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Abstract—In recent years, deep learning (DL) techniques have
shown great potential in wireless communications. Unlike DL-
based receivers for time-invariant or slow time-varying channels,
we propose a new DL-based receiver for single carrier commu-
nication in time-varying underwater acoustic (UWA) channels.
Without the off-line training, the proposed receiver alternately
works with online training and test modes for accommodating
the time variability of UWA channels. Simulation results show a
better detection performance achieved by the proposed DL-based
receiver and with a considerable reduction in training overhead
compared to the traditional channel-estimate (CE) based decision
feedback equalizer (DFE) in simulation scenarios with a mea-
sured sound speed profile. The proposed receiver has also been
tested by using the data recorded in an experiment in the South
China Sea at a communication range of 8 km. The performance
of the receiver is evaluated for various training overheadsand
noise levels. Experimental results demonstrate that the proposed
DL-based receiver can achieve error free transmission for all
288 burst packets with lower training overhead compared to the
traditional receiver with a CE-based DFE.

Index Terms—Channel equalization, deep learning, deep neu-
ral network, DFE, machine learning, single carrier communica-
tion, underwater acoustic network.

I. I NTRODUCTION

Underwater acoustic (UWA) channel features frequency-
dependent limited bandwidth, long time-varying multipath
spread and severe Doppler effect, which pose a great chal-
lenge for reliable and effective UWA communications [1]–
[7] and networks [8]–[10], leading to relatively low data
rates in a range between a few bits/s (bps) to several tens
of kbits/s (kbps) and often unsatisfied performance [11].
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Generally, single-carrier (SC) modulation schemes with time-
domain equalization techniques enjoy high spectral efficiency
and robust performance at the cost of a high receiver com-
plexity [1], [4], [12]. Historically, in order to combat the
inter-symbol interference (ISI) induced by the time-varying
multipath spread, many channel equalization techniques have
been thoroughly studied, g.e., linear equalizer (LE), decision
feedback equalizer (DFE) etc. [13]–[16]. However, there isstill
a great room for the improvement in UWA communication
systems.

In recent years, machine learning techniques have attracted
attention in different fields. In particular, deep learning(DL)
techniques feature great potential for solving nonparametric
problems such as object detection and recognition, voice
recognition, and object tracking [17]–[19], [21]. Although DL
has been adopted for terrestrial radio wireless communication
only recently [22]–[25], it has also been utilized in UWA com-
munications [26]. In [22]–[24], DL techniques were proposed
for joint channel estimation and symbol detection in OFDM
systems. Simulation results demonstrate that deep neural net-
work (DNN) has the ability to learn and analyze characteristics
of wireless channels with nonlinear distortion and interference
in addition to the frequency selectivity. In [25], learning
assisted (LA) algorithms are proposed for estimation of time-
varying channels. The DNN based channel estimators are
utilized to track channel variations. Simulation results validate
the effectiveness of the algorithms in online tracking the
channel variations. In [26], inspired by the works in [23],
[24], a DL-based UWA OFDM communication scheme is
proposed and verified by simulation in a UWA channel with
a measured sound speed profile (SSP). Despite the success of
DNN in time-invariant or slow time-varying channels, DNN-
based wireless communication over fast time-varying channels
induced by severe Doppler effects has not been studied yet.

In this paper, we propose a DL-based receiver for UWA SC
communications over time-varying channels. As compared to
existing works, our main contributions are summarized below:

1) Different from the existing DL-based receivers with the
offline training and online test modes, we propose a DL-
based receiver with online training and test modes for
accommodating time-varying UWA channels.

2) The performance of the proposed DL-based receiver
is evaluated by a statistical channel simulator with a
measured SSP. Numerical results show that the proposed
receiver achieves a better detection performance than
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the traditional CE-based decision-feedback equalization
(DFE) receiver and with lower training overhead.

3) The performance of the proposed receiver has been
tested in the South China Sea experiment, at a commu-
nication distance of8 km. We show that the proposed
DL-based receiver can achieve a substantial performance
gain over the traditional CE-based DFE receiver with
the second-order PLL. With less training overhead, the
proposed receiver can achieve error-free transmission of
288 data packets at the signal-to-noise ratio (SNR) as
low as SNR=5dB, while the traditional CE-based DFE
receiver cannot achieve that even at as high SNR as
SNR = 15 dB and with a significantly longer training
sequence. At the best of our knowledge, this is the first
time that a DL based receiver is validated using data
from a sea trial instead of simulated data.

The rest of this paper is organized as follows. In Section
II, the time-varying UWA SC communication system model
is presented and the CE-based DFE receiver with second-
order PLL is reviewed. Section III presents the proposed DL-
based receiver for UWA communication over time-varying
UWA channels. Simulation results are presented in Section
IV. Section V presents results from the sea trial. Conclusions
are drawn in Section VI.

Notation: Matrices and vectors are denoted by boldface
uppercase and lowercase letters, respectively.(·)

†, (·)
∗ and

(·)T denote the Hermitian transposition, complex conjugate
and transposition, respectively.

II. SYSTEM MODEL FORUWA SC COMMUNICATIONS

OVER TIME-VARYING CHANNEL

A. Signaling Model

We consider a single-input single-output UWA SC com-
munication system. Fig. 1 depicts the block diagram of the
transmitter. The binary information bit vectorb is split into
groups of P bits, whereP represents the number of bits
per symbol, and each group is mapped to one of the2P -ary
symbols of the alphabetA = {αp}

P

p=1, whereαp is a complex
number. The sequence of2P -ary symbols is multiplexed with a
training symbol sequence of lengthNt, producing the payload
symbol vectorx

∆
= {xn}

Ns

n=1. Symbols from the vectorx pass
through a square-root raised-cosine pulse-shaping filter with
an impulse responseg (t) to produce the baseband signalb(t).
The complex baseband signalb(t) is expressed as [27]

b (t) =

Ns
∑

n=1

xng (t− nTs), (1)

where xn is the transmitted symbol,g (t) is a square-root
raised cosine pulse-shaping filter with roll-off factorγ, Ts is
the symbol interval. The signalb (t) is then modulated onto
a carrier of angular frequencyωc to produce the transmitted
signals(t) as [1], [27]

s (t) = Re{b (t) ejωct}. (2)

Preamble and postamble linear frequency modulation
(LFM) waveforms are added before and afters(t) for the

purpose of the coarse frame synchronization and Doppler
estimation.

b t s t

Fig. 1. Block diagram of the transmitter for the UWA SC communication
system.

In this paper, we consider the narrowband signaling model,
i.e., the Doppler effect can be represented as a carrier frequen-
cy offset without time scaling. We assume that the maximum
channel delay (in symbol intervals) isL.

So the received baseband signal distorted by multipath
spread and noise can be expressed as

yb(t) =
L−1
∑

l=0

βl(t)b
(

t− τl
)

ejωc(−τl) + η (t) , (3)

where βl(t) is time-varying amplitude fading factor corre-
sponding to thel-th path,τl is the delay associated with the
l-th path andη (t) is additive complex white Gaussian noise
(AWGN) with zero mean and varianceσ2

η at hydrophone,
which is independent fromb (t).

B. Traditional CE-based DFE Receiver with PLL

Fig. 2 depicts the receiver with the traditional CE-based
DFE and PLL. This type of DFE is widely used for combatting
the inter-symbol interference (ISI) and phase distortion in
UWA communication channels [15], [27].

On the receiver side, the passband signalyp(n) is trans-
formed into baseband signalyb(n) by a demodulator, and the
baseband signalyb(n) is downsampled intoy(k), wherek is
the time index in the symbol intervalTs. Assume that a DFE
consists of anLf -length feedforward filter (FFF) with the tap
vector f(k) andLb-length feedback filter (FBF) with the tap
vectorg(k), and the equalizer delay isl [27], [28].

At time instantk, the transmitted symbolx(k− l) estimated
by DFE as [28]

x̂(k − l) = yT (k)f(k) + x̂T (k)g(k), (4)

where y(k) = [y(k), y(k − 1), · · · , y(k − Lf + 1)]
T ,

and the already estimated symbol vector̂x(k) =
[x̂(k − l − 1), x̂(k − l − 2), · · · , x̂(k − l− Lb)]

T . Fig. 3
depicts the structure of this type DFE in details. The
equation (4) can be written in vector form as [27], [28]

x̂(k − l) = mT (k)n(k), (5)

where

m(k) =

[

y(k)

−x̂(k)

]

,n(k) =

[

f(k)

g(k)

]

. (6)

With an adaptive channel estimator, we can estimate the
equivalent time-varying baseband channel matrixĤ(k) by
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Fig. 2. Block diagram of the receiver structure for the traditional CE-based DFE.

( )y k
+

+

+
( )1
f k

å å

+

+

( )1
g k

( )2
g k

+ +

( )
fL
f k

( )1fL
f k-

( )1bL
g k-

( )x k l-

( )x̂ k l-

Fig. 3. Structure of a symbol-spaced DFE.x̄(k−l) denotes the hard decision
of x̂(k − l)

using the training symbols or the hard decisions of estimated
data symbols [28]. Finally, the equalizer tapsf̂(k) andĝ(k) are
generated and updated by solving the equivalent mean square
error (MSE) equation as follows [27]

Γ(k)n(k) = Ψ(k), (7)

whereΓ(k) = E
{

m(k)mH(k)
}

, Ψ(k) = E {m(k)x̂∗(k−
l)}.

In order to compensate the phase distortion induced by the
Doppler effect, the second-order PLL is incorporated into the
CE-based DFE for joint carrier phase synchronization and
equalization [29]. For easy understanding, we set the decision
delay l = 0, so at time instantk, output of the FFF is given
by

p(k) = f†(k)y(k)e−jθ(k), (8)

and the output of the FBF is written as

q(k) = ĝ†(k)x̂(k), (9)

where the time-varying phase can be tracked by the second-
order PLL as follows [29]

θ(k + 1) = θ(k) +Kf1Φ(k) +Kf2

k
∑

i=0

Φ(i), (10)

whereKf1 andKf2 are proportional coefficient and integral
coefficient of loop filter, respectively.

III. PROPOSEDDL-BASED RECEIVER FORUWA SC
COMMUNICATION OVER TIME-VARYING CHANNELS

A. Review of DNN

DNN is an artificial neural network (ANN) with multiple
hidden layers composed of many neurons [30]. Fig. 4 depicts
the general structure of a DNN model withQ > 3 layers,
where the layer1 and layerQ are called as input layer and
output layer, respectively, and the other layers are hidden
layers. Data flow propagates from the input layer to the hidden
layers, then the output layer.
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Fig. 4. General structure of a DNN model.

The input layer (i.e. layer 1) hasJ (1) variables in vector

b(1) =
[

b
(1)
1 , · · · , b

(1)
j , · · · , b

(1)

J(1)

]T

, then thej-th neuron’s
input of layer2 is

a
(2)
j =

J(1)
∑

i=1

u
(1)
ij b

(1)
i + v

(1)
j , j = 1, 2, · · · , J (2), (11)
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where u
(1)
ij is a weight between thei-th neuron of layer1

and thej-th neuron of layer2, v
(1)
j is a bias of thej-th

neuron in layer2, J (2) is the number of neurons of layer2.
In each hidden layer, there is a nonlinear activation function
f(·) which transforms the linear combinations of inputs to
non-linear outputs. Thej-th neuron’s output of layer2 is thus
given by [30]

b
(2)
j = f (2)

(

a
(2)
j

)

. (12)

Then b(2) =
[

b
(2)
1 , · · · , b

(2)
j , · · · , b

(2)

J(2)

]T

will be the next

layer’s input. Similarly, thej-th neuron’s inputa(q)j and output

b
(q)
j of layer q are

a
(q)
j =

J(q−1)
∑

i=1

u
(q−1)
ij b

(q−1)
i + v

(q−1)
j , j = 1, 2, · · · , J (q), (13)

b
(q)
j = f (q)

(

a
(q)
j

)

, (14)

whereJ (q−1) and J (q) are the number of neurons of layer
(q − 1) andq, respectively.

The nonlinear activation functions may be the Sigmoid func-
tion fS(n) =

1
1+e−n , or Rectified Linear Unit (ReLU) function

fR(n) =max(0, n) [30]. Hence, the final output of the DNN

b̂(Q) =
[

b̂
(Q)
1 , · · · , b̂

(Q)
j , · · · , b̂

(Q)

J(Q)

]T

is a cascade nonlinear

transformation of inputb(1) =
[

b
(1)
1 , · · · , b

(1)
j , · · · , b

(1)

J(1)

]T

,
and can be expressed as

b̂(Q) = f
(

b(1), · · · ,b(q), · · · ,b(Q−1);u(1), · · · ,u(q),

· · · ,u(Q−1); v(1), · · · ,v(q), · · · ,v(Q−1)
)

= f (Q−1)
(

f (Q−2)
(

· · · f (1)
(

b(1)
)))

, (15)

where f (q)(·) is the activation function adopted by layerq.
Vectorsu(q) andv(q) denote the weights and bias at layerq.
Through the offline or online training process, the weights and
bias can be optimized following a target function.

B. Proposed DL-based Receiver

In a time-invariant channel, a DL-based receiver usually
comprises two stages: 1) offline training stage, and 2) online
deployment/test stage [23]. However, this type of trainingand
deployment mode is not suitable for the DL-based receiver
over time-varying channels.

In order to accommodate the time variability of UWA
channels, we propose a DL-based receiver with online training
and test mode. As shown in Fig. 5(a), the proposed receiver is
alternatively working at two modes: 1) online training mode,
and 2) online test mode. As shown in Fig. 5(b), the whole
payload is divided intoD sub-blocks withNs symbols in each.
For thei-th sub-block, the first{N i

p}
D
i=1 symbols are utilized

as the training symbols and the remainingN i
d = Ns − N i

p

symbols are the data symbols. So the number of total training
symbols isNp =

∑D
i=1 N

i
p. The resulting training overhead

is β = Np/Ns/D.
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Fig. 5. Structure of the proposed DL-based receiver for time-varying UWA
channels: (a) DL-based receiver, and (b) alternatively working between the
training mode and test mode.

When the receiver is receiving known training symbols, the
DL-based receiver switches to the online training mode. Given
the received symbolsy(k), the known training symbolsx(k)
and estimated symbols of previous sub-block, the DNN utilizes
the Adam (Adaptive moment estimation) optimizer which is
based on the stochastic gradient descent algorithm [30] to
minimize the mean-square error of the loss function given by

Li
2 =

1

N i
p

Ni
p−1
∑

k=0

(

b̂i(k)− bi(k)
)2

, i = 1, 2, · · · , D. (16)

The online training mode is stopped ifLi
2 becomes lower than

a predefined thresholda as shown in Fig. 5(a) or ifk = Np−1.
When the training mode ends, the DNN produces the weight
set u

∆
=
{

u(q)
}Q−1

q=1
and bias setv

∆
=
{

v(q)
}Q−1

q=1
, which are

utilized in the online test mode.
The DL-based receiver switches into the online test mode

after obtaining the weights vectoru and bias vectorv. In
the online test mode, we obtain the estimate{b̂i}Di=1 of the
transmitted symbols{bi}Di=1 by using the equation (15).

IV. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
DL-based receiver and compare it to the traditional DFE
receiver with the recursive least squares (RLS) based channel
estimator and embedded second-order PLL by using simulated
time-varying channels.
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Fig. 6. Measured SSP and predicted TL with a source at 50 m depth. The
transmission loss is shown in dB.

TABLE I
SIMULATION PARAMETERSSETUP

sea depth (H) 250 m
channel distance (d) 800 m
spreading factor (k) 1.7

speed of sound in bottom (cb) 1574 m/s
density in bottom (ρb) 1.269 g/m3

attenuation coefficient in bottom (α) 0.01875 dB/wavelength
minimum frequency (fl) 8 kHz

carrier frequency (fc) 12 kHz
bandwidth (B) 8 kHz
modulation type BPSK

sample frequency (fs) 48 kHz
symbol rate (Rs) 4 kHz

A. Simulation Environment

A statistical channel simulator [31] is used to generate the
time-varying UWA channels for evaluating the performance of
the proposed DL-based receiver and the traditional CE-based
DFE receiver. The parameters for the time-varying channel
simulator are listed in Table I. We use a SSP measured in
a sea experiment and shown in Fig. 6. We also compute the
transmission loss (TL) as shown in Fig. 6, the computation is
done using the Bellhop acoustic toolbox [31]. The maximum
TL is approximately 60 dB. In order to investigate how the
surface and bottom affect the UWA channel characteristics,we
construct three configurations of transducer-hydrophone pair
listed in Table II.

Following the parameters and configurations shown in Ta-
ble I and Table II, we obtain the time-varying UWA CIRs and
corresponding channel scattering functions as shown in Fig. 7,
Fig. 8, and Fig. 9. It can be seen that the simulated channels
are time varying.

B. Training Scheme

For short packet bursts, we adopt the same training scheme
for both the proposed DL-based receiver and the traditional
CE-based DFE receiver as shown in Fig. 10. For each received

TABLE II
DEPTH OF THETRANSDUCER-HYDROPHONEPAIR

Configuration Transmitter Depth (m) Receiver Depth (m)
C1 50 50
C2 200 50
C3 200 200

packet withNs = 500 symbols, the firstNp symbols are uti-
lized as the training symbols and the remainingNd = Ns−Np

symbols are the data symbols. The resulting training overhead
is β = Np/(Np + Nd), and the corresponding data rate is
(1− β)×Rs kbps.

For the proposed DL-based receiver, the DNN hasQ = 4
layers, in whichJ (1), J (2), J (3) and J (4) are set to128, 96,
48, and32, respectively. All layers utilize the sigmoid function
as the active functions. The number of pilot symbolsNp is set
to 64, then the resulting training overhead isβ = 12.8%.
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Fig. 7. Simulated time-varying channel characteristics under the configuration
C1: (a) time-varying CIRs, and (b) corresponding channel scattering function.

For the traditional CE-based DFE receiver as shown in
Fig. 2, we setNp to 200 for ensuring that the traditional CE-
based DFE receiver can get good performance. The length of
the feed forward filter and feedback filter are set according to
the CIRs shown in Fig. 7, Fig. 8, and Fig. 9, but the following
parameters are common for all the three configurations: for-
getting factorλ of the RLS adaptive algorithm is set to 0.995,
proportional coefficient and integral coefficient of PLL, i.e.
Kf1 andKf2 , are set to 0.001 and 0.000001, respectively.

C. Test Results

Following the above three simulation configurations, we
compare the performance of the proposed DL-based receiver
with that of the traditional CE-based DFE receiver in terms
of bit error rate (BER). As shown in Fig. 11(a), Fig. 11(b),
and Fig. 11(c), with lower training overhead, the proposed
DL-based receiver consistently outperforms the traditional CE-
based DFE receiver.
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Fig. 8. Simulated time-varying channel characteristics under the configuration
C2: (a) time-varying CIRs, and (b) corresponding channel scattering function.
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Fig. 9. Simulated time-varying channel characteristics under the configuration
C3: (a) time-varying CIRs, and (b) corresponding channel scattering function.
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Fig. 10. Training scheme for the proposed DNN-based receiver and the
traditional CE-based DFE receiver.
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Fig. 11. BER performance of the proposed DL-based receiver and the
traditional CE-based DFE receiver under the configuration:(a) C1, (b) C2,
and (c) C3.

V. EXPERIMENTAL RESULTS

A. Experimental Environment

The experiment was carried out in the South China Sea in
November 2014. Fig. 12 depicts the layout of this experiment.
The sea depth at the experimental site is about 99 m. One
transducer was deployed to a depth of approximately 15 m
from a ship. During the experiment, the ship was drifting
on the sea surface. A receive vertical linear array of 48
hydrophones was moored with the first hydrophone at about
72 m below the surface, and other hydrophones evenly spaced
by 0.25 m. The communication range was about 8 km at
the start of the experiment. The system timers of transmitter
and received array are synchronized by the GPS time before
deployment.

B. Data Structure

For transmission, the input bits were encoded by a rate
Rc = 1/2 convolutional coder with generator polynomial
[171, 133] in octal format. The carrier frequency wasfc = 3
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Fig. 12. Layout of the South China Sea experiment.

kHz and the symbol rate was1 k symbols per second (ksps).
The pulse shaping filter was a square-root raised cosine filter
with a roll-off factor of 0.5 [27], leading to an occupied
channel bandwidth of about 1.5 kHz. The sampling rate was 25
kHz at the receiver end. The structure of the transmitted data
stream and relevant parameters are shown in Fig. 13. Pream-
ble up-chirp and postamble down-chirp, Doppler-insensitive
waveforms, were added before and after the data burst for
coarse frame synchronization and estimation of an average
Doppler shift over the whole data burst. Following the frame
synchronization signal is one data packet (payload). Only data
with BPSK modulation was used for performance evaluation
for the proposed DL-based receiver. The payload is separated
from up-chirp or down-chirp signal by the gap of the duration
150 ms for avoiding the inter-block interference. The length
of each payload is 5500 symbols between two guard intervals.
Each burst packet is transmitted every 6.1 s. The approximate
SNR, which is estimated by using the signal part and silent
part of the received signal, is in the range of 15 dB to 16 dB.

LFM
Data

Sequence

Training

Sequence 1

Training

Sequence 2
LFM

150ms 150ms 150ms150ms500ms 500ms4500ms

Guard

Time

Guard

Time

Fig. 13. Structure of the signal transmitted in the sea experiment.

In order to show characteristics of the UWA channel during
the experiment, we estimate the CIRs by using the matched
filter applied to the preamble and postamble chirp signals and
the RLS algorithm applied to the data signals. It can be seen
that the channel is fast time varying within a single burst. From
Fig. 14, we can observe that the channel multipath spread
is about15 ∼ 30 ms, corresponding to a channel length of
15 ∼ 30 taps in terms of the symbol rateRs = 1 ksps. The
arrival paths fluctuate very rapidly and CIRs are clustering.

C. Training Scheme

In order to evaluate the performance of the proposed DL-
based receiver and traditional CE-based DFE receiver, we use
6 transmitted bursts. For each burst, we have 48 received

packets, so in total we have 288 received packets. We choose
5000 symbols including training sequence and data sequence
in each packet depicted in Fig. 13 to test the performance of
above receivers.

For the proposed DL-based receiver, the DNN hasQ = 5
layers, in whichJ (1), J (2), J (3), J (4) and J (5) are set to96,
48, 16, 8, and 1, respectively. All layers utilize the sigmoid
function as the active functions. Training symbols are peri-
odically inserted into the data to train the DNN. As shown
in Fig. 15(a), the whole payload is divided intoD = 10 sub-
blocks withNs = 500 symbols in each. For thei-th sub-block,
the firstN i

p symbols are utilized as the training symbols and
the remainingNd = Ns −N i

p symbols are the data symbols.
So the number of total training symbols isNp =

∑10
i=1 N

i
p.

The resulting training overhead isβ = Np/500/10.

For the traditional CE-based DFE receiver, as shown in
Fig. 15(b), we follow the training scheme usually used in
this receiver, then withNs = 5000, the firstNp symbols are
utilized as the training symbols andNd = Ns −Np symbols
are the data symbols. The length of the feed forward filter and
feedback filter are set to 60 and 29 according to the channel
characteristic analysis. Forgetting factor is0.995, proportional
coefficient and integral coefficient of the PLL loop filter are
set to0.001 and0.000001, respectively.

tN dN

(a)

pN dN

(b)

Fig. 15. Training schemes for (a) proposed DNN-based receiver; (b)
traditional CE-based DFE receiver.
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(d)
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Fig. 14. Examples of the CIR estimated over one burst transmission. The CIRs measured between transducer and first hydrophone are shown in (a), (c),
(e). The CIRs measured between transducer and last hydrophone are shown in (b), (d), (f). CIR is measured using: (a) and (b) the preamble up-chirp with
the correlation method; (c) and (d) the postamble down-chirp with the correlation method; (e) and (f) data signals and the classical RLS algorithm with
λ = 0.995.
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Fig. 16. Phase estimated by PLL at SNR≈ 15 dB.
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Fig. 17. BER versus the training overhead at SNR≈ 15 dB.

D. Test Results

Fig. 16 shows the time-varying phase estimated by using the
PLL for one received signal packet. Fig. 17 shows how the
performance of receivers is effected by the training overhead.
We observe that the total number of training symbolsNp

significantly affects the performance of the traditional CE-
based DFE receiver. It can be seen that, whenNp is less than
50, the traditional CE-based DFE receiver cannot converge.
The performance of the proposed DL-based receiver can be
improved with a few training symbols per subblock. When
N i

p = 5 for the i-th subblock, i.e. the total number of training
symbolsNp = 10 × 5 = 50, the BER can reach10−2. With
N i

p = 6, the proposed DL-based receiver can reach zero BER
for all 288 received packets. The traditional CE-based DFE
receiver needs at least 60 training symbols to converge to a
BER below3.7× 10−4.

For the traditional CE-based DFE receiver, the improvement
in BER performance is small with the increase of training
symbols. The error free transmission cannot be achieved even
with a training overheadβ = 300/5000 = 6%, while the
proposed DL-based receiver only needs 60 pilot symbols to
achieve the error-free transmission for all 288 packets with a
training overhead as low asβ = 6× 10/5000 = 1.2%.

Since the data were originally acquired in a relatively
high SNR, we can evaluate the performance of the receivers
over different noise levels by adding recorded noise into the
received data. Fig. 18 and Fig. 19 show how the performance
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Fig. 18. BER versus the training overhead at SNR≈ 10 dB.
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Fig. 19. BER versus the training overhead at SNR≈ 5 dB.

of the receivers is effected by the lower SNR.
Fig. 18 shows the performance at an SNR of10 dB. It can

be seen that, whenNp is less than 50, the traditional CE-based
DFE receiver cannot converge. WithNp = 60 BER can only
reach BER=1.1×10−3. With the proposed DL-based receiver,
when theN i

p = 5 for each subblock, i.e. the total training
number is 50, all 288 packets can be received without errors.

Fig. 19 shows the receiver performance at SNR= 5 dB. It
can be seen that, with the the lower SNR, the performance of
the two receivers degrades. For the traditional CE-based DFE
receiver an error floor is BER=7.5× 10−3. The proposed DL-
based receiver, withNp = 400, can reach zero BER with a
training overheadβ = 400/5000 = 8%.

VI. CONCLUSIONS

In this paper, we have proposed a DL-based receiver for
UWA SC communications over time-varying UWA channels.
Unlike the DL-based receivers over time-invariant channel,
the proposed receiver works with the online training stage
and online test stage for accommodating the time variability
of UWA channels. Simulation results show that the proposed
receiver outperforms the traditional CE-based DFE receiver
even if using a significantly shorter training sequence. The
proposed receiver has also been tested using sea trial data
recorder at a communication range of 8 km. The performance
of the receiver is evaluated for various training overheadsand
SNRs. Experimental results demonstrate that the proposed DL-
based receiver achieves error-free transmission at all SNR
conditions with lower training overhead compared to the
traditional CE-based DFE receiver, which cannot provide the
error-free transmission.
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