
On the separation of topology-free rank
inequalities for the max stable set problem
S. Coniglio1 and S. Gualandi2

1 Department of Mathematical Sciences, University of Southampton, University
Road, Southampton, UK
s.coniglio@soton.ac.uk

2 Department of Mathematics, University of Pavia, Via Ferrata 1, Pavia, Italy
stefano.gualandi@unipv.it

Abstract
In the context of finding the largest stable set of a graph, rank inequalities prescribe that a stable
set can contain, from any induced subgraph of the original graph, at most as many vertices as the
stability number of the former. Although these inequalities subsume many of the valid inequalities
known for the problem, their exact separation has only been investigated in few special cases
obtained by restricting the induced subgraph to a specific topology.

In this work, we propose a different approach in which, rather than imposing topological
restrictions on the induced subgraph, we assume the right-hand side of the inequality to be
fixed to a given (but arbitrary) constant. We then study the arising separation problem, which
corresponds to the problem of finding a maximum weight subgraph with a bounded stability
number. After proving its hardness and giving some insights on its polyhedral structure, we
propose an exact branch-and-cut method for its solution. Computational results show that the
separation of topology-free rank inequalities with a fixed right-hand side yields a substantial
improvement over the bound provided by the fractional clique polytope (which is obtained with
rank inequalities where the induced subgraph is restricted to a clique), often better than that
obtained with Lovász’s Theta function via semidefinite programming.
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1 Introduction

Let G = (V,E) be an undirected graph with vertex set V and edge set E, and let n := |V |.
Given G as input, the Maximum Stable Set (MSS) problem calls for the computation of the
size of the largest stable set of G (a subset of V with no pair of vertices sharing an edge).
Letting STAB(G) be the set of all characteristic vector of stable sets in G, solving MSS boils
down to computing α(G) := max

{∑
i∈V xi : x ∈ STAB(G)

}
, where α(G) is the so-called

stability number of the graph.
MSS is one of Karp’s 21 NP-hard problems [14] and it cannot be approximated in

polynomial time to within O(n1−ε) for any ε > 0 unless P = NP [13]. To date, it is among
the most challenging “fundamental” problems in combinatorial optimization to tackle with
integer programming techniques.

Introduced by Chvàtal in [5], Rank Inequalities (RIs) prescribe that, for any subgraph
G[U ] induced by U ⊆ V , at most α(G[U ]) of its vertices can be part of a stable set of G:
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I Definition 1. The set of all RIs is:
∑
i∈U xi ≤ α(G[U ]), for all U ⊆ V .

From a combinatorial perspective, RIs are all the inequalities with binary left-hand side
(LHS) coefficients which are valid for STAB(G).1 These inequalities are very general, as
many families of valid inequalities known for STAB(G) are obtained as a special case of RIs
when restricting the induced subgraph G[U ] to specific topologies (such as cliques, holes,
wheels, webs, and antiwebs).

In this work, we propose a novel approach for the separation of RIs where, rather than
imposing topological restrictions on the induced subgraph G[U ], we assume the right-hand
side (RHS) of the inequalities to be fixed to a given (but arbitrary) constant.

To our knowledge, the only methodology that has been developed to separate RIs without
topological restrictions is the one proposed [18], which relies on the edge projection operator
introduced in [15]. Although the method in [18] allows for the generation of RIs without a
specific topological restriction, it is heuristic in nature and it can halt before all the violated
RIs have been found. See [17] for a study on the impact of those and other (heuristically
separated) cuts when solving MSS via branch-and-cut. Recent work on integer programming
methods for MSS, partially belonging to the same stream of works, can be found in [8, 9].

The paper is organized as follows. In Section 2, after discussing on the nature of RIs and
their separation problem, topology-free RIs with a given RHS are introduced. Our method
for their separation is described in Section 3, where we also investigate the polyhedral nature
of the corresponding separation problem. Section 4 outlines the main algorithmical aspects
of our techniques. Computational results are reported and illustrated in Section 5, while
Section 6 draws some concluding remarks.

2 Rank inequalities and topology-free rank inequalities with a fixed
right-hand side

Let RSTAB(G) :=
{
x ∈ Rn+ :

∑
i∈U xi ≤ α(G[U ]),∀U ⊆ V

}
be the closure of RIs. As it is

easy to see, optimizing over this set is, as for MSS, both NP-hard and inapproximable in
polynomial time to within O(n1−ε) for any ε > 0. This is because, for U = V , the set of RIs
contains the inequality

∑
i∈V xi ≤ α(G), whose sole introduction into any relaxation of MSS

suffices to obtain α(G).
Due to the equivalence between optimization and separation established in [11], it follows

that, given a point x∗, the separation problem of RIs, calling for a subset U of vertices such
that

∑
i∈U x

∗
i > α(G[U ]), or for a proof that none such subset exists, is also NP-hard.

In integer programming, the NP-hardness of a separation problem is, usually, not an
issue per se.2 There are many cases of computationally affordable algorithms in which
NP-hard separation problems are routinely solved, often by solving an instance of the very
optimization problem being tackled, albeit of smaller size. See, for instance, the pioneering
work in [7].

In the context of RIs, the situation is even worse. Indeed, not only separating a RI is
NP-hard, but even verifying whether a given inequality is a RI is a difficult problem. First,
let us define the decision version of MSS (MSS-d) which, given an integer L, asks whether G
contains a stable set of size ≥ L, i.e., whether α(G) ≥ L. The following holds:

1 Indeed, πx ≤ π0 is valid for some P ⊆ Rn if and only if π0 ≥ max{πx : x ∈ P}. When restricting to π
to {0, 1}n and P = STAB(G), the definition of RIs follows.

2 Due to the equivalence between optimization and separation, an NP-hard optimization problem always
has at least one family of valid inequalities which is NP-hard to separate.
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I Observation 1. Given a graph G = (V,E) and a vector (π, π0) ∈ Rn+1, it it strongly
NP-hard to decide whether πx ≤ π0 is a RI.

Proof. We can easily establish a Cook-reduction from MSS-d (with input L and G) to the
problem of verifying whether πx ≤ π0 is a RI. Indeed, it suffices to call, for all π0 ∈ {L, . . . , n}
(thus, n− L+ 1 times), a routine which solves the problem of membership to the class of
RIs with input G and the inequality πx ≤ π0, with πi = 1 for all i ∈ V . Since, for the given
π, πx ≤ π0 is a RI if and only if π0 = α(G), as soon as the routine returns answer YES for
some π0, we conclude π0 = α(G), thus providing answer YES to MSS-d. If the membership
routine returns answer NO for all values of π0, we conclude that MSS-d has answer NO. J

From a cutting plane perspective, especially when cut generation is embedded within a
branch-and-cut algorithm, one would arguably look for a small number of inequalities which,
jointly, yield the largest bound improvement over the initial relaxation (see [6] for a cutting
plane algorithm designed to achieve this). With RIs, as we mentioned, the single inequality∑
i∈V xi ≤ α(G) always suffices to bring the bound obtained with any relaxation of MSS

down to α(G). It is thus clear that, if we aim at a practical method relying on the separation
of RIs within an efficient algorithm, some restrictions must be introduced.

The restriction that we consider in this paper is not a topological one. Rather, we
investigate the problem of separating RIs when their RHS is fixed to an (arbitrary, small)
constant k ∈ N. We refer to such set of RIs as RIks.

I Definition 2. The set of all RIks is:
∑
i∈U xi ≤ k, for all U ⊆ V : α(G[U ]) = k.

Note that we can optimize over RSTAB(G) by separating RIks for all values of k ∈ {1, . . . , n},
a feature which cannot be achieved with traditional approaches where topological restrictions
are introduced. The assumption on a small k with (in particular) k � α(G) is made so as to
arrive at a separation problem which is not too hard to solve in practice, as we will better
see in the next sections.

From a combinatorial perspective, the following holds:

I Observation 2. For any given k ∈ N, the LHS of a RIk is the incidence vector of a
subgraph G[U ] with a Kk+1-free complement.

Proof. By definition,
∑
i∈U xi ≤ k is a RIk if and only if k = α(G[U ]). If the complement

of G[U ] is not Kk+1-free, then G[U ] contains k + 1 completely disconnected vertices. Thus
α(G[U ]) ≥ k + 1 > k and

∑
i∈U xi ≤ k is not a RIk. J

The observation shows that, given any RIk with vertex set U , G[U ] has a K2-free complement
for k = 1, a K3-free complement for k = 2, a K4-free complement for k = 3, and so on. See
Figure 1 for an illustration.

3 Separation of topology-free rank inequalities

For a given k ∈ N, let RSTABk(G) be the closure of all RIks, i.e., of all RIs with a RHS
equal to k. Throughout the paper, our aim is:

I Aim. Given a (reasonably small) upper bound k̄ on k, optimize over
⋂k̄
k=1RSTABk(G).

The idea is of investigating the tightness of the bound given by
⋂k̄
k=1RSTABk(G) within

a pure cutting plane method which, at each iteration, looks for a violated RIk for each
k ∈ {1, . . . , k̄}. The overall goal is of assessing whether, even with small values of k̄, the
bound provided by

⋂k̄
k=1RSTABk(G) is stronger than that obtained by computing Lovász’s

Theta function with semidefinite programming.
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Figure 1 Three induced subgraphs G[U ] of the complete graph G = K8 with three RIks with
k = 1, 2, 3,, with the corresponding maximum stable set highlighted in gray: (a) an induced subgraph
with a K2-free complement (a clique) and α(G[U ]) = 1, (b) an induced subgraph with a K2-free
complement and α(G[U ]) = 2, (c) an induced subgraph with a K4-free complement and α(G[U ]) = 3.

3.1 Different separation problems
Given k ∈ N, the separation problem (in its optimization version) of RIks corresponds to the
following combinatorial optimization problem:

I Problem 1. Maximum Weighted Subgraph with Given Stability Number (MWS-
GSN): Given a graph G = (V,E) and a weight vector x∗ ∈ Rn, find a subset of vertices
U ⊆ V of maximum weight inducing a subgraph G[U ] with stability number equal to k.

The restriction of RIs to a given RHS does not yield an easier separation problem, at least
not from a theoretical perspective:

I Observation 3. MWS-GSN is strongly NP-hard.

Proof. Consider the decision version of MWS-GSN, which asks whether G contains an
induced subgraph G[U ] of weight ≥M and α(G[U ]) = k. Letting M = 0 and x∗ ∈ Rn+, the
problem has answer YES/NO if and only if MSS-d with input L = k and G has answer
YES/NO. J

For computational ease but without loss of generality, we introduce an alternative way to
optimize over

⋂k̄
k=1RSTABk(G), which only requires to solve a relaxation of MWS-GSN.

Consider the following inequalities, which we refer to as RI≤k s:

I Definition 3. The set of all RI≤k s is:
∑
i∈U xi ≤ k, for all U ⊆ V : α(G[U ]) ≤ k.

The relationship between RIks and RI≤k s is as follows:

I Proposition 1. For any k ∈ N, a RI≤k is either a RIk or it is dominated by a RI≤k′ for
some k′ < k.

Proof. Let
∑
i∈U xi ≤ k be a RI≤k . If α(G[U ]) = k, it is a RIk. If α(G[U ]) < k, the inequality∑

i∈U xi ≤ k′ is a RIk′ with k′ = α(G[U ]) < k, and it dominates
∑
i∈U xi ≤ k. J

Proposition 1, when applied recursively, implies that, by iteratively separating RI≤k s in lieu
of RIks for increasing values of k ∈ {1, . . . , k̄}, the only inequalities that will be generated
are RIks, thus showing that the adoption of RI≤k is without loss of generality.

The separation problem (in optimization version) for RI≤k s is:
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I Problem 2. Maximum Weighted Subgraph with Bounded Stability Number
(MWS-BSN): Given a graph G = (V,E) and a weight vector x∗ ∈ Rn, find a subset of
vertices U ⊆ V of maximum weight inducing a subgraph G[U ] with stability number smaller
than or equal to k.

Observe that MWS-BSN is a relaxation of MWS-GSN.

3.2 MWS-BSN: the separation problem of RI≤k s
We will now investigate the separation problem for RI≤k s: MWS-BSN. Previous work on a
closely related problem can be found in [2, 3].

The aim of this section is to show how MWS-BSN can be solved via branch-and-cut. For
the purpose, we will introduce a set of inequalities which are necessary to correctly formulate
it in the vertex-space. We remark that those inequalities are valid for MWS-BSN only, and
not for MSS.

Observe that, for any U ⊆ V , α(G[U ]) ≤ k if and only if, for all stable sets S of G with
|S| = k + 1, |S ∩ U | ≤ k. We deduce that, letting u ∈ {0, 1}n be the characteristic vector of
U , the following constraints are both necessary and sufficient for u to be a feasible solution
to MWS-BSN. We refer to them as Cover Inequalities (CIs) (as they play the same role as
cover inequalities for the 0-1 knapsack problem):

I Definition 4. Let S=k+1 be the collection of all stable sets of G of cardinality equal to
k + 1. The set of CIs is:

∑
i∈S ui ≤ k, for all S ∈ S=k+1.

Note that, as much as RIks for k > 1 can be seen as a generalization of clique inequalities,
CIs can be regarded as a generalization of edge inequalities which, in the separation problem
of clique inequalities (the max clique problem), prevent the presence of stable sets of size 2
in the induced subgraph.

From a polyhedral perspective, the following holds:

I Proposition 2. CIs are not facet defining for MWS-BSN.

Proof. Consider a CI
∑
i∈S ui ≤ k. If S is not an inclusion-wise maximal stable set, there is

a larger stable set S′ containing it. It follows that the inequality
∑
i∈S′ ui ≤ k dominates∑

i∈S ui ≤ k, as it is obtained from the latter by lifting each variable uj with j ∈ S′ \ S with
a unit coefficient. J

Consider now the following constraints, which we call Lifted Cover Inequalities (LCIs):

I Definition 5. Let S≥k+1
M be the collection of maximal stable sets of G of cardinality ≥ k+1.

The set of LCIs is:
∑
i∈S ui ≤ k, for all S ∈ S

≥k+1
M .

LCIs can be shown to be facet defining for MWS-BSN. For the purpose, we first introduce
the following lemma:

I Lemma 6. Let S ∈ S≥k+1
M . LCIs are facet defining for MWS-BSN when restricted to G[S],

i.e., to the subspace where ui = 0 for all i ∈ V \ S.

Proof. Since G[S] is a stable set, any subset S′ ⊆ S of at most k vertices yields a feasible
solution to MWS-BSN. The convex hull of such solutions is thus given by three groups of
constraints:

∑
i∈S ui ≤ k; ui ≥ 0 for all i ∈ S; and ui ≤ 1 for all i ∈ S. Together, they

form a totally unimodular system. Since, by definition of LCIs, |S| ≥ k + 1, the inequality∑
i∈S ui ≤ k is not implied nor dominated by any of the constraints in the other two groups

and, thus, it is facet defining. J
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The following can now be established:

I Theorem 7. LCIs are facet defining for MWS-BSN.

Proof. Let j1, . . . , j|V \S| be an ordering of V \ S. Let M be the set of integer solutions to
MWS-BSN and letM ` be the subset ofM restricted to ujk

= 0 for all k ∈ {`+1, . . . , |V \S|},
where {`+ 1, . . . , |V \ S|} is considered equal to ∅ if `+ 1 > |V \ S|. We employ a sequential
lifting argument. Starting from the inequality

∑
i∈S ui ≤ k which, as of Lemma 6, is facet

defining for conv(M0), at each lifting iteration ` we obtain a facet of conv(M `) and, for
` = |V \ S|, a facet of conv(M).

At iteration `, given the lifted inequality
∑
i∈S ui +

∑
k∈{1,...,`−1} λjk

ujk
≤ k, valid for

conv(M `−1) for some λj1 , . . . , λj`−1 ∈ R+, we compute the (largest) coefficient λj`
for which

the new inequality
∑
i∈S ui+

∑
k∈{1,...,`−1} λjk

ujk
+λj`

uj`
≤ k is valid for conv(M `∩{uj`

=
1}) (and thus for conv(M `)). This lifting problem reads:

Λ` = max
u∈{0,1}n

∑
i∈S

ui +
∑

k∈{1,...,`−1}

λjk
ujk

(1a)

s.t. uj`
= 1 (1b)

ujk
= 0 ∀k ∈ {`+ 1, . . . , |V \ S|} (1c)

α(G[{i ∈ V : ui = 1}]) ≤ k. (1d)

Since S is maximal by definition of LCIs and j` /∈ S, ∃i ∈ S : {i, j`} ∈ E. Let then S′

be a subset of S containing vertex i, of cardinality |S′| = k. Since S′ is a stable set and
{i, j`} ∈ E, α(G[S′ ∪ {j`}]) = α(G[S′]) = |S′| = k. By letting uj`

= 1 and ui = 1 for all
i ∈ S′ we thus obtain a feasible solution to the lifting problem of value k. This shows that
Λ` ≥ k. Since the lifted inequality is valid if and only if Λ` + λj`

≤ k, we deduce λj`
≤ 0.

To show that λj`
= 0 for all ` ∈ {1, . . . , |V \ S|}, first note that, if λjk

= 0 for all
k ∈ {1, . . . , ` − 1}, then Λ` ≤ k. Due to the previous argument, this implies Λ` = k and,
hence, λj`

= 0. Also note that, for ` = 1, no terms λjk
ujk

appear in the objective function
and, hence, λj1 = 0. The claim then follows by induction (if λj1 , . . . , λj`−1 = 0, then λj`

= 0),
proving that, at the end of the lifting procedure, any LCI is lifted back to itself, and, therefore,
is facet defining. J

Letting u∗ ∈ [0, 1]n (corresponding to a, possibly infeasible, solution to MWS-BSN), the
separation problem for LCIs (in search version) reads:

I Problem 3. SEParation problem for LCIs (LCI-SEP): Given a graph G = (V,E)
and a vector of vertex weights u∗ ∈ Rn, find a maximal stable set S of G with both weight
and cardinality greater than or equal to k + 1, or prove that none exists.

Not surprisingly, the following holds:

I Proposition 3. LCI-SEP is NP-hard.

Proof. MSS-d with input L and G has answer YES if and only if LCI-SEP with input
k = L− 1 admits a feasible solution. J

Note that, due to the equivalence between optimization and separation [10], the facet-
definingness of LCIs and their NP-hardness imply, en passant, the NP-hardness of MWS-
BSN.

We remark that, since CIs are necessary to formulate MWS-BSN in the vertex space and
there is an exponential number of them, solving MWS-BSN in that space via branch-and-
bound requires a cut generation procedure.



S. Coniglio and S. Gualandi 23:7

4 Algorithmic aspects

In this section, we provide an outline of our algorithm for the separation of RI≤k and then
discuss a few of its aspects.

4.1 Algorithm outline
The overall algorithm by which the function

∑
i∈V xi is maximized over RSTABk(G) can

be summarized as follows:
Solve the (current) relaxation of MSS; let x∗ be its solution;
Let k := 1;
while k ≤ k̄ do

solve MWS-BSN via branch-and-cut, separating LCIs;
if the corresponding RI≤k is violated then

add it to the relaxation of MSS;
let k := 1;

else
let k := k + 1;

end
end

Algorithm 1: Exact algorithm for the optimization over
⋂k̄
k=1RSTABk(G).

4.2 Domination aspects of RIs: connectedness of G[U ]
An easy condition under which a RI is dominated is the following one:

I Observation 4. Any RI corresponding to a disconnected G[U ] is dominated.

Proof. Assuming that G[U ] contains ` connected components G[U1], . . . , G[U`], α(G[U ]) =∑`
j=1 α(G[U`]). Hence,

∑
i∈U xi ≤ α(G[U ]) is the linear combination with unit weights of

the ` inequalities
∑
i∈Uj

xi ≤ α(G[Uj ]), for j ∈ {1, . . . , `}. J

To prevent the introduction of RIks with a disconnected G[U ], we identify (in linear time)
the connected components G[U1], . . . , G[Uk] of G[U ] after each RIk is generated. We then
introduce a RI for each component, in lieu of the original one. For that, we recompute
the RHS of each new inequality as α(G[Uj ]) (which is an easy task, provided that |U | is
reasonably small). Note that, since, for all j ∈ {1, . . . , k}, α(G[Uj ]) ≤ α(G[U ]) = k, all the
inequalities obtained after the decomposition of G[U ] are RIk′s with k′ < k, thus being in⋂k̄
k=1RSTABk(G).

4.3 Practical separation of LCIs
First, we note that, in the context of a branch-and-cut algorithm for MWS-BSN, LCIs can
be separated on the incumbent solution. This allows to consider only the case where u is
a binary vector. If this is the case, LCI-SEP becomes exactly an instance of MSS-d with
L = k + 1 due to the weight of the stable set becoming equal to its cardinality. Note also
that, conveniently, LCIs can be obtained by separating CIs and, then, maximalizing the
corresponding stable set a posteriori via a greedy algorithm in O(n2).

We remark that the separation of RI≤k s for the MSS problem entails, via the separation
of CIs/LCIs, the solution of, yet again, MSS. Two things must be noted though: 1) the

SEA 2017
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separation problem for CIs/LCIs can be solved on the subgraph induced by the incumbent
solution u of MWS-BSN, which is much smaller, in practice, than G; 2) assuming k � α(G)
for a sufficiently small k, finding a stable set of size k is, in practice, a computationally more
affordable task than computing α(G).

In our computations, we will carry out the separation of CIs/LCIs with the exact solver
Cliquer [16], which implements a combinatorial branch-and-bound algorithm not relying on
mathematical programming relaxations.

4.4 Separating RI≤k s on the support of x∗

We will restrict ourselves to the subgraph induced by the solution vector being separated,
x∗ in this case, also when solving MWS-BSN. For this problem, a simple argument also
allows to fix ui = 0 for all i ∈ V where x∗i = 1. This is because, if x∗i = 1, assuming that
the LP relaxation of MSS contains, at least, all edge inequalities (which is always the case
in our implementation), we have that, for all j ∈ V : {i, j} ∈ E, x∗j = 0. As a consequence,
when the aforementioned restriction is in place, vertex i is isolated. Since we are looking for
inequalities where G[U ] is connected, node i can thus be safely discarded.

4.5 Heuristic procedure

To speedup the cutting plane algorithm for RIks, we also introduce a simple greedy heuristic
for their separation. After sorting the vertices of V in nonincreasing order of x∗, we add them
to U one at a time, until a maximal clique is formed (this way, only stable sets of cardinality
1 are introduced). Then, we add, in the previously found order, the next k − 1 nodes. After
this operation, the stability number of G[U ] is, at most, k. Then, for each vertex currently
not in of U , we add it to U only if it does not form a stable set of cardinality k + 1. If it
does, we skip it and continue to the next vertex.

The algorithm runs in O(n logn+nk+1), where O(n logn) accounts for sorting and O(nk)
is the number of operations needed to check whether a new vertex increases the stability
number of the current subgraph past the upper bound of k. The latter operations are
executed O(n) times. Note that, by construction, any solution found by this heuristic is
maximal. If, after the exploration of a given amount of nodes, the heuristic terminates
without finding a violated inequality (the amount is set to 2 millions in our experiments), we
resort to branch-and-cut.

5 Computational study

We now report on a set of results obtained with the algorithm that we described in the
previous sections for the separation of topology-free RIs with a given RHS.

We remark that computational efficiency is not our primary concern here. Rather, we focus
on assessing the quality of the bounds obtained with

⋂k̄
k=1RSTABk(G) for increasing values

of k̄. We will compare those bounds to those obtained when optimizing over QSTAB(G) (the
relaxation containing all clique inequalities) and when employing Lovász’s Theta function
ϑ(G), which yields one of the tightest upper bounds to MSS known in the literature (always
at least as tight as that obtained with QSTAB(G)). We refer to the latter two bounds as
αQSTAB(G) and αϑ(G). Throughout our experiments, we adopt QSTAB(G) as the initial
relaxation of MSS. Given an upper bound UB, we will measure its quality in terms of the
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fraction of gap that it closes w.r.t. αQSTAB(G). Formally, we define the closed gap as:

Closed Gap % :=
(

1− UB − α(G)
αQSTAB(G)− α(G)

)
100.

5.1 Instances
We consider three groups of instances, all corresponding to sparse graphs (we recall that
sparse graphs are usually much harder to solve than dense ones):
1) The first group contains uniform random graphs, generated with rudy [1]. They have

60, 70, and 80 vertices and an edge density between 5% and 25%. Those instances are
particularly useful to measure the impact of RIs≤k with k̄ > 3.

2) The second group is a subset of the largest instances among those used in [12] to solve
MSS via SDP techniques. They are very sparse, with a density between 1% and 5%.

3) The third group is a small subset of sparse graphs taken from the DIMACS challenge on
the max clique problem. All the instances for which either αQSTAB(G) = α(G) or for
which αQSTAB(G) cannot be computed exactly within the time limit are discarded.

5.2 Implementation details
Our algorithm is coded in C, using Gurobi 7.0 as MILP solver. We adopt the parallel
setting, with 8 threads and default parameters. In all the separation problems, we set
solutionlimit=1, imposing a violation cutoff of 0.01. For the separation of LCIs, we use
Cliquer 1.21. The value ϑ(G) is obtained with DSDP 5.8. All the results are produced
within a time limit of 7200 seconds (two hours) on an Intel i7-3770 CPU @ 3.40GHz desktop
computer with 8 cores, with 16GB RAM.

5.3 A small example: the Chvàtal graph
As an illustrative example, we report the results obtained over the Chvàtal graph, the smallest
triangle free 4-colorable 4-regular graph, see [4].

Figure 2 shows 11 RIs with k̄ = 3 generated by our topology free cutting plane algorithm,
assuming QSTAB(G) as the initial relaxation. Apart from the fourth inequality, which is
isomorphic to the web inequality W (8, 3), none of the remaining RIs corresponds to any
of the valid inequalities with a given topology that are known in the literature. While the
bound obtained with QSTAB(G) is αQSTAB(G) = 6 (corresponding to the solution xi = 1

2
for all i ∈ V ) and that obtained with Lovász’s Theta function is αϑ(G) = 4.895, with RIsks
and k = 3 we obtain a better bound equal to 4.5.

5.4 Computational Results
Figure 3 reports the percentage of closed gap plotted against the running time for instance
r-70-10 in group 1, obtained when executing Algorithm 1 with k̄ = 5. This plot clearly
shows that, in the very first iterations of the algorithm, RIs are already able to close a large
percentage of the gap, closing 90% of it in only 40 seconds. After 250 seconds, nearly 100% of
the gap is closed. The additional 250 seconds are only necessary to prove (computationally)
that the upper bound that has been obtained cannot be improved any further. The plot in
the figure illustrates a behaviour which can be observed in all the results that we will discuss
in the next paragraph.

The results obtained on the three groups of instances are summarized in Table 1. For
each value of k̄ = {2, 3, 4, 5}, we report the Upper Bound (UB) that has been found, the
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Figure 2 The set of the 11 RIks which are obtained when optimizing over RSTABk(G) with k = 3
on the Chvàtal graph. They yield a bound of 4.5, as opposed to αQST AB(G) = 6 and ϑ(G) = 4.895.

running time in seconds (Time), and the number of cuts that were generated (Cuts). We
also report the average closed gap (Avg ClGap), as computed over the instances belonging
to each group.

On the first group of instances, our algorithm manages to close, on average, more than
50% of the open gap already with k̄ = 2. Larger values of k̄ yield a larger closed gap, up to
more than 80% with k̄ = 5. Note though that this result is counterbalanced by an increase
of running time as, for k̄ = 5, most instances hit the time limit of 2 hours.

We remark that, in the first two groups of instances, RIks with k̄ = 3 suffice to obtain
stronger bounds than those achieved with Lovász’s Theta function ϑ(G). On the instances
in group 1 we register, on average, 67.7% of gap closed with RIk, as opposed to 67.6% with
ϑ(G), a value which increases to 73.2% for group 2 as opposed, for that group, to the 65.8%
obtained with ϑ(G).

The improvement w.r.t. ϑ(G) further increases when considering k̄ = 4 and k̄ = 5. The
quality of the bound improvement becomes hard to assess though on the third group of
instances where, already with k̄ = 2, our algorithm hits the time limit in three cases out of
seven.

We remark that the cuts that we generate are quite sparse. As an example, consider
instance r-70-10 from group 1 (containing 70 nodes). On average, we generate inequalities
with |U | (corresponding to the number of nonzeros in the LHS) equal to 5.2 for k = 2, 8.01
for k = 3, 10.7 for k = 4, and 12.9 for k = 5.

To conclude, we highlight the results on the instance hamming6-4: with only 11 cuts with
k̄ = 2, generated on top of those in QSTAB(G), our algorithm achieves the optimal bound
equal to 4, while both QSTAB(G) and ϑ(G) yield a larger upper bound equal to 5.33.
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Figure 3 Percentage of closed gap plotted against the running time for instance r-70-10 in group
1, obtained when executing Algorithm 1 with k̄ = 5.

6 Concluding remarks

We have addressed the separation of topology-free rank inequalities with a fixed (arbitrary)
right-hand side (RIks). We have proposed a methodology to optimize over the closure of
RIks for all k ∈ {1, . . . , k̄}, investigating the arising separation problem and its polyhedral
structure. For its solution, we have proposed a branch-and-cut method which separates facet
defining inequalities belonging to an exponentially large family of inequalities that are needed
to correctly model the problem.

Overall, RIks with a small right-hand side k � α(G) yield a substantial bound improve-
ment over the bound provided by the fractional clique polytope QSTAB(G). In a number
of cases, such bound is also tighter than ϑ(G), the bound obtained with Lovász’s Theta
function via semidefinite programming.

Future work includes the development of ad hoc algorithms for the separation of RIks
with a small right-hand side k. Due to the bound improvement that, in our experiments, RIs
have shown to yield, the effectiveness of such algorithms could allow to add RIks with k = 2
and k = 3 to the set of cutting planes that are routinely generated to solve the maximum
stable set problem to optimality.
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RIk with k̄ = 2 RIk with k̄ = {2, 3} RIk with k̄ = {2, 3, 4} RIk with k̄ = {2, 3, 4, 5}
α(G) αQ(G) ϑ(G) Cuts UB Time Cuts UB Time Cuts UB Time Cuts UB Time

r-60-5 31 31.50 31.07 5 31.00 0 5 31.00 0 5 31.00 0 5 31.00 0
r-60-10 23 25.63 23.67 42 23.47 1 96 23.14 28 124 23.00 77 124 23.00 77
r-60-15 18 21.20 19.54 70 19.70 2 189 19.19 77 315 18.97 521 455 18.81 2090
r-60-20 7 9.25 7.5 437 8.15 1254 946 7.79 tlim 946 7.79 tlim 947 7.47 tlim
r-60-25 14 16.50 14.67 112 15.24 12 348 14.70 413 569 14.38 2814 756 14.13 tlim
r-70-5 35 36.00 35.53 5 35.50 0 6 35.50 0 6 35.50 0 8 35.00 0
r-70-10 26 28.66 26.86 63 26.78 2 139 26.29 72 230 26.01 417 236 26.00 459
r-70-15 21 23.82 21.91 103 22.16 8 265 21.63 289 423 21.37 2199 550 21.22 tlim
r-70-20 17 20.52 18.23 119 19.18 30 337 18.46 985 510 18.16 tlim 510 18.15 tlim
r-70-25 14 18.13 15.72 144 16.66 39 421 16.04 2039 607 15.71 tlim 607 15.64 tlim
r-80-5 39 39.50 39.02 3 39.00 0 3 39.00 0 3 39.00 0 3 39.00 0
r-80-10 27 30.50 28.55 69 29.02 8 194 28.38 399 350 27.95 4220 399 27.76 tlim
r-80-15 22 26.74 23.65 120 24.76 26 328 23.97 1874 448 23.67 tlim 448 23.59 tlim
r-80-20 18 22.78 20.05 145 21.06 41 422 20.40 3335 512 20.22 tlim 512 20.07 tlim
r-80-25 16 19.85 17.07 178 18.19 85 477 17.61 tlim 478 17.61 tlim 478 17.55 tlim
Avg ClGap 67.6% 53.0% 67.7% 73.4% 80.3%
g150.4 59 67.00 61.8 99 62.09 50 250 60.80 tlim 250 60.80 tlim 250 60.67 tlim
g150.5 55 64.00 58.73 152 58.56 72 304 57.75 tlim 304 57.75 tlim 304 57.67 tlim
g170.3 71 78.50 73.34 76 73.53 44 181 72.16 6861 182 72.15 7415 182 72.14 tlim
g200.2 96 100.00 97.17 21 97.00 11 46 96.00 378 49 96.00 437 50 96.00 439
g200.3 83 94.50 86.52 123 86.61 221 202 85.21 tlim 202 85.21 tlim 202 85.02 tlim
g300.2 122 141.00 129.47 144 130.43 861 169 130.07 tlim 169 130.07 tlim 169 130.07 tlim
g350.2 133 161.00 143.43 273 146.11 4996 274 145.99 tlim 274 145.99 tlim 274 145.87 tlim
g400.1 191 201.00 194.79 33 195.50 131 60 193.73 tlim 60 193.73 tlim 60 193.73 tlim
Avg ClGap 65.8% 61.6% 73.2% 73.2% 73.3%
brock200_1 21 38.02 27.46 267 35.59 tlim 267 35.59 tlim 267 35.59 tlim 267 35.59 tlim
C125.9 34 43.06 37.81 188 39.75 409.2 322 39.20 tlim 320 39.21 tlim 322 39.21 tlim
C250.9 44 71.37 56.24 375 66.05 tlim 375 66.05 tlim 375 66.05 tlim 375 66.05 tlim
hamming6-4 4 5.33 5.33 11 4.00 1.5 11 4.00 1.5 11 4.00 1.5 11 4.00 1.5
keller4 11 14.83 14.01 314 13.80 tlim 318 13.80 tlim 314 13.80 tlim 314 13.80 tlim
MANN_a9 16 18.00 17.48 1 18.00 0.1 1 18.00 0.7 1 18.00 2.7 1 18.00 13.1
sanr200_0.9 45 59.82 49.27 366 55.14 tlim 366 55.13 tlim 366 55.14 tlim 366 55.14 tlim
Avg ClGap 26.5% 19.5% 19.9% 19.9% 19.9%

Table 1 Bounds (UB) obtained with RIks with k ∈ {2, 3, 4, 5}, compared to α(G), αQST AB(G), and ϑ(G). Computing times in seconds (Time) and total
number of generated cutting planes (Cuts) are also reported. Bounds which are tighter than those obtained with ϑ(G) are highlighted in bold. Closed Gap,
averaged in geometric mean (Avg ClGap), is reported for the three classes of instances: small uniform random graphs generated with rudy, large uniform
random graphs taken from [12], and structured instances from the DIMACS challenge.
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