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Abstract 21 

Rationale for review: The increasing mobility of populations allows 22 

pathogens to move rapidly and far, making endemic or epidemic regions more 23 

connected to the rest of the world than at any time in history. However, the 24 

ability to measure and monitor human mobility, health risk, and their changing 25 

patterns across spatial and temporal scales using traditional data sources has 26 

been limited. To facilitate a better understanding of the use of emerging 27 

mobile phone technology and data in travel medicine, we reviewed relevant 28 

work aiming at measuring human mobility, disease connectivity, and health 29 

risk in travellers using mobile geopositioning data.  30 

Key findings: Despite some inherent biases of mobile phone data, analysing 31 

anonymized positions from mobile users could precisely quantify the 32 

dynamical processes associated with contemporary human movements and 33 

connectivity of infectious diseases at multiple temporal and spatial scales. 34 

Moreover, recent progress in mobile health (mHealth) technology and 35 

applications, integrating with mobile positioning data, shows great potential for 36 

innovation in travel medicine to monitor and assess real-time health risk for 37 

individuals during travel.  38 

Conclusions: Mobile phones and mHealth have become a novel and 39 

tremendously powerful source of information on measuring human 40 

movements and origin-destination specific risks of infectious and non-41 

infectious health issues. The high penetration rate of mobile phones across 42 

the globe provides an unprecedented opportunity to quantify human mobility 43 

and accurately estimate the health risks in travellers. Continued efforts are 44 

needed to establish the most promising uses of these data and technologies 45 

for travel health. 46 

Keywords: Mobile phone, mHealth, population movement, connectivity, 47 

epidemiology, risk assessment, travel medicine  48 



 

3 

 

Introduction 49 

Human populations are highly mobile in this modern world. The volume of 50 

worldwide population travel has expanded at an exceptional rate over the last 51 

few decades, with international tourist arrivals increasing from 674 million in 52 

2000 to 1.3 billion in 2017, and expected to reach 1.8 billion by 2030.1,2 The 53 

increasing mobility of populations allows pathogens to move rapidly and far, 54 

making endemic or epidemic regions more connected to the rest of the world 55 

than at any time in history. The pathogens introduced by travellers may lead 56 

to secondary transmission and local outbreaks, as has been observed in 57 

severe acute respiratory syndrome (SARS), influenza, Ebola, Zika, yellow 58 

fever, and measles, among others, or to the appearance of diseases such as 59 

malaria in non-endemic areas following migration for work or travel to visit 60 

friends and relatives (VFR).3-13 The spread of infectious diseases and their 61 

potential health risk in travellers has resulted in substantial concerns and 62 

challenges to global health systems and economies,14-17 with a need to place 63 

more emphasis on understanding population mobility, infectious disease 64 

connectivity and the individual health risk of travellers. 65 

Human movements vary from short, periodically recurring travel to work or 66 

school, to rare international migration, but the ability to measure and monitor 67 

human mobility and its changing patterns across temporal (hour, day, week, 68 

month, or year) and spatial (individual, house, community, city, or nation) 69 

scales using traditional data sources has been limited. In resource-poor 70 

settings, demographic data collected via traditional censuses and surveys at 71 

subnational scales can often be lacking or outdated.18 However, many recent 72 

studies have highlighted how our understanding of human mobility across 73 

contexts can be significantly improved through quantitative analyses of 74 

positioning data from the huge population of mobile phone users.19,20 In 2017, 75 

there were already over 5 billion unique mobile subscribers globally, with a 76 
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penetration rate of 66% of the global population, and the total number of 77 

mobile cellular subscriptions exceeds the world population at 7.79 billion.21,22 78 

Moreover, mobile phone penetration is constantly rising and is predicted to 79 

nearly reach 6 billion users by 2025 with 5 billion connecting to Internet.21,23 80 

Even in the most resource-poor regions, such as Sub-Saharan Africa, the 81 

penetration rate of mobile cellular subscriptions has reached 75% of the 82 

population in 2017 (Figure 1), which is estimated to steadily increase to 85% 83 

by 2025.21,22 As mobile phones are now an integral part of modern life, mobile 84 

positioning data has become a novel and tremendously powerful sources of 85 

information on measuring human movements and pathogen spread.12,19,20,24-35 86 

Quantifying how people move throughout their daily activities within the 87 

context of spatial risks enables a better understanding of environmental 88 

drivers of infectious disease, as well as chronic disease and other issues that 89 

involve long-term differences in exposure and mobility during travel.36-39 90 

Recent advances in mobile health (mHealth) technology, together with the 91 

increasing penetration of smartphones and the internet, have facilitated the 92 

monitoring of traveller health behaviour and assessment of environmental 93 

risks, e.g. air pollution, and offer more reliable and more frequently updated 94 

‘apps’ that consolidate travel health information from multiple sources in travel 95 

medicine research and practice.36,37,40-45 96 

To facilitate a better understanding of the use of mobile phone data in 97 

travel health, here we review the research work aimed at measuring human 98 

movements, disease connectivity, and health risk in travellers using mobile 99 

geopositioning data and mHealth technology. We searched PubMed for all 100 

related studies, published up until 5 March 2019 and in English, by the 101 

queries “(mobile phone OR cell phone OR smartphones OR call detail records 102 

OR mHealth OR eHealth) and (travel OR mobility OR movement OR 103 

connectivity) AND (disease OR health OR risk OR illness)” in the title and 104 
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abstract fields. The number of relevant publications resulting from these 105 

searches has grown rapidly over the last decade (Figure 2). We also 106 

searched the relevant reports and reviews published by the World Health 107 

Organization (WHO), and relevant references cited in publications were also 108 

reviewed. In this paper, first, we outline traditional and novel data sources for 109 

measuring population movements, highlighting the potential of mobile 110 

positioning data. Then, we sketch out approaches using human mobility data 111 

as a proxy for infectious disease connectivity. Further, the progress of 112 

mHealth for individual health risk monitoring and assessment in travel 113 

medicine research and public health practice is also summarized. Finally, we 114 

discuss the challenges of using mobile phone data and future directions for 115 

research in this area. 116 

 117 

Measuring Human Mobility using Mobile Phone Data 118 

Traditionally, approaches to measuring human mobility rely on data from 119 

population and housing censuses, travel history surveys, or cross-border and 120 

traffic surveys (Table 1).35,46,47 With technological advancements, however, 121 

increasing numbers of novel data sources have been used to measure human 122 

movements. Data from small scale studies using personal Global Positioning 123 

System (GPS) trackers provide information on short-distance, circulatory 124 

movement and can directly inform activity spaces, the local areas within which 125 

people move or travel during the course of their daily activities.35,48,49 The 126 

trajectories of bank notes were traced to model human mobility over a long 127 

time period.50 Data of global air traffic and itineraries have also been analysed 128 

to measure internal and international connectivity and its impact on the spread 129 

of pathogens and vectors at city or airport level.3-8 Infrastructure data have 130 

also been used to define the connectivity between regions with the travel time 131 

as a proxy of human mobility and health accessibility.51,52 Moreover, earth 132 
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observation data, such as satellite imagery of night-time lights can help inform 133 

on the changing densities of populations within cities over the course of a 134 

year.35,53 Mobile phone data are particularly promising for analysing travel-135 

related phenomena on a scale previously impossible, providing a “big data” 136 

approach to understanding human mobility and its changes.16-30 Two types of 137 

mobile-based positioning data that have so far been increasingly explored in 138 

travel-related studies are call detail records (CDRs) and mobile location 139 

history. 140 

 141 

Call Detail Records 142 

CDRs are routinely collected by mobile phone operators for billing 143 

purposes.20,31 Each CDR contains an entry for each call or text made or 144 

received by any user with the subscriber identification module (SIM) card, 145 

together with the date and time of each communication and the tower that the 146 

communication was routed through within mobile phone networks.23,24 Every 147 

time an individual makes a call or sends a text via a short messaging service 148 

(SMS), it normally will be routed through the closest tower in the network. If 149 

these data are available in conjunction with geographic coordinates of 150 

relevant towers, then the tower-level location of each communication can be 151 

identified, and from this, the movement of individual mobile users between 152 

different calls can be derived. When mobile penetration rate is high in the 153 

population, or mobile users’ movements could be taken to represent the 154 

mobility pattern of the general population, spatially and temporarily explicit 155 

estimations of human mobility and densities at national scales can be derived 156 

from anonymised CDRs. Previous studies for Namibia, Bangladesh, Portugal 157 

and France have shown that estimates derived from CDRs can accurately 158 

replicate population counts and migration patterns from censuses.19,30,54-57 In 159 

these studies, each individual user was assigned a primary daily location 160 
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based on either the most frequently used mobile phone tower or the most 161 

recently used mobile phone tower if a communication was not placed on the 162 

day. However, as the data on very infrequent mobile phone users may 163 

introduce noise in defining locations and population mobility, infrequent mobile 164 

phone users, e.g. a subscriber with 30 days or less worth of data for each 165 

year, could be filtered out to obtain more accurate estimates of population 166 

movements.58 167 

Furthermore, these passive positioning data derived from CDRs can also 168 

be used to measure seasonal changes in subnational population numbers 169 

and produce density maps of human distribution changes over multiple 170 

timescales, providing more precise denominators for health metrics than static 171 

measures from censuses.20 However, CDRs cannot measure spatial 172 

movements finer than tower-level spatial resolution, and estimates are limited 173 

to domestic movements, as it is more difficult to obtain CDRs from operators 174 

in different countries to get estimates of international traveller flows. 175 

Nevertheless, mobile phone location history data are promising for measuring 176 

cross-border movements, as outlined below. 177 

  178 

Mobile Location History 179 

When smartphones are connecting to internet, various applications record 180 

user check-in locations with high spatial precision where various services are 181 

used.34,35,59,60 Location history data can be extracted from populations using 182 

mobile-based social media, e.g. Tweets, Facebook and WeChat, search 183 

engines, e.g. Google and Baidu, and other applications such as mHealth 184 

apps.34,35,56,57 These data are associated with a consolidated user account, 185 

allowing for recording of geographic coordinates that are passively recorded 186 

across all mobile devices that an individual has owned. Because location is 187 

identified using a combination of the phone’s internal GPS and connected 188 
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WiFi devices and cell towers, these data are as spatially refined as GPS 189 

tracker data and can span years. Moreover, the passively-collected nature of 190 

these data avoids many known biases from compliance issues in studies that 191 

use GPS trackers, and avoids recall bias found in self-reported travel history 192 

data.35 However, the biases may still exist, as the smartphone penetration is 193 

still very low in low income countries. The opt-out nature makes them 194 

sensitive and careful controls and ethics clearance need to be in place before 195 

accessing to these data. 196 

The high resolution of mobile-based location history data, however, 197 

means they are one of few viable sources of information for better 198 

understanding and mapping these differences towards mapping activity 199 

spaces and travel routes across long periods and countries. For instance, 200 

studies using Google location history and Twitter geotag data, being collected 201 

in an opt-out, passive fashion for users, demonstrated that mobile location 202 

history can be a reliable source to capture rich features of mobility movements 203 

within and between cities, and even between countries.35,59 Further, based on 204 

CDRs and social media location history data from different nations, a variety 205 

of individual and collective mobility patterns can be accurately predicted by 206 

using a universal model at diverse spatial scales.34 Therefore, mobile phone 207 

data provide an unprecedented opportunity to understand global and 208 

seasonal dynamics associated with contemporary human mobility. 209 

 210 

Mobile-derived Human Movements and Disease Connectivity 211 

Based on the enormously detailed travel itineraries that mobile phone data 212 

can produce, patterns of pathogen spread through space and time can be 213 

simulated and measured using individual human movement trajectories 214 

combined with existing knowledge on pathogens. Though some pathogens 215 

are transmitted via vectors or animal hosts, most infectious diseases rely on 216 
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human movement for wide-scale spread, and even for those spread by 217 

vectors, human movement plays a substantial role in transmission 218 

dynamics.61,62 To measure the risk of infectious disease spread via travellers 219 

by various modes of transportation, a variety of individual or metapopulation-220 

based statistical and mathematical models have been used to estimate the 221 

time, origins, destinations, probability and magnitude of pathogen importation 222 

and onward transmission from epidemic or endemic areas (Table S1). To 223 

date, mobile-derived human mobility, especially using CDRs, have been used 224 

to explore the transmission of malaria,12,31,55 dengue,29 cholera,63 measles,64 225 

rubella,28 Ebola,65,66 and HIV infection.67 226 

Taking malaria as an example, we illustrate how spatiotemporally explicit 227 

mobility derived from mobile positioning data has been used to define malaria 228 

connectivity and inform interventions. Although malaria is a mosquito-borne 229 

disease, human travel-mediated transmission on spatial scales that exceed 230 

the limits of mosquito dispersal has been undermining the success of malaria 231 

control and elimination programs that have been implemented in many 232 

countries.10-12,68 The early detection and treatment of imported parasites due 233 

to human travel become high priorities for informing malaria elimination policy. 234 

A variety of models, integrating CDR-derived human mobility and malaria 235 

epidemiological and entomological data, have investigated the dynamics of 236 

human carriers to identify importation routes and locate transmission foci that 237 

contribute to malaria epidemiology for endemic countries in sub-Saharan 238 

Africa, Mesoamerica, and South-East Asia.12,26,31,46,55,56,69,70 In these studies, 239 

spatial clusters of primary sinks and sources of parasite importation and their 240 

seasonal changes were disentangled, with the estimates of net export and 241 

import of travellers and infection risks by region. Using near real-time mobile-242 

derived mobility data, this evidence can be rapidly updated and used to 243 

identify where active surveillance for both local and imported cases should be 244 
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increased, which regions would benefit from coordinating efforts, and how 245 

spatially progressive elimination plans can be designed.55 To achieve local or 246 

national malaria control or elimination goals, even global malaria eradication, 247 

these approaches and findings have significant implications for targeting 248 

interventions at source locations to maximally reduce the number of cases 249 

exported to other regions, as well as providing health advice and healthcare 250 

for the travellers visiting to or returning from source regions.31,55,56  251 

It is noteworthy that models parametrized by various mobility data sources 252 

and spatiotemporal resolutions can generate divergent outcomes.32 Based on 253 

a spatially structured reaction–diffusion metapopulation model where the 254 

whole population is divided into sub-populations connected by mobility fluxes, 255 

a previous study found that the adequacy of mobile phone data for infectious 256 

disease models becomes higher when epidemics spread between highly 257 

connected and heavily populated locations, such as large urban areas.32 258 

Furthermore, seasonal and geographic spread of pathogens depends on 259 

connectivity fluctuations through the year, because seasonal travel and 260 

directional asymmetries could be across a spectrum from rural nomadic 261 

populations to highly urbanized communities, with combined effects of school 262 

terms and holidays.33 These variations in travel impact how fast communities 263 

are likely to be reached by an introduced pathogen. In addition to measuring 264 

the risk of pathogen spread, mobile-derive population movement data also 265 

play an important role in understanding the relationship between geographic 266 

isolation and health disparities by measuring the accessibility of health 267 

resources,71 identifying vulnerable and high-risk populations in vaccination 268 

campaigns,28,64 and evaluating interventions, e.g. screen/travel restrictions for 269 

epidemic containment.66 270 

 271 
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mHealth Applications and Risk Assessment in Travellers 272 

Because mobile positioning data are opt-out and are passively-collected as a 273 

user carries their smartphones, the recent rise of mHealth methodology, e.g. 274 

smartphone applications, offers new opportunities to capture the full range of 275 

health risks during travel in real time, from travel location, physical activity, 276 

health symptoms and sleep to environmental hazards such as extreme 277 

weather conditions and air pollution.42 For instance, mHealth has been used 278 

for dynamic assessment of exposure to air pollution during travel.36,37 279 

Research on travellers using mHealth applications offers many 280 

advantages in improving risk assessment over prior methodologies such as 281 

pre- and post-travel risk questionnaires. Using mHealth applications to assess 282 

risk in travellers daily during their trips minimises the risk of recall bias that is 283 

an inherent problem in administering health questionnaires weeks or months 284 

after the event actually occurred during the trip. In addition, novel publicly 285 

available data sources (e.g. weather patterns, social media data, traffic 286 

patterns) can be integrated with daily self-reported data on symptoms and risk 287 

behaviours in order to create a complex picture of how environmental factors, 288 

health behaviours, and personal risk factors interact during travel to create 289 

health outcomes. The ability to create a real-time map of traveller health 290 

events such as traffic accidents or infectious disease transmission has the 291 

potential to improve medical advice given prior to travel and enable a faster 292 

public health response to major events. Finally, prior research suggests that 293 

participants may be more likely to share sensitive or socially unacceptable 294 

information on an online form, improving understanding of rates of risky 295 

behaviours during travel.72 296 

Farnham et al42-45 used mHealth technology to identify the range of health 297 

outcomes during travel using real-time monitoring and daily reporting of health 298 

behaviours and outcomes and identify traveller subgroups who may benefit 299 
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from more targeted advice before and during travel. In this mHealth-based 300 

study, non-infectious disease related health issues were commonly found in 301 

travellers, despite being largely unaddressed in traditional travel medicine 302 

research; in addition, clear patterns of traveller behaviour and health 303 

outcomes emerged, suggesting that subgroups of travellers exist for whom 304 

specialised medical advice is needed. These results suggest a substantial 305 

potential for improving evidence-based travel medicine advice. Rodriguez-306 

Valero et al developed an mHealth application that tracked incidence of 307 

disease among travellers in real-time and provide telemedicine care to ill 308 

travellers.73 This study suggests the potential of mHealth for detecting and 309 

responding to traveller health issues in real-time, providing a two-way 310 

monitoring and response application. These studies also show that the use of 311 

a smartphone app to collect health information is technically feasible and 312 

acceptable amongst a traveller population, allowing researchers to minimize 313 

recall bias, greatly increases the quality and quantity of data collected during 314 

travel, and even respond to emergent health issues. Therefore, inferences 315 

from data monitored by mHealth apps can yield important insights for health 316 

risk assessment that were previously impossible in travel medicine. Moreover, 317 

mHealth data from a smartphone application integrated with streaming data 318 

sources have supported healthcare delivery, laboratory diagnostic tests and 319 

data collection, and allowed for the operation of a national level disease 320 

reporting and health surveillance with fine geolocated data at a low cost.74-79 321 

 322 

Discussion 323 

It has long been appreciated that population movements drive the 324 

transmission patterns and intensity of many infectious diseases. 325 

Understanding the changing patterns of human travel over time is critical for 326 

tailoring and updating evidence-driven surveillance and strategies to address 327 
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travel-related health issues.80 In this study, although a systematic literature 328 

review approach was not performed by using a comprehensive search 329 

strategy to collate all relevant empirical evidence, we still found the highly 330 

detailed mobile positioning data undoubtedly provide one of the most 331 

powerful, scalable, and real-time data sets on human mobility available, 332 

yielding insight into individual’s movement trajectories across various time and 333 

space scales. The advantages of using this innovative data source for travel-334 

related aspects are linked to its potential to overcome many limitations of 335 

traditional data sources and other approaches. Moreover, the recent advance 336 

of mHealth technology, together with mobile positioning data, shows great 337 

potential for innovation in travel medicine to monitor and assess real-time 338 

health risks for individuals during travel.32,42 However, there are a number of 339 

challenges that must be met to ensure the success of using mobile-derived 340 

human movement data.  341 

First, there are always confidentiality and ethical issues in using mobile 342 

positioning data automatically generated by individuals. This makes the 343 

location data held by individual, private or state actors logistically difficult to be 344 

accessed, as it is limited by telecom, internet, and data protection regulations 345 

in many countries.23,81 To facilitate data sharing and avoid privacy and 346 

commercial concerns, appropriate safeguards should be in place to ensure 347 

data security, with data anonymization and aggregation taking place on 348 

separate servers hosted by operators behind operators’ firewall before 349 

sharing.82 As the public health usefulness of these data continues to be 350 

demonstrated, mobile phone operators and technology companies are 351 

becoming more receptive to providing these anonymous data for research 352 

and public health purposes. Currently, however, access to these data has 353 

primarily been through negotiated agreements between operators and 354 

research groups. To make outputs from CDRs more accessible, the initiatives 355 
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like the Open Algorithms (OPAL) project and the FlowKit, a CDR analytics 356 

toolset developed by the Flowminder Foundation and the WorldPop research 357 

group at the University of Southampton, aim to unlock the potential of private 358 

data for public good in a privacy-conscientious, scalable, socially and 359 

economically sustainable manner.83,84 Moreover, it is necessary to create 360 

adequate legislative and regulatory frameworks to safeguard confidentiality of 361 

the information and ensure the ethical use of data for development projects.81 362 

Second, as mobile phone or social media users only represent a 363 

proportion of the whole population, the interpretation of mobility estimates 364 

must account for biases introduced by heterogeneous use of mobile phones, 365 

social media platforms and internet.81 It is often assumed that mobile phones 366 

are sufficiently widespread that users represent a true random sample of a 367 

population. However, mobile users are not necessarily representative of the 368 

population at large, as the differences in the use of mobile devices, social 369 

media platforms and internet are still significant by level of socioeconomic 370 

development, sex, age and urban/rural areas. In many low-resource settings, 371 

for instance, the users are commonly disproportionately male, educated and 372 

from larger households, compared with the general population.20,85,86 373 

Moreover, the behaviours of using mobile phones and social media as well as 374 

the possibility that individuals own multiple SIM cards or mobiles affect the 375 

ability to produce accurate and representative estimates of population 376 

mobility.20,23,25 Though these potential biases are decreasing as mobile phone 377 

ownership rises,20 a prerequisite for these studies is still to understand the 378 

demographic features of mobile phone owners or users of social media and 379 

mHealth apps. For instance, household surveys such as the Demographic 380 

and Health Surveys (DHS) program, can provide information on mobile phone 381 

usage and ownership patterns and allow assessment of spatial differences 382 

that could bias results.20 383 
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Third, given the increasing volume of these huge, complex and "noisy" 384 

mobile data as well as the spatiotemporal heterogeneity of disease 385 

transmission,81 another major challenge is the methodological difficulties of 386 

measuring transmission risk of infectious diseases at appropriate spatial and 387 

temporal spatial scales. Regarding the diverse biological aspects of 388 

pathogens, population immunity, and entomology and ecology of vectors, the 389 

complexity can be very different in the inference of the arrivals and spread risk 390 

of different pathogens. For instance, for pathogens with sufficiently high 391 

transmissibility, higher transmissibility could result in more rapid spatial 392 

spread. However, for pathogens with weak transmission, both seasonal 393 

patterns and the impact of distance might be obscured, and many locations 394 

might not be affected.28,29,33 Moreover, modelling results are also sensitive to 395 

the choices in the parametrization of population movements, considering the 396 

variety of individual travel activities and data sources.23,32 Understanding how 397 

modelling results are affected by limitations inherent to the mobile phone data 398 

will help to increase the predictive capacity of models based on such novel 399 

data sources, and facilitate the interpretation in uncertainties of travel-mediate 400 

epidemic modelling and the sensible use of big data for decision-401 

making.23,81,87,88 402 

Despite inherent biases in mobile phone data, the progress of analytic 403 

tools for adjusting estimates and increasing penetration rate of mobile devices 404 

and internet-based platforms in populations may diminish the impact of these 405 

biases on measures of human movements.71,85,86 More research is needed to 406 

establish the most promising uses of these data for travel health, and the 407 

combination of information extracted from traditional and innovative data 408 

sources are beginning to be produced and yield a proof of concept and road 409 

map for future studies on individual’s risk assessment in travel medicine.43-45 410 

For instance, phylogeographic analyses can relate travel and epidemiological 411 
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dynamics by integrating mobile data with expanding genetic data.  412 

However, given the mobile location data being collected every second 413 

across the world, as well as the upcoming 5G networks and advances of 414 

artificial intelligence (AI) technology, these digital records provide an 415 

unprecedented opportunity to quantify human mobility and accurately 416 

estimate the health risks through the sheer numbers of individuals reflected in 417 

the data streams.23,81  418 
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Tables 443 

Table 1. Traditional and innovative data sources for measuring human movements.  444 

Data Type Description Strengths Challenges 

Traditional data source   

Population and housing 

census  

Assembly of population and housing 

census data on place of residence 1-

5 years ago. 

• Primary source for migration statistics; 

• Global extent, consistent measure for 

complete population; 

• Shows strong correlations to shorter 

scale domestic and international 

movements; 

• Of value for global, continental, regional 

connectivity assessments. 

• Long-term movements and 

permanent migrations only; 

• Coarse spatial scale, bias to 

longer spatial scales; 

• Lack of census data in countries 

affected by conflicts; 

• Normally collected once every 

decade. 

Travel history surveys Travel log collected at health 

facilities, or through active 

surveillance/surveys. 

• Valuable data on relevant population 

pathogen movements; 

• High value for measuring temporal trends 

in domestic and international travel; 

• Not collected in many settings; 

• Sample a small proportion of 

population; 

• Selection and recall biases; 
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Data Type Description Strengths Challenges 

• Important data for refining and validating 

models. 

• Difficult to access, inconsistent 

coverage/quality. 

Cross-border and traffic 

surveys 

Counting the number of cars and 

people that are crossing a border. 

• Cross-border movements 

• Measuring seasonal patterns by multiple 

cross-sectional surveys 

• Difficult to obtain the origins and 

destination locations of travel; 

• Difficult to capture the whole 

picture of movements in where 

there are porous borders. 

Novel data source – Mobile phone   

Call Detail Records 

(CDRs) 

Individual-level records routinely 

collected by mobile phone operators 

for billing purposes, located to cell 

towers. 

• Cover large population of mobile users, 

potential to track hard-to-reach 

populations; 

• Rich spatiotemporal data on individual, 

fine-scale movements; 

• Capture long time series and seasonality 

with timely information; 

• Difficult to access and share; 

• Ownership biases; 

• Privacy issues and loss of 

information due to anonymization; 

• Difficult to capture international 

movements. 
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Data Type Description Strengths Challenges 

• Of value for national-scale analyses, 

assessing population distributions, 

disease connectivity, and the 

parameterisation of mobility models. 

Smartphone-based 

Internet/social media 

location histories 

Geo-located data on use of 

internet/social-media connected 

devices, integrating online media 

content. 

• Timely, spatially precise positioning data 

on users’ locations; 

• Long time series to capture seasonal 

domestic and international travel of users; 

• Rapidly increasing penetration, potential 

to track hard-to-reach populations; 

• Richness of information to understanding 

social connections and behaviours. 

• Ownership and selection biases, 

changing sample over time; 

• Data availability and loss of 

information due to anonymization;  

• Privacy and ethical issues; 

• Additional logistical, technical 

issues for analysis. 

mHealth apps data Individual travel history and health 

risk monitoring data collected by the 

mobile applications for mHealth. 

• Timely information on users’ location; 

• High value in real-time individual travel 

patterns, environmental exposure 

• Reliability of self-reported 

information; 
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Data Type Description Strengths Challenges 

monitoring and health risk assessment 

during travel; 

• Improving healthcare access for travel 

medicine and public health interventions; 

• Of value for the individual-level 

quantitative research on travel-related 

risk exposure and health outcome. 

• Selection bias and small sample 

size; 

• Indicators for measuring the risk 

and exposure; 

• Privacy and ethical issues. 

Novel data source – Other   

Air travel data Route aggregated statistics of flight 

passengers, and air transportation 

network data. 

• Includes the origins, stops, and 

destinations at airport or city level; 

• Captures seasonality in long time series; 

• High value in route-scale analyses, 

assessing international connectivity and 

modelling the risk of pathogen spread. 

• Incomplete picture of population 

movements; 

• Difficult to access travel itinerary 

data, and lacks demographic 

data; 
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Data Type Description Strengths Challenges 

• Coarse spatial scale and difficult 

to capture the origins and 

destinations beyond airports. 

Infrastructure Georeferenced data on transport 

links that form the basis of regional 

mobility. 

• Global coverage, consistent data; 

• Useful proxy indicative of mobility, 

connectivity and healthcare accessibility. 

• Based on an assumption that 

those travel times influence how 

population's move; no measure of 

actual movements;  

• Few time series; 

• Validation. 

Earth observation data Data collected via remote-sensing 

technologies to monitor and assess 

the status of and changes in 

environments, e.g. satellite nightlight 

imagery 

• Proxy measures of population 

movements; 

• Global coverage and high spatial 

resolution; 

• High comparability and timely 

information. 

• No actual movements with 

unknown origins and 

destinations; 

• Methodological and technical 

issues; 

• Continuity and validation. 

 445 
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Figures 446 

 447 
Figure 1. The penetration rate of mobile cellular subscriptions by region, 448 

2000-2017 (Data source: The World Bank 22). 449 

 450 

 451 

Figure 2. The number of relevant publications searched in the PubMed 452 

as of 5 March 2019.  453 
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