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SYNTHESIS AND ELECTRICAL PROPERTIES OF THIN FILM TRANSITION
METAL OXIDES.

By Joshua Charles Whittam

BaTiOzs thin films were deposited onto polycrystalline Pt using acdiating technique
with calcinationtemperatures of 750 to 900 °C. To avoid film imperfections such as
cracking or regions of zero BaTi@overage (pinholes), key conditions, includaging
periods, water content, and stirring speeds, were refined toga@athole free, uniform
films with some porosity. Whilst those coated a single time short ectdiiring electrical
characteriation, this could be avoidetifiims wereproduced kg multiple coating cycles.
Therelativepermittivity of a 600 nm BaTi®film was measured at 290 by fitting solid
state impedance data in the frequency range 100 Hz to 1 MHz. Electrochemical impedance
with an aqueous electrolyte allowed evaluation of th@gity, which remained fairly
constant between one and five coating cycles. Using this method, it was possible to
estimate the effective permittivity of the Bakillself as 374 and hence to evaluate the

increase in theelativepermittivity tha could beachieved by minimisg porosity.

Strontium and zirconium doping of thin film BaTi@as performed on the refined sol
gel synthesis of BaTi€by replacing Ba(OA@)and Ti(OPr) with Sr(OAcY and Zr(OPr),
respectively. Producing phase pure i(&x) TiOs, Ba(Ti.yZry)Os and
(Bag-xSt)(Ti1-yZry)Os where x00.30 and YO 0. THe fnclusion of each dopant affected
the sols aging process, where strontium decreased the aging time, most likely due to the
inclusion of extra absorbed water. Zirconium, ondtieer hand, increased the aging
duration, this was because the main component in the gelation proce&By)Ti(@s
being replaced. The change in relative permittivity was measured as the concentration of
dopant species was increased. The addition loéegpecies individually, or together

decreased the relative permittivity, this was bec@mealent dopants of barium titanate



with a smaller cation size (Sr), or larger cations (&tards the vibigon of the ions along
<111>, and the100>,respectiely. This affects the Curie temperatures phase transition

and the crystals structures ability to polafise.

A stable, alkoxidebased electrolyte for the eleatf@emicaldeposition of TiQ thin films
wasdeveloped. Filimswith@ant r ol | abl e t hicknesses betwe
electrahemicallydeposited onto polycrystalline Pt thin film substrates. Films of around 80
nm thickness were smooth, craitke and well adhered. Annealing at temperatures
between 300 and 1000 °C résd in anatase or rutilstructured TiQ, with crystallite sizes
increasing with temperature frodto 50 nm.

Barium titanate was electrodeposited under the same conditions as e/ TiO
incorporating BaClinto the sol, and by substituting methoxiiatol, potassium nitrate
and nitric acid with methanol, potassium chloride and hydrochloric acid with the resulting
film annealed at 750 °C. This allowed for thed&position of titanium and barium by
gelation and precipitation mechanism, respectively diystallite size was estimated as
8.8 +£ 3.6 nm, and the BaTihad a lattice parameter a=t3=4.019A which matched the

literature value of 4.014,2 with anoverall film thickness was 340 nm.



Objectives

The objectives of this project are the production of high quality, crack free, pinhole free,
uniform thin films of barium titanate and related oxides for future applications in
multilayer ceramic capacitorM{_CCs). Two methods will be utilised; s@el synthesis,

and electrodeposition.

The synthesis of BaTi§via the solgel method is wellocumented in the literatyrbut

film quality is notgenerallymentioned due to the difficulty of depositiaghighquality

thin film. Electrodeposition of BaTi€hasbeen reported, but using anstable process
and with very lowcathodicpotentials®* so an intermediary step of electrodepositingzTiO
will be performedThis method will then be tratated to BaTi@by incorporating a
barium salin to the TiQ based electrolytaith refinements to the electrolyte synthesis,

deposition process, and the film curing

Various characterisation methods are used to establish: crystal structure, film quality,
particle sizes, purity and porosity. These include grazing incidefreg Hiffraction,
scanning electron microscopy, optical microscopy, energy/wavelength dispensye X
spectroscopy, Raman spectroscofyay photoelectron spectroscomplid state and

electrochemical impedance spectroscopy.
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100%3*°and the zirconium values; 26 253%1 353250187 74 353 and 100 9%*were

obtained from the literature (when it was proposed that the crystal structure wasl€@ibic).
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Chapter lintroduction

1.1  Metal Oxides in Capacitors

Bulk metal oxides have a range of applicatifmosn charge storag¥ to catalysi& due to
their various physical magnetic'® optical* and chemicaf propertiesdepending on the
oxidein question. Thin film metal oxides are used in devices such as smart wititféws,
supercapacitors,and photovoltaic$® with theidea that reducing the size of the material
by changingrom bulk (> 1mm) tothe thin film (< 1 mm) form will aid miniaturisation of

devicest’ but also retain specific, important properties

Ceramic capacitors are one of the devices in question, where polaristbl®@xrides are
used to store charge. In the earl{"2@ntury naturally formed mica was used as the main
dielectric material for ceramic capacitdfsyith a delectric constant of 8 Over the

course of the Great War suppliisninishedand so effort$o find a new material began.
This led to titanium diokde (rutile) initially. With a dielectric constant of 10€ytile began
to usurp mica as the leading ceramic capacitor maté@ler the Second World War
efforts to improve this dielectric constdat! torapid progress, with one outstanding
material being produced by modifying Ti@ith BaO?° With dielectric constants
exceeding 1000, BaT#became a major interest as a dielectric matéri@ver 70years
later BaTiQ is still used in the ceramic capacitor industry, more specifically in multilayer
ceramic capacitors (MLCC). In 2001, overd@ T of BaTiQ wasusedper year in the
ceramic capacitor industry, accounting for 90 % of the total Bagi@luctiorf? and with
over 1 trillion discrete units sold by 20#0Shipments of MLCCs have increased by245
annually due to their extensiuse in mobile phone technoldgy400 MLCCs per

phone)?2 with their sizes decreasing every year.



Chapter lintroduction

To further improve MLCCs storage capability and to meet growth projectiamsrél)

the dielectric layer has to be naatthinner, the number of layers inside the device needs to
increase, or the contact area can be amplified by the construction of 3D caffacitors
(Equationl).??

Capacitance/ uFF
2.2 4.7 10 22 47 100 220 330

Thickness of Dielectric Layer

Number of Dielectric Layers

1994 1995 1996 1997 1998 1999 2000 2001 2002
Year
Figurel: The increase in the number of layers in multilayer ceramics compared to the
decrease in ththickness of the layers ovey&ars of productionstarting in 1994

(reproduced with permission from referersg.
A
C = gy&, EN

Equationl: The change in capacitance as the distance between the dielectric layers
decrease and the number of layers increase. \\3wrapacitance (F¥o=permittivity of
free space (rPkg's’A?), s.=relative permittiviy of the materialA=electrode area (f

d=dielectric layer thickness (m), aihsknumber of layers.

Current market projections suggest that by 2020 MLCC sales volume will approach 4
trillion units. The current goals are to reduce unit size, but to resgiacitancé® MLCCs
need thin film technologies tetain the number of layers but to redieger thicknesses.
Solgel deposition and electrodepositiprovide the necessary tools to produce dielectric
layers of less than a micron, with the reproducibility to do this consistently over 1000

layers.
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1.2  Thin Films

Thin films, as the name suggests, fmas of a particular materialsuallyof up to
hundreds of microns in thickne$sThin films are normally used to improve the surface
properties of solids such as, transmission, reflection, absorption, hardness, abrasion
resistance, corrosion, permeation alettical behaviour compared to the bulk matedal.
The film itself can be deposited in several wagslclassified undeB headings: physical,
chemical and physicalhemical method€xamples includghysical vapour deposition
(physical)?® molecular beam epitaxy (physicaf)cathodic arc deposition (physicahdip
and spin coating (chemica*3 chemical vapour deposition (chemigiiatomic layer
deposition (chemicafP® and hybrid physial-chemical vapour deposition (physical

chemical)®

These deposition methodse experimentallyery different, btithe deposition
mechanismsespeciallyfor PVD, CVD and electrodepositiomresimilar, starting with
nucleation, followed by coalescence and finally film thickness gréthucleation has 3
models relating to growth modes; the Frasa der Merwe mode, also known as the layer
by layer apprach, where the first atoms to condense form a complete monolayer, then
each layer afterwards is bound less tightly. This mode is observed for adsorbeti 4ases.
alternative mode was described by Voldéeber, also known as the island mode. This
describes crystallites of critical size nuclaegton the surface of the substrate as isolated
islands, eventually forming a network of islands when they impihg@ae final mode is

the StranskKratanov (SK), a combination of the other modes, so suitably known as layer

plus island growth, firstly a few monolayers form, followed by island formafidns.

Using the SK mode, once the islands have formed they start to touch, forming a continuous
network®’ This process is coalesceramdis important in particle growth. There are

several mechanisms through which growth occurs; condensation (the reaction of two larger
species, with the loss of a small molecule such as wateface reactions (the self

limiting nature allows for precise control of deposit thickness, allowing for homogeneous
films)#® and coagulation (instant coalescence of particles after collitfrthe rate of

paticle collision is faster than that of their coalescence, therspberical (agglomerate,

aggregate) particles forfa.

Another atomistic mechanism ofayrth emerging from the SK model, would be the TSK
(TerraceStepKink) model of a surface. These elements, along with elemental entities in

4
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film growth, are shown irigure2. This model helps to explain why diffusion of the
adsorbed atom (ad atom) is important in the production of smooth ¥ilmesh is not
possible without sufficient surface mobilit§There are two important parts to this

mechanism;

1. Finding and joining of existing islands
2. The meeting of another adsorbed atom to create the possibility of nucleating a new

island

As nucleation continues, the distance between adsorbed atoms decreases and eventually

becomes constant.

Step

Kink
Vacancy
Adatom

Ad-dimer
[sland

--------

= -
......

Terrace

Figure2: The TSK model of thin film gneth using a simple cubic crystal showing the
definition of adsorbed atoms, vacancies, kinks, steps, adsorbed dimers and islands

(reproduced with permission from refered&.

There are also other factors included in the SK and TSK growth modes, such as percolatiol
of the island array and channel filling to form continuous thin filfs polycrystalline

thin films grain coarsening can occur during and after coalesééibe. real structure is

also controlled by shadowing, which is caused by peaks overlooking valleys, enhancing
instabilitiesand ultimatéy leading to surface roughne§sSurface and bulk diffusion

related to the mobility of adsorbeablecules and recrystallizati@mouldalsolead to a

complete change in crystal orientatin.
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Thin films canexhibit strains due to deposition onto a substrate with different lattice and
thermal expansion behaviours, or defects arising from film deposition. This can result in
detrimental effects on the ferlectric and dielectric properties of the filfigntrinsic

properties of films can therefore be much different to that of a bulk, unstrained material
and because of this special considerations are needed. If these effects are used correctly,
enhancement giropertiescan be achieved; this process is\Wwnas strain engineering.
Increases in the driving forces for film relaxation can be induced with strain and film
thickness'’ where relaxation towards a zero strain state can then occur by the introduction
of dislocations. Ferroelectric properties can substantially diminish as the ferroelectric film

gets too thin (roughly 10 nm), ased by finite grain effect$4°

In this thesis two deposition techniques are used extensively; {¢k®ynthesis, more
specifically deposition of the sol véip coating, (2) and electrodeposition, using specially
designed electrolytes, to allow for the growth of metal oxides onto the surface of

substrates. These processes will be exptaimenore detail in théllowing sections

1.3 The SolGel Process

Chemicalmethods such as sgekl processingllows for exceptional control over particle
morphologies and purity, thus permitting them to be widely used in the production of
advanced ceramic materigfsThe solgel method offers several advantages over

mechanical methods in the production of powders inclutftig:

1. Minimisedthermal degradatiodue to low temperature processing (except
densification), with high purity and stoichiometric control.

Volatile alkoxide precursors are easily purified to a high degree.

Miscible organometailt precursors allow for homogeneously controlled doping
Mild chemical conditions.

Preparation of highly porous materials and nanocrystalline materials.

o 00k w N

Control over the rate of hydrolysis, rate of condensation, pore size and porosity

using precursor modiations.

7. Mechanical strength control is possible by controlling the aging and drying
conditions.

8. Good Optical Quality



Chapter lintroduction

There are 2 types abls; colloidal and polymerjeitherconsising of a colloidal or a
polymolecular suspension of solid particlesl(00 nm) in a liquidrespectivelysuch that

the dispersed particles are so small that gravitational forces are negligible and short range
interactions dominate. Colloidal gels are particles connected by Van der Waals or
hydrogen bonds (metal oxideslyrdroxide sols), on the other hand, metahne polymers

are inorganic polymers interconnected via covalent or intermolecular bonding (hydrolysis

and condensation of metal alkoxide®)!

A gel consists of a porous, three dimensionally continuous solid network surrounding and
supporting a continuous | iquid eohamse. I n
agglomeration of dense colloidal particles. Formation of a gel can also arise from the
entanglement of polymer chaiffsThe solgel method has @mmon synthesis routes: (1)
gelation of a solution of colloidal powders; (2) Hydrolysis and polycondensation of
alkoxide or nitrate precursors.

Metal alkoxides are widely considered thest starting materials for sgél preparation
due to the control provided by the organic substituents. Metals form alkoxides with the
general formula M(OR) These alkoxides undgo hydrolysis to produce an oxide matrix

with the general reaction scheme belegr(.1.1-1.2)°
M(OR)x + xH2O A M(OH)x + XROH (1.1)
2M(OH)x A M20x + xH20 1.2)

The simplest preparation method of a multicomposgstem involves making a solution

of all metal components in the form of alkoxides, using a suitable organic solvent. The
solution can then be reacted with water to produce an oxide mix. Multiple reactions occur
(hydrolysis then polycondensation) producthg metallometalloxane polymers {&M
linkage) €qn.1.3-1.5)56

M-OR + HO = M-OH + ROH (1.3)
M-OR + M-OH = M-O-M + ROH (1.4)
M-OH + M-OH = M-O-M + H.0 (1.5)

Problems with most multicomponent systems come about due to electronegativity

differences between the metal alkoxide components, the partial charge model considers
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this and estimates stability and reactivity of alkoxides. Hydrolysis rate increases as the
electronegativity of the metalecreases buian also be affected by alkyl group size and
steric effects. Additives such as bidentate ligand moderators (e.g. acetyl acetonate and
acetic acid) can be used to slow down hydrolysis by blocking nucleophiliesghnt

For some metals, such as the alkali metals and alkaline earth metals, it is not possible or
convenient to use alkoxidescethey are unavailable or difitt to prepare. In these

situations, alternative reactants are found. Viable alternatives, due to their ability to
dissolve, reactive properties and loss of anion during annealing, include metal salts such as

acetates, carbonates, hydroxides and citfates.
There are three main factors which influencedteomeof the sol;

1. Aging: when a sol crosiinks and oligomerisgit produ@sa solution of higher
viscosities. During aging four processes can o&ngly or simultaneously. These
arepolycondensation (multiple condensation steps, forming an oxide network),
syneresis (condensation continues, causing shrinkage and so expugsitueof
and deflocculation of aggregat@éoarsening (continued growth of islands, with
others shrinking, and in extme cases disappearisgmetimes attributed to
Ostwald rpeningwhere particles dissolve and redeposit on the surface of larger
crystals)®® and phase transformatiorrs>?

2. Drying: In stage 1a decrease in volume of the gejual to the volume of liquid lost
by evaporations observedThe gel network is deformed by largapillary forces,

which causeshrinkages of the object.

Stage 2 begins when the Acritical pointo is
of the network ks increased, due to greater packing densities of the solid phase

resisting further shrinkage, creating high capillary pressure. This causes liquid

transport through thi@ms to thesurface where evaporation takes place. Flow is

driven by the gradient ioapillary stress.

Stage 3 is when the pores have substantially emptied, meaning liquid can only
escape through evaporation from within the pores and diffusion of vapour to the
surface. During this stage there are no dimensional changes, onlgrsigngssive

weight loss until equilibrium is reachéd.
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3. Densification: This is the increase in density due ttagefactors; high curing
temperatures and high sintering temperatures. This is also a problem because these
temperaturesancause propagation of cracks, and ceramic brittletfashen the
substrateds and fil més t &andthanthifimex pan s
heated to high temperatures, and then cooledajoidly, cracking often occurs due
to in-plane tensile sesses. Other reasons are due to large solvent evaporation

causing shrinkage in parts not bonded to the subStrate.

Further control of segel reactions can be employed, such as reactivity modifications.
Acetylacetonategcag can be used in the casetitdnium isopropoxidgadopting a
bidentate ligand binding mode to increase the metal coordination niRigere3).

Similar results can be obtained by treating metal alkoxides with acetic’&cids.

(a) Tpr CHy (b) H,C O'Pr CH,
0 0 0
PrO—Ti( S 4 \Tli/ X
0 o | ™o
OPI' CH3 H3C OPr CH3

Figure3: Effects ofthe bidentate ligandcetylacetoateon titaniumisopropoxide. (a)
Ti(O'Pr)s(acac) complex (1:1 ratio of Ti:acac) and (b) TREp(acac) (1:2 ratio of

Ti:acac).

The disadvantages of moderators appear structurally in the gel, as the rate of hydrolysis is
lowered there is a decrease in the reactivity of the metal alkoxiderd&silts in fewer
crosslinks and the stereochemical steering of the hydrolysis and polycondensation reaction

into certain sites?

Sols also have a high versatility over other techniques as not only can thin films be
produced from the sols by dip, spray, or spin coating, powders can be obtadrgthgy
and annealing of the gels, and gel fibres can be drawn directly from the sol. Here, gelation

occurs during the preparation of the film or fibre due to rapid evaporation of the $8lvent.

1.4  Dip Coating

Dip coating, also known as fraeeniscus coatingyr viscous lifting or dragput? is

extensively used in many processes to deposit thin films on a substrate for such purposes
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as protection, controlling refractive index, lubricating, and magnetis&tibime purpose of

this process is to deposit a th@yer of material oto a substrate, usually with the material
dissolved in a pertinent, typically organic solvent. A substrate movingantnstant

velocity, carries a thin layer of liquid solution/gel, which evaporates, leaving a thin layer of
the material deposited onto the substfaiEnere are 3 different methods of dip coating;

substrate immersion, coating by drainage and continuous dip coating.

This whole process of immersion, withdrawal (coherent liquid film is entrained on the
substrate), consolidation drgriwherethe chemical reaction occurs; in this case draining,
evaporation, hydrolysis and condensation) and curing/sintering is explaiRgplire4.

Any turbulence pvariation in atmosphere occurs there will inevitably be inhomogeneities

T
\ 1
T HH!

Immersion Withdrawal Consolidation Curing
Drying Sintering

in the film.

Figure4: The fundamental stages of gyl dip coating (flow of air is described by the

arrows)(reproduced with permission from refererézg.

As the gel starts to thicken (consolidation drying), it is said that the gel is initially saturated
with solvent, but as drying continues, the liquipour meniscus begins to recede into

larger pores and the gel becomes a partially saturated porous medium. Tensile capillary
pressure in the liquid then causes a compressive deformation and hence a raduction i
thickness and pore size of the coafih@his process of drying after withdrawal is

illustrated furthein Figures.

10
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Fanish

Drv Film Drv Gel Final thickness dictated by capillary
i e condensation and modulus of gel
Partially Spingback occurs as pores empty and capillary pressure
Springback Saturated diminishes. Springback rate is controlled by vapour
Wet Gel diffusion through pores and external gas phase
Pores begin to empty due to rapidly rising capillary
Compressed Gel pressure. Wicking of solvent through pores controls
: length of this phase
————————————————————————— nc- ——————————————————————————————————————
1)

Wicking of liquid solvent through
pores accelerate shrinkage

Increasing Rate

Saturated Pores remain saturated with solvent. Drying rate
Wet Gel controlled by external mass transfer

Constant
Rate Period

Saturated Wet Gel Surface of gel coating in coating liquid. The
T T T T T T coating is stress free and saturated in solvent
Start

Figure5: Stages of drying in porous gel films, where the left line represents film

thicknesses throughout the stages (reproduced with permission from re&$gence

High curing temperatures required to cryssallihe deposited gel can result in detrimental
surface imperfections, such as; macro/microscopic shrinkage which lead to severe cracking
of the solgel structure. This is due to substantial volume contraction and internal stress
accumulatioras largeamouns of solvent and watevaporat. To help avoid this, high

expansion coefficient materials can be uSed.

1.5 Electrodeposition

Classical inorganic deposition techniques include; physical vapour dep&Sitatecular
beam epitaxy® and atomic layer depositidfl Thesemethodwften require harsh
conditionsand high temperatureghich are energy consuming, as an alternative,

electrodeposition of metals provide a cleaner way of processing thin film mat&rials.

In the event of either the diffusing species being charged or the diffusion medium being
porous, layered, or defective, it is possit induce diffusion by the application of an
electric potential. This is achieved by passing an electrical current between two or more
electrodes separated by an electrolytas plocess takes place at the electrodectrolyte

interface. There are saakimportant features of electrodeposition:

11
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1) Takes place close to the electrpaéhin the double layer.

2) Products are deposited onto the electrode in the form of a thin film or coating.

3) ltis a low temperature techniquesually limited by the boiling point of the
electrolyte.

4) Kinetic control exists through controlling the applied current.

5) Involves oxidation or reduction reactions, where potential can béuirezl to suit
selective syntheses.

6) Varying electrolyte compositions can be employed, providing controlled film
compositims.

7) Selflimiting film deposition,if the deposit is insulating.

8) Simple to perform and uses inexpensive instrumentation.

Electrodeposition as a technique has been around as long as electrochemistry, where
electroplating of metals, such as GU? Pd,/® " and AU¥® (from Cw**, P&*, and Ad* or
Au®*, respectively) can be performed when a odib current is used to reduce taionic

species at the electrode surface to deposit the metallic émml(6).5*
M™+ne=M (1.6)

This process was first discovered by depositing Pb and Cu dendrites onto silver wires in
1801. Gold was then plated b§05, andn 1840 the first Au electroplating press was
patentedIn the following years, many other metals were electrodepd¥ius gave way

to early applications to improve the appearance of jewellery (gold pl&fibg},advanced
extensivéy during World War | and Il where chromium, nickel, copper, zinc, tin, silver

and rhodium were all electroplated onto specialised equipment, saving time, materials and

money?*

There has been a sudden surge in intéoeshetal deposition, mainly due three

technologies: (1) metaleposition for the fabricatioof integrated circuits, (2) deposition

for magnetic recording devices and (3) deposition of multilagecture$ Nucleation

can be regarded as the most critical stage of growth for definitidre dinial film

propertief thin films in the scale of nanometr@df 3D nucleatio is present a crossed
voltammogram (nucleation loop) is expected in a cyclic voltammetry experiment, since the
activation energyeededo start nucleation is greater thidmatto continue the process. An
example would be copper electrodeposition wher& Sueduced to Cu on the surface of

a substrate, the cathodic current in the forward cycle after the crossover represents the Cu

12
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deposition, whereas before the crossover stripping of this deposit occurs and at the point o

crossover, the start of nucleat .2

The efficiency2® simplicity,2” and substte versatilit§® of the metal electrodeposition

process opened the door for metal oxide deposition, but with many deposition mechanisms
available across theldlock elementsThere are two main techniques to depositing

transition metal oxides; anodft® and cathodit®* 1% deposition. The first is the

application of a positive potential, generally in a mildly basic soltftidf*to allow for

two processes to occur. Firstly the oxidation of a stable metal species, towards a cation tha
is less stablee@in.1.7), and secondly the reaction of the electrogenerated species at the
substrate surface with the hydroxides present in the basic solution, formmegjtate on

the substrateegin.1.8).104.19

MO*2* = M™ + ze (1.7
M™ + nOH = M(OH), (1.8

Cathodic deposition ibke anodic deposition in the fact that it requires an electron transfer
process to facilitate a reaction at the substrate interface. In thjsacasgative potentias
used in the electron transfer reactiomémerat hydroxide ionspr consumeprotorst
(eqn.1.9 - 1.24) to raise the pHvhich destabili@sthe metal species to produce a depdsit
(this requires the electrolyte to be acidic in nature), or a dieaction of the hydroxide
ionswith the metal species at the surface of the substft¥ The generatio of
hydroxideionstypically occurs through the reduction of nitrate ioegn(.1.10- 1.19) or
peroxide and perchlorateqn.1.20- 1.22), but can also occur through,@r HO

reduction €qn.1.23- 1.24).1*1 There are multiple reduction processes that can occur
depending on the electrolyte pH and composition, in general, elegirodess shown in
equation 1.1194107.108.113s mentioned across most of the literature pertaining to this

process.

13
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H* 2H* + 26 = Hy (E°= 0.0 V)

(1.9)111,113

NOs + 2H" + 2e = NOy + H,0 (E°=0.934 V)
NOsz + 10H" + 86 = NHs" + 3H0

NOs + 3H" + 3e = NO + 2H0 (E°= 0.96 V)

(1_1@111,114
(1_1])111

(1_13115

NOs NOs + 7H,0+ 8€ = NH4" + 100H (E°=-0.12 V) (1.13111112
NOs + H0 + 2e = NO; + 20H (E°= 0.01 V) (1.14%07H1
NOsz + 6H.0 + 8¢ = NH3 + 90H (1.15116.117
2NOs + 6H;0 + 10e = Nz + 120H (116118119
NO; + 2H0 + 3e = 0.5N\; + 40H (E°= 0.406 V) (1.171e120
NGz NO; + 5H0 + 6€ = NH3 + 7OH (E°=-0.165 V) (1.18111.120
NO; + 4H0+4e = NH,OH+ 50H (E°=-0.45 V) (1.19**
H202 H0, + 2H" + 26 = 2H,0 (E°= 1.776 V) (1.2011
ClOx ClOys + H,0 + 2e= ClOs + 20H (E°= 0.36 V) (1.27)t1t12
ClO4 + 4H,0 + 8e = CI + 80H (E°= 0.51 V) (1.29111121
Oz Oz + 2H0+ 4e = 40H (E°= 0.401 V) (1.231L122
H20 2Hz0 + 26 = Hp + 20H (E°=-0.828 V) (1.24110122

1.6 Transition Metal Oxides

Transition metal oxides have an assortment of properties, some aredugtityctive

(RuQ:!?® or ReQ!? with others being insulating (BaT#D'?® Some exhibit

ferromagnetism (Crg),*?® where on the opposite side of the spectrum antiferromagnetism

can occur (NiOY?” There are also ferroelectrics (KNp3?2 and ferroelastics

(Gk(M004)3).12° Supercoductivity can even occur (YB&wOy) at low temperatures

(92 K).2* Their broad range of properties can be partly attributed to the multitude of
crystal systems such as rock salt (MgO, CaO, NiO, CoO, MnO, SrO, and¥Ewd)tzite
(Zn0) 2 rutile (TiOz, NbQ,, Ta®, ReQ, OsQ, CrOz, MNOz, RuG, RhQ, PtQ, and

14
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IrO2),133 perovskites CaTiOs, LaVOs, and YTiQ),1**+1%%and spinel (NiCg0s, NiMn2Oa,

ZnCa04, andZnMn04),**8 this allows for an assortment of orbital overlap anthterial

defects like vacanciés! dislocations;*® and grain boundarig$® Bulk and thin film metal

oxides have commerdiapplications in MLCCs (BaTig),'® smart windows (W@),*°dye
sensitised solar cells (T{3*°and catalysis (ZnO, and NiMap**! There is currently

research in the fields of; photocatalysi&fuel cellsl*3thermoelectric$?*
electrochromics?®1%energy storag¥,"*° acoustic wave devices!

optoelectronics®>*3solar cellsi®* gas sensot®>1>%and transistors’ showing the

versatility of metal oxides and how widatyis researched. Properties of synthesised metal
oxides can be changed or enhanced by using different synthesis techniques and conditions
to manipulate the particle shap@&his can alter surface aré2f surfaceto volume ratio:>®
stability,1*°and conduction lengtH8! Nano structures include octahed?awires 63

cages®* cubesi® multipodsi®®a n d i ¢ a u'f’ (Fifure6)Beme stiuctures are not
always easy to make, or commercially viable due to the possible scales of the reactions bu
it has been preen to improve specific capacitancéé&$photocatalytic®® chemical sensing
abilities1’° and water oxidation yield<?

Figure6: SEM images of octaheal(a), nanowires (b), nanocubes (c), and cauliflowers
(reptintedwith permission from referend®9 (a). Copyright (2010) American Chemical
Society 172(b), 165(c) and167(d). Copyright (2008) American Chemical Society)

1.7 Dielectrics

Dielectric is a term which is interchangeable with svonductor and insulator, as a

dielectric material has no loosely bound or free electrons, and its ionic charges have
limited mobility. The movement of these charges can only occur when they have overcome
their intertia, once a charge is received via actebstatic field, it is retained, confining it

to a localised region in which it was introduc@@he dielectric constans) is usually

expressed as the ratio of the absolute permittivity of a matgyitd the permittivity of a

vacuum([ 0=8.854 x102 Fm1).173
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When a dielectric material is placed under an electric field, its dipoles are intheredis

alignment of the permanent dippknd the mat@l concentrates the displacement field

The displacement field is directly proportional to the electric field and is explained

mat hematically by orEquatmi2)?Maxwel | 6s equations (

D=¢cE

Equation2: Maxwel | 6s PBgispldementrficld (tot&l #eld aftelipole
orientation),GEpermittivity of the material anB=electric field strength.

This alignment is called polarisation, in a dielectric material there are 4 possible
mechanism of polarisatiofrigure?).

1. Electronic:When an atom is situated in an electric field, the charged patrticle
experiences an electric force, as a result the centre of the negatively charged
electron cloud is displaced with respect toriheleus(opposite to the applied
electric field) A dipole moment is induced in the atom and is said to be
electronically polarised’*

2. lonic: The result of small relative displacements of oppositely charged ions that
propagate and result in polarisation af thihole materiat’®

3. Dipolar: Dipolar polarisation is uncommon in ceramics because most of the
permanent dipoles cannot be reoriented without destroying the crystal structure. An
example is barium titanat where its octahedrally coordinated*Ton is displaced
slightly from its ideal symmetric position. Applying an alternating electric field
causes this ion to move back and forth between its two allowable positions,
ensuring polarisation alignment withe field>?

4. Interfacial Interfacial polarisation is caused by space charges (collection of
particleswith a net electric charge), in the film/electrode interfaces (normally

resulting from impurities}’®

The total P for the material is the sum of all individual contribut{&ugiation3).5?
P = Peiecironic T Pionic + Pdlpolar + Pintefffacial

Equation3: Total polarisation of a material

16
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Electronic

v T/" Dipolalj‘/‘\f/'
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Figure7: Different polarisation mechanisms in a sdliéprinted with permission from

references?).

The dielectric constant is a measure of the ability of an insulating material to store charge

when subjected to an eleic field 22 Table1 shows various materials and their

corresponding dielectric constants.
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Tablel: Dielectric constants of various materials at room temperatWhen available stated for the respective thin films. (All crystal

structures and spageoups were obtained from ICSD).

Medium Crystal Structure Space group Dielectric Constant Ref.
Vacuum N/A N/A 1 -
H20 N/A N/A 78.54 52
NacCl Cubic Fm-3m 5.9 52
SiO2 Monoclinic Clcl 3.7-3.8 52
TiO21 Anatase Tetragonal [4l/amdS 18.9 L7
TiO21 Rutile Tetragonal P4/mnm 63.7 7
SrTiO3 Cubic Pm-3m 475 78
Pb[Zr xTi1-x]O3 Trigonal R3cH 273.1 19
BaTiOs Cubic Pm-3m 630 180
CaCusTi4O12 Cubic Im-3 2000 181

18
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BaTiOs and other titanates and zirconates exlahiery large dielectric constant due to
their permanent dipoles. These permanent dipoles are bound to arise when atoms of
differenttypes form molecules, since the partners differ in electron affwttytheir

electron cloudbeingdisplaced eccentrically towards the stronger binding atéfns.
Dielectric materials are able to withstand a certain applied electric field strength before
theybreak down and current flows. High dielectric strengths are importapipiications

where thickness of the material is small (e.g. capacitdts).

Dielectric materials have a broad range of applications including but not limited to; DRAM
(Dynamic Random Access Memory) capacitdfdypass capacitor$? IR detectors®®
tuneable microwave devices (resonators, filters and phase sHftté#multilayer

ceramic capacitors (MLCCS$§? printed circuit board$’® and electreoptic devices'®*

Dielectric materials havieineable properties to exaelthese application$roperties can

be changed by:

1. Film Thicknessbulk dielectric materialgenerallyhave a higher permittivity than
thin films. As the thickness decreases so does the permittivity. Thicker films also
produce a lower leakage current. This makes film thickness uniformity important
(Table2 shows a short list of differing deposition technisja@d the conformality

producedl.t®?

Table2: Representative thin film conformality (topography differences) achieved with

various deposition method®

Deposition Method Conformality
Sputtering <60 %
SolGel 20-65 %
Plasma Enhanced Metal Organic Chemica 407 65 %
Vapour Deposition (MOCVD)
Thermal MOCVD >80 %

2. Annealing Conditionsmeasured dielectric constants increase as the annealing
temperature and duration increases. It is suggestedvbatwithsimilar grain

sizes and density @ach sample there is still an incredbesis due to a better
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developed defect structut®’. Furthermorgannealing in an argon atmosphere
increases the dielectric constant, this may increase the concentration of oxygen
vacancies and hence charge carfigt$his hadimits, where ugo a 50 % G/Ar
mixing ratio produced the highest dielectric constant for (Ba,Sg)ffii@ films.1%4
3. Grain Sizedirectly related to annealing conditions, with decreasing grain size, the
dielecticonst ant i s said to decrease. Coarse gr a
structural phase transition whereas the mediut 5 € m)-(&n & nf)i gg ai ned
samples show diffuse phase transitions. Increases in grain size also aid voltage
loss!®® It is said that the smaller the grain size, the smaller the grain to boundary
ratio, therefore the smaller the overall permittivit.
4. Stressfor afree-standingdfilm, a voltage applied across its thickness causes the
film to contract byan electrostrictive straiff.he stress in the plane of the film
causes a change in permittivity measured througFlthehickness Equationd).
When stres is applied to ferroelectric thin films, the permittivity drops, in fact the
stress free room temperature capacitance was found to be 23 % higher than the
capacitance of films under residual str&8s.

1 1 4
& = e, Q120
Equationd: Theemodynamic theory of Devonshir®;.=electrostrictive coefficient,

O0str epesmitivityofte st r e s s e=gerniittivity of the unstresded film

1.8 Ferroelectrics

The characteristic feature of a ferroelectric crystal is the appearance of a spontaneous
electric dipole moment which can be reversed (switphiy reversing thepplied electric

field. Many ferroelectric materials possess a spontaneous dipole moment below the Curie
temperature. The phases with and without a spontaneous dipole moment are referred to as
ferroelectric and paraelectri@spectively*®’ Ferroelectricity has an indicative hysteresis

which isdisplayedn terms of polarisatior?, and electric fieldE (Figure8a)1% At high

field strengthsdrroelectric substancésve asaturation polarisatiorrs, and when the

potential is reduced to zesorenanent polarisationPr, is observedTo remove the

polarisationa coercive fieldof strength Ec, is usedThe Ti**in BaTiO;s shifts 0.1A, which
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is roughly2.5% of the unit cell sizeThese charges give rise to dipoles and the high

dielectric constants that are characteristifeafoelectricst®®

P§oeeecooooos (b)

P/Cm™

(@)
Pr

P/Cm*?

Ec

P/ Cm™

E/Vm'!

E/Vm™

Figure8: Polarisation for a ferroelectric (a) and eal dielectriqb) material where P is

the polarisation and E is the electric field strength.

Ferroelectricity and dielectric behavigwarevery similar, but there is a Btle difference.
When polarisation is induced in a dielectric matgifi@jure8b), P, it is exactly

proportional to the applied external fiddgl makingthe polarisatiora linear function

(Equation2). In mostferroelectric materials a spontanemastzeropolarisationeven at a
zero applied field is observetdhey dso have a lower permittivity compared to an ideal
dielectric, and retain residual electrical polarisaBwenaftertheapplied voltage is

switched offt99200
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2.1  X-Ray Diffraction

X-ray diffraction (XRD) involves thelastic scattering of Xays by the electrons in atoms
Diffraction can occur for a periodic array of scattering centres separated by distances
similar to the wavelength of the radiation (about 100 ff#or example, k& X-rays

produced from a Cu metal target have a wavetenfj1.54 A (154 pm). When this
monochromatic beam penetrates a series of identical parallel planes in a crystal, each plan
of atoms scatters the radiation. If the angle of incidence is equal to the angle between the
scattered beam and the normal, a Bregflection has been creatdegure9).1” The array

of black dots represents a section through a crystal and the lines joining the dots mark a se
of parallel planes with Miller indices hkl and the interplanar spadingA parallel beam

of monochromatic Xays (AD) is incident to the plasat an angléh. Photon A is

scattered by atom B, photon D is scattered by atom F and so on. For the reflected beams t
emerge with a reasonable intensity and as a single beam, they must be in phase with each

other sathatconstructive interference caccur?®?

X-ray . X-ray
4 -~
Source D’ L\ H Detector
I' ‘\\
I' \\
(] I; ()'\
o ° ® ° *—
dhk] EO094X G
7 3 < : e ° e ° *o—
—o—o o o ° * ® ® o ° o
|
—e —o o o o ¢ L 4 *—

Figure9: Bragg reflection in a crystéhdapted with permission from referer9).

The addition of vectors EF and FG equals the difference in path length, which also must be
equal to an integral number, of wavelengthsa«(n & EF + FG= 2EF = 2FG. EF and FG

are also equal tdwasindhi. As this is the case, the Bragg equatiéguation5) can be

formed by combining these facts which relates the spacing between the crystaldalanes,

to a particular Bragg angleh.?%

nA = 2dpsin (Opir)

Equation5: The Bragg equation, relating wavelengihto crystal spacingw, and the
Bragg anglegh.
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Crystals have a multitude of lattice planEgy(re10), theseesult in different reflections

on the Xray diffraction pattern. The plasavith the smallest Bragg angle will have the
largest @« spacing. In the primitive cubic system the (100) plane will have the largest
separation and so will give rise=90dnahe
cubic system, the (01@nd (001) will reflect at the same positidine spacing of the
reflecting planes,f, can be calculatefdr a cubic system with a unit cell dimension, a
(Equation6) andcan then be combined with the Bragg equatieou@tion5) allowing for

the calculation of lattice parameters from thea¥ diffraction patternEquation?).2%2

C C C C

a a
(100) (110) (111) (200)

Figure10: Examples of the1(00), (110), (111) and (200) lattice planespectively?

a

d =
R D)

Equation6: Calculation of éspacing in a cubic lattice from the lattice plarfes(andl)

and the lattice parametex,

2 asin(@hkl)

/12
Rearrange to: sin®(8,,,) = W(h2 + k2 +1%)

Equation?: Relationship between the Bragg angj, and the Miller indices in a cubic

lattice derived frontEquation5 andEquation6.

There are separate equations for each of the seven crystal structures (cubic, tetragonal,
hexagonal, rhombohedral, orthorhombic, monoclinic and triclinic)ekample, tetragonal
systems whereab i ¢ andU=b=0=90 °, the 100 and 010 reflections appear in the
same place but the 001 does riefation8).

1 _h2+k2 12

Z- a2 a2
Equation8: The lattice parameter equation for a tetragonal crystal structure
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X-ray diffraction is often used as a fingerprint method for detecting the presence of a
known compound or phase in a product. This is made possible duestdehsive library

of X-ray diffraction patterns stored by databases such as the Inorganic Crystal Structure
Database (ICSD¥)?and the Join€ommittee on Powder Diffraction Standards (JCPDS)
providing a method for identification productsjmpurities, or amorphous content in bulk
powders or thin filmsAnother method takes advantage ofay diffraction patterng by

using peak broadeningll-Width Hal-Maximum/ FWHM) to calculate crystallite sizes,

and was developed by Scherrer in 18%df crystallite sizes are sufficiently small, the

maxma of the diffraction pattern are broadened by an amount inversely proportional to the

crystallite size. This gives rise to the Scherrer equaEopugtion9).2°°

K4
(, fﬁoz - ﬁ‘sz) cos (9)

Equation9: The Scherrer equatiomhere:¢ r ued crystallite size
bo=breadth/FWHM (radianshs=breadth/FWHM (radiangjf a highly crystalline standard
andd=Bragg angle.

T =

The value of K depends on at least three things, the peak breadth, the crystallite shape anc
the crystallitesize distribution. The value for K also clyas for crystal structure and the
differing lattice plane$® Another quantitative analysis method is Rietveld refinement.

This method is wdely recognized to be uniquely valuable for structural analyses of nearly
all classes of polycrystalline materials, and is comprised of adqaares refinement

(Equation10) which is carried out until the best fit has been obtaffgd.
Sy = Z wi (Vi — ¥ei)?

EquationlQ: Leastsquares refinement wheSg=quantity minimizedwi=14;, yi=observed

(gross) intensity at thé'istep, andii=calculated intensity at th# step.

This method takes into account models for the crystal structure, diffraction optic effects,
instrumental factor, and other specimen characteristics (e.g. lattice parameters), but does
not allocate observed intensities to particular Bragg reflections nor to overlapped
reflections instead the whole pattern is fitted, this gives rise to the Rietepldton
(Equation11).2%7
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Yei =5 ) LilFlP(20, = 200PcA + Yy
K

Equationll The Rietveld equation whe&sscale factorK=Miller indices,h k |, for a
Bragg reflectionLx=Lorentz, polaation, and multiplicity factord) =reflection profile
function, Px=preferred orientation functiod=absorption factof-k=structure factor for

the K" Bragg reflectionysi=background intensity at thé step.

The intensity of each reflection is given by the structure factor equépration12).2®

The parameters which are refinable via the Rietveld method;aygz, Bj, N;, scale
factor, specimen profilbreadth parameters, lattice parameters, overall temperature factor,
individual anisotropic thermal parameters, preferred orientation, crystallite size and

microstrain?®

—Bjsin?(6)
FK — z NjfjeZni(hXj + kyi+ le)e( A2 )
J

Equationl2 The structural factor equation whdfe=the structure factol\j=site
occupancyfj=atomic force factor k EMiller indices,x;, y;, andz=position parameters of

the j" atom in the unit cellBj=thermal displacement parameters, andiavelength.

Thereasos thatX-ray diffractionis used in the characterisation of thin filea®thatit is
nondestructive and sotha methods can be used after XRD has been perfqrawecge
structures can be obtained over large aagasnalysis depth can be controlled by the
incidert angle (< 10) relative to the surfac&hisis sothatthe penetration depth is
reduced, hence only the surface (not the buigbeing analyseéf The grazing incidence
X-ray diffraction (GIXRD)technique was used throughout this project and identtiied
phaseof the materiglandthe presence of angnpurities. This project uska 1° incidence
angle to reduce sigtsafrom the platinum substrate, a Sollerslit, with a 10 mm incident
slit. The Xray beam was monochromatic Cu Kh with a wavelength fol.5406 A using a
Rigaku 2D detector to collect the data.
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2.2  Scanning Electron Microscopy (SEM)

In optical microscopy the maximum useful magnification is 1000 timhesending on the
equipmenused. This gives a need for an alternative teclenifat gives better resolution,

a greater magnification (depending on the conductivity of the specimen magnifications can
reach oved 00 000 times) and is more easily accessible. In scanning electron micrpscopy

electrons are produced via 3 techniques:

1. Heating a tungsten filametd over 2500 °C, with enagnetic fieldocusng under
high vacuum, accelerating the electrem&igh energies

2. LaBefilaments, which also work by thermionic emission, but have a larger
maximum beam current and a longer lifetime.

3. Lastly, electrons can be emitted through field emission guns that provide the
brightestbeam butequire a lower working pressure compared to the other 2
methods i§y afactor of 20000 Torr).

These beams atken scanned across a selected area of the specimen surface in a raster by
scan coils. The interaction of the electron beam with the specimen produces secondary,
backscattered and Auger electrons, alst X-rays, providing multiple SEM imaging
technique£'® Secondary electron imaging uses electrons which leave the specimen surface

with energies 50 eV when the object is bombarded with primary electrbiggie11).

Specimen

Figurell: Arrangement for measuring the secondary electron emission, where the
secondary electrons (SE) are released by the primary electrons (PE) and by backscattered
or reflected electrons (RE). The mean escape depiin from the metal, with the detector

(D) collecting all emitted electrons.
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Secondary electrons have a mean escape depth ofeabdutm and so are influenced by
very thin surface layerd! SE SEM provides the highest spatial resolution images, as the
SE can only escape from a very shallow, near surface layer of material. This technique

primarily gives topographical information, as well asn® compositional contra&®

Back scattered electron (BSE) inmagyrequires an elastic interaction (whereas SE is an
inelastic), meaning that the elastically scattered electrons will have energies similar to
thoseof the primary electrons. BSBriginate from within the target specimen {1000

nm) by elastic scattering events in one of two ways.

1 Strong Coulombic fields of an atoms nucleus can cause a large deflection (>90°) in
the trajectory of an incident electrdi.e. Rutherford scattering)
1 Incident electrons can undergo multiple lawgle deflections which together

comprise a deflection of >90°.

These scattered electrons can provide images based on compositional and crystal structure.
However BSE spatial resdlan is inferior tothat of SE since the emission of SE occurs

from a much smaller, near surface volurRig(re12).2%2

Emission Depth

Divergence (Resolution)

Figure12: Comparison of penetration ranges,(Rb, Rx) and spatial resolutions (SE, BSE,
X) for secondary electron, backscattered electrons arayXmission signals from

elements with low to medium atomic numbgeproduced with permission from reference
212).

Back scattered electrons provide compositional information, where elements of higher
atomic mass give brighter contrasts. Crystallographic information can also be obtaened

to electron channelling'®
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SEMdoes not always have b@ conducted under high vacuwhenthe specimen is
insulating or wetthe use of environmental mode is preferred. The two main differences

compared to conventional SEM are:

1 Instead of the specimen being under high vacuwugas (fequently water vapour)
is present in the specimen chamber (still retaining the resolution of conventional
SEM).

1 Insulators do not need to be coated with a conducting layer (gold or graphite)
before imagindthis is a requirement for conventional SEM simeulators will
build up charge, as they cannot dissipate the electrons provided by the electron gun

(charging).

Environmental modes can be used to image insulbamause whethe electrons (SE or

BSE) are emitted, they collide with the gas molecwigt, a high probability of ionising

them, with the generation of an additional electron (cascade amplification). The electrons
produced are drawn to the positively biased detector. The cations produced from ionisation
drift towards the specimen to compatesfor the charge bui@hich have resulted from

the emitted electrons not dispersing on the insulating speciigurg13).2*

Figurel3: The cascade amplification process, where the gas molecules are ionised by the
emitted electrons, producing a dauglaiectron. The daughter electron travels towards the
positively biased detector whereas the cation drifts towards the specimen surface

preventing chargingreproduced with permission from refereris).

SEM (and optical microscopy) was very importéortthe work presnted in this thesis. It
wasused to image the surface topography, and to view any cracks formed on the surfac

the films As BaTiQOz is very resistive, wet mode coulihvebeen employed to reduce
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