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Abstract 62 

Rationale: Chronic obstructive pulmonary disease (COPD) is characterised by airflow limitation, 63 

caused by emphysema and small airways disease (SAD). CT, coupled with image analysis enables the 64 

quantification of these abnormalities, however the optimum method for doing so has not been 65 

determined.  66 

Objectives: This study aims to compare two CT quantitative analysis techniques, disease probability 67 

measure (DPM), and parametric response mapping (PRM) and assess their relationship with specific 68 

physiological measures of SAD.  69 

Methods: Subjects with mild-moderate COPD, never smokers and healthy ex-smokers were recruited. 70 

Each had airway oscillometry and multiple breath nitrogen washout, measuring peripheral airway 71 

resistance (R5-R19), peripheral airway reactance (AX) and acinar airway inhomogeneity (Sacin). 72 

Subjects also had an inspiratory and expiratory chest CT, with DPM and PRM analysis performed by 73 

co-registering images and classifying each voxel as normal, emphysema (DPMEmph/PRMEmph) or non-74 

emphysematous gas trapping related to SAD (DPMGasTrap/PRMGasTrap).  75 

Results: 38 COPD subjects, 18 never smokers and 23 healthy ex-smokers were recruited. There were 76 

strong associations between DPM and PRM analysis when measuring gas trapping (rho=0.87, p<0.001) 77 

and emphysema (rho=0.99, p<0.001). DPM assigned significantly more voxels as emphysema and gas 78 

trapped compared to PRM (p<0.001). Both techniques showed significantly greater emphysema and 79 

gas trapping in COPD subjects compared to never smokers and ex-smokers (p<0.001). All CT measures 80 

had significant associations with peripheral airway resistance and reactance, with DPMGasTrap having 81 

the strongest independent association with R5-R19 (β=0.42, p=0.001) and AX (β=0.41, p=0.001). 82 

Emphysema measures had the strongest associations with Sacin (β=0.35-0.38).  83 

Conclusions: These results provides further validation for the use of DPM/PRM analysis in COPD by 84 

demonstrating significant relationships with specific physiological measures of SAD.  85 
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Introduction 106 

Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease characterised by airflow 107 

limitation, caused by a combination of parenchymal destruction and small airways disease(1). The 108 

quantity and distribution of these pathologies play important roles in the disease and may contribute 109 

to the variable clinical phenotypes that exist(2). Computed tomography (CT) can be used to image 110 

these pathological changes, with quantitative analysis techniques having the potential to detect 111 

regional distribution of disease, subtle changes in early disease and possibly the ability to track 112 

response to therapy beyond what physiological tests offer.(3).  113 

 114 

Emphysema is relatively simple to detect as low attenuation areas on CT and quantitative thresholding 115 

methods have been validated against histopathological specimens(4, 5). Measuring small airways 116 

disease is more complex, as the small airways are beyond the resolution of CT scanners. Gas trapping 117 

on expiratory CT can be used as a surrogate marker of small airways disease, although this is not 118 

specific and can be influenced by emphysema. More recently, co-registration techniques, such as 119 

parametric response mapping (PRM)(6) and disease probability measure (DPM)(7) have been 120 

developed, where individual voxels are registered between the inspiratory and expiratory CT and 121 

labelled as emphysema, non-emphysematous gas trapping or normal. The main difference between 122 

these is that PRM uses fixed attenuation thresholds, whereas DPM uses an alternative method based 123 

on the continuous distribution of Hounsfield unit (HU) values between inspiration and expiration CT 124 

to assess the probability of each voxel belonging to each tissue sub-type(7). Although PRM analysis is 125 

currently the more established technique, with studies showing associations with lung function(8) and 126 

decline in FEV1(9), there is a lack of thorough validation, with most studies comparing them to non-127 

specific measures of pulmonary function.  128 

There is currently no gold standard for detecting small airways disease, with all methods having 129 

limitations(10). This provides significant challenges when trying to validate CT measures of small 130 



airways disease, with most studies simply assessing them against clinical and basic physiological 131 

characteristics. More specific physiological tests of small airways dysfunction include the forced 132 

oscillation technique (FOT) and multiple breath nitrogen washout. FOT allows the measurement of 133 

change in resistance with frequency (R5-R19), a marker of peripheral airways resistance(11) and 134 

measurement of reactance at low frequencies (AX), which has also been suggested to reflect the 135 

properties of the peripheral airways(10, 11). The MBNW test measures the ventilation heterogeneity 136 

in in the acinar region (Sacin), an indicator of structural changes in this region potentially resulting from 137 

pathology in the small airways(12).  138 

This study aims to compare DPM and PRM CT analysis and provide further validation for their use in 139 

COPD subjects by assessing the relationship with detailed pulmonary function tests, including FOT and 140 

MBNW.  141 

 142 

Materials and Methods 143 

Subjects with mild-moderate COPD, healthy ex-smokers and never smokers were recruited into this 144 

study performed at the University hospital Southampton. COPD subjects were recruited from a 145 

combination of sources, including an established research database of COPD subjects, contact by 146 

clinicians involved or aware of the study within the hospital and other local health care facilities and 147 

through subjects responding to study adverts/posters. Never smokers and healthy ex-smokers were 148 

recruited from either a healthy volunteer’s research database held within the University hospital 149 

Southampton or through subjects responding to study adverts/posters. COPD subjects had an 150 

FEV1/FVC of <0.7 and an FEV1 of ≥50% predicted, while healthy ex and never smokers had normal 151 

lung function. COPD and healthy ex-smokers had at least a ten-pack year history but had quit at least 152 

6 months ago, while never smokers were defined by a minimal smoking history (<2 pack years). 153 

Exclusion criteria included a history of other pulmonary disease, long-term antibiotics/steroids or an 154 



exacerbation within the month prior to recruitment. All subjects gave written consent and the study 155 

was approved by the South Central C Research Ethics committee (REC number 15/SC/0528).  156 

CT scanning and image analysis  157 

Subjects underwent volumetric CT scans of the chest in full inspiration and maximum expiration using 158 

a Siemens Sensation 64 scanner. The imaging protocol followed standardised guidelines and consisted 159 

of; slice thickness 0.75mm, slice separation 0.5mm, tube voltage 120KV, effective mAs 90mAs, 160 

collimation 0.6mm and a pitch of 1. Images reconstructed with the B35 kernel were used for image 161 

analysis. Breathing instructions for optimum lung volume acquisition were followed(13–15).  162 

CT analyses were performed by an ISO-certified core laboratory, VIDA Diagnostics, Inc. (Coralville, IA, 163 

USA), using the DPM approach (figure 1)(7). Inspiratory and expiratory scans were registered using a 164 

nonlinear registration algorithm. For each registered voxel pair, two exponential probability decay 165 

functions, 𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥) and 𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥) were used to determine the continuous probabilities of structural 166 

loss and gas trapping, respectively. Structural loss probability was calculated based on the 167 

concentration of tissue (𝑡𝑡𝑖𝑖𝑖𝑖(𝑥𝑥)) as indicated by the CT inspiration intensity value.  Gas trapping 168 

probability was calculated based on the difference in tissue concentrations between expiration and 169 

inspiration (∆𝑡𝑡(𝑥𝑥)) in a way that scales inversely with 𝑡𝑡𝑖𝑖𝑖𝑖(𝑥𝑥). The ultimate classifications of normal 170 

(DPMNormal), non-emphysematous gas trapping (DPMGasTrap), and emphysema (DPMEmph) were 171 

determined based on the maximal product of the probabilities as follows: 172 

𝐷𝐷𝐷𝐷𝐷𝐷(𝑥𝑥) = �
DPMNormal if (1 − 𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥)) ∙ (1 − 𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥)) is maximal
DPMGasTrap if (1 − 𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥)) ∙ 𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥) is maximal
DPMEmph if 𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥) ∙ 𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥) is maximal

 173 

Figure 1, part D shows the three resulting classification regions on a 2D probability plot of gas trapping 174 

versus structural loss. Under this scheme, voxels with <50% probability of gas trapping and <50% 175 

probability of structural loss are classified as normal (DPMNormal), voxels with >50% probability of gas 176 

trapping and <50% probability of structural loss are classified as non-emphysematous gas trapping 177 

(DPMGasTrap) and voxels with >50% structural loss and >50% gas trapping are classified as emphysema 178 



(DPMEmph). Voxels with >50% structural loss and <50% gas trapping are labelled as DPMEmph  if the sum 179 

of those probabilities is>100%, otherwise they are labelled as normal. The rationale for this being that 180 

emphysematous tissue is presumed to exhibit both structural loss and gas trapping characteristics, 181 

but heightened certainty of structural loss is allowed to compensate for a lack of certainty of gas 182 

trapping in order to still warrant the DPMEmph label. 183 

The precise numerical definitions of 𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥) and 𝑝𝑝𝑡𝑡𝑟𝑟𝑎𝑎𝑎𝑎(𝑥𝑥) were determined using CT inspiration and 184 

expiration image pairs from a training set of subjects with various stages of COPD in the COPDGene 185 

and SPIROMICS studies. The various function parameters were optimized as to give the strongest 186 

Pearson correlation coefficient for the final DPM disease classification with standard pulmonary 187 

function and clinical measurements (FEV1, six minute walk distance, and St. George’s Respiratory 188 

Questionnaire score) (data not shown). 189 

PRM analysis was also performed on these co-registered images with voxels labelled as normal 190 

(PRMNormal), emphysema (PRMEmph) or non-emphysematous gas trapped (PRMGasTrap) according to the 191 

fixed thresholds, -950HU and -856HU(6).   192 

Pulmonary Function  193 

All lung function tests were performed during the same study visit. Pre-bronchodilator, single breath 194 

diffusion was performed as per guidelines, with percent-predicted carbon monoxide transfer 195 

coefficient calculated (TLCO%). 400mcg of salbutamol was administered using an inhaler and spacer 196 

device. Following this the tidal breathing tests, MBNW and oscillometry were performed before 197 

plethysmography and spirometry, with subjects allowed sufficient recovery time between testing. For 198 

MBNW, subjects breathed in 100% oxygen, maintaining a tidal volume of 1L for more than 6 turnovers 199 

in order to obtain Sacin values generated by the software Spiroware 3.1.6®, Exhalyzer D, Eco 200 

Medics(16). At least two measurements were obtained and the mean reported. The multifrequency 201 

airwave oscillometry system tremoFlo C-100; THORASYS, measured impedance during tidal breathing 202 

of at least 30 seconds, with three repeatable tests achieved and the mean reported(17). 203 



Plethysmography was performed as per guidelines to give measurements for residual volume/total 204 

lung capacity ratio (RV/TLC) and percent predicted residual volume (%RV). Spirometry was performed 205 

as per guidelines(18), giving measurements for FEV1%, FEV1/FVC and FEF75-25%. . 206 

Statistical Analysis 207 

Analysis was performed using SPSS version 24. The differences in demographic, physiological, and CT 208 

parameters between groups were tested using the Kruskal-Wallis test. Simple univariate associations 209 

were tested using spearman’s correlations. Multivariable analysis was performed by combining each 210 

of the CT parameters in turn with demographic variables (age and gender) to predict each of the 211 

dependent variables. For differences between multiple groups a Bonferroni correction was applied to 212 

adjust for multiple tests. A p value <0.05 was considered statistically significant.  213 

 214 

Results 215 

38 COPD subjects, 18 never smokers and 23 healthy ex-smokers were recruited. Demographic and 216 

pulmonary function data are shown in table 1. Groups were well matched. As expected, never smokers 217 

and healthy ex-smokers had preserved lung function. COPD subjects had a median FEV1 of 71% 218 

predicted (IQR 26.0), with 29% belonging to GOLD group 1 and 71% belonging to GOLD group 2. R5-219 

R19, AX and Sacin were all significantly higher in COPD compared to never and healthy ex-smokers 220 

(p≤0.001).  221 

CT Analysis 222 

Figure 2 shows an illustrative DPM-derived and PRM-derived map for three subjects (one never 223 

smoker and 2 with COPD). There was significantly more emphysema in COPD (DPMEmph 10.4%, IQR 224 

15.7 and PRMEmph 4.6%, IQR 9.4) compared to never (DPMEmph 1.2%, IQR 1.8 and PRMEmph 0.4%, IQR 225 

0.5) and healthy ex-smokers (DPMEmph 1.4%, IQR and PRMEmph 0.6%, IQR 1.3) using both techniques 226 

(p<0.001) (figure 3). There was also significantly more gas trapping in COPD subjects (DPMGasTrap 27.1%, 227 



IQR 16.8 and PRMGasTrap 23.1%, IQR 18.2) compared to never (DPMGasTrap 13.7%, IQR 8.6 and PRMGasTrap 228 

4.0%, IQR 5.9) or healthy ex-smokers (DPMGasTrap 16.4%, IQR 9.3 and PRMGasTrap 4.8%, IQR 7.5) using 229 

PRM and DPM analysis (p<0.001). There was however, no difference in emphysema or gas trapping 230 

between never smokers and healthy ex-smokers using either method. The two techniques showed 231 

relatively good overall consistency with one another as a median of 82.1% (IQR 11.2) of voxels were 232 

labelled the same. Much of this was driven by voxels labelled as normal, with a median of 99.3% (IQR 233 

0.0) voxels labelled as DPMNormal also being labelled as PRMNormal. Voxels labelled as DPMEmph were only 234 

labelled as PRMEmph a median of 36.9% of (IQR 15.0) the time, with the rest being labelled as PRMGasTrap. 235 

A median of 30.7% (IQR 31.0) voxels labelled as DPMGasTrap were also labelled as PRMGasTrap, with the 236 

remainder labelled as PRMNormal. As a result of this, there was significantly greater emphysema 237 

(p<0.001) and gas trapping (p<0.001) measured by DPM compared to PRM (figure 3). There were 238 

however strong associations between DPMEmph and PRMEmph (rho 0.99, p<0.001) and between 239 

DPMGasTrap and PRMGasTrap (rho 0.87, p<0.001) (figure 4).  240 

Table 2 shows the associations between CT parameters and lung function. There were significant 241 

independent relationships between all CT parameters and FEV1% (DPMEmph β -0.57, CI [-0.78, -0.37], 242 

PRMEmph β -0.52 CI [-0.73 to -0.32], DPMGasTrap β -0.56, CI [-0.78 to -0.34], PRMGasTrap β -0.54, CI [-0.76 243 

to -0.32]). There were also significant relationships between all CT parameters and FEV1/FVC, FEF75-244 

25%, TLCO% and RV/TLC. Associations were broadly similar between these CT and lung function 245 

measures, although emphysema tended to have stronger associations with TLCO% than gas trapping 246 

(DPMEmph β -0.54, CI [-0.75 to -0.34], PRMEmph β -0.55, CI [-0.75 to -0.35], DPMGastTrap β -0.34, CI [-0.57 247 

to -0.10], PRMGastTrap β -0.40, CI [-0.64 to -0.17]). All CT parameters had independent associations with 248 

R5-R19 and AX, with the strongest of these being with DPMGasTrap (R5-R19 DPMGastTrap β 0.42, CI [0.19 249 

to 0.66] and AX DPMGastTrap β 0.41, CI [0.19 to 0.64]). All CT measures, apart from DPMGasTrap, had 250 

significant associations with Sacin, with emphysema measures showing the strongest relationships 251 

(DPMEmph β 0.38, CI [0.16 to 0.60], PRMEmph β 0.35, CI [0.13 to 0.57])  252 



To understand whether level of lung inflation on CT influenced these results, we compared TLC and 253 

RV measured using plethysmography and CT. There were strong associations between TLC measured 254 

using CT and plethysmography (rho 0.90, p<0.001) and for RV (rho 0.84, p<0.001). When adding the 255 

ratio of level of lung inflation on CT at TLC (calculated by dividing CT inspiratory volume/TLC) and RV 256 

(calculated by dividing CT expiratory volume/RV) into the regression models, broadly similar results 257 

were seen (supplementary data).   258 

 259 

Discussion 260 

Emphysema and small airways disease are key pathological features of COPD, meaning it is vital that 261 

accurate methods for discriminating them are available. We used a novel CT analysis method, DPM,  262 

as well as PRM to determine these, finding that even within this relatively mild cohort of COPD 263 

subjects there was significantly more emphysema and small airways disease compared to never or 264 

healthy ex-smokers. For the first time, we compared these CT parameters with specific physiological 265 

measures of small airways disease, measured using FOT and MBNW, showing significant associations 266 

and thereby providing further validation for their use.  267 

DPM and PRM are image analysis techniques that co-register inspiratory and expiratory CT scans to 268 

identify voxels representing normal tissue, emphysema and non-emphysematous gas trapping 269 

secondary to small airways disease. One previous study has utilised both of these methods and in 270 

common with our results showed significantly more emphysema and gas trapping in COPD subjects 271 

compared to controls(7). To provide further validation for these, we assessed their performance 272 

against in-depth measures of pulmonary physiology. As with previous studies we found significant 273 

associations between CT-derived emphysema and gas trapping and FEV1%, FEF75-25%, TLCO% and 274 

RV/TLC(7, 19, 20). R5-R19 and AX, measured using FOT, reflect peripheral airway resistance and 275 

reactance with prior studies showing increased values in COPD(21–23). Both emphysema and gas 276 

trapping, measured using either DPM or PRM, had independent associations with R5-R19 and AX, 277 



although associations were strongest for DPM gas trapping. This is in contrast to a study in healthy 278 

individuals, which showed small airways resistance had an inverse relationship with PRM gas trapping, 279 

but not emphysema, while airway reactance did not show associations with either measure(24). The 280 

cause for this discrepancy is unknown although the study populations were different as we included 281 

COPD subjects and in addition, the direction of the relationships was as expected in our study. No 282 

other studies have assessed the relationships between CT image analysis and R5-R19 and AX in COPD 283 

subjects. Sacin, measured using MBNW, measures ventilation inhomogeneity, with a previous 284 

histopathological study suggesting it reflects acinar structural changes predominantly due to 285 

emphysema(25). To the best of our knowledge this is the first study comparing imaging with this 286 

measure and our findings would support this, as associations were strongest for emphysema. These 287 

results therefore provide further evidence for the use of both DPM and PRM in accurately measuring 288 

emphysema and small airways disease in COPD. It is however, important to point out that acquisition 289 

between the CT and physiological techniques are different. CT measures are volumetric measures and 290 

are derived from manoeuvres at TLC and RV, while FOT and MBNW are measured during tidal 291 

breathing. The pressure signals from which these FOT indices are derived may not reach beyond 292 

closed-off airways and thus may not measure all facets of small airways disease. Thus, incorporating 293 

imaging can improve understanding of early structural changes and compliment FOT and MBNW 294 

pulmonary data. Further studies can also advance the understanding with comparisons of 295 

physiological, imaging and histological measurements of small airways disease.   296 

We also sought to compare DPM with PRM measurements(6). PRM uses fixed attenuation thresholds 297 

to classify each voxel as emphysematous or gas trapped while DPM uses variable attenuation 298 

thresholds based on probability mapping. We found strong associations between the two techniques 299 

and found they were relatively consistent, especially when labelling voxels as normal. DPM did 300 

however, assign significantly more voxels as emphysematous and gas trapped than PRM. This is 301 

consistent with the previous work by Kirby et al(7) and together suggests that DPM may be more 302 



sensitive at detecting subtle changes in lung structure. An alternative explanation for this may be that 303 

DPM is overly sensitive, especially when measuring gas trapping as higher amounts were found in 304 

control subjects. Although both DPM and PRM had significant associations with specific measures of 305 

small airways disease (R5-R19 and AX), DPM gas trapping had the strongest association, while other 306 

associations with lung function were broadly similar. This is the first study to compare both CT 307 

techniques against these in-depth pulmonary function tests and provides some evidence to suggest 308 

that DPM may be superior at measuring small airways disease in COPD. This may be because using 309 

variable attenuation thresholds is less influenced by scanner or respiratory effort variability and 310 

therefore offers greater potential future application as a research and clinical tool. This however is 311 

conjecture and it must be noted that the difference in results between the two techniques were small 312 

and therefore may have limited practical significance. Unlike PRM, DPM assumes that most 313 

emphysematous voxels will exhibit both structural loss and a degree of gas trapping. There is however 314 

a risk that DPM incorrectly assigns a voxel as normal when there is emphysema present but only 315 

limited probability of gas trapping. This is overcome by allowing a voxel to be labelled as 316 

emphysematous where there is a heightened probability of structural loss (sum of the probabilities of 317 

structural loss and gas trapping is >100%). Further studies are required to compare the DPM and PRM 318 

techniques, especially in more severe cohorts, multi-centre studies and in longitudinal work.   319 

Our study has a number of strengths. Compared to many quantitative CT studies, this was a single 320 

centre study with all imaging performed on the same scanner, meaning scanner variability did not 321 

affect our results. All CT imaging was performed to an optimum protocol, allowing accurate 322 

segmentation and quantitative analysis. Particular attention was paid to standardising breath holding 323 

to ensure scans were captured at TLC and RV. In addition, none of the subjects were current smokers, 324 

which has been shown to be a potential confounder on CT analysis. Our study had a number of 325 

limitations, with the main one being the relatively small sample size of subjects. This however allowed 326 

the in-depth physiological tests to be performed. This cohort was relatively mild and so it is unknown 327 

whether similar results will be achieved with a more severe cohort. In addition to this, it must be 328 



acknowledged that unlike in previous studies there was little difference between never smokers and 329 

healthy ex-smokers. Another limitation is the multiple comparisons made in this study, however 330 

where appropriate Bonferroni corrections were used and we found far more significant associations 331 

than would be expected by chance alone.  332 

In conclusion, we provide further validation for the use of novel DPM and PRM CT analysis in 333 

determining emphysema and small airways disease by showing significant associations with in-depth 334 

pulmonary function tests, including FOT and MBNW techniques. Therefore, this data demonstrates 335 

that these novel imaging techniques can detect subtle changes in lung structure to provide important 336 

phenotypical insights which could in the future be utilised for clinical and drug development purposes.  337 

 338 
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Tables 446 

 447 
Table 1. Demographics and lung function in never smokers, ex-smokers and COPD subjects. 448 

 Never Smoker 
(N=18) 

Ex-smokers (N=23) COPD (N=38) 

Age (years) 63.0 (14.0) 67 (7.0) 70.5 (13.0) 
Male 10 (55.6%) 13 (56.5%) 29 (76.3%) 
BMI (kg/m2) 27.5 (6.3) 27.9 (6.38) 28.3 (6.8) 
Pack years 0.0 (1.6) 25.0 (22.0) 40.5 (37.2) 
Pulmonary Function 
FEV1% 104.0 (24.3) 100.0 (11.0) 71.0 (26.0) 
FEV1/FVC 79.0 (6.8) 78.0 (7.0) 56.5 (14.8) 
FEF75-25% 106.5 (33.8) 103.0 (31.0) 34.5 (21.5) 
TLCO% 95.0 (18.0) 90.0 (18.0) 72.0 (22.0)  
RV% 88.0 (30.5)  84.5 (21.0) 109.0 (39.0) 
RV/TLC 34.0 (7.0) 37.0 (9.8)  41.0 (11.0) 
R5-R19 0.31 (0.30) 0.27 (0.43) 0.78 (0.98) 
AX 4.4 (4.7) 4.4 (3.1) 11.2 (16.8) 
SACIN 0.10 (0.17) 0.12 (0.08) 0.35 (0.30) 

Values given as medians (IQR). Males given as number of subjects (%).  449 
For TLCO% n=18 for never smokers, n=20 for ex-smokers and n=36 COPD subjects.  450 
For RV% and RV/TLC ratio n=17 for never smokers, n=20 for ex-smokers and n=35 COPD subjects.  451 
For R5-R19 and AX n=18 for never smokers, n=21 for ex-smokers and n=37 for COPD subjects.  452 
For SACIN n=17 for never smokers, n=17 for ex-smokers and n=29 for COPD.  453 
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Table 2: Regression models assessing the relationship between CT parameters and lung function 471 
 DPMEmph DPMGasTrap PRMEmph PRMGasTrap 

FEV1%     

R2 .331 .299 .296 .284 

Standardized Effect Estimate -0.57 -0.559 -0.524 -0.54 

95% CI -0.775 to -0.365 -0.778 to -0.339 -0.731 to -0.317 -0.761 to -0.319 

FEV1/FVC     

R2 .625 .303 .591 .388 

Standardized Effect Estimate -0.742 -0.427 -0.704 -0.540 

95% CI -0.896 to -0.588 -0.646 to -0.208 -0.862 to -0.546 -0.744 to -0.366 

FEF75-25%     

R2 .471 .310 .423 .361 

Standardized Effect Estimate -0.664 -0.520 -0.609 -0.578 

95% CI -0.846 to -0.481 -0.737 to -0.302 -0.797 to -0.421 -0.787 to -0.370 

TLCO%     

R2 .393 .236 .408 .275 

Standardized Effect Estimate -0.542 -0.336 -0.549 -0.404 

95% CI -0.746 to -0.338 -0.574 to -0.098 -0.747 to -0.351 -0.636 to -0.173 

RV/TLC     

R2 .472 .555 .430 .539 

Standardized Effect Estimate 0.480 0.491 0.260 0.463 

95% CI 0.293 to 0.668 0.306 to 0.676 0.065 to 0.456 0.277 to 0.648 

R5-R19     

R2 .250 .288 .236 .241 

Standardized Effect Estimate 0.346 0.423 0.315 0.343 

95% CI 0.114 to 0.577 0.187 to 0.659 0.085 to 0.545 0.101 to 0.584 

AX     

R2 .252 .284 .248 .242 

Standardized Effect Estimate 0.34 0.413 0.329 0.338 

95% CI 0.119 to 0.561 0.185 to 0.641 0.111 to 0.547 0.106 to 0.570 

Sacin     



R2 .380 .285 .362 .318 

Standardized Effect Estimate 0.380 0.192 0.348 0.277 

95% CI 0.160  to 0.601 -0.051 to 0.436 0.127 to 0.568 0.040 to 0.513 

Each of the CT parameters were combined into a regression model with demographic variables (age 472 
and gender) to predict each of the dependent variables. N = 63-76. All outcome variables were log-473 
transformed before regression analyses. 474 
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 478 

 479 

Figure Legends 480 

Figure 1. DPM analysis methodology. CT inspiratory and expiratory images are co-registered using a 481 
non-linear registration algorithm (A). Continuous probabilities of structural loss (B) and gas trapping 482 
(C) are computed at every lung voxel pair based on co-registered inspiratory and expiratory Hounsfield 483 
unit values.  Results are classified according to the maximal product of probabilities, resulting in the 484 
three classification regions (normal, non-emphysematous gas trapping, and emphysema) shown on 485 
the 2D probability plot (D).  Labels are aggregated for all voxel pairs and mapped back into a volumetric 486 
representation (E).   487 

 488 

Figure 2. DPM (1) and PRM (2) -derived maps showing normal tissue in green, non-emphysematous 489 
gas trapping in yellow and emphysema in red for three subjects (A) a healthy control subject (B) A 490 
COPD subjects with significant gas trapping and moderate emphysema (C) a COPD subject with 491 
significant emphysema.  492 

 493 

Figure 3. Quantity of emphysema and gas trapping in never smokers (NS), ex-smokers (ES) and COPD 494 
subjects using DPM and PRM techniques. (A) DPMnormal (B) PRM normal (C) DPMGasTrap (D) PRMGasTrap (E) 495 
DPMEmph (F) PRMEmph. Data represents median and IQR. N=18 for never smokers, 23 for ex-smokers 496 
and 38 for COPD subjects. *p<0.05. 497 

 498 

Figure 4. Scatterplots of DPM against PRM (A) Normal (B) Gas trapping (C) Emphysema.  499 
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Supplementary Table: Regression models assessing the relationship between CT parameters and 
lung function  

 DPMEmph DPMGasTrap PRMEmph PRMGasTrap 

FEV1%     

R2 .426 .351 .380 .369 

Standardized Effect Estimate -0.629 -0.553 -0.554 -0.544 

95% CI -0.848 to -0.409 -0.792 to -0.314 -0.773 to -0.334 -0.767 to -0.321 

FEV1/FVC     

R2 .621 .401 .594 .433 

Standardized Effect Estimate -0.719 -0.470 -0.666 -0.490 

95% CI -0.897 to -0.540 -0.700 to -0.240 -0.844 to -0.489 -0.701 to -0.279 

FEF75-25%     

R2 .499 .396 .452 .414 

Standardized Effect Estimate -0.662 -0.557 -0.589 -0.548 

95% CI -0.867 to -0.457 -0.788 to -0.326 -0.795 to -0.382 -0.763 to -0.334 

TLCO%     

R2 .447 .233 .450 .285 

Standardized Effect Estimate -0.625 -0.320 -0.606 -0.398 

95% CI -0.847 to -0.404 -0.590 to -0.050 -0.819 to -0.393 -0.643 to -0.153 

RV/TLC     

R2 .573 .559 .500 .589 

Standardized Effect Estimate 0.490 0.526 0.359 0.496 

95% CI 0.301 to 0.679 0.336 to 0.716 0.273 to 0.648 0.317 to 0.676 

R5-R19     

R2 .273 .277 .251 .250 

Standardized Effect Estimate 0.424 0.439 0.373 0.372 

95% CI 0.169 to 0.679 0.178 to 0.699 0.123 to 0.623 0.120 to 0.623 

AX     

R2 .276 .279 .269 .252 

Standardized Effect Estimate 0.395 0.411 0.370 0.339 

95% CI 0.149 to 0.642 0.158 to 0.663 0.131 to 0.608 0.097 to 0.582 



Sacin     

R2 .391 .262 .361 .301 

Standardized Effect Estimate 0.475 0.190 0.410 0.288 

95% CI 0.223 to 0.727 -0.083 to 0.464 0.162 to 0.658 0.036 to 0.539 

Each of the CT parameters were combined into a regression model with demographic variables (age 
and gender) and inflation level at TLC and RV to predict each of the dependent variables. N = 63-76. 
All outcome variables were log-transformed before regression analyses. 

 

 

 

 


