Processes associated with ionic current rectification at a 2D-titanate nanosheet deposit on a microhole poly(ethylene terephthalate) substrate
Processes associated with ionic current rectification at a 2D-titanate nanosheet deposit on a microhole poly(ethylene terephthalate) substrate
Films of titanate nanosheets (approx. 1.8-nm layer thickness and 200-nm size) having a lamellar structure can form electrolyte-filled semi-permeable channels containing tetrabutylammonium cations. By evaporation of a colloidal solution, persistent deposits are readily formed with approx. 10-μm thickness on a 6-μm-thick poly(ethylene-terephthalate) (PET) substrate with a 20-μm diameter microhole. When immersed in aqueous solution, the titanate nanosheets exhibit a p.z.c. of − 37 mV, consistent with the formation of a cation conducting (semi-permeable) deposit. With a sufficiently low ionic strength in the aqueous electrolyte, ionic current rectification is observed (cationic diode behaviour). Currents can be dissected into (i) electrolyte cation transport, (ii) electrolyte anion transport and (iii) water heterolysis causing additional proton transport. For all types of electrolyte cations, a water heterolysis mechanism is observed. For Ca
2+
and Mg
2+
ions, water heterolysis causes ion current blocking, presumably due to localised hydroxide-induced precipitation processes. Aqueous NBu
4
+
is shown to ‘invert’ the diode effect (from cationic to anionic diode). Potential for applications in desalination and/or ion sensing are discussed. [Figure not available: see fulltext.]
Ion valve, Ionic logic, Iontronics, Nanostructure, Sensing, Voltammetry
Putra, Budi Riza
f50bf41c-9e6d-450b-90d5-8779fc41295a
Harito, Christian
d146fa4e-fa33-40fc-b4b2-f4a77e0e75e6
Bavykin, Dmitry V.
1e9fabfc-d078-4585-876f-85ff33b7eed5
Walsh, Frank C.
309528e7-062e-439b-af40-9309bc91efb2
Wahyuni, Wulan Tri
0183c9db-8abd-40ab-a467-313842c96695
Boswell, Jacob A.
36758c86-1d3f-4e86-99a0-ff26320d5c6d
Squires, Adam M.
dcf51695-9a96-48aa-acf9-b76d0ab27e9b
Schmitt, Julien M.F.
ee8d239f-44c6-4d64-87e3-62e1d88ded8e
Da Silva, Marcelo Alves
4fdf5104-3df7-44d7-a823-7f03f065e36b
Edler, Karen J.
23106f33-cf1b-4202-b19e-41e480aedeef
Fletcher, Philip J.
a8a76ec6-deeb-4b7d-bb4d-ce975d059b36
Gesell, Anne E.
a1c0cfea-d99c-456c-9e2b-be424e8154a8
Marken, Frank
327ba500-d1f7-41f1-a22f-ca3308d14d96
Putra, Budi Riza
f50bf41c-9e6d-450b-90d5-8779fc41295a
Harito, Christian
d146fa4e-fa33-40fc-b4b2-f4a77e0e75e6
Bavykin, Dmitry V.
1e9fabfc-d078-4585-876f-85ff33b7eed5
Walsh, Frank C.
309528e7-062e-439b-af40-9309bc91efb2
Wahyuni, Wulan Tri
0183c9db-8abd-40ab-a467-313842c96695
Boswell, Jacob A.
36758c86-1d3f-4e86-99a0-ff26320d5c6d
Squires, Adam M.
dcf51695-9a96-48aa-acf9-b76d0ab27e9b
Schmitt, Julien M.F.
ee8d239f-44c6-4d64-87e3-62e1d88ded8e
Da Silva, Marcelo Alves
4fdf5104-3df7-44d7-a823-7f03f065e36b
Edler, Karen J.
23106f33-cf1b-4202-b19e-41e480aedeef
Fletcher, Philip J.
a8a76ec6-deeb-4b7d-bb4d-ce975d059b36
Gesell, Anne E.
a1c0cfea-d99c-456c-9e2b-be424e8154a8
Marken, Frank
327ba500-d1f7-41f1-a22f-ca3308d14d96
Putra, Budi Riza, Harito, Christian, Bavykin, Dmitry V., Walsh, Frank C., Wahyuni, Wulan Tri, Boswell, Jacob A., Squires, Adam M., Schmitt, Julien M.F., Da Silva, Marcelo Alves, Edler, Karen J., Fletcher, Philip J., Gesell, Anne E. and Marken, Frank
(2019)
Processes associated with ionic current rectification at a 2D-titanate nanosheet deposit on a microhole poly(ethylene terephthalate) substrate.
Journal of Solid State Electrochemistry.
(doi:10.1007/s10008-019-04199-4).
Abstract
Films of titanate nanosheets (approx. 1.8-nm layer thickness and 200-nm size) having a lamellar structure can form electrolyte-filled semi-permeable channels containing tetrabutylammonium cations. By evaporation of a colloidal solution, persistent deposits are readily formed with approx. 10-μm thickness on a 6-μm-thick poly(ethylene-terephthalate) (PET) substrate with a 20-μm diameter microhole. When immersed in aqueous solution, the titanate nanosheets exhibit a p.z.c. of − 37 mV, consistent with the formation of a cation conducting (semi-permeable) deposit. With a sufficiently low ionic strength in the aqueous electrolyte, ionic current rectification is observed (cationic diode behaviour). Currents can be dissected into (i) electrolyte cation transport, (ii) electrolyte anion transport and (iii) water heterolysis causing additional proton transport. For all types of electrolyte cations, a water heterolysis mechanism is observed. For Ca
2+
and Mg
2+
ions, water heterolysis causes ion current blocking, presumably due to localised hydroxide-induced precipitation processes. Aqueous NBu
4
+
is shown to ‘invert’ the diode effect (from cationic to anionic diode). Potential for applications in desalination and/or ion sensing are discussed. [Figure not available: see fulltext.]
Text
Putra2019_Article_ProcessesAssociatedWithIonicCu
- Version of Record
More information
Accepted/In Press date: 16 January 2019
e-pub ahead of print date: 22 February 2019
Keywords:
Ion valve, Ionic logic, Iontronics, Nanostructure, Sensing, Voltammetry
Identifiers
Local EPrints ID: 429007
URI: http://eprints.soton.ac.uk/id/eprint/429007
ISSN: 1432-8488
PURE UUID: 776d36fb-43cc-41ee-b60c-a9170fcc157f
Catalogue record
Date deposited: 18 Mar 2019 17:30
Last modified: 05 Jun 2024 19:38
Export record
Altmetrics
Contributors
Author:
Budi Riza Putra
Author:
Christian Harito
Author:
Wulan Tri Wahyuni
Author:
Jacob A. Boswell
Author:
Adam M. Squires
Author:
Julien M.F. Schmitt
Author:
Marcelo Alves Da Silva
Author:
Karen J. Edler
Author:
Philip J. Fletcher
Author:
Anne E. Gesell
Author:
Frank Marken
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics