−t−1Bu(t), i = 1, . . . ,M. (D.2)

Consider the matrix Gi ∈ R
m×ℓN via equation

ωi
⊤QGiu = ω⊤

i QFi

ti−1
∑

t=0

CAti−t−1Bu(t)

=

ti−1
∑

t=0

(R−1B(A⊤)ti−t−1C⊤F⊤
i Qωi)

⊤Ru(t), (D.3)

and the condition

ω⊤
i QGiu =

N
∑

t=0

((G∗
iωi)(t))

⊤Ru(t), (D.4)

due to the definition of the adjoint, i.e.

〈ωi, Giu〉Q = 〈G∗
iωi, u〉R . (D.5)

Therefore, (D.3) and (D.4) give rise to

(G∗
iωi)(t) =

{

R−1B(A⊤)ti−t−1C⊤F⊤
i Qωi, t < ti,

0, t > ti,

which can be further written as

(G∗
iωi)(t) = R−1B⊤pi(t), (D.6)

where pi(t) = 0 on [ti, N ], and on [0, ti)

pi(t) = A⊤pi(t+ 1), pi(ti − 1) = C⊤Qωi. (D.7)

Due to linearity, the adjoint GΛ∗ can be written as the
sum of adjoints, G∗

1, . . . , G
∗
M , i.e.

GΛ∗ω =

M
∑

i=1

(G∗
iωi)(t) = R−1B⊤p(t) (D.8)

as shown in (27), where p(t) =
∑M

i=1 pi(t). Therefore, the425

costate p(t) in (28) with its boundary conditions (29) are
derived from (D.6), which completes the proof.

Appendix E. Proof of Proposition 1

The ILC update (20) has the feedforward form

uk+1(t) = uk(t) +GΛ∗epk+1(t). (E.1)

From Lemma 2, GΛ∗epk+1(t) is computed using the analytic
form

GΛ∗epk+1(t) = R−1B⊤pk+1(t), (E.2)
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where pk+1(t) denotes the costate in reverse time, i.e.

pk+1(t) = −A⊤pk(t+ 1), t ∈ [ti−1, ti), i = 1, . . . ,M,

with boundary conditions

pk+1(ti − 1) = pk+1(ti) + C⊤Qek+1(ti), i = 1, . . . ,M,

pk+1(N) = 0. (E.3)

Substituting (E.2) into (E.1) yields the solution (30).
Assuming full state knowledge, the costate equation

(E.2) yields a causal implementation

pk+1(t) = −K(t)(I +BR−1B⊤K(t))−1A

(xk+1(t)− xk(t)) + ξk+1(t). (E.4)

According to (1), (30) and (E.4), the following equation

xk+1(t+ 1)− xk(t+ 1)

= A(xk+1(t)− xk(t)) +B(uk+1(t)− uk(t))

= A(xk+1(t)− xk(t)) +BR−1B⊤pk+1(t)

= (I +BR−1B⊤K(t))−1A(xk+1(t)− xk(t))

+BR−1B⊤ξk+1(t) (E.5)

is derived from [33]. Then substitute (E.4) and (E.5) into
the costate (E.2), which yields an equation of the form

H(A,B,R−1,K(t),K(t+ 1))[xk+1(t+ 1)− xk(t+ 1)]

= G(A,B,R−1,K(t), ξk+1(t), ξk+1(t+ 1)), (E.6)

where H(·) and G(·) are functions of their arguments and430

independent of the states. It is clear that both functions
should be set to zero to make the equation (E.6) indepen-
dent of the current state difference. This hence yields the
definition of the discrete Matrix Riccati equation K(t) and
the optimal predictor ξk+1(t) in (32) and (34).435

Considering the boundary conditions, there exists an
additive term C⊤Qek+1(ti) in equation (E.3). Thus

ek+1(ti) = ek(ti)− C(xk+1(ti)− xk(ti)), (E.7)

which yields

C⊤Qek+1(ti) = C⊤QC(xk+1(ti)− xk(ti)) + C⊤Qek(ti),

and gives rise to the boundary conditions in (33) and (35).

Appendix F. Proof of Theorem 4

Based on the addictive form (38) and update (20), it
follows from the derivations in [34] such that the mono-
tonic convergence condition (40) holds, and the sequence440

{epk} converges to zero.
As the error converges to zero, the tracking design ob-

jective is achieved as

rp = ĜΛuex
∞(Λ) (F.1)

for each coordinate descent trial. From Algorithm 1, the
value r̂p used in Stage Two update (24) is computed based
on the measured data as

r̂p = GΛuex
∞(Λ). (F.2)

Since G+∆ does not lose rank, the lower bound σ of
∥

∥

∥
ĜΛ

∥

∥

∥

is non-zero, which gives

‖uex
∞(Λ)‖ 6

1

σ
· ‖rp‖ . (F.3)

From the definition of the matrix GΛ, its norm is bounded
above and there exists

‖r̂p‖ 6 δ · ‖uex
∞(Λ)‖ . (F.4)

The above inequalities yield

‖r̂p‖ 6
δ

σ
· ‖rp‖ . (F.5)

Using (F.5), the upper bound of the cost function is ob-
tained as

f̃(Λ) =
〈

r̂p, (GΛGΛ∗)−1r̂p
〉

6 λ · 〈r̂p, r̂p〉 6
δ
2
· λ

σ2
· ‖rp‖

2
,

(F.6)
which completes the proof.

Appendix G. Proof of Corollary 1

From the definition of the norms, it follows that

∥

∥GΛ
∥

∥

2
6

∥

∥GΛ
∥

∥

2

∞
. (G.1)

As the matrixGΛGΛ∗ is positive definite, for any κ satisfies
the condition (42), these exists

0 6 κ 6
2

‖GΛ‖
2
∞

6
2

‖GΛ‖
2 , (G.2)

which implies
∥

∥I − κGΛGΛ∗
∥

∥ 6 1. (G.3)

For ∆ = κG, the condition (39) collapses to (G.3), so the
proof of the monotonic convergence condition (43) follows445

from that in Theorem 4.
Since ∆ is in form of scalar, it follows that

Ĝ = (1 + κ)G (G.4)

based on the addictive form (38). Using (F.1), (F.2) and
(G.4), the relationship between the constant value rp and
the numerical computed value r̂p is yielded as

rp = ĜΛuex
∞(Λ) = (1 + κ)GΛuex

∞(Λ) = (1 + κ)r̂p, (G.5)

which means that the value r̂p at each coordinate descent
trial is proportional to the value rp.
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According to the coordinate descent update (24), the
cost function

〈

r̂p, (GΛGΛ∗)−1r̂p
〉

is optimized at each co-
ordinate descent trial. Based on (G.5), the optimized cost
function is also proportional to f̃(Λ) as

〈

r̂p, (GΛGΛ∗)−1r̂p
〉

=
1

(1 + κ)2
·
〈

rp, (GΛGΛ∗)−1rp
〉

,

=
1

(1 + κ)2
· f̃(Λ). (G.6)

Since the function f̃(Λ) is non-negative (bounded below),
the sequence {f̃(Λj)} monotonically converges to a limit450

f̃∗, which completes the proof.
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