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Abstract—For massive multi-input multi-output (MIMO) en-
hanced millimeter wave (mmWave) frequency-division multiplex-
ing (OFDM) systems, channel estimation (CE) is challenging. In
this paper, the baseband CE of mmWave based MIMO-OFDM
systems after beam searching is formulated as a harmonic re-
trieval (HR) problem, where each path of the channel represents
a harmonic with its frequency and strength to be estimated.
We propose two methods, a windowed orthogonal matching
pursuit (window-OMP) method and a windowed discrete Fourier
transform (window-DFT) method, to approximately acquire the
maximum likelihood (ML) estimate of the baseband CE. The
window-OMP method is capable of approximating the ML
estimator with high accuracy, while the window-DFT method
has lower complexity and is shown to acquire approximate ML
estimate under the assumption that the frequencies of harmonics
are sufficiently separated. Theoretical analysis is performed to
derive a closed-form Cramér-Rao lower bound (CRLB) as well as
to investigate the effect of wrong paths to the estimation accuracy.
A simulation study is conducted to investigate the performance
of the proposed methods, and the results obtained verify that our
methods outperform the existing estimation of signal parameters
by rotational invariant techniques (ESPRIT) based HR method
and the conventional interpolation method.

Index Terms—Millimeter wave, massive MIMO, OFDM, base-
band channel estimation, orthogonal matching pursuit, discrete
Fourier transform, windowing

I. INTRODUCTION

In the next generation cellular communication system com-
monly known as 5G, millimeter wave (mmWave) communi-
cation and massive multi-input multi-output (MIMO) [1]-[6]
will be two key technologies to meet the explosive growth of
mobile traffic. MmWave usually represents the frequency band
from 30 GHz to 300 GHz. While most of the available band-
widths in lower frequency bands have already been occupied
[1], the mmWave band offers abundant bandwidth to support
bandwidth-hungry high-data-rate applications. However, the
propagation pathloss is extremely high in the mmWave band.
Fortunately, the size of antenna is proportional to the wave-
length, and this makes it feasible to employ very large-scale
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antenna arrays at both transmitter and receiver of mmWave
communication systems. According to [7], the benefit of
high directional power gain of beamforming can sufficiently
compensate the high pathloss in the mmWave band, which
guarantees a high signal-to-noise ratio (SNR) at the receiver
to support extremely high data rate transmission with large
bandwidth.

Hardware constraints also impose a great challenge in
mmWave communication [2]. In particular, it is impossible to
apply powerful full digital transceiver design in the mmWave
band. This is because such a full digital design would require
an equally large number of radio frequency (RF) chains to
match the large number of antennas employed, which would
impose too high hardware complexity and consume too much
power. Therefore, the hybrid analog-digital transceiver archi-
tecture [2], [8]-[10] is more practical, where beamforming
is accomplished by analog phase shifters or switches. Thus,
one RF chain is connected to several antennas via digitally
controlled phase shifters, and the number of RF chains needed
is much smaller than the number of antennas employed.

In the analog domain, beam searching technique provides
high directional power gain with low complexity [2], [11],
[12]. Specifically, the phase shifters are controlled by beam
steering vectors which determine the directions of beams.
According to [11], in single RF chain scenario, the optimal
pair of beam steering vectors are the antenna response vectors
corresponding to the angle of arrival (AOA) and angle of
departure (AOD) of the strongest path. However, for practical
consideration, the phase resolution of phase shifter is finite and
the beam steering vector is usually selected from a codebook,
e.g., the columns of a discrete Fourier transform (DFT) matrix.
The study [13] has verified that the SNR loss is slight (maybe
less than 0.25 dB) due to the finite resolution of phase shifter.
A beam searching procedure [12] needs to be conducted to
select the optimal beam steering vector pair at the transmitter
and receiver from their codebooks, which may play a key role
in the initial access of 5G in the future.

Like lower-frequency band based MIMO, where accurate
channel estimation (CE) is crucial to realize the full MIMO
performance potential [14]-[16], CE is critically important to
perform precoding and combining for mmWave MIMO [17].
Most existing works on mmWave CE exploit the sparsity of
mmWave channel to design low complexity algorithms for
CE [8], [18]-[25]. More specifically, in [8], the channel is
measured by the pilot signal transmitted via different beam
steering vectors and the sparsity of propagation path is utilized
to design compressed sensing (CS) based algorithm. In the
works [18]-[21], the sparsity in angular domain is utilized to
estimate the AOA, where CS based algorithms are proposed in
[18], [20], [21] and a DFT based method is proposed in [19].



Likewise, the time-domain sparsity of paths is utilized in [22].
Furthermore, many methods are proposed to exploit the spar-
sity of mmWave channel and most of them have focused on
the estimation of the large channel matrix, or equivalently on
estimating the channel parameters to acquire the large channel
matrix, with widely adopted CS based methods. Additionally,
the minimum mean square error (MMSE) criterion is adopted
for mmWave CE in [24] and [25], where the CE methods
proposed are applicable to both spatially uncorrelated channels
and spatially correlated mmWave channels. In [25], the angular
domain sparsity is also exploited to improve mmWave CE by
incorporating CS method.

Most of the aforementioned approaches estimate the channel
matrix before beam searching. Provided that the accurate
CSI can be acquired, the approach of estimating the channel
matrix before beam searching offers two advantages. First, the
steering vectors can then be selected based on the estimated
channel matrix, which are more accurate than those acquired
by beam searching, especially for multiple beam searching.
Second, the non-codebook based beamforming can be sup-
ported based on the estimated channel matrix, which achieves
better performance than the codebook based beamforming.
However, the SNR before beam searching may be too low
to guarantee a sufficiently accurate CE due to the high path
loss. Furthermore, the computational complexity and storage
requirements imposed by the CE before beam searching to
process large-dimensional matrices associated with large-scale
antenna arrays may be excessively high. Consequently, the
benefits of the CE before beam searching are limited.

In mmWave orthogonal frequency-division multiplexing
(OFDM) systems, the complexity constraint becomes even
more strict. This is because the number of subcarriers in
mmWave OFDM is much larger than that of lower-frequency
band OFDM counterpart, because of the huge bandwidth of
mmWave systems. The channels on different subcarriers are
different in frequency-selective fading channel, and they must
be estimated and stored. Clearly, estimating the CSI of large-
scale antenna array based mmWave OFDM systems before
beam searching becomes challenging. Therefore, it is much
more practical to estimate the equivalent digital baseband
channel matrix after beam searching, which is a much smaller
matrix whose size is determined by the number of RF chains
rather than the number of antennas.

Against the above background, in this paper, we focus on
the baseband CE of mmWave OFDM systems after beam
searching, which overcomes the aforementioned two draw-
backs of CE before beam searching. In this case, the conven-
tional CE methods, such as the least squares (LS) estimator
and the MMSE estimator, for small scale MIMO [26] can
be adopted to estimate the frequency-domain (FD) CSI of
pilot subcarriers, while the FD CSI of other subcarriers can
be estimated via interpolation based method [27]. However,
the sparsity of mmWave channels is not exploited in the
conventional CE methods. In this paper, we show that the
baseband CE problem of the widely adopted multi-path or
multi-cluster channel can be formulated as a sparse complex
harmonic retrieval (HR) problem, where each path or cluster
represents a harmonic with its frequency and strength to be

estimated. From the estimation theory perspective, the maxi-
mum likelihood (ML) estimator is asymptotically the unbiased
efficient estimator [28], reaching the Cramér-Rao lower bound
(CRLB). We propose two methods, a windowed orthogonal
matching pursuit (window-OMP) method and a windowed
discrete Fourier transform (window-DFT) method, to approxi-
mately acquire the ML estimate. Specifically, to solve the ML
estimation problem for the baseband CE, the OMP algorithm
derives a solution with relatively high accuracy, while the DFT
method derives an approximate solution under the assumption
that the frequencies of harmonics are sufficiently separated.
The DFT method suffers an accuracy loss compared to the
OMP method, while imposing lower complexity. Furthermore,
window function is applied to mitigate the frequency leakage
problem in both DFT and OMP based algorithms.

HR problems have been investigated by many existing
works, where the subspace methods are employed widely,
such as the multiple signal classification (MUSIC) [29] and
the estimation of signal parameters by rotational invariant
techniques (ESPRIT) [30], [31]. In particular, the works [32],
[33] investigated a similar HR problem for single-input single-
out (SISO) OFDM systems using the ESPRIT algorithm. The
methods proposed in this paper are different from the existing
works. Moreover, our methods outperform the ESPRIT method
at high SNR region, as verified in the simulation study. Our
main contributions are summarized as follows.

o We formulate the mmWave baseband CE as a HR prob-
lem for both multi-path and multi-cluster channel models.
The sparsity information of the mmWave channel is
effectively exploited to achieve better CE performance
than conventional interpolation method.

o A window-OMP method and a window-DFT method are
proposed. OMP and DFT method are both capable of ac-
quiring approximate ML estimate, and window function
is applied to further improve their accuracy. The proposed
methods outperform the existing ESPRIT method.

o In our theoretical analysis, a closed-form approximate
CRLB for the parameter estimate in the HR problem is
derived. Then, we prove that the effect of wrong paths
(harmonics) on the CE accuracy is very limited, which
ensures the robustness of our proposed methods.

e Our proposed estimator reduces pilot overhead signifi-
cantly, since the pilot pattern can be sparser and does
not need to cover the whole bandwidth, which enables a
much more flexible and effective as well as sparser pilot
pattern design.

The rest of this paper is organized as follows. Section II
introduces our system model, including the channel model
and hybrid analog-digital architecture. Section III formulates
the baseband CE after beam searching as a HR problem. In
Section IV, we propose our window-OMP and window-DFT
methods. Theoretical analysis is presented in Section V, while
in Section VI, we conduct a simulation study to investigate the
performances of our proposed methods. Section VII draws our
conclusions.

In this paper, normal-face lower-case letters denote scalars,
while boldface lower-case and upper-case symbols denote



column vector and matrix, respectively. Matrix transpose,
conjugate, conjugate transpose, inverse and pseudo-inverse are
denoted by ()T, (-)*, (), (:\)~! and (-)*, respectively, while
range(-), rank(-) and tr(-) denote the range, rank, and trace of
a matrix. The dimension of a subspace is denoted by dim(-),
and E[-] is the expectation operator, while || - ||2 represents
the lo-norm. I is the N x N identity matrix, Oy is the N-
dimensional zero vector, and Oy« 1S the N X N zero matrix,
while diag{a1, -+ ,an } = diag{a,;}", is the diagonal matrix
with aq,--- , a,, at its diagonal entries.

II. SYSTEM MODEL

In this section, the mmWave massive MIMO channel model
is introduced first, and the time-domain (TD) sparsity after
beam searching is illustrated according to the channel model.
Next, the hybrid analog-digital architecture and its signal
model are presented. The transmitter has /NV; antennas and
Nrr; RF chains, while the receiver is equipped with N,
antennas and Ngp, RF chains. The number of RF chains
is much smaller than the number of antennas due to hardware
constraints, i.e., Nrp; < Ny and Ngp, < N,.. In the context
of cellular system, the transmitter represents a base station
(BS) and the receiver represents a user equipment (UE) in
downlink transmission, and vice versa in uplink transmission.

A. Channel Model

A widely adopted multi-path two-dimensional (2D) channel
model [2], [8] is used in this paper, where the antenna arrays
at transmitter and receiver are uniform linear arrays (ULAs).
Assume that the antenna spacing is half of the wavelength.
Then the normalized response vector of a ULA with N
antennas at the AOA or AOD 6 is expressed by

1

. T
al) = o [1e 1w sin(o)

jrsin(9) | GI(N= ecN.
Further assume that there exist L paths in the mmWave
channel. Let the /th path’s complex gain and delay be o; and
7, while 6,.; and 6;; are the AOA and AOD of the Ith path.

The TD channel matrix can then be formulated as [20], [22]

NN, &
= \/TZ ara (0r1)al (01)3(t = 7). (2)
=1

where 4(t) is the Dirac delta function, a,(f,;) € CMr is
the receiver antenna response vector at the AOA 0,; and
a; (0,571) € C™ is the transmitter antenna response vector
at the AOD 6, ;. The fading is assumed to be sufficiently
slow so that the channel is time-invariant. Based on (2), the
FD multi-path channel, i.e., the channel frequency response
H(f) € CN-*Nt s given by

Ny N,
H(f) =/~ Za,ar Or1)ar (6,0)e P (3)
=1

Because of the inherent sparse property of the mmWave
channel [2], [17], the number of propagation paths L is
usually small. Moreover, after beam searching, the transmitter
and receiver will select the directions of beams to maximize

The mmWave channel exhibits the sparsity in the propagation paths,
and the sparsity becomes even stronger after beam searching.

Fig. 1.

the directional power gain as illustrated in Fig. 1. Since the
paths whose AODs are outside the transmitter beam or whose
AOAs are outside the receiver beam are filtered out, only
fewer paths will actually influence the channel and, therefore,
the effective L becomes even smaller. Sometimes, only the
line-of-sight (LOS) path will be preserved. Consequently, the
effective mmWave channel becomes much sparser after beam
searching. Moreover, the beamwidth becomes narrower as the
size of ULA increases, and as a result, there exist less paths
whose AODs or AOAs are inside the beam of transmitter or
receiver, which also indicates that the effective L becomes
smaller. Therefore, the channel become sparser as the number
of antennas increases.
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Fig. 2. Tllustration of downlink beam searching procedure.

Fig. 2 illustrates the downlink beam searching procedure
with m beams at BS and n beams at UE. We discuss the
exhaustive beam searching method here. Specifically, the BS
uses the beams 1 to m from the time slots 1 to m, respectively.
In every time slot, the UE sequentially uses the beams 1 to
n, and it measures the received powers of all the mn pairs
of steering vectors at BS and UE. Then, the steering vector
pair with the strongest power gain is fed back to the BS, and
it is selected. More advanced beam searching methods can be
found for example in [12].

B. Hybrid Analog-digital Architecture and Signal Model

A hybrid analog-digital transceiver architecture is given in
Fig. 3, where the digital precoding is omitted since it is usually
performed after the baseband CE and it does not influence
the baseband equivalent channel. Before the transmit antennas,
analog precoding (transmit beamforming) is conducted to the
signal from transmit RF chains. Similarly, after the receive an-
tennas, analog combining (receive beamforming) is performed.
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Fig. 3. Hybrid analog-digital transceiver model, where the baseband

equivalent channel consists of the original channel as well as the analog
precoding at transmitter and the analog combining at receiver. The digital
precoding, which does not influence this baseband channel, is omitted.

The baseband transmit and receive vectors are denoted as
x € CNrrt oy ¢ CNrRr respectively. As shown in Fig. 3,
the signal model can be expressed as

y=WH.HFgrpx +Wln, 4)
where Frp = [fi f2"'fNRFK/] € CNexNrre and
Wgrr = [w1 ’U)2"'UJNRF’T] € CNr*Nrrr are the analog

precoding and combining matrices, respectively, and n ~
CN (On,, 021y, ) is the receiver complex additive white Gaus-
sian noise (AWGN) vector. The elements of Frr and Wgrr

meet the constant modulus constraints |f; ;| = \/% for
t
1 <i< Nyand 1 < j < Ngpy, as well as |w; ;| = \/%,

for 1 <7 < N, and 1 < j < Ngp,, where f;; and
w; ; denote the 7th-row and jth-column elements of Frp and
Whrr, respectively. If Wrr is selected from a DFT codebook,
W -n remains to be an AWGN vector with the distribution
When ~ CN(Onpy., 021Ny, ), since the DFT matrix is
an unitary matrix.

From (4), the equivalent baseband channel after beam
searching can be derived as

Hpp = WEpHFgpp € CNrrrxNare, 5)

Since Nrr,; and Ngp, are typically very small, the baseband
channel matrix

wi' H fi
wh H fi

wi'H f,
wi H f,

w{IHfNRF,t

H
ws HfNRF,t
Hpp= .

H H H
wNRF,erl wNRF,7~H‘f2 e wNRF,erNRth

(6)

is small size. This is because owing to mmWave hardware
and power consumption constraints, only very few RF chains
can be deployed, especially at UE. Thus, Nrr; and Ngf, are
typically very small. In the sequel, we will consider the case of
Ngrri = Ngrr, = 1. In this case, the precoding matrix Frp
reduces to the vector f € CN¢, while the combining matrix
Wrr reduces to the vector w € CNr. Hence, the baseband
channel matrix Hpp becomes a scalar

Hpp =wlHY. 7N

Note that it is sufficient to derive the baseband CE for the
single-RF-chain case, since the proposed estimator can be
adopted to estimate each element of Hpp in the same way.

III. PROBLEM FORMULATION IN OFDM SYSTEMS

We formulate the baseband CE after beam searching as
a HR problem. We focus on single-user scenario, but our

approach is equally applicable to the multi-user scenario’.

A. Multi-path Model Problem Formulation

For OFDM systems in frequency-selective channels, the FD
channel matrix varies with the frequency as depicted in (3).
Let us consider the OFDM system with K subcarriers and a
subcarrier spacing of Af. Then according to (7) and (3), the
baseband channel at the kth subcarrier is expressed as

L
Z awla, (0,)al (0, ) fe PmTRAS,

1=1
®)
Since the beam steering vectors w and f are determined in
beam searching, they are fixed and known vectors in (8).
Let us define the equivalent path strength parameter 3; and
the delay parameter A; for the [th path respectively as

N¢ N,
B :\/Talear(er,l)aE(gt,l)fa ©)

Al = — 27(7'1Af7 (10)

NN,
L

Hgpp(k) =

which are independent of the subcarrier index k. Then the FD
baseband channel at the subcarrier £ can be written as
L
Hpp(k)=Y_ pe®* 0<k<K-1. (1)
1=1
It is readily seen that by estimating 5; and A; for 1 <[ <
L, we can acquire the FD CSI of all the subcarriers. Further
observe from (11) that Hgp(k) is a superposition of the L
harmonics (sinusoids) /2% with the frequencies A; for 1 <
I < L. Moreover, owing to the strong sparsity of the mmWave
baseband channel, the number of paths L is extremely small
and, therefore, we arrive at a very sparse complex HR problem
to estimate 3; and A; for 1 <[ < L.

Remark I: Our proposed baseband CE approach can acquire
all the FD coefficients for all the K subcarriers by estimating
an extremely small number of parameters {4, Bl}le. This
should be contrast with the conventional OFDM estimation
approach based on interpolation, which needs to estimate all
the FD coefficients Hpp (k) for all the K subcarriers. Since K
is very large, the number of parameters to be estimated is very
large by the conventional method. Moreover, the conventional
approach can only acquire Hpp (k) for pilot subcarriers, and
it has to use interpolation to estimate Hpp(k) for other
subcarriers. The FD pilot density must be sufficiently high
to ensure a sufficient interpolation accuracy.

Compared with other existing method which estimates the
channel matrix H before beam seaching, our approach also
offers considerable advantage. In the context of CE before

IFor the multi-user scenario, the channel associated with each UE can be
independently estimated using the method proposed in this paper. This is
because in downlink transmission, the system allocates different bandwidths,
each consisting of several subcarriers, to different UEs, and each UE can
estimate its channel via the pilot distributed on its own bandwidth. In uplink
transmission, the BS can similarly estimate each UE’s uplink channel.



beam seaching, the FD channel matrix at the kth subcarrier
can be expressed as

/Nt Zalar ol at (th) —j2rm kA f

N,N
Ak _
=== E:Hle‘ 0<k<K-1,

(12)

where we use L to denote the number of propagation paths
before beam searching, and clearly L > L. By estimating
{ﬂl,Al}lel, the FD CSI of all the subcarriers, i.e., H (k)
for 0 < k < K — 1, can be acquired. However, it is apparent

that the parameters to be estimated in {ﬁl,Al}le, which
might include the path gains, delays, AOAs and AODs of L
paths, are much more than the parameters to be estimated
in {8, Ay}, of L paths. Consequently, our approach offers
advantage in terms of training pilot requirement and compu-
tational complexity, compared with these existing methods.

B. Extension to Multi-cluster Model

Although the model (3) is widely adopted, it is a simplified
model which represents the clusters of the mmWave channel
by the paths. In fact, each cluster of the mmWave channel
always consists of multiple rays or sub-paths with the distri-
bution on delay, power, AOA and AOD [2], [34]. Therefore, a
more accurate channel model is the multi-cluster model [17]

N 7ay
N E E all,lgaT’ T’ll l2)
cl ray lim=1 la=1

H 27T
X aj (gt,ll,lz)e j 11,12f7

H(f) =

13)

where N is the number of clusters and N,,, is the number
of rays in each cluster, oy, ;, and 7;, ;, are the complex gain
and delay of the /5th ray in the [;th cluster, respectively, while
Or1,,1, and 6., 1, are the AOA and AOD of the Iyth ray in
the [;th cluster, respectively.

Even though N, is extremely small, the total number of
rays Ny N,q, may be large, e.g., N.oy, = 20 is specified in
[34], and the sparsity property of paths may no longer be
valid. However, we can still formulate a sparse HR problem
with a reasonable assumption that the delay spread (DS) of
the rays in each cluster can be neglected. Actually, the DS
within each cluster is very small, e.g., in the 3GPP model
[34], the DS within cluster in urban micro scenario is about
5ns for the LOS and 11 ns for non-LOS. Moreover, the work
[35] has verified that the DS will be even smaller after beam
searching. Therefore, it is reasonable to neglect the DS within
each cluster by assuming 7;,,;, = 7, for 1 < Iy < Npgy.
Thus, similar to (9) and (10) for the simplified model (3), we
can define §;, and Ay, for 1 <[y < N as

Nray
N;N,
B, = W all»lszar (eﬂhylz)a? (etallvb)'f’
cliVray =1
(14)
All = — 27TTllAf. (15)

It can be seen that in (14), the rays in each cluster are
combined together because they share the same delay. Thus
the baseband multi-cluster model (13) can be simplified to

Nei
Hpp(k) =) Bd*nk,

l1=1

(16)

which has an extremely small number of parameters to be
estimated, since V. is extremely small, especially after beam
searching. It is readily seen that (16) is identical to (11).

IV. PROPOSED CHANNEL ESTIMATION METHODS

The pilot transmission model is first introduced. Then, the
ML estimation is formulated for the HR problem presented
in Section III. We show that the OMP and DFT methods are
capable of acquiring approximate ML estimates, but the latter
requires that the frequencies of the harmonics are sufficiently
separated. The window function is applied to further improve
the accuracy of the OMP and DFT methods, and we derive
our proposed window-OMP and window-DFT methods.

A. Pilot Transmission Model

Let us denote the indexes of the K subcarriers from k& = 0
to /' — 1. Assume that the pilot interval is K, and the number
of total pilot subcarriers is K 5. Let the minimum index of the
pilot subcarriers be ko, where kg can be arbitrarily selected as
long as ko + (Ks — 1)K, < (K — 1). Therefore, the indexes
of all the pilot subcarriers can be written as

ko+ KKy K =0,1,-- (K, —1). (17)

The received pilot signal of the k’th pilot subcarrier is

y(ko+k'Kp) = Hpp (ko+k'Kp) s+w'n(ko+k K,), (18)

where s denotes the transmitted pilot signal with the unit
modulus |s| = 1, and n(ko + k'K,) is the AWGN vector
at the subcarrier kg + &’ K,,. Thus, the CSI of pilot subcarriers
can be estimated based on the LS criterion as

~ ko + K K
Hpp(ko + K K,) = y(%p)

= Hpp(ko + K'K,) +w'n(ky + ¥'K,), (19)

where we have substituted M by wHn(k), since both
have the identical distribution.

Then, substituting (11) into (19) yields

L
ZﬁlejAl(ko+k/Kp) +an(k0+k/Kp)
=1

ﬁBB(kO —+ ]C/Kp) =

(20)
It can be seen that H BB(ko + k'K,) contains the sum of
the L harmonics B;efdt(ko+k'Kp) 1 < | < L. and the lth
harmonic has the complex gain S;e/**% and the frequency
K,A;. Therefore, the baseband CE can be formulated as a
HR problem.



B. Approximate ML Estimation Based on OMP Method

Collect the estimated CSI of the pilot subcarriers in a vector
~ ~ ~ T
h= [HBB(kO) o Hpplko + (K, — 1)K,)| €CX-. @1

According to (20), h can be expressed as
h= As+n, (22)

where the AWGN vector
7 = [wn (ko) - - w'n(ko + (Ks — 1)K,)] " € CX (23)

follows the distribution 7 ~ CA (Og,, 021k, ), A € CK:xL
and s € Cl with

1 1 1
el EKpAL ol KpAs e EpAL
A= , (24)
eijAl.(Ks—l) eijAQC(KS—l) eijAL.(Ks—l)
, , . T
s = [reldibo gydtsto. . g o] (25)
Further define
x X 9T T
A=[Ar- ALl = [KAr-- K,AL (26)

to represent the frequencies of the harmonics. Then, s, A and
L are the parameters to be estimated. R
The probability density function (PDF) of h is

67”% (ﬁfAS)H (?LfAs)
CEIL |

According to the ML estimation principle and the PDF (27),
the ML estimator of s, A and L can be expressed as

p(h;s,A L) = 27)

{s, A, L} =arg {gl:i}p(h; s, A, L)

. ~ 2
—arg{sr’rgflL}Hh AsHQ. (28)
The number of the harmonics is assumed to be L,-sparse,
i.e., L < L,. Note that the L columns of A can be chosen
from the columns of a partial DFT matrix & € C&s*Naic,
which is the first K, rows of a Ng;.-dimensional DFT matrix.
Here Ny, is a sufficiently large integer to ensure that the
quantization error of A is sufficiently small. Thus, the solution
of (28) can be derived from the following CS problem with
® as the dictionary matrix

min Hi\l,—'bgHi,
3eCNaic L (29)
s.t. |supp(§)’ < L,.

Here supp(g) represents the support set of S, namely, the set
of non-zero elements in s.

Since the partial DFT matrix satisfies the restricted isometry
property (RIP) condition [36], the OMP algorithm is chosen
to solve the CS problem (29) due to its high efficiency and
simplicity. The detailed description of our proposed window-
OMP method is given in Section IV-D.

C. Approximation ML Estimation Based on DFT Method

For the optimization problem (28), when the parameters
{A,L} are fixed, it becomes a linear LS problem. Hence,
the optimal solution of s for given {A, L} is

s* = A'h, (30)

where AT = (A" A)~1 A" since A is a Vandermonde matrix
with rank(A) = L. Therefore, using s* of (30) in the ML
problem (28), it becomes equivalently to

N T ~2
{A,L} :arng}E Hh — AAThH2

7H H A\ "1 qHD
= A(A"A)T'A"R). G
arg IR&Z( (h ( ) h 3D
According to [28], when w is not close to 0 and NV is large,
we have the following approximate equalities

N
ﬁ 3 nFsin(wn +¢) =0, k>0,
i > nFeos(wn+¢) =0, k>0.
n=1
Consider the case where the frequencies in A are sufficiently
separated. In this case, based on (32) with k£ = 0, the element
in the mth-row and nth-column of A™ A can be written as

K.—1

H (Rp—An) ] Ksy m=mn,
k=0
Thus, AT A can be approximated as a diagonal matrix, i.e.,
AYA ~ K_,I;. Therefore, under the condition that the
frequencies in A are sufficiently separated, the ML problem
(31) can be approximated as

~ = =~ =~ =12
{A, L}~arg max (hHAAHh) =argmax ||AHhH27 34)

where the elements in 4Hf1, can be regarded as the elements
ghosen from vector ®Hh, which is equivalent to the DFT of
h after appending zeros, i.e., the DFT of

h=[A" 0%, ;. ]" eCNue (35)

Since L < L,, the optimal solution of (34) corresponds
to the L, maximum elements of HtI’HIALH; Hence, under
the assumption of the sufficiently separated frequencies, the
optimal solution of (34) is also corresponding to the L, highest
peaks of the frequency spectrum of h.

Therefore, it can be seen that the conventional DFT method
can also be used to acquire an approximate ML estimate as
long as the assumption of the sufficiently separated frequencies
is satisfied. Typically, we can set Ng;. = 2 and apply the fast
Fourier transform (FFT) algorithm to reduce the complexity.

Remark 2: Since we usually have L < L,, the number
of the peaks in the frequency spectrum can be less than L.
To estimate L correctly, a threshold should be set for peak
searching. It can easily seen that the noise power in the DFT
spectrum is upper bounded by o2 K or equivalently the noise
standard deviation (STD) is upper bounded by o,/ K,. We
can set the threshold to the two STDs of the noise in the
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Fig. 4. Comparison of the original DFT and the Hamming windowed DFT
for the case of L = 1 and SNR = —10dB, where 1024-point FFT is applied.

spectrum or 5% of the highest peak py,.x in the spectrum,
depending on which one is larger, that is,

threshold = max{yo,v/ Ks,0.05pmax },

where 7 = 1.5 < 2 is used to take into account that o,/ K
is an upper bound for the STD of the noise.

(36)

D. Proposed Windowed DFT and OMP Algorithms

In the DFT method, appending zeros to R to obtain the Nyie-
length signal h is equivalent to placing a rectangular window
on the original Ny;.-length signal, which leads to frequency
leaking effect on the DFT spectrum. Hence, an appropriate
window function is utilized to mitigate the side-lobe effect of
appending zeros, and the signal before DFT can be written as

b= [w(o)ﬁBB(kO) (K= 1) Hpp (ko +(K,~1)K,)
()...()]Tg(CNdiﬂ, (37)

where @(-) is the chosen window function. A comparison
between the original DFT spectrum without windowing and
the Hamming windowed DFT spectrum is shown in Fig. 4
for the case of the path number L. = 1 and SNR =
10log;q (% = —10dB, where a 1024-point FFT is applied.
The peak in the spectrum represents the single harmonic
whose frequency is proportional to its DFT index. Observe
that although the amplitude of the main lobe is weaker after
adding the window, the side-lobes are significantly suppressed.
Reducing the frequency leaking is particularly important in
the case of multiple harmonics to suppress the effect of one
harmonic on other harmonics. The proposed window-DFT
method is summarized in Algorithm 1.

Similarly, the proposed window-OMP method is summa-
rized in Algorithm 2. Different from the original OMP method,
a window function is added to the residual vector r before
the matching step (lines 4-5). In the matching step of the
original OMP, the inner product vector of the dictionary matrix
and residual vector is computed as ¢ = ®r, and the index
corresponding to the element with the maximum amplitude in
c is picked. It is obvious that this matching step is equivalent
to finding the highest peak in the frequency spectrum of r

Algorithm 1 Window-DFT Method

Input: /ﬁ K, Ngic, Ly, and op;

1: Append zeros and apply window function to h to acquire
h.; B

2: Perform Ng;.-FFT on h,;

3: Search the highest peak, record its FFT index k1 and peak
amplitude Aj; set the peak index set K = {kl} path
number L = 1; // FFT index is from 1 to Ng;c

4: for i =2: L, do

5:  Search the ith highest peak, record its FFT index k: and

peak amplitude A;;

6: if A; > max{1.50,,\/K,0.054,} then

7: L=L+1K=K U{k 1

3

9

else
: Break;
10: end if
11: end for
122 Ay =274 ek i=1,- L 5= A'h;
13: Al 7(ALKPQ7T) ,B = Sle ]Alko [ = 1,- E

Algorithm 2 Window-OMP Method

Input: lAz K, Ngic, and Ly;

1: Generate dictignary matrix ®; set peak igdex set IC = (),
path number L = 0, residual vector r = h;

2: fori=1:L, do

3:  Apply window function to 7 to acquire 7,,;

4 c= .

5: new = K U{k:}; / cx is the kth
element of c.
6: §: (}T T, Tnew = h QICHM,
7. if ||7"||2 “lrnew 3 > 0.05]|r (3 then
8: T = Thew> K= ]Cnew» L=L+ 1
9: else
10: Break;
11:  end if
12: end for
13: A :2w%, ek, l=1,--,L;5= A'h;
14: ﬁl = 7(AI'I;27T), Bl = /S\leijﬁlko, l=1,--- ,E;
P

after appending zeros. Hence, a window function can similarly
be utilized to mitigate the side-lobe effect, and the windowed
residual vector is given by

vy = [@(O)ry - w(K, — Vi, ] " €CFe, 38)
where 7}, is the kth element in 7. In addition, in line 6,
Koew = |85, bpe, |- (39)

with ¢, denoting the kth column of ®. Also as depicted in
line 7, the stop criterion for the window-OMP algorithm is
that the reduction of the l5-norm of the residual vector is less
than 5% after an iteration.



E. Pilot Density Comparison with Conventional Interpolation

In our proposed method, the estimated 31 is in the range

of [—12{—7;7 0] Then according to (15), we have
1
KyAf < —, (40)
Tl

for each path. This indicates that the pilot interval K,Af
[Hz] should not exceed % in our method, where o, 1S
the maximum DS of the channel. By contrast, the K, of the
conventional interpolation method must be sufficiently small to
guarantee the accuracy of the CSI interpolation. Furthermore,
the pilot subcarriers in the conventional interpolation method
must be distributed over the entire OFDM band of the K
subcarriers, while our method does not need this criterion.

More specifically, in the cell-specific reference signal of
LTE-Advanced [37], where the interpolation method is adopt-
ed for the CE of OFDM systems, the pilot interval K, = 3
and the subcarrier spacing Af = 15kHz are specified. Thus
the pilot interval in Hz is K,Af = 45kHz for the LTE-
Advanced pilot pattern. Typically, the maximum DS oy,.x of
the channel is not more than 5 times of the root-mean-square
DS o.ms of the channel, i.e., ooy < Horms. Without loss
of generality, consider the urban macro scenario [34], where
orms = 650ns. The corresponding pilot interval in Hz for
our proposed method can be as large as % > 308 kHz.
Hence, compared to the LTE-Advanced piloxflaf)attern for the
conventional method, the pilot pattern for our proposed method
can be more than 6 times sparser.

V. THEORETICAL ANALYSIS

We first derive the closed-form approximate CRLB for the
unbiased estimator of the parameters in (22) given L. Then,
we show that the effect of wrong estimated paths (harmonics)
is very limited by projection analysis of the LS method.

A. CRLB

In (22), the elements of the complex parameter vector s can
be expressed as s; = vy + jy, 1 <1 < L, where v, and 7,
are the real and imaginary parts of s;, respectively, and L is a
known number. Then, the parameters to be estimated can be

written in the vector form
0=[vT T AT] = [0, 03]  €RE, 41

where v = |1y ---VL]T and v = [71-~-7L]T. Denote the
expectation of h by p = F [h} = As. Then, we have

O 1<k <L, 42)
81/k

MW oy 1<k <L, 43)
O,

0 . .

a—i —i(vk + ) Aay, 1<k <L, (44)

where A = diag{0,1,--- , K;—1} and ay is the kth column of
A. The pth-row and gth-column element of Fisher information
matrix F(0) € R3X3L s given by [28]

2 opt op
[F(g)]pﬂ _O,ELER{ 80p agq} )

(45)

where R{-} denotes the real part. Partition F'(6) into the 9
L x L sub-matrices as

F(Q),,,,, F(G),,ﬁ F(Q)V,A
FO)=| F0)yo F(0)yy F(0)ya (46)
F0)a, F(0)ay F(0)aa

Note that FT(8) = F(). According to (42) to (45) and based
on (32), we can derive the following approximations

2K,
F(O)y, ~ =11, 7)
2K,
F(0)y =~ o2 I, (48)
K,—1)K;(2K,—1) . L
F(0)an~ ( )302( )dlag{uf—l—vlz}l:l, (49)
F(9>Va7 = F(e)?)iu ~Orxr, (50)
Ks -1 Ks . L
F0),a= F(9)£,u ~ %dlag{ - ’Yz}l:p (51
K, —-1)K, . L
F(6)ya=F(0)5 ., ~ leag{w}l:l. (52)

2
On

All the sub-matrices in F'(6) are approximately diagonal
matrices.

The inversion of F(@) can be used to derive the follow-
ing closed-form approximate CRLBs for the corresponding
parameters {1, , A }1L:1

_ o2 (1  (Kg—1)y}
CRLB(y;) = [F 1(0)]l,l ~ 1 (2 + (4dl)w> ., (53)

_ o2 (1 (K,—1)v}?
CRLB(y)=[F 1(9)]L+l,L+lz(2+(4dl)l ,

54
- . o2
CRLB(A;) =[F (9)]2L+z,2L+z”m7 (55)
where % D2 )
dl — ( S + )(Vl + ’Vl ) . (56)

6
The CRLB represents the minimum achievable mean square
error (MSE) of unbiased estimator, and it will be used as the
ultimate performance benchmark in our simulation to compare
the performance of various estimators.

B. Effect of Wrong Estimated Paths

It is important to set an appropriate threshold for the
window-DFT method. A high threshold may cause the prob-
lem of some actual paths been undetected, while a low
threshold value may result in some wrong estimated paths. An
example for wrong estimated path in the window-DFT method
is illustrated in Fig. 5, where the wrong estimated path can be
caused by the spectrum noise. The same problem also exists
in the window-OMP method, and an appropriate choice of the
stopping threshold is desired.

We will show that the effect of wrong paths is not critical.
Therefore, it is reasonable to set a relatively low threshold in
the two methods to reduce the probability of undetected paths.

First consider the estimation error without wrong path. In
this case, the signal matrix A includes the L correct paths with
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Fig. 5. An example of the appearance of the wrong path caused by the noise
in the window-DFT method with SNR = —10dB.

ﬁl, 1 <1 < L. As will be confirmed in the simulation results
that the estimation error of /\; is small. Therefore, we - assume
that the delay parameter estimation is perfect, i.e., A = A.
In both the window-OMP and window-DFT methods, s is
estimated in a LS manner

s=ATh=A"As+ AR =s+ AR, (57)
and the estimation error is given by
Ah = As— As = Pan, (58)

where P4 = AAT is the projection matrix onto range(A).

Next, assume that we have L wrong paths, and denote
the signal matrix associated with these L wrong paths by
B € CX:*L_Then the system’s signal matrix begomes B =
[A ﬁ] € CE-x(L+L) and the true § = [ST 0%} e C(L+L)
is estimated by

5=B'h=B'As+ Bin (59)
in which the pseudo-inverse of B is given by
~ q-1
_ N I H H ~
B'—(B"B) B"- AA AB I pu
B%"A BU'B
D ~A'BC! | _,
= - B, 60
[ —c-'Bi(ah" ¢! ] ©0)
where
C =B"(Ix, — P4)B = B'P,. B, 61)
D =(A"A)"' + ATBC'BY (A" (62)
and Py,. = Ig, — Pj is the projection matrix onto
range(A)L. Therefore, Bf As in the right side of (59) is
B tp—-1RH  ATRC-1RH
BiAs — s+ ATBC 'B"As— ATBC ' B"As

—C'BYAs + C~'BHAs

o

which indicates that the first term in (59) is an accurate
estimate of s. Then, the estimated CSI is given by

(63)

~

h=Bs=As+ BB'n (64)

From (60) as well as noting that P4 = AA" and P4, are

Hermitian matrices, we have
P =BB' =P, + P,BC 'B"P, - BC 'B"P,
— P,BC'BY + BCc~'B"

=Py + P,.BC'B"P,.. (65)

Further define G = P41 E, which is the projection of B onto

range(A)l. Note that P4 is also an idempotent matrix, i.e.,
PfH = P4 .. Hence C can be expressed as
c=B"P,.B=B"P! P,. B=G"G, (66)
and (65) becomes
Ps=Pa+G(G"G)'G" = Ps+Pg.  (67)

Therefore, the estimation error with the L wrong paths is given
by

Ah =h — As = Pan + Pgn. (68)

According to (58), the MSE without wrong path can be
derived as

MSEn = [[|[Pan|};] = E [#" P4 Pagi]

=E [n"Pan| = o2tr(Pa) = 02L,  (69)
where tr(PA) is equal to the sum of the eigenvalues of Py
and we have rank(PA) = tr(PA) since all of the eigenvalues
of Py are O or 1. B

Similarly, from (68), the MSE with the L wrong paths is
given by

MSE; —E (|| P3| = £ [|[Pa]; + || Perlf;

:03 (tr(PA) + tr(PG)) = UrQL(L + z)’

where the orthogonality between P4 and Pg are utilized and
we have tr(Pg) = rank(Pg) = L.

Comparing (69) with (70), it can be seen that the extra
MSE resulting from the L wrong paths is 02L which is
very small since L is typically very small. From another
perspective, the extra error Pgn can be interpreted as the
projection of the noise vector 7 onto the range of G. Since
range(G) = range(P4. B) with dim(range(G)) = rank(B),
the range of G is a low dimensional space, especially when
the number of the wrong paths is small. This indicates that
the ly-norm of the projection of the noise vector is also likely
to be small.

(70)

VI. SIMULATION STUDY

Monte Carlo simulations are conducted to evaluate the
performance of our proposed channel estimation methods.
We simulate a mmWave-based massive MIMO-OFDM system
with N; = 128 transmit antennas and N, = 16 receive
antennas. The carrier frequency is 30 GHz and the system
bandwidth is 250 MHz which is divided into K = 1024
OFDM subcarriers. Unless otherwise specifically stated, the
numbers of RF chains at transmitter and receiver are both set



to 1. Therefore, the beam steering vectors are selected based
on the maximum power gain criterion:

{f*,w*} :argl}lax‘wHHﬂ, (71)
where the transmitter and receiver beam steering vectors f
and w are searched from the 128-DFT codebook and the 16-
DFT codebook, respectively. The channel model (3) is used
to generate the MIMO channel matrix. The ESPRIT method
proposed in [32] and the conventional interpolation method
of [27] as well as the CRLB benchmark are used to compare
with our proposed window-OMP and window-DFT methods.
For the window-DFT, window-OMP and ESPRIT methods, the
pilot number is K, = 64 and the pilot interval is K, = 16.

A. Selection of Dictionary Size Ngy;.

We first investigate the influence of the dictionary size Ny,
to the harmonic frequency estimation error of the proposed
window-DFT and window-OMP methods. The single path
senario is considered, and the path delay is uniformly distribut-
ed in the range of 50 ns to 200 ns. With the sparse level L, = 1
and three dictionary sizes of Ng;. = 1024, 2048 and 4096,
respectively, the cumulative distribution functions (CDFs) of

the single path harmonic frequency error, i.e., ﬁl — 31 ,
obtained by the proposed window-DFT and window-OMP, are
depicted in Fig. 6.

In the single-path senario with L, = 1, the window-OMP
method performs only one iteration to detect the path and,
therefore, it is equivalent to the window-DFT method. This
is confirmed by the fact that the CDFs of the window-DFT
and window-OMP in Fig. 6 are very similar given the same
dictionary size. For the both methods, the estimation error
of Ng;e = 2048 is much lower than that of Ng,. = 1024,
which indicates that the resolution to the harmonic frequency
of the dictionary matrix with Ny, = 1024 is insufficient.
Furthermore, the estimation error of Ng;. = 4096 is similar
to that of Ng;. = 2048. Therefore, it is reasonable to set the
dictionary size to Ny;. = 2048.

Note that the quantization interval of the harmonic frequen-
cy in the dictionary matrix of Ny = 2048 is 522 ~ 0.003.
The quantization interval and half quantization interval are
marked in Fig. 6, where it can be seen that around 95% of the
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Fig. 6. CDFs of |£1 —A; } in the single path senario for different dictionary
sizes with SNR= —10dB, obtained by window-DFT and window-OMP.

estimation error is less than half of the interval and almost
100% of the estimation error is less than the quantization
interval. This verifies that the harmonic frequency error is
typically very small and within the quantization interval.

B. MSE of Harmonic Frequencies Estimation

The number of paths is set to L = 3 and it is known.
The AOAs and AODs of the three paths are inside the same
transmit beam and receive beam. The path delays of the three
paths are set to 50ns, 125ns and 200ns so that they are
sufficiently separated. The strength parameter of each path is
randomly generated according to the distribution CA/(0,1).
The dictionary size Ng;. = 2048 and the sparse level L, =3
are adopted for both the window-DFT and window-OMP
methods. In Figs. 7 and 8, the MSEs of the harmonic frequen-
cies of the strongest path and the weakest path are depicted,
respectively, for the window-DFT, window-OMP and existing
ESPRIT methods together with the corresponding CRLBs.

For the case of the strongest path shown in Fig. 7, the
ESPRIT method achieves a lower MSE than our two proposed
methods at the low SNR region, specifically, for SNR < 10dB.
However, at the high SNR region, specifically, for SNR >
10dB, our two proposed methods outperform the ESPRIT

— — — CRLB
—+— Window-DFT
Window-OMP
—&— ESPRIT[32]
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Fig. 7. MSE of the harmonic frequency estimate for the strongest path.
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MSE of the harmonic frequency estimate for the weakest path.

Fig. 8.



method significantly and, moreover, the MSEs of our window-
DFT and window-OMP are very closed to the CRLB when
the SNR is sufficiently high. From Fig. 7, it can also be
seen that the performance of the two proposed methods are
very similar. This is because the frequency estimation of the
strongest harmonic in the window-OMP is performed in its
first iteration, which is equivalent to a spectrum peak searching
in the window-DFT method.

For the weakest path illustrated in Fig. 8, the ESPRIT
method also performs slightly better at the low SNR region,
while our two proposed methods are considerably better at
the high SNR region. From Fig. 8, it can be seen that
at the high SNR region, the window-OMP clearly achieves
a lower MSE than the window-DFT. This is because the
interference from the strong path to the weak path is canceled
in each iteration of the window-OMP method. By contrast,
the harmonic frequencies corresponding to the different peaks
are estimated simultaneously in the window-DFT method.
However, the complexity of the window-OMP is higher than
that of the window-DFT method.

C. NMSE of CE for All Subcarriers

Since the beamwidth can be very narrow for the large
antenna array, the effective path number after beam searching
is usually only L = 1. Therefore, we consider a relatively
rich-scattering transmission environment in mmWave with
a total of 20 paths before beam searching to increase the
probability of L > 1 after beam searching. Realistically, we
consider L as an unknown parameter to be estimated. The
AOA and AOD of each path are uniformly distributed in the
interval [0, 27|, and the path delay of each path is uniformly
distributed in the interval of 50ns to 200ns. Therefore, the
assumption of sufficiently separated frequencies does not hold.
The normalized MSE (NMSE) of the CE for all the subcarriers
is defined by

i | Hin (k) ~ Hon (k)]
Sy 1 Hpp (k)2

Fig. 9 compares the NMSE performance of the CE for all the
subcarriers achieved by the conventional interpolation method
[27], the existing ESPRIT method [32] as well as our proposed
window-DFT and window-OMP methods.

In Fig. 9, the dictionary size Ng;,. = 2048 and the sparse
level L, = 4 are used for both the window-DFT and window-
OMP methods. Furthermore, we have K, = 64 for the
ESPRIT, window-DFT and window-OMP methods. It can
be seen that the proposed window-DFT and window-OMP
methods generally outperform the ESPRIT method. Observe
that the window-OMP method clearly outperform the window-
DFT method, particularly at the high SNR region. The reason
is that the window-DFT method requires that the frequencies
to be estimated are sufficiently separated, but this condition
does not hold for this example. The better performance of the
window-OMP over the window-DFT is of course achieved at
the expense of high computational complexity.

In Fig. 9, we also plot the NMSE performance of the
conventional interpolation method with the number of pilots

NMSE =

(72)
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Fig. 9.  Comparison of NMSE of the CE for all subcarriers achieved by
the conventional interpolation method [27], the ESPRIT method [32], the
proposed window-DFT and window-OMP methods. K5 = 64 for the ESPRIT,
window-DFT and window-OMP methods.

set to Ky = 64, 128 and 256, which correspond to the
pilot interval K, = 16 ,8 and 4, respectively. Obviously, for
the interpolation method to work, the pilot density should
be high, namely, K, is large and K, is small. Even with
Ky = 256, the NMSE of the conventional interpolation
method is considerably worse than the ESPRIT, window-
DFT and window-OMP methods, especially when the SNR
is low. Also observe from Fig. 9 that our proposed window-
OMP method with K; = 64 consistently outperforms the
conventional interpolation method with Ky = 256 over the
entire range of SNR values.

D. Extension to Multiple RF Chains Scenario

To demonstrate that our proposed window-DFT and
window-OMP methods are equally applicable to multiple RF-
chains systems, we set the numbers of RF chains to Nrp; =
Ngrr, = 2. Since there are two simultaneously activated
beams at both transmitter and receiver, the beam selection
criterion is to choose two pairs of transmitter steering vector
and receiver steering vector which achieve the strongest and
second-strongest power gains, respectively, or equivalently, it
can be expressed as

max

{ff,wi, f3,wi} = arg |wi' H f1 |+ |wy H f,|.
fi1,wi, fo,we

{f1,wi A f2, w2}
(73)

The equivalent baseband channel matrix Hpp is a 2 X 2
matrix with the 4 coefficients, ('w;)HHf’»‘, 1,7 = 1,2. Since
the two simultaneously used pairs of the steering vectors
are usually different at both transmitter and receiver, these
4 coefficients in Hpp typically correspond to the different
and independent paths. Therefore, we can separately estimate
these 4 channel coefficients over all the subcarriers using the
conventional interpolation based method and the proposed HR
based method.

The corresponding NMSE comparison is demonstrated in
Fig. 10. Basically, the performances of all the four CE methods
are better, compared to the single RF-chain scenario. This
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Fig. 10. Comparison of NMSE of the CE for all subcarriers achieved by

the conventional interpolation method [27], the ESPRIT method [32], the
proposed window-DFT and window-OMP methods for the 2 x 2 RF-chains
system. Ks = 64 for the ESPRIT, window-DFT and window-OMP methods.

is to be expected, since we now have more RF chains.
Similar to Fig. 9 for the single RF-chain system, it can be
seen that the proposed window-OMP method attains the best
performance, and our window-DFT method achieves slightly
better performance than the ESPRIT method. It can also be
seen that the ESPRIT method outperforms the conventional
interpolation method with K, = 256.

VII. CONCLUSIONS

In this paper, the baseband CE after beam searching for
the mmWave OFDM system has been formulated as a har-
monic retrieval problem. We have proposed the window-OMP
and window-DFT methods, which are capable of acquiring
approximate ML estimate. The window-OMP method gener-
ally attains higher estimation accuracy than the window-DFT
method, while also imposing higher computational complexity.
It has been demonstrated that our two proposed methods
achieve higher estimation accuracy than the existing ESPRIT
method and the conventional interpolation method. Moreover,
compared to the conventional interpolation method, the pilot
density of the proposed methods can be significantly reduced
and pilots do not have to cover the whole frequency band.
Therefore, our proposed methods offer further advantage of
much more flexible pilot pattern. Compared with the existing
methods of CE before beam searching, our approach also
offers considerable advantage, in terms of pilot overhead
requirement and processing complexity.

REFERENCES

[1]1 T. S. Rappaport, et al.,“Millimeter wave mobile communications for 5G
cellular: It will work!” IEEE Access, vol. 1, pp. 335-349, May 2013.

[2] R. W. Heath, et al., “An overview of signal processing techniques for
millimeter wave MIMO system,” IEEE J. Sel. Topics Signal Process.,
vol. 10, no. 3, pp. 436-453, Apr. 2016.

[3] Q. Li, H. Jung, P. Zong, and G. Wu, “5G millimeter-wave communica-
tion channel and technology overview,” in: F-L. Luo and C. Zhang
(Eds), Signal Processing for 5G: Algorithms and Implementations.
Chichester, UK, 2016, pp. 354-371.

[4] F. Rusek, et al., “Scaling up MIMO: Opportunities and challenges with
very large arrays,” IEEE Signal Process. Mag., vol. 30, no. 1, pp. 40-60,
Jan. 2013.

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

H. Q. Ngo, E. G. Larsson, and T. L. Marzetta, “Energy and spectral effi-
ciency of very large multiuser MIMO systems,” IEEE Trans. Commun.,
vol. 61, no. 4, pp. 1436-1449, Apr. 2013.

X. Guo, et al., “Optimal pilot design for pilot contamination elimina-
tion/reduction in large-scale multiple-antenna aided OFDM systems,”
IEEE Trans. Wirel. Commun., vol. 15, no. 11, pp. 7229-7243, Nov.
2016.

M. R. Akdeniz, et al., “Millimeter wave channel modeling and cellular
capacity evaluation,” IEEE J. Sel. Areas Commun., vol. 32, no. 6,
pp. 1164-1179, Jun. 2014.

A. Alkhateeb, O. E. Ayach, G. Leus, and R. W. Heath, “Channel
estimation and hybrid precoding for millimeter wave cellular systems,”
IEEE J. Sel. Topics Signal Process., vol. 8, no. 5, pp. 831-846, Oct.
2014.

X. Gao, et al., “Energy-efficient hybrid analog and digital precoding for
mmWave MIMO systems with large antenna arrays,” IEEE J. Sel. Areas
Commun., vol. 34, no. 4, pp. 998-1009, Apr. 2016.

A. Garcia-Rodriguez, V. Venkateswaran, P. Rulikowski, and C. Ma-
souros, “Hybrid analog-digital precoding revisited under realistic RF
modeling,” IEEE Wirel. Commun. Lett., vol. 5, no. 5, pp. 528-531, Oct.
2016.

O. E. Ayach, et al., “The capacity optimality of beam steering in
large millimeter wave MIMO systems,” in Proc. SPAWC 2012 (Cesme,
Turkey), Jun. 17-20, 2012, pp. 100-104.

M. Giordani, M. Mezzavilla, and M. Zorzi, “Initial access in 5G
mmWave cellular networks,” IEEE Commun. Mag., vol. 54, no. 11,
pp. 4047, Nov. 2016.

V. Raghavan, et al., “Beamforming tradeoffs for initial UE discovery in
millimeter-wave MIMO systems,” IEEE J. Sel. Topics Signal Process.,
vol. 10, no. 3, pp. 543-559, Apr. 2016.

P. Zhang, S. Chen, and L. Hanzo, “Reduced-complexity near-capacity
joint channel estimation and three-stage turbo detection for coherent
space-time shift keying,” IEEE Trans. Commun., vol. 61, no. 5, p-
p. 1902-1913, May 2013.

P. Zhang, S. Chen, and L. Hanzo, “Embedded iterative semi-blind chan-
nel estimation for three-stage-concatenated MIMO-aided QAM turbo-
transceivers,” IEEE Trans. Veh. Tech., vol. 63, no. 1, pp. 439446, Jan.
2014.

P. Zhang, S. Chen, and L. Hanzo, “Two-tier channel estimation aided
near-capcity MIMO transceivers relaying on norm-based joint transmit
and receive antenna selection,” IEEE Trans. Wirel. Commun., vol. 14,
no. 1, pp. 122-137, Jan. 2015.

O. E. Ayach, et al., “Spatially sparse precoding in millimeter wave
MIMO systems,” IEEE Trans. Wirel. Commun., vol. 13, no. 3, pp. 1499—
1513, Mar. 2014.

Z. Gao, L. Dai, Z. Wang, and S. Chen, “Spatially common sparsity based
adaptive channel estimation and feedback for FDD massive MIMO,”
IEEE Trans. Signal Process., vol. 63, no. 23, pp. 6169-6183, Dec. 2015.
H. Xie, F. Gao, S. Zhang, and S. Jin, “A unified transmission strategy for
TDD/FDD massive MIMO systems with spatial basis expansion model,”
IEEE Trans. Veh. Tech., vol. 66, no. 4, pp. 3170-3184, Apr. 2017.

Z. Gao, C. Hu, L. Dai, and Z. Wang, “Channel estimation for millimeter-
wave massive MIMO with hybrid precoding over frequency-selective
fading channels,” IEEE Commun. Lett., vol. 20, no. 6, pp. 1259-1262,
Jun. 2016.

K. Venugopal, A. Alkhateeb, N. G. Prelcic, and R. W. Heath, “Channel
estimation for hybrid architecture-based wideband millimeter wave
systems,” IEEE J. Sel. Areas Commun., vol. 35, no. 9, pp. 1996-2009,
Sep. 2017.

X. Ma, et al, “Design and optimization on training sequence for
mmWave communications: A new approach for sparse channel estima-
tion in massive MIMO,” IEEE J. Sel. Areas Commun., vol. 35, no. 7,
pp. 1486-1497, Jul. 2017.

C. Huang, L. Liu, C. Yuen, and S. Sun, “A LSE and sparse message
passing-based channel estimation for mmWave MIMO systems,” in
Proc. Globecom 2016 Workshops (Washington, DC, USA), Dec. 4-8,
2016, pp. 1-6.

L. Pan, L. Liang, W. Xu, and X. Dong, “Framework of channel esti-
mation for hybrid analog-and-digital processing enabled massive MIMO
communications,” IEEE Trans. Commun., vol. 66, no. 9, pp. 3902-2915,
Sep. 2018.

Y. Wang, W. Xu, H. Zhang, and X. You, “Wideband mmWave channel
estimation for hybrid massive MIMO with low-precision ADCs,” in
IEEE Wirel. Commun. Lett., early access.

M. Biguesh and A. B. Gershman, “Training-based MIMO channel
estimation: A study of estimator tradeoffs and optimal training signals,”
IEEE Trans. Signal Process., vol. 54, no. 3, pp. 884-893, Mar. 2006.



[27] S. Coleri, M. Ergen, A. Puri, and A. Bahai, “Channel estimation
techniques based on pilot arrangement in OFDM systems,” IEEE Trans.
Broadcast., vol. 48, no. 3, pp. 223-229, Sep. 2002.

S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation
Theory. Prentice-Hall: Upper Saddle River, NJ, 1993.

R. O. Schmidt, “Multiple emitter location and signal parameter estima-
tion,” IEEE Trans. Antennas Propag., vol. 34, no. 3, pp. 276-280, Mar.
1986.

R. Roy, A. Paulraj, and T. Kailath, “ESPRIT — a subspace rotation
approach to estimation of parameters of cisoids in noise,” IEEE Trans.
Acoust. Speech Signal Process., vol. 34, no. 5, pp. 1340-1342, Oct.
1986.

M. C. Vanderveen and A.-J. Vanderveen, A. Paulraj, “Estimation of
Multipath Parameters in Wireless Communications,” IEEE Trans. Signal
Process., vol. 46, no. 3, pp. 682-690, Mar. 1998.

B. Yang, K. B. Letaief, R. S. Cheng, and Z. Cao, “Channel estimation for
OFDM transmission in multipath fading channels based on parametric
channel modeling,” IEEE Trans. Commun., vol. 49, no. 3, pp. 467479,
Mar. 2001.

S. Liu, F. Wang, R. Zhang, and Y. Liu, “A simplified parametric channel
estimation scheme for OFDM systems,” IEEE Trans. Wirel. Commun.,
vol. 7, no. 12, pp. 5082-5090, Dec. 2008.

3GPP, “Study on channel model for frequency spectrum above 6 GHz,”
TR 38.900 (release 15), 2018.

M. Wu, et al., “On OFDM and SC-FDE transmissions in millimeter
wave channels with beamforming,” in Proc. VIC Spring 2016 (Nanjing,
China), May 15-18, 2016, pp. 1-5.

W. Dai and O. Milenkovic, “Subspace pursuit for compressive sensing
signal reconstruction,” IEEE Trans. Inf. Theory, vol. 55, no. 5, pp. 2230-
2249, May 2009.

3GPP, “Physical channels and modulation,” TS 36.211 (release 14),
2017.

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Ziynan Sha received the B.S. degree from the
Department of Electronic Engineering, Tsinghua U-
niversity, Beijing, China, in 2017, where he is cur-
rently pursuing the Ph.D degree. His main research
interest is millimeter-wave communications.

Zhaocheng Wang (M’09-SM’11) received the B.S.,
M.S., and Ph.D. degrees from Tsinghua University,
Beijing, China, in 1991, 1993, and 1996, respec-
tively. From 1996 to 1997, he was a Post-Doctoral
Fellow with Nanyang Technological University, Sin-
gapore. From 1997 to 1999, he was with OKI
Techno Centre Pte. Ltd., Singapore, where he was
first a Research Engineer and later became a Senior
Engineer. From 1999 to 2009, he was with Sony
Deutschland GmbH, where he was first a Senior
Engineer and later became a Principal Engineer. He
is currently a Professor of electronic engineering with Tsinghua University
and serves as the Director of the Broadband Communication Key Laboratory,
Tsinghua National Laboratory for Information Science and Technology. He
has authored or co-authored over 120 journal papers. He holds 34 granted
U.S./EU patents. He has co-authored two books, one of which, Millimeter
Wave Communication Systems, was selected by IEEE Series on Digital and
Mobile Communication (Wiley-IEEE Press). His research interests include
wireless communications, visible light communications, millimeter-wave com-
munications, and digital broadcasting. He is a fellow of the Institution of
Engineering and Technology. He served as the Associate Editor of the IEEE
TRANSACTIONS ON WIRELESS COMMUNICATIONS from 2011 to 2015
and IEEE COMMUNICATIONS LETTERS from 2013 to 2016, and has also
served as the technical program committee co-chair of various international
conferences.

Sheng Chen (M’90-SM’97-F’08) received the
B.Eng. degree in control engineering from the
East China Petroleum Institute, Dongying, China,
in 1982, the Ph.D. degree in control engineering
from City University, London, in 1986, and the
D.Sc. degree from the University of Southampton,
Southampton, U.K., in 2005.

From 1986 to 1999, he held research and aca-
demic appointments at the Universities of Sheffield,
Edinburgh, and Portsmouth, all in U.K. Since 1999,
he has been with the School of Electronics and
Computer Science, University of Southampton, U.K., where he is currently a
Professor in intelligent systems and signal processing. His research interests
include adaptive signal processing, wireless communications, modeling and
identification of nonlinear systems, neural network and machine learning,
intelligent control system design, evolutionary computation methods, and
optimization. He has published over 600 research papers. He is a fellow
of the United Kingdom Royal Academy of Engineering, a fellow of IET, a
Distinguished Adjunct Professor at King Abdulaziz University, Jeddah, Saudi
Arabia, and an ISI highly cited researcher in engineering in 2004. He has
11400 Web of Science citations and over 24000 Google Scholar citations.




