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We develop a numerical model for a two-phase flow of a pair of immiscible liquids within a capillary tube.
We assume that a capillary is initially saturated with one liquid and the other liquid is injected via one of
the capillary’s ends. The governing equations are solved in the velocity-pressure formulation, so the pressure
levels are imposed at the capillary inlet and outlet ends. We model the structure of the flow and the shape
of the liquid/liquid interface. We are able to reproduce the flow for a wide range of capillary numbers, when
the meniscus preserves its shape moving together with the flow, and when the meniscus constantly stretches
resembling the transport of a passive impurity. We demonstrate that the phase-field approach is capable of
reproducing all features of the liquid/liquid displacement, including the motion of a contact line, the dynamic
changes of the capillary pressure, and the dynamic changes of the apparent contact angle.

I. INTRODUCTION

We aim to develop a theoretical model for descrip-
tion of a liquid/liquid displacement in a porous medium.
We assume that the porous medium is initially saturated
with one liquid that is displaced by injection of another
liquid. Numerous processes in nature and industry can
be reduced to a similar physical configuration, including
oil recovery, aquifer and soil remediation.
A macroscopic description of a liquid/liquid displace-

ment in a porous medium is traditionally given in the
framework of an extended Darcy model that is adopted
for multiphase flows. The model introduces such phe-
nomenological parameters as the relative permeabilities
and the capillary pressure, that strongly depend on the
relative amounts of liquids in a porous matrix, which es-
sentially means that the theory incorporates not three
but (infinite) number of phenomenological constants,
as the experimental determination of the functions (or
curves) of the relative permeabilities and capillary pres-
sure requires a series of measurements of these quanti-
ties for a number of saturation levels. This fact renders
the numerical results obtained on the basis of the Darcy
model less valuable, making the results site- and fluids-
specific.
For a more universal understanding of multiphase flows

through a porous medium a pore-level analysis is re-
quired. A pore-level model is usually based on the net-
work approach when the porous matrix is represented as
a network of interconnected capillaries, that, for a more
general representation, may be taken with different (ran-
dom) diameters.1,2 Hence, for understanding of a multi-
phase flow in a porous medium, the initial task is reduced
to the accurate description of a multiphase flow within a
single capillary, which is undertaken in the current work.
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The first studies of multiphase flows in a capillary were
carried out by West3 and Washburn4. It was established
that for low Reynolds and capillary numbers (that are
defined as Re = ρ∗V∗d/η∗ and Ca = V∗η∗/σ∗, where
V∗ is the typical velocity of the flow in a capillary, d is
the capillary’s diameter, ρ∗ is the typical density, η∗ is
the viscosity coefficient, and σ∗ is the surface tension co-
efficient), the flow structure has a parabolic Poiseuille
profile, with an axisymmetric meniscus that moves with
the same speed as the rest of the liquids (like a piston
that displaces one of the liquids). The speed of the flow
is determined by the pressure difference that is reduced
by the value of the capillary pressure associated with the
curved interface. It was later pointed out that the capil-
lary pressure, associated with the liquid/liquid meniscus,
is to be given by an apparent contact angle, that is differ-
ent from the static contact angle and that is determined
by the flow rate.5

In the cases of stronger injections, when the flow rates
and hence the capillary numbers are higher, the displace-
ment of one liquid by another occurs differently. A menis-
cus in this case has a finger-type shape, with the injected
fluid penetrating through the middle section of the capil-
lary, displacing the liquid at the far end, and leaving some
liquid on the capillary’s wall. This is termed a fingering
displacement. The major focus is to investigate the ratio
of the volume of the displaced liquid over the volume that
remains deposited on the capillary’s walls as a function of
the capillary number.6 The theoretical modelling of a fin-
gering displacement was first undertaken by Cox7, who
developed an approximate theory capable of predicting
the flow pattern near the liquid/liquid interface, and the
value of the fraction left on the tube’s walls. The most
recent series of works was probably published by Soares
et al.8–10, who developed the Galerkin finite element nu-
merical technique for modelling of a liquid/liquid flow in
a capillary.

These studies were also extended onto consideration
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of the displacement of the liquid by another liquid when
the liquids are miscible.11,12 The miscible liquids corre-
spond to a limiting case of the fingering displacement,
when the capillary number is (infinitely) large due to
low (absent) interfacial stresses. For miscible liquids, a
new parameter, the Peclet number (Pe = V∗d/D∗, where
D∗ is the diffusion coefficient), needs to be introduced.
It is found that for larger values of the Peclet numbers
(above Pe ∼ 1000) the observed behaviour agrees with
immiscible systems (for the case of large capillary num-
bers), with a clearly visible sharp interface that sepa-
rates the fluids and even the values of the surface ten-
sion coefficient for this miscible interface could be esti-
mated (∼ 0.43 dyn/cm). For lower Peclet numbers the
experimental results were difficult to obtain due to strong
smearing of interfaces.

The numerical model for miscible systems was devel-
oped by Chen and Meiburg12, who represented a pair of
miscible liquids as a homogeneous system (as a single-
phase fluid with impurity, neglecting capillary effects).
The results of Chen and Meiburg12 agree with the ex-
perimental observations achieved for the case of higher
Peclet numbers.

The current paper provides the results of the direct
numerical simulation of an immiscible liquid/liquid dis-
placement. The numerical model is built up on the basis
of the phase-field approach, that introduces the possibil-
ity of mixing between two phases. Nevertheless, in the
current work, we always assume that diffusive transport
is negligible at least for the duration of the displacement
run and hence the liquids remain immiscible. The advan-
tages of the phase-field approach are the ability of tracing
the changes of the interface shape and the ability of mod-
elling the capillary and wetting properties (including the
modelling of the contact line slippage) that determine the
overall dynamics of a liquid/liquid displacement.

II. PROBLEM STATEMENT

A. Phase-field model. Governing equations

Within the phase-field approach the system of two liq-
uids is represented as a heterogeneous binary mixture.
The position of an interface is traced through the field
of concentration, that is defined as the mass fraction of
one of the liquids in a liquid/liquid mixture. A single set
of the governing equations is written for the entire mul-
tiphase system, including the interface boundary, that
is represented as a transitional layer of a finite thick-
ness (across the boundary all variables experience sharp
but continuous changes). To take into account the sur-
face tension effects existent at interfaces, the free energy
function of a mixture is redefined as follows,13

f = f0(C) +
ǫ

2
(∇C)2. (1)

Here f is the total specific free energy function and f0 is
its classical part. The magnitude of the additional term
is given by the capillary constant ǫ, that is assumed to be
so small that this term is negligible everywhere except for
the location of very strong concentration gradients that
correspond to interfaces.
The full equations that determine the evolution of a

heterogeneous binary mixture with the states given by
the free energy function (1) are called the Cahn-Hilliard-
Navier-Stokes equations.14 The full equations are rather
difficult for numerical treatment, with the main difficulty
caused by the effect of quasi-compressibility (the conti-
nuity equation needs to be used in the full form owing
to dependence of the mixture density on concentration).
In all works (e.g. Refs. 15–17), the numerical solution
is given in the framework of the Boussinesq approxima-
tion of the full equations. The Boussinesq approximation
of the Cahn-Hilliard-Navier-Stokes equations was strictly
derived in paper18, and this approximation is employed
in the current work.
The governing equations include the laws of conserva-

tion for momentum, species, and mass:

∂~u

∂t
+ (~u · ∇) ~u = −∇Π+

1

Re
∆~u−

1

M
C∇µ, (2)

∂C

∂t
+ (~u · ∇)C =

1

Pe
∆µ, (3)

∇ · ~u = 0. (4)

Here t is the time and ~u is the velocity vector (velocity
is defined as the mass-averaged velocity of a fluid par-
ticle that includes two components of a mixture). The
quantity Π stands for the modified pressure that needs to
be determined through the incompressibility constraint.
The real pressure is given by the following expression,

p = Π−
1

M

(

Cn
(∇C)2

2
− µC + f0

)

. (5)

One sees that the right-hand side of equation (2) in-
cludes an additional term that is frequently called the
Korteweg force. This term determines the action of the
capillary forces that define the shape of the interfacial
boundary. In the equation for the species balance (3) the
diffusion term is given by using the generalised Fick’s law,
that defines the diffusion flux proportional to the gradi-
ent of the chemical potential. The chemical potential µ
is set by the expression,

µ =
df0
dC

− Cn∆C. (6)

The equations are written in the non-dimensional form.
The following quantities, h, Vmax, h/Vmax, ρ∗V

2
max, µ∗,

that set a typical flow in a capillary are chosen as the
scales of length, velocity, time, pressure, and chemical
potential. Here h is the diameter of a tube, Vmax is the
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maximum velocity, and µ∗ and ρ∗ are the typical values
of the chemical potential and density.
The governing equations include the Reynolds, Peclet,

Mach, and Cahn numbers,

Re =
ρ∗Vmaxh

η∗
, P e =

ρ∗Vmaxh

α∗µ∗

, M =
V 2
max

µ∗

, (7)

Cn =
ǫ

µ∗h2
.

The Reynolds number defines the ratio between the iner-
tia and viscous forces. For flows in a capillary the primary
interest plays the limit of low Reynolds numbers when the
inertia terms are negligible (although, in some porous me-
dia, e.g. in fixed beds of chemical reactors, the Reynolds
numbers may be as high as 100019). The Peclet num-
ber determines the role of diffusion effects. Considerable
smearing of an initially sharp interface should occur after
a time period of the order ∼ Pe. In the current study we
focus on the dynamics of immiscible displacement, and
we assume that Pe >> 1 and that the time needed for a
liquid/liquid meniscus to move through the whole tube
is also much smaller than Pe. The Mach number deter-
mines the role of the capillary effects in the Navier-Stokes
equation. The Cahn number determines the thickness of
the liquid/liquid interface, as δ =

√
2Cn.14,18

It should be added that the set of equations (2)-(4)
assumes that two liquids of a mixture are characterised
by similar viscosity coefficients. For derivation of these
equations,18 it was assumed that the viscosity coefficients
of the liquids are different, although the difference is
small, so the leading term of the viscous force, that is
kept in the equations, includes just one single parame-
ter, that may be defined as the average viscosity of two
liquids.
Finally, we need to define the expression for the clas-

sical free energy function, f0, that determines the equi-
librium states of a binary mixture (with omission of cap-
illary effects).20 We are interested in the dynamics of a
pair of immiscible liquids. Such a mixture can be effec-
tively represented by the so-called double-well potential
(see e.g. Refs. 15–17), that can be written as

f0 = −1

2
C2 + C4. (8)

This expression has two minima, C = ± 1
2 , that corre-

spond to two pure components of the binary mixture.

B. Geometry. Boundary conditions

The governing equations are solved for a capillary that
is represented by a plane layer with two plates of length
L separated by a unit distance. The results shown below
are obtained for the layers of the length L = 6. This
length was found to be long enough for a sufficiently long
evolution of the liquid/liquid interface that would allow
for general conclusions to be made. The numerical runs

were also conducted for longer tubes, with L = 12, and no
significant differences were observed. The consideration
in the current work is restricted to 2D problem, with
the Cartesian coordinates, x and y, along and across the
layer.
For the initial state we assume that the layer is filled

with two liquids, so that the first liquid occupies a small
region at the left end of the tube, and the second liquid
occupies the rest of the tube. Thus the initial concentra-
tion profile is determined by the expression,

C0 =
1

2
tanh

(

x− x0

δ0

)

. (9)

Here x0 is the initial position of the liquid/boundary
(usually, x0 = 0.5). Initially the liquids are stationary
and they are separated by a thin flat vertical interface
of a thickness δ0 =

√
2Cn. At the initial time moment,

the fluids stay at rest (~u = 0). The flow is driven by the
pressure gradient enforced between the ends of a capil-
lary that is switched on at the time moment t = 0. The
effect of gravity is neglected: we assume that the hydro-
static pressure is negligibly small as compared with the
capillary pressure and the pressure difference imposed
between the tube ends (e.g. due to a lower density con-
trast).
The governing equations are supplemented by the fol-

lowing boundary conditions, at the upper and lower
plates,

y = 0, 1 : ux = uy = 0,
∂µ

∂y
= 0,

∂C

∂y
= 0; (10)

at the left end of a capillary,

x = 0 : p = p1,
∂µ

∂x
= 0,

∂C

∂x
= 0; (11)

and at the right end,

x = L : p = 0,
∂µ

∂x
= 0,

∂C

∂x
= 0. (12)

Thus at the rigid plates we impose the standard no-slip
boundary condition for the velocity and the absence of
the diffusion flux (that is set by the gradient of the chemi-
cal potential) through the boundary. The additional con-
dition for the concentration field sets the wetting condi-
tions. In the current work we assume the simplest case
of the wetting condition when the molecules of the walls
interact with the molecules of two liquids equally, so the
contact line is orthogonal to the wall. At the inlet and
outlet boundaries we set the pressure levels. We also im-
pose the zero normal derivatives of the chemical potential
and concentration assuming continuity of matter at the
capillary’s ends.
The reference point for the pressure field is set at the

right (outlet) end of the tube. The pressure level at the
left (inlet) end of the tube is always set as,

p1 =
8L

Re
. (13)
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This value is chosen so that the maximum value of the
velocity (the velocity at the centreline) is equal to 1 for
a single-phase flow. Thus, in the simulations shown be-
low, the pressure gradient along the tube depends on the
Reynolds number. For the single-phase flow (negligible
capillary effects) the velocity profile always remains the
same,

ux = 4y(1− y); uy = 0, (14)

independent on the flow parameters.

C. Modelling of a contact line

A difficulty of the modelling of two-phase flows through
a capillary is given by a necessity to describe the motion
of a contact line.21 Indeed, along the wall, the no-slip
condition is imposed for the fluid velocity (10), which
seems not to conform with the motion of the contact
line that can be observed in numerous experiments. To
resolve this difficulty, traditional sharp-interface models
adopt a different condition for the velocity field along the
wall,

(

ux + Ls

∂ux

∂y

)

wall

= 0, (15)

that introduces an additional phenomenological param-
eter, Ls, called the slip-length. Although, as was first
shown by Jacqmin22, within the phase-field simulations
the motion of a contact line can be naturally obtained
from the solution of the governing equations (2)-(4),
and the use of the additional slip model is not needed.
To achieve this conclusion Jacqmin conducted the work
along two supplementary paths.
Jacqmin fulfilled nano-scale computations of a multi-

phase flow with the use of realistic liquid/liquid diffusiv-
ities and with the use of the model for the shear-induced
slip (15). He demonstrated that with no-slip condition
‘diffusion can maintain the interface profile’ for diffusivi-
ties as small as D∗ ∼ 10−11m2s−1. At D∗ ∼ 10−12m2s−1

‘the contact line is maintained but the interface profile is
distorted’, and at D∗ ∼ 10−13m2s−1 ‘the contact line be-
gins to fail’. Next, he showed that if D∗ ∼ 10−10m2s−1

and slip-length Ls = 10−8m, then slip effects are domi-
nant. For the same diffusivity, but Ls = 10−9m, ‘slip and
diffusion are competitive in effect. With L = 10−10m dif-
fusion effects are dominant’. He also noticed that the
molecular level simulations indicate slip lengths of at
most about Ls = 3 · 10−10m, and thus, for realistic slip-
lengths, diffusion effects are dominant over shear-induced
slip.
Jacqmin also examined the asymptotic behaviour of

flow fields inside and outside the contact line region,
which allowed him to draw that ‘to leading order the
outer-region velocity field is the same as for sharp inter-
faces while the chemical potential behaves like ln(r)/r’
(when the equilibrium contact angle αeq = 900). ‘The

diffusive and viscous contact line singularities implied
by these outer solutions are resolved in the inner region
through chemical diffusion. The length scale of the inner
diffusion is about’ 10

√
η∗α∗/ρ∗. ‘Diffusive fluxes in this

region are O(1). These counterbalance the effects of the
velocity, which, because of the assumed no-slip bound-
ary condition fluxes material through the interface in a
narrow boundary layer next to the wall.’
On the basis of his analysis, Jacqmin concluded that

the phase-field ‘contact line has the same far-field be-
haviour as the more traditional sharp-interface slip mod-
els of contact line flow. A computational fluid dynamicist
interested in only macroscopic results can thus use either
model. Certain difficult to know parameters enter into
both: in the case of slip models it is the material depen-
dent slip-length, in the case of the phase-field model it is
the material-dependent mobility.’
In our work, we solely rely on the description of the

contact line that is provided by the diffusion-interface
approach. The motion of the contact line is then de-
termined by the mobility coefficient α∗ (or, in non-
dimensional formulation, by the Peclet number). Since
we do not provide any empirical matching to experi-
ments, our results remain qualitative, nevertheless, we
perform simulations for different Peclet numbers, in the
range from Pe = 103 to Pe = 105, and observe that
numerical results remain qualitatively similar.

D. Estimations. Typical values of governing parameters

The full problem (2)-(4) is determined by four govern-
ing parameters (7). In addition, the capillary number,
that determines the ratio between the viscous and sur-
face tension forces, is frequently used for classification of
capillary flows. In terms of the already introduced pa-
rameters, the capillary number is defined as

Ca =
M

Re
=

Vmaxη∗
ρ∗µ∗h

. (16)

The difficulty of the phase-field approach is the use
of the non-standard phenomenological coefficients, which
values are not directly measurable. In particular, defini-
tions of the non-dimensional parameters (7) involve the
typical value of the chemical potential, µ∗, the capillary
constant ǫ, and the mobility coefficient, α∗.
The most important parameter, which value is required

for practical calculations, is the typical value of the chem-
ical potential, µ∗. By comparison of the phase-field defi-
nition of the capillary number (16) with its classical def-
inition (V∗η∗/σ∗), one may understand that the typical
value of the chemical potential may be estimated through
the surface tension coefficient,

µ∗ =
σ∗

ρ∗h
. (17)

For instance, if one assumes that σ∗ ∼ 10−2N/m, ρ∗ ∼
103kg/m, and h ∼ 10−4m, then the typical value of the
chemical potential may be estimated as µ∗ ∼ 0.1J ·kg−1.
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Next, the speed of the fluid flow in a capillary can be
estimated by using the following equation,

Vmax =
∆p

L

h2

8η∗
. (18)

For oil recovery applications, a typical pressure difference
can be estimated as ∆p/L = 107Pa/103m ∼ 104Pa/m.
We also assume that the mixture that saturates a capil-
lary has the viscosity coefficient η∗ ∼ 10−3Pa · s. For a
capillary of the diameter h ∼ 10−4m, the velocity of the
mixture is Vmax ∼ 10−2m/s. In this case, the Reynolds
and Mach numbers can be estimated as Re ∼ 1 and
M ∼ 10−3, respectively. The capillary number is then
Ca ∼ 10−3.
It should be mentioned that the above estimates

strongly depend on the diameter of the capillary, and
for narrower capillaries the Reynolds and Mach numbers
can have lower values. In addition, under subsurface con-
dition, both water and oil absorb gases, which lowers
the value of the surface tension coefficient. The absorp-
tion rates primarily depend on pressure (on the reservoir
depth), and the surface tension coefficient of oil/water in-
terface might be as low as 10−3N/m. In this case the esti-
mate of the Reynolds number remains unchanged, while
the Mach number (and the capillary number) may be
lower.
The capillary constant, ǫ, primarily determines the

thickness of liquid/liquid interface. In reality the inter-
face thickness is just several molecular layers, which is
zero for the macroscopic approach. This signifies that
the capillary constant should be also very small. For the
sake of numerical solution, the interface is represented by
a transitional layer of finite thickness, and hence higher
values of the capillary constant are considered. Although,
to prove the physical meaningness of the results, it is im-
portant to show that the numerical results converge upon
gradual reduction of the capillary constant (or the Cahn
number), which is done in section III.
At last, we need to discuss the values of the mobil-

ity coefficient, α∗. This parameter is proportional to the
coefficient of diffusion, D∗, and thus its value can be es-
timated as α∗ = ρ∗D∗/µ∗.
We are interested in propagation of immiscible in-

terfaces, assuming that the Peclet number is so high
that diffusive processes remain insignificant. Indeed, the
typical diffusive time scale is τd = Pe, and hydrody-
namic changes are determined by a different time-scale,
τh = Re. Our results are obtained for Pe = 104 and
Re ≤ 1. Propagation of a meniscus through the full
length of a capillary (with the length of L = 6) takes less
than 10 units of non-dimensional time. Diffusion obvi-
ously does not play a significant effect over such a short
time period.
From the other hand, as shown by Jacqmin22, the

mobility coefficient determines the motion of a contact
line, and thus our results remain sensitive to its value,
even when its values are very small (and hence when
the Peclet number is very large). Most of our results are

obtained for Pe = 104, that would correspond to the mo-
bility coefficient, α∗ ∼ 10−6kg2J−1s−1m−1, and to the
liquid/liquid diffusivity, D∗ ∼ 10−10m2s−1. Jacqmin22

showed that for such diffusivities, diffusion could success-
fully support the motion of a contact line. The change of
the actual value of the Peclet number does affect charac-
teristics of the multi-phase fluid flow, although, we ob-
serve no qualitative changes in the resuls when the Peclet
number varies in the range of 103 and 105.

III. NUMERICAL SOLUTION

The governing equations are solved numerically using
the formulation of primitive variables, pressure-velocity,
and using the fractional-step (or projection) method
that is implemented on the basis of the finite difference
approach.23,24

The numerical results are reported in the terms of the
flow fields (the fields of concentration, pressure, velocity
and chemical potential), and in the terms of the inte-
gral parameters, the speed of the meniscus’ tip and con-
tact line, the flow fluxes at the inlet/outlet, the length of
the interface, the surface tension coefficient, the capillary
pressure, and the apparent contact angle.

The position of the interface is determined by the con-
centration level, C = 0. To determine the speed of the
meniscus’ tip, Vtip, and the speed of the meniscus’ ends,
Vwall, we determine the rates of changes of the corre-
sponding points of the interface, xtip and xwall. To de-
termine the length of the interface, Lδ, we first search for
the nodes between which the concentration changes sign
and determine the position of the interface between these
nodes by using the linear interpolation; we next obtain
the length of an interface element that lies within the cell
formed of four nodes; and finally we sum up these elemen-
tary lengths to obtain the length of the whole interface
line.

To determine the apparent contact angle, α, we cal-
culate the angle between the horizontal line and the line
that connects the end of the meniscus on the wall with
another point on the meniscus. The x-position of another
point is taken as a fraction of the distance (xtip − xwall).
Three different fractions are used, 0.25, 0.33, and 0.5,
and the results are shown if the so-obtained three angles
are sufficiently close to each other.
We also calculate the coefficient of the surface tension

as

σ =
Cn

Lδ

∫

V

(

(

∂C

∂x

)2

+

(

∂C

∂y

)2
)

dV . (19)

Here V is the volume (for 2D case, the area) of the com-
putational domain.
Other studies on the liquid/liquid displacement in cap-

illaries are frequently focused on the determination of the
fraction of the liquid, that initially saturates a capillary,
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and that is left in the capillary at the end of displace-
ment. We calculate this fraction using the definition that
is based on the velocity profile,12

m = 1− Q

Vtip

. (20)

Here Q is the volumetric flow flux through a capillary
that is determined at the capillary’s inlet or outlet (as
both liquids are incompressible these two quantities are
equal),

Q =

∫

y

(ux)x=0,L dy. (21)

For validation of our numerical code, we first observed
establishment of the classical Poiseuille profile (14), that
is realised for sufficiently large values of Mach number
(in fact, for M = 1) when the capillary effects become
insignificant.
Next, we checked the numerical convergence of our

results. We found that the calculations are more chal-
lenging (exhibit slower convergence upon improvement
of the numerical resolution) for lower Mach numbers
(M = 10−3 and lower). Figure 1 shows the curves ob-
tained for M = 10−4 for four different sizes of the grid
cells. One can notice that the curves that are obtained
by using the different numerical grids differ, although
slightly, and upon gradual increase of the resolution, the
convergence to a limiting result is observed. Based on
these test runs we concluded that the resolution with the
size of grid cells of 1/300 is sufficient for generation of
sufficiently accurate results.
Figure 2 depicts the curves obtained for different Cahn

numbers (different interface thicknesses). Convergence of
our results to the behaviour of a two-phase system with
a sharp interface can be observed, in the sense that the
distance between the curves decreases when the interface
thickness is taken smaller and smaller. Further, we show
the results of numerical simulations for the Cahn number,
Cn = 4 · 10−4, which is considered to be sufficiently low
to reproduce the behaviour of a liquid/liquid system with
an infinitely thin (sharp) interface.
Finally, we wish to remind that Jacqmin22 identified a

spatial scale, that characterises the size of a region where
diffusion controls the motion of a contact line. In terms
of the non-dimensional parameters, the non-dimensional
thickness of the Jacqmin’s length (that is scaled by the

capillarys diameter), is 10
√

M/(RePe) = 10
√

Ca/Pe.
In our work, this length varies from 0.1 (for M = 1,
Re = 1 and Pe = 104) to 10−3 (for M = 10−4, Re = 1,
and Pe = 104). This typical length remains greater than
the spatial size of the computational mesh, which is also
confirmed by the mesh-independence of our results.

IV. RESULTS

The numerical problem is characterised by a number
of governing parameters. In particular, the behaviour of

a mixture is strongly affected by the value of the Mach
number. Figures 3 and 4 depict the fields of concentra-
tion and pressure for three time moments that are ob-
tained for the runs fulfilled for M = 10−2 and M = 10−4

(or for Ca = 10−2 and Ca = 10−4, as Re = 1). These
two cases represent two different scenarios for the mo-
tion of the meniscus. In the case of higher Mach number
(higher capillary number), the displacement of a liquid
from a tube occurs via development of a finger, that dis-
places the liquid from the middle of the tube, although
some volume of the liquid remains attached to the tube’s
walls. The motion of the meniscus’ tip occurs consider-
ably faster as compared with the motion of the meniscus’
ends, so the interface constantly stretches. One can also
notice that the visible (apparent) contact angle, that de-
termines the shape of the interface near the wall also
constantly changes, becoming smaller. The shape of the
interface is determined by the concentration field. Owing
to boundary condition for concentration (10), the isolines
of the concentration field always remain orthogonal to the
wall, and the contact line also remains orthogonal to the
wall. This property can, however, be noticed only if the
region near the contact line is magnified.

In the case of smaller Mach number (smaller capillary
number), the meniscus propagates down the tube, pre-
serving its shape. The complete displacement of the liq-
uid that initially saturates a tube is observed. One can
also notice at lower value of the Mach number (lower cap-
illary numbers) the speed of the meniscus is considerably
lower.

In figure 4 one observes that the pressure drops linearly
along the tube. Although, near the meniscus the pressure
isolines become substantially different from a simple set
of vertical lines, so the shape of the meniscus could be
clearly seen from the isolines of the pressure field.

We assume that the fluids stay at rest at the initial
moment, when the pressure difference between the tube
ends is switched on. Very quickly after that, a ‘steady’
fluid flow is established in a capillary, in terms that the
inlet and outlet flow fluxes remain constant, neverthe-
less, during this motion one liquid is being displaced by
another, and the propagation of a liquid/liquid interface
induces a non-steady vortical motion in the tube.

Figure 5 shows the flow fields at an intermediate time
moment. In addition to the fields of pressure and con-
centration, one can also see the field of velocity (figure
5b). Far from the meniscus the velocity has a parabolic
profile. Near the meniscus the velocity profile is differ-
ent, and figure 5d depicts the deviation of the velocity
field from the Poiseuille profile (14). One can see that
the motion of the meniscus is slowed down by a reverse
motion of the fluid near the meniscus’ tip. Figure 5c also
shows the field of chemical potential.

Figures 6 and 7 depict the characteristics of the menis-
cus’ motion for the different Mach and Reynolds num-
bers. The pressure difference that is set between the
ends of the tubes (13) is defined so to have the maxi-
mum velocity equal to 1 when the capillary effects are
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FIG. 1. (a) The velocity of the tip of the liquid/liquid meniscus and (b) the length of the meniscus vs. time. The data are
obtained for Pe = 104, Cn = 4 · 10−4, Re = 1, M = 10−4 using the numerical grids with the grid size of 1/250 (solid lines),
1/300 (dotted lines), 1/350 (dashed lines), and 1/400 (dash-dotted lines).

FIG. 2. (a) The velocity of the tip of the liquid/liquid meniscus and (b) the length of the meniscus vs. time. The data

are obtained for Pe = 104, Re = 1, M = 10−2 for different Cahn numbers (different interface thicknesses, as δ =
√

2Cn)
Cn = 5 · 10−5 (long-dashed lines), Cn = 2 · 10−4 (solid lines), Cn = 4 · 10−4 (dotted lines), and Cn = 8 · 10−4 (dashed lines).

negligible. The velocity of the meniscus’ tip is shown in
figure 6. The start of the numerical run is characterised
by a short adjustment period, during which the flow flux
(and the velocity of the meniscus’ tip) attains a certain
constant value, that remains unchanged until the menis-
cus stays within the tube.

In figure 6 one sees that for the higher Mach numbers
(or higher capillary numbers), when the surface tension
effects are weaker, the velocity profile is just slightly dif-
ferent from the classical Poiseuille profile. For these pa-

rameters, the lower value of the Reynolds number is, the
closer the velocity of the meniscus’ tip (that corresponds
to the maximum velocity of the flow) approaches to 1,
and hence, the closer the flow profile approaches to the
classical Poiseuille solution (14).

The dependence on the Reynolds number becomes
more pronounced at lower Mach numbers. At very low
Mach numbers (low capillary numbers), when a piston-
like displacement is observed, the velocity of the menis-
cus’ tip becomes significantly lower than 1, and the de-
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FIG. 3. The typical fields of concentration for different time moments. The data are obtained for Pe = 104, Cn = 4 · 10−4,
Re = 1, and two different Mach numbers, M = 10−2(a,b,c) and M = 10−4(d,e,f).

FIG. 4. The typical fields of pressure for different time moments. All parameters as in Figure 3.

pendence on the Reynolds number becomes very weak.

Figure 7 shows the time evolution of the meniscus’
length. For higher Mach numbers, the fingering dis-
placement is observed, when the meniscus constantly
stretches, and the meniscus’ length grows linearly. For
very low Mach numbers, the meniscus’ length quickly set-
tles to a constant value. The interface stretching depends
on the Reynolds numbers and the stretching is minimal
at higher Reynolds numbers.

Figure 8 shows the velocity profiles at the meniscus’ tip
and at some distance from the tip (this profile is taken
near the outlet, at x = 5.5, although the velocity profile
remains nearly constant along the tube, except for a very
narrow region in the vicinity of the meniscus). One can
see that the velocity profile has a parabolic shape, with
the maximum value lower than one. The profile becomes
non-parabolic near the meniscus. The greater differences
are observed for the case of lower Mach numbers, when
the velocity is nearly constant in the bulk (in the region

of the meniscus) with two thin boundary layers formed
near the tube’s walls. The difficulties with resolution of
these thin boundary layers explain the slower numerical
convergence of the results for lower Mach numbers.
The velocity of the meniscus can be calculated on the

basis of the classical Washburn equation4,

Vtip = 1−
Re

8

(

−
∂Π

∂x

)

=
Re

8

(p1 − p2)− pc
L

(22)

= 1− Re

8L
pc.

Thus, the flow in a tube is slowed down by capillary
forces, and the higher the value of the capillary pres-
sure is, the greater the speed of the meniscus’ tip differs
from 1.
Figure 9 depicts the pressure profiles along the centre-

lines. Outside the meniscus the pressure drops linearly.
There is a jump in the pressure levels at two sides of
the meniscus, which corresponds to the capillary pressure
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FIG. 5. (a) The fields of pressure (isolines with the density fields); (b) concentration (isolines) and velocity (vectors); (c)
chemical potential; and (d) concentration and deviation of the velocity from the Poiseuille profile. The fields are shown for the
time moment t = 3, and parameters Pe = 104, Re = 1, Cn = 4 · 10−4.

FIG. 6. The velocity of the meniscus’s tip for the numerical runs with M = 10−1 (a), M = 10−2 (b), M = 10−3 (c), and
M = 10−4 (d). The other parameters are Pe = 104, Cn = 4 · 10−4, and different Reynolds numbers, Re = 0.25 (long-dashed
lines), Re = 0.5 (solid lines), Re = 1 (dotted lines), and Re = 2 (dashed lines).
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FIG. 7. The time changes of the meniscus’ length. The parameters are the same as in figure 6.

(the pressure is greater at the concave side of the inter-
face as expected). The capillary pressure depends on the
value of the Mach number, which explains the stronger
differences of the results obtained for lower Mach num-
ber (for greater capillary pressures) from the classical
Poiseuille flows. It is interesting to note that the cap-
illary pressure that is determined in figures 9 and the
speed of the meniscus’s tip are in favourable agreement
with the Washburn equation (22): the capillary pressures
in figure 9 are approximately 3.2 and 28 for M = 10−2

and M = 10−4, respectively, which gives the meniscus’
velocities, 0.93 and 0.42, and which are close to the val-
ues, 0.87 and 0.32, from figure 8.

The pressure profiles have a sharp peak within the
transition zone that separates two liquids. In figure 9b,
the peak is cut for a clearer picture. We consider this
peak as an artefact of the phase-field model. For in-

stance, the phase-field model predicts that the equilib-
rium concentration profile across the interface is given
by the tanh-function14, which is a modelling assump-
tion, rather than a real concentration profile. Similarly,
the particular shape of the pressure profile within the
liquid/liquid interface is insignificant (and may not be
validated by any experimental study), but what is much
more important are the levels of the concentration at the
sides of the interface, that are measurable, and that are
correctly predicted by phase-field model.

The magnitude of this peak depends on the Mach and
Cahn numbers. For instance, figure 10 depicts the pres-
sure distributions for three values of the Cahn number (or

for three different interface thicknesses, as δ ∼
√
2Cn).

One sees that the magnitude of the peak becomes smaller
when the Cahn number (and the interface thickness)
tends to zero. This result confirms that the singular be-
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FIG. 8. The profiles of the x-component of the velocity across the tube at the points of the meniscus’ tip (solid lines) and near
the inlet/outlet (dashed lines). The data are obtained for for t = 3, Pe = 104, Re = 1, Cn = 4 · 10−4, and two different Mach
numbers, M = 10−2 (a) and M = 10−4 (b).

FIG. 9. The profiles of the pressure along the centreline of the tube. The parameters are the same as in figure 8.

haviour in the pressure field is a feature of the numeri-
cal approach. The physically correct pressure field that
could be obtained in the limit of zero interface thickness
would apparently have no peak.

We need to underline that the results in the regions
outside of the transitional zone demonstrate the physi-
cally relevant behaviour even when the value of the cap-
illary number is different from zero (and what is also im-
portant that the results in the outer regions are indepen-
dent of the value of the Cahn number when Cahn num-
ber is sufficiently small). For instance, as earlier demon-
strated by Jacqmin22, the chemical potential within the
contact line also exhibit the singular behaviour (and that

is also observed in our simulations), although ‘the outer-
region velocity field is the same as for sharp interfaces’.

The surface tension coefficient for the liquid/liquid in-
terface can be calculated from the concentration field us-
ing equation (19). In figure 11 one sees that the surface
tension coefficient changes over time, and these changes
are related to interface stretching that alters the interface
thickness (and the surface tension coefficient is inversely
proportional to the interface thickness).25 For lower Mach
numbers, when the shape of the meniscus stabilises, the
surface tension coefficient eventually reaches a constant
value.

Figure 12 depicts the time changes of the apparent
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FIG. 10. The pressure profiles along the centreline and along the wall for M = 0.01, Re = 1, Pe = 104 and three different
Cahn numbers, Cn = 8 · 104 (dashed line), Cn = 2 · 104 (solid line) and Cn = 5 · 105 (dotted line). The profiles are show for
t = 3.

contact angle. For higher Mach numbers, for the fin-
gering displacement, the contact angle becomes smaller
and smaller over time, and ultimately approaching zero
value. If the shape of the meniscus stabilises then the
contact angle takes a certain constant value, which de-
pends on the Mach and Reynolds numbers. For the case
of very low Mach numbers and higher Reynolds numbers,
the apparent contact angle approaches 900, which is the
static contact angle set by the boundary condition for
concentration (10).
For an axisymmetric meniscus enclosed in a capillary,

the capillary pressure can be determined using a standard
equation (written here in the non-dimensional form),

pc =
2σ cos(θ)

MR
. (23)

Here R = 1/2 is the capillary’s radius.
The values of the capillary pressure that can be de-

termined from figure 9 are in a perfect match with the
data given by equation (23), if one uses the values of the
surface tension coefficient and the apparent contact angle
from figures 11 and 12. For instance, for M = 10−2 and
Re = 1, the surface tension coefficient equals 0.0079, the
apparent contact angle is 70, and using equation (23) one
obtains pc ∼ 3.1, which is very close to the value, 3.2, as
in figure 9a.
Finally, figure 13 depicts the values of the mass fraction

of the liquid that initially saturates a capillary and that is
eventually left on the capillary’s walls. For higher Mach
(and capillary) numbers, when the capillary effects are
negligible, and the flow profile is close to the Poiseuille
flow, Q = (2/3)Vtip, and hence m = 1/3. This value dif-
fers from the asymptotic value 1/2, reported in numerous

studies6,10,11, which is solely explained by the fact that
we consider a 2D geometry, while all other studies deal
with 3D configurations. It can be easily shown that for
an axisymmetric Poiseuille flow in a tube with the circu-
lar cross section, the mass fraction defined by equation
(20) is m = 1/2.
In spite of the difference in the asymptotic val-

ues at large capillary numbers, the general depen-
dence predicted by our numerical simulations is in a
good agreement with other theoretical and experimen-
tal works6,10,11. In addition, the calculation of the mass
fraction, m, is traditionally fulfilled for the fingering dis-
placement, although, formula (20) may be applied for
an arbitrary velocity profile. Figure 13 depicts the data
obtained for the fingering and piston-like displacements,
which are marked by the circles and crosses, respectively.

V. DISCUSSION

An apparent difficulty of the direct numerical mod-
elling of the liquid/liquid displacement is the fact that
the meniscus may change its shape. The meniscus’ shape
determines the capillary pressure, and the capillary pres-
sure can alter the flow flux through the capillary. This
complex problem seems to be inherently unsteady: even
if one agrees that the flow profile from the meniscus is
parabolic, the amplitude for this profile remains unde-
fined, as it is determined by the variable capillary pres-
sure. This is a major reason to solve the problem in
the formulation of pressure-velocity, being able to set the
pressure levels at the capillary’s inlet/outlet ends, rather
then the velocity profiles.
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FIG. 11. The time evolution of the surface tension coefficient. The parameters are the same as in figure 6.

Our results show that the meniscus shape does con-
stantly evolve if the capillary number is sufficiently high
(the fingering displacement). The capillary pressure (cal-
culated with the use of equation (23)) also experience
some minor changes as can be seen in figure 14. Never-
theless, the flow flux through the capillary and the speed
of the meniscus remain time-independent.

Modelling of two-phase flows in a capillary is also com-
plicated by the necessity to reproduce the movement of
a contact line. Other researchers either try to avoid this
problem by assuming that the wall is completely wet-
ted by one of the liquids8–10, or adopt the model for
the shear-induced slip, that introduces an additional phe-
nomenological parameter, the slip length (see e.g. Ref.
26).

In the phase-field approach the position of the interface
is traced on the basis of the concentration field: move-

ments of an interface, as well as movements of a contact
line are explained by the evolution of the concentration
field, that is determined by the species balance equation
(3). We need to underline that all flow fields, includ-
ing the concentration field, are mesh-independent in our
simulations.

The movement of a contact line is ultimately deter-
mined by diffusion in a thin region formed near a contact
line. The diffusive transport is determined by the Peclet
number, and thus this parameter determines the slippage
rate of a contact line (see figure 15). By performing the
simulations for several different Peclet numbers, we show
that the flow characteristics depend on this parameter,
although, no qualitative changes in the flow behaviour
are observed (for Pe = (103 ÷ 105)).
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FIG. 12. The time evolution of the dynamic contact angle. The parameters are the same as in figure 6. In (d), only two curves
are shown for Re = 0.25 and Re = 0.5, as the adopted algorithm for calculations of the contact angle generates too noisy results
for higher Reynolds numbers.

VI. CONCLUSIONS

In this work, we provide a direct numerical modelling
of the liquid/liquid displacement within the capillary. We
consider a wide range of the capillary and Reynolds num-
bers, reproducing the scenarios of the fingering displace-
ment and the piston-like displacement of a liquid by in-
jection of another liquid. The phase-field approach is
used for modelling the hydrodynamic evolution of two
immiscible liquids.

We demonstrate that the phase-field approach is ca-
pable of reproducing all features of the liquid/liquid dis-
placement, predicting the temporal changes of the veloc-
ity profile, the interface shape, the capillary pressure as-
sociated with the meniscus, the apparent contact angle,

and the volume of the liquid that is left on the capil-
lary’s walls. In particular, we demonstrate the pressure
profiles across the curved meniscus, showing the values
of the capillary pressure, which is not available in other
studies.

To verify our results, (i) we show that the pressure
jump across the interface is well aligned with the value of
the capillary pressure that is calculated using the surface
tension coefficient that is defined by the integration of the
square of the concentration gradient across the interface;
and (ii) we show that the effect of the capillary pressure
on the motion of fluids through the capillary agrees with
the classical Washburn equation. Moreover, far from a
fluid/fluid meniscus, the velocity and pressure profiles are
also in an agreement with classical expectations.

In conclusion, we would like to state that the devel-
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FIG. 13. The mass fraction (20) vs. capillary number. The
results are shown for Pe = 104, Cn = 4 · 10−4, and different
Reynolds numbers. Circles correspond to the fingering dis-
placement, and crosses depict the piston-like displacements.

FIG. 14. The capillary pressure as calculated from equation
(23) vs. time. The curves are plotted for M = 10−2 and other
parameters as in figure 6.

oped model allows dynamic determination of the capil-
lary pressure and the apparent angle for a liquid/liquid
meniscus propagating through a capillary, providing a ro-
bust approach for dynamic simulation of the liquid/liquid
displacement in a single capillary. In our future work,
we aim to adopt this approach for modelling of the liq-
uid/liquid displacement through a representative element
of a porous medium to be given by a regular network of
capillaries.

FIG. 15. The position of a meniscus on a wall vs. time. The
curves are plotted for M = 10−2, Re = 1, Cn = 4 · 10−4

and three different Peclet numbers, Pe = 103 (dashed line),
Pe = 104 (solid line), and Pe = 105 (dotted line).
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