

Homotopy types of SU(n)-gauge groups over non-spin 4-manifolds

Tseleung So¹

Received: 18 December 2018 / Accepted: 28 February 2019 © The Author(s) 2019

Abstract

Let M be an orientable, simply-connected, closed, non-spin 4-manifold and let $\mathcal{G}_k(M)$ be the gauge group of the principal G-bundle over M with second Chern class $k \in \mathbb{Z}$. It is known that the homotopy type of $\mathcal{G}_k(\mathbb{CP}^2)$. In this paper we investigate properties of $\mathcal{G}_k(\mathbb{CP}^2)$ when G = SU(n) that partly classify the homotopy types of the gauge groups.

Keywords Gauge groups · Homotopy type · Non-spin 4-manifolds

Mathematics Subject Classification Primary 55P15; Secondary 54C35 · 81T13

1 Introduction

Let G be a simple, simply-connected, compact Lie group and let M be an orientable, simply-connected, closed 4-manifold. Then the isomorphism class of a principal G-bundle P over M is classified by its second Chern class $k \in \mathbb{Z}$. In particular, if k = 0, then P is a trivial G-bundle. The associated gauge group $\mathcal{G}_k(M)$ is the topological group of G-equivariant automorphisms of P which fix M.

A simply-connected 4-manifold is spin if and only if its intersection form is even. In the case of simply-connected 4-manifolds, the spin condition is equivalent to all cup product squares being trivial in mod 2 cohomology. In this paper, we consider the homotopy types of gauge groups $\mathcal{G}_k(M)$, where M is a non-spin 4-manifold such as \mathbb{CP}^2 . When M is a spin 4-manifold, topologists have been studying the homotopy types of gauge groups over M extensively over the last twenty years. On the one hand, Theriault showed in [16] that there is a homotopy equivalence

Communicated by Ronald Brown.

Published online: 12 March 2019

Mathematical Sciences, University of Southampton, Building 54, Southampton SO17 1BJ, UK

[✓] Tseleung So tls1g14@soton.ac.uk

$$\mathcal{G}_k(M) \simeq \mathcal{G}_k(S^4) \times \prod_{i=1}^d \Omega^2 G,$$

where d is the second Betti number of M. Therefore to study the homotopy type of $\mathcal{G}_k(M)$ it suffices to study $\mathcal{G}_k(S^4)$. On the other hand, many cases of homotopy types of $\mathcal{G}_k(S^4)$'s are known. For examples, there are 6 distinct homotopy types of $\mathcal{G}_k(S^4)$'s for G = SU(2) [11], and 8 distinct homotopy types for G = SU(3) [5]. When localized rationally or at any prime, there are 16 distinct homotopy types for G = SU(5) [19] and 8 distinct homotopy types for G = SP(2) [17].

When M is a non-spin 4-manifold, the author in [14] showed that there is a homotopy equivalence

$$\mathcal{G}_k(M) \simeq \mathcal{G}_k(\mathbb{CP}^2) \times \prod_{i=1}^{d-1} \Omega^2 G,$$

so the homotopy type of $\mathcal{G}_k(M)$ depends on the special case $\mathcal{G}_k(\mathbb{CP}^2)$. Compared to the extensive work on $\mathcal{G}_k(S^4)$, only two cases of $\mathcal{G}_k(\mathbb{CP}^2)$ have been studied, which are the SU(2)- and SU(3)-cases [12,18]. As a sequel to [14], this paper investigates the homotopy types of $\mathcal{G}_k(\mathbb{CP}^2)$'s in order to explore gauge groups over non-spin 4-manifolds.

A common approach to classifying the homotopy types of gauge groups is as follows. Atiyah, Bott and Gottlieb [1,3] showed that the classifying space $B\mathcal{G}_k(M)$ is homotopy equivalent to the connected component $\operatorname{Map}_k(M, BG)$ of the mapping space $\operatorname{Map}(M, BG)$ containing the map $k\alpha \circ q$, where $q: M \to S^4$ is the quotient map and α is a generator of $\pi_4(BG) \cong \mathbb{Z}$. The evaluation map $ev: B\mathcal{G}_k(M) \to BG$ induces a fibration sequence

$$\mathcal{G}_k(M) \longrightarrow G \xrightarrow{\partial_k} \operatorname{Map}_k^*(M, BG) \longrightarrow B\mathcal{G}_k(M) \xrightarrow{ev} BG,$$
 (1)

where $\partial_k: G \to \operatorname{Map}_k^*(M, BG)$ is the boundary map. The action of $\pi_4(BG) \cong \mathbb{Z}$ on $\operatorname{Map}_k^*(M, BG)$ induces a homotopy equivalence $\operatorname{Map}_k^*(M, BG) \simeq \operatorname{Map}_0^*(M, BG)$. Denote the composition $G \xrightarrow{\partial_k} \operatorname{Map}_k^*(M, BG) \simeq \operatorname{Map}_0^*(M, BG)$ also by ∂_k for convenience. For $M = S^4$, $\operatorname{Map}_0^*(M, BG) \simeq \Omega_0^3G$ is an H-group so $[G, \Omega_0^3G]$ is a group. The order of $\partial_1: G \to \Omega_0^3G$ is important for distinguishing the homotopy types of $\mathcal{G}_k(S^4)$.

Theorem 1.1 (Theriault, [17]) Let m be the order of ∂_1 . If (m, k) = (m, l), then $\mathcal{G}_k(S^4)$ is homotopy equivalent to $\mathcal{G}_l(S^4)$ when localized rationally or at any prime.

For most cases of G, the exact value of the order of ∂_1 is difficult to compute. When G = SU(n), the exact value or a partial result of the order of ∂_1 was worked out for certain cases. For any number $a = p^r q$ where q is coprime to p, the p-component of a is p^r and is denoted by $v_p(a)$.

Theorem 1.2 ([2,5,9,11,19,20]) Let G be SU(n) and let m be the order of ∂_1 . Then

- m = 12 for n = 2
- m = 24 for n = 3
- m = 120 for n = 5
- m = 60 or 120 for n = 4
- $v_p(m) = v_p(n(n^2 1))$ for $n < (p 1)^2 + 1$.

In Theorem 1.1, the g.c.d condition (m, k) = (m, l) gives a sufficient condition for the homotopy equivalence $\mathcal{G}_k(S^4) \simeq \mathcal{G}_l(S^4)$. Conversely, there is a partial necessary condition for certain cases of G = SU(n).

Theorem 1.3 (Hamanaka and Kono [5]; Kishimoto, Kono and Tsutaya [9]) Let G be SU(n) and let p be an odd prime. If $\mathcal{G}_k(S^4)$ is homotopy equivalent to $\mathcal{G}_l(S^4)$, then

- $(n(n^2 1), k) = (n(n^2 1), l)$ for n odd,
- $v_p(n(n^2-1), k) = v_p(n(n^2-1), l)$ for n less than $(p-1)^2 + 1$.

In this paper we consider gauge groups over \mathbb{CP}^2 . Take $M=\mathbb{CP}^2$ in (1) and denote the boundary map by $\partial_k':G\to \operatorname{Map}_0^*(\mathbb{CP}^2,BG)$. Since $\operatorname{Map}_0^*(\mathbb{CP}^2,BG)$ is not an H-space, $[G,\operatorname{Map}_0^*(\mathbb{CP}^2,BG)]$ is not a group so the order of ∂_k' makes no sense. However, we can still define an "order" of ∂_k' [18], which will be described in Sect. 2. We show that the "order" of ∂_1' helps distinguish the homotopy type of $\mathcal{G}_k(\mathbb{CP}^2)$ as in Theorem 1.1.

Theorem 1.4 Let m' be the "order" of ∂_1 . If (m', k) = (m', l), then $\mathcal{G}_k(\mathbb{CP}^2)$ is homotopy equivalent to $\mathcal{G}_l(\mathbb{CP}^2)$ when localized rationally or at any prime.

We study the SU(n)-gauge groups over \mathbb{CP}^2 and use unstable K-theory to give a lower bound on the "order" of ∂_1' that is in the spirit of Theorem 1.2.

Theorem 1.5 When G is SU(n), the "order" of ∂_1' is at least $\frac{1}{2}n(n^2-1)$ for n odd, and $n(n^2-1)$ for n even.

Localized rationally or at an odd prime, we have $\mathcal{G}_k(\mathbb{CP}^2) \simeq \mathcal{G}_k(S^4) \times \Omega^2 G$ [16]. The homotopy types of $\mathcal{G}_k(\mathbb{CP}^2)$ are then completely determined by that of $\mathcal{G}_k(S^4)$, which have been investigated in many cases when the localizing prime is relatively large [6,7,9,10,20]. A large part of the remaining cases can be understood by studying the 2-localized order of ∂_1' , on which Theorem 1.5 gives bounds for the SU(n) case. For example, combining Theorem 1.5 with Lemma 2.2 implies the order of ∂_1' is either 120 or 60 for G = SU(5). Furthermore, when G = SU(4) since the order of ∂_1 is either 120 or 60, the order of ∂_1' is either 60 or 120.

Finally we prove a necessary condition for the homotopy equivalence $\mathcal{G}_k(\mathbb{CP}^2) \simeq \mathcal{G}_l(\mathbb{CP}^2)$ similar to Theorem 1.3.

Theorem 1.6 *Let* G *be* SU(n). *If* $G_k(\mathbb{CP}^2)$ *is homotopy equivalent to* $G_l(\mathbb{CP}^2)$ *, then*

- $(\frac{1}{2}n(n^2-1), k) = (\frac{1}{2}n(n^2-1), l)$ for n odd,
- $(n(n^2 1), k) = (n(n^2 1), l)$ for n even.

The author would like to thank his supervisor, Professor Stephen Theriault, for his guidance in writing this paper, and thank the Referee for his careful reading and useful comments.

2 Some facts about boundary map ∂'_1

Take M to be S^4 and \mathbb{CP}^2 respectively in fibration (1) to obtain fibration sequences

$$\mathcal{G}_k(S^4) \longrightarrow G \xrightarrow{\partial_k} \Omega_0^3 G \longrightarrow B\mathcal{G}_k(S^4) \xrightarrow{ev} BG$$
 (2)

$$\mathcal{G}_k(\mathbb{CP}^2) \longrightarrow G \xrightarrow{\partial'_k} \mathrm{Map}_0^*(\mathbb{CP}^2, BG) \longrightarrow B\mathcal{G}_k(\mathbb{CP}^2) \xrightarrow{ev} BG.$$
 (3)

There is also a cofibration sequence

$$S^3 \xrightarrow{\eta} S^2 \longrightarrow \mathbb{CP}^2 \xrightarrow{q} S^4, \tag{4}$$

where η is Hopf map and q is the quotient map. Due to the naturality of q^* , we combine fibrations (2) and (3) to obtain a commutative diagram of fibration sequences

$$\mathcal{G}_{k}(S^{4}) \longrightarrow G \xrightarrow{\partial_{k}} \Omega_{0}^{3}G \longrightarrow B\mathcal{G}_{k}(S^{4}) \longrightarrow BG \qquad (5)$$

$$\downarrow_{q^{*}} \qquad \qquad \downarrow_{q^{*}} \qquad \qquad \downarrow_{q^{*}} \qquad \qquad \parallel$$

$$\mathcal{G}_{k}(\mathbb{CP}^{2}) \longrightarrow G \xrightarrow{\partial_{k}'} \operatorname{Map}_{0}^{*}(\mathbb{CP}^{2}, BG) \longrightarrow B\mathcal{G}_{k}(\mathbb{CP}^{2}) \longrightarrow BG$$

It is known, [13], that ∂_k is triple adjoint to Samelson product

$$\langle ki, 1 \rangle : S^3 \wedge G \xrightarrow{ki \wedge 1} G \wedge G \xrightarrow{\langle 1, 1 \rangle} G,$$

where $\iota: S^3 \to SU(n)$ is the inclusion of the bottom cell and $\langle \mathbb{1}, \mathbb{1} \rangle$ is the Samelson product of the identity on G with itself. The order of ∂_k is its multiplicative order in the group $[G, \Omega_0^3 G]$.

Unlike $\Omega_0^3 G$, $\operatorname{Map}_0^*(\mathbb{CP}^2, BG)$ is not an H-space, so ∂_k' has no order. In [18], Theriault defined the "order" of ∂_k' to be the smallest number m' such that the composition

$$G \xrightarrow{\partial_k} \Omega_0^3 G \xrightarrow{m'} \Omega_0^3 G \xrightarrow{q^*} \mathrm{Map}_0^*(\mathbb{CP}^2, BG)$$

is null homotopic. In the following, we interpret the "order" of ∂_k' as its multiplicative order in a group contained in $[\mathbb{CP}^2 \wedge G, BG]$.

Apply $[- \land G, BG]$ to cofibration (4) to obtain an exact sequence of sets

$$[\Sigma^3G,BG] \xrightarrow{(\Sigma\eta)^*} [\Sigma^4G,BG] \xrightarrow{q^*} [\mathbb{CP}^2 \wedge G,BG].$$

All terms except $[\mathbb{CP}^2 \wedge G, BG]$ are groups and $(\Sigma \eta)^*$ is a group homomorphism since $\Sigma \eta$ is a suspension. We want to refine this exact sequence so that the last term is replaced by a group. Observe that \mathbb{CP}^2 is the cofiber of η and so there is a coaction $\psi : \mathbb{CP}^2 \to \mathbb{CP}^2 \vee S^4$. We show that the coaction gives a group structure on $Im(q^*)$.

Lemma 2.1 Let Y be a space and let $A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} \Sigma A$ be a cofibration sequence. If ΣA is homotopy cocommutative, then $Im(h^*)$ is an abelian group and

$$[\Sigma B, Y] \xrightarrow{(\Sigma f)^*} [\Sigma A, Y] \xrightarrow{h^*} Im(h^*) \longrightarrow 0$$

is an exact sequence of groups and group homomorphisms.

Proof Apply [-, Y] to the cofibration to get an exact sequence of sets

$$[\Sigma B, Y] \xrightarrow{(\Sigma f)^*} [\Sigma A, Y] \xrightarrow{h^*} [C, Y]. \tag{6}$$

Note that $[\Sigma B, Y]$ and $[\Sigma A, Y]$ are groups, and $(\Sigma f)^*$ is a group homomorphism. We will replace [C, Y] by $Im(h^*)$ and define a group structure on it such that h^* : $[\Sigma A, Y] \to Im(h^*)$ is a group homomorphism.

For any α and β in $[\Sigma A, Y]$, we define a binary operator \boxtimes on $Im(h^*)$ by

$$h^*\alpha \boxtimes h^*\beta = h^*(\alpha + \beta).$$

To check this is well-defined we need to show $h^*(\alpha + \beta) \simeq h^*(\alpha' + \beta) \simeq h^*(\alpha + \beta')$ for any α , α' , β , β' satisfying $h^*\alpha \simeq h^*\alpha'$ and $h^*\beta \simeq h^*\beta'$.

First we show $h^*(\alpha + \beta) \simeq h^*(\alpha' + \beta)$. By definition, we have

$$h^*(\alpha + \beta) = (\alpha + \beta) \circ h = \nabla \circ (\alpha \vee \beta) \circ \sigma \circ h,$$

where $\sigma: \Sigma A \to \Sigma A \vee \Sigma A$ is the comultiplication and $\nabla: Y \vee Y \to Y$ is the folding map. Since C is a cofiber, there is a coaction $\psi: C \to C \vee \Sigma A$ such that $\sigma \circ h \simeq (h \vee 1) \circ \psi$.

$$C \xrightarrow{\psi} C \vee \Sigma A$$

$$\downarrow h \qquad \qquad \downarrow h \vee \mathbb{1}$$

$$\Sigma A \xrightarrow{\sigma} \Sigma A \vee \Sigma A$$

Then we obtain a string of equivalences

$$h^*(\alpha + \beta) = \nabla \circ (\alpha \vee \beta) \circ \sigma \circ h$$

$$\simeq \nabla \circ (\alpha \vee \beta) \circ (h \vee 1) \circ \psi$$

$$\simeq \nabla \circ (\alpha' \vee \beta) \circ (h \vee 1) \circ \psi$$

$$\simeq \nabla \circ (\alpha' \vee \beta) \circ \sigma \circ h$$

$$= h^*(\alpha' + \beta)$$

The third line is due to the assumption $h^*\alpha \simeq h^*\alpha'$. Therefore we have $h^*(\alpha + \beta) \simeq h^*(\alpha' + \beta)$. Since ΣA is cocommutative, $[\Sigma A, Y]$ is abelian and $h^*(\alpha + \beta) \simeq h^*(\beta + \alpha)$. Then we have

$$h^*(\alpha + \beta) \simeq h^*(\beta + \alpha) \simeq h^*(\beta' + \alpha) \simeq h^*(\alpha + \beta').$$

This implies \boxtimes is well-defined.

Due to the associativity of + in $[\Sigma A, Y]$, \boxtimes is associative since

$$(h^*\alpha \boxtimes h^*\beta) \boxtimes h^*\gamma = h^*(\alpha + \beta) \boxtimes h^*\gamma$$

$$= h^*((\alpha + \beta) + \gamma)$$

$$= h^*(\alpha + (\beta + \gamma))$$

$$= h^*\alpha \boxtimes h^*(\beta + \gamma)$$

$$= h^*\alpha \boxtimes (h^*\beta \boxtimes h^*\gamma).$$

Clearly the trivial map $*: C \to Y$ is the identity of \boxtimes and $h^*(-\alpha)$ is the inverse of $h^*\alpha$. Therefore \boxtimes is indeed a group multiplication.

By definition of \boxtimes , $h^* : [\Sigma A, Y] \to Im(h^*)$ is a group homomorphism, and hence an epimorphism. Since $[\Sigma A, Y]$ is abelian, so is $Im(h^*)$. We replace [C, Y] by $Im(h^*)$ in (6) to obtain a sequence of groups and group homomorphisms

$$[\Sigma B, Y] \xrightarrow{(\Sigma f)^*} [\Sigma A, Y] \xrightarrow{h^*} Im(h^*) \longrightarrow 0.$$

The exactness of (6) implies $ker(h^*) = Im(\Sigma f)^*$, so the sequence is exact.

Applying Lemma 2.1 to cofibration $\Sigma^3 G \to \Sigma^2 G \to \mathbb{CP}^2 \wedge G$ and the space Y = BG, we obtain an exact sequence of abelian groups

$$[\Sigma^3 G, BG] \xrightarrow{(\Sigma \eta)^*} [\Sigma^4 G, BG] \xrightarrow{q^*} Im(q^*) \longrightarrow 0.$$
 (7)

In the middle square of (5) $\partial_k' \simeq q^* \partial_k$, so ∂_k' is in $Im(q^*)$. For any number m, $q^*(m\partial_k) = mq^*\partial_k$, so the "order" of ∂_k' defined in [18] coincides with the multiplicative order of ∂_k' in $Im(q^*)$. The exact sequence (7) allows us to compare the orders of ∂_1 and ∂_1' .

Lemma 2.2 Let m be the order of ∂_1 and let m' be the order of ∂'_1 . Then m is m' or 2m'.

Proof By exactness of (7), there is some $f \in [\Sigma^3 G, BG]$ such that $(\Sigma \eta)^* f \simeq m' \partial_1$. Since $\Sigma \eta$ has order 2, $2m' \partial_1$ is null homotopic. It follows that 2m' is a multiple of m. Since m is greater than or equal to m', m is either m' or 2m'.

When G = SU(2), the order m of ∂_1 is 12 and the order m' of ∂_1' is 6 [12]. When G = SU(3), m = 24 and m' = 12 [18]. When G = Sp(2), m = 40 and m' = 20 [15]. It is natural to ask whether m = 2m' for all G.

In the S^4 case, Theorem 1.1 gives a sufficient condition for $\mathcal{G}_k(S^4) \simeq \mathcal{G}_l(S^4)$ when localized rationally or at any prime. In the \mathbb{CP}^2 case, Theriault showed a similar counting statement, in which the sufficient condition depends on the order of ∂_1 instead of ∂_1' .

Theorem 2.3 (Theriault, [18]) Let m be the order of ∂_1 . If (m, k) = (m, l), then $\mathcal{G}_k(\mathbb{CP}^2)$ is homotopy equivalent to $\mathcal{G}_l(\mathbb{CP}^2)$ when localized rationally or at any prime.

Lemma 2.2 can be used to improve the sufficient condition of Theorem 2.3.

Theorem 2.4 Let m' be the order of ∂_1' . If (m', k) = (m', l), then $\mathcal{G}_k(\mathbb{CP}^2)$ is homotopy equivalent to $\mathcal{G}_l(\mathbb{CP}^2)$ when localized rationally or at any prime.

Proof By Lemma 2.2, m is either m' or 2m'. If m=m', then the statement is same as Theorem 2.3. Assume m=2m'. Localize at an odd prime p. Let p^r be the p-component of m, that is $m=p^r\cdot q$ where q is coprime to p. Observe that $m\circ \partial_1\simeq (p^r\cdot q)\circ \partial_1\simeq p^r\circ \partial_1$ since the power map $q:\Omega_0^3G\to\Omega_0^3G$ is a homotopy equivalence. Therefore p^r is the order of ∂_1 after localization. The hypothesis (m',k)=(m',l) implies $(p^r,k)=(p^r,l)$, so a homotopy equivalence $\mathcal{G}_k(\mathbb{CP}^2)\simeq \mathcal{G}_l(\mathbb{CP}^2)$ follows by Theorem 2.3. A similar argument works for rational localization. Now it remains to consider the case where m=2m' when localized at 2.

Assume $m=2^n$ and $m'=2^{n-1}$. For any k, $(2^{n-1},k)=2^i$ where i an integer such that $0 \le i \le n-1$. If $i \le n-2$, then $k=2^it$ for some odd number t and $(2^{n-1},k)=2^i$. The sufficient condition $(2^{n-1},k)=(2^{n-1},l)$ is equivalent to $(2^n,k)=(2^n,l)$. Again the homotopy equivalence $\mathcal{G}_k(\mathbb{CP}^2)\simeq \mathcal{G}_l(\mathbb{CP}^2)$ follows by Theorem 2.3. If i=n-1, then $(2^n,k)$ is either 2^n or 2^{n-1} . We claim that $\mathcal{G}_k(\mathbb{CP}^2)$ has the same homotopy type for both $(2^n,k)=2^n$ or $(2^n,k)=2^{n-1}$.

Consider fibration (3)

$$\operatorname{Map}_0^*(\mathbb{CP}^2, G) \longrightarrow \mathcal{G}_k(\mathbb{CP}^2) \longrightarrow G \stackrel{\partial_k'}{\longrightarrow} \operatorname{Map}_0^*(\mathbb{CP}^2, BG).$$

If $(2^n, k) = 2^n$, then $k = 2^n t$ for some number t. By linearity of Samelson products, $\partial_k \simeq k \partial_1$. Since $\partial_k' \simeq q^* k \partial_1 \simeq q^* 2^n t \partial_1$ and ∂_1 has order 2^n , ∂_k' is null homotopic and we have

$$\mathcal{G}_k(\mathbb{CP}^2) \simeq G \times \mathrm{Map}_0^*(\mathbb{CP}^2, G).$$

If $(2^n, k) = 2^{n-1}$, then $k = 2^{n-1}t$ for some odd number t. Writing t = 2s + 1 gives $k = 2^n s + 2^{n-1}$. Since $\partial_k' \simeq q^* k \partial_1 \simeq q^* (2^n s + 2^{n-1}) \partial_1 \simeq q^* 2^{n-1} \partial_1$ and ∂_1' has order 2^{n-1} , ∂_k' is null homotopic and we have

$$\mathcal{G}_k(\mathbb{CP}^2) \simeq G \times \mathrm{Map}_0^*(\mathbb{CP}^2, G).$$

The same is true for $\mathcal{G}_l(\mathbb{CP}^2)$ and hence $\mathcal{G}_k(\mathbb{CP}^2) \simeq \mathcal{G}_l(\mathbb{CP}^2)$.

3 Plan for the proofs of Theorems 1.5 and 1.6

From this section onward, we will focus on SU(n)-gauge groups over \mathbb{CP}^2 . There is a fibration

$$SU(n) \longrightarrow SU(\infty) \stackrel{p}{\longrightarrow} W_n,$$
 (8)

where $p: SU(\infty) \to W_n$ is the projection and W_n is the symmetric space $SU(\infty)/SU(n)$. Then we have

$$\tilde{H}^{*}(SU(\infty)) = \Lambda(x_{3}, ..., x_{2n-1}, ...),
\tilde{H}^{*}(SU(n)) = \Lambda(x_{3}, ..., x_{2n-1}),
\tilde{H}^{*}(BSU(n)) = \mathbb{Z}[c_{2}, ..., c_{n}],
\tilde{H}^{*}(W_{n}) = \Lambda(\bar{x}_{2n+1}, \bar{x}_{2n+3}, ...),$$

where x_{2n+1} has degree 2n+1, c_i is the ith universal Chern class and $x_{2i+1} = \sigma(c_{i+1})$ is the image of c_{i+1} under the cohomology suspension σ , and $p^*(\bar{x}_{2i+1}) = x_{2i+1}$. Furthermore, $H^{2n}(\Omega W_n) \cong \mathbb{Z}$ and $H^{2n+2}(\Omega W_n) \cong \mathbb{Z}$ are generated by a_{2n} and a_{2n+2} , where a_{2i} is the transgression of x_{2i+1} .

where a_{2i} is the transgression of x_{2i+1} . The (2n+4)-skeleton of W_n is $\Sigma^{2n-1}\mathbb{CP}^2$ for n odd, and is $S^{2n+3}\vee S^{2n+1}$ for n even, so its homotopy groups are as follows:

$$\frac{i}{i} \leq 2n \ 2n + 1 \ 2n + 2 \quad 2n + 3$$

$$\frac{n \text{ odd}}{n \text{ even}} \begin{array}{ccccc}
0 & \mathbb{Z} & 0 & \mathbb{Z} \\
0 & \mathbb{Z} & \mathbb{Z}/2\mathbb{Z} & \mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$$
(9)

The canonical map $\epsilon: \Sigma \mathbb{CP}^{n-1} \to SU(n)$ induces the inclusion $\epsilon_*: H_*(\Sigma \mathbb{CP}^{n-1}) \to H_*(SU(n))$ of the generating set. Let C be the quotient $\mathbb{CP}^{n-1}/\mathbb{CP}^{n-3}$ and let $\bar{q}: \Sigma \mathbb{CP}^{n-1} \to \Sigma C$ be the quotient map. Then there is a diagram

$$\begin{split} [\Sigma C, SU(n)] & \xrightarrow{(\partial'_k)_*} [\Sigma C, \operatorname{Map}^*(\mathbb{CP}^2, BSU(n))] & \longrightarrow [\Sigma C, B\mathcal{G}_k(\mathbb{CP}^2)] \\ & \downarrow_{\bar{q}^*} & \downarrow_{\bar{q}^*} \\ [\Sigma \mathbb{CP}^{n-1}, SU(n)] & \xrightarrow{(\partial'_k)_*} [\Sigma \mathbb{CP}^{n-1}, \operatorname{Map}^*(\mathbb{CP}^2, BSU(n))] & \longrightarrow [\Sigma \mathbb{CP}^{n-1}, B\mathcal{G}_k(\mathbb{CP}^2)], \end{split}$$

where $(\partial_k')_*$ sends f to $\partial_k' \circ f$ and the rows are induced by fibration (3). In particular, in the second row the map $\epsilon: \Sigma \mathbb{CP}^{n-1} \to SU(n)$ is sent to $(\partial_k')_*(\epsilon) = \partial_k' \circ \epsilon$. In Sect. 4, we use unstable K-theory to calculate the order of $\partial_1' \circ \epsilon$, giving a lower bound on the order of ∂_1' . Furthermore, in [5] Hamanaka and Kono considered an exact sequence similar to the first row to give a necessary condition for $\mathcal{G}_k(S^4) \simeq \mathcal{G}_l(S^4)$. In Sect. 5 we follow the same approach and use the first row to give a necessary condition for $\mathcal{G}_k(\mathbb{CP}^2) \simeq \mathcal{G}_l(\mathbb{CP}^2)$.

We remark that it is difficult to use only one of the two rows to prove both Theorems 1.5 and 1.6. On the one hand, $\partial_1' \circ \epsilon$ factors through a map $\bar{\partial}: \Sigma C \to \operatorname{Map}^*(\mathbb{CP}^2, BSU(n))$. There is no obvious method to show that $\bar{\partial}$ and $\partial_1' \circ \epsilon$ have the same orders except direct calculation. Therefore we cannot compare the orders of $\bar{\partial}$ and ∂_1' to prove Theorem 1.5 without calculating the order of $\partial_1' \circ \epsilon$. On the other hand, applying the method used in Sect. 5 to the second row gives a much weaker

conclusion than Theorem 1.6. This is because $[\Sigma C, B\mathcal{G}_k(\mathbb{CP}^2)]$ is a much smaller group than $[\Sigma \mathbb{CP}^{n-1}, B\mathcal{G}_k(\mathbb{CP}^2)]$ and much information is lost by the map \bar{q}^* .

4 A lower bound on the order of ∂'_1

The restriction of ∂_1 to $\Sigma \mathbb{CP}^{n-1}$ is $\partial_1 \circ \epsilon$, which is the triple adjoint of the composition

$$\langle \iota, \epsilon \rangle : S^3 \wedge \Sigma \mathbb{CP}^{n-1} \xrightarrow{\iota \wedge \epsilon} SU(n) \wedge SU(n) \xrightarrow{\langle \mathbb{1}, \mathbb{1} \rangle} SU(n).$$

Since $SU(n) \simeq \Omega BSU(n)$, we can further take its adjoint and get

$$\rho: \Sigma S^3 \wedge \Sigma \mathbb{CP}^{n-1} \xrightarrow{\Sigma \iota \wedge \epsilon} \Sigma SU(n) \wedge SU(n) \xrightarrow{[ev,ev]} BSU(n),$$

where [ev, ev] is the Whitehead product of the evaluation map

$$ev : \Sigma SU(n) \simeq \Sigma \Omega BSU(n) \rightarrow BSU(n)$$

with itself. Similarly, the restriction $\partial_1' \circ \epsilon$ is adjoint to the composition

$$\rho': \mathbb{CP}^2 \wedge \Sigma \mathbb{CP}^{n-1} \xrightarrow{q \wedge 1} S^4 \wedge \Sigma \mathbb{CP}^{n-1} \xrightarrow{\Sigma_t \wedge \epsilon} \Sigma SU(n) \wedge SU(n) \xrightarrow{[ev,ev]} BSU(n).$$

Since we will frequently refer to the facts established in [4,5], it is easier to follow their setting and consider its adjoint

$$\gamma = \tau(\rho' \circ T) : \mathbb{CP}^2 \wedge \mathbb{CP}^{n-1} \to SU(n),$$

where $T: \Sigma \mathbb{CP}^2 \wedge \mathbb{CP}^{n-1} \to \mathbb{CP}^2 \wedge \Sigma \mathbb{CP}^{n-1}$ is the swapping map and $\tau: [\Sigma \mathbb{CP}^2 \wedge \mathbb{CP}^{n-1}, BSU(n)] \to [\mathbb{CP}^2 \wedge \mathbb{CP}^{n-1}, SU(n)]$ is the adjunction. By adjunction, the orders of $\partial_1' \circ \epsilon$, ρ' and γ are the same. We will calculate the order of γ using unstable K-theory to prove Theorem 1.5.

Apply $[\mathbb{CP}^2 \wedge \mathbb{CP}^{n-1}, -]$ to fibration (8) to obtain the exact sequence

$$\tilde{K}^0(\mathbb{CP}^2 \wedge \mathbb{CP}^{n-1}) \xrightarrow{p_*} [\mathbb{CP}^2 \wedge \mathbb{CP}^{n-1}, \Omega W_n] \longrightarrow [\mathbb{CP}^2 \wedge \mathbb{CP}^{n-1}, SU(n)] \longrightarrow 0.$$

Since $\mathbb{CP}^2 \wedge \mathbb{CP}^{n-1}$ is a CW-complex with even dimensional cells, the last item $[\mathbb{CP}^2 \wedge \mathbb{CP}^{n-1}, SU(\infty)] \cong \tilde{K}^1(\mathbb{CP}^2 \wedge \mathbb{CP}^{n-1})$ is zero. First we identify the term $[\mathbb{CP}^2 \wedge \mathbb{CP}^{n-1}, \Omega W_n]$.

Lemma 4.1 We have the following:

- $[\Sigma^{2n-4}\mathbb{CP}^2, \Omega W_n] \cong \mathbb{Z};$
- $[\Sigma^{2n-3}\mathbb{CP}^2, \Omega W_n] = 0$ for n odd;
- $[\Sigma^{2n-2}\mathbb{CP}^2, \Omega W_n] \cong \mathbb{Z} \oplus \mathbb{Z}.$

Proof First, apply $[\Sigma^{2n-4}, \Omega W_n]$ to cofibration (4) to obtain the exact sequence

$$\pi_{2n}(W_n) \longrightarrow \pi_{2n+1}(W_n) \longrightarrow [\Sigma^{2n-4}\mathbb{CP}^2, \Omega W_n] \longrightarrow \pi_{2n-1}(W_n).$$

We refer to Table (9) freely for the homotopy groups of W_n . Since $\pi_{2n-1}(W_n)$ and $\pi_{2n}(W_n)$ are zero, $[\Sigma^{2n-4}\mathbb{CP}^{n-1}, \Omega W_n]$ is isomorphic to $\pi_{2n+1}(W_n) \cong \mathbb{Z}$. Second, apply $[\Sigma^{2n-3}, \Omega W_n]$ to (4) to obtain

$$\pi_{2n+2}(W_n) \longrightarrow [\Sigma^{2n-3}\mathbb{CP}^2, \Omega W_n] \longrightarrow \pi_{2n}(W_n).$$

Since $\pi_{2n}(W_n)$ and $\pi_{2n+2}(W_n)$ are zero for n odd, so is $[\Sigma^{2n-3}\mathbb{CP}^2, \Omega W_n]$. Third, apply $[\Sigma^{2n-2}, \Omega W_n]$ to (4) to obtain

$$\pi_{2n+2}(W_n) \xrightarrow{\eta_1} \pi_{2n+3}(W_n) \longrightarrow [\Sigma^{2n-2}\mathbb{CP}^2, \Omega W_n]$$

$$\xrightarrow{j} \pi_{2n+1}(W_n) \xrightarrow{\eta_2} \pi_{2n+2}(W_n),$$

where η_1 and η_2 are induced by Hopf maps $\Sigma^{2n}\eta: S^{2n+3} \to S^{2n+2}$ and $\Sigma^{2n-1}\eta: S^{2n+2} \to S^{2n+1}$, and j is induced by the inclusion $S^{2n+1} \hookrightarrow \Sigma^{2n-2}\mathbb{CP}^2$ of the bottom cell. When n is odd, $\pi_{2n+2}(W_n)$ is zero and $\pi_{2n+1}(W_n)$ and $\pi_{2n+3}(W_n)$ are \mathbb{Z} , so $[\Sigma^{2n-2}\mathbb{CP}^{n-1}, \Omega W_n]$ is $\mathbb{Z} \oplus \mathbb{Z}$. When n is even, the (2n+4)-skeleton of W_n is $S^{2n+1} \vee S^{2n+3}$. The inclusions

$$i_1: S^{2n+1} \to S^{2n+1} \vee S^{2n+3}$$
 and $i_2: S^{2n+3} \to S^{2n+1} \vee S^{2n+3}$

generate $\pi_{2n+1}(W_n)$ and the \mathbb{Z} -summand of $\pi_{2n+3}(W_n)$, and the compositions

$$j_1: S^{2n+2} \xrightarrow{\Sigma^{2n-1}\eta} S^{2n+1} \xrightarrow{i_1} W_n \text{ and } j_2: S^{2n+3} \xrightarrow{\Sigma^{2n}\eta} S^{2n+2} \xrightarrow{\Sigma^{2n-1}\eta} S^{2n+1} \xrightarrow{i_1} W_n$$

generate $\pi_{2n+2}(W_n)$ and the $\mathbb{Z}/2\mathbb{Z}$ -summand of $\pi_{2n+3}(W_n)$ respectively. Since η_1 sends j_1 to j_2 , the cokernel of η_1 is \mathbb{Z} . Similarly, η_2 sends i_1 to j_1 , so $\eta_2: \mathbb{Z} \to \mathbb{Z}/2\mathbb{Z}$ is surjective. This implies the preimage of j is a \mathbb{Z} -summand. Therefore $[\Sigma^{2n-2}\mathbb{CP}^2, \Omega W_n] \cong \mathbb{Z} \oplus \mathbb{Z}$.

Let C be the quotient $\mathbb{CP}^{n-1}/\mathbb{CP}^{n-3}$. Since ΩW_n is (2n-1)-connected, $[\mathbb{CP}^2 \wedge \mathbb{CP}^{n-1}, \Omega W_n]$ is isomorphic to $[\mathbb{CP}^2 \wedge C, \Omega W_n]$ which is easier to determine.

Lemma 4.2 The group $[\mathbb{CP}^2 \wedge \mathbb{CP}^{n-1}, \Omega W_n] \cong [\mathbb{CP}^2 \wedge C, \Omega W_n]$ is isomorphic to $\mathbb{Z}^{\oplus 3}$.

Proof When n is even, C is $S^{2n-2} \vee S^{2n-4}$. By Lemma 4.1, $[\mathbb{CP}^2 \wedge C, \Omega W_n]$ is $[\Sigma^{2n-2}\mathbb{CP}^2, \Omega W_n] \oplus [\Sigma^{2n-4}\mathbb{CP}^2, \Omega W_n] \cong \mathbb{Z}^{\oplus 3}$.

When n is odd, C is $\Sigma^{2n-6}\mathbb{CP}^2$. Apply $[\Sigma^{2n-6}\mathbb{CP}^2 \wedge -, \Omega W_n]$ to cofibration (4) to obtain the exact sequence

$$[\Sigma^{2n-3}\mathbb{CP}^2, \Omega W_n] \longrightarrow [\Sigma^{2n-2}\mathbb{CP}^2, \Omega W_n] \longrightarrow [\Sigma^{2n-6}\mathbb{CP}^2 \wedge \mathbb{CP}^2, \Omega W_n]$$
$$\longrightarrow [\Sigma^{2n-4}\mathbb{CP}^2, \Omega W_n] \longrightarrow [\Sigma^{2n-3}\mathbb{CP}^2, \Omega W_n]$$

By Lemma 4.1, the first and the last terms $[\Sigma^{2n-3}\mathbb{CP}^2, \Omega W_n]$ are zero, while the second term $[\Sigma^{2n-2}\mathbb{CP}^2, \Omega W_n]$ is $\mathbb{Z} \oplus \mathbb{Z}$ and the fourth $[\Sigma^{2n-4}\mathbb{CP}^2, \Omega W_n]$ is \mathbb{Z} . Therefore $[\mathbb{CP}^2 \wedge C, \Omega W_n]$ is $\mathbb{Z}^{\oplus 3}$.

Define $a: [\mathbb{CP}^2 \wedge \mathbb{CP}^{n-1}, \Omega W_n] \to H^{2n}(\mathbb{CP}^2 \wedge \mathbb{CP}^{n-1}) \oplus H^{2n+2}(\mathbb{CP}^2 \wedge \mathbb{CP}^{n-1})$ to be a map sending $f \in [\mathbb{CP}^2 \wedge \mathbb{CP}^{n-1}, \Omega W_n]$ to $a(f) = f^*(a_{2n}) \oplus f^*(a_{2n+2})$. The cohomology class \bar{x}_{2n+1} represents a map $\bar{x}_{2n+1}: W_n \to K(\mathbb{Z}, 2n+1)$ and $a_{2n} = \sigma(\bar{x}_{2n+1})$ represents its loop $\Omega \bar{x}_{2n+1}: \Omega W_n \to \Omega K(\mathbb{Z}, 2n+1)$. Similarly $a_{2n+2} = \sigma(\bar{x}_{2n+3})$ represents a loop map. This implies a is a group homomorphism. Furthermore, a_{2n} and a_{2n+2} induce isomorphisms between $H^i(\Omega W_n)$ and $H^i(K(2n,\mathbb{Z}) \times K(2n+2,\mathbb{Z}))$ for i=2n and 2n+2. Since $[\mathbb{CP}^2 \wedge \mathbb{CP}^{n-1}, \Omega W_n]$ is a free \mathbb{Z} -module by Lemma 4.2, a is a monomorphism. Consider the diagram

$$\tilde{K}^{0}(\mathbb{CP}^{2} \wedge \mathbb{CP}^{n-1}) \xrightarrow{p_{*}} [\mathbb{CP}^{2} \wedge \mathbb{CP}^{n-1}, \Omega W_{n}] \longrightarrow [\mathbb{CP}^{2} \wedge \mathbb{CP}^{n-1}, SU(n)] \to 0 \quad (10)$$

$$\downarrow a \qquad \qquad \downarrow b \qquad \qquad \downarrow b$$

$$\tilde{K}^{0}(\mathbb{CP}^{2} \wedge \mathbb{CP}^{n-1}) \xrightarrow{\Phi} \bigoplus_{i=0,2} H^{2n+i}(\mathbb{CP}^{2} \wedge \mathbb{CP}^{n-1}) \xrightarrow{\psi} Coker(\Phi) \longrightarrow 0$$

In the left square, Φ is defined to be $a \circ p^*$. In the right square, ψ is the quotient map and b is defined as follows. Any $f \in [\mathbb{CP}^2 \wedge \mathbb{CP}^{n-1}, SU(n)]$ has a preimage \tilde{f} and b(f) is defined to be $\psi(a(\tilde{f}))$. An easy diagram chase shows that b is well-defined and injective. Since b is injective, the order of $\gamma \in [\mathbb{CP}^2 \wedge \mathbb{CP}^{n-1}, SU(n)]$ equals the order of $b(\gamma) \in Coker(\Phi)$. In [4], Hamanaka and Kono gave an explicit formula for Φ .

Theorem 4.3 (Hamanaka and Kono [4]) Let Y be a CW-complex. For any $f \in \tilde{K}^0(Y)$ we have

$$\Phi(f) = n!ch_{2n}(f) \oplus (n+1)!ch_{2n+2}(f),$$

where $ch_{2i}(f)$ is the 2ith part of ch(f).

Let u and v be the generators of $H^2(\mathbb{CP}^2)$ and $H^2(\mathbb{CP}^{n-1})$. For $1 \leq i \leq n-1$, denote L_i and L_i' as the generators of $\tilde{K}^0(\mathbb{CP}^2 \wedge \mathbb{CP}^{n-1})$ with Chern characters $ch(L_i) = u^2(e^v - 1)^i$ and $ch(L_i') = (u + \frac{1}{2}u^2) \cdot (e^v - 1)^i$. By Theorem 4.3 we have

$$\begin{split} &\Phi(L_i) = n(n-1)A_iu^2v^{n-2} + n(n+1)B_iu^2v^{n-1}, \\ &\Phi(L_i') = \frac{n(n-1)}{2}A_iu^2v^{n-2} + nB_iuv^{n-1} + \frac{n(n+1)}{2}B_iu^2v^{n-1}, \end{split}$$

where

$$A_i = \sum_{j=1}^{i} (-1)^{i+j} {i \choose j} j^{n-2}$$
 and $B_i = \sum_{j=1}^{i} (-1)^{i+j} {i \choose j} j^{n-1}$.

Write an element $xu^2v^{n-2}+yuv^{n-1}+zu^2v^{n-1}\in H^{2n}(\mathbb{CP}^2\wedge\mathbb{CP}^{n-1})\oplus H^{2n+2}(\mathbb{CP}^2\wedge\mathbb{CP}^{n-1})$ as (x,y,z). Then the coordinates of $\Phi(L_i)$ and $\Phi(L_i')$ are $(n(n-1)A_i,0,n(n+1)B_i)$ and $(\frac{n(n-1)}{2}A_i,nB_i,\frac{n(n+1)}{2}B_i)$ respectively.

Lemma 4.4 For $n \ge 3$, $Im(\Phi)$ is spanned by $(\frac{n(n-1)}{2}, n, \frac{n(n+1)}{2})$, (n(n-1), 0, 0) and (0, 2n, 0).

Proof By definition, $Im(\Phi) = span\{\Phi(L_i), \Phi(L_i')\}_{i=1}^{n-1}$. For $i = 1, A_1 = B_1 = 1$. Then

$$\Phi(L_1) = (n(n-1), 0, n(n+1))$$

$$= 2\left(\frac{1}{2}n(n-1), n, \frac{1}{2}n(n+1)\right) - (0, 2n, 0)$$

$$= 2\Phi(L_1') - (0, 2n, 0)$$

Equivalently $(0, 2n, 0) = 2\Phi(L'_1) - \Phi(L_1)$, so $span\{\Phi(L_1), \Phi(L'_1)\} = span\{\Phi(L'_1), (0, 2n, 0)\}$. For other *i*'s,

$$\Phi(L_i) = (n(n-1)A_i, 0, n(n+1)B_i)
= 2\left(\frac{1}{2}n(n-1)A_i, nB_i, \frac{1}{2}n(n+1)B_i\right) - (0, 2nB_i, 0)
= 2\Phi(L_i') - B_i(0, 2n, 0)$$

is a linear combination of $\Phi(L'_i)$ and (0, 2n, 0), so

$$Im(\Phi) = span\{\Phi(L'_1), \dots, \Phi(L'_{n-1}), (0, 2n, 0)\}.$$

We claim that $span\{\Phi(L'_i)\}_{i=1}^{n-1} = span\{\Phi(L'_1), (n(n-1), 0, 0)\}$. Observe that

$$\Phi(L_i') = \left(\frac{n(n-1)}{2}A_i, nB_i, \frac{n(n+1)}{2}B_i\right)
= \left(\frac{n(n-1)}{2}B_i, nB_i, \frac{n(n+1)}{2}B_i\right) + \left(\frac{n(n-1)}{2}(A_i - B_i), 0, 0\right)
= B_i\Phi(L_1') + \frac{A_i - B_i}{2} \cdot (n(n-1), 0, 0).$$

The difference

$$A_{i} - B_{i} = \sum_{j=1}^{i} (-1)^{i+j} {i \choose j} j^{n-2} - \sum_{j=1}^{i} (-1)^{i+j} {i \choose j} j^{n-1}$$

$$= \sum_{j=1}^{i} (-1)^{i+j+1} {i \choose j} (j^{n-1} - j^{n-2})$$

$$= \sum_{j=1}^{i} (-1)^{i+j+1} {i \choose j} (j-1) j^{n-2}$$

is even since each term $(j-1)j^{n-2}$ is even and $n \ge 3$. Therefore $\frac{A_i - B_i}{2}$ is an integer and $\Phi(L_i')$ is a linear combination of $\Phi(L_1')$ and (n(n-1), 0, 0).

Furthermore,

$$\Phi(L_2') = B_2 \Phi(L_1') + (A_2 - B_2) \left(\frac{n(n-1)}{2}, 0, 0 \right)$$
$$= B_2 \Phi(L_1') - 2^{n-3} (n(n-1), 0, 0)$$

and

$$\Phi(L_3') = B_3 \Phi(L_1') + (A_3 - B_3) \left(\frac{n(n-1)}{2}, 0, 0 \right)$$

= $B_3 \Phi(L_1') - (3^{n-2} - 3 \cdot 2^{n-3})(n(n-1), 0, 0).$

For n = 3, $B_2 = 2$ and $\Phi(L'_2) = 2\Phi(L'_1) - (n(n-1), 0, 0)$, so we have

$$span\{\Phi(L'_i)\}_{i=1}^{n-1} = span\{\Phi(L'_1), \Phi(L'_2)\} = span\{\Phi(L'_1), (n(n-1), 0, 0)\}.$$

For $n \ge 4$, since 2^{n-3} and $3^{n-2} - 3 \cdot 2^{n-3}$ are coprime to each other, there exist integers s and t such that $2^{n-3}s + (3^{n-2} - 3 \cdot 2^{n-3})t = 1$ and

$$(n(n-1), 0, 0) = (sB_2 + tB_3)\Phi(L_1') - s\Phi(L_2') - t\Phi(L_3').$$

Therefore (n(n-1), 0, 0) is a linear combination of $\Phi(L'_1)$, $\Phi(L'_2)$ and $\Phi(L'_3)$. This implies $span\{\Phi(L'_1), (n(n-1), 0, 0)\} = span\{\Phi(L'_i)\}_{i=1}^{n-1}$.

Combine all these together to obtain

$$Im(\Phi) = span\{\Phi(L_i), \Phi(L_i')\}_{i=1}^{n-1}$$

$$= span\{\Phi(L_1'), (n(n-1), 0, 0), (0, 2n, 0)\}$$

$$= span\left\{\left(\frac{n(n-1)}{2}, n, \frac{n(n+1)}{2}\right), (n(n-1), 0, 0), (0, 2n, 0)\right\}.$$

Back to diagram (10). The map γ has a lift $\tilde{\gamma}: \mathbb{CP}^2 \wedge \mathbb{CP}^{n-1} \to \Omega W_n$. By exactness, the order of γ equals the minimum number m such that $m\tilde{\gamma}$ is contained in $Im(p_*)$. Since a and b are injective, the order of γ equals the minimum number m' such that $m'a(\tilde{\gamma})$ is contained in $Im(\Phi)$.

Lemma 4.5 Let $\alpha: \Sigma X \to SU(n)$ be a map for some space X. If $\alpha': \mathbb{CP}^2 \wedge X \to SU(n)$ is the adjoint of the composition

$$\mathbb{CP}^2 \wedge \Sigma X \xrightarrow{q \wedge \mathbb{1}} \Sigma S^3 \wedge \Sigma X \xrightarrow{\Sigma \iota \wedge \alpha} \Sigma SU(n) \wedge SU(n) \xrightarrow{[ev,ev]} BSU(n),$$

then there is a lift $\tilde{\alpha}$ of α' such that $\tilde{\alpha}^*(a_{2i}) = u^2 \otimes \Sigma^{-1}\alpha^*(x_{2i-3})$, where Σ is the cohomology suspension isomorphism.

$$\begin{array}{c|c}
\Omega W_n \\
\tilde{\alpha} & \downarrow \\
\mathbb{CP}^2 \wedge X \xrightarrow{\alpha'} SU(n)
\end{array}$$

Proof In [4,5], Hamanaka and Kono constructed a lift $\Gamma: \Sigma SU(n) \wedge SU(n) \to W_n$ of [ev, ev] such that $\Gamma^*(\bar{x}_{2i+1}) = \sum_{j+k=i-1} \Sigma x_{2j+1} \otimes x_{2k+1}$. Let $\tilde{\Gamma}$ be the composition

$$\tilde{\Gamma}: \mathbb{CP}^2 \wedge \Sigma X \xrightarrow{q \wedge 1} \Sigma S^3 \wedge \Sigma X \xrightarrow{\Sigma_l \wedge \alpha} \Sigma SU(n) \wedge SU(n) \xrightarrow{\Gamma} W_n.$$

Then we have

$$\tilde{\Gamma}^*(\bar{x}_{2i+1}) = (q \wedge 1)^* (\Sigma \iota \wedge \alpha)^* \Gamma^*(\bar{x}_{2i+1})
= (q \wedge 1)^* (\Sigma \iota \wedge \alpha)^* \left(\sum_{j+k=i-1} \Sigma x_{2j+1} \otimes x_{2k+1} \right)
= (q \wedge 1)^* (\Sigma u_3 \otimes \alpha^*(x_{2i-3}))
= u^2 \otimes \alpha^*(x_{2i-3}),$$

where u_3 is the generator of $H^3(S^3)$.

Let $T: \Sigma \mathbb{CP}^2 \wedge X \to \mathbb{CP}^2 \wedge \Sigma X$ be the swapping map and let $\tau: [\Sigma \mathbb{CP}^2 \wedge X, W_n] \to [\mathbb{CP}^2 \wedge X, \Omega W_n]$ be the adjunction. Take $\tilde{\alpha}: \mathbb{CP}^2 \wedge X \to \Omega W_n$ to be the adjoint of $\tilde{\Gamma}$, that is $\tilde{\alpha} = \tau(\tilde{\Gamma} \circ T)$. Then $\tilde{\alpha}$ is a lift of α' . Since

$$(\tilde{\Gamma} \circ T)^*(\bar{x}_{2i+1}) = T^* \circ \tilde{\Gamma}^*(\bar{x}_{2i+1}) = T^*(u^2 \otimes \alpha^*(x_{2i-3})) = \Sigma u^2 \otimes \Sigma^{-1} \alpha^*(x_{2i-3}),$$

we have
$$\tilde{\alpha}^*(a_{2i}) = u^2 \otimes \Sigma^{-1} \alpha^*(x_{2i-3})$$
.

Lemma 4.6 In diagram (10), γ has a lift $\tilde{\gamma}$ such that $a(\tilde{\gamma}) = u^2 v^{n-2} \oplus u^2 v^{n-1}$.

Proof Recall that γ is the adjoint of the composition

$$\rho': \mathbb{CP}^2 \wedge \Sigma \mathbb{CP}^{n-1} \xrightarrow{q \wedge 1} \Sigma S^3 \wedge \Sigma \mathbb{CP}^{n-1} \xrightarrow{\Sigma \iota \wedge \epsilon} \Sigma SU(n) \wedge SU(n) \xrightarrow{[ev,ev]} BSU(n).$$

Now we use Lemma 4.5 and take α to be $\epsilon: \Sigma \mathbb{CP}^{n-1} \to SU(n)$. Then γ has a lift $\tilde{\gamma}$ such that $\tilde{\gamma}^*(a_{2i}) = u^2 \otimes \Sigma^{-1} \epsilon^*(x_{2i-3}) = u^2 \otimes v^{i-2}$. This implies

$$a(\tilde{\gamma}) = \tilde{\gamma}^*(a_{2n}) \oplus \tilde{\gamma}^*(a_{2n+2}) = u^2 v^{n-2} \oplus u^2 v^{n-1}.$$

Now we can calculate the order of $\partial_1' \circ \epsilon$, which gives a lower bound on the order of ∂_1' .

Theorem 4.7 When $n \ge 3$, the order of $\partial_1' \circ \epsilon$ is $\frac{1}{2}n(n^2 - 1)$ for n odd and $n(n^2 - 1)$ for n even.

Proof Since $\partial_1' \circ \epsilon$ is adjoint to γ , it suffices to calculate the order of γ . By Lemma 4.4, $Im(\Phi)$ is spanned by $(\frac{1}{2}n(n-1), n, \frac{1}{2}n(n+1)), (n(n-1), 0, 0)$ and (0, 2n, 0). By Lemma 4.6, $a(\tilde{\gamma})$ has coordinates (1, 0, 1). Let m be a number such that $ma(\tilde{\gamma})$ is contained in $Im(\Phi)$. Then

$$m(1,0,1) = s\left(\frac{1}{2}n(n-1), n, \frac{1}{2}n(n+1)\right) + t(n(n-1), 0, 0) + r(0, 2n, 0)$$

for some integers s, t and r. Solve this to get

$$m = \frac{1}{2}tn(n^2 - 1), s = -2r, s = t(n - 1).$$

Since s = -2r is even, the smallest positive value of t satisfying s = t(n-1) is 1 for n odd and 2 for n even. Therefore m is $\frac{1}{2}n(n^2-1)$ for n odd and $n(n^2-1)$ for n even.

For SU(n)-gauge groups over S^4 , the order m of ∂_1 has the form $m=n(n^2-1)$ for n=3 and 5 [5,19]. If p is an odd prime and $n<(p-1)^2+1$, then m and $n(n^2-1)$ have the same p-components [9,20]. These facts suggest it may be the case that $m=n(n^2-1)$ for any n>2. In fact, one can follow the method Hamanaka and Kono used in [5] and calculate the order of $\partial \circ \epsilon$ to obtain a lower bound $n(n^2-1)$ for n odd. However, it does not work for the n even case since $[S^4 \wedge \mathbb{CP}^{n-1}, \Omega W_n]$ is not a free \mathbb{Z} -module. An interesting corollary of Theorem 4.7 is to give a lower bound on the order of ∂_1 for n even.

Corollary 4.8 When n is even and greater than 2, the order of ∂_1 is at least $n(n^2 - 1)$.

Proof The order of $\partial_1' \circ \epsilon$ is a lower bound on the order of ∂_1' , which is either the same as or half of the order of ∂_1 by Lemma 2.2. The corollary follows from Theorem 4.7.

5 A necessary condition for $\mathcal{G}_k(\mathbb{CP}^2) \simeq \mathcal{G}_l(\mathbb{CP}^2)$

In this section we follow the approach in [5] to prove Theorem 1.6. The techniques used are similar to that in Sect. 4, except we are working with the quotient $\Sigma C = \Sigma \mathbb{CP}^{n-1}/\Sigma \mathbb{CP}^{n-1}$ instead of $\Sigma \mathbb{CP}^{n-1}$. When n is odd, C is $\Sigma^{2n-6}\mathbb{CP}^2$, and when n is even, C is $S^{2n-2} \vee S^{2n-4}$. Apply $[\Sigma C, -]$ to fibration (3) to obtain the exact sequence

$$[\Sigma C, SU(n)] \xrightarrow{(\partial'_k)_*} [\Sigma C, \operatorname{Map}_0^*(\mathbb{CP}^2, BSU(n))]$$

$$\longrightarrow [\Sigma C, BG_k(\mathbb{CP}^2)] \longrightarrow [\Sigma C, BSU(n)].$$

where $(\partial_k')_*$ sends $f \in [\Sigma C, SU(n)]$ to $\partial_k' \circ f \in [\Sigma C, \operatorname{Map}_0^*(\mathbb{CP}^2, BSU(n))]$. Since $BSU(n) \to BSU(\infty)$ is a 2n-equivalence and ΣC has dimension 2n-1, $[\Sigma C, BSU(n)]$ is $\tilde{K}^0(\Sigma C)$ which is zero. Similarly, $[\Sigma C, SU(n)] \cong [\Sigma^2 C, BSU(n)]$ is $\tilde{K}^0(\Sigma^2 C) \cong \mathbb{Z} \oplus \mathbb{Z}$. Furthermore, by adjunction we have $[\Sigma C, \operatorname{Map}_0^*(\mathbb{CP}^2, BSU(n))] \cong [\Sigma C \wedge \mathbb{CP}^2, BSU(n)]$. The exact sequence becomes

$$\tilde{K}^{0}(\Sigma^{2}C) \xrightarrow{(\partial'_{k})_{*}} [\Sigma C \wedge \mathbb{CP}^{2}, BSU(n)] \longrightarrow [\Sigma C, B\mathcal{G}_{k}(\mathbb{CP}^{2})] \longrightarrow 0.$$
 (11)

This implies $[\Sigma C, B\mathcal{G}_k(\mathbb{CP}^2)] \cong [C, \mathcal{G}_k(\mathbb{CP}^2)]$ is $Coker(\partial'_k)_*$. Also, apply $[\mathbb{CP}^2 \land C, -]$ to fibration (8) to obtain the exact sequence

$$[\mathbb{CP}^2 \wedge C, \Omega SU(\infty)] \xrightarrow{p_*} [\mathbb{CP}^2 \wedge C, \Omega W_n]$$

$$\longrightarrow [\mathbb{CP}^2 \wedge C, SU(n)] \longrightarrow [\mathbb{CP}^2 \wedge C, SU(\infty)]. \tag{12}$$

Observe that $[\mathbb{CP}^2 \wedge C, \Omega SU(\infty)] \cong \tilde{K}^0(\mathbb{CP}^2 \wedge C)$ is $\mathbb{Z}^{\oplus 4}$ and $[\mathbb{CP}^2 \wedge C, SU(\infty)] \cong \tilde{K}^1(\mathbb{CP}^2 \wedge C)$ is zero. Combine exact sequences (11) and (12) to obtain the diagram

where $a(f) = f^*(a_{2n}) \oplus f^*(a_{2n+2})$ for any $f \in [\mathbb{CP}^2 \wedge C, \Omega W_n]$, and Φ is defined to be $a \circ p_*$. By Lemma 4.2 $[\mathbb{CP}^2 \wedge C, \Omega W_n]$ is free. Following the same argument in Sect. 4 implies the injectivity of a.

Our strategy to prove Theorem 1.6 is as follows. If $\mathcal{G}_k(\mathbb{CP}^2)$ is homotopy equivalent to $\mathcal{G}_l(\mathbb{CP}^2)$, then $[C,\mathcal{G}_k(\mathbb{CP}^2)]\cong [C,\mathcal{G}_l(\mathbb{CP}^2)]$ and exactness in (12) implies that $Im(\partial_k')_*$ and $Im(\partial_l')_*$ have the same order in $[\mathbb{CP}^2\wedge C,SU(n)]$, resulting in a necessary condition for a homotopy equivalence $\mathcal{G}_k(\mathbb{CP}^2)\simeq \mathcal{G}_l(\mathbb{CP}^2)$. To calculate the order of $Im(\partial_k')_*$, we will find a preimage $\tilde{\partial}_k$ of $Im(\partial_k')_*$ in $[\mathbb{CP}^2\wedge C,\Omega W_n]$. Since a is injective, we can embed $\tilde{\partial}_k$ into $H^{2n}(\mathbb{CP}^2\wedge C)\oplus H^{2n+2}(\mathbb{CP}^2\wedge C)$ and work out the order of $Im(\partial_k')_*$ there.

Let u, v_{2n-4} and v_{2n-2} be generators of $H^2(\mathbb{CP}^2), H^{2n-4}(C)$ and $H^{2n-2}(C)$. Then we write an element $xu^2v_{2n-4}+yuv_{2n-2}+zu^2v_{2n-2}\in H^{2n}(\mathbb{CP}^2\wedge C)\oplus H^{2n+2}(\mathbb{CP}^2\wedge C)$ as (x,y,z). First we need to find the submodule Im(a).

Lemma 5.1 For n odd, Im(a) is $\{(x, y, z)|x+y \equiv z \pmod{2}\}$, and for n even, Im(a) is $\{(x, y, z)|y \equiv 0 \pmod{2}\}$.

Proof When n is odd, C is $\Sigma^{2n-6}\mathbb{CP}^2$ and the (2n+3)-skeleton of ΩW_n is $\Sigma^{2n-2}\mathbb{CP}^2$. To say $(x, y, z) \in Im(a)$ means there exists $f \in [\mathbb{CP}^2 \wedge C, \Omega W_n]$ such that

$$f^*(a_{2n}) = xu^2v_{2n-4} + yuv_{2n-2}$$
 and $f^*(a_{2n+2}) = zu^2v_{2n-2}$. (13)

Reducing to homology with $\mathbb{Z}/2\mathbb{Z}$ -coefficients, we have

$$Sq^2(u) = u^2$$
, $Sq^2(v_{2n-4}) = v_{2n-2}$, $Sq^2(a_{2n}) = a_{2n+2}$.

Apply Sq^2 to (13) to get $x + y \equiv z \pmod{2}$. Therefore Im(a) is contained in $\{(x, y, z)|x + y \equiv z \pmod{2}\}$. To show that they are equal, we need to show that (1, 0, 1), (0, 1, 1) and (0, 0, 2) are in Im(a). Consider maps

$$f_{1}: \mathbb{CP}^{2} \wedge C \xrightarrow{q_{1}} S^{4} \wedge C \simeq \Sigma^{2n-2} \mathbb{CP}^{2} \hookrightarrow \Omega W_{n}$$

$$f_{2}: \mathbb{CP}^{2} \wedge C \xrightarrow{q_{2}} \mathbb{CP}^{2} \wedge S^{2n-2} \hookrightarrow \Omega W_{n}$$

$$f_{3}: \mathbb{CP}^{2} \wedge C \xrightarrow{q_{3}} S^{2n+2} \xrightarrow{\theta} \Omega W_{n}$$

where q_1, q_2 and q_3 are quotient maps and θ is the generator of $\pi_{2n+3}(W_n)$. Their images are

$$a(f_1) = (1, 0, 1)$$
 $a(f_2) = (0, 1, 1)$ $a(f_3) = (0, 0, 2)$

respectively, so $Im(a) = \{(x, y, z) | x + y \equiv z \pmod{2}\}.$

When n is even, C is $S^{2n-2} \vee S^{2n-4}$ and the (2n+3)-skeleton of ΩW_n is $S^{2n+2} \vee S^{2n}$. Reducing to homology with $\mathbb{Z}/2\mathbb{Z}$ -coefficients, $Sq^2(v_{2n-4})=0$ and $Sq^2(a_{2n})=0$. Apply Sq^2 to (13) to get $y\equiv 0\pmod{2}$. Therefore Im(a) is contained in $\{(x,y,z)|y\equiv 0\pmod{2}\}$. To show that they are equal, we need to show that (1,0,0),(0,2,0) and (0,0,1) are in Im(a). The maps

$$f_1': \mathbb{CP}^2 \wedge C \xrightarrow{q_1'} S^4 \wedge (S^{2n-2} \vee S^{2n-4}) \xrightarrow{p_1} S^4 \wedge S^{2n-4} \hookrightarrow \Omega W_n$$

$$f_2': \mathbb{CP}^2 \wedge C \xrightarrow{q_2'} S^4 \wedge (S^{2n-2} \vee S^{2n-4}) \xrightarrow{p_2} S^4 \wedge S^{2n-2} \hookrightarrow \Omega W_n$$

where q_1' and q_2' are quotient maps and p_1 and p_2 are pinch maps, have images $a(f_1') = (1,0,0)$ and $a(f_2') = (0,0,1)$. To find (0,2,0), apply $[-\wedge S^{2n-2}, \Omega W_n]$ to cofibration (4) to obtain the exact sequence

$$\pi_{2n+3}(W_n) \longrightarrow [\mathbb{CP}^2 \wedge S^{2n-2}, \Omega W_n] \xrightarrow{i^*} \pi_{2n+1}(W_n) \xrightarrow{\eta^*} \pi_{2n+2}(W_n)$$

where i^* is induced by the inclusion $i:S^2\hookrightarrow\mathbb{CP}^2$ and η^* is induced by Hopf map η . The third term $\pi_{2n+1}(W_n)\cong\mathbb{Z}$ is generated by $i':S^{2n+1}\to W_n$, the inclusion of the bottom cell, and the fourth term $\pi_{2n+2}(W_n)\cong\mathbb{Z}/2\mathbb{Z}$ is generated by $i'\circ\eta$, so $\eta^*:\mathbb{Z}\to\mathbb{Z}/2\mathbb{Z}$ is a surjection. By exactness $[\mathbb{CP}^2\wedge S^{2n-2},\Omega W_n]$ has a \mathbb{Z} -summand

with the property that i^* sends its generator g to 2i'. Therefore the composition

$$f_3': \mathbb{CP}^2 \wedge (S^{2n-2} \vee S^{2n-4}) \xrightarrow{pinch} \mathbb{CP}^2 \wedge S^{2n-2} \xrightarrow{g} \Omega W_n$$

has image (0, 2, 0). It follows that $Im(a) = \{(x, y, z) | y \equiv 0 \pmod{2}\}$.

Now we split into the n odd and n even cases to calculate the order of $Im(\partial_{\nu}^{\prime})_{*}$.

5.1 The order of $Im(\partial'_k)_*$ for n odd

When n is odd, C is $\Sigma^{2n-6}\mathbb{CP}^2$. First we find $Im(\Phi)$ in Im(a). For $1 \le i \le 4$, let L_i be the generators of $\tilde{K}^0(\mathbb{CP}^2 \wedge C) \cong \mathbb{Z}^{\oplus 4}$ with Chern characters

$$ch(L_1) = \left(u + \frac{1}{2}u^2\right) \cdot \left(v_{2n-4} + \frac{1}{2}v_{2n-2}\right) ch(L_2) = \left(u + \frac{1}{2}u^2\right) v_{2n-2}$$

$$ch(L_3) = u^2 \left(v_{2n-4} + \frac{1}{2}v_{2n-2}\right) ch(L_4) = u^2 v_{2n-2}.$$

By Theorem 4.3, we have

$$\Phi(L_1) = \frac{n!}{2} u^2 v_{2n-4} + \frac{n!}{2} u v_{2n-2} + \frac{(n+1)!}{4} u^2 v_{2n-2}$$

$$\Phi(L_2) = n! u v_{2n-2} + \frac{(n+1)!}{2} u^2 v_{2n-2}$$

$$\Phi(L_3) = n! u^2 v_{2n-4} + \frac{(n+1)!}{2} u^2 v_{2n-2}$$

$$\Phi(L_4) = (n+1)! u^2 v_{2n-2}.$$

By Lemma 5.1, Im(a) is spanned by (1, 0, 1), (0, 1, 1) and (0, 0, 2). Under this basis, the coordinates of the $\Phi(L_i)$'s are

$$\begin{split} & \Phi(L_1) = \left(\frac{n!}{2}, \frac{n!}{2}, \frac{(n-3) \cdot n!}{8}\right), \quad \Phi(L_2) = \left(0, n!, \frac{(n-1) \cdot n!}{4}\right), \\ & \Phi(L_3) = \left(n!, 0, \frac{(n-1) \cdot n!}{4}\right), \quad \Phi(L_4) = \left(0, 0, \frac{(n+1)!}{2}\right). \end{split}$$

We represent their coordinates by the matrix

$$M_{\Phi} = L \begin{pmatrix} \frac{n(n-1)}{2} & \frac{n(n-1)}{2} & \frac{n(n-1)(n-3)}{8} \\ 0 & n(n-1) & \frac{n(n-1)^2}{4} \\ n(n-1) & 0 & \frac{n(n-1)^2}{4} \\ 0 & 0 & \frac{n(n^2-1)}{2} \end{pmatrix},$$

where L = (n-2)!. Then $Im(\Phi)$ is spanned by the row vectors of M_{Φ} .

Next, we find a preimage of $Im(\partial'_k)_*$ in $[\mathbb{CP}^2 \wedge C, \Omega W_n]$. In exact sequence (11) $\tilde{K}^0(\Sigma^2 C)$ is $\mathbb{Z} \oplus \mathbb{Z}$. Let α_1 and α_2 be its generators with Chern classes

$$\begin{array}{l} c_{n-1}(\alpha_1) = (n-2)! \Sigma^2 v_{2n-4} \ c_n(\alpha_1) = \frac{(n-1)!}{2} \Sigma^2 v_{2n-2} \\ c_{n-1}(\alpha_2) = 0 \qquad \qquad c_n(\alpha_2) = (n-1)! \Sigma^2 v_{2n-2}. \end{array}$$

Lemma 5.2 For i = 1, 2, $(\partial'_{\nu})_*(\alpha_i)$ has a lift $\tilde{\alpha}_{i,k} : \mathbb{CP}^2 \wedge C \to \Omega W_n$ such that

$$a(\tilde{\alpha}_{i,k}) = ku^2 \otimes \Sigma^{-2} c_{n-1}(\alpha_i) \oplus ku^2 \otimes \Sigma^{-2} c_n(\alpha_i).$$

Proof For dimension and connectivity reasons, $\alpha_i : \Sigma^2 C \to BSU(\infty)$ lifts through $BSU(n) \to BSU(\infty)$. Label the lift $\Sigma^2 C \to BSU(n)$ by α_i as well. Let $\alpha_i' : \Sigma C \to SU(n)$ be the adjoint of α_i . Then $(\partial_k')_*(\alpha_i)$ is the adjoint of the composition

$$\mathbb{CP}^2 \wedge \Sigma C \xrightarrow{q \wedge 1} \Sigma S^3 \wedge \Sigma C \xrightarrow{\Sigma k \iota \wedge \alpha'_i} \Sigma SU(n) \wedge SU(n) \xrightarrow{[ev,ev]} BSU(n).$$

By Lemma 4.5, $(\partial'_k)_*(\alpha_i)$ has a lift $\tilde{\alpha}_{i,k}$ such that $\tilde{\alpha}^*_{i,k}(a_{2j}) = ku^2 \otimes \Sigma^{-1}(\alpha')^*(x_{2j-3})$. Since $\sigma(c_{j-1}) = x_{2j-3}$, we have $\tilde{\alpha}^*_{i,k}(a_{2j}) = ku^2 \otimes \Sigma^{-2}c_{j-1}(\alpha_i)$ and

$$a(\tilde{\alpha}_{i,k}) = ku^2 \otimes \Sigma^{-2} c_{n-1}(\alpha_i) \oplus ku^2 \otimes \Sigma^{-2} c_n(\alpha_i).$$

By Lemma 5.2, $(\partial'_k)_*(\alpha_1)$ and $(\partial'_k)_*(\alpha_2)$ have lifts

$$\tilde{\alpha}_{1,k} = (n-2)!ku^2v_{2n-4} + \frac{(n-1)!}{2}ku^2v_{2n-2}$$
 and $\tilde{\alpha}_{2,k} = (n-1)!ku^2v_{2n-2}$.

We represent their coordinates by the matrix

$$M_{\partial} = kL \begin{pmatrix} 1 & 0 & \frac{n-3}{4} \\ 0 & 0 & \frac{n-1}{2} \end{pmatrix}.$$

Let $\tilde{\partial}_k = span\{\tilde{\alpha}_{1,k}, \tilde{\alpha}_{2,k}\}$ be the preimage of $Im(\partial'_k)_*$ in $[\mathbb{CP}^2 \wedge C, \Omega W_n]$. Then $\tilde{\partial}_k$ is spanned by the row vectors of M_{∂} .

Lemma 5.3 When n is odd, the order of $Im(\partial_k)_*$ is

$$|Im(\partial_k')_*| = \frac{\frac{1}{2}n(n^2 - 1)}{(\frac{1}{2}n(n^2 - 1), k)} \cdot \frac{n}{(n, k)}.$$

Proof Suppose n = 4m + 3 for some integer m. Then

$$M_{\Phi} = (4m+3)L \begin{pmatrix} 2m+1 & 2m+1 & 2m^2+m \\ 0 & 4m+2 & 4m^2+4m+1 \\ 4m+2 & 0 & 4m^2+4m+1 \\ 0 & 0 & 8m^2+12m+4 \end{pmatrix}$$

and

$$M_{\partial} = kL \begin{pmatrix} 1 & 0 & m \\ 0 & 0 & 2m+1 \end{pmatrix}.$$

Transform M_{Φ} into Smith normal form

$$A \cdot M_{\Phi} \cdot B = (4m+3)L \begin{pmatrix} (2m+1) & & \\ & (2m+1) & \\ & & (2m+1)(4m+4) \\ & & 0 \end{pmatrix},$$

where

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -2 & 0 & 1 & 0 \\ 4m+2 & 1 & -(2m+1) & 0 \\ 4 & -2 & -2 & 1 \end{pmatrix} \text{ and } B = \begin{pmatrix} 1 & -m - (2m+1) \\ 0 & 0 & 1 \\ 0 & 1 & 2 \end{pmatrix}.$$

The matrix B represents a basis change in Im(a) and A represents a basis change in $Im(\Phi)$. Therefore $[\mathbb{CP}^2 \wedge C, SU(n)]$ is isomorphic to

$$\frac{\mathbb{Z}}{\frac{1}{2}(4m+3)!\mathbb{Z}} \oplus \frac{\mathbb{Z}}{\frac{1}{2}(4m+3)!\mathbb{Z}} \oplus \frac{\mathbb{Z}}{\frac{1}{2}(4m+4)!\mathbb{Z}}.$$

We need to find the representation of $\tilde{\partial}_k$ under the new basis represented by B. The new coordinates of $\tilde{\alpha}_{1,k}$ and $\tilde{\alpha}_{2,k}$ are the row vectors of the matrix

$$M_{\partial} \cdot \begin{pmatrix} 1 & -m & -(2m+1) \\ 0 & 0 & 1 \\ 0 & 1 & 2 \end{pmatrix} = \begin{pmatrix} kL & 0 & -kL \\ 0 & (2m+1)kL & (4m+2)kL \end{pmatrix}.$$

Apply row operations to get

$$\begin{pmatrix} 1 & 0 \\ 4m+2 & 1 \end{pmatrix} \cdot \begin{pmatrix} kL & 0 & -kL \\ 0 & (2m+1)kL & (4m+2)kL \end{pmatrix} = \begin{pmatrix} kL & 0 & -kL \\ (4m+2)kL & (2m+1)kL & 0 \end{pmatrix}.$$

Let $\mu = (kL, 0, -kL)$ and $\nu = ((4m + 2)kL, (2m + 1)kL, 0)$. Then

$$\tilde{\partial}_k = \{x\mu + y\nu \in [\mathbb{CP}^2 \wedge C, \Omega W_n] | x, y \in \mathbb{Z}\}.$$

If $x\mu + y\nu$ and $x'\mu + y'\nu$ are the same modulo $Im(\Phi)$, then we have

$$\begin{cases} xkL + (4m+2)ykL \equiv x'kL + (4m+2)y'kL & (\text{mod } (2m+1)(4m+3)L) \\ (2m+1)ykL \equiv (2m+1)y'kL & (\text{mod } (2m+1)(4m+3)L) \\ xkL \equiv x'kL & (\text{mod } (2m+1)(4m+3)(4m+4)L) \end{cases}$$

These conditions are equivalent to

$$\begin{cases} xk \equiv x'k \pmod{(2m+2)(4m+3)(4m+2)} \\ yk \equiv y'k \pmod{(4m+3)} \end{cases}$$

This implies that there are $\frac{(2m+2)(4m+3)(4m+2)}{((2m+2)(4m+3)(4m+2),k)}$ distinct values of x and $\frac{4m+3}{(4m+3,k)}$ distinct values of y, so we have

$$|Im(\partial_k')_*| = \frac{(2m+2)(4m+3)(4m+2)}{((2m+2)(4m+3)(4m+2),k)} \cdot \frac{4m+3}{(4m+3,k)}.$$

When n = 4m + 1, we can repeat the calculation above to obtain

$$|Im(\partial_k')_*| = \frac{2m(4m+2)(4m+1)}{(2m(4m+2)(4m+1),k)} \cdot \frac{4m+1}{(4m+1,k)}.$$

5.2 The order of $Im(\partial'_k)_*$ for n even

When n is even, C is $S^{2n-2} \vee S^{2n-4}$. For $1 \leq i \leq 4$, let L_i be the generators of $\tilde{K}^0(\mathbb{CP}^2 \wedge C) \cong \mathbb{Z}^{\oplus 4}$ with Chern characters

$$ch(L_1) = \left(u + \frac{1}{2}u^2\right)v_{2n-4} \ ch(L_2) = u^2v_{2n-4}$$

$$ch(L_3) = \left(u + \frac{1}{2}u^2\right)v_{2n-2} \ ch(L_4) = u^2v_{2n-2}.$$

By Theorem 4.3, we have

$$\Phi(L_1) = \frac{n!}{2} u^2 v_{2n-4}$$

$$\Phi(L_2) = n! u^2 v_{2n-4}$$

$$\Phi(L_3) = n! u v_{2n-2} + \frac{(n+1)!}{2} u^2 v_{2n-2}$$

$$\Phi(L_4) = (n+1)! u^2 v_{2n-2}.$$

By Lemma 5.1, Im(a) is spanned by (1, 0, 0), (0, 2, 0) and (0, 0, 1). Under this basis, the coordinates of the $\Phi(L_i)$'s are

$$\begin{split} &\Phi(L_1) = (\frac{n!}{2}, 0, 0), & \Phi(L_2) = (n!, 0, 0), \\ &\Phi(L_3) = \left(0, \frac{n!}{2}, \frac{(n+1)!}{2}\right), & \Phi(L_4) = (0, 0, (n+1)!). \end{split}$$

We represent the coordinates of $\Phi(L_i)$'s by the matrix

$$M_{\Phi} = \frac{n(n-1)}{2} L \begin{pmatrix} 1 & 0 & 0 \\ 2 & 0 & 0 \\ 0 & 1 & n+1 \\ 0 & 0 & 2n+2 \end{pmatrix}$$

Then $Im(\Phi)$ is spanned by the row vectors of M_{Φ} .

In exact sequence (11) $\tilde{K}^0(\Sigma^2 C)$ is $\mathbb{Z} \oplus \mathbb{Z}$. Let α_1 and α_2 be its generators with Chern classes

$$c_{n-1}(\alpha_1) = (n-2)! \Sigma^2 v_{2n-4} \ c_n(\alpha_1) = 0$$

$$c_{n-1}(\alpha_2) = 0 \qquad c_n(\alpha_2) = (n-1)! \Sigma^2 v_{2n-2}.$$

By Lemma 5.2, $(\partial_k)_*(\alpha_1)$ and $(\partial_k)_*(\alpha_2)$ have lifts

$$\tilde{\alpha}_{1,k} = (n-2)!ku^2v_{2n-4}$$
 and $\tilde{\alpha}_{2,k} = (n-1)!ku^2v_{2n-2}$.

We represent their coordinates by a matrix

$$M_{\partial} = kL \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & n-1 \end{pmatrix}.$$

Then the preimage $\tilde{\partial}_k = span\{\tilde{\alpha}_{1,k}, \tilde{\alpha}_{2,k}\}$ of $Im(\partial'_k)_*$ is spanned by the row vectors of M_{∂} . We calculate as in the proof of Lemma 5.3 to obtain the following lemma.

Lemma 5.4 When n is even, the order of $Im(\partial_k)$ is

$$|Im(\partial_k')_*| = \frac{\frac{1}{2}n(n-1)}{\left(\frac{1}{2}n(n-1),k\right)} \cdot \frac{n(n+1)}{(n(n+1),k)}.$$

5.3 Proof of Theorem 1.6

Before comparing the orders of $Im(\partial_k')_*$ and $Im(\partial_k')_*$, we prove a preliminary lemma.

Lemma 5.5 Let n be an even number and let p be a prime. Denote the p-component of t by $v_p(t)$. If there are integers k and l such that

$$v_p\left(\frac{1}{2}n,k\right) \cdot v_p(n,k) = v_p\left(\frac{1}{2}n,l\right) \cdot v_p(n,l),$$

then $v_p(n, k) = v_p(n, l)$.

Proof Suppose p is odd. If p does not divide n, then $v_p(n,k) = v_p(n,l) = 1$, so the lemma holds. If p divides n, then $v_p(\frac{1}{2}n,k) = v_p(n,k)$. The hypothesis becomes $v_p(n,k)^2 = v_p(n,l)^2$, implying that $v_p(n,k) = v_p(n,l)$.

Suppose p = 2. Let $\nu_2(n) = 2^r$, $\nu_2(k) = 2^t$ and $\nu_2(l) = 2^s$. Then the hypothesis implies

$$min(r-1,t) + min(r,t) = min(r-1,s) + min(r,s).$$
 (14)

To show $v_2(n, k) = v_2(n, l)$, we need to show min(r, t) = min(r, s). Consider the following cases: (1) $t, s \ge r$, (2) $t, s \le r - 1$, (3) $t \le r - 1$, $s \ge r$ and (4) $s \le r - 1$, t > r.

Case (1) obviously gives min(r, t) = min(r, s). In case (2), when $t, s \le r - 1$, equation (14) implies 2t = 2s. Therefore t = s and min(r, t) = min(r, s).

It remains to show cases (3) and (4). For case (3) with $t \le r - 1$, $s \ge r$, equation (14) implies

$$2t = min(r - 1, s) + r.$$

Since $s \ge r$, min(r-1, s) = r-1 and the right hand side is 2r-1 which is odd. However, the left hand side is even, leading to a contradiction. This implies that this case does not satisfy the hypothesis. Case (4) is similar. Therefore $v_2(n, k) = v_2(n, l)$ and the asserted statement follows.

Proof of Theorem 1.6 In exact sequence (11), $[C, \mathcal{G}_k(\mathbb{CP}^2)]$ is $Coker(\partial_k')_*$. By hypothesis, $\mathcal{G}_k(\mathbb{CP}^2)$ is homotopy equivalent to $\mathcal{G}_l(\mathbb{CP}^2)$, so $|Im(\partial_k')_*| = |Im(\partial_k')_*|$. The n odd and n even cases are proved similarly, but the even case is harder.

When *n* is even, by Lemma 5.4 the order of $Im(\partial_k)_*$ is

$$|Im(\partial_k')_*| = \frac{\frac{1}{2}n(n-1)}{\left(\frac{1}{2}n(n-1),k\right)} \cdot \frac{n(n+1)}{(n(n+1),k)},$$

so we have

$$\left(\frac{1}{2}n(n-1),k\right)\cdot(n(n+1),k) = \left(\frac{1}{2}n(n-1),l\right)\cdot(n(n+1),l). \tag{15}$$

We need to show that

$$\nu_p(n(n^2 - 1), k) = \nu_p(n(n^2 - 1), l)$$
(16)

for all primes p. Suppose p does not divide $\frac{1}{2}n(n^2-1)$. Equation (16) holds since both sides are 1. Suppose p divides $\frac{1}{2}n(n^2-1)$. Since n-1, n and n+1 are coprime, p divides only one of them. If p divides n-1, then $v_p(\frac{1}{2}n,k) = v_p(n,k) = v_p(n+1,k) = 1$. Equation (15) implies $v_p(n-1,k) = v_p(n-1,l)$. Since

$$v_p(n(n^2-1), k) = v_p(n-1, k) \cdot v_p(n, k) \cdot v_p(n+1, k),$$

this implies equation (16) holds. If p divides n+1, then equation (16) follows from a similar argument. If p divides n, then equation (15) implies $v_p(\frac{1}{2}n,k) \cdot v_p(n,k) = v_p(\frac{1}{2}n,l) \cdot v_p(n,l)$. By Lemma 5.5 $v_p(n,k) = v_p(n,l)$, so equation (16) holds.

When *n* is odd, by Lemma 5.3 the order of $Im(\partial_k)_*$ is

$$|Im(\partial_k')_*| = \frac{\frac{1}{2}n(n^2 - 1)}{\left(\frac{1}{2}n(n^2 - 1), k\right)} \cdot \frac{n}{(n, k)},$$

so we have

$$\left(\frac{1}{2}n(n^2 - 1), k\right) \cdot (n, k) = \left(\frac{1}{2}n(n^2 - 1), l\right) \cdot (n, l).$$

We can argue as above to show that for all primes p,

$$v_p\left(\frac{1}{2}n(n^2-1),k\right) = v_p\left(\frac{1}{2}n(n^2-1),l\right).$$

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

- Atiyah, M., Bott, R.: The Yang–Mills equations over Riemann surfaces. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 308, 523–615 (1983)
- 2. Cutler, T., Theriault, S.: The homotopy types of SU(4)-gauge groups. J. Homotopy Relat. Struct. (submitted)
- 3. Gottlieb, D.: Applications of bundle map theory. Trans. Am. Math. Soc. 171, 23–50 (1972)
- 4. Hamanaka, H., Kono, A.: On [X, U(n)] when dim X is 2n. J. Math. Kyoto Univ. 43–2, 333–348 (2003)
- Hamanaka, H., Kono, A.: Unstable K-group and homotopy type of certain gauge groups. Proc. R. Soc. Edinb. A 136, 149–155 (2006)
- Hasui, S., Kisihmoto, D., So, T., Theriault, S.: Odd primary homotopy types of the gauge groups of exceptional Lie groups. Proc. Am. Math. Soc. 147(4), 1751–1762 (2018). https://doi.org/10.1090/ proc/14333
- 7. Kishimoto, D., Kono, A.: On the homotopy types of Sp(n) gauge groups.arXiv:1803.06477
- Kishimoto, D., Kono, A., Theriault, S.: Refined gauge group decomposition. J. Math. Kyoto Univ. 54, 679–691 (2014)
- Kishimoto, D., Kono, A., Tsutaya, M.: On p-local homotopy types of gauge groups. Proc. R. Soc. Edinburgh A 144, 149–160 (2014)
- Kishimoto, D., Theriault, S., Tsutaya, M.: The homotopy types of G₂-gauge groups. Topol. Appl. 228, 92–107 (2017)
- Kono, A.: A note on the homotopy type of certain gauge groups. Proc. R. Soc. Edinb. A 117, 295–297 (1991)
- 12. Kono, A., Tsukuda, S.: A remark on the homotopy type of certain gauge groups. J. Math. Kyoto Univ. 36, 115–121 (1996)

- 13. Lang, G.: The evaluation map and EHP sequences. Pac. J. Math. 44, 201–210 (1973)
- So, T.: Homotopy types of gauge groups over non-simply-connected closed 4-manifolds. Glasgow Math J. (2018). https://doi.org/10.1017/S0017089518000241
- 15. So, T., Theriault, S.: The homotopy types of Sp(2)-gauge groups over closed, simply-connected four-manifolds. arXiv:1807.02337 (submitted to Proceedings of the Steklov Institute of Mathematics)
- Theriault, S.: Odd primary homotopy decompositions of gauge groups. Algebr. Geom. Topol. 10, 535–564 (2010)
- 17. Theriault, S.: The homotopy types of Sp(2)-gauge groups. J. Math. Kyoto Univ. 50, 591–605 (2010)
- 18. Theriault, S.: Homotopy types of *SU*(3)-gauge groups over simply connected 4-manifolds. Publ. Res. Inst. Math. Sci. **48**, 543–563 (2012)
- 19. Theriault, S.: The homotopy types of SU(5)-gauge groups. Osaka J. Math. 1, 15–31 (2015)
- Theriault, S.: Odd primary homotopy types of SU(n)-gauge groups. Algebr. Geom. Topol. 17, 1131– 1150 (2017)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

