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Diffusion-ordered spectroscopy experiments in which existing delays in a parent pulse sequence are used
for diffusion encoding – iDOSY experiments – are potentially attractive because of their simplicity and
sensitivity. However the calculation of diffusional attenuation in Zangger-Sterk pure shift iDOSY exper-
iments is a very difficult problem to attack analytically, and is more easily approached numerically.
Numerical simulations show that for typical experimental conditions, the dependence of diffusional
attenuation on diffusion-encoding gradient amplitude is well represented by a shifted Gaussian function.
The shift in gradient can be calculated analytically for the limiting case where the selective pulse is
replaced by a hard 180� pulse at its midpoint; numerical simulations show that the effect of using differ-
ent shapes of selective pulse is to scale down this limiting gradient shift by a constant factor that depends
on the pulse shape used. The practical consequence is that under the experimental conditions appropriate
for small molecules, the pure shift iDOSY method should allow good diffusion coefficient measurements
to be made if appropriate allowance is made for the change in effective diffusion-encoding gradient.
Parallel sets of numerical simulations and experiments are presented, and a practical application of a
Zangger-Sterk pure shift iDOSY experiment to a simple test mixture is illustrated.

� 2019 Elsevier Inc. All rights reserved.
1. Introduction

Diffusion-ordered spectroscopy (DOSY) is widely used for mix-
ture analysis, but the quality of results in the diffusion dimension
is critically limited by spectral resolution [1–3]. One of the most
powerful ways to improve such resolution is by the use of broad-
band homonuclear decoupling or ‘‘pure shift” methods [4–6];
indeed one of the initial stimuli to the development of such meth-
ods was the need for improved spectral resolution in DOSY [7,8].
The majority of current pure shift NMR methods map out the
chemical shift evolution using an evolution period which has a
hard 180� pulse and an ‘‘active spin refocusing” element at its mid-
point, the combined effect of which is to refocus the effects of
homonuclear couplings [4–6]. The archetypal active spin refocus-
ing element is that of Zangger and Sterk (ZS) [9], which consists
of a selective 180� radiofrequency pulse in the presence of a weak
constant magnetic field gradient along the z axis. The effect of the
ZS element is both spatially and spectrally selective, refocusing
each signal in a spectrum in a different horizontal slice of the active
volume of the sample. If only signals from these slices (the ‘‘active”
spins) are recorded, the combined effect of the ZS element and the
hard 180� pulse is that each chemical shift is measured from a dif-
ferent slice of the sample, with its magnetization appearing to
evolve continuously over the evolution period. The hard 180� pulse
ensures that all the remaining (‘‘passive”) spins are inverted half-
way through the evolution period, causing evolution of the active
spins under homonuclear scalar couplings to be refocused.

Since the soft pulses used in the ZS element have typical dura-
tions of the order of tens of ms, comparable to typical diffusion-
encoding delays in DOSY experiments, it is very attractive to con-
vert a pure shift NMR experiment into a DOSY experiment by add-
ing incremented diffusion-encoded gradient field pulses on either
side of the ZS element. This is an example of internal (‘‘iDOSY”) dif-
fusion encoding, a principle which has been used both in various
3D iDOSY experiments [10–13] and in a pure shift iDOSY experi-
ment [8] using the PSYCHE active spin refocusing element [14–
16]. The attraction of the iDOSY approach lies both in its simplicity,
and in the sensitivity advantage it enjoys through using a spin
echo, which retains all of the initial magnetization, rather than a
simulated echo, which sacrifices half. The simple concatenation
of a DOSY and pure shift experiment would also lead to greater
relaxation losses. Fig. 1a shows a simple prototype pulse sequence
for a ZS-iDOSY experiment.
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Fig. 1. Pulse sequences. Semi-ellipses represent half-sine shaped gradient pulses;
overlaid semi-ellipses indicate incremented diffusion-encoding gradient pulses of
amplitude gD. The diffusion-encoding gradient pulses (gD) are of duration d and the
Zangger-Sterk gradient pulse (gZS) and selective 180� pulse are both of duration sZS.
(a) prototype Zangger-Sterk iDOSY sequence; (b) idealised sequence in which an
instantaneous inversion is applied midway through the ZS gradient pulse gZS; (c)
model sequence which omits the evolution period and hard 180� pulse from
sequence (a) (the experiments of Fig. 2 used rectangular gradient pulses for
consistency with the simulations); and (d) Oneshot-45 sequence [31]. Four different
shaped 180� soft pulses (rectangular, Gaussian, RSNOB, REBURP) were used.
Sequence (a) uses double EXORCYCLE phase cycling, sequences (b) and (c) normal
EXORCYCLE. Pulse sequence code for Bruker spectrometers, with full phase cycling,
for sequences (a), (c) and (d) is included in the accompanying Supporting
Information.
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There is, however, a significant obstacle to the use, or at least
the quantitative use, of ZS-iDOSY experiments. This is the difficulty
of determining an accurate diffusion coefficient from the signal
attenuation measured as a function of diffusion-encoding pulsed
field gradient strength. In existing DOSY experiments the form of
this attenuation can be found analytically, as first demonstrated
by Stejskal and Tanner [17] for the pulsed field gradient spin echo
sequence and subsequently extended to a wide variety of other
experiments [18]. In such experiments all changes of coherence
order can safely be approximated as occurring instantaneously,
all the spins observed follow the same coherence transfer pathway
as a function of time, and all parts of the sample contribute to the
signals observed. However in the case of a ZS-iDOSY experiment
none of these is true: the use of a soft pulse means that the process
of coherence transfer takes many milliseconds (meaning that diffu-
sion during this process contributes to signal attenuation); spins
with different chemical shifts and different spatial positions will
have different coherence histories (meaning that the total signal
decay observed will have a range of contributions with different
functional forms); and the signals observed are confined to those
from the thin horizontal slices of sample for which the soft pulse
causes refocusing.
Calculation of the diffusional attenuation expected in a ZS-
iDOSY experiment is therefore analytically intractable. At first
sight, then, it would appear that ZS-iDOSY experiments would at
best be limited to use with qualitative interpretation only, dispers-
ing signals according to their relative diffusion coefficients but
without the benefit of the absolute diffusion scale available in
other DOSY experiments. However, the recent major advances in
simulation methods in magnetic resonance, and in particular the
implementation of Fokker-Planck methods in the SPINACH plat-
form [19,20], hold out the possibility that numerical modelling
might provide sufficient insight into the functional form of the dif-
fusional attenuation in ZS-iDOSY experiments to make it possible
to derive diffusion coefficients with sufficient accuracy for practical
applications. Here it is demonstrated that this is indeed the case,
and that with a minor modification to current data processing
methods it is possible to produce iDOSY spectra with accurate dif-
fusion scales. A series of simulations is explored, a simple func-
tional form for the diffusional attenuation is deduced that is
applicable over a wide range of experimental parameters, and a
practical illustration of the use of ZS-iDOSY to give a very high res-
olution 1H DOSY spectrum is provided.

1.1. Diffusional attenuation

An obvious starting point for an heuristic analysis of diffusional
attenuation in ZS-iDOSY experiments is to calculate the diffusional
attenuation A(gD) as a function of diffusion-encoding gradient
pulse amplitude gD for a limiting case in which the effect of the soft
pulse is approximated by an instantaneous 180� rotation at its
midpoint. For such a sequence, shown in Fig. 1b, none of the three
obstacles to analytical derivation noted above applies, and conven-
tional methods ([17], see Appendix A) yield the diffusional attenu-
ation, Eq. (1):

A gð Þ ¼ S gDð Þ
S Dg0ð Þ ¼ e� crdðgD�Dg0Þ½ �2DD0 ð1Þ

where S(gD) is the signal measured for a gradient amplitude gD, c is
the magnetogyric ratio, d is the duration of the field gradient pulses,
r is a gradient pulse shape factor (which is less than unity for non-
rectangular pulses), D is the diffusion coefficient, and D0 is the dif-
fusion delay corrected for diffusion during the gradient pulses. For
rectangular gradient pulses r = 1 and D0 = D � d/3, and for half-
sine shaped pulses r = 2/p and D0 = D � d/4. The difference between
Eq. (1) and the normal Stejskal-Tanner equation lies in the gradient
shift Dg0, which is given by Eq. (2):

Dg0 ¼ � gZSs2ZS
4rdD0 ð2Þ

where gZS is the amplitude of the slice-selection Zangger-Sterk field
gradient pulse and sZS the duration of the ZS gradient pulse and
radiofrequency soft pulse. The diffusional attenuation remains
Gaussian in form, but the effect of the Zangger-Sterk gradient is
to shift the signal maximum away from gD = 0. This is because the
extra field gradient pulse will tend either to enhance the dephasing
effect of the diffusion-encoding gradient pulse, or to refocus it,
depending on the signs of the two gradient amplitudes.

How closely the diffusional attenuation in a given ZS-iDOSY
experiment approaches this ideal limit will depend on the shape
of the selective pulse used and on the details of the magnetization
trajectory during it. A pulse in which the radiofrequency amplitude
is concentrated close to the midpoint (e.g. RSNOB [21]) will be clo-
ser to the limit, a pulse in which the radiofrequency amplitude is
more evenly distributed (e.g. a rectangular pulse) will be further
from it. An optimist might then suggest that the diffusional atten-
uation to be anticipated for a given selective pulse shape would be
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of the same form as Eq. (1), but with a gradient shift Dg0 which is
scaled down by some factor a. As is shown below, such optimism is
well-founded.
2. Materials and methods

2.1. Theory

Recent additions to the Spinach software package [19,20] have
provided the numerical infrastructure for simulating spatiotem-
poral NMR experiments, including pure shift NMR [4–6], ultra-
fast NMR [22], slice selection in magnetic resonance imaging
(MRI) [23], and Thrippleton-Keeler zero-quantum suppression
[24]. The method used is based on the Fokker-Planck equation,
Eq. (3):

@qðx; tÞ
@t

¼ �iLðx; tÞqðx; tÞ þMðx; tÞqðx; tÞ ð3Þ

where qðx; tÞ is the average density matrix at every point x in space,
Lðx; tÞ ¼ Hðx; tÞ þ iRþ iK is the Liouvillian responsible for the spin
dynamics of a quantum system in which R and K are the relaxation
and kinetic operators, and Mðx; tÞ is the spatial dynamics generator
that controls diffusion and flow. The Fokker-Planck equation allows
simulation of experiments in which spatial dynamics (i.e. diffusion
and flow) occur simultaneously with quantum mechanical evolu-
tion. The advantages of this method are that the diffusion operator
is a constant term in the background Hamiltonian, and the radiofre-
quency fields have time-independent generators. Computations
using Eq. (3) make use of the matrix representation of its con-
stituent operators, allowing problems to be easily treated without
time-consuming Monte-Carlo sums over stochastic trajectories
[25].

In the Spinach software, spatial coordinates are discretized on
finite grids so that all the differential operators become finite
difference matrices. In order to achieve accurate calculation of
the evolution caused by pulsed field gradients, the appropriate
number of grid points and stencil size have to be determined.
Appropriate accuracy (yielding an error in diffusion coefficient
below 0.1–0.2%) can be obtained using a 5–7 point stencil size
and a spatial grid spacing less than one seventh of the gradient
helix pitch. Simulations in this work were therefore performed
using a 7-point stencil size and 20,000 grid points; convergence
was checked by repeating sample calculations with successively
finer digitization.

A series of numerical simulations of diffusional attenuation for a
uniform sample of diffusion coefficient 1.80 � 10�9 m2 s�1 in uni-
form radiofrequency and static magnetic fields was carried out
using Spinach version 2.1.4619, for the pulse sequence of Fig. 1b
with four different soft pulse shapes (rectangular, Gaussian
[26,27], RSNOB [21] and REBURP [28]), three different selective
pulse durations sZS (30, 45 and 60 ms), and six different Zangger-
Sterk gradient amplitudes gZS (±1%, ±2% and ± 3% of 0.53 T m�1).
The diffusion delay D was 0.1 s and the diffusion-encoding gradi-
ent pulses were of 2 ms duration and rectangular shape, and varied
in amplitude from 0.026 to 0.355 T m�1 in 16 steps of equal gradi-
ent squared. Apparent diffusion coefficients and gradient shifts Dg
were extracted from the diffusion decays by least-squares fitting
using the Levenberg-Marquardt algorithm implemented in
MATLAB (R2017b). Simulations were performed on a MacBook
Pro, OS version 10.9.5, 2.9 GHz Intel Core i7, with 8 GB of memory.
The set of codes to perform this analysis is included in the accom-
panying data and software package at DOI: https://doi.org//10.
17632/kfc9rgy4cm.1, and will be publicly available in Spinach ver-
sion 2.3 and later.
2.2. Experimental

A parallel series of experiments was carried out at 25 �C on a 1%
w/w solution of H2O in D2O doped with CuSO4 to reduce the proton
T1 to 0.2 s at 25 �C and 500 MHz, using a 500 MHz Bruker Neo spec-
trometer equipped with an RT-DR-BF/1H-5 mm-Z SmartProbe. The
pulse sequence of Fig. 1c was used with the same four soft pulse
shapes, three selective pulse durations, and six Zangger-Sterk gra-
dient amplitudes gZS (±1%, ±2% and ±3% of the maximum available
gradient). The manufacturer’s nominal value for the maximum gra-
dient is 0.535 T m�1, and all nominal experimental gradient
strengths are reported with respect to this maximum. The actual
signal-weighted root mean square average over the active volume
of the sample in the probe used is, as determined below,
0.498 T m�1. The diffusion delay D was 0.1 s and the diffusion-
encoding gradient pulses were of 2 ms duration and rectangular
shape, and varied in amplitude from 0.026 to 0.355 T m�1 nominal
gradient strength in 16 steps of equal gradient squared. (These gra-
dient values differ slightly from those in the simulations described
above; the latter used a nominal diffusion coefficient of
1.8 � 10�9 m2 s�1 rather than the literature value for 1% w/w
H2O in D2O at the temperature used, 1.906 � 10�9 m2 s�1, so the
experimental gradient amplitudes used were adjusted to give
approximately the same pattern of attenuation as the calculations.
One data point was omitted from the analysis for each of the
experiments using a gZS of �3% of maximum, to avoid the effects
of accidental refocusing of an unwanted coherence transfer path-
way at this value of g.

In order to map the spatial variation in the z direction of the
field gradient in the probe used, a second series of experiments
was performed on the doped water sample, using the pulse
sequence of Fig. 1c with a 37 ms RSNOB radiofrequency pulse
applied under a field gradient of 1.2% of the maximum available.
The transmitter offset was varied from �3050 to +3150 Hz in
125 steps of 50 Hz, to span the full height of the active volume of
the sample, and two different values of nominal diffusion-
encoding field gradient, 16 and 60% of the maximum available,
were used. The diffusion-encoding gradient pulses were of half-
sine shape and 1 ms duration, and the diffusion-encoding delay
D was of 0.1584 s duration. The diffusional attenuation as a func-
tion of offset was used to calculate the relative gradient strength
as a function of offset, and thence using the known diffusion coef-
ficient of 1.906 � 10�9 m2 s�1 to calculate both the absolute gradi-
ent strength, and the relative signal amplitude, as a function of
position.

As an illustration of the use of ZS-iDOSY, experiments were car-
ried out on a sample containing 100 mM each of quinine, geraniol
and camphene and 5 mM tetramethylsilane in dimethylsulfox-
ide d6, using the iDOSY pulse sequence of Fig. 1a and the
Oneshot-45 sequence of Fig. 1d. In both cases half-sine shaped
diffusion-encoding gradient pulses were used, of 1.4 ms duration
for Oneshot-45 and 2.4 ms for iDOSY; the latter used a diffusion
delay D of 147.1 ms, while Oneshot-45 used 75 ms. For the ZS-
iDOSY experiment 32 transients of 0.328 s acquisition time and
10 kHz spectral width were acquired for each of 16 increments in
t1 and 16 increments in diffusion-encoding gradient strength, with
nominal amplitudes from 0.068 to 0.273 T m�1 in equal steps of
gradient squared, in a total time of 7.5 h. (This was rather longer
than necessary; an infelicity in the Bruker TopSpin software used
(version 4.0.5) requires that the same number of increments be
used in both the pure shift and diffusion dimensions of an
interferogram-based pure shift DOSY experiment). For the
Oneshot-45 experiment 32 transients of 1.638 s acquisition time
and 10 kHz spectral width were acquired for each of 8 diffusion-
encoding gradient amplitudes, with nominal amplitudes from
0.034 to 0.273 T m�1 in equal steps of gradient squared, in a total
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time of 0.5 h. The Oneshot-45 data were processed using the VnmrJ
2.2C software package, with correction for the effects of gradient
non-uniformity [29,30]. The Zangger-Sterk iDOSY data were pro-
cessed in the same package, with correction for diffusion during
the ZS sequence element using Eqs. (1) and (2) above, followed
by correction for the spatial non-uniformity of the z gradient using
the gradient calibration as a function of position determined as
described in the preceding paragraph. All experimental data, pulse
sequence code, VnmrJ macros and the Mathematica notebook used
are freely available for download from DOI: https://doi.org//10.
17632/kfc9rgy4cm.1.

3. Results and discussion

Fig. 2 compares representative examples of the results of simu-
lations and experimental measurements of diffusional attenuation,
carried out with the pulse sequence of Fig. 1c for the case of a
Gaussian soft pulse shape with different experimental parameters.
Normalized diffusional attenuations are marked with black sym-
bols, and fits to a Gaussian with solid and dashed lines, for mea-
surements with Zangger-Sterk gradient strengths of ±1% and ±3%
Fig. 2. Normalized diffusional attenuation curves observed in simulations (left column,
Gaussian soft pulses of duration 30 ms (a and d), 45 ms (b and e) and 60 ms (c and f). Cal
and triangles for ±1%, with the symbols open for positive gZS and filled for negative. Gaus
gradient amplitude was 0.53 T m�1 for simulations, and between 0.515 and 0.534 T m�

Simulations used a diffusion coefficient of 1.8 � 10�9 m2 s�1, while the experimental sam
given in the text.
of maximum (0.535 T m�1) respectively. Corresponding plots are
given for the complete set of simulation and experiment results
in the accompanying Supporting Information (SI). The experimen-
tal and simulated data show that the diffusional attenuation is
indeed well represented by a Gaussian over the range of experi-
mental parameters explored, which is typical of the conditions
likely to be used in practice for 1H ZS-iDOSY experiments. The
graphs show the diffusion-encoding gradient increasing from left
to right on the right hand half of each subplot, where the ZS gradi-
ent is positive, and from right to left on the left hand half, where
the ZS gradient is negative. (In the absence of any instrumental
imperfection, the same form of plot would be obtained for the
complementary case where the ZS gradient is kept positive but
the diffusion-encoding gradient varies over the full range from
negative to positive). The experimental data show slightly different
gradient shifts Dg0 from the simulations; these are to be expected
because of the ca. 5% difference between the diffusion coefficient
assumed in the simulations and that of the experimental sample
used, but will also reflect the fact that the experimental maximum
field gradient varies between 0.480 and 0.509 T m�1 over the active
volume of the sample (see below).
a–c) and experiments (right column, d–f) with the pulse sequence of Fig. 1c, using
culated and experimental points are shown as squares for a gZS of ±3% of maximum
sian fits are shown as solid lines for ±3% gZS and dashed lines for ±1%. The maximum
1 depending on position within the active volume of the sample for experiments.
ple had a literature diffusion coefficient of 1.906 � 10�9 m2 s�1. Details of the fits are
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The diffusional attenuation data for positive and negative ZS
gradients were fitted independently, but in the great majority of
cases the fits for positive and negative ZS gradient show excellent
consistency. The one exception is for experimental measurements
with a ZS gradient of +3% (several times that normally used for 1H
NMR experiments at 500 MHz). There is a very small discrepancy,
barely visible in Fig. 2f, between the amplitudes of the fitted posi-
tive and negative half-Gaussians; the corresponding discontinuity
is greater for the other three shapes of soft pulse (see the corre-
sponding figures in the SI). This inconsistency between fits for
the positive and negative ZS gradient data arises because the gra-
dient shift Dg0 for positive ZS gradient is so large that these exper-
imental data show only the tail of the Gaussian shape, and hence
do not allow reliable fitting at the signal-to-noise ratio available.

The simulated and experimental data also confirm that different
soft pulse shapes give rise to different correction factors a in Eq.
(2). Fig. 3 shows a plot of the magnitudes of the gradient shifts
Dg found by Gaussian fitting of the simulated data against those
of the shifts Dg0 given by Eq. (2) with a = 1 for the ideal case of
an instantaneous inversion at the midpoint of the ZS gradient
pulse. Excellent agreement is seen with Eq. (2), the values of a
for the Gaussian, rectangular, RSNOB and REBURP soft pulse shapes
being 0.98, 1.46, 1.02 and 1.04 respectively. As expected, the values
for Gaussian, RSNOB and REBURP pulse shapes, where the radiofre-
quency power is concentrated close to the midpoint of the selec-
tive pulse, are close to unity, while a much larger value is
obtained for rectangular pulses, where the spin trajectories are
perturbed throughout the pulse duration.

Although, as seen above and in the SI, the form of the diffusional
attenuation seen in the simulations remains close to Gaussian, the
width of the Gaussian differs slightly from that in the correspond-
ing Stejskal-Tanner expression, and hence the fitted apparent dif-
fusion coefficients obtained for the simulated data differ slightly
from that used as input to the simulation. For small gradient shifts
Fig. 3. Gradient shift magnitudes |Dg| (filled circles) determined by fitting of the
results of the simulations of diffusional attenuation, plotted against the corre-
sponding gradient shift magnitudes |Dg0| calculated from Eq. (2) with r = 1, the
ideal limit of instantaneous 180� rotation at the midpoint of the radiofrequency
selective pulse. The dotted line shows the 45� slope |Dg| = |Dg0|, and solid lines
show lines of best fit |Dg| = |Dg0|/a passing through the origin, for (in order of
increasing slope) rectangular (red), REBURP (green), RSNOB (blue) and Gaussian
(black) radiofrequency soft pulses. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
(i.e. short soft pulses, weak ZS gradient gZS) the error in diffusion
coefficient is small; with larger Dg the error increases roughly
quadratically, with a magnitude that depends on the pulse shape
used. Again, the deviation from the predicted result follows differ-
ent trends for the different soft pulses investigated. Interestingly,
the sign of the (small) error for Gaussian pulses is opposite to that
for the other three pulse shapes. The magnitude of the deviation in
D depends on the ratio of the gradient shiftDg to the change in gra-
dient amplitude needed to effect a given change in diffusional
attenuation. As Fig. 4 shows, for smallDg the width of the Gaussian
is very close to that for the normal Stejskal-Tanner equation with
Dg0 = 0, allowing diffusion coefficients to be deduced directly from
fits. For large Dg the value of D obtained by fitting needs to be
divided by a scaling factor b that depends on the soft pulse shape.
b is well-represented by a quartic function of Dg; a the full list of
parameters obtained from the quartic fit for each soft pulse shape
is reported in the SI.

If the diffusion-encoding gradient amplitude g at which signal
attenuation reaches 50% is g1/2, then forDg � 0.6 g1/2 the difference
between the diffusion coefficient obtained by Gaussian fitting of
the diffusional attenuation and the true value is of the order of
1% or less for Gaussian, RSNOB and REBURP pulses, but ca. 16%
for rectangular. For practical experiments, therefore, which use
pulses shaped to give largely positive excitation spectra, the cor-
rection factor b is only needed for cases where Dg > 0.6 g1/2.

In summary, experimental conditions should normally be cho-
sen to use shaped pulses such as Gaussian, RSNOB or REBURP,
and values of d, D and gZS for which Dg < 0.6 g1/2. The latter condi-
tion ensures that the diffusional attenuation is dominated by the
diffusion-encoding gradient pulses, so that the only change to nor-
mal practice needed is to calculate Dg from the experimental
parameters and the known scaling factor for the pulse shape, and
use normal two-parameter fitting but with gradient amplitude val-
ues shifted by an amount Dg0/a. In principle it would alternatively
be possible to move from two- to three-parameter fitting, treating
Dg as a variable parameter, but this would involve a significant
sacrifice in the accuracy of fitting for D.

There is however a practical complication if accurate results are
to be obtained using iDOSY experiments. As noted earlier, the
pulsed field gradients produced by commercial NMR equipment
are not completely homogeneous: the magnitude of the gradient
varies with position within the active volume of the sample.
Fig. 4. Ratio D/D0 of fitted to input diffusion coefficient as a function of the fitted
gradient shift Dg for the four types of soft radiofrequency pulse used. Filled circles
show calculated data points, solid lines polynomial fits (using quadratic and quartic
terms) for, in order of increasingly negative deviation, Gaussian (black), RSNOB
(blue), REBURP (green) and rectangular (red) soft pulses. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)
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Different manufacturers have historically chosen different compro-
mises between the uniformity of the field gradient and the speed
with which it can be changed. Thus Varian/Agilent room tempera-
ture probes typically show a gradient variation of as much as 20%
across the sample volume, but have sufficiently short rise and fall
times that rectangular gradient pulse shapes can be used, while
Bruker room temperature probes typically show only 4–5% varia-
tion in g but normally have to use half-sine shaped gradient pulses.

In conventional DOSY experiments the only effect of spatial
non-uniformity of the field gradient is to cause the form of the dif-
fusional attenuation as a function of gradient strength to differ
slightly from that of the Stejskal-Tanner equation (Eq. (1) with
Dg0 = 0). With Bruker probes this effect can normally be neglected,
but with Varian probes non-uniform gradient correction is helpful
where accurate diffusion coefficients, and the best resolution in the
diffusion domain of a DOSY spectrum, are required [29,30]. In the
case of spatially-resolved DOSY experiments such as ZS-iDOSY,
however, even relatively small spatial variations in g will have a
substantial impact on the quality of DOSY spectra, because the spa-
tial variation translates into a variation of apparent diffusion coef-
ficient with offset from resonance. Fortunately it is relatively easy
to map, and correct for, gradient non-uniformity. One way to map
gradients is to apply a weak read gradient during the acquisition of
DOSY data, so that different positions in the sample correspond to
different positions within the signal profile as a function of fre-
quency [29,30]. A simple, but slightly slower, alternative that is
less demanding of the speed of gradient switching is to perform
an iDOSY experiment such as that of Fig. 1c on a sample, such as
dilute HDO in D2O, which has an accurately known diffusion coef-
ficient and a strong signal. Varying the offset from resonance then
varies the position of the active slice of spins within the active vol-
ume, again mapping the variation of apparent diffusion coefficient
with position, but point by point rather than in a single experi-
ment. Given the known timing of the experiment, the appropriate
Stejskal-Tanner equation, and the diffusion coefficient of the sam-
ple, it is straightforward to calculate the absolute gradient strength
as a function of offset from resonance. Since the slice-selection gra-
dient strength gZS is also known, numerical integration can then be
used to derive the gradient (and signal) strength as a function of
position (the distance scale being determined by the diffusion coef-
ficient) [30].

Fig. 5 shows the spatial variation of the measured 100% gradient
strength as a proportion of the nominal value of 0.535 T m�1 spec-
Fig. 5. Relative signal amplitude (upper trace, blue points), and 100% gradient
amplitude (lower trace, red points) as a fraction of the nominal value of
0.535 T m�1, as a function of displacement from the field gradient centre in the
active volume of the probe coil. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
ified by the manufacturer, and the relative signal intensity,
obtained for the probe used. The signal-weighted root mean square
average 100% gradient strength (the value that would give the cor-
rect diffusion coefficient for measurements of the whole sample in
the limit of an experiment with weak diffusional attenuation) is
0.498 T m�1, very slightly less than the nominal value. A simple
polynomial fit (8th order suffices in both cases) of the variation
in relative gradient strength and relative signal amplitude as a
function of offset from resonance Dm, yielding the functions Rg(Dm)
and RA(Dm), allows their respective variations to be corrected for in
the construction of a DOSY spectrum. The calibration is probe-
specific, but can be used to correct data acquired with different val-
ues of gZS by appropriate scaling in the frequency dimension.

Finally, Fig. 6 compares a conventional DOSY spectrum obtained
with the Oneshot-45 pulse sequence [31] of a test sample contain-
ing quinine, geraniol, camphene and TMS in dimethylsulfoxide d6
with a pure shift ZS-iDOSY spectrum obtained using the sequence
of Fig. 1a. The former 2D spectrum was obtained by standard
methods [1–3], fitting the experimentally measured diffusional
attenuation for each peak i to the appropriate form of the
Stejskal-Tanner equation, to yield an amplitude Ai, a diffusion coef-
ficient Di, and the estimated uncertainty in diffusion coefficient rDi,
and then using the table of fitted parameters to construct the DOSY
spectrum. The ZS-iDOSY spectrum was obtained in the same way
but (a) using the modified Stejskal-Tanner equation Eq. (1) with
a gradient shift calculated form Eq. (2) with a = 1.02, to reflect
the RSNOB pulse used, and (b) with the apparent diffusion coeffi-
cient D, uncertainty rD in D, and signal amplitude A as a function
of offset from resonance corrected using the two polynomials
RgðDmIÞ and RAðDmIÞ, obtained as described above. The amplitudes
Ai were not corrected for the difference between S(0) and S(Dg0),
which is negligible under these conditions, and no correction b

was required. The corrected parameters Ac
i , D

c
i and rc

Di for peak i are
Ac
i ¼ AiRgðDmIÞ=RAðDmIÞ ð4Þ
Dc
i ¼ Di=RgðDmIÞ2 ð5Þ
rc
Di ¼ rDi=RgðDmIÞ2 ð6Þ
In the conventional Oneshot-45 DOSY spectrum of Fig. 6a, over-

lap between the proton multiplets of the different species is wide-
spread in the region between 5.5 and 1 ppm, with the result that
many peaks appear in the DOSY spectrum at apparent diffusion
coefficients intermediate between those of the different species
involved. This makes the spectrum difficult to interpret, prevents
the extraction of clean subspectra for the individual components,
and can lead to the unwary user inferring the presence of more
species than is the case. In contrast, the ZS-iDOSY spectrum of
Fig. 6b shows essentially no signal overlap, with very good consis-
tency in diffusion coefficient between the signals of a given species,
and it would be straightforward to extract clean pure shift spectra
of quinine, camphene and geraniol by projection of the appropriate
regions of the diffusion dimension onto the chemical shift axis. The
greater impact of transverse relaxation on the ZS-iDOSY experi-
ment leads to the loss of a number of exchanging signals, including
the broad water resonance at 3.4 ppm, in Fig. 6b, contributing fur-
ther to the simplification of the DOSY spectrum. Intriguingly, the
widths of the individual peaks in the diffusion dimension are sig-
nificantly smaller in Fig. 6b than in Fig. 6a, indicating that the pre-
cision of the diffusion coefficients values obtained is significantly
greater for the ZS-iDOSY experiment than for Oneshot-45. A simi-
lar improvement was reported previously in the case of the
PSYCHE-iDOSY experiment [8].



Fig. 6. Oneshot-45 (a) and Zangger-Sterk iDOSY (b) spectra of a 100 mM solution of quinine (Q), geraniol (G) and camphene (C) in dimethylsulfoxide d6 with 5 mM
tetramethylsilane (T) reference.
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4. Conclusions

The signal attenuation caused by diffusion in a weak field gradi-
ent during a long shaped radiofrequency pulse is not amenable to
analytical calculation, but with recent advances in numerical sim-
ulation methods it is possible to perform accurate calculations
with relatively modest resources. Systematic investigation of the
form of signal attenuation in experiments that combine such
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spatially- and frequency-selective pulses with strong diffusion-
encoding gradient pulses, for example to perform diffusion-
ordered spectroscopy experiments with internal diffusion encod-
ing, shows that the diffusional signal attenuation is well repre-
sented by a shifted Gaussian function. (A similar form of
approximate Stejskal-Tanner equation is used in the PSYCHE-
iDOSY pure shift DOSY experiment [5]). The gradient shift here is
that calculable analytically for the limiting case of a hard 180�
pulse at the midpoint of the applied gradient pulse, scaled down
by a factor that depends on the shape of soft pulse used and is close
to unity for the shapes most commonly used. If the contribution of
the weak gradient is small compared to that of the strong
diffusion-encoding gradient pulses, the width of the Gaussian
attenuation function remains very close to that seen in the absence
of the weak gradient. If this condition is not met, a radiofrequency
pulse shape dependent correction for the effect of the weak gradi-
ent can be applied.

Practical implementation of experiments using spatially- and
frequency-selective pulses in DOSY (Zangger-Sterk-iDOSY experi-
ments) requires that the spatial variation of the applied magnetic
field gradient be characterised and corrected for. The gradient
can be mapped either by existing methods, or by measuring the
diffusional attenuation of a reference material in a ZS-iDOSY exper-
iment as a function of offset from resonance. While the need to
apply corrections both for the shifted diffusional attenuation func-
tion and for the spatial variation of gradient may at first sight seem
onerous, in practice only a single calibration experiment is
required, and it is straightforward to make the corrections needed
transparent to the end user.
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Appendix A

For a pulse sequence consisting of N intervals of durations ti
during which the field gradient amplitude is gi and the coherence
order pi, the net gradient encoding and the diffusional attenuation
caused will be respectively the sum and the product of terms for
the individual intervals [17]. For the i’th interval, the gradient
encoding will be

qi ¼
Z ti

0
pigi tð Þdt ðA1Þ

and the diffusional attenuation contribution
Table A1
Interval numbers, durations, gradient amplitudes, coherence orders, and gradient encoding
Fig. 1b with rectangular diffusion-encoding gradient pulses.

i ti gi pi

1 d gD 1
2 (D � d � sZS)/2 0 1
3 sZS/2 gZS 1
4 sZS/2 gZS �1
5 (D � d � sZS)/2 0 �1
6 d gD �1
Sum
ai ¼ exp �c2D
Z ti

0
qi�1 þ pi

Z ti

0
gi t

0ð Þdt0
� �2

dt

" #
ðA2Þ

where q0 = 0.
The pulse sequence of Fig. 1b consists of 6 intervals: a diffusion-

encoding gradient pulse of duration d and amplitude gD, a delay
with no gradient, a delay sZS/2 with a gradient gZS, and then the
same three intervals but in reverse order. The coherence order p
changes from +1 to �1 at the midpoint, between the two intervals
sZS/2. For rectangular diffusion-encoding gradient pulses, the cal-
culation of the net gradient area and the diffusional attenuation
for this sequence is summarised in Table A1.

The total diffusional attenuation for pulse sequence 1b with
rectangular gradient pulses is thus

A ¼ S=S0

¼ exp½�c2Dfg2
ZSs

3
ZS þ 6gDgZSs2ZSdþ 4g2

Dd
2ð3D� dÞg=12� ðA3Þ

where S0 is the signal observed when gD and gZS are both zero and S
when they are nonzero. The exponent of Eq. (A3) can be rearranged
(‘‘completing the square”) into the form

A ¼ S=S0

¼ exp½�c2d2D0DfðgD � Dg0Þ2 þ Dg2
0ð4D0 � 3sZSÞ=ð3sZSÞg� ðA4Þ

where

Dg0 ¼ �gZSs2ZS=ð4D0dÞ ðA5Þ
and

D0 ¼ D� d=3 ðA6Þ
giving

A ¼ S=S0

¼ exp½�c2d2D0DfðgD � Dg0Þ2 þ Dg2
0ð4D0 � 3sZSÞ=ð3sZSÞg� ðA7Þ

Eqs. (A7) and (A5) reduce to Eqs. (1) and (2) respectively in the main
text for the rectangular pulse case r = 1.

For half-sine shaped diffusion-encoding gradient pulses the cor-
responding calculation is summarised in Table A2.
This gives

Dg0 ¼ �gZSps2ZS=ð8D0dÞ ðA8Þ
and

D0 ¼ D� d=4 ðA9Þ
and a final attenuation

A ¼ S=S0 ¼ exp½�c2d2D0D 4=p2
� �fðgD � Dg0Þ2

þ Dg2
0ð4D0 � 3sZSÞ=ð3sZSÞg� ðA10Þ

corresponding again to Eqs. (1) and (2) of the main text but this
time with r = 2/p.
and diffusional attenuation contributions for the six intervals of the pulse sequence of

qi �ln(ai)/c2D

gDd gD
2d3/3

0 gD
2d2(D � d � sZS)/2

gZSsZS/2 gD
2d2 sZS/2 + gZS

2 sZS3/24 + gDgZS sZS2d/4
�gZSsZS/2 gD

2d2 sZS/2 + gZS
2 sZS3/24 + gDgZS sZS2d/4

0 gD
2d2(D � d � sZS)/2

�gDd gD
2d3/3

0 [gZS2 sZS3 + 6 gDgZS sZS2d + 4gD2d2(3D � d)]/12



Table A2
Interval numbers, durations, gradient amplitudes, coherence orders, and gradient encoding and diffusional attenuation contributions for the six intervals of the pulse sequence of
Fig. 1b with half-sine shaped diffusion-encoding gradient pulses.

i ti gi pi qi �ln(ai)/c2D

1 d gDsin(pt/d) 1 2gDd/p 3gD2d3/(2p2)
2 (D � d � sZS)/2 0 1 0 2gD2d2(D � d � sZS)/p2

3 sZS/2 gZS 1 gZSsZS/2 2 gD
2d2 sZS/p2 + gZS

2 sZS3/24 + gDgZS sZS2d/(2p)
4 sZS/2 gZS �1 �gZSsZS/2 2 gD

2d2 sZS/p2 + gZS
2 sZS3/24 + gDgZS sZS2d/(2p)

5 (D � d �sZS)/2 0 �1 0 2gD2d2(D � d � sZS)/p2

6 d gDsin(pt/d) �1 �2gDd/p 3gD2d3/(2p2)
Sum 0 [gZS2 sZS3p2 + 12p gDgZS sZS2d + 12gD2d2(4D � d)]/(12p2)
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Appendix B. Supplementary material

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.jmr.2019.02.010.
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