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  BaTiO3 thin films were deposited onto polycrystalline Pt using a dip-coating technique, 

with calcination temperatures of 750 to 900 °C. To avoid film imperfections such as 

cracking or regions of zero BaTiO3 coverage (pinholes), key conditions, including aging 

periods, water content, and stirring speeds, were refined to produce pinhole free, uniform 

films with some porosity. Whilst those coated a single time short circuited during electrical 

characterisation, this could be avoided if films were produced by multiple coating cycles. 

The relative permittivity of a 600 nm BaTiO3 film was measured at 290 by fitting solid 

state impedance data in the frequency range 100 Hz to 1 MHz. Electrochemical impedance 

with an aqueous electrolyte allowed evaluation of the porosity, which remained fairly 

constant between one and five coating cycles. Using this method, it was possible to 

estimate the effective permittivity of the BaTiO3 itself as 374 and hence to evaluate the 

increase in the relative permittivity that could be achieved by minimising porosity. 

  Strontium and zirconium doping of thin film BaTiO3 was performed on the refined sol-

gel synthesis of BaTiO3 by replacing Ba(OAc)2 and Ti(OiPr)4 with Sr(OAc)2 and Zr(OiPr)4, 

respectively. Producing phase pure (Ba1-xSrx)TiO3, Ba(Ti1-yZry)O3 and 

(Ba1-xSrx)(Ti1-yZry)O3 where x Ò 0.30 and y Ò 0.15. The inclusion of each dopant affected 

the sols aging process, where strontium decreased the aging time, most likely due to the 

inclusion of extra absorbed water. Zirconium, on the other hand, increased the aging 

duration, this was because the main component in the gelation process, Ti(OiPr)4, was 

being replaced. The change in relative permittivity was measured as the concentration of 

dopant species was increased. The addition of either species individually, or together 

decreased the relative permittivity, this was because isovalent dopants of barium titanate 
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with a smaller cation size (Sr), or larger cations (Zr) retards the vibration of the ions along 

<111>, and the <100>, respectively. This affects the Curie temperatures phase transition 

and the crystals structures ability to polarise.1 

  A stable, alkoxide-based electrolyte for the electrochemical deposition of TiO2 thin films 

was developed. Films with controllable thicknesses between 60 nm and 2.4 ɛm were 

electrochemically deposited onto polycrystalline Pt thin film substrates. Films of around 80 

nm thickness were smooth, crack-free and well adhered. Annealing at temperatures 

between 300 and 1000 °C resulted in anatase or rutile-structured TiO2, with crystallite sizes 

increasing with temperature from 5 to 50 nm.  

  Barium titanate was electrodeposited under the same conditions as the TiO2 by 

incorporating BaCl2 into the sol, and by substituting methoxy ethanol, potassium nitrate 

and nitric acid with methanol, potassium chloride and hydrochloric acid with the resulting 

film annealed at 750 °C. This allowed for the co-deposition of titanium and barium by 

gelation and precipitation mechanism, respectively. The crystallite size was estimated as 

8.8 +/- 3.6 nm, and the BaTiO3 had a lattice parameter a=b=c= 4.019 Å which matched the 

literature value of 4.014 Å,2 with an overall film thickness was 340 nm. 
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Objectives 

The objectives of this project are the production of high quality, crack free, pinhole free, 

uniform thin films of barium titanate and related oxides for future applications in 

multilayer ceramic capacitors (MLCCs). Two methods will be utilised; sol-gel synthesis, 

and electrodeposition.  

The synthesis of BaTiO3 via the sol-gel method is well documented in the literature, but 

film quality is not generally mentioned due to the difficulty of depositing a high quality 

thin film. Electrodeposition of BaTiO3 has been reported, but using an unstable process 

and with very low cathodic potentials,3,4 so an intermediary step of electrodepositing TiO2 

will be performed. This method will then be translated to BaTiO3 by incorporating a 

barium salt in to the TiO2 based electrolyte with refinements to the electrolyte synthesis, 

deposition process, and the film curing.  

Various characterisation methods are used to establish: crystal structure, film quality, 

particle sizes, purity and porosity. These include grazing incidence X-ray diffraction, 

scanning electron microscopy, optical microscopy, energy/wavelength dispersive X-ray 

spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, solid state and 

electrochemical impedance spectroscopy. 
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1.1 Metal Oxides in Capacitors 

Bulk metal oxides have a range of applications from charge storage5ï7 to catalysis8 due to 

their various physical,9 magnetic,10 optical,11 and chemical12 properties, depending on the 

oxide in question. Thin film metal oxides are used in devices such as smart windows,13,14 

supercapacitors,15 and photovoltaics,16 with the idea that reducing the size of the material 

by changing from bulk (> 1 mm) to the thin film (< 1 mm) form will aid miniaturisation of 

devices,17 but also retain specific, important properties. 

Ceramic capacitors are one of the devices in question, where polarisable metal oxides are 

used to store charge. In the early 20th century naturally formed mica was used as the main 

dielectric material for ceramic capacitors,18 with a dielectric constant of 8.19 Over the 

course of the Great War supplies diminished and so efforts to find a new material began. 

This led to titanium dioxide (rutile), initially. With a dielectric constant of 100, rutile began 

to usurp mica as the leading ceramic capacitor material.18 Over the Second World War 

efforts to improve this dielectric constant led to rapid progress, with one outstanding 

material being produced by modifying TiO2 with BaO.20 With dielectric constants 

exceeding 1000, BaTiO3 became a major interest as a dielectric material.21 Over 70 years 

later BaTiO3 is still used in the ceramic capacitor industry, more specifically in multilayer 

ceramic capacitors (MLCC). In 2001, over 10 000 T of BaTiO3 was used per year in the 

ceramic capacitor industry, accounting for 90 % of the total BaTiO3 production22 and with 

over 1 trillion discrete units sold by 2010.21 Shipments of MLCCs have increased by 15 % 

annually due to their extensive use in mobile phone technology23 (400 MLCCs per 

phone),22 with their sizes decreasing every year. 
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To further improve MLCCs storage capability and to meet growth projections (Figure 1) 

the dielectric layer has to be made thinner, the number of layers inside the device needs to 

increase, or the contact area can be amplified by the construction of 3D capacitors24 

(Equation 1).22 

 

Figure 1: The increase in the number of layers in multilayer ceramics compared to the 

decrease in the thickness of the layers over 8 years of production, starting in 1994 

(reproduced with permission from reference 25). 

 

Equation 1: The change in capacitance as the distance between the dielectric layers 

decrease and the number of layers increase. Where C=capacitance (F), ʁ0=permittivity of 

free space (m-3kg-1s4A2), rʁ=relative permittivity of the material, A=electrode area (m2), 

d=dielectric layer thickness (m), and N=number of layers. 

Current market projections suggest that by 2020 MLCC sales volume will approach 4 

trillion units. The current goals are to reduce unit size, but to retain capacitance.26 MLCCs 

need thin film technologies to retain the number of layers but to reduce layer thicknesses. 

Sol-gel deposition and electrodeposition provide the necessary tools to produce dielectric 

layers of less than a micron, with the reproducibility to do this consistently over 1000 

layers. 



Chapter 1 Introduction 

4 

 

1.2 Thin Films 

Thin films, as the name suggests, are films of a particular material usually of up to 

hundreds of microns in thickness.27 Thin films are normally used to improve the surface 

properties of solids such as, transmission, reflection, absorption, hardness, abrasion 

resistance, corrosion, permeation and electrical behaviour compared to the bulk material.28 

The film itself can be deposited in several ways and classified under 3 headings: physical, 

chemical and physical-chemical methods. Examples include physical vapour deposition 

(physical),29 molecular beam epitaxy (physical),30 cathodic arc deposition (physical),31 dip 

and spin coating (chemical),32,33 chemical vapour deposition (chemical),34 atomic layer 

deposition (chemical),35 and hybrid physical-chemical vapour deposition (physical-

chemical).36 

These deposition methods are experimentally very different, but the deposition 

mechanisms, especially for PVD, CVD and electrodeposition, are similar, starting with 

nucleation, followed by coalescence and finally film thickness growth.37 Nucleation has 3 

models relating to growth modes; the Frank-van der Merwe mode, also known as the layer 

by layer approach, where the first atoms to condense form a complete monolayer, then 

each layer afterwards is bound less tightly. This mode is observed for adsorbed gases.38 An 

alternative mode was described by Volmer-Weber, also known as the island mode. This 

describes crystallites of critical size nucleating on the surface of the substrate as isolated 

islands, eventually forming a network of islands when they impinge.39 The final mode is 

the Stranski-Kratanov (SK), a combination of the other modes, so suitably known as layer 

plus island growth, firstly a few monolayers form, followed by island formations.30 

Using the SK mode, once the islands have formed they start to touch, forming a continuous 

network.37 This process is coalescence and is important in particle growth. There are 

several mechanisms through which growth occurs; condensation (the reaction of two larger 

species, with the loss of a small molecule such as water), surface reactions (the self-

limiting nature allows for precise control of deposit thickness, allowing for homogeneous 

films)40 and coagulation (instant coalescence of particles after collision).41 If the rate of 

particle collision is faster than that of their coalescence, then non-spherical (agglomerate, 

aggregate) particles form.42 

Another atomistic mechanism of growth emerging from the SK model, would be the TSK 

(Terrace-Step-Kink) model of a surface. These elements, along with elemental entities in 
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film growth, are shown in Figure 2. This model helps to explain why diffusion of the 

adsorbed atom (ad atom) is important in the production of smooth films, which is not 

possible without sufficient surface mobility.43 There are two important parts to this 

mechanism;  

1. Finding and joining of existing islands 

2. The meeting of another adsorbed atom to create the possibility of nucleating a new 

island 

As nucleation continues, the distance between adsorbed atoms decreases and eventually 

becomes constant. 

 

Figure 2: The TSK model of thin film growth using a simple cubic crystal showing the 

definition of adsorbed atoms, vacancies, kinks, steps, adsorbed dimers and islands 

(reproduced with permission from reference 43). 

There are also other factors included in the SK and TSK growth modes, such as percolation 

of the island array and channel filling to form continuous thin films. For polycrystalline 

thin films grain coarsening can occur during and after coalescence.44 The real structure is 

also controlled by shadowing, which is caused by peaks overlooking valleys, enhancing 

instabilities and ultimately leading to surface roughness.45 Surface and bulk diffusion 

related to the mobility of adsorbed molecules and recrystallization could also lead to a 

complete change in crystal orientation.37 
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Thin films can exhibit strains due to deposition onto a substrate with different lattice and 

thermal expansion behaviours, or defects arising from film deposition. This can result in 

detrimental effects on the ferroelectric and dielectric properties of the films.46 Intrinsic 

properties of films can therefore be much different to that of a bulk, unstrained material 

and because of this special considerations are needed. If these effects are used correctly, 

enhancement of properties can be achieved; this process is known as strain engineering. 

Increases in the driving forces for film relaxation can be induced with strain and film 

thickness,47 where relaxation towards a zero strain state can then occur by the introduction 

of dislocations. Ferroelectric properties can substantially diminish as the ferroelectric film 

gets too thin (roughly 10 nm), caused by finite grain effects.48,49 

In this thesis two deposition techniques are used extensively; (1) sol-gel synthesis, more 

specifically deposition of the sol via dip coating, (2) and electrodeposition, using specially 

designed electrolytes, to allow for the growth of metal oxides onto the surface of 

substrates. These processes will be explained in more detail in the following sections. 

1.3 The Sol-Gel Process 

Chemical methods such as sol-gel processing allows for exceptional control over particle 

morphologies and purity, thus permitting them to be widely used in the production of 

advanced ceramic materials.22 The sol-gel method offers several advantages over 

mechanical methods in the production of powders including:50ï52 

1. Minimised thermal degradation due to low temperature processing (except 

densification), with high purity and stoichiometric control. 

2. Volatile alkoxide precursors are easily purified to a high degree. 

3. Miscible organometallic precursors allow for homogeneously controlled doping 

4. Mild chemical conditions. 

5. Preparation of highly porous materials and nanocrystalline materials. 

6. Control over the rate of hydrolysis, rate of condensation, pore size and porosity 

using precursor modifications. 

7. Mechanical strength control is possible by controlling the aging and drying 

conditions. 

8. Good Optical Quality. 
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There are 2 types of sols; colloidal and polymeric, either consisting of a colloidal or a 

polymolecular suspension of solid particles (1-1000 nm) in a liquid, respectively, such that 

the dispersed particles are so small that gravitational forces are negligible and short range 

interactions dominate. Colloidal gels are particles connected by Van der Waals or 

hydrogen bonds (metal oxides or hydroxide sols), on the other hand, metal-oxane polymers 

are inorganic polymers interconnected via covalent or intermolecular bonding (hydrolysis 

and condensation of metal alkoxides).53,54 

A gel consists of a porous, three dimensionally continuous solid network surrounding and 

supporting a continuous liquid phase. In ñcolloidalò gels, the network is made of an 

agglomeration of dense colloidal particles. Formation of a gel can also arise from the 

entanglement of polymer chains.42 The sol-gel method has 2 common synthesis routes: (1) 

gelation of a solution of colloidal powders; (2) Hydrolysis and polycondensation of 

alkoxide or nitrate precursors.55 

Metal alkoxides are widely considered the best starting materials for sol-gel preparation 

due to the control provided by the organic substituents. Metals form alkoxides with the 

general formula M(OR)x. These alkoxides undergo hydrolysis to produce an oxide matrix 

with the general reaction scheme below (eqn. 1.1-1.2).56 

M(OR)x + xH2O Ą M(OH)x + xROH (1.1) 

2M(OH)x Ą M2Ox + xH2O (1.2) 

The simplest preparation method of a multicomponent system involves making a solution 

of all metal components in the form of alkoxides, using a suitable organic solvent. The 

solution can then be reacted with water to produce an oxide mix. Multiple reactions occur 

(hydrolysis then polycondensation) producing the metallometalloxane polymers (M-O-M 

linkage) (eqn. 1.3-1.5).56 

M-OR + H2O = M-OH + ROH (1.3) 

M-OR + M-OH = M-O-M + ROH (1.4) 

M-OH + M-OH = M-O-M + H2O (1.5) 

Problems with most multicomponent systems come about due to electronegativity 

differences between the metal alkoxide components, the partial charge model considers 
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this and estimates stability and reactivity of alkoxides. Hydrolysis rate increases as the 

electronegativity of the metal decreases but can also be affected by alkyl group size and 

steric effects. Additives such as bidentate ligand moderators (e.g. acetyl acetonate and 

acetic acid) can be used to slow down hydrolysis by blocking nucleophilic centres.57 

For some metals, such as the alkali metals and alkaline earth metals, it is not possible or 

convenient to use alkoxides since they are unavailable or difficult to prepare. In these 

situations, alternative reactants are found. Viable alternatives, due to their ability to 

dissolve, reactive properties and loss of anion during annealing, include metal salts such as 

acetates, carbonates, hydroxides and citrates.22 

There are three main factors which influence the outcome of the sol; 

1. Aging: when a sol cross-links and oligomerises it produces a solution of higher 

viscosities. During aging four processes can occur, singly or simultaneously. These 

are polycondensation (multiple condensation steps, forming an oxide network), 

syneresis (condensation continues, causing shrinkage and so expulsion of solvent 

and deflocculation of aggregates),54 coarsening (continued growth of islands, with 

others shrinking, and in extreme cases disappearing, sometimes attributed to 

Ostwald ripening where particles dissolve and redeposit on the surface of larger 

crystals),58 and phase transformations.55,59 

2. Drying: In stage 1 a decrease in volume of the gel equal to the volume of liquid lost 

by evaporation is observed. The gel network is deformed by large capillary forces, 

which cause shrinkages of the object. 

Stage 2 begins when the ñcritical pointò is reached. This occurs when the strength 

of the network has increased, due to greater packing densities of the solid phase 

resisting further shrinkage, creating high capillary pressure. This causes liquid 

transport through the films to the surface where evaporation takes place. Flow is 

driven by the gradient in capillary stress. 

Stage 3 is when the pores have substantially emptied, meaning liquid can only 

escape through evaporation from within the pores and diffusion of vapour to the 

surface. During this stage there are no dimensional changes, only slow progressive 

weight loss until equilibrium is reached.55 
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3. Densification: This is the increase in density due to certain factors; high curing 

temperatures and high sintering temperatures. This is also a problem because these 

temperatures can cause propagation of cracks, and ceramic brittleness.60 When the 

substrateôs and filmôs thermal expansion coefficient differs and then this film is 

heated to high temperatures, and then cooled too rapidly, cracking often occurs due 

to in-plane tensile stresses. Other reasons are due to large solvent evaporation 

causing shrinkage in parts not bonded to the substrate.61  

Further control of sol-gel reactions can be employed, such as reactivity modifications. 

Acetylacetonate (acac) can be used in the case of titanium isopropoxide, adopting a 

bidentate ligand binding mode to increase the metal coordination number (Figure 3). 

Similar results can be obtained by treating metal alkoxides with acetic acids.50 

 

Figure 3: Effects of the bidentate ligand acetylacetonate on titanium isopropoxide. (a) 

Ti(OiPr)3(acac) complex (1:1 ratio of Ti:acac) and (b) Ti(OiPr)2(acac)2 (1:2 ratio of 

Ti:acac). 

The disadvantages of moderators appear structurally in the gel, as the rate of hydrolysis is 

lowered there is a decrease in the reactivity of the metal alkoxide. This results in fewer 

crosslinks and the stereochemical steering of the hydrolysis and polycondensation reaction 

into certain sites.54 

Sols also have a high versatility over other techniques as not only can thin films be 

produced from the sols by dip, spray, or spin coating, powders can be obtained by drying 

and annealing of the gels, and gel fibres can be drawn directly from the sol. Here, gelation 

occurs during the preparation of the film or fibre due to rapid evaporation of the solvent.42 

1.4 Dip Coating 

Dip coating, also known as free-meniscus coating, or viscous lifting or drag-out,62 is 

extensively used in many processes to deposit thin films on a substrate for such purposes 
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as protection, controlling refractive index, lubricating, and magnetisation.63 The purpose of 

this process is to deposit a thin layer of material onto a substrate, usually with the material 

dissolved in a pertinent, typically organic solvent. A substrate moving with a constant 

velocity, carries a thin layer of liquid solution/gel, which evaporates, leaving a thin layer of 

the material deposited onto the substrate.63 There are 3 different methods of dip coating; 

substrate immersion, coating by drainage and continuous dip coating. 

This whole process of immersion, withdrawal (coherent liquid film is entrained on the 

substrate), consolidation drying (where the chemical reaction occurs; in this case draining, 

evaporation, hydrolysis and condensation) and curing/sintering is explained in Figure 4. 

Any turbulence or variation in atmosphere occurs there will inevitably be inhomogeneities 

in the film. 

 

Figure 4: The fundamental stages of sol-gel dip coating (flow of air is described by the 

arrows) (reproduced with permission from reference 64). 

As the gel starts to thicken (consolidation drying), it is said that the gel is initially saturated 

with solvent, but as drying continues, the liquid-vapour meniscus begins to recede into 

larger pores and the gel becomes a partially saturated porous medium. Tensile capillary 

pressure in the liquid then causes a compressive deformation and hence a reduction in 

thickness and pore size of the coating.65 This process of drying after withdrawal is 

illustrated further in Figure 5. 
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Figure 5: Stages of drying in porous gel films, where the left line represents film 

thicknesses throughout the stages (reproduced with permission from reference 65). 

High curing temperatures required to crystallise the deposited gel can result in detrimental 

surface imperfections, such as; macro/microscopic shrinkage which lead to severe cracking 

of the sol-gel structure. This is due to substantial volume contraction and internal stress 

accumulation as large amounts of solvent and water evaporate. To help avoid this, high 

expansion coefficient materials can be used.66 

1.5 Electrodeposition 

Classical inorganic deposition techniques include; physical vapour deposition,67 molecular 

beam epitaxy,68 and atomic layer deposition.69 These methods often require harsh 

conditions and high temperatures which are energy consuming, as an alternative, 

electrodeposition of metals provide a cleaner way of processing thin film materials.70 

In the event of either the diffusing species being charged or the diffusion medium being 

porous, layered, or defective, it is possible to induce diffusion by the application of an 

electric potential. This is achieved by passing an electrical current between two or more 

electrodes separated by an electrolyte. This process takes place at the electrodeïelectrolyte 

interface. There are several important features of electrodeposition:71 
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1) Takes place close to the electrode, within the double layer. 

2) Products are deposited onto the electrode in the form of a thin film or coating. 

3) It is a low temperature technique, usually limited by the boiling point of the 

electrolyte. 

4) Kinetic control exists through controlling the applied current. 

5) Involves oxidation or reduction reactions, where potential can be fine-tuned to suit 

selective syntheses. 

6) Varying electrolyte compositions can be employed, providing controlled film 

compositions. 

7) Self-limiting film deposition, if the deposit is insulating. 

8) Simple to perform and uses inexpensive instrumentation.71 

Electrodeposition as a technique has been around as long as electrochemistry, where 

electroplating of metals, such as Cu,72ï74 Pd,75ï77 and Au78ï80 (from Cu2+, Pd2+, and Au1+ or 

Au3+, respectively) can be performed when a cathodic current is used to reduce the cationic 

species at the electrode surface to deposit the metallic form (eqn. 1.6).81 

  Mn+ + ne- = M (1.6) 

This process was first discovered by depositing Pb and Cu dendrites onto silver wires in 

1801. Gold was then plated by 1805, and in 1840 the first Au electroplating process was 

patented. In the following years, many other metals were electrodeposited.82 This gave way 

to early applications to improve the appearance of jewellery (gold plating),83 but advanced 

extensively during World War I and II where chromium, nickel, copper, zinc, tin, silver 

and rhodium were all electroplated onto specialised equipment, saving time, materials and 

money.84 

There has been a sudden surge in interest for metal deposition, mainly due to three 

technologies: (1) metal deposition for the fabrication of integrated circuits, (2) deposition 

for magnetic recording devices and (3) deposition of multilayer structures.81 Nucleation 

can be regarded as the most critical stage of growth for definition of the final film 

properties of thin films in the scale of nanometres.85 If 3D nucleation is present a crossed 

voltammogram (nucleation loop) is expected in a cyclic voltammetry experiment, since the 

activation energy needed to start nucleation is greater than that to continue the process. An 

example would be copper electrodeposition where Cu2+ is reduced to Cu on the surface of 

a substrate, the cathodic current in the forward cycle after the crossover represents the Cu 
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deposition, whereas before the crossover stripping of this deposit occurs and at the point of 

crossover, the start of nucleation.85 

The efficiency,86 simplicity,87 and substrate versatility88 of the metal electrodeposition 

process opened the door for metal oxide deposition, but with many deposition mechanisms 

available across the d-block elements. There are two main techniques to depositing 

transition metal oxides; anodic89ï94 and cathodic16,95ï100 deposition. The first is the 

application of a positive potential, generally in a mildly basic solution101ï103 to allow for 

two processes to occur. Firstly the oxidation of a stable metal species, towards a cation that 

is less stable (eqn. 1.7), and secondly the reaction of the electrogenerated species at the 

substrate surface with the hydroxides present in the basic solution, forming a precipitate on 

the substrate (eqn. 1.8).104,105 

M(n+z)+ = Mn+ + ze- (1.7) 

Mn+ + nOH- = M(OH)n (1.8) 

Cathodic deposition is like anodic deposition in the fact that it requires an electron transfer 

process to facilitate a reaction at the substrate interface. In this case, a negative potential is 

used in the electron transfer reaction to generate hydroxide ions, or consume protons106 

(eqn. 1.9 - 1.24) to raise the pH which destabilises the metal species to produce a deposit107 

(this requires the electrolyte to be acidic in nature), or a direct reaction of the hydroxide 

ions with the metal species at the surface of the substrate.108ï110 The generation of 

hydroxide ions typically occurs through the reduction of nitrate ions (eqn. 1.10 - 1.19) or 

peroxide and perchlorate (eqn. 1.20 - 1.22), but can also occur through O2, or H2O 

reduction (eqn. 1.23 - 1.24).111 There are multiple reduction processes that can occur 

depending on the electrolyte pH and composition, in general, electrode process shown in 

equation 1.11104,107,108,112 is mentioned across most of the literature pertaining to this 

process. 
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H+ 2H+ + 2e- = H2 (E
0 = 0.0 V) (1.9)111,113 

NO3
- 

NO3
- + 2H+ + 2e- = NO2

- + H2O (E0 = 0.934 V) (1.10)111,114 

NO3
- + 10H+ + 8e- = NH4

+ + 3H2O (1.11)111 

NO3
- + 3H+ + 3e- = NO + 2H2O (E0= 0.96 V) (1.12)115 

NO3
- + 7H2O + 8e- = NH4

+ + 10OH- (E0 = -0.12 V) (1.13)111,112 

NO3
- + H2O + 2e- = NO2

- + 2OH- (E0 = 0.01 V) (1.14)107,111 

NO3
- + 6H2O + 8e- = NH3 + 9OH- (1.15)116,117 

2NO3
- + 6H2O + 10e- = N2 + 12OH- (1.16)118,119 

NO2
- 

NO2
- + 2H2O + 3e- = 0.5N2 + 4OH- (E0 = 0.406 V) (1.17)111,120 

NO2
- + 5H2O + 6e- = NH3 + 7OH- (E0 = -0.165 V) (1.18)111,120 

NO2
- + 4H2O + 4e- = NH2OH + 5OH- (E0 = -0.45 V) (1.19)111 

H2O2 H2O2 + 2H+ + 2e- = 2H2O (E0 = 1.776 V) (1.20)111 

ClO4
- 

ClO4
- + H2O + 2e- = ClO3

- + 2OH- (E0 = 0.36 V) (1.21)111,121 

ClO4
- + 4H2O + 8e- = Cl- + 8OH-

 (E
0 = 0.51 V) (1.22)111,121 

O2 O2 + 2H2O + 4e- = 4OH- (E0 = 0.401 V) (1.23)111,122 

H2O 2H2O + 2e- = H2 + 2OH- (E0 = -0.828 V) (1.24)111,122 

1.6 Transition Metal Oxides 

Transition metal oxides have an assortment of properties, some are highly conductive 

(RuO2
123 or ReO3

124) with others being insulating (BaTiO3).
125 Some exhibit 

ferromagnetism (CrO2),
126 where on the opposite side of the spectrum antiferromagnetism 

can occur (NiO).127 There are also ferroelectrics (KNbO3),
128 and ferroelastics 

(Gd2(MoO4)3).
129 Superconductivity can even occur (YBa2Cu3O7) at low temperatures 

(92 K).130 Their broad range of properties can be partly attributed to the multitude of 

crystal systems such as rock salt (MgO, CaO, NiO, CoO, MnO, SrO, and EuO),131 wurtzite 

(ZnO),132 rutile (TiO2, NbO2, TaO2, ReO2, OsO2, CrO2, MnO2, RuO2, RhO2, PtO2, and 
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IrO2),
133 perovskites (CaTiO3, LaVO3, and YTiO3),

134,135 and spinel (NiCo2O4, NiMn2O4, 

ZnCo2O4, and ZnMn2O4),
136 this allows for an assortment of orbital overlap and material 

defects like vacancies,137 dislocations,138 and grain boundaries.139 Bulk and thin film metal 

oxides have commercial applications in MLCCs (BaTiO3),
18 smart windows (WO3),

140 dye 

sensitised solar cells (TiO2)
140 and catalysis (ZnO, and NiMoO4).

141 There is currently 

research in the fields of; photocatalysis,142 fuel cells,143 thermoelectrics,144 

electrochromics,145,146 energy storage,147ï150 acoustic wave devices,151 

optoelectronics,152,153 solar cells,154 gas sensors155,156 and transistors157 showing the 

versatility of metal oxides and how widely it is researched. Properties of synthesised metal 

oxides can be changed or enhanced by using different synthesis techniques and conditions 

to manipulate the particle shapes. This can alter surface area,158 surface to volume ratio,159 

stability,160 and conduction lengths.161 Nano structures include octahedra,162 wires,163 

cages,164 cubes,165 multipods,166 and ñcauliflowersò167 (Figure 6). Some structures are not 

always easy to make, or commercially viable due to the possible scales of the reactions but 

it has been proven to improve specific capacitances,168 photocatalytic,169 chemical sensing 

abilities,170 and water oxidation yields.171 

 

Figure 6: SEM images of octahedra (a), nanowires (b), nanocubes (c), and cauliflowers 

(reprinted with permission from reference 169 (a). Copyright (2010) American Chemical 

Society, 172 (b), 165 (c) and 167 (d). Copyright (2008) American Chemical Society). 

1.7 Dielectrics 

Dielectric is a term which is interchangeable with non-conductor and insulator, as a 

dielectric material has no loosely bound or free electrons, and its ionic charges have 

limited mobility. The movement of these charges can only occur when they have overcome 

their intertia, once a charge is received via an electrostatic field, it is retained, confining it 

to a localised region in which it was introduced.22 The dielectric constant (ə) is usually 

expressed as the ratio of the absolute permittivity of a material (ɽ) to the permittivity of a 

vacuum (ɽ0=8.854 x10-12 Fm-1).173 
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When a dielectric material is placed under an electric field, its dipoles are induced, there is 

alignment of the permanent dipole, and the material concentrates the displacement field. 

The displacement field is directly proportional to the electric field and is explained 

mathematically by one of Maxwellôs equations (Equation 2).22 

 

Equation 2: Maxwellôs equations where D=displacement field (total field after dipole 

orientation), Ů=permittivity of the material and E=electric field strength. 

This alignment is called polarisation, in a dielectric material there are 4 possible 

mechanism of polarisation (Figure 7).  

1. Electronic: When an atom is situated in an electric field, the charged particle 

experiences an electric force, as a result the centre of the negatively charged 

electron cloud is displaced with respect to the nucleus (opposite to the applied 

electric field). A dipole moment is induced in the atom and is said to be 

electronically polarised.174 

2. Ionic: The result of small relative displacements of oppositely charged ions that 

propagate and result in polarisation of the whole material.175 

3. Dipolar: Dipolar polarisation is uncommon in ceramics because most of the 

permanent dipoles cannot be reoriented without destroying the crystal structure. An 

example is barium titanate, where its octahedrally coordinated Ti4+
 ion is displaced 

slightly from its ideal symmetric position. Applying an alternating electric field 

causes this ion to move back and forth between its two allowable positions, 

ensuring polarisation alignment with the field.52  

4. Interfacial: Interfacial polarisation is caused by space charges (collection of 

particles with a net electric charge), in the film/electrode interfaces (normally 

resulting from impurities).176  

The total P for the material is the sum of all individual contributions (Equation 3).52 

 

Equation 3: Total polarisation of a material. 
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Figure 7: Different polarisation mechanisms in a solid (reprinted with permission from 

reference 52). 

The dielectric constant is a measure of the ability of an insulating material to store charge 

when subjected to an electric field.22 Table 1 shows various materials and their 

corresponding dielectric constants. 
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Table 1: Dielectric constants of various materials at room temperature ï When available stated for the respective thin films. (All crystal 

structures and space groups were obtained from ICSD). 

Medium Crystal Structure Space group Dielectric Constant Ref. 

Vacuum N/A N/A 1 - 

H2O N/A N/A 78.54 52 

NaCl Cubic F m -3 m 5.9 52 

SiO2 Monoclinic C 1 c 1 3.7-3.8 52 

TiO 2 ï Anatase Tetragonal I 41/a m d S 18.9 177 

TiO 2 ï Rutile Tetragonal P 42/m n m 63.7 177 

SrTiO 3 Cubic P m -3 m 475 178 

Pb[Zr xTi 1-x]O3 Trigonal R 3 c H 273.1 179 

BaTiO3 Cubic P m -3 m 630 180 

CaCu3Ti4O12 Cubic I m -3 2000 181 
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BaTiO3 and other titanates and zirconates exhibit a very large dielectric constant due to 

their permanent dipoles. These permanent dipoles are bound to arise when atoms of 

different types form molecules, since the partners differ in electron affinity with their 

electron clouds being displaced eccentrically towards the stronger binding atoms.182 

Dielectric materials are able to withstand a certain applied electric field strength before 

they break down and current flows. High dielectric strengths are important in applications 

where thickness of the material is small (e.g. capacitors).183 

Dielectric materials have a broad range of applications including but not limited to; DRAM 

(Dynamic Random Access Memory) capacitors,184 bypass capacitors,185 IR detectors,186 

tuneable microwave devices (resonators, filters and phase shifters),187,188 multilayer 

ceramic capacitors (MLCCs),189 printed circuit boards,190 and electro-optic devices.191 

Dielectric materials have tuneable properties to excel in these applications. Properties can 

be changed by: 

1. Film Thickness; bulk dielectric materials generally have a higher permittivity than 

thin films. As the thickness decreases so does the permittivity. Thicker films also 

produce a lower leakage current. This makes film thickness uniformity important 

(Table 2 shows a short list of differing deposition techniques and the conformality 

produced).192  

Table 2: Representative thin film conformality (topography differences) achieved with 

various deposition methods.184 

Deposition Method Conformality  

Sputtering < 60 % 

Sol-Gel 20-65 % 

Plasma Enhanced Metal Organic Chemical 

Vapour Deposition (MOCVD) 

40 ï 65 % 

Thermal MOCVD  > 80 % 

 

2. Annealing Conditions; measured dielectric constants increase as the annealing 

temperature and duration increases. It is suggested that even with similar grain 

sizes and density of each sample there is still an increase, this is due to a better 
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developed defect structure.193 Furthermore, annealing in an argon atmosphere 

increases the dielectric constant, this may increase the concentration of oxygen 

vacancies and hence charge carriers.193 This has limits, where up to a 50 % O2/Ar 

mixing ratio produced the highest dielectric constant for (Ba,Sr)TiO3 thin films.194 

3. Grain Size: directly related to annealing conditions, with decreasing grain size, the 

dielectric constant is said to decrease. Coarse grained samples (60 ɛm) undergo a 

structural phase transition whereas the medium- (15 ɛm) and fine- (2 ɛm) grained 

samples show diffuse phase transitions. Increases in grain size also aid voltage 

loss.195 It is said that the smaller the grain size, the smaller the grain to boundary 

ratio, therefore the smaller the overall permittivity.196 

4. Stress: for a free-standing film, a voltage applied across its thickness causes the 

film to contract by an electrostrictive strain. The stress in the plane of the film 

causes a change in permittivity measured through the film thickness (Equation 4). 

When stress is applied to ferroelectric thin films, the permittivity drops, in fact the 

stress free room temperature capacitance was found to be 23 % higher than the 

capacitance of films under residual stress.196  

 

Equation 4: Thermodynamic theory of Devonshire. Q12=electrostrictive coefficient, 

ů=stress, Ůf=permittivity of the stressed film and Ůu=permittivity of the unstressed film. 

1.8 Ferroelectrics 

The characteristic feature of a ferroelectric crystal is the appearance of a spontaneous 

electric dipole moment which can be reversed (switching) by reversing the applied electric 

field. Many ferroelectric materials possess a spontaneous dipole moment below the Curie 

temperature. The phases with and without a spontaneous dipole moment are referred to as 

ferroelectric and paraelectric, respectively.197 Ferroelectricity has an indicative hysteresis 

which is displayed in terms of polarisation, P, and electric field, E (Figure 8a).198 At high 

field strengths ferroelectric substances have a saturation polarisation, PS, and when the 

potential is reduced to zero a remanent polarisation, PR, is observed. To remove the 

polarisation a coercive field of strength, Ec, is used. The Ti4+ in BaTiO3 shifts 0.1 Å, which 
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is roughly 2.5% of the unit cell size. These charges give rise to dipoles and the high 

dielectric constants that are characteristic of ferroelectrics.199 

 

Figure 8: Polarisation for a ferroelectric (a) and an ideal dielectric (b) material, where P is 

the polarisation and E is the electric field strength.  

Ferroelectricity and dielectric behaviours are very similar, but there is a subtle difference. 

When polarisation is induced in a dielectric material (Figure 8b), P, it is exactly 

proportional to the applied external field E, making the polarisation a linear function 

(Equation 2). In most ferroelectric materials a spontaneous non-zero polarisation, even at a 

zero applied field is observed. They also have a lower permittivity compared to an ideal 

dielectric, and retain residual electrical polarisation even after the applied voltage is 

switched off.199,200 
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2.1 X-Ray Diffraction  

X-ray diffraction (XRD) involves the elastic scattering of X-rays by the electrons in atoms. 

Diffraction can occur for a periodic array of scattering centres separated by distances 

similar to the wavelength of the radiation (about 100 pm).201 For example, KŬ1 X-rays 

produced from a Cu metal target have a wavelength of 1.54 Å (154 pm). When this 

monochromatic beam penetrates a series of identical parallel planes in a crystal, each plane 

of atoms scatters the radiation. If the angle of incidence is equal to the angle between the 

scattered beam and the normal, a Bragg reflection has been created (Figure 9).173 The array 

of black dots represents a section through a crystal and the lines joining the dots mark a set 

of parallel planes with Miller indices hkl and the interplanar spacing dhkl. A parallel beam 

of monochromatic X-rays (AD) is incident to the planes at an angle ɗhkl. Photon A is 

scattered by atom B, photon D is scattered by atom F and so on. For the reflected beams to 

emerge with a reasonable intensity and as a single beam, they must be in phase with each 

other so that constructive interference can occur.202 

 

Figure 9: Bragg reflection in a crystal (adapted with permission from reference 202). 

The addition of vectors EF and FG equals the difference in path length, which also must be 

equal to an integral number, n, of wavelengths, ɚ (nɚ = EF + FG = 2EF = 2FG). EF and FG 

are also equal to dhklsinɗhkl. As this is the case, the Bragg equation (Equation 5) can be 

formed by combining these facts which relates the spacing between the crystal planes, dhkl, 

to a particular Bragg angle, ɗhkl.
203  

 

Equation 5: The Bragg equation, relating wavelength, ɚ, to crystal spacing, dhkl, and the 

Bragg angle, ɗhkl. 
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Crystals have a multitude of lattice planes (Figure 10), these result in different reflections 

on the X-ray diffraction pattern. The planes with the smallest Bragg angle will have the 

largest dhkl spacing. In the primitive cubic system the (100) plane will have the largest 

separation and so will give rise to the first reflection. As a = b = c and Ŭ = ɓ = ɔ = 90 ° in a 

cubic system, the (010) and (001) will reflect at the same position. The spacing of the 

reflecting planes, dhkl, can be calculated for a cubic system with a unit cell dimension, a 

(Equation 6) and can then be combined with the Bragg equation (Equation 5) allowing for 

the calculation of lattice parameters from the X-ray diffraction pattern (Equation 7).202 

 

Figure 10: Examples of the (100), (110), (111) and (200) lattice planes, respectively.22 

 

Equation 6: Calculation of d-spacing in a cubic lattice from the lattice planes (h, k, and l) 

and the lattice parameter, a. 

 

Equation 7: Relationship between the Bragg angle, qhkl, and the Miller indices in a cubic 

lattice derived from Equation 5 and Equation 6. 

There are separate equations for each of the seven crystal structures (cubic, tetragonal, 

hexagonal, rhombohedral, orthorhombic, monoclinic and triclinic). For example, tetragonal 

systems where a = b Í c and Ŭ = ɓ = ɔ = 90 °, the 100 and 010 reflections appear in the 

same place but the 001 does not (Equation 8). 

 

Equation 8: The lattice parameter equation for a tetragonal crystal structure. 
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X-ray diffraction is often used as a fingerprint method for detecting the presence of a 

known compound or phase in a product. This is made possible due to the extensive library 

of X-ray diffraction patterns stored by databases such as the Inorganic Crystal Structure 

Database (ICSD),202 and the Joint Committee on Powder Diffraction Standards (JCPDS) 

providing a method for identification of products, impurities, or amorphous content in bulk 

powders or thin films. Another method takes advantage of X-ray diffraction patterns is by 

using peak broadening (Full-Width Half-Maximum/ FWHM) to calculate crystallite sizes, 

and was developed by Scherrer in 1918.204 If crystallite sizes are sufficiently small, the 

maxima of the diffraction pattern are broadened by an amount inversely proportional to the 

crystallite size. This gives rise to the Scherrer equation (Equation 9).205 

 

Equation 9: The Scherrer equation where Ű=ótrueô crystallite size (m), K=Scherrer constant, 

ɓ0=breadth/FWHM (radians), ɓs=breadth/FWHM (radians) of a highly crystalline standard 

and ɗ=Bragg angle. 

The value of K depends on at least three things, the peak breadth, the crystallite shape and 

the crystallite-size distribution. The value for K also changes for crystal structure and the 

differing lattice planes.205 Another quantitative analysis method is Rietveld refinement. 

This method is widely recognized to be uniquely valuable for structural analyses of nearly 

all classes of polycrystalline materials, and is comprised of a least-squares refinement 

(Equation 10) which is carried out until the best fit has been obtained.206 

 

Equation 10: Least-squares refinement where Sy=quantity minimized, wi=1/yi, yi=observed 

(gross) intensity at the ith step, and yci=calculated intensity at the ith step. 

This method takes into account models for the crystal structure, diffraction optic effects, 

instrumental factor, and other specimen characteristics (e.g. lattice parameters), but does 

not allocate observed intensities to particular Bragg reflections nor to overlapped 

reflections, instead the whole pattern is fitted, this gives rise to the Rietveld equation 

(Equation 11).207 
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Equation 11: The Rietveld equation where S=scale factor, K=Miller indices, h k l, for a 

Bragg reflection, LK=Lorentz, polarisation, and multiplicity factors, ū=reflection profile 

function, PK=preferred orientation function, A=absorption factor, FK=structure factor for 

the Kth Bragg reflection, ybi=background intensity at the ith step. 

The intensity of each reflection is given by the structure factor equation (Equation 12).208 

The parameters which are refinable via the Rietveld method are: xj, yj, zj, Bj, Nj, scale 

factor, specimen profile breadth parameters, lattice parameters, overall temperature factor, 

individual anisotropic thermal parameters, preferred orientation, crystallite size and 

microstrain.206 

 

Equation 12: The structural factor equation where FK=the structure factor, Nj=site 

occupancy, fj=atomic force factor, h k l=Miller indices, xj, yj, and zj=position parameters of 

the jth atom in the unit cell, Bj=thermal displacement parameters, and ɚ=wavelength. 

The reasons that X-ray diffraction is used in the characterisation of thin films are that it is 

non-destructive and so other methods can be used after XRD has been performed, average 

structures can be obtained over large areas and analysis depth can be controlled by the 

incident angle (< 10°) relative to the surface. This is so that the penetration depth is 

reduced, hence only the surface (not the bulk) was being analysed.52 The grazing incidence 

X-ray diffraction (GIXRD) technique was used throughout this project and identified the 

phase of the material, and the presence of any impurities. This project used a 1° incidence 

angle to reduce signals from the platinum substrate, a 5° Soller slit, with a 10 mm incident 

slit. The X-ray beam was a monochromatic Cu KŬ1 with a wavelength of 1.5406 Å using a 

Rigaku 2D detector to collect the data.209 
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2.2 Scanning Electron Microscopy (SEM) 

In optical microscopy the maximum useful magnification is 1000 times, depending on the 

equipment used. This gives a need for an alternative technique that gives better resolution, 

a greater magnification (depending on the conductivity of the specimen magnifications can 

reach over 100 000 times) and is more easily accessible. In scanning electron microscopy, 

electrons are produced via 3 techniques: 

1. Heating a tungsten filament to over 2500 °C, with a magnetic field focusing under 

high vacuum, accelerating the electrons to high energies. 

2. LaB6 filaments, which also work by thermionic emission, but have a larger 

maximum beam current and a longer lifetime. 

3. Lastly, electrons can be emitted through field emission guns that provide the 

brightest beam but require a lower working pressure compared to the other 2 

methods (by a factor of 10000 Torr). 

These beams are then scanned across a selected area of the specimen surface in a raster by 

scan coils. The interaction of the electron beam with the specimen produces secondary, 

backscattered and Auger electrons, and also X-rays, providing multiple SEM imaging 

techniques.210 Secondary electron imaging uses electrons which leave the specimen surface 

with energies ̸  50 eV when the object is bombarded with primary electrons (Figure 11). 

 

Figure 11: Arrangement for measuring the secondary electron emission, where the 

secondary electrons (SE) are released by the primary electrons (PE) and by backscattered 

or reflected electrons (RE). The mean escape depth ɚ nm from the metal, with the detector 

(D) collecting all emitted electrons. 
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Secondary electrons have a mean escape depth of about ɚ = 1 nm and so are influenced by 

very thin surface layers.211 SE SEM provides the highest spatial resolution images, as the 

SE can only escape from a very shallow, near surface layer of material. This technique 

primarily gives topographical information, as well as some compositional contrast.210 

Back scattered electron (BSE) imaging requires an elastic interaction (whereas SE is an 

inelastic), meaning that the elastically scattered electrons will have energies similar to 

those of the primary electrons. BSEs originate from within the target specimen (10 ï 100 

nm) by elastic scattering events in one of two ways. 

¶ Strong Coulombic fields of an atoms nucleus can cause a large deflection (>90°) in 

the trajectory of an incident electron (i.e. Rutherford scattering) 

¶ Incident electrons can undergo multiple low-angle deflections which together 

comprise a deflection of >90°. 

These scattered electrons can provide images based on compositional and crystal structure. 

However BSE spatial resolution is inferior to that of SE since the emission of SE occurs 

from a much smaller, near surface volume (Figure 12).212  

 

Figure 12: Comparison of penetration ranges (Rs, Rb, Rx) and spatial resolutions (SE, BSE, 

X) for secondary electron, backscattered electrons and X-ray emission signals from 

elements with low to medium atomic numbers (reproduced with permission from reference 

212).  

Back scattered electrons provide compositional information, where elements of higher 

atomic mass give brighter contrasts. Crystallographic information can also be obtained due 

to electron channelling.210  
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SEM does not always have to be conducted under high vacuum. When the specimen is 

insulating or wet, the use of environmental mode is preferred. The two main differences 

compared to conventional SEM are: 

¶ Instead of the specimen being under high vacuum, a gas (frequently water vapour) 

is present in the specimen chamber (still retaining the resolution of conventional 

SEM). 

¶ Insulators do not need to be coated with a conducting layer (gold or graphite) 

before imaging (this is a requirement for conventional SEM since insulators will 

build up charge, as they cannot dissipate the electrons provided by the electron gun 

(charging)).  

Environmental modes can be used to image insulators because when the electrons (SE or 

BSE) are emitted, they collide with the gas molecules, with a high probability of ionising 

them, with the generation of an additional electron (cascade amplification). The electrons 

produced are drawn to the positively biased detector. The cations produced from ionisation 

drift towards the specimen to compensate for the charge build-which have resulted from 

the emitted electrons not dispersing on the insulating specimen (Figure 13).213 

 

Figure 13: The cascade amplification process, where the gas molecules are ionised by the 

emitted electrons, producing a daughter electron. The daughter electron travels towards the 

positively biased detector whereas the cation drifts towards the specimen surface 

preventing charging (reproduced with permission from reference 213). 

SEM (and optical microscopy) was very important for the work presented in this thesis. It 

was used to image the surface topography, and to view any cracks formed on the surface of 

the films. As BaTiO3 is very resistive, wet mode could have been employed to reduce 


































































































































































































































































































































