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Abstract
Objective: To determine whether there are common biomechanical parameters when analysing the single leg squat movement to compare pathological and non-pathological groups and whether these parameters are able to effectively distinguish between groups.
Methods: Five electronic databases were searched using MESH terms, keywords and phrases across four constructs: squat, biomechanical measures, region of interest, study design. Studies were selected based on inclusion of a quantitative biomechanical measure, compared between a pathological and a non-pathological group, and participants performed a single leg squat movement.
Results: Fifteen studies were included and reviewed, where the majority of studies investigated patellofemoral pain. There was considerable variation in the biomechanical outcome measure used to compare between groups. The frontal plane projection angle was the most commonly reported measure. There was considerable variation in the manner in which the single leg squat was performed.
Conclusion: Due to variation in how the single leg squat was performed, it was not possible to determine specific biomechanical parameters that distinguish between pathological and non-pathological groups. Frontal plane projection angle appeared to be a parameter that could be effectively utilised. Standardisation of the single leg squat movement is needed to allow comparison between studies of pathological and non-pathological groups.
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INTRODUCTION
The single leg squat (SLS) is a movement task regularly used in clinical practice as it simulates common everyday tasks, such as stair ascent and descent, as well as sporting activities1 and is often pain provoking. This task is part of the growing field of observational movement screening tests, which have become an increasingly used tool to identify individuals who might be at risk of musculoskeletal injury enabling targeted interventions to reduce the potential risk. A variety of methods are currently used to assess movement during a single leg squat, ranging from visual qualitative assessments,2 to assessment involving 3D motion capture using inertial sensors.3 Visual observational movement screening tests offer a cost-effective, time-efficient method of assessing movement ability in both a clinical or field setting for a large number of participants and provide instant results. Qualitative type assessment of the SLS grade an individual’s ability to perform the task against benchmarked criteria.4 The qualitative based criteria within the tests are often based on the ability to perform gross movements and could be subject to rater bias through a subjective interpretation of whether the movement meets the required criteria. Additionally, the ability of movement screening tests to predict musculoskeletal injuries is low.5-7
The use of objective biomechanical measures provides the researcher or clinician with the ability to quantitatively assess movement during a given task and provide greater fidelity in understanding the movement and potentially removes subjective interpretation. Biomechanical measures, such as kinematic and kinetics parameters, have also been used to validate movement screen tasks.8-10 In addition to providing objective measures, a further use of biomechanical measures is the ability to understand the mechanisms and, therefore, the potential causes of injury to the musculoskeletal system. The range of biomechanical methods and outcome measures, however, is vast and can encompass the use of marker based motion capture systems or inertial measurement units through to dynamic medical imaging such as video fluoroscopy to obtain a kinematic analysis of movement. Force platforms, pressure plates, in-shoe pressure systems and inverse dynamic analyses are commonly employed for kinetic analysis of movement. Identifying the biomechanical parameters and methods that have been used previously to analyse these tasks would help researchers and clinicians to develop standardised methods.  This would enable the quantification of parameters associated with injury, potentially facilitating the development of training interventions. However, it is not currently known which potential parameters characterise and discriminate between pathological groups. The aim of this systematic review, therefore, was to determine whether there are common biomechanical parameters utilised when analysing the single leg squat movement comparing pathological and non-pathological groups and whether these parameters are able to effectively distinguish between pathological and non-pathological groups providing some insight in to the mechanisms and causes of joint injury.
	 
METHOD
Search strategy
A systematic search of PUBMED, CINAHL, SCOPUS, EMBASE and DELPHIS databases was performed; the latest search was completed in February 2018. A combination of Medical Subject Headings (MeSH) terms, keywords and phrases were derived in consultation with the author group to search for relevant articles (Table 1). Search terms were truncated and wildcard operators used where appropriate to reduce the number of required key words. Near operators were used in order to identify different combinations of phrases. The search terms were divided into four constructs: squat related, biomechanical measures, region of interest, and study design. The Boolean operator ‘AND’ was used between constructs, with the exception of study design where the ‘NOT’ operator was used. Inclusion criteria consisted of: study performed a comparison between two groups, participants performed squat-based manoeuvre, and biomechanical related measures were used to quantify differences between groups.

	[bookmark: _Ref500341975]Table 1: MeSH terms, key words and phrases used in the systematic search of databases. A Boolean operator used between each character presented in parenthesis after each category heading. Inverted commas represent phrase, asterix represents truncated term with wildcard operator, ‘n’ represents near operator with the number of words within which the term should appear.

	Category
	MeSH terms
	Key words and phrases

	Squat related (AND)
	
	Squat

	
	
	“Step down”

	
	
	“Small knee bend”

	
	
	

	Biomechanical measures (AND)
	Biomechanics
	Kinematic*

	
	Kinematics
	Kinetic*

	
	Kinetics
	Kinesio*

	
	Torque
	Force*

	
	Motion
	“Centre of pressure” n3

	
	Pressure
	Angle*

	
	Accelerometry
	Moment*

	
	
	Torque*

	
	
	Jerk

	
	
	Velocit*

	
	
	“Angular velocity”

	
	
	Acceleration*

	
	
	Impulse*

	
	
	“Angular impulse”

	
	
	“Vector coding”

	
	
	“Coupling angles”

	
	
	Stereophotogrammetr*

	
	
	“Computed tomography”

	
	
	MRI

	
	
	“Magnetic resonance imag*”

	
	
	Motion

	
	
	“Motion analysis”

	
	
	Mechanics

	
	
	Fluroscop*

	
	
	IMU

	
	
	“Inertial measurement unit”

	
	
	Distance*

	
	
	Displacement*

	
	
	“2D video”

	
	
	Load

	
	
	Sway

	
	
	

	Region of interest (AND)
	Lower extremity
	“Lower Extremity”

	
	Hip Joint
	“Lower Extremities”

	
	Knee joint
	“Lower Limb”

	
	Foot joint
	Hip

	
	
	Knee

	
	
	Ankle

	
	
	Foot

	
	
	Feet

	
	
	Leg

	
	
	Shank

	
	
	Thigh

	
	
	Femur

	
	
	Tibia

	
	
	Pelvis

	
	
	

	Study design (NOT)
	Surgical procedures
	

	
	Case reports
	

	
	Consensus
	

	
	Meta-analysis
	

	
	Clinical conference
	

	
	Scientific integrity review
	

	
	
	



Following the search in each database the results were imported into an Endnote (version X7) library (Clavariate Analytics, Philadelphia, USA). Duplicates were identified and removed from the list using the built-in function within Endnote. Remaining references were then exported as a text file. A custom written MATLAB (MathWorks, Massachusetts, USA) Graphical User Interface (GUI) function was created to assist with the screening of the study titles and abstracts. The GUI imported the text file from Endnote, parsed the author name, year of publication, article title and abstract, and displayed this information for each article in turn. The tool automatically excluded articles that were not full text articles based on the Endnote text export format that places inverted commas around the title of the article for journal articles (i.e. articles that did not have inverted commas around their title were excluded). A pool of eight reviewers screened the titles and abstracts of the articles. The articles were equally divided into four groups of articles which were then assigned to pairs of authors for title and abstract screening, where each reviewer of the pair screened all assigned articles. Articles were screened and excluded based on the following criteria: no single leg squat task, no quantitative biomechanical measures, not lower limb, no human participants, strength measures only, electromyography only, simulation study, cadaver study, surgical intervention, not original article, no comparison between pathological and non-pathological groups, reliability study only and validity study only. The results between the reviewers of each pair were compared and where disagreement over the inclusion or exclusion of an article occurred, the lead author reviewed the article and made the final decision for inclusion or exclusion. As the purpose of the review was to investigate squat movements that are conducted without outside influence that could affect the performance of the movement the full text records of the selected articles were then reviewed and excluded based on the following criteria: increased load during the squat movement, concerned with resistance training, included vibration, included a fatiguing protocol, squat movements that involved isometric contractions and studies that included movements with eyes closed. In addition, studies including participants with neurological impairments were excluded in order to focus on musculoskeletal conditions. 

Articles that were included in the final review were then assessed for methodological quality using a modified version of the STROBE checklist.11 The STROBE checklist is a reporting standard, however, due to the lack of an appropriate tool to assess the methodological quality of observational studies, the STROBE checklist was deemed a reasonable tool to adopt as it is generally expected that observational studies should include all items within the checklist. The articles were assessed against each item of the STROBE checklist and given a score of 1 where the article met the criteria and 0 where it did not. An additional two items were added to the STROBE checklist: “Did the article report or provide reference to appropriate evidence of the validity of the outcome measure?” and “Did the article report or provide reference to appropriate evidence of the reliability of the outcome measure” in order to score the article based on the robustness of the outcome measures. As some items of the STROBE checklist were not applicable to all articles, the final score was normalised with respect to the number of applicable answers and expressed as a percentage. A pool of eight reviewers scored the included articles that were equally divided across four groups of reviewers, where each reviewer scored each article that was allocated to their group. The scores from the pairs of reviewers were assessed for agreement; disagreements were then assessed and settled by the lead author.

RESULTS

Identification of Studies
The initial search resulted in a total of 6162 articles: 2628 duplicates were removed and a further 272 articles were removed as they were not journal articles, resulting in 3262 articles that were screened (Figure 1). Following the screening of the titles and abstracts according to the initial exclusion criteria, 392 articles remained. After reviewing the full text articles, 15 articles were included in the review.

	

	[bookmark: _Ref500342266]Figure 1: Flow diagram of study selection process



Study Characteristics
The included studies all investigated a group comparison between an injured and a non-injured cohort (Table 2). The most common condition that was investigated was patellofemoral pain (n=11) 12-22, followed by anterior cruciate ligament injury (n = 3)23-25 and one study on hip chondropathy.26 Of the studies that investigated patellofemoral pain eight included female participants only,12 13 17-22 while three studies investigated both females and males.14-16 Of the studies that investigated anterior cruciate ligament injury two had both male and female participants23 25 and one had male participants only.24 The study on hip chondropathy included both male and female participants.26 The average ages of participants were generally between 20 and 30 years old (Table 2); one study examined adolescent females22 and one study had average ages of 37 and 35 years for their pathological and control groups respectively.26

Squat Characteristics
There were large variations in the manner in which the SLS was performed and wide spread omissions in the description of the methods (Table 3). When asking participants to perform the squat movement all studies except for one required a natural movement, i.e. participants were not instructed to maintain prescribed orientations for the supporting leg, pelvis or trunk. The study of Scholtes and co-workers21 asked participants to perform a single leg squat under natural and cued conditions. The cued condition required participants to maintain their knee over the middle of the foot. The depth of squat required of participants varied across the included studies and ranged from 45° of knee flexion to maximal depth achievable (Table 3). The studies also varied in the method used to standardise the depth of the squat ranging from using a goniometer,17 18 an electrogoniometer,13 or an external target (i.e. buttocks touching a plinth).26 The majority of studies (n = 11), however, did not standardise the depth of squat during the data collection, although some studies did provide feedback during practice trials prior to data collection and some provided feedback as to the speed of the squat using a metronome (Table 3). Only three studies explicitly stated the position of the unsupported leg during the squat movement where the leg was placed behind the participant16 25 or kept the toes in contact with the ground with the heel raised.13 The most common position for the arms during the movement was across the chest (n=5), with one study placing them on the pelvis,12 two studies placing them by their sides13 21 and one behind their backs.24 The remaining studies (n = 6) did not specify where the arm were placed or were self-selected by the participants (Table 3). None of the studies included a qualitative measure of the movement.

Biomechanical Measures
The biomechanical outcome parameters reported by the studies primarily consisted of 3D kinematic parameters; some studies reported 2D projection angles and two studies reported pressure-related outcome variables (Table 4). With regards to the 3D kinematics the outcome measures included trunk lean, contralateral pelvis drop, peak hip adduction, hip internal rotation, peak knee abduction, knee flexion, patellar flexion/extension, patellar mediolateral rotation, patellar displacement and ankle flexion (Table 4). Studies utilising 2D projection angles reported knee valgus angle or femoral angle in the frontal plane.12 13 20 21 All cases which used the frontal plane projection angle compared participants with patellofemoral pain to control participants. One study utilised open MRI to determine patella displacement in 2D. 18 The majority of studies reported single indices extracted from the measured data (e.g. maximum angle) with exception of one study which additionally utilised Principal Component Analysis on the 3D kinematic waveforms.24 Five studies provided evidence for the validity and reliability of the outcome measures,16 20 21 23 25 one study reported evidence of validity only,17 six studies reported evidence of reliability only12-15 18 26 and four studies reported no evidence for either validity or reliability.19 20 22 24

Comparisons between Pathological and Non-Pathological Groups - Summary of Results
A range of biomechanical parameters were used to compare various pathological groups. The most commonly used parameter was the frontal plane projection angle, which was used to compare patellofemoral pain with control participants. The frontal plane projection angle, however, was not used to compare other conditions, such as anterior cruciate ligament injury. 

Patellofemoral pain participants had a greater knee frontal plane projection angle compared to controls, ranging from 4° to 8°.12 13 20 21 Patellofemoral pain participants also demonstrated a 2.6° greater ipsilateral trunk lean,14 15 a 2.9° greater pelvis drop,15 greater hip adduction (24°±6.5 vs. 19.2°±6) and knee abduction (10.5°±6.4 vs. 6.8°±5.3),14 and greater frontal plane hip adduction (19.7°± 7.7 vs. 14.2°±6.5)21 compared to control participants (Table 4). A ‘Dynamic Valgus Index’, defined as the sum of the hip and knee angles and intended to provide a more comprehensive representation of movement than a single angle, demonstrated that patellofemoral pain participants had greater movement both in 2D (31.1°±13.4 vs. 18.3°±18.0) and 3D (12.4°±9.8 vs. 1.81°±13.4) than control participants.21 Patellofemoral pain participants also demonstrated greater lateral displacement and tilt of the patella compared to control participants during the squat movement when the supporting knee was flexed to 15° and 30°. However, the largest difference was observed at 0° of knee flexion (75%±8 vs. 58%±7; lateral patella displacement, 13.1°± 5.8 vs. 8.1°±4.1; lateral patella tilt). 18 In terms of kinetics related parameters, patellofemoral pain participants had a 32% relative group difference in force compared to controls.16 Control participants demonstrated a higher centre of pressure range (7.72cm mean difference), a higher peak power absorption (0.92W/Kg mean difference) and a higher peak power generation (0.87W/Kg) compared to patellofemoral pain participants.22 One study found no significant group differences between patellofemoral pain and control participants.17

Participants with anterior cruciate ligament injury demonstrated greater knee translation (9.1mm±2.5 vs. 6.7mm±2.4),23 knee external rotation (18.9°±34.3 vs. 38.8°±12.2; males only),25 hip rotation (9.1°±8 vs. 1.7°±6.1; females only),25 knee flexion (73.9°±13.3 vs. 66.2°±9.9; females only)25 and hip flexion (29.9°±18.4 vs. 48°±11.3; females only)25 compared to control participants (Table 4). One study found no group differences between anterior cruciate ligament injury and control participants.24

The study on hip chondropathy participants showed a greater range of medial/lateral and anterior/posterior centre of pressure compared to control participants (Table 4).

Quality of studies
The normalised scores for the STROBE assessment of the articles ranged from 50% to 93.1% (Table 5). None of the studies reported the dates of recruitment, exposure, data collection or follow-up. Other items that had few studies (< 6) scoring points were “Describing efforts to address potential sources of bias”, “Explaining how the study size was arrived at”, “Reporting of evidence for the validity of the outcome measure” and “Discussed the generalizability (external validity) of the study results”.
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	Author
	Year
	Title
	Participant
Groups 
	Number in each group

	Age (mean ± standard deviation or range)
	Activity level
	How sex was treated in analysis

	
	
	
	
	
	
	
	

	Carry et al
	2017
	Postural Stability and kinetic change in subjects with patellofemoral pain after a nine-week hip and core strengthening intervention
	Females with patellofemoral pain

Control

	7


7

	14.20±0.75


14.12±0.86
	
	Single-sex study

	
	
	
	
	
	
	
	

	Hatton et al
	2004
	Impairment of Dynamic Single-Leg Balance Performance in Individuals With Hip Chondropathy
	Hip chondropathy

Healthy controls matched for age, sex and physical activity level

	63 (41 females)

60 (36 females)

	37.36±11.6

35.7±9.7
	
	Considered as a covariate for correlations

	
	
	
	
	
	
	
	

	Herrington
	2014
	Knee valgus angle during single leg squat and landing in patellofemoral pain patients and controls
	Females with unilateral patellofemoral pain

Asymptomatic controls

	12



30


	24±3.2



20.4±1.4

	Participants completed at least 3 hours of sport training per week
	Single-sex study

	
	
	
	
	
	
	
	

	Kvist
	2005
	Sagittal tibial translation during exercises in the anterior cruciate ligament-deficient knee
	Unilateral non-operated anterior cruciate ligament injury

Non-injured controls
	12 (4 females)




17 (nine females)


	28




29
	All participants took part in competitive sports

	Not considered 

	
	
	
	
	
	
	
	

	Levinger et al
	2007
	Femoral medial deviation angle during a one-leg squat test in individuals with patellofemoral pain syndrome
	Females with patellofemoral pain syndrome

Female controls
	12 females



13 females


	37.4±9.41



23.9±7.84

	Physically active; 3 hours per week for pain group, 4.1 hours per week for control group
	Single-sex study

	
	
	
	
	
	
	
	

	Nakagawa et al
	2012
	Frontal plane biomechanics in males and females with and without patellofemoral pain
	Females with patellofemoral pain syndrome

Female controls


Males with patellofemoral pain syndrome

Male controls
	20 females



20 females


20 males



20 males

	22.3±3.1



21.8±2.6


24.2±4.4



23.5±3.8
	
	Main effect and interaction included

	
	
	
	
	
	
	
	

	Nakagawa et al
	2015
	Trunk biomechanics and its association with hip and knee kinematics in patients with and without patellofemoral pain
	Patellofemoral pain


Control
	30 (10 females)


30 (10 females)

	22.7±3.4


22.3±3.0
	
	Not considered

	Rathleff et al
	2014
	Increased medial foot loading during drop jump in subjects with patellofemoral pain
	Patellofemoral pain


Control
	23 (10 females)


20 (10 females)

	25.8±7.4


26.6±3.1
	
	Not considered

	
	
	
	
	
	
	
	

	Scholtes and Salsich
	2017
	A dynamic valgus index that combines hip and knee angles: assessment of utility in females with patellofemoral pain
	Females with patellofemoral pain

Controls
	20 females


16 females

	22.4±4.3


21.6±3.0
	
	Single-sex study

	
	
	
	
	
	
	
	

	Song et al
	2015
	Effects of femoral rotational taping on pain, lower extremity kinematics and muscle activation in female patients with patellofemoral pain
	Patellofemoral pain

Controls
	16 females

8 females

	25.7±6.1

28.6±5.7
	
	Single-sex study

	
	
	
	
	
	
	
	

	Souza et al
	2010
	Femur rotation and patellofemoral kinematics: a weight-bearing magnetic resonance imaging analysis
	Patellofemoral pain



Pain free
	15 females
 


15 females
 

	30.8±8.9



29.1±4.2

	198±188 minutes per week

175±141 minutes per week
	Single-sex study

	St-Ogne et al
	2004
	Interjoint coordination in lower limbs in patients with a rupture of the anterior cruciate ligament of the knee joint
	Injured (ruptured anterior cruciate ligament)

Control
	6 males



9 males

	27.7±7.5



25.3±7.4
	
	Single-sex study

	
	
	
	
	
	
	
	

	Willson and Davis
	2008a
	Lower extremity mechanics of females with and without
patellofemoral pain across activities with progressively
greater task demands
	Injured (patellofemoral pain)

Control
	20 females


20 females


	23.3±3.1


23.7±3.6
	Tegner activity rating = 6.3±1.4

Tegner activity rating = 6.9±1.3
	Single-sex study

	
	
	
	
	
	
	
	

	Willson and Davis
	2008b
	Utility of the frontal plane projection angle in females with patellofemoral pain
	Injured (patellofemoral pain)

Control
	20 females


20 females


	23.3±3.1


23.7±3.6

	Tegner activity rating  = 6.3±1.4

Tegner activity rating  = 6.9±1.3

	Single-sex study

	
	
	
	
	
	
	
	

	Yamazaki et al
	2010
	Differences in kinematics of single leg squatting between anterior cruciate ligament-injured patients and healthy controls.
	Injured
(anterior cruciate ligament)

Control
	63 (31 females)



26 (12 females)

	male: 26.4; 16-51)
female: 25.5; 14-47
male: 26.2; 22-35
female: 23.2; 19-33
	
	Tested difference between sexes in ACL group




	[bookmark: _Ref500336162]Table 3: Description of Squat Movement

	Author
	Year
	Squat method
	Natural or cued

	
	
	Unsupported leg position
	Arm position
	Depth of squat
	Depth of squat standardised?
	

	
	
	
	
	
	
	

	Carry et al
	2017
	Not stated
	Self-selected by participant
	Self-selected to the end of range
	No
	Natural, although stipulated trunk had to remain upright

	
	
	
	
	
	
	

	Hatton et al
	2004
	Not stated
	Folded across chest
	60° of knee flexion
	Yes, buttocks needed to have touched a plinth positioned behind participant
	Natural

	
	
	
	
	
	
	

	Herrington
	2014
	Not stated
	Hands on pelvis
	Knee flexion of at least 45° but no greater than 60°
	Not during recorded trials. Depth of squat checked during practice trials.
	Natural

	
	
	
	
	
	
	

	Kvist
	2005
	Not stated
	Not stated
	Maximum depth possible with unassisted rise
	No
	Natural

	
	
	
	
	
	
	

	Levinger et al
	2007
	Toe tips in contact with ground with heel raised
	At sides
	45° of knee flexion
	Audio cue from electrogonimeter when target knee flexion angle reached
	Natural

	
	
	
	
	
	
	

	Nakagawa et al
	2012
	Not stated
	Not stated
	60° of knee flexion

Participants required to perform squat at a speed of 2 seconds down, 2 seconds up. 
	Depth of squat not checked. Digital metronome used to control speed of squat.
	Natural

	
	
	
	
	
	
	

	Nakagawa et al
	2015
	Not stated
	Not stated
	Knee flexion greater than 60°.

Required to perform at a speed of 15 squats per minute
	Digital metronome used to control speed of squat. 
	Natural

	
	
	
	
	
	
	

	Rathleff et al
	2014
	Behind weight bearing leg
	Across chest
	90° of knee flexion
	Visual observation by investigator
	Natural

	
	
	
	
	
	
	

	Song et al
	2015
	Not stated
	Across chest
	45° of knee flexion

Perform at a speed of 30° per second
	Goniometer used initially to check depth. Then visual observation against a marker placed on a wall.
	Natural

	
	
	
	
	
	
	

	Scholtes et al
	2017
	Not stated
	Arms by side
	At least 60° of knee flexion
	Visual observation by investigator
	Natural and cued

Cued condition required participants to maintain their knee over the foot.

	
	
	
	
	
	
	

	Souza et al
	2010
	Not stated
	Not stated (required not to touch sides of scanner)
	Approximately 50° of knee flexion

Participants required to squat to approximately 50° then slowly rise pausing at 45°, 30°, 15° and 0° for image collection

	Plastic goniometer attached to side of leg
	Natural



	
	
	
	
	
	
	

	St-Ogne
	2004
	Not stated
	Arms behind back
	Not specified
	No
	Natural

	
	
	
	
	
	
	

	Willson and Davis
	2008a
	Not stated
	Not stated
	Beyond 60° of knee flexion.

Verbal cadence, 15 squats per minute.
	No
	Natural

	Willson and Davis
	2008b
	Not explicitly stated. From figure it can be speculated that the knee of unsupported leg flexed to approximately 90°
	Arms across the chest
	Beyond 60° of knee flexion.

Verbal cadence, 15 squats per minute.
	Participants given feedback during practice trials. Not monitored during trials.
	Natural

	
	
	
	
	
	
	

	Yamazaki et al
	2010
	Unsupported leg behind participant
	Arms across the chest
	Perform half squat over 10 seconds on injured, than non-injured leg.
	No
	Natural
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	Author
	Year
	Outcome measures
	
	
	
	Results

	
	
	Outcome parameters
	Hardware and software
	Evidence of validity 
	Evidence of reliability
	

	
	
	
	
	
	
	

	Carry et al
	2017
	3D kinematics and kinetics

Peak knee flexion

Peak power absorption

Peak power generation

CoP mean distance

Average distance from mean CoP

RMS distance

RMS distance from mean CoP range

Maximum distance between any two CoP location

95% CI circle area

	Vicon – plug-in gait

Bertec force platforms
	No
	No
	Peak power absorption:
0.92W/KG higher in control group (p=0.0029)

Peak power generation:
0.87 W/Kg higher in control group (P = 0.0081)

CoP range:
7.73cm higher in control group (P = 0.0403)

	
	
	
	
	
	
	

	Hatton et al
	2004
	CoP path length

Range of CoP in anterior/posterior and medial/lateral directions

Standard deviation of CoP in A/P and M/L directions
	Wii Balance Board
	No
	Yes
	Greater Medial/Lateral CoP range in hip chonropathy (p = 0.023)
Control = 3.14cm±0.45
Hip Chon = 3.5cm±0.77

Greater Anterior/Posterior SD of CoP in hip chondropathy (p = 0.043)
Control = 1.19cm±0.31
Hip Chon = 1.37cm±0.47

	
	
	
	
	
	
	

	Herrington
	2014
	2D frontal plane projection angle of knee valgus at lowest point of knee flexion
	Digital video camera at 50Hz.
Video digitised using Quintic software
	No
	Yes
	Significant difference between injured limb of PFP group and control (non-dominant side) and injured limb to non-injured limb with PFP group.

Control: 8.4°±5.1
PFP injured: 16.8°±5.4
PFP non-injured: ~10.

	
	
	
	
	
	
	

	Kvist
	2005
	Maximum knee flexion angle

Maximum tibial translation
	Computerised goniometer linkage at 2000Hz
	Yes
	Yes
	Significantly more knee translation in ACL injured leg compared to control group, and ACL injured leg to non-injured leg within ACL group.

ACL injured: 9.1mm ± 2.5
ACL non-injured: 8.1mm ± 3.7
Control: 6.7mm ± 2.4



	
	
	
	
	
	
	

	Levinger et al
	2007
	2D frontal plane kinematics

Femoral frontal angle: anterior superior iliac spine to midline of the femoral condyles

Foot longitudinal alignment from second toe to midline of the malleioli

Femoral deviation: horizontal deviation of the lower marker on the thigh relative to a marker on the second toe.

Each parameter calculated as the difference between initial posture and posture at 45° knee flexion
	Single video cameras placed perpendicular to the frontal plane at 50Hz.  Marker data digitised using Peak Motus (version 7)
	No
	Yes
	Significant difference in femoral frontal angle between right knee of PFP group (injured knee) and right knee of control group (no indication of limb dominance).

PFP: 11.75° ± 3.61
Control: 7.79° ± 4.22

No significant difference in femoral deviation between right knee of PFP group (injured knee) and right knee of control group (no indication of limb dominance).

PFP: 2.54° ± 1.29
Control: 2.02° ± 1.11

Note: a significant difference was found between ages of groups

PFP: 37.4 years ± 9.41
Control: 23.9 years ± 7.84


	
	
	
	
	
	
	

	Nakagawa et al
	2012
	3D kinematics

Maximum excursion of ipsilateral trunk lean

Contralateral pelvic drop

Hip adduction

Hip Internal rotation

Knee Abduction
	Flock of Birds electromagnetic sensors with MotionMonitor software
	No
	Yes
	No significant difference between groups for knee excursion

Female PFP: 64.7° ± 3.8°
Male PFP: 66.1° ± 3.5°
Female controls: 65.2° ± 2.9°
Male controls: 67.4° ± 3.2°

Females (with or without PFP) had greater ipsilateral trunk lean than males (with or without PFP)
Female PFP: 11.1° ± 4.6°
Male PFP: 7.5° ± 3.9°
Female controls: 7.5° ± 3.5°
Male controls: 6.4° ± 2.3°;

PFP groups (males and females) had greater ipsilateral trunk lean than controls
Mean difference = 2.6°

PFP had greater pelvic drop than controls (mean difference = 2.9°)

Female PFP: 11.3° ± 4.3°
Male PFP: 9.2° ± 4.6°
Female controls: 6.6° ± 2.9°
Male controls: 7.1° ± 4.5°

Females (with or without PFP) had greater hip adduction than males (with or without PFP) (mean difference = 6.9°). PFP had greater hip adduction than controls (mean difference, 4.0°):
Female PFP: 20.4° ± 6.0°
Male PFP: 13.9° ± 7.3°
Female controls: 14.3° ± 4.6°
Male controls: 7.2° ± 3.8°;

Females with PFP had greater hip internal rotation than males with PFP (mean difference, 5.8°), control females (mean difference, 5.9°) and control males (mean difference = 6.1°)

Female PFP: 15.6° ± 5.8°
Male PFP: 9.8° ± 4.8°
Female controls: 9.7° ± 5.4°
Male controls: 9.5° ± 4.3°;

Females (with or without PFP) had greater knee abduction than males (with or without PFP) (mean difference = 3.9°)
PFP had greater knee abduction than controls (mean difference, 3.4°)
Female PFP: 11.2° ± 4.6°: 
Male PFP: 7.1° ± 3.5°
Female controls: 7.2° ± 3.3°
Male controls: 4.2° ± 2.3°;


	
	
	
	
	
	
	

	Nakagawa et al
	2015
	3D kinematics

Peak ipsilateral trunk lean

Peak hip adduction

Peak knee abduction
	Flock of Birds electromagnetic sensors with MotionMonitor software
	No
	Yes
	PFP have greater peak ipsilateral trunk lean compared to controls.
PFP: 9.8° ± 5.2
Control: 6.9° ± 4.4

PFP have greater peak hip adduction compared to controls
PFP: 24.0° ± 6.5
Control: 19.2° ± 6.0

PFP have greater peak knee abduction compared to controls
PFP: 10.5° ± 6.4
Control: 6.8° ± 5.3


	
	
	
	
	
	
	

	Rathleff et al
	2014
	In-shoe pressure distribution
	Pedar, Novel
	Yes
	Yes
	PFP 9% higher peak absolute force compared to controls (P = 0.01), relative group difference of 32%.


	
	
	
	
	
	
	

	Scholtes and Salsich
	2017
	2D frontal plane projection angle

2D dynamic valgus index (DVI)

3D kinematics

Hip adduction
Hip medial rotation
Knee abduction
Knee lateral rotation
3D dynamic valgus index
	Dartfish





Vicon – Visual3D
	Yes
	Yes
	PFP greater knee FPPA (p=0.014)
PFP: 11.48° ± 7.45
Control: 4.14° ± 9.62

PFP greater hip FPPA (P = 0.03)
PFP: 19.66°± 7.70
Control: 14.15°±6.53

PFP greater 2D DVI (P = 0.01)
PFP: 31.14°±13.36
Control: 18.3°± 17.97 

PFP greater 3D DVI (P = 0.01)
PFP: 12.41° ± 9.77
Control: 1.81° ± 13.44


	
	
	
	
	
	
	

	Song et al
	2015
	3D kinematics

Peak excursion in stance leg for:

Hip flexion/extension, abduction/adduction, internal/external rotation

Patellar flexion/extension, mediolateral rotation, mediolateral tilt

Patellar displacement in mediolateral, anteroposterior  and proximodistal planes

	Fastrak, Polhemus
	Yes
	No
	No group significant group differences for 3D kinematics

	
	
	
	
	
	
	

	Souza et al
	2010
	2D kinematics

Patella displacement, expressed as percentage of total patella width

Medial/lateral patella tilt angle

Medial/lateral femoral rotation

Patella rotation

	Vertically open Magnetic Resonance Imaging (0.5T). General Electric Medical Systems


	No
	Yes
	PFP greater lateral patella displacement at 0° knee flexion (p=0.011)
PFP: 75% ± 8%
Control: 58% ± 7%

PFP greater lateral patella tilt at 0° knee flexion (p=0.03).
PFP: 13.1° ± 5.8°
Control: 8.1° ± 4.1° 

PFP greater medial femoral rotation at 0° knee flexion (p<0.037).
PFP: 12.2° ± 5.0°
Control: 6.2° ± 5.2°


	
	
	
	
	
	
	

	St-Ogne
	2004
	3D kinematics

Thigh flexion/extension

Thigh abduction/adduction

Knee flexion/extension

Ankle flexion/extension

Principle Component Analysis conducted on waveforms
	Optotrack
	No
	No
	No differences between groups found during single leg squat movement.

	Willson and Davis
	2008a
	3D kinematics at 45° of knee flexion
	Vicon – Visual3D
	No
	No
	PFP had greater knee external rotation (P = 0.06), less internal rotation excursion (P = 0.05), greater hip adduction (P = 0.012), and greater contralateral pelvic drop (no P value).

PFP group had decreased hip internal rotation (P = 0.01) and more femoral external rotation (no P value).

PFP had less internal rotation excursion (P = 0.005).

Not possible to determine values as only reported figures and the average difference between groups for all activities.


	
	
	
	
	
	
	

	Willson and Davis
	2008b
	3D kinematics of the hip and knee at count of 2 during squat (authors state that knee flexion at the count of 2 is associated to peak knee extension moment during running and jumping)

2D Frontal Plane Projection Angle at count of 2 during squat

Peak knee extensor moment
	Vicon – Visual3D

Bertec Fore Platforms

FPPA: Digital image (equipment used not stated) and CorelDraw to determine angle.
	Yes
	Yes
	No group difference in knee flexion angle.

PFP group greater medial position of the knee during squats (difference between groups = 4.1°; P=0.012).


	
	
	
	
	
	
	

	Yamazaki et al
	2010
	3D kinematics of hip and knee at maximum knee flexion
	Fastrak, Polhemus
	Yes
	Yes
	Uninjured male ACL leg less external knee rotation than dominant leg of male control (P=0.0090)
Uninjured leg of male ACL group: 18.9° ± 34.3 
Dominant leg of male control group: 38.8° ± 12.6 

Uninjured leg of female ACL group significantly more external hip rotation (P=0.001), knee flexion (P=0.0070) and hip flexion (P<0.0001) than dominant leg of female control.

Hip rotation
Uninjured leg of female ACL group: 9.1° ± 8.0 
Dominant leg of female control: 1.7° ± 6.1

Knee flexion
Uninjured leg of ACL group: 73.9° ± 13.3 
Control: 66.2° ± 9.9

Hip flexion
Uninjured leg of ACL group: 29.9° ± 18.4
Control: 48.0° ± 11.3

	ACL = anterior cruciate ligament; CoP = Centre of Pressure; SD = standard deviation; FPPA = frontal plane projection angle; PFP = patellofemoral pain.





	[bookmark: _Ref500341314]Table 5: Normalised score for STROBE checklist

	Paper
	STROBE score

	
	

	Carry et al., 2017
	75.9%

	Hatton et al., 2014
	75.9%

	Herrington, 2014
	72.4%

	Kvist, 2005
	58.6%

	Lavinger et al., 2007
	74.1%

	Nakagawa et al., 2012
	83.3%

	Nakagawa et al., 2015
	74.1%

	Rathleff et al., 2014
	93.1%

	Scholtes et al., 2017
	85.7%

	Song et al., 2015
	85.7%

	Souza et al., 2010
	86.2%

	St-Ogne et al., 2004
	50%

	Willson and Davis, 2008a
	72.4%

	Willson and Davis, 2008b
	83.3%

	Yamazaki et al., 2010
	58.6%

	
	










DISCUSSION
The aim of this systematic review was to identify the biomechanical parameters used when performing a biomechanical analysis of the single-leg squat (SLS) and determine which parameters detected differences between pathological and non-pathological groups. The frontal plane knee projection angle was the most commonly used parameter, but was limited to studies of individuals with patellofemoral pain. Therefore, the ability of biomechanical parameters to distinguish between pathological and non-pathological groups is likely condition-specific.  

Summarising the data extracted from the studies some general observations can be made. Generally, there was greater frontal plane motion in the injured groups than in the healthy control groups. This was true whether the measure was from a 2D angle,12 13 17 20 21 3D motion capture,14 15 21 or medial / lateral range of centre of pressure motion.26 This was also true throughout the kinematic chain with differences being noted in the knee, hip, pelvis and trunk. Peak knee flexion,25 peak hip internal rotation and knee internal rotation excursion19 were variables noted to be less in the injured group than in the healthy control group. Overall, though, this review observed substantial variability in methodology when using a biomechanical analysis of the SLS to investigate group differences. The majority of studies (11 out 15) investigated patellofemoral pain meaning there was some consistency in the patient group of interest; however, due to the inconsistencies and omissions in the description of methodology, drawing overall substantiated conclusions was not possible.

The ankle is a crucial part of the lower extremity kinematic chain providing a stabilising role during the closed chain task of the SLS. Despite the ankle’s role during the SLS it was only included in one paper.24 As these data were likely collected in all the studies, the omission of such data likely speaks to the challenges of fitting complex, multi-variable analyses within publication constraints. To present a more complete picture, it may be prudent to move toward including full body data where possible or alternatively in an appendix if available. 

Force or kinetic data during the SLS were not extensively reported in the studies. Only four papers included these data in any form, and there was no overlap between the variables being analysed. As kinetic data can better represent joint loading and ultimately the causes of joint injuries are often attributed to the loading placed on the musculoskeletal system,27 it would be important to include these in future studies. It must be noted that this review article excluded articles that performed musculoskeletal modelling (i.e. joint reaction force, muscle force analysis, etc) due to the complex nature of the analysis precluding them from being employed in a typical clinical environment.

While the majority of the studies included only a single sex, three of the studies included both males and females and did not report how sex was considered in the analysis.14 16 23 Sex-specific movement patterns during the single leg squat have been previously noted where females perform the single leg squat with less trunk flexion, 28 29 and with more pelvic rotation,28 29 hip adduction,1 15 28 29 and knee abduction15 28 than males. Females have also been reported to have less ipsilateral trunk flexion1 than males, although Nakagawa15 found the opposite while others28 29 reported no difference. The observed differences in the dependent measures between males and females could obscure potential group differences if including them within the same group or not accounting for sex differences in the statistical analysis. 

As age affects SLS performance, it is important to consider the age of the individual when assessing the SLS. Between childhood and adolescence, SLS performance improves with increasing age.30 In adults, elderly participants have been shown to exhibit alterations in muscle activation during an increased resisted SLS movement, which may be a contributing factor to injury in the elderly31. Additionally, the effects of ageing on muscle mass, strength and neuromuscular control are well known32-34. The studies in this review included participants who were young to middle-aged adults with mean ages ranging from 14.1 to 37.3 years old. As a result, this review is unable to suggest if the ability of biomechanical measures to discriminate between pathological groups is affected by age.

Of the studies that reported activity level, participants were generally of recreational level in five studies,12 13 18-20 with one study investigating competitive athletes. 23 Physically active participants have been shown to demonstrate greater knee and hip flexion during the SLS, indicating a greater depth of squat, and are likely to be rated as having better performance compared to less physically active participants.35 Level of physical activity of participants should be considered when comparing between groups and between results of different studies. Comparing of studies that used a common biomechanical outcome parameter (frontal plane knee projection angle), two studies investigated physically active participants at a recreational level,12 13 with one study investigating inactive participants,21 although an indication of activity level was not mentioned. Frontal plane knee projection angle did not appear to differ between these studies, suggesting that activity level did not affect this biomechanical outcome parameter. However, it is important to consider methodological differences and the omission of activity level in one study makes it difficult to draw a robust conclusion. Future research should examine the effect of activity level on biomechanical parameters during the SLS.

All studies evaluated the SLS without requiring the participants to maintain a specific posture or adopt a specific movement pattern or orientation of body segments during the movement. This approach is often adopted in clinical evaluations to assess the cognitive control of movement.36 The analysed movements, therefore, indicate how participants self-select to perform the task. One study also included a cued task to evaluate the participant’s ability to correct the movement pattern.21 The differences noted between the un-cued and cued movement indicated that the self-selected movement pattern does not necessarily evaluate an individual’s ability to perform the movement correctly. The goals and methods of cognitive movement control assessment are different compared to a preferred movement pattern assessment,37 therefore, the movement evaluation model within studies should be carefully considered when interpreting results from studies.

There was considerable variability or omission in the details of how the single leg squat was performed. Twelve of the 15 studies did not report the position of the unsupported leg during the SLS while two reported that it was behind the supporting leg. The position of the unsupported leg affects both kinematic and kinetic outputs measured in the stance leg,38 making comparisons between studies that have adopted different positions for the unsupported leg difficult. One study allowed the toes of the unsupported leg to be in contact with the ground.13 This additional point of contact might also affect the measured variables by providing kinaesthetic and proprioceptive feedback as well as an additional base of support. The positions of the arms during the squat also varied across studies, ranging from arms across the chest, to arms by the side, to arm out stretched in front. Although the effect of arm position on SLS kinematics and kinetics has not been investigated, the position of the arms has been shown to influence knee valgus moments during dynamic sports,39 suggesting arm position will influence performance of a given task. The position of the arms will influence the position of the overall centre of mass and lead to kinematic changes, especially in the trunk, again making comparison between studies difficult if the position of the arms is not standardised or consistent.

The majority of studies did standardize the squat depth with one study not specifying the depth,24 and two studies going to a maximum depth or self-selected end of range.22 23 The range of depth was extensive, varying from 45 degrees of knee flexion13 17 to 90 degrees of knee flexion.16 Despite this variation between studies, based on an analysis of stepdown from different heights,40 it may be more important to standardize the point at which the variables are measured. In a repeated measures analysis, when the dependent variables were analysed at peak knee flexion, the stepdown from a 16 cm step appears to use a different movement pattern than the stepdown from a 24 cm step. However, when analysed at 60 degrees of knee flexion, only trunk flexion was different between the tasks. Thus, if peak knee flexion may be different between groups, it may also be important to include a standardised angle at which data are analysed. However, depending on the research question, peak angles throughout the movement may also be of interest.15 17 23 Another consideration is whether a peak angle is used or the change in the angle over a time frame (i.e. excursion). The use of excursion may obscure differences when there is an offset in the initial position that contributes to the difference in peak angles. This situation is noted in Willson et al19 where differences in peak angles were noted, but not in excursions. In addition, the definition of ‘zero’ and its relation to a neutral joint position is important to consider. Differences in the definition of the neutral joint angle will influence the absolute angles reported, requiring a clear and consistent definition of the neutral angle to ensure comparisons between groups are valid.

The SLS is often used as a tool to assess movement due to its perceived relationship to functional movement, yet the relationship between the SLS and more dynamic sporting tasks must be considered. The SLS is typically performed in a controlled manner in a bid to simulate activities of daily living, such as walking down stairs. However, it is the more dynamic movements seen in sports, for example, that may be the likely causative factor for joint injury. The velocity of the SLS influences the latency of hip muscle activation,41 and may have subsequent effects on lower limb kinematics and kinetics. Therefore, the slow velocity in which the SLS is performed will not produce the same demands on the musculoskeletal system of the lower limb as a faster dynamic task. Of the studies reported in this review only two standardised the velocity of performing the SLS.14 15 Although the SLS has been shown to be related to pathology and injury,42 which suggests a relationship between SLS performance and functional movement, evidence on a direct comparison is limited. Movement patterns during the SLS are related to observed patterns during single leg landing43 and bilateral drop jump tasks,43 44 but further research is needed to establish the relationship between SLS and dynamic performance. With the development of inertial measurement units the possibility of establishing kinematic relationships and specific clinical measures such as the SLS can be established.

The current systematic review had a number of limitations. The review was not constrained to a single type of pathology; therefore, it was not possible to combine the results and perform a meta-analysis to determine possible effect sizes for the discriminatory power of the biomechanical outcome parameters. The choice of not constraining the type of pathology was made, as it was not known prior to undertaking the study which pathologies are assessed using a single leg squat movement. The current review was also limited to only including cross-sectional studies that compared a pathological to non-pathological group. To determine the biomechanical measures that are indicative of alterations in movement a review of studies that have examined changes in biomechanical parameters during the single leg squat following an intervention would be needed.

A number of research and clinical recommendations can be stated as a result of this review. Firstly, it is important to standardise and report the position of the unsupported leg and arms during the SLS as differing positions can alter the kinematic profile when performing the movement. Recommendations on the position to adopt include placing the unsupported leg behind with the knee flexed to 90°, and arms across the chest.  To account for the differences in depth of squat employed in studies, it would be beneficial to report parameters at different levels of knee flexion during the SLS. This would allow a comparison of studies irrespective of the depth of squat. Many studies only reported kinematics of a single joint, however, the relationship between kinematics and pathology are likely to be multifactorial and therefore it is important to consider the entire kinetic chain. These data should be presented in the paper, or as an appendix or supplementary material as appropriate. In addition, many biomechanics laboratories are equipped with force platforms but very few studies report kinetic findings on the SLS. It is suggested that kinetic data should be considered in future reporting. Due to the known differences in kinematic parameters when performing the SLS the inclusion of sex as a covariate must be considered in future studies. Clinical recommendations again must be circumspect, however, the clinician should consider the following points when using the SLS as a tool to assess a patient. Frontal plane motion appears to be the most important factor related to patellofemoral pain in females and should be the focus of the assessment; consistency in the position of the unsupported leg and arms should be employed; and it should be considered that males and females may perform the movement differently irrespective of pathology.

CONCLUSION
The SLS provides a controlled means to assess dynamic movement during a simulated movement that occurs in activities of daily living and sporting activities. Through the use of biomechanical measures it is possible to obtain quantitative, and potentially less biased than visual observational measures, measures of movement that will assist in elucidating the mechanisms of joint injuries. This review found large variability in the parameters used to distinguish between pathological and non-pathological groups. Of the biomechanical parameters reported by studies, frontal plane kinematics showed the most differences between pathological and non-pathological groups. This review also found large variability in the way in which the SLS was performed and the dependent variables used to determine groups differences. Based on this review a series of recommendations are suggested for future studies: 1) standardising the position of the unsupported leg during the SLS; 2) standardising arm position during the SLS; 3) reporting kinematic for all joints, included as an appendix if necessary; 4) giving more consideration to kinetic outcome parameters; and 5) considering sex as a covariate.
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