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Abstract

Crystal structure prediction involves a search of a complex configurational space for

local minima corresponding to stable crystal structures, which can be performed effi-

ciently using atom-atom force fields for the assessment of intermolecular interactions.

However, for challenging systems, the limitations in the accuracy of force fields pre-

vents a reliable assessment of the relative thermodynamic stability of potential struc-

tures, while the cost of fully quantum mechanical approaches can limit applications

of the methods. We present a method to rapidly improve force field lattice energies

by correcting two-body interactions with a higher level of theory in a fragment-based

approach, and predicting these corrections with machine learning. Corrected lattice

energies with commonly used density functionals and second order perturbation the-

ory (MP2) all significantly improve the ranking of experimentally known polymorphs

where the rigid molecule model is applicable. The relative lattice energies of known

polymorphs are also found to systematically improve with the fragment corrections.

Predicting two-body interactions with atom-centered symmetry functions in a Gaus-

sian process is found to give highly accurate results using as little as 10-20% of the data

for training, reducing the cost of the energy correction by up to an order of magnitude.
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The machine learning approach opens up the possibility of more widespread use of

fragment-based methods in crystal structure prediction, whose increased accuracy at a

low computational cost will benefit applications in areas such as polymorph screening

and computer-guided materials discovery.

1 Introduction

The prediction of crystal structures given only basic connectivity information of a molecule,

such as a chemical diagram, is an important challenge for computational chemistry.1,2 The

motivations for crystal structure prediction (CSP) are three-fold. Many molecules do not

produce single crystals suitable for structure determination using conventional methods, and

direct structure solution from powder X-ray diffraction patterns is not always possible. The

computational generation of likely structures can provide a useful starting point for structure

determination from incomplete data: examples include structure determination from powder

X-ray diffraction3, electron diffraction4 and solid state NMR5 data. There is strong interest

in CSP in the pharmaceutical industry, where different crystal forms of a molecule (poly-

morphs) can have different properties, so that the anticipation of polymorphism is important

for maintaining strict property control6, as well as having intellectual property implications7.

In a broader context, the prediction of crystal structures could have extensive ramifications

for materials science. The reliable prediction of solid-state phases from molecular informa-

tion creates an opportunity for in silico design, where materials with desirable properties

can be identified before entering the laboratory8. In addition to the economic benefits of

guiding experimental work towards the most promising candidate molecules, a computation-

led approach can enable the exploration of untouched areas of chemical space.9,10

CSP is typically approached as an exploration of the high dimensional lattice energy surface

for low energy local minima. To exhaustively explore the space of possible crystalline forms,

it is often necessary to generate tens or hundreds of thousands of trial crystal structures for
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a given molecule11, and a metric is required for identifying structures that are of interest. In

the most general case, candidate crystal structures are ranked by their geometry-optimized,

static lattice energies, under the assumption that crystal structure is largely driven by ther-

modynamics1,2. Hence, the lowest energy predicted structure is assumed to be the most likely

experimental structure, and alternative structures within a small lattice energy range are as-

sumed to be potential polymorphs. Calculating accurate lattice energies for large numbers

of crystal structures is one of the key challenges in CSP, due to the computational expense

of calculating sufficiently accurate energies to rank predicted crystal structures: the lowest

energy predicted crystal structures, and pairs of observed polymorphs, are often separated

by less than a kJ/mol.12 For organic molecular crystals, the two most widely adopted ap-

proaches to ranking predicted structures13 are anisotropic, multipole-based atom-atom force

fields14,15, and dispersion-corrected periodic Density Functional Theory (DFT-D) methods16.

The latter are typically found to provide higher accuracy17, but at a cost that is restrictive

for larger systems.

Alternative approaches to traditional force fields have recently been growing in popularity,

where highly flexible potentials are optimized entirely on known data under the umbrella term

of machine learning18,19. Applications of machine learning in chemistry have grown rapidly

in the last decade20, with successful results in potential energy surface prediction21,22, en-

ergy corrections between levels of theory23,24, predicting chemical properties25, and promising

indications of predicting chemical phenomena that are not explicitly defined in the dataset26.

Most pertinently, machine learning potentials have been shown to approximate DFT-D lat-

tice energies for crystal structure landscapes to a good degree of accuracy27–29. In the context

of CSP, machine learning potentials have typically be trained on data generated using gen-

eralised gradient approximation (GGA) DFT functionals, as these have largely remained the

standard for accuracy13 where hybrid functionals or post Hartree-Fock wavefunction methods
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applied directly to the solid state remain too expensive. However, there are known limita-

tions to GGA functionals30, such as delocalization error, which leads to the overstabilization

of charge separation31, potentially resulting in serious errors for systems such as acid-base

co-crystals or salts32. Furthermore, hybrid functionals also fail to reproduce the experimental

stability order for some challenging polymorphic systems33,34. These discrepancies highlight

the need for different energy models to give reliable methods for the full spectrum of organic

molecular crystal structures. Machine learning approaches could offer a means to expand the

range of available energy models used in CSP without a large increase in computational cost.

The approach we adopt here, as opposed to using a fully periodic formalism, is to calculate

the energy of a crystal structure as a sum of many-body terms,

∑
i

Ei +
∑
i<j

Eij +
∑
i<j<k

Eijk + ..., (1)

where the first term is the sum of monomer energies, the second the sum of dimer energies,

and so on. Such fragment-based methods are now a common method to approximating more

expensive periodic levels of theory35–38. Of particular relevance is the Hybrid-Many Body

Interaction (HMBI)37,39,40 scheme, which employs polarizable force fields for many-body and

long-range pairwise interactions, combined with quantum mechanical (QM) methods such

as Møller–Plesset perturbation theory or Coupled Cluster theory for short-range pairwise

interactions.

Fragment-based approaches are attractive for CSP as they allow for the introduction of

more accurate energy models without the limitations of GGA DFT-D methods. Incorpo-

rating fragment-based methods into CSP remains expensive, however, owing to the many

two-body terms that must be calculated. To overcome this high computational cost, we in-

vestigate using a machine learning method to map force field two-body interaction energies
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to a higher level of theory. The prediction of many-body terms has been demonstrated for

finite systems41,42, indicating that machine learning methods can readily be applied to this

task.

We first outline the fragment-based method used is the study, which combines anisotropic

atom-atom force fields with a range of QM methods. Following similar work in comparing

energy models for CSP43, the energy model is tested by monitoring the ranking of observed

crystal structures within CSP structure sets for a range of molecules when calculating each

two-body term explicitly. We then describe a machine learning approach to learning the

difference between force field and QM dimer energies, which reduces the cost of the fragment

based QM correction. The results of our machine learnt energy model are assessed by

comparison to explicit QM calculations.

2 Computational Details

2.1 Test Set Molecules

The fragment-based correction to force fields was tested on ten organic molecules chosen to

assess a variety of intermolecular interactions. These were selected from the X23 dataset44 of

crystal structures with reliable experimentally determined sublimation energies, or molecules

that are known from previous studies to be problematic for force field energy models43. So

that our evaluation is focused on the intermolecular energy model, molecules were selected

where the gas phase geometry optimization of the isolated molecule is in good agreement

with the molecular geometry in the experimental crystal structure. This allows us to ap-

ply a rigid molecule approach during CSP and means that no model for the intramolecular

contribution to relative lattice energies is required. Application of the fragment approach

to flexible molecules, where the molecular geometry is influenced by intermolecular interac-

tions in its crystal structures, will require methods for modelling the energy associated with
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flexible degrees of freedom within a molecule and will need to describe the dependence of

intermolecular interactions on molecular conformation; these issues are not addressed in the

current work.

The selected molecules are shown in Fig. 1 along with the Cambridge Structural Database

(CSD) reference codes45 of their known crystal structures. Five of these molecules are

known to be polymorphic, so that our test set contains 16 experimentally determined crystal

structures.

(a)
(b)

(c) (d)

(e)
(f) (g) (h)

(i)

(j)

Figure 1: The 10 selected species for this study, with 16 experimentally known crystal
forms (CSD reference codes45 for each form are given in parentheses): (a) oxalic acid
α (OXALAC0546) and β (OXALAC0747) polymorphs; (b) adenine polymorphs I (KOB-
FUD48) and II (KOBFUD0149); (c) formamide (FORMAM0250); (d) maleic hydrazide mon-
oclinic (MALEHY0151), triclinic (MALEHY1052), and MH3 monoclinic (MALEHY1253)
polymorphs; (e) 3,4-cyclobutylfuran metastable orthorhombic (XULDUD54) and monoclinic
(XULDUD0154) polymorphs; (f) tetrolic acid α (TETROL55) and β (TETROL0155) poly-
morphs; (g) 1,3,5-triazine (TRIZIN0356); (h) adamantane (ADAMAN0857); (i) naphthalene
(NAPHTA3058); and (j) urazole (KOXRIY59).
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2.2 Crystal Structure Prediction

For each species, molecular geometry optimizations were carried out in Gaussian 0960 us-

ing the B3LYP hybrid functional61 and the 6-311G** Pople basis set. With this as a fixed

molecular geometry, structures were generated using a quasi-random sampling method using

the GLEE (Global Lattice Energy Explorer) code11. Each space group considered is sampled

separately, by generating trial structures with unit cell dimensions, molecular positions and

orientations sampled using a low discrepancy method. Approximately 10,000 valid (success-

fully lattice energy minimized) structures were generated in each of the 11 most common

space groups (P21/c, P212121, P1, P21, Pbca, C2/c, Pna21, Cc, Pca21, C2, P1) with one

independent molecule in the crystallographic asymmetric unit (Z ′ = 1). Approximately 85%

of known molecular organic crystal structures are observed to crystallize with Z ′ ≤ 1 in one

of these space groups. For adenine, the known space group of form (II)49 (Fdd2) was also

included. All generated trial crystal structures were geometry-optimized using the crystal

structure modelling code DMACRYS15 with the molecular geometry kept fixed. Intermolec-

ular interactions were evaluated using the FIT+DMA anisotropic force field14, which has

the form

Eintermolecular
MN =

∑
i,k

Acdexp(−Bcdrik) − Ccdr−6ik + Eelec
ik , (2)

where i and k refer to atoms with type c and d from moleculesM and N at a distance rik, re-

spectively. The parameters Acd, Bcd and Ccd of the FIT model were determined by empirical

parameterization against experimental crystal structures and sublimation enthalpies14,62,63.

The term Eelec
ik describes electrostatic interactions between atoms i and k from atom-centered

multipoles up to hexadecapole on all atoms, which were derived from a distributed multi-

pole analysis of the B3LYP/6-311G** charge density64. Charge–charge, charge–dipole and

dipole–dipole interactions were calculated with Ewald summation. All other interactions

were calculated between whole molecules with a centre of mass separation of less than 25Å.
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Previous work indicates that crystal structures of interest are typically within 10 kJ/mol of

the global minimum of crystal structure landscapes12,43. However, as many of the molecules

studied here were chosen specifically as examples where force fields perform poorly in ranking

the observed structures, we retained structures within a wider (20 kJ/mol) energy window

of each landscape for further calculations.

Duplicate crystal structures were removed by first clustering within space groups, comparing

any pair of structures with nearly identical lattice energies and densities (within 1 kJ/mol

and 0.05 g/cm3) using dynamic time-warping comparisons65 of simulated X-ray diffraction

patterns calculated using PLATON66. Structures were then clustered further within space

groups using the COMPACK algorithm, where arrays of interatomic distances within finite

clusters of 30 molecules from each crystal structure were compared67; structures were identi-

fied as duplicates if all 30 molecules matched, and the 30-molecule clusters could be overlaid

with an RMSD in atomic positions of below 0.3 Å. A third clustering was performed between

space groups using the dynamic time-warping comparison of X-ray diffraction patterns, to

obtain a final data set.

The known crystal structures for each molecule (Fig. 1) were identified in a given land-

scape by comparing the predicted structures to the experimental crystal structure using

COMPACK (as implemented in Mercury68) with 30-molecule clusters.

2.3 Fragment-Based Lattice Energy Model

The energy ranking of the sets of force field predicted crystal structures for each molecule

has been assessed using a ‘single-point’ energy correction: a re-calculation of the lattice

energy using a fragment-based correction to the force field energy, without further structural

re-optimization. The fragment-based energy model tested in this study has a similar form
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to the HMBI scheme37,39,40, where the lattice energy is calculated as a force field (ff ) lattice

energy, with significant two-body terms corrected to a higher level (hl) of theory,

E ′latt = E
(ff)
latt +

∑
i

(
E

(hl)
cm,i − E

(ff)
cm,i

)
S, (3)

where E(ff)
latt is the force field (FIT+DMA) total lattice energy, and E(hl)

cm,i and E
(ff)
cm,i are the

two-body interaction energies calculated between the ith component and a central, reference

molecule (cm) at the higher (QM) and force field levels of theory, respectively. S is a cutoff

function that switches from 0, 1, such that

S =


1 for R < Rc − t

0 for R > Rc,

(4)

where R is the nearest intermolecular atom-atom distance of a dimer, and Rc is a critical

distance within which energies are replaced. To prevent discontinuities at the transition

between the two levels of theory, cubic splines were used to interpolate between levels of

theory in a buffer region between Rc − t and Rc. In this work, we applied a buffer region

width of t = 0.5 Å.

To identify two-body interactions that contribute significantly to the lattice energy, the vari-

ance of the sum of the force field dimer energies with Rc is used as a guide. For each crystal

structure, a rolling average of the sum of dimer energies is retained with the addition of each

shell of interacting molecules. When the addition of a new shell (taken as an increase in Rc

of 0.5 Å) results in a variance of less than 0.1 kJ/mol, the energy is assumed to be sufficiently

converged, with interactions beyond this distance left at the force field level of theory. To

reduce the chance of identifying convergence erroneously, a minimum Rc of 8 Å was used,

calculated as the nearest intermolecular atom-atom distance from the reference molecule.

Symmetrically equivalent dimers were identified by comparing the centroid-centroid dis-
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tances, and the distances of each atom in the two molecules to the inter-centroid midpoint.

The QM dimer-corrected energy model was applied to all crystal structures within 20 kJ/mol

of the global minimum for each molecule. To investigate how FIT+DMA CSP landscapes

change using dimer corrections at different levels of quantum mechanical theory, second or-

der Møller-Plesset perturbation theory69 (MP2) and the hybrid B3LYP functional61 were

selected as higher levels of theory, along with the PBE70 functional as a reference for GGA

methods. In both DFT methods, dispersion corrections were added using Grimme’s D3

correction71. The fragment approach opens the possibility for corrections at any affordable

QM level of theory and it has been shown that wavefunction methods beyond MP2 are

required for chemical accuracy (in particular for π-stacking dispersion interactions)40. The

significant increase in cost, and scaling with molecular size, for methods such as CCSD(T)

makes them less viable for calculating two-body interactions for the entire low energy region

of crystal structure landscapes. Therefore, we have focussed initially on the lower cost QM

methods that could provide a significant improvement in energy ranking, while still being

comparable with force field calculations for efficiency when combined with a machine learn-

ing approach. For each unique dimer, the PBE-D3/6-31+G**, B3LYP-D3/6-31+G** and

MP2/6-31+G** interaction energy was evaluated as the difference between the dimer and

monomer energies, where basis set superposition error was treated with a counterpoise correc-

tion72. All QM calculations were performed using Gaussian 0960. Using these energies, the

energy difference E(hl)
cm,i −E

(ff)
cm,i was evaluated for all dimers within the defined distance cut-

off, giving the crystal structure landscape at the FIT+DMA force field geometry, but with

dimer-corrected energies. Henceforth, we refer to these landscapes as FIT+DMA+PBE,

FIT+DMA+B3LYP, and FIT+DMA+MP2.

Following earlier work on the assessment of force field methods for CSP43, each energy model

was assessed by using two measures of the position of the known crystal structures amongst
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the energy-ranked predicted structures, ∆E and Nlower (see Fig. 2). Nlower is a measure of

the energetic rank of the known crystal structure and is defined as the number of predicted

structures not observed experimentally that are lower in energy than the observed structure.

The relative energy (∆E) of a known crystal structure is defined as the energy difference

between its calculated energy and the energy of the lowest energy predicted structure that is

not observed experimentally. Under the assumption that observed crystal structures always

correspond to the lowest energy possible structures, and that all polymorphs of the studied

molecules have been found, the reported polymorphs should correspond to the lowest energy

structures within the CSP structure sets, resulting in Nlower = 0 and ∆E < 0 for all poly-

morphs of each molecule.

(a) (b)

Figure 2: Examples of CSP energy-density plots illustrating Nlower and ∆E (a) for a molecule
with one known structure, and (b) for a molecule with two known polymorphs. Each point
corresponds to a distinct predicted crystal structure.

Deviations from Nlower = 0 and ∆E < 0 indicate either additional, kinetic, structure-

determining effects or deficiencies in the model used to rank the lattice energies. The success

of CSP by global lattice energy minimization, and the systematic improvements in results

that have been observed with improved accuracy of lattice energy calculations,13 support the

view that minimization of the lattice energy is a dominant influence in crystallization. Nev-
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ertheless, kinetics of crystal nucleation and growth can be important in determining crystal

structure, particularly in the presence of strong intermolecular interactions; the importance

of kinetic effects seems to increase with molecular size, as conformational rearrangement

and the templating effects of solvent within crystal structures can lead to experimental re-

alization of high energy, metastable crystal structures.8,73,74 An understanding of kinetic

influences on crystal structure should be based on an accurate understanding of the relative

thermodynamic stability of competing crystal structures, which is the focus of the current

work. The computation of vibrational contributions to the free energy is not treated in this

work, as this contribution to free energy differences between polymorphs is usually small

compared to the lattice energy difference12,75. This does limit the accuracy of all discussed

energy models, but is an effect that is expected to become more significant in applications

to flexible molecules.76,77

To further assess the accuracy of the fragment-based energy models, we examined calcu-

lated polymorph lattice energy differences for three molecules, oxalic acid, tetrolic acid and

adenine, where the polymorph stability order and, for oxalic acid and adenine, the mea-

sured energy difference is known. To extend this comparison to popular solid state DFT-D

methods, periodic DFT-D calculations were carried out in the VASP software package78–81,

using the PBE exchange-correlation functional70 with Grimme D3 dispersion82 (PBE-D3).

DFT-D geometry optimizations were performed using a two step process of first optimizing

atomic positions with fixed lattice parameters, before then optimizing all degrees of freedom;

this has been found to improve convergence for molecular crystals83,84. All calculations used

a plane-wave energy cutoff of 500 eV with a maximum k-point spacing of 0.05 Å−1, using the

projector-augmented wave (PAW) method85 and standard pseudopotentials86. Tolerances

for energy convergence were set to 10−7 eV per atom, and force tolerances for geometry

optimization to 3 × 10−2 eV/Å.
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2.4 Machine Learning of Dimer Energy Corrections

Atom-centered symmetry functions87 were used to describe two-body interactions, including

the recent modification to allow for high resolution22. Here the local environment of the ith

atom in a system of N atoms is described by a radial terms

GR
ia =

N∑
j 6=i

exp
(
−ηR(Rij −Rsa)2

)
fc(Rij), (5)

where Rij is the distance between atoms i and j, ηR and Rsk are hyperparameters affecting

the localization and shift of each Gaussian function, respectively, and fc(Rij) is a cutoff

function, such that

fc(Rij) =


1
2
cos(

πRij

Rr
) + 1

2
for Rij ≤ Rr

0 for Rij > Rr,

(6)

for a predefined radial cutoff Rr, and b angular terms

GA
ib

= 21−ζ
N∑

j,k 6=i

(1 + cos(θijk − θsb))
ζ exp

(
−ηA

(
Rij +Rik

2
−Rsb

)2
)
fc(Rij)fc(Rik), (7)

where θijk is the angle between atoms i, j and k, fc(Rij) are fc(Rij) cutoff functions with an

angular cutoff Ra, and θsl , ηA and ζ are hyperparameters. To combine these as a descriptor

for a dimer, the symmetry functions are arranged in a vector. Although this removes in-

variance to permutation, the machine learning model is only trained on a specific landscape

with all dimers containing the same molecules, and so maintaining consistent ordering of

atoms for every dimer is trivial. The descriptor is also not invariant to permutation of the

molecules themselves, however this effect is negligible as only unique dimers are used in the

data set. The oxalic acid FIT+DMA+MP2 landscape was selected to test the machine

learning approach, as this shows the most dramatic changes relative to FIT+DMA, which
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should be the most challenging for machine learning methods to capture. For comparison,

we also tested the approach on the FIT+DMA+MP2 landscape of maleic hydrazide, as a

second polymorphic molecule where the fragment-based energy corrections are large.

Hyperparameter values were initially selected to give an even spacing of Gaussians out to

the largest intermolecular nearest atom-atom distance for radial terms, and to sample −π to

π for the angular terms. The number of symmetry functions and hyperparameters were then

optimized using the the entire dataset of both species at the FIT+DMA level of theory,

where the number of symmetry functions was reduced to the minimum number at which all

dimers were fully distinguishable with nearby neighbours in descriptor space displaying sim-

ilar FIT+DMA dimer energies. Three radial and two angular terms were used to describe

each atom in the oxalic acid and maleic hydrazide dimers (giving a total of 80 symmetry

functions per oxalic acid dimer and 120 symmetry functions per maleic hydrazide dimer).

The final values were angular (Ra) and radial (Rr) cutoffs of 9.66 Å and 9.53 Å, respectively,

radial Rs terms of 1 Å, 2.8665 Å, and 4.733 Å, angular θs terms of 0 and π rad each with Rs

values of 2.0 Å, ηR and ηA values of 2.8 Å−2 and 2.5 Å−2, respectively, and a ζ value of 4.0.

Both landscapes have dimer corrections with intermolecular nearest atom-atom distances

out to approximately 9.3 Å, and so the resolution of weakly interacting dimers is expected

to be much lower than those with small intermolecular distances. However, given the rel-

atively small data sets, and as these terms are expected to only make minor contributions

to the energy, focus was given to accurately resolving strongly interacting dimers without

significantly increasing the size of the descriptor space.

A Gaussian process model was built using the Scikit-learn Python package88, using a radial

basis function (squared exponential) kernel with a white noise kernel to avoid overfitting.

To evenly sample the descriptor space, training data were selected using the max-min algo-

rithm89.
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3 Results and Discussion

3.1 Crystal Structure Ranking using the Fragment-Based Approach

Accurate energetic ranking of crystal structures is vital in CSP, as polymorphs are known to

often differ by only a few kJ/mol.12 It is generally understood that a more accurate energy

model leads to improved (i.e. lower) ranking of experimentally observed crystal structures,

which in turn makes it easier to identify novel structures of interest2,90 perhaps as undiscov-

ered polymorphs or realizable materials with attractive properties. Given a crystal structure

landscape with lattice energies calculated using a force field, the fragment-based model de-

scribed here can be seen as one of the simplest initial improvements to the energy model, as

energetically significant two-body force field interactions are replaced with a higher level of

theory without any re-optimization of the geometry.

All of the known crystal structures were successfully identified in the FIT+DMA land-

scapes of the ten molecules, with the exception of the monoclinic form of 3,4-cyclobutylfuran.

This molecule featured in the first blind test of CSP54 and is known to present difficulties

for force field methods. Optimizing the experimental crystal structure from the CSD using

FIT+DMA leads to a large structural change when using the DFT-optimized molecular ge-

ometry, where only 11 out of 30 molecules are found to match when comparing the optimized

and experimental structures using the crystal structure comparison tool in Mercury68. Using

a similar force field91, Price et al. found that this polymorph was sensitive to the position

of the hydrogen atom interaction site, finding a RMSD of 5.9 to 6.6% in lattice parameters

when comparing the experimental structure to their optimized version54. The experimental

crystal structure is reproduced more satisfactorily when optimized with FIT+DMA using

the experimental molecular geometry. However, to be consistent with the methodology used

for all other molecules, we do not consider this polymorph further in the current study. The

results for monoclinic 3,4-cyclobutylfuran highlight a limitation of the single-point energy
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correction approach, which relies on the force field to produce accurate structures. Thus, we

plan to implement geometry optimization on the dimer-corrected lattice energy surface in

future work.

Figure 3: Differences in ranking (Nlower) of experimentally known structures in crys-
tal structure landscapes calculated with FIT+DMA (black), FIT+DMA+PBE (tan),
FIT+DMA+B3LYP (brown), and FIT+DMA+MP2 (cyan).
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Figure 4: Comparisons of relative energies, ∆E, of known crystal structures to the lowest
energy structure in the crystal structure landscape that is not experimentally observed us-
ing FIT+DMA (black), FIT+DMA+PBE (tan), FIT+DMA+B3LYP (brown), and
FIT+DMA+MP2 (cyan) energy models.

Nlower values for the other 15 observed crystal structures are shown in Fig. 3 for the four

energy models - FIT+DMA and the three dimer-corrected models - with ∆E comparisons

given in Fig. 4.

It should first be noted that the majority of molecules studied here were selected on the
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basis that they are known to be challenging for force field methods. This is reflected in

the large Nlower values for many of the structures at the force field (FIT+DMA) level:

there are many energetically-competitive crystal structures in these landscapes that are not

distinguished successfully from the experimentally known forms by the force field energy

model. Thus, the FIT+DMA results shown here are not representative of typical results

with empirically parameterized, atomic multipole-based force fields, but represent situations

where improvements are needed beyond such models.

Across all ten molecules, both Nlower and ∆E are generally found to improve with all three

QM dimer-corrected energy models, although there are some significant differences in the

results, depending on the electronic structure method used in the dimer energy corrections.

We start with the model using the lowest cost QM dimer correction: the GGA DFT func-

tional PBE. Using the FIT+DMA+PBE model, the ranking (Nlower) either remains the

same (for the α form of oxalic acid) or improves for all experimentally observed crystal struc-

tures compared to FIT+DMA (Fig. 3). We also observe a comparative lowering of ∆E in

every case aside from negligible increases in ∆E for formamide and naphthalene (Fig. 4).

In some instances, this leads to experimental ranking much closer to the global minimum of

the landscape (e.g. urazole, the two tetrolic acid polymorphs, and all three maleic hydrazide

polymorphs). As importantly, for the systems where FIT+DMA already performs well

(such as naphthalene, adamantane, and the β form of oxalic acid), the FIT+DMA+PBE

model maintains the good energetic ranking and ∆E. Thus, this relatively inexpensive cor-

rection offers a clear improvement in the reliability of CSP for these molecules, by better

distinguishing observed from unobserved crystal structures based on the calculated lattice

energy.

The FIT+DMA+B3LYP model essentially amplifies the improvements found when using
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FIT+DMA+PBE. Applying the hybrid B3LYP functional for dimer energy corrections

leads to greater improvements in ranking compared to FIT+DMA+PBE in nearly ev-

ery instance - only the β form of tetrolic acid and formamide have slightly worse Nlower

values compared to FIT+DMA+PBE, but are still improvements over the uncorrected

force field results. ∆E is also generally improved with FIT+DMA+B3LYP relative to

FIT+DMA+PBE, again with a few exceptions (Fig. 4).

The FIT+DMA+MP2 model continues the trend towards improving results from the

FIT+DMA model. The ∆E results highlight cases where the FIT+DMA+MP2 model

out-performs the DFT-based models: for the three polymorphs of maleic hydrazide, ura-

zole, and the α form of oxalic acid. ∆E using FIT+DMA+MP2 has increased relative

to the FIT+DMA+B3LYP results for both forms of adenine, but the Nlower results show

that this is caused by a small number of predicted, but unobserved structures having low

energies with FIT+DMA+MP2. The largest improvements that we observe between the

wavefunction-based MP2 dimer-corrected model and the DFT-based models are in the rank-

ing, Nlower, for a few of the molecules. The most dramatic change is for the α polymorph

of oxalic acid, which remained high on the energy landscape with all other models, but with

FIT+DMA+MP2 is almost equi-energetic with β oxalic acid, as the two lowest energy

crystal structures; this is in agreement with the experimentally determined relative stabilities

for the polymorphs of oxalic acid, as discussed below. The changes in the overall distribution

of crystal structures and position of the known polymorphs with all four energy models is

shown for oxalic acid in Fig. 5. We also see important improvements for the triclinic and

MH3 monoclinic forms of maleic hydrazide (Fig. 4).
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(a) (b)

(c) (d)

Figure 5: The low energy region of the crystal structure landscape of oxalic acid
using (a) FIT+DMA, (b) FIT+DMA+PBE, (c) FIT+DMA+B3LYP, and (d)
FIT+DMA+MP2. The lattice energy range shown in each part includes all of the struc-
tures taken from the lowest 20 kJ/mol of the FIT+DMA landscape. Each blue data point
corresponds to a predicted crystal structure, with predicted crystal structures corresponding
to the known polymorphs shown as orange triangles.

3.2 Polymorph Energy Differences: Comparison to Experiment

The overall results demonstrate that all three QM fragment-corrected methods improve upon

the relative lattice energies calculated with the FIT+DMA force field. The MP2 dimer cor-

rected model, FIT+DMA+MP2, provides the best overall results and, for some structures,

shows important differences from the DFT fragment-corrected energy models. For the known

polymorphs of oxalic acid, for example, both FIT+DMA+PBE and FIT+DMA+B3LYP

predict the β form as the global minimum, whereas the α form is much higher in the land-
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scape, while FIT+DMA+MP2 predicts α and β as the two lowest energy structures

(Fig. 5). The polymorphs of oxalic acid are known as a challenging system for force field

methods,92 partly due to the differences in hydrogen bonding in the two forms, with cyclic

carboxylic acid dimer interactions in the β form (Fig. 6c), compared to corrugated layers in

α, stabilized by a combination of short and long hydrogen bonds to both the carbonyl and

O-H oxygen atoms (Fig. 6b). The differences between models can be further assessed by

comparison to the polymorphic relative stabilities determined by experimental methods and

solid state quantum mechanical calculations.

The measured relative stabilities of the oxalic acid polymorphs93 show that α is the more

stable form. After correction of the measured polymorph enthalpy difference for lattice

vibrational contributions, the measured lattice energy difference is approximately 0.2 kJ/-

mol.44,94. The correct stability order is only predicted correctly by the FIT+DMA+MP2

model, which predicts the α form to be 0.02 kJ/mol more stable than β. This model also

gives good agreement with fully relaxed solid state DFT models95 (Fig. 6), despite only

being a single point correction at the FIT+DMA geometry. To investigate the influence of

the modest basis set size (6-31+G**) used in our calculations, the energies of the two oxalic

acid polymorphs were also calculated using our fragment-corrected model with MP2 dimer

interaction energies evaluated at the MP2/6-311++G** level of theory (shown in Fig. 6).

The larger basis set was found to change the relative lattice energies slightly, increasing the

lattice energy difference to 0.31 kJ/mol, now in excellent agreement with experiment.
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Figure 6: a) Relative lattice energies of the known b) α and c) β oxalic
acid polymorphs calculated using the FIT+DMA (FD), FIT+DMA+PBE (FDP),
FIT+DMA+B3LYP (FDB), FIT+DMA+MP2 (FDM) models. Results are also shown
using FIT+DMA+MP2 with a 6-311++G** basis set (FDM*), PBE-D3 (PBE), and
PBEh-MBD (PMBD) - a hybrid DFT functional combined with many-body dispersion (re-
sults from Marom et al. (2013)95). Lattice energies of the β form (red) are given relative to
the α form (blue), with experimentally known stabilties44,93 shown as the dashed red and blue
lines. All corrections to FIT+DMA are single-point corrections at the FIT+DMA geom-
etry (shown in bold), whereas PBE-D3 refers to full re-optimization from the FIT+DMA
geometry. Hydrogen bonds in b) and c) are shown as dashed blue lines.

The tetrolic acid polymorphs also differ in hydrogen bonding, with the triclinic α polymorph

forming cyclic hydrogen bond dimers and the monoclinic β polymorph forming hydrogen

bond chains (Fig. 7b and c). The β polymorph is known to be the more stable form below

56 − 58◦C, but we are not aware of a measured energy difference between the polymorphs.

As our calculations exclude the effects of temperature, the calculated lattice energy differ-

ence should agree with the low temperature order. The FIT+DMA force field gives the

incorrect stability order, with β calculated to be 0.29 kJ/mol less stable than α. In this

case, all of the fragment-corrected models correct the stability order (Fig. 7), predicting

β to be more stable than α by between 0.82 kJ/mol (FIT+DMA+PBE) and 1.84 kJ/-

mol (FIT+DMA+MP2). These results are in good agreement with the relative energy

calculated using the popular solid state PBE-D3 method, which calculates the α form to

be 0.93 kJ/mol less stable than β, but much smaller than the energy difference calculated
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with PBEh-MBD95. Calculations for FIT+DMA+MP2 were again repeated with a larger

basis set for the MP2 dimer interaction energies, where only minor changes in energy were

observed.

Figure 7: a) Relative lattice energies of the known b) α and c) β tetrolic
acid polymorphs calculated using the FIT+DMA (FD), FIT+DMA+PBE (FDP),
FIT+DMA+B3LYP (FDB), FIT+DMA+MP2 (FDM) models. Results are also shown
using FIT+DMA+MP2 with a 6-311++G** basis set (FDM*), PBE-D3 (PBE), and
PBEh-MBD (PMBD) - a hybrid DFT functional combined with many-body dispersion (re-
sults from Marom et al. (2013)95). The β form is known to be more stable than α.55 Lattice
energies calculated for the α form (blue) are given relative to the β form (red). All cor-
rections to FIT+DMA are single-point corrections at the FIT+DMA geometry (shown
in bold), whereas PBE-D3 refers to full re-optimization from the FIT+DMA geometry.
Hydrogen bonds in b) and c) are shown as dashed blue lines.

The most notable exception to the trend of FIT+DMA+MP2 providing the best results

is for adenine, whose two polymorphs form similar hydrogen bonded sheet structures that

differ in the arrangement of some of the hydrogen bonds (Fig. 8). Both forms have a signif-

icantly improved (i.e. lowered) ∆E value in the FIT+DMA+B3LYP model, with small

improvements in ranking, compared to FIT+DMA+MP2 (Fig. 4). However, estimations

of relative polymorph free energies based on solubility data49 indicate that form I is 1.1±0.3

kJ/mol more stable than form II at room temperature, which is reproduced most closely by

the FIT+DMA+MP2 lattice energies (Fig. 8). All methods are found to overestimate

the relative stability of form I, including fully optimized PBE-D3. The comparison between
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the experimental free energy difference and calculated lattice energy difference ignores the

lattice vibrational contribution to the free energy difference between polymorphs, but this

was found to be only about 0.5 kJ/mol for adenine49, so would not change these conclusions.

Figure 8: a) Relative lattice energies of the known b) polymorph I and c) poly-
morph II of adenine calculated using the FIT+DMA (FD), FIT+DMA+PBE (FDP),
FIT+DMA+B3LYP (FDB), FIT+DMA+MP2 (FDM) models. Results are also shown
using FIT+DMA+MP2 with a 6-311++G** basis set (FDM*) and PBE-D3 (PBE). Lat-
tice energies of form II (red) are given relative to the form I (blue), with the experimentally
determined free energy difference49 shown as the dashed red and blue lines. All corrections
to FIT+DMA are single-point corrections at the FIT+DMA geometry (shown in bold),
whereas PBE-D3 refers to full re-optimization from the FIT+DMA geometry. All methods
are found to overestimate the relative stability of form I, with FIT+DMA+MP2 showing
the best agreement with experiment. Hydrogen bonds in b) and c) are shown as dashed blue
lines.

The comparisons to experimental polymorph relative stability data indicate that, despite

some small exceptions when usingNlower and ∆E as metrics, the MP2 corrections provide the

most reliable improvement to the lattice energies of force field crystal structure landscapes.

Thus, FIT+DMA+MP2 is our preferred method. In all three cases, using a larger basis

for the MP2 dimer interaction energies leads to only small changes in relative lattice energies,

which suggests that the 6-31+G** basis set is sufficiently large for the calculation of relative

lattice energies.

24



4 Gaussian Process Learning of Dimer Energy Correc-

tions

Our results have demonstrated that a single-point QM fragment-based correction leads to

improved energetic ranking of observed crystal structures within CSP landscapes. The addi-

tional computational cost associated with this correction depends on the QM method used

(MP2 is the most promising of those tested thus far), as well as the molecular size and

number of dimers required to correct the lattice energy for all low energy crystal structures

on the landscape. The number of crystal structures and dimer interaction energies required

to correct the lowest 20 kJ/mol of each landscape is listed in Table 1; the number of dimers

varies widely between molecules, largely due to the differences in numbers of low energy

crystal structures on their landscapes. Average converged distances are found to be similar

for most species, indicating that the minimum cutoff is perhaps overly conservative in many

cases (a violin plot in the ESI highlights the differences between species in more detail). A

clear exception to this is formamide, which has a far greater spread of convergence values,

probably owing to its large dipole moment and resulting strong, long-range intermolecular

interactions.
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Table 1: The number of dimer calculations required to convert the lowest 20 kJ/mol of each
FIT+DMA crystal structure landscape to a QM fragment-corrected model. Maximum and
average convergence distances for the set of CSP structures are given in Å.

Molecule No. Crystal Structures No. Unique Dimers Max (Avg.)
Converged Distances

oxalic acid 476 16,379 9.2 (8.1)
adenine 86 2690 8.8 (8.2)

formamide 499 27,498 13.2 (9.0)
maleic hydrazide 388 12,522 9.3 (8.2)

3,4-cyclobutylfuran 765 22,466 8.9 (8.1)
tetrolic acid 568 19,114 8.9 (8.1)
adamantane 146 3,431 9.0 (8.3)

triazine 270 7,645 8.9 (8.2)
naphthalene 451 11,102 9.0 (8.2)

urazole 468 16,797 9.1 (8.2)

A comparison of the cost associated with dimer calculations compared to periodic PBE-D3

single-point calculations (see Table S3 in the ESI) shows that the relative cost varies con-

siderably between structures and with the level of theory used for the dimer calculations.

For example, the FIT+DMA+PBE dimer calculations require more CPU time than pe-

riodic PBE-D3 for the oxalic acid and tetrolic acid crystal structures, but less for the larger

adenine structures. In practice, it is the inherent parallelizability of the fragment-based

approach provides an advantage over fully periodic QM calculations in terms of computing

time because each dimer interaction energy can be assessed simultaneously. In this work,

dimer calculations were typically run over 160-240 processors, running each dimer calcula-

tion across two processors, reducing the computation time by over two orders of magnitude.

Despite the advantage of nearly perfect parallelizability, the cost of the fragment-corrected

calculations is large compared to the force field energy evaluations and could become pro-

hibitive if we wanted to optimize crystal structures on the fragment-corrected lattice energy

surface, which would require the QM dimer interaction energy calculations at each opti-

mization step. Furthermore, the time taken for each calculation could become problematic

for larger species, especially for MP2 or higher levels of QM theory. The data-rich nature
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of the problem makes machine learning an attractive approach to lower the computational

expense. Thus, we have investigated using a machine learning model to learn the dimer

energy corrections - the difference between force field and QM interaction energies - as a

function of the dimer geometry. We use the oxalic acid and maleic hydrazide landscapes

to evaluate this approach, as these show the largest ranking and relative energy changes

between FIT+DMA and FIT+DMA+MP2 models, so should be the most challenging

targets for machine learning the energy corrections.

Gaussian Process (GP) models were fitted separately for each molecule, to a training set of

dimers from the low energy predicted crystal structures, selected to be maximally separated

in descriptor space, using atomic symmetry functions as structural descriptors of the dimers

and the max-min algorithm89 for selection of the dimers included in the training set (for

which MP2 calculations are performed). Our previous work27 demonstrated that such an

approach to training point selection yields improved results compared to random selection

of training data. As the purpose of the GP model is to reduce the computation time asso-

ciated with the QM dimer energy correction, only training fractions of 40% and lower were

considered when training the models; we refer to the resulting models as FIT+DMA+GP

hereafter.

Mean signed error (MSE) and mean absolute error (MAE) in the FIT+DMA+GP model,

relative to FIT+DMA+MP2, are shown for the dimer energy corrections and total lattice

energies for both crystal structure landscapes in Fig. 9. Here the lattice energy is calculated

as before using equation (3), where the energy correction (E(MP2)
cm,i −E(FIT+DMA)

cm,i ) for training

set dimers are added explicitly, and dimer energy differences from all other (test set) dimers

are replaced with the predicted energy differences from the machine learning model.
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(a) (b)

(c) (d)

Figure 9: MSE (blue) and MAE (red) at different training fractions for the Gaussian Process
model relative to explicit calculations of interaction energy differences between MP2 and
FIT+DMA for (a) all oxalic acid dimers not used to train the Gaussian process, (b) the
resulting errors in the total oxalic acid lattice energies (relative to FIT+DMA+MP2), (c)
all maleic hydrazide dimers not used to train the Gaussian Process, (d) the resulting errors
in the total maleic hydrazide lattice energies (relative to FIT+DMA+MP2) - in this case
the MSE and MAE are very similar and overlap.
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Errors in the dimer energy corrections (the difference between MP2 and FIT+DMA) show

the largest decrease from 10% to 20% training fractions, at which point MAE errors are ap-

proximately 0.04 and 0.06 kJ/mol for oxalic acid and maleic hydrazide dimers, respectively.

The errors continue to decrease, albeit slowly, at higher training fractions, apart from a

slight increase for oxalic acid between 30% and 40%. These dimer correction errors are very

small, even at a 10% training fraction, considering the total energetic range of the dimer

error corrections, which span the range -0.71 to +4.58 kJ/mol for oxalic acid and -4.06 to

+8.50 kJ/mol for maleic hydrazide. The dimer energy prediction errors translate directly to

errors in the lattice energies (measured relative to the fully corrected FIT+DMA+MP2

landscape); for both molecules, we see that lattice energy errors are just over 1 kJ/mol at

20% training fractions (Fig. 9). Thus, the magnitude of the errors introduced by machine

learning the dimer energy corrections are comparable to typical energy differences between

polymorphs12 and to the energy differences between low energy predicted structures on the

oxalic acid landscape (see Fig. 5). However, the MSE shows that the errors in dimer energy

correction, and hence in the total lattice energies, are largely systematic; the systematic

nature of the errors is also clear in scatter plots of predicted vs calculated energy corrections

(shown in the ESI).

The excellent performance of the Gaussian process predictions, and the resulting systematic

errors in the predicted lattice energies, are partly due to the selection of training data by the

max-min algorithm. The atomic symmetry function descriptors decay at longer distances,

and so the greatest diversity in descriptor space is found at short intermolecular separations,

where the differences between MP2 and FIT+DMA energies are greatest. The max-min

algorithm iteratively selects for dimers distinct to those already in the training set, and so at

low training fractions those dimers with significant energy differences (and short intermolec-

ular separations) will form the majority of the training data (figures showing the selected

dimers at different training fractions are given in the ESI). The low number of dimers with
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long intermolecular separations selected by the max-min algorithm at small training fractions

result in many of these dimers in the test set being predicted with similar energy differences.

These contributions are small, but the large number of dimers at longer separations adds up

to a systematic shift of the lattice energies. These systematic errors cancel in the calculation

of relative lattice energies and, so, are unimportant for the ranking of crystal structures. We

also note that, at higher training fractions, the selection of training data continues to be

iteratively selected by intermolecular distance (shown in the ESI), indicating that the reso-

lution in the descriptor for these highly separated dimers is still sufficient to distinguish them.

(a) (b) (c) (d)

Figure 10: Lattice energy vs density for predicted crystal structures of oxalic acid using
(a) the FIT+DMA force field, (b) the FIT+DMA+GP machine learnt model using
10% training data, (c) the FIT+DMA+GP model using 20% training data, and (d) the
FIT+DMA+MP2 (target) landscape. In (b) 87% of the dimers in the α polymorph and
90% in β polymorph are predicted using the FIT+DMA+GP model, whereas in (c) 77%
and 74% are predicted for the α and β polymorphs, respectively (as chosen deterministically
by the max-min algorithm89).

The performance of the machine learnt models can be seen more clearly in the resulting

lattice energy landscapes, which are presented for oxalic acid from the FIT+DMA+GP

models trained with 10% and 20% these training fractions in Figs 10b and 10c. Compari-

son to the target FIT+DMA+MP2 landscape (Fig. 10d) shows that the model trained
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with 10% of the dimers introduces the most important corrections from the fragment-based

model and that the ranking of low energy structures has largely been resolved once 20%

of dimers are used to train the GP model. The Kendall rank correlation of lattice ener-

gies from FIT+DMA+GP models vs FIT+DMA+MP2 increases from τ = 0.870 (10%

training) to 0.956 (20% training), compared to τ = 0.606 for the comparison between uncor-

rected FIT+DMA and FIT+DMA+MP2 rankings. This demonstrates that the ranking

of predicted structures is almost unaffected by the errors in the FIT+DMA+GP model

trained with 20% of dimers. The rank correlation makes only small further increases at

higher training set sizes (shown in the ESI). Training fractions of 10% and 20% reduce the

number of required MP2 calculations from 16,379 for the full FIT+DMA+MP2 model to

1,678 and 3,276, respectively. This 80 to 90% saving in time required for the MP2 correction

will be increased if we also use the GP model for lattice energy optimization.

The lattice energy landscape for maleic hydrazide makes a similar progression (Fig. 11),

but here the differences between FIT+DMA+GP trained with 10% of dimers and the

FIT+DMA+MP2 landscape are more important. This is due to higher errors for maleic

hydrazide than oxalic acid at small training fractions; these can be explained by the smaller

dataset of 12,522 unique dimers compared to 16,379 in the oxalic acid set (table 1) and the

larger range of dimer energy corrections that must be learnt for maleic hydrazide; this reflects

a greater range of dimer geometries for maleic hydrazide, whose hydrogen bond donors and

acceptors can be combined in a range of motifs. It should also be noted that the descriptor

space for maleic hydrazide has considerably more dimensions than oxalic acid.
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(a) (b) (c) (d)

Figure 11: Lattice energy vs density for the predicted crystal structures of maleic hydrazide
using (a) the FIT+DMA force field, (b) the FIT+DMA+GP machine learnt model
using 10% training data, (c) the FIT+DMA+GP landscape using 20% training data,
and (d) the FIT+DMA+MP2 (target) landscape, where the known structures marked as
orange triangles are (from left to right in terms of density) the MH3 monoclinic form, the
monoclinic form, and the triclinic form. In (b) 96%, 98%, and 96% of the dimers in the
known polymorphs are predicted for the MH3 monoclinic, monoclinic, and triclinic forms,
respectively. In (c) 80%, 86%, and 74% are predicted for the three polymorphs, respectively
(again as chosen deterministically by the max-min algorithm89).

The rank correlation of crystal structures between the FIT+DMA+GP and FIT+DMA

+MP2 models is only slightly lower than for oxalic acid (τ = 0.853 for the GP model trained

with 10% of dimers, τ = 0.943 at 20%, compared to τ = 0.501 comparing FIT+DMA to

FIT+DMA+MP2). This demonstrates that the ranking of most predicted structures is

correct at the lowest training fraction. However, it is clear (see Fig. 11b) that, using the

GP model trained with 10% of dimers, the relative energies of the known polymorphs is

incorrect. This may be because almost all of the dimer energy corrections for the three

observed polymorphs have been predicted by the GP model (i.e. are not in the training set).

In particular, the stability of the monoclinic polymorph, which is least stable of the three

observed forms using FIT+DMA+MP2, is exaggerated. For this structure, only 2% of

dimers are in the 10% training set, so errors related to the GP model will be higher for this

structure than the average. Comparatively, in the oxalic acid 10% landscape (Fig. 10b),
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both known polymorphs have a smaller fractions of 87% and 90% of the dimers predicted

by the FIT+DMA+GP model for α and β, respectively.

The landscape predicted using the FIT+DMA+GP model using 20% of dimers as training

data (Fig. 11c) gives a faithful reproduction of the FIT+DMA+MP2 landscape, including

the relative stabilities of the three observed crystal structures. Only the absolute lattice en-

ergies are slightly underestimated with this model, for which only 2,504 of the 12,522 unique

dimers have been calculated using MP2. As with oxalic acid, the systematic error is absent

at higher training fractions. In both cases the prediction errors with the FIT+DMA+GP

models are comparable to previous work on machine learning lattice energies for CSP27 and

highlight that the target landscape can be accurately resolved at a significant reduction in

computational cost.

5 Conclusions

Fragment-based models are known to provide complementary approaches to periodic calcu-

lations, which can be essential when the computational cost of hybrid functionals or post-

Hartree Fock, wavefunction methods become computationally unfeasible, and GGA methods

are not sufficiently accurate. This work has demonstrated an approach to rapidly improve

anisotropic, atomic multipole-based force field lattice energies by correcting two-body in-

teractions to a quantum chemical level of theory, and the application of this approach to

structure prediction of organic molecular crystals. By replacing significant force field two-

body interactions with PBE-D3, B3LYP-D3, or MP2 dimer interaction energies, without

further geometry optimization, we observe improvements to the ranking of experimentally

known crystal structures within the sets of predicted structures in almost all cases, and good

ranking of experimental structures is maintained in cases where the force field performs well.

Results systematically improve when replacing two-body interactions with a GGA method
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to that with a hybrid functional, and the largest improvements are observed when MP2 is

used for the dimer energy corrections. The MP2 fragment-corrected model also provides

polymorph lattice energy differences that are in excellent agreement with experimental mea-

surements, and with the results of fully periodic, dispersion-corrected DFT methods. Thus,

the QM fragment-corrected force field lattice energy models will increase our confidence

in the energetic ordering of predicted crystal structures, which will improve the reliability

of crystal structure prediction methods in applications such as pharmaceutical polymorph

screening and computer-guided materials discovery. Furthermore, the approach is generaliz-

able to any quantum chemical method, such as higher level correlated wavefunction methods

and larger basis sets, potentially offering further improvements than those demonstrated here.

An attractive feature of the fragment-based approach is the inherent parallelizibility of the

energy correction. Furthermore, we have shown that the difference between force field and

QM dimer interaction energies can be predicted using a Gaussian process, with the dimer

geometries described using atomic symmetry functions. Results for two of the most challeng-

ing molecules in our study - where differences between force field and MP2 relative energies

are greatest - show that lattice energies of the MP2 dimer-corrected model can be predicted

to within 1-1.5 kJ/mol by training the Gaussian process model on 20% of the dimer energies

from a CSP landscape, and that the resulting machine learnt model reproduces the ranking

of structures on the fully MP2-corrected landscape. Thus, a 5-fold reduction in the compu-

tational cost of the QM correction can be achieved using a simple machine learning approach.

The machine learning approach helps minimize the additional computational expense in-

volved with the QM energy corrections, which is particularly important for future applica-

tions to larger molecules. However, the conformational flexibility of larger molecules will

introduce additional challenges that have not been addressed here: all molecules studied in

this work have been modelled using their gas phase geometries, which are undistorted by
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crystal packing forces. For species where this is not a realistic approach, the machine learn-

ing will need to be extended to include some or all intramolecular degrees of freedom, either

within the same Gaussian Process and within the same descriptor used for the dimer energy

corrections or through an additional intramolecular energy model. Conformational flexibil-

ity will also significantly increase the number and variety of possible two-body interactions,

likely presenting a greater challenge to achieve similar levels of prediction accuracy. The

work presented here provides a basis for these developments and an efficient, accurate, and

systematically improvable alternative to the increasingly popular periodic DFT approach to

crystal structure prediction.
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