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We compare two methods for controlling synchronisation in the Kuramoto model on an undi-
rected network. The first is by driving selected oscillators at a desired frequency by coupling to an
external driver, and the second is by including adaptive lags — or dynamical frustrations — within
the Kuramoto interactions, with the lags evolving according to a dynamics as a function of the
reference frequency with an associated time-constant. Performing numerical simulations with ran-
dom regular graphs, we find that above a certain connectivity driving via adaptive lags allows for
stronger alignment to the external frequency at lower value of the time-constant compared to the
corresponding coupling strength for the externally driven model. Numerical results are backed up
by equilibrium analysis based on a fixed point ansatz for frequency synchronised clusters where we
solve the spectrum of the associated Jacobian matrix. We find that at low connectivity the external
driving mechanism is successful down to lower densities of controlled oscillators where the adaptive
lag approach is Lyapunov unstable at all densities. As connectivity increases, however, the adaptive
lag mechanism shows stability over similar ranges of density to the external driving and proves
superior in terms of tighter splays of oscillators. In particular, the threshold for instability for the
adaptive lag model shows robustness against variations in the associated time constant down to
lower densities of controlled oscillators. A simple intuitive model emerges based on the interaction
between splayed clusters close to a critical point.

PACS numbers: 05.45.Xt, 05.70.Ln, 89.75.Fb, 89.75.Hc

I. INTRODUCTION

The ability of networks of coupled entities to achieve
synchronised dynamics is fundamental to many scientific
applications, from physical, chemical, biological and even
social or human organisational systems. To this end, the
Kuramoto model [1] on a network, defined by

. Jraml
0; = w; + N;Aij sin(0; — 0;), (1)

integrates a number of simple features such as structure,
heterogeneity and cyclic dynamics while displaying quite
rich behaviours (see [2-5] for recent reviews). Here 6; is
a time-dependent phase angle at node ¢ of a network of
N nodes of a graph G given by the adjacency matrix A,
with w; the native frequencies drawn from some statis-
tical distribution. The model is well known to display
a critical transition for the complete graph for N — oo
at some coupling K at which a proportion of oscillators
spontaneously synchronise to a frequency (for undirected
graphs) that is the mean of the native frequency ensem-
ble w; the normalised coupling may be absorbed into a
constant o = % Many papers have explored this syn-
cronisation for general networks, and the role of topology
in influencing this effect [6-11] or the inter-relationship
between topology and the frequency allocation on the

network [12]. More recently attention has turned to con-
trol problems in this context. The standard approach to
control on a network is to attach external controllers to
the nodes on which is defined a linear dynamical system,
and pose the analogous question to the Kalman filter [13]:
is the network controllable in the sense of any final state
being reachable from any initial state? In synchronisa-
tion problems this is more narrowly defined: can the sys-
tem be controlled to reach synchrony from any random
initial condition? Implicit in this objective is synchrony
to the mean of the frequency ensemble. In this paper we
shall explore a mechanism that improves synchronisation,
namely at lower ‘cost’ — in terms of coupling strength —
and to frequencies other than the mean of the ensemble
of native frequencies. Such a formulation of the control
problem is relevant in a range of contexts of engineered
systems where coordination is a requirement, from vehi-
cle motion [14], and power systems [15], to robot [16] and
human-robot interactions [17].

The classical work on external controllability on net-
works is that of Liu, Slotine and Barabasi [18] who adapt
the Kalman filter approach. As inferred, here the objec-
tive is to guarantee that any final state of a vector of
variables X; is achievable from any initial input using
linear control. More recently, the work has also been
generalised to some forms of non-linear control by Ar-
siwalla, Barzel and Barabasi [19]. Within the linear



model, problems of minimum number of nodes and min-
imum cost have been explored by Li et al. [20]. This
has been extended to multiplex networks by Posfai et al.
[21]. Within synchronisation problems, the final state is
more prescribed, namely frequency- or phase-synchrony.
Hamiltonian control for the Kuramoto model has been
explored by Gjata et al [22], where the Kuramoto model
can be written in Hamilton form using action-angles vari-
ables [23-25]. This method also works in the regime of
partial synchronisation where perturbations then allow
the fully synchronised state to be achieved. Closer in
spirit to our approach, an adaptive model of control has
been explored by Eom, Boccaletti and Caldarelli [26],
but where the network itself evolves through a fitness
model to improve synchronisation. An alternative ap-
proach considers an adaptive coupling [27]. In all of
these cases the adaptation improves synchronisation to
the mean frequency. Are different collective frequencies
possible? May control facilitate this?

One way of controlling to a different frequency is that
of pinning control, where one adds to Eq. (1) an addi-
tional term, say, u; that assumes some functional form
and is non-zero only for particular nodes, a subset that
seeks to pin the entire system to a specified behaviour.
For more general Laplacian coupled systems, such as used
in the Master Stability approach of [39], this has been ad-
vanced by [28] and [29]. In the Kuramoto model, varia-
tions of this have been explored by [30] and [31]. All these
approaches use Lyapunov stability to determine criteria
for achieving the desired controllability.

Our paper takes its cue from the lesser-known
Kuramoto-Sakaguchi model which introduces a phase lag
or frustration \;
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This model is known for the property that the system
does not synchronise to the mean of the ensemble by
virtue of the absence now of the antisymmetry of the in-
teraction function. In [32], a version of this model with
pinning terms, such as described above, was examined
for controllability. In [33], it was observed that lags alone
may be used to control the system to a predefined fre-
quency for the complete network case. In [34], a similar
mechanism was used for sparser graphs to enable fre-
quencies to be selected in order to provide for perfect
synchronisation. In our previous paper [35] we showed
how a form of codynamics, namely adaptive lags, where
the \; become functions of time with their own evolution
equation, can improve synchronisation for sparse net-
works — indeed, achieve perfect phase synchronisation.
This arises essentially because the phase shifts achieve
an equilibrium configuration that overcomes the barrier
posed by the non-uniform native frequencies for perfect
synchronisation §; = 0;. However, we observed that the
actual equilibrium state the system may end up in is un-
reliable for arbitrary initial conditions in [—, 7], so that

the system from a random initial condition was not guar-
anteed to synchronise to the selected external frequency.

In this paper we modify our adaptive lag mechanism
of [35] to show how it can become a control model in
the sense of guaranteeing synchronisation to a specified
external frequency. However, we compare the adaptive
lag model to the pinning control approach cited earlier,
which, due to its precedence we refer to as the reference
model. We find, in fact, that the adaptive model is more
efficient in terms of required controlled nodes at achiev-
ing the desired frequency and with better synchronisa-
tion for networks above a minimum level of connectiv-
ity. In this paper we focus on random regular networks,
where there is enough heterogeneity but we are able to
isolate systematically the role of connectivity. In numeri-
cal examples, we consider networks of size N = 40 where
long transients do not inhibit elucidation of the underly-
ing mechanisms, however we have run the full numerical
computations for larger scale systems, for N ~ 1000 and
find qualitatively similar results.

The paper is structured as follows. First we outline
the adaptive and reference models explicitly. We then
show a range of numerical simulations of the model for
a network of N = 40 nodes, and identify the different
phases of the system and for different connectivities for
random regular graphs. We then conduct a fixed point
analysis to examine how stability properties relate to the
regimes we observe numerically. Important for this will
be an ansatz based on two clusters of nodes on the net-
work — those subject to control and those not. We then
consider a range of connectivities in the spectral analysis
and demonstrate results consistent with the full numeri-
cal computations. We examine the coupling dependence
of the two models within the linearised approach. We
finally summarise and conclude with prospects of the ap-
plicability of such a mechanism.

II. DEFINING THE MODELS: ADAPTIVE
LAGS VS EXTERNAL CONTROL

We compare two models where Kuramoto sychronisa-
tion is controlled to some external driving frequency 2.
The first we may refer to as a reference model:

é =w; +0 Z AU Sin(ﬁj — 91)
J
+nb; sin(Qt — 6;) (3)

Here, an oscillator 6; couples to an external driver when
b; = 1 or is left to itself to synchronise according to its
adjacent partners when b, = 0. The driver strength is
given by 7.

An alternate model is one where time-dependent lags
A;i(t) are introduced but which co-evolve with the 6;:

éi =w; + JZAZ‘j sin(Oj —0; + )\z)
J

Ai = 7b; sin(Qt — ). (4)



Here again, when b; = 1 the lags co-evolve and when
b; = 0 they are frozen in which case we assign ini-
tial condition A;(0) = 0, or simply A;(0) = b;A with
A € (—m,m) drawn at random from a uniform distribu-
tion. The phases 6; corresponding to nodes with b; = 0
then evolve according to their own local synchronisation
interactions on the network. The constant 7 here rep-
resents the time constant associated wth the dynamical
lags. One motivation for the second model is our earlier
work on adaptive lag dynamics A = 73, A;;sin(0; — 6;)
where we found this could enhance synchronisation com-
pared to the ordinary Kuramoto dynamics while failing
to guarantee the external collective frequency to which
this synchronisation occurs. The present version elevates
this interaction to a control model with explicit reference
to an external driving frequency €.

We wish to compare the behaviours of these models
in terms of driving phases to the external frequency,
0; ~ Qt, as functions of the various strengths 7,7 as
the density of control nodes, p = 3. b;/N varies between
0 and 1.

IIT. BEHAVIOURS FOR RANDOM REGULAR
NETWORKS: NUMERICAL SOLUTIONS

We begin by showing the results of numerical integra-
tion of the equations of motion for the two models. Us-
ing a fourth order Runge-Kutta method with step size
At = 0.1 we integrate out to t = 5 x 10° time steps
for 0 = 1. Simulations are carried out for random reg-
ular networks of degree k, a deliberate choice to reduce
effects of network heterogeneity in this initial investiga-
tion. We explore the choices £ = 6, 8,12 in the following.
Native frequencies w; are randomly drawn from the uni-
form distribution [—1,1] so that for each instance the
average frequency @ ~ 0. We choose 2 = 2.5 — a control-
ling frequency clearly outside the interval for the native
frequencies. We scan across the remaining two param-
eters for the two models: (p,n) for the reference model
Eq. (3), and (p, 7) for the adaptive lags Eq. (4). The de-
gree of synchronisation is measured by Kuramoto’s order
parameter

r= (e ©)

where brackets indicate averages over time (after discard-
ing a transient), and where r = 1 represents full synchro-
nisation, and r = 0 pure incoherence. We also measure
the closeness of the average instantaneous frequency to
the external frequency €2 via

A= (5 Yl -9, (6

where A = 0 means success in driving to the external
frequency.

Numerical experiments show that given configurations
either achieve very good synchronisation to the external
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FIG. 1. Phase diagrams for random regular graph of N = 40,
showing the fraction of 100 instances achieving full synchroni-
sation to the frequency €2 across the parameter space of p vs 7
for the adaptive lag model (left) and p vs 7 for the externally
driven reference model (right), with different connectivities
k = 6,8, 12 respectively top, middle and bottom rows.

frequency (A < 107%) or fail to synchronise. Accord-
ingly, for given densities of controlled oscillators p and
given parameters 7 or 7 we measure the fraction of con-
figurations that achieved synchronisation to the external
frequency. In Fig. 1 we show density plots for the frac-
tion of configurations achieving full synchronisation to
the frequency €2: brighter regions indicate that systems
achieve full synchrony, while black indicates regions in
which configurations fail to synchronise. The left column
shows the reference model for increasing & down the col-
umn, and the right shows the adaptive lags model. We
note that for low values of 7 transients become very long
— which we shall explain later — and so for 7 < 0.5 one
must integrate up to very large times to establish whether
an instance has synchronised. Hence numerical results in
this region have to be seen as a lower bound for the num-
ber of synchronised configurations. For the same reason
we do not go to lower values of k, such as kK = 4 where
the transients become inordinately long and numerical
instabilities arise. The three choices of k serve to make
the point of where the various models are effective.
First we observe in Fig. 1 a minimum density of con-
trolled oscillators p for synchronisation to occur and this
varies with k. For the reference model, this goes from
pe ~ 0.45 for lower k down to p. =~ 0.2 for the higher



k. A similar behaviour occurs for the adaptive lag model
after a poorer performance at the lowest k. Thus the
adaptive lag model does not perform as efficiently as the
reference model for low connectivity. More interestingly,
we see that the adaptive lag model allows for synchronisa-
tion to the driving frequency even at very small values of
7, whereas the reference model clearly requires substan-
tial coupling strength 7. The contrast with the reference
model is unambiguous: below 1 = 1 systems do not syn-
chronise at any p, while in the lag-controlled model at
least some synchronised configurations are observed for
any choice of 7. Close to 100% synchronised configura-
tions are achieved for much lower values of 7 > 1 for the
lag-controlled case as compared to 1 > 8 in the reference
model.

To summarise these behaviours then, we see that the
adaptive lag model is effective down to lower coupling
strengths than the reference model, though only taking
effect above a certain minimum connectivity, but then
with similar critical densities of controlled nodes. The
adaptive lad model also exhibits long transients to equi-
librium. In the following we seek to understand these
behaviours more analytically using fixed point analysis.

IV. ANALYTIC RESULTS THROUGH
LINEARISATION: TWO CLUSTER ANSATZ AND
STABILITY

A. Ansatz for the adaptive lag model

Prompted by the observation in the previous section
that for general p synchronisation to the external fre-
quency, though very high, is never quite perfect, we per-
form an equilibrium analysis allowing for two clusters in
the fixed point ansatz: one consisting of the oscillators
that phase synchronise alongside controlling phase lags
(b; = 1), identified by nodes in a sub-graph, which we
denote ¢ € Gy, and the other those nodes without lags
(b; =0),i € Go =G — Gy. So the ansatz reads

0;(t) = Qt +9;(t),i € G
Hl(t) =Qt+ o; + QOi(t),i c g2
Ai(t) = pi + xi(t) (7)

with 9;, p; and x; considered as small fluctuations.

One of us has used ansaetze such as this in the study
of a multi-network generalisation of the Kuramoto model
[36, 37], where we allow for two or three relatively shifted
but internally phase synchronised clusters. Within such
tight constraints, a great deal of analytical tractability is
obtained. Here we relax the requirement of exact phase
synchronisation within the second cluster. In this respect
we allow the cluster to display an arbitrary degree of
‘splay’, o; # a5, whose consequences will be seen below.

Expanding the equations of motion Egs. (4) we obtain
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FIG. 2. Example of clustering for N = 40, p = 0.8 where grey
are the controlled 0; — ¢, cyan are the uncontrolled 6; — Qt
and black are the «; derived from Eq. (11).

0 = w; — O+ akgl) sin p; + akl@) sin(a; + ;)
+0V (9,0, %)
Vi = w; — 0 — Uk‘gl) sina; + o Z Ajjsin(a; — o)
j€G2
+01 (9, ¢, X)
Xi = —T¥i (8)

where kl(a) is the degree of node 7 with respect to nodes in

the sub-graph G,, and Oga) are linear in the fluctuations,
to be given explicitly below. Note here that we may form
the fluctuations into a super-vector v = (¥, ¢, x) so that
the overall linearised system takes the form

=W — Av, 9)

with A the Jacobian which we give explicitly in the next
section. Thus steady-state solutions, if the system is sta-
ble, are v* = A~'W after removal of any zero-modes (or
alternately, using the pseudo-inverse).

Requiring that the v vanish, so that all the constant
parts are in the parameters p;, o;, gives:

wi — 4+ akgl) sin p; + akl@) sin(a; + pi) =0,

xS gla (10)
w; — Q) — O'kfl) Sinozi + o Z Aij SiIl(Oéj — Oéi) = O,
Jj€G2
i€Gy (11

Egs. (10,11) now define the fixed point manifold. The
obvious procedure is to use the second of these, Eq. (11),
which is p; independent, to solve for «a; first and then
use these in the first Eq. (10) to solve for the y;. The
o equation may be simplified by assuming «; — o5 to be
small allowing the sin(a; — ;) term to be re-expressed
in terms of the graph Laplacian. Unfortunately, there is
no analytical solution for this, so we do not pursue this
option. However, the first equation may be solved for
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FIG. 3. Plots of a = %>, o (dashed) and p = % >,
(solid) from Egs. (10,11) in the adaptive lag model for N = 40
random regular k; = 8 with o =7 = 1,Q = 2.5, averaged over
300 instances, for different values of p. Note that these are
independent of 7. Inset: plot of & >, cos(us + ;) averaged
over the same instances. Error bars here and in subsequent
plots represent the standard error.

sin
sin p; = (—(wi - Q)(kgl) + kgz) cos ay;)
£k | sin o |[02 (k)2 + 26 kP cos a;

FHOY — (- )/

(o (k)2 + 24V K cosas + (7)2)).

If we subject all nodes to control so that a; = 0, in which
case k; = k'gl), then sin pu; = —% Such a result for
the equilibrium phase lags arises in [35] where a different
model was used for the adaptive mechanism.

To illustrate clustering as one tight group and another
splayed, we show in Fig. 2 a run of a random regular
graph for N = 40 with p = 0.8,0 = 7 = 1, and, again,
Q = 2.5. We have solved the system numerically in this
case using Mathematica’s NDSolve function. The plot
shows the behaviour of 6; — Qt for both controlled (gray)
and uncontrolled (cyan) nodes. We see that the 32 con-
trolled components, with b; = 1, give 6, = Qt demon-
strating their perfect phase synchronisation. The remain-
ing eight uncontrolled components show deviations from
Qt that are each slightly different from each other, and
rapidly converge to the «; as derived from Eq. (11), in-
dicated in black.

Extending this now to better understand the fixed
point, we examine the cases of k = 4,5, 8,12, 14, outside
the range of the full simulation solutions of Sect.IIl. We
use values 7 = 0.2, 2, 20,200 for the adaptive lag model
and compute «; for ¢ € Gy from Eq. (11), followed by p;
for i € Gy from Eq. (10). We show an example of this
result for the case k = 8 in Fig. 3. For other values of k
the dependence on p is similar: for smaller k£ the depen-
dence of cos(u + «) is more linear in p. The u;, a; are
evidently 7 independent from their defining equations.

But the key obsrvation from this, which will inform the
intuitive picture in the sequel, is that as p decreases the u

stay nearly constant while « increases in magnitude until
p = 0.4, at which point even the equilibrium lag values
1 see a slight increase around p = 0.3. We also present,
as inset, the behaviour of cos(u + a)) which shows a sign
change at the point where u becomes sensitive to the
value of p; in antifcipation of the spectra, we note that
the combination cos(p + «) recurs through the terms of
the super-Laplacian.

B. Stability analysis of adaptive lags

We now examine the fluctuations around the fixed
point in Egs. (10,11). In components, the Jacobian AAdLe
is:

AGE={ A2 A%2 0 |, (12)
T(;ij 0 0

where

A;’f = o cos uiLZ(-Jl-l)

+0o Z cos(ajr + M)Ag;?)%, (13)
j'€Ga
AP =~ AL cos(ay + i), (14)
Afjx = —JDZ(;D COS [4;
-0 Z AZ(JIQ) cos(pu; + ovjr)dij, (15)
j'€Ga
A;’f = —JAE?) cos oy, (16)

A = Ung) cos(ay — aj) + UDZ(JZ»D cosai, (17)

where Dg;lb) represents the diagonal matrix of degrees
of the nodes of sub-graph G, connected to G,, and

LE}’Z’) = ngb) — Al represents the corresponding Lapla-
cian. The appearance of Laplacians of the various sub-
graphs within these components means we will occasion-
ally refer to A28 as a ‘super-Laplacian’.

The spectrum of the ordinary (‘combinatorial’) graph
Laplacian [38] is generally known to play an important
role in understanding coupled dynamical systems on net-
works [39]. While not quite as straightforward for the
Kuramoto model, the lowest eigenvalue, known as the
Fiedler [40], indicates the slowest transient of the system
[41] close to synchronisation. But the entire spectrum
leaves an imprint in the dynamics across a range of cou-
pling, even quite far from synchronisation [42, 43]. Much
is known about the spectrum of the graph Laplacian for
the classical graphs [44], which enables us to infer some
properties of the spectrum of AAdle,

In the absence of clustering, a; = 0 V ¢, the super-
Laplacian A%dLg involves factors of cos u;, a form quite
close to that encountered in our previous work [35], and
also not dissimilar from that found from a stability anal-
ysis of the ordinary Kuramoto-Sakaguchi model, Eq. (2).



We know there that cos p; > 0 provides a necessary con-
dition for stability. We thus can expect thresholds for
instability when «; # 0. Moreover, A28 here is not
symmetric, so we expect a complex valued spectrum.

We defer momentarily exploring these results for spe-
cific cases.

C. Ansatz and stability analysis for reference model

We now perform a similar analysis for the reference
control model. With the details given previously we may
be a little circumspect here. Firstly, there are no explicit
lags here, so in view of the possibility that perfect phase
synchronisation might not be achievable we include p; in
the ansatz

Gz(t) =Qt+a; + QDi(t),i € Go. (18)

This gives for the fixed point (ignoring fluctuations after
inserting the ansatz in the defining equations)

Ww; — Q + 0o Z Aij Sil’l(/.Lj — ,U/l)

Jj€G1
+o Y Agsin(ay — pi) — nsinp; =0,
JEG2
xS g17 (19)
w; — Q40 Z AU SiIl(,LLj - ai)
j€G1
+o Z Aij Sin(aj — ozi) = 07
J€G2
i € Ga. (20)

To visualise the equilibrium values of «; and p; from
Egs. (19,20) in the reference model we plot the results
for k = 8 shown in Fig. 4; other values show similar be-
haviour. We use n = 1,5,10,100 here. Note that with
the explicit n-dependence in Eq. (19) the figure is some-
what more complex. At one extreme, n = 100, the «; in-
creasing with decreasing p while p; are vanishingly small
across the range of fraction of the controlled oscillators.
Evidently, with such strong driving the controlled oscil-
lators achieve very small phase lags. As p is reduced,
the number of uncontrolled oscillators increases so that a
splay develops in this group, with «; increasing in mag-
nitude. As 7 decreases values of u become non-zero but
show insensitivity to the value of p down to some criti-
cal value. But the splay, as seen in «, increases as the
number of controlled oscillators decreases. Importantly,
very high coupling 7 to the driving frequency is required
to achieve ‘perfect phase synchronisation’ p; =~ 0. At the
other extreme, n = 1, the driving is so weak that the un-
derlying Kuramoto interaction, with coupling o, causes
even the driven oscillators to be splayed. As p decreases,
fewer oscillators are driven, so more may participate in
the Kuramoto interaction. To say more beyond the cross-
over point requires completing the stability analysis.

The Jacobian is now a two-by-two block form

AP AT

Ref 7, %

Aij = (Aapjﬂ Aapjgp ’ (21)
i i

where the individual entries are:

A?jﬂ = O‘Ll(-;-l) cos(pi — )
to Y AGY cos(ay - pi)d;

j'€Ga
+1 cos 1, (22)
Afjﬁ” — —UAZ(.JI.z) cos(a; — p;), (23)
Afjﬂ = —UAZ(-JQ-D COS(Mj — Oti), (24)

22
AT = aLl(j )cos(ai - aj)

+o ) Az('?'l) cos(pjr — )0 (25)
j'€G1

These entries are more standard weighted Laplacians,
apart from the shift 7 cos p; whose sign is contingent on
the p;. Overall ARef is symmetric, and therefore we may
expect a purely real spectrum but with a shift in the low-
est eigenvalue according to the values of y;. Alternately
put, for = 0, ARf has zero row and column sums and
therefore has a spectrum bounded below by a zero eigen-
value.
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FIG. 4. Plots of = + >, pi (top) and o = + >, a; (bot-
tom) in the externally driven model from Egs. (20, 19) for
N = 40 random regular k; = 8 with ¢ = 7 = 1,Q = 2.5,
averaged over 300 instances, as a function of p for different

values of 7.
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FIG. 5. Top: plot of the average value of the real part of the
lowest (in real part) eigenvalue of the super-Laplacian A*4l8
for N = 40 random regular k; = 8 with ¢ = 1,2 = 2.5,
averaged over 300 instances, as a function of the density of
controlled nodes p and for different 7; inset the real part on
logarithmic scale; bottom: plot of the imaginary part of the
eigenvalue.

V. INSIGHTS FROM STABILITY ANALYSIS
FOR VARYING CONNECTIVITY

A. Adaptive lag spectra for k = 8: towards an
intuitive picture

We now compute the spectra, specifically the lowest
eigenvalue which informs the nature of stability of the
two systems. Firstly, we draw attention to the property
that the spectra for the adaptive lags model are complex.
We show first the behaviour of the real and imaginary
parts of the lowest eigenvalue for this model for k = 8, as
usual a characteristic example. Note that with our sign
convention, a positive eigenvalue indicates stability of the
fixed-point. In Fig. 5 we plot this lowest eigenvalue, ¢y,
as a function of the density of controlled nodes p, and
for four choices of 7. Here we average over 300 frequency
and graph instances for the four values of 7.

We observe a number of prominent features in Fig. 5:
that for p = 1 the real part of the eigenvalue becomes
extremely small (emphasised by examining the logarith-
mic plot in the inset of Fig. 5) while its imaginary part
attains its largest value; and that below a certain thresh-
old of p = 0.3 eigenvalues become negative real valued.
The former result indicates long oscillatory transients in
the dynamical approach to equilibrium while the latter
result demonstrates instability of the dynamics below a
critical density of controlled oscillators. Indeed, we ob-

serve in full numerical solutions to the system at p = 1
long term oscillations (as are visible in the p = 0.8 case in
Fig. 2) while for small p the system seeks to synchronise
to the mean frequency of the oscillator ensemble. Com-
paring these situations to full numerical solutions of the
N = 40 case we observe oscillations for p = 1 even after
t = 10,000, where corresponding results for 0.7 < p < 0.9
show consistent convergence to equilibrium at the driving
frequency 2 = 2.5. Below p = 0.7 the transients to exter-
nal synchronisation become longer and beyond the range
of the Mathematica calculations used here. We also see,
as predicted, that increasing 7 has a more significant im-
pact on the imaginary part of the lowest eigenvalue — in
the stable regime. In the unstable regime, larger 7 has
the effect of amplifying the negative real part. Note that
the value of p at which the instability occurs does not
change — because this only depends on the oy, t; which
are 7 independent.

The origins of the instability may be understood by
examining the values of a; and p; across the range of p,
as shown in Fig. 3. Note that as p decreases, the size of
G1 decreases while that of G5 increases; thus the number
of u; # 0 decreases (fewer lags are introduced) and the
number of «; # 0 increases. In Fig. 3 we highlight in
both cases the position of the value of —m/2. It is evi-
dent that, for this size network, it is just below p = 0.4
that the sum «; + p; exceeds £7/2 where the cosine fac-
tor in the super-Laplacian terms, such as A”?, changes
sign. From the inset of Fig. 3 we see that the average
value of cos(p; + ;) indeed changes sign at p = 0.3.
When p = 0.3 the p; achieve their largest average value
—and this is where the instability is evident in the average
eigenvalue. Because of this, the equilibria cease to be rel-
evant below p = 0.3. At a more intuitive level, varying p
means varying the population of tightly controlled oscil-
lators in relation to the increasingly splayed uncontrolled
oscillators. Instability is triggered once the splay of the
latter population increases beyond a threshold where the
combined phase lag and splay exceed /2.

This final observation on the £ = 8 example warrants
a further comment. In previous experience with two-
cluster approaches [36, 37], we observed that the Lya-
punov instability closely coincided with the point where
the equations defining the equilibrium manifold, the ana-
logues of Egs. (10,11), failed to have static solutions.
Thus, there, no instability on a static two-cluster solu-
tion was found. Here, even when increasing 2 we find
that static solutions in many cases are obtainable — but
the spectrum shows instability. This is simply a conse-
quence of the fact that we now allow an arbitrary degree
of splay. The instability might be said to correspond to
where the oscillators of sub-graph G, might no longer be
called a single ‘cluster’.

In summary then, we see that the spectral properties
in the vicinity of the two cluster fixed point explain both
the long transients in dynamics for p — 1, and increasing
7, as well as instability for lower values of p where the
splay of only frequency synchronised uncontrolled nodes



overwhelm the dynamics.

B. Comparing adaptive lag and reference models
across values of k

We have, till now, deferred discussion of the spectrum
for the reference model other than to point out it is en-
tirely real. We consider this now for various k, alongside
plots of the real part of the lowest eigenvalue of the adap-
tive lag model in Fig. 6. Note that we cease to show the
imaginary part here, for brevity, but its properties are
analogous to the behaviour seen for £k = 8 in Fig. 5. In
the first column we show results for the lowest eigenvalue
for different n of the reference model and in the second
column the real part for different 7 of the adaptive lag
model, with the eigenvalue as a function of the density
of controlled nodes, p. The value of k increases down the
columns.

For the reference model, we observe a clear transition
as p decreases, the eigenvalue correspondingly decreases
until it reaches effectively zero. For n = 1 the eigenvalue
is extremely close to zero over the entire range of p. In
some cases, at small p a small negative value is observed
but this appears to be a numerical instability in com-
puting the spectrum. The point at which the eigenvalue
effectively becomes zero varies for different connectivi-
ties k, with a trend to lower densities as k increases once
n> 1.

To understand these behaviours we note that in the
absence of the shift ncosu; in AR the lowest eigen-
value will always vanish as is typical for graph Lapla-
cians. Thus, while the p; are small at large p (as in
Fig. 4) the shift in the spectrum is positive. Once one of
the p; cross the threshold of —m/2 the shift is negative
which can contribute to decreasing the otherwise positive
spectral gap of the pure Laplacian. For n = 1, the u; are
already large at p = 1, as is evident in Fig. 4. However
at this point the combination 7 cos u; is now less than
one. As p decreases, the number of oscillators resisting
the Kuramoto interaction decreases and so the natural
Kuramoto dynamics allow some degree of convergence in
phases — and hence the u; decrease. Intuitively, at n = 1,
which equals the Kuramoto coupling ¢ = 1 chosen here,
the externally driven is a larger frustrated Kuramoto sys-
tem with a wider frequency distribution. For n < 1, not
shown here, the shift ncosp; in the spectrum assumes
small non-zero values that fluctuate in sign around zero.

We conclude then that for n > 1 there is a transition
to marginal stability; for k = 4 it occurs at p = 0.5, with
decreasing density as k increases so that at k = 14 the
critical density is as low as p =~ 0.2 for 7 ~ 10. Indeed we
even see that this threshold value in p varies with 7 in the
range 1 < n < 5, a property seen in the numerical results
of Fig. 1. In contrast to the adaptive lag model, the tran-
sition for the reference model is not to an instability but
to marginal stability which would require a higher order
analysis to establish definitively the Lyapunov proper-

ties. Moreover, the marginal stability is consistent with
the property that we could not reach equilibrium in the
full numerical results for such low values of k.

Contrastingly, and turning to the second column of
Fig. 6 at very low k the adaptive model shows instability
across all values of density of controlled oscillators and
for any value of 7. At k = 5 the critical density appears
at p =~ 0.7. At k = 8 the adaptive model is competitive
with the reference model insofar as the critical densities
are approximately the same. But also, as we have al-
ready observed, there is little sensitivity to the value of 7
across the densities allowing for stability. Also, the crit-
ical density for the external driving model shows greater
sensitivity to 1 than does the adaptive lag model with
respect to 7. At high connectivity, the external driv-
ing requires higher coupling, 7 > 5. The adaptive lags,
on the other hand, continue to show insensitivity to the
value of 7, with critical density p =~ 0.3.

All these results are consistent with the behaviours in
Fig. 1, in the values of the critical densities where the
systems may synchronise to the external frequency and
the relative sensitivity of the reference model to 7, and
the insensitivity of the adaptive lag model to the value
of 7. Moreover, through the stability analysis, by iden-
tifying the role of splay with controlled and uncontrolled
oscillators, we have gained insight into the mechanisms
behind the relative performance of these control models.

VI. COUPLING DEPENDENCE

We finally investigate the dependence of the two mod-
els on the coupling strength o. To this end we fix a
relatively low value of the density p where both mod-
els show some sensitivity to 7 and 7 respectively, in this
case p = 0.4. Given its success thus far, we use the lin-
earised theory and plot the lowest eigenvalue of the super-
Laplacian of the two models as a function of ¢ for various
7 and 7 respectively. These are shown in Fig. 7. Given
the greater sensitivity of the external driving model we
include a broader range of 7.

We observe for the adaptive lag model a clear transi-
tion from instability to stability as coupling is increased.
However, the transition value of coupling is only weakly
sensitive to the value of 7 and once the transition has oc-
cured further increases in coupling does not achieve any
further increase in the eigenvalue. We may thus speak
of a critical coupling. Notable in this plot is that at the
critical o the curves swap in value of 7: below the critical
coupling large values of T give larger negative eigenvalues
compared to lower 7 values. Therefore at low values of
coupling, large values of 7 increase instability arguably
because of competition between phases strongly coupled
to the adaptive lags and the (at p = 0.4) larger popu-
lation of weakly coupled oscillators. Intuitively, further
increases in coupling will tighten the splay of phases that
are not coupled to the lags but plays no part in improv-
ing the stability of the system, namely the decay rate of
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FIG. 6. Plots of the average value of the (real part of the) lowest eigenvalue of the super-Laplacian for N = 40 random regular
graphs with o = 1,Q = 2.5 as a function of the density of controlled nodes p, left for the reference model AR for different 7,
and right for the adaptive lag model A% for different 7, varying the connectivity as k = 4,5, 8,12, 14 vertically down.

fluctuations from equilibrium. Contrastingly, for the ex-  in concert.
ternal driving model there is no transition to instability
as such. For n = 1 there is marginal stability for any
value of coupling. Beyond this point, essentially 1 and
o are interchangeable in terms of driving the system to
synchronise: increasing both to any degree results in a

more stable system with the two mechanisms operating

VII. CONCLUSIONS

We have compared two models for control in the
Kuramoto-Sakaguchi model, where control means both
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FIG. 7. (a): plot of the average value of the real part of the
lowest (in real part) eigenvalue of the super-Laplacian AAdLe
for the adaptive lags for N = 40 random regular k; = 8 with
Q = 2.5, p = 0.4, averaged over 300 instances, as a function of
the coupling strength o and for different 7. (b): the average
value of the real part of the lowest (in real part) eigenvalue of
the external driven model, again for N = 40 random regular
ki = 8 with Q = 2.5,p = 0.4, averaged over 300 instances,
as a function of the coupling strength o but for different 7.
Error bars in both cases are the size of the data points.

to drive more oscillators to participate in the synchro-
nisation and to drive the collective frequencies to some
externally chosen value. The adaptive lag model overall
performs poorly compared to an external driving refer-
ence model for low connectivity. However, once connec-
tivity is in excess of average degree k = 5 the adaptive
model is able to achieve synchronisation to the external
frequency down to densities of controlled oscillators com-
parable to the reference model. Namely, higher synchro-
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nisation is achieved at collective frequencies other than
the mean of the native frequency ensemble. The adaptive
lag mechanism achieves the effect with at least as many
control nodes on average but certainly with weaker cou-
pling strengths required, down to an order of magnitude
smaller couplings 7 than for the reference model driving
strength n. Indeed, examination of the coupling depen-
dence of the adaptive lag system shows that beyond a
critical coupling, further increases in o are not required
to substantially change the stability properties of the sys-
tem. The external driving model never shows a transition
to instability but merely marginal stability for n = 1 at
all values of coupling. Remarkably, stability analysis of
these two systems both predicts the behaviours seen in
full numerical calculations, and also provides insight into
the mechanisms for the two models.

We propose that the adaptive lag model may be appli-
cable to achieve control in a range of engineered systems,
such as autonomous/robotic control or energy distribu-
tion systems, as discussed in the introduction [14-17],
specifically where the interactions between entities are
mediated by technology. Just as the oscillators at the
nodes of the network may represent certain technological
agents or sub-systems, according to the application do-
main, so too one may envisage technology agents on the
links of the network generating the lags in the system.
The adaptive lag model therefore provides a co-evolution
mechanism of these technological agents that serve to
effectively regulate the overall dynamics of the system,
however not through a top-down mechanism (as in the
reference model), but through bottom-up processes. In
this respect, the adaptive lag model promises a valuable
approach to control through emergence in complex sys-
tems.
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