Homotopy types of $S U(n)$-gauge groups over non-spin 4-manifolds

Tseleung So ${ }^{1}$

Received: 18 December 2018 / Accepted: 28 February 2019
© The Author(s) 2019

Abstract

Let M be an orientable, simply-connected, closed, non-spin 4-manifold and let $\mathcal{G}_{k}(M)$ be the gauge group of the principal G-bundle over M with second Chern class $k \in \mathbb{Z}$. It is known that the homotopy type of $\mathcal{G}_{k}(M)$ is determined by the homotopy type of $\mathcal{G}_{k}\left(\mathbb{C P}^{2}\right)$. In this paper we investigate properties of $\mathcal{G}_{k}\left(\mathbb{C P}^{2}\right)$ when $G=S U(n)$ that partly classify the homotopy types of the gauge groups.

Keywords Gauge groups • Homotopy type • Non-spin 4-manifolds
Mathematics Subject Classification Primary 55P15; Secondary 54C35 • 81T13

1 Introduction

Let G be a simple, simply-connected, compact Lie group and let M be an orientable, simply-connected, closed 4-manifold. Then the isomorophism class of a principal G bundle P over M is classified by its second Chern class $k \in \mathbb{Z}$. In particular, if $k=0$, then P is a trivial G-bundle. The associated gauge group $\mathcal{G}_{k}(M)$ is the topological group of G-equivariant automorphisms of P which fix M.

A simply-connected 4-manifold is spin if and only if its intersection form is even. In the case of simply-connected 4-manifolds, the spin condition is equivalent to all cup product squares being trivial in mod 2 cohomology. In this paper, we consider the homotopy types of gauge groups $\mathcal{G}_{k}(M)$, where M is a non-spin 4-manifold such as $\mathbb{C P}^{2}$. When M is a spin 4-manifold, topologists have been studying the homotopy types of gauge groups over M extensively over the last twenty years. On the one hand, Theriault showed in [16] that there is a homotopy equivalence

[^0]$$
\mathcal{G}_{k}(M) \simeq \mathcal{G}_{k}\left(S^{4}\right) \times \prod_{i=1}^{d} \Omega^{2} G,
$$
where d is the second Betti number of M. Therefore to study the homotopy type of $\mathcal{G}_{k}(M)$ it suffices to study $\mathcal{G}_{k}\left(S^{4}\right)$. On the other hand, many cases of homotopy types of $\mathcal{G}_{k}\left(S^{4}\right)$'s are known. For examples, there are 6 distinct homotopy types of $\mathcal{G}_{k}\left(S^{4}\right)$'s for $G=S U(2)$ [11], and 8 distinct homotopy types for $G=S U(3)$ [5]. When localized rationally or at any prime, there are 16 distinct homotopy types for $G=S U(5)$ [19] and 8 distinct homotopy types for $G=S p(2)$ [17].

When M is a non-spin 4-manifold, the author in [14] showed that there is a homotopy equivalence

$$
\mathcal{G}_{k}(M) \simeq \mathcal{G}_{k}\left(\mathbb{C P}^{2}\right) \times \prod_{i=1}^{d-1} \Omega^{2} G
$$

so the homotopy type of $\mathcal{G}_{k}(M)$ depends on the special case $\mathcal{G}_{k}\left(\mathbb{C P}^{2}\right)$. Compared to the extensive work on $\mathcal{G}_{k}\left(S^{4}\right)$, only two cases of $\mathcal{G}_{k}\left(\mathbb{C P}^{2}\right)$ have been studied, which are the $S U(2)$ - and $S U(3)$-cases [12,18]. As a sequel to [14], this paper investigates the homotopy types of $\mathcal{G}_{k}\left(\mathbb{C P}^{2}\right)$'s in order to explore gauge groups over non-spin 4manifolds.

A common approach to classifying the homotopy types of gauge groups is as follows. Atiyah, Bott and Gottlieb [1,3] showed that the classifying space $B \mathcal{G}_{k}(M)$ is homotopy equivalent to the connected component $\operatorname{Map}_{k}(M, B G)$ of the mapping space $\operatorname{Map}(M, B G)$ containing the map $k \alpha \circ q$, where $q: M \rightarrow S^{4}$ is the quotient map and α is a generator of $\pi_{4}(B G) \cong \mathbb{Z}$. The evaluation map $\mathrm{ev}: B \mathcal{G}_{k}(M) \rightarrow B G$ induces a fibration sequence

$$
\begin{equation*}
\mathcal{G}_{k}(M) \longrightarrow G \xrightarrow{\partial_{k}} \operatorname{Map}_{k}^{*}(M, B G) \longrightarrow B \mathcal{G}_{k}(M) \xrightarrow{e v} B G, \tag{1}
\end{equation*}
$$

where $\partial_{k}: G \rightarrow \operatorname{Map}_{k}^{*}(M, B G)$ is the boundary map. The action of $\pi_{4}(B G) \cong \mathbb{Z}$ on $\operatorname{Map}_{k}^{*}(M, B G)$ induces a homotopy equivalence $\operatorname{Map}_{k}^{*}(M, B G) \simeq \operatorname{Map}_{0}^{*}(M, B G)$. Denote the composition $G \xrightarrow{\partial_{k}} \operatorname{Map}_{k}^{*}(M, B G) \simeq \operatorname{Map}_{0}^{*}(M, B G)$ also by ∂_{k} for convenience. For $M=S^{4}, \operatorname{Map}_{0}^{*}(M, B G) \simeq \Omega_{0}^{3} G$ is an H-group so $\left[G, \Omega_{0}^{3} G\right]$ is a group. The order of $\partial_{1}: G \rightarrow \Omega_{0}^{3} G$ is important for distinguishing the homotopy types of $\mathcal{G}_{k}\left(S^{4}\right)$.

Theorem 1.1 (Theriault, [17]) Let m be the order of ∂_{1}. If $(m, k)=(m, l)$, then $\mathcal{G}_{k}\left(S^{4}\right)$ is homotopy equivalent to $\mathcal{G}_{l}\left(S^{4}\right)$ when localized rationally or at any prime.

For most cases of G, the exact value of the order of ∂_{1} is difficult to compute. When $G=S U(n)$, the exact value or a partial result of the order of ∂_{1} was worked out for certain cases. For any number $a=p^{r} q$ where q is coprime to p, the p-component of a is p^{r} and is denoted by $v_{p}(a)$.

Theorem 1.2 ([2,5,9,11,19,20]) Let G be $S U(n)$ and let m be the order of ∂_{1}. Then

- $m=12$ for $n=2$
- $m=24$ for $n=3$
- $m=120$ for $n=5$
- $m=60$ or 120 for $n=4$
- $v_{p}(m)=v_{p}\left(n\left(n^{2}-1\right)\right)$ for $n<(p-1)^{2}+1$.

In Theorem 1.1, the g.c.d condition $(m, k)=(m, l)$ gives a sufficient condition for the homotopy equivalence $\mathcal{G}_{k}\left(S^{4}\right) \simeq \mathcal{G}_{l}\left(S^{4}\right)$. Conversely, there is a partial necessary condition for certain cases of $G=S U(n)$.

Theorem 1.3 (Hamanaka and Kono [5]; Kishimoto, Kono and Tsutaya [9]) Let G be $S U(n)$ and let p be an odd prime. If $\mathcal{G}_{k}\left(S^{4}\right)$ is homotopy equivalent to $\mathcal{G}_{l}\left(S^{4}\right)$, then

- $\left(n\left(n^{2}-1\right), k\right)=\left(n\left(n^{2}-1\right), l\right)$ for n odd,
- $v_{p}\left(n\left(n^{2}-1\right), k\right)=v_{p}\left(n\left(n^{2}-1\right), l\right)$ for n less than $(p-1)^{2}+1$.

In this paper we consider gauge groups over $\mathbb{C P}^{2}$. Take $M=\mathbb{C P}^{2}$ in (1) and denote the boundary map by $\partial_{k}^{\prime}: G \rightarrow \operatorname{Map}_{0}^{*}\left(\mathbb{C P}^{2}, B G\right)$. Since Map ${ }_{0}^{*}\left(\mathbb{C P}^{2}, B G\right)$ is not an H-space, $\left[G, \operatorname{Map}_{0}^{*}\left(\mathbb{C P}^{2}, B G\right)\right]$ is not a group so the order of ∂_{k}^{\prime} makes no sense. However, we can still define an "order" of ∂_{k}^{\prime} [18], which will be described in Sect. 2. We show that the "order" of ∂_{1}^{\prime} helps distinguish the homotopy type of $\mathcal{G}_{k}\left(\mathbb{C P}^{2}\right)$ as in Theorem 1.1.

Theorem 1.4 Let m^{\prime} be the "order" of ∂_{1}^{\prime}. If $\left(m^{\prime}, k\right)=\left(m^{\prime}, l\right)$, then $\mathcal{G}_{k}\left(\mathbb{C P}^{2}\right)$ is homotopy equivalent to $\mathcal{G}_{l}\left(\mathbb{C P}^{2}\right)$ when localized rationally or at any prime.

We study the $S U(n)$-gauge groups over $\mathbb{C P}^{2}$ and use unstable K-theory to give a lower bound on the "order" of ∂_{1}^{\prime} that is in the spirit of Theorem 1.2.
Theorem 1.5 When G is $S U(n)$, the "order" of ∂_{1}^{\prime} is at least $\frac{1}{2} n\left(n^{2}-1\right)$ for n odd, and $n\left(n^{2}-1\right)$ for n even.

Localized rationally or at an odd prime, we have $\mathcal{G}_{k}\left(\mathbb{C P}^{2}\right) \simeq \mathcal{G}_{k}\left(S^{4}\right) \times \Omega^{2} G$ [16]. The homotopy types of $\mathcal{G}_{k}\left(\mathbb{C P}^{2}\right)$ are then completely determined by that of $\mathcal{G}_{k}\left(S^{4}\right)$, which have been investigated in many cases when the localizing prime is relatively large $[6,7,9,10,20]$. A large part of the remaining cases can be understood by studying the 2-localized order of ∂_{1}^{\prime}, on which Theorem 1.5 gives bounds for the $S U(n)$ case. For example, combining Theorem 1.5 with Lemma 2.2 implies the order of ∂_{1}^{\prime} is either 120 or 60 for $G=S U(5)$. Furthermore, when $G=S U(4)$ since the order of ∂_{1} is either 120 or 60 , the order of ∂_{1}^{\prime} is either 60 or 120 .

Finally we prove a necessary condition for the homotopy equivalence $\mathcal{G}_{k}\left(\mathbb{C P}^{2}\right) \simeq$ $\mathcal{G}_{l}\left(\mathbb{C P}^{2}\right)$ similar to Theorem 1.3.
Theorem 1.6 Let G be $\operatorname{SU}(n)$. If $\mathcal{G}_{k}\left(\mathbb{C P}^{2}\right)$ is homotopy equivalent to $\mathcal{G}_{l}\left(\mathbb{C P}^{2}\right)$, then

- $\left(\frac{1}{2} n\left(n^{2}-1\right), k\right)=\left(\frac{1}{2} n\left(n^{2}-1\right), l\right)$ for n odd,
- $\left(n\left(n^{2}-1\right), k\right)=\left(n\left(n^{2}-1\right), l\right)$ for n even.

The author would like to thank his supervisor, Professor Stephen Theriault, for his guidance in writing this paper, and thank the Referee for his careful reading and useful comments.

2 Some facts about boundary map ∂_{1}^{\prime}

Take M to be S^{4} and $\mathbb{C P}^{2}$ respectively in fibration (1) to obtain fibration sequences

$$
\begin{align*}
& \mathcal{G}_{k}\left(S^{4}\right) \longrightarrow G \xrightarrow{\partial_{k}} \Omega_{0}^{3} G \longrightarrow B \mathcal{G}_{k}\left(S^{4}\right) \xrightarrow{e v} B G \tag{2}\\
& \mathcal{G}_{k}\left(\mathbb{C P}^{2}\right) \longrightarrow G \xrightarrow{\partial_{k}^{\prime}} \operatorname{Map}_{0}^{*}\left(\mathbb{C P}^{2}, B G\right) \longrightarrow B \mathcal{G}_{k}\left(\mathbb{C P}^{2}\right) \xrightarrow{e v} B G . \tag{3}
\end{align*}
$$

There is also a cofibration sequence

$$
\begin{equation*}
S^{3} \xrightarrow{\eta} S^{2} \longrightarrow \mathbb{C P}^{2} \xrightarrow{q} S^{4}, \tag{4}
\end{equation*}
$$

where η is Hopf map and q is the quotient map. Due to the naturality of q^{*}, we combine fibrations (2) and (3) to obtain a commutative diagram of fibration sequences

It is known, [13], that ∂_{k} is triple adjoint to Samelson product

$$
\langle k l, \mathbb{1}\rangle: S^{3} \wedge G \xrightarrow{k l \wedge \mathbb{1}} G \wedge G \xrightarrow{\langle\mathbb{1}, \mathbb{1}\rangle} G
$$

where $\imath: S^{3} \rightarrow S U(n)$ is the inclusion of the bottom cell and $\langle\mathbb{1}, \mathbb{1}\rangle$ is the Samelson product of the identity on G with itself. The order of ∂_{k} is its multiplicative order in the group $\left[G, \Omega_{0}^{3} G\right]$.

Unlike $\Omega_{0}^{3} G$, $\operatorname{Map}_{0}^{*}\left(\mathbb{C P}^{2}, B G\right)$ is not an H -space, so ∂_{k}^{\prime} has no order. In [18], Theriault defined the "order" of ∂_{k}^{\prime} to be the smallest number m^{\prime} such that the composition

$$
G \xrightarrow{\partial_{k}} \Omega_{0}^{3} G \xrightarrow{m^{\prime}} \Omega_{0}^{3} G \xrightarrow{q^{*}} \operatorname{Map}_{0}^{*}\left(\mathbb{C P}^{2}, B G\right)
$$

is null homotopic. In the following, we interpret the "order" of ∂_{k}^{\prime} as its multiplicative order in a group contained in $\left[\mathbb{C P}^{2} \wedge G, B G\right]$.

Apply $[-\wedge G, B G]$ to cofibration (4) to obtain an exact sequence of sets

$$
\left[\Sigma^{3} G, B G\right] \xrightarrow{(\Sigma \eta)^{*}}\left[\Sigma^{4} G, B G\right] \xrightarrow{q^{*}}\left[\mathbb{C P}^{2} \wedge G, B G\right] .
$$

All terms except $\left[\mathbb{C P}^{2} \wedge G, B G\right]$ are groups and $(\Sigma \eta)^{*}$ is a group homomorphism since $\Sigma \eta$ is a suspension. We want to refine this exact sequence so that the last term is replaced by a group. Observe that $\mathbb{C P}^{2}$ is the cofiber of η and so there is a coaction $\psi: \mathbb{C P}^{2} \rightarrow \mathbb{C P}^{2} \vee S^{4}$. We show that the coaction gives a group structure on $\operatorname{Im}\left(q^{*}\right)$.

Lemma 2.1 Let Y be a space and let $A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} \Sigma A$ be a cofibration sequence. If ΣA is homotopy cocommutative, then $\operatorname{Im}\left(h^{*}\right)$ is an abelian group and

$$
[\Sigma B, Y] \xrightarrow{(\Sigma f)^{*}}[\Sigma A, Y] \xrightarrow{h^{*}} \operatorname{Im}\left(h^{*}\right) \longrightarrow 0
$$

is an exact sequence of groups and group homomorphisms.
Proof Apply $[-, Y]$ to the cofibration to get an exact sequence of sets

$$
\begin{equation*}
[\Sigma B, Y] \xrightarrow{(\Sigma f)^{*}}[\Sigma A, Y] \xrightarrow{h^{*}}[C, Y] . \tag{6}
\end{equation*}
$$

Note that $[\Sigma B, Y]$ and $[\Sigma A, Y]$ are groups, and $(\Sigma f)^{*}$ is a group homomorphism. We will replace $[C, Y]$ by $\operatorname{Im}\left(h^{*}\right)$ and define a group structure on it such that h^{*} : $[\Sigma A, Y] \rightarrow \operatorname{Im}\left(h^{*}\right)$ is a group homomorphism.

For any α and β in $[\Sigma A, Y]$, we define a binary operator \boxtimes on $\operatorname{Im}\left(h^{*}\right)$ by

$$
h^{*} \alpha \boxtimes h^{*} \beta=h^{*}(\alpha+\beta) .
$$

To check this is well-defined we need to show $h^{*}(\alpha+\beta) \simeq h^{*}\left(\alpha^{\prime}+\beta\right) \simeq h^{*}\left(\alpha+\beta^{\prime}\right)$ for any $\alpha, \alpha^{\prime}, \beta, \beta^{\prime}$ satisfying $h^{*} \alpha \simeq h^{*} \alpha^{\prime}$ and $h^{*} \beta \simeq h^{*} \beta^{\prime}$.

First we show $h^{*}(\alpha+\beta) \simeq h^{*}\left(\alpha^{\prime}+\beta\right)$. By definition, we have

$$
h^{*}(\alpha+\beta)=(\alpha+\beta) \circ h=\nabla \circ(\alpha \vee \beta) \circ \sigma \circ h,
$$

where $\sigma: \Sigma A \rightarrow \Sigma A \vee \Sigma A$ is the comultiplication and $\nabla: Y \vee Y \rightarrow Y$ is the folding map. Since C is a cofiber, there is a coaction $\psi: C \rightarrow C \vee \Sigma A$ such that $\sigma \circ h \simeq(h \vee \mathbb{1}) \circ \psi$.

Then we obtain a string of equivalences

$$
\begin{aligned}
h^{*}(\alpha+\beta) & =\nabla \circ(\alpha \vee \beta) \circ \sigma \circ h \\
& \simeq \nabla \circ(\alpha \vee \beta) \circ(h \vee \mathbb{1}) \circ \psi \\
& \simeq \nabla \circ\left(\alpha^{\prime} \vee \beta\right) \circ(h \vee \mathbb{1}) \circ \psi \\
& \simeq \nabla \circ\left(\alpha^{\prime} \vee \beta\right) \circ \sigma \circ h \\
& =h^{*}\left(\alpha^{\prime}+\beta\right)
\end{aligned}
$$

The third line is due to the assumption $h^{*} \alpha \simeq h^{*} \alpha^{\prime}$. Therefore we have $h^{*}(\alpha+\beta) \simeq$ $h^{*}\left(\alpha^{\prime}+\beta\right)$. Since ΣA is cocommutative, $[\Sigma A, Y]$ is abelian and $h^{*}(\alpha+\beta) \simeq h^{*}(\beta+$ α). Then we have

$$
h^{*}(\alpha+\beta) \simeq h^{*}(\beta+\alpha) \simeq h^{*}\left(\beta^{\prime}+\alpha\right) \simeq h^{*}\left(\alpha+\beta^{\prime}\right)
$$

This implies \boxtimes is well-defined.
Due to the associativity of + in $[\Sigma A, Y], \boxtimes$ is associative since

$$
\begin{aligned}
\left(h^{*} \alpha \boxtimes h^{*} \beta\right) \boxtimes h^{*} \gamma & =h^{*}(\alpha+\beta) \boxtimes h^{*} \gamma \\
& =h^{*}((\alpha+\beta)+\gamma) \\
& =h^{*}(\alpha+(\beta+\gamma)) \\
& =h^{*} \alpha \boxtimes h^{*}(\beta+\gamma) \\
& =h^{*} \alpha \boxtimes\left(h^{*} \beta \boxtimes h^{*} \gamma\right) .
\end{aligned}
$$

Clearly the trivial map $*: C \rightarrow Y$ is the identity of \boxtimes and $h^{*}(-\alpha)$ is the inverse of $h^{*} \alpha$. Therefore \boxtimes is indeed a group multiplication.

By definition of $\boxtimes, h^{*}:[\Sigma A, Y] \rightarrow \operatorname{Im}\left(h^{*}\right)$ is a group homomorphism, and hence an epimorphism. Since $\left[\Sigma A, Y\right.$] is abelian, so is $\operatorname{Im}\left(h^{*}\right)$. We replace $[C, Y]$ by $\operatorname{Im}\left(h^{*}\right)$ in (6) to obtain a sequence of groups and group homomorphisms

$$
[\Sigma B, Y] \xrightarrow{(\Sigma f)^{*}}[\Sigma A, Y] \xrightarrow{h^{*}} \operatorname{Im}\left(h^{*}\right) \longrightarrow 0 .
$$

The exactness of (6) implies $\operatorname{ker}\left(h^{*}\right)=\operatorname{Im}(\Sigma f)^{*}$, so the sequence is exact.
Applying Lemma 2.1 to cofibration $\Sigma^{3} G \rightarrow \Sigma^{2} G \rightarrow \mathbb{C P}^{2} \wedge G$ and the space $Y=B G$, we obtain an exact sequence of abelian groups

$$
\begin{equation*}
\left[\Sigma^{3} G, B G\right] \xrightarrow{(\Sigma \eta)^{*}}\left[\Sigma^{4} G, B G\right] \xrightarrow{q^{*}} \operatorname{Im}\left(q^{*}\right) \longrightarrow 0 . \tag{7}
\end{equation*}
$$

In the middle square of (5) $\partial_{k}^{\prime} \simeq q^{*} \partial_{k}$, so ∂_{k}^{\prime} is in $\operatorname{Im}\left(q^{*}\right)$. For any number m, $q^{*}\left(m \partial_{k}\right)=m q^{*} \partial_{k}$, so the "order" of ∂_{k}^{\prime} defined in [18] coincides with the multiplicative order of ∂_{k}^{\prime} in $\operatorname{Im}\left(q^{*}\right)$. The exact sequence (7) allows us to compare the orders of ∂_{1} and ∂_{1}^{\prime}.
Lemma 2.2 Let m be the order of ∂_{1} and let m^{\prime} be the order of ∂_{1}^{\prime}. Then m is m^{\prime} or $2 m^{\prime}$.

Proof By exactness of (7), there is some $f \in\left[\Sigma^{3} G, B G\right]$ such that $(\Sigma \eta)^{*} f \simeq m^{\prime} \partial_{1}$. Since $\Sigma \eta$ has order $2,2 m^{\prime} \partial_{1}$ is null homotopic. It follows that $2 m^{\prime}$ is a multiple of m. Since m is greater than or equal to m^{\prime}, m is either m^{\prime} or $2 m^{\prime}$.

When $G=S U(2)$, the order m of ∂_{1} is 12 and the order m^{\prime} of ∂_{1}^{\prime} is 6 [12]. When $G=S U(3), m=24$ and $m^{\prime}=12$ [18]. When $G=S p(2), m=40$ and $m^{\prime}=20$ [15]. It is natural to ask whether $m=2 m^{\prime}$ for all G.

In the S^{4} case, Theorem 1.1 gives a sufficient condition for $\mathcal{G}_{k}\left(S^{4}\right) \simeq \mathcal{G}_{l}\left(S^{4}\right)$ when localized rationally or at any prime. In the $\mathbb{C P}^{2}$ case, Theriault showed a similar counting statement, in which the sufficient condition depends on the order of ∂_{1} instead of ∂_{1}^{\prime}.

Theorem 2.3 (Theriault, [18]) Let m be the order of ∂_{1}. If $(m, k)=(m, l)$, then $\mathcal{G}_{k}\left(\mathbb{C P}^{2}\right)$ is homotopy equivalent to $\mathcal{G}_{l}\left(\mathbb{C P}^{2}\right)$ when localized rationally or at any prime.

Lemma 2.2 can be used to improve the sufficient condition of Theorem 2.3.
Theorem 2.4 Let m^{\prime} be the order of ∂_{1}^{\prime}. If $\left(m^{\prime}, k\right)=\left(m^{\prime}, l\right)$, then $\mathcal{G}_{k}\left(\mathbb{C P}^{2}\right)$ is homotopy equivalent to $\mathcal{G}_{l}\left(\mathbb{C P}^{2}\right)$ when localized rationally or at any prime.

Proof By Lemma 2.2, m is either m^{\prime} or $2 m^{\prime}$. If $m=m^{\prime}$, then the statement is same as Theorem 2.3. Assume $m=2 m^{\prime}$. Localize at an odd prime p. Let p^{r} be the p component of m, that is $m=p^{r} \cdot q$ where q is coprime to p. Observe that $m \circ \partial_{1} \simeq$ $\left(p^{r} \cdot q\right) \circ \partial_{1} \simeq p^{r} \circ \partial_{1}$ since the power $\operatorname{map} q: \Omega_{0}^{3} G \rightarrow \Omega_{0}^{3} G$ is a homotopy equivalence. Therefore p^{r} is the order of ∂_{1} after localization. The hypothesis $\left(m^{\prime}, k\right)=\left(m^{\prime}, l\right)$ implies $\left(p^{r}, k\right)=\left(p^{r}, l\right)$, so a homotopy equivalence $\mathcal{G}_{k}\left(\mathbb{C P}^{2}\right) \simeq \mathcal{G}_{l}\left(\mathbb{C P} \mathbb{P}^{2}\right)$ follows by Theorem 2.3. A similar argument works for rational localization. Now it remains to consider the case where $m=2 m^{\prime}$ when localized at 2 .

Assume $m=2^{n}$ and $m^{\prime}=2^{n-1}$. For any $k,\left(2^{n-1}, k\right)=2^{i}$ where i an integer such that $0 \leq i \leq n-1$. If $i \leq n-2$, then $k=2^{i} t$ for some odd number t and $\left(2^{n-1}, k\right)=2^{i}$. The sufficient condition $\left(2^{n-1}, k\right)=\left(2^{n-1}, l\right)$ is equivalent to $\left(2^{n}, k\right)=\left(2^{n}, l\right)$. Again the homotopy equivalence $\mathcal{G}_{k}\left(\mathbb{C P}^{2}\right) \simeq \mathcal{G}_{l}\left(\mathbb{C P}^{2}\right)$ follows by Theorem 2.3. If $i=n-1$, then $\left(2^{n}, k\right)$ is either 2^{n} or 2^{n-1}. We claim that $\mathcal{G}_{k}\left(\mathbb{C P}^{2}\right)$ has the same homotopy type for both $\left(2^{n}, k\right)=2^{n}$ or $\left(2^{n}, k\right)=2^{n-1}$.

Consider fibration (3)

$$
\operatorname{Map}_{0}^{*}\left(\mathbb{C P}^{2}, G\right) \longrightarrow \mathcal{G}_{k}\left(\mathbb{C P}^{2}\right) \longrightarrow G \xrightarrow{\partial_{k}^{\prime}} \operatorname{Map}_{0}^{*}\left(\mathbb{C P}^{2}, B G\right)
$$

If $\left(2^{n}, k\right)=2^{n}$, then $k=2^{n} t$ for some number t. By linearity of Samelson products, $\partial_{k} \simeq k \partial_{1}$. Since $\partial_{k}^{\prime} \simeq q^{*} k \partial_{1} \simeq q^{*} 2^{n} t \partial_{1}$ and ∂_{1} has order $2^{n}, \partial_{k}^{\prime}$ is null homotopic and we have

$$
\mathcal{G}_{k}\left(\mathbb{C P}^{2}\right) \simeq G \times \operatorname{Map}_{0}^{*}\left(\mathbb{C P}^{2}, G\right)
$$

If $\left(2^{n}, k\right)=2^{n-1}$, then $k=2^{n-1} t$ for some odd number t. Writing $t=2 s+1$ gives $k=2^{n} s+2^{n-1}$. Since $\partial_{k}^{\prime} \simeq q^{*} k \partial_{1} \simeq q^{*}\left(2^{n} s+2^{n-1}\right) \partial_{1} \simeq q^{*} 2^{n-1} \partial_{1}$ and ∂_{1}^{\prime} has order $2^{n-1}, \partial_{k}^{\prime}$ is null homotopic and we have

$$
\mathcal{G}_{k}\left(\mathbb{C P}^{2}\right) \simeq G \times \operatorname{Map}_{0}^{*}\left(\mathbb{C P}^{2}, G\right)
$$

The same is true for $\mathcal{G}_{l}\left(\mathbb{C P}^{2}\right)$ and hence $\mathcal{G}_{k}\left(\mathbb{C P}^{2}\right) \simeq \mathcal{G}_{l}\left(\mathbb{C P}^{2}\right)$.

3 Plan for the proofs of Theorems 1.5 and 1.6

From this section onward, we will focus on $S U(n)$-gauge groups over $\mathbb{C P}^{2}$. There is a fibration

$$
\begin{equation*}
S U(n) \longrightarrow S U(\infty) \xrightarrow{p} W_{n}, \tag{8}
\end{equation*}
$$

where $p: S U(\infty) \rightarrow W_{n}$ is the projection and W_{n} is the symmetric space $S U(\infty) / S U(n)$. Then we have

$$
\begin{aligned}
\tilde{H}^{*}(S U(\infty)) & =\Lambda\left(x_{3}, \ldots, x_{2 n-1}, \ldots\right), \\
\tilde{H}^{*}(S U(n)) & =\Lambda\left(x_{3}, \ldots, x_{2 n-1}\right), \\
\tilde{H}^{*}(B S U(n)) & =\mathbb{Z}\left[c_{2}, \ldots, c_{n}\right], \\
\tilde{H}^{*}\left(W_{n}\right) & =\Lambda\left(\bar{x}_{2 n+1}, \bar{x}_{2 n+3}, \ldots\right),
\end{aligned}
$$

where $x_{2 n+1}$ has degree $2 n+1, c_{i}$ is the i th universal Chern class and $x_{2 i+1}=\sigma\left(c_{i+1}\right)$ is the image of c_{i+1} under the cohomology suspension σ, and $p^{*}\left(\bar{x}_{2 i+1}\right)=x_{2 i+1}$. Furthermore, $H^{2 n}\left(\Omega W_{n}\right) \cong \mathbb{Z}$ and $H^{2 n+2}\left(\Omega W_{n}\right) \cong \mathbb{Z}$ are generated by $a_{2 n}$ and $a_{2 n+2}$, where $a_{2 i}$ is the transgression of $x_{2 i+1}$.

The $(2 n+4)$-skeleton of W_{n} is $\Sigma^{2 n-1} \mathbb{C P}^{2}$ for n odd, and is $S^{2 n+3} \vee S^{2 n+1}$ for n even, so its homotopy groups are as follows:

	$\pi_{i}\left(W_{n}\right)$			
i	$\leq 2 n$	$2 n+1$	$2 n+2$	$2 n+3$
n odd	0	\mathbb{Z}	0	\mathbb{Z}
n even	0	\mathbb{Z}	$\mathbb{Z} / 2 \mathbb{Z}$	$\mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$

The canonical map $\epsilon: \Sigma \mathbb{C} \mathbb{P}^{n-1} \rightarrow S U(n)$ induces the inclusion ϵ_{*} : $H_{*}\left(\Sigma \mathbb{C P}^{n-1}\right) \rightarrow H_{*}(S U(n))$ of the generating set. Let C be the quotient $\mathbb{C} \mathbb{P}^{n-1} / \mathbb{C P}^{n-3}$ and let $\bar{q}: \Sigma \mathbb{C} \mathbb{P}^{n-1} \rightarrow \Sigma C$ be the quotient map. Then there is a diagram

where $\left(\partial_{k}^{\prime}\right)_{*}$ sends f to $\partial_{k}^{\prime} \circ f$ and the rows are induced by fibration (3). In particular, in the second row the map $\epsilon: \Sigma \mathbb{C} \mathbb{P}^{n-1} \rightarrow S U(n)$ is sent to $\left(\partial_{k}^{\prime}\right)_{*}(\epsilon)=\partial_{k}^{\prime} \circ \epsilon$. In Sect. 4, we use unstable K-theory to calculate the order of $\partial_{1}^{\prime} \circ \epsilon$, giving a lower bound on the order of ∂_{1}^{\prime}. Furthermore, in [5] Hamanaka and Kono considered an exact sequence similar to the first row to give a necessary condition for $\mathcal{G}_{k}\left(S^{4}\right) \simeq \mathcal{G}_{l}\left(S^{4}\right)$. In Sect. 5 we follow the same approach and use the first row to give a necessary condition for $\mathcal{G}_{k}\left(\mathbb{C P}^{2}\right) \simeq \mathcal{G}_{l}\left(\mathbb{C P}^{2}\right)$.

We remark that it is difficult to use only one of the two rows to prove both Theorems 1.5 and 1.6. On the one hand, $\partial_{1}^{\prime} \circ \epsilon$ factors through a map $\bar{\partial}: \Sigma C \rightarrow$ Map* $\left(\mathbb{C P}^{2}, B S U(n)\right)$. There is no obvious method to show that $\bar{\partial}$ and $\partial_{1}^{\prime} \circ \epsilon$ have the same orders except direct calculation. Therefore we cannot compare the orders of $\bar{\partial}$ and ∂_{1}^{\prime} to prove Theorem 1.5 without calculating the order of $\partial_{1}^{\prime} \circ \epsilon$. On the other hand, applying the method used in Sect. 5 to the second row gives a much weaker
conclusion than Theorem 1.6. This is because $\left[\Sigma C, B \mathcal{G}_{k}\left(\mathbb{C P}^{2}\right)\right]$ is a much smaller group than $\left[\Sigma \mathbb{C P} \mathbb{P}^{n-1}, B \mathcal{G}_{k}\left(\mathbb{C P}^{2}\right)\right]$ and much information is lost by the map \bar{q}^{*}.

4 A lower bound on the order of ∂_{1}^{\prime}

The restriction of ∂_{1} to $\Sigma \mathbb{C} \mathbb{P}^{n-1}$ is $\partial_{1} \circ \epsilon$, which is the triple adjoint of the composition

$$
\langle l, \epsilon\rangle: S^{3} \wedge \Sigma \mathbb{C P}^{n-1} \xrightarrow{l \wedge \epsilon} S U(n) \wedge S U(n) \xrightarrow{\langle\mathbb{1}, \mathbb{1}\rangle} S U(n) .
$$

Since $S U(n) \simeq \Omega B S U(n)$, we can further take its adjoint and get

$$
\rho: \Sigma S^{3} \wedge \Sigma \mathbb{C P}^{n-1} \xrightarrow{\Sigma \iota \wedge \epsilon} \Sigma S U(n) \wedge S U(n) \xrightarrow{[e v, e v]} B S U(n),
$$

where $[e v, e v]$ is the Whitehead product of the evaluation map

$$
e v: \Sigma S U(n) \simeq \Sigma \Omega B S U(n) \rightarrow B S U(n)
$$

with itself. Similarly, the restriction $\partial_{1}^{\prime} \circ \epsilon$ is adjoint to the composition

$$
\rho^{\prime}: \mathbb{C P}^{2} \wedge \Sigma \mathbb{C P}^{n-1} \xrightarrow{q \wedge \mathbb{1}} S^{4} \wedge \Sigma \mathbb{C P}^{n-1} \xrightarrow{\Sigma \imath \wedge \epsilon} \Sigma S U(n) \wedge S U(n) \xrightarrow{[e v, e v]} B S U(n)
$$

Since we will frequently refer to the facts established in [4,5], it is easier to follow their setting and consider its adjoint

$$
\gamma=\tau\left(\rho^{\prime} \circ T\right): \mathbb{C P}^{2} \wedge \mathbb{C P}^{n-1} \rightarrow S U(n),
$$

where $T: \Sigma \mathbb{C P}^{2} \wedge \mathbb{C P}^{n-1} \rightarrow \mathbb{C P}^{2} \wedge \Sigma \mathbb{C} \mathbb{P}^{n-1}$ is the swapping map and $\tau:\left[\Sigma \mathbb{C P}^{2} \wedge\right.$ $\left.\mathbb{C P}^{n-1}, B S U(n)\right] \rightarrow\left[\mathbb{C P}^{2} \wedge \mathbb{C P}^{n-1}, S U(n)\right]$ is the adjunction. By adjunction, the orders of $\partial_{1}^{\prime} \circ \epsilon, \rho^{\prime}$ and γ are the same. We will calculate the order of γ using unstable K-theory to prove Theorem 1.5.

Apply $\left[\mathbb{C P}^{2} \wedge \mathbb{C P}^{n-1},-\right]$ to fibration (8) to obtain the exact sequence
$\tilde{K}^{0}\left(\mathbb{C P}^{2} \wedge \mathbb{C P}^{n-1}\right) \xrightarrow{p_{*}}\left[\mathbb{C P}^{2} \wedge \mathbb{C P}^{n-1}, \Omega W_{n}\right] \longrightarrow\left[\mathbb{C P}^{2} \wedge \mathbb{C P}^{n-1}, S U(n)\right] \longrightarrow 0$.
Since $\mathbb{C P}^{2} \wedge \mathbb{C P}^{n-1}$ is a CW-complex with even dimensional cells, the last item $\left[\mathbb{C P}^{2} \wedge \mathbb{C P}^{n-1}, S U(\infty)\right] \cong \tilde{K}^{1}\left(\mathbb{C P}^{2} \wedge \mathbb{C P}^{n-1}\right)$ is zero. First we identify the term $\left[\mathbb{C P}^{2} \wedge \mathbb{C P}^{n-1}, \Omega W_{n}\right]$.

Lemma 4.1 We have the following:

- $\left[\Sigma^{2 n-4} \mathbb{C P}^{2}, \Omega W_{n}\right] \cong \mathbb{Z}$;
- $\left[\Sigma^{2 n-3} \mathbb{C P}^{2}, \Omega W_{n}\right]=0$ for n odd;
- $\left[\Sigma^{2 n-2} \mathbb{C P}^{2}, \Omega W_{n}\right] \cong \mathbb{Z} \oplus \mathbb{Z}$.

Proof First, apply [$\Sigma^{2 n-4}-, \Omega W_{n}$] to cofibration (4) to obtain the exact sequence

$$
\pi_{2 n}\left(W_{n}\right) \longrightarrow \pi_{2 n+1}\left(W_{n}\right) \longrightarrow\left[\Sigma^{2 n-4} \mathbb{C P}^{2}, \Omega W_{n}\right] \longrightarrow \pi_{2 n-1}\left(W_{n}\right)
$$

We refer to Table (9) freely for the homotopy groups of W_{n}. Since $\pi_{2 n-1}\left(W_{n}\right)$ and $\pi_{2 n}\left(W_{n}\right)$ are zero, $\left[\Sigma^{2 n-4} \mathbb{C} \mathbb{P}^{n-1}, \Omega W_{n}\right]$ is isomorphic to $\pi_{2 n+1}\left(W_{n}\right) \cong \mathbb{Z}$.

Second, apply [$\Sigma^{2 n-3}-, \Omega W_{n}$] to (4) to obtain

$$
\pi_{2 n+2}\left(W_{n}\right) \longrightarrow\left[\Sigma^{2 n-3} \mathbb{C P}^{2}, \Omega W_{n}\right] \longrightarrow \pi_{2 n}\left(W_{n}\right)
$$

Since $\pi_{2 n}\left(W_{n}\right)$ and $\pi_{2 n+2}\left(W_{n}\right)$ are zero for n odd, so is $\left[\Sigma^{2 n-3} \mathbb{C P}^{2}, \Omega W_{n}\right]$.
Third, apply [$\left.\Sigma^{2 n-2}-, \Omega W_{n}\right]$ to (4) to obtain

$$
\begin{aligned}
& \pi_{2 n+2}\left(W_{n}\right) \xrightarrow{\eta_{1}} \pi_{2 n+3}\left(W_{n}\right) \longrightarrow\left[\Sigma^{2 n-2} \mathbb{C P}^{2}, \Omega W_{n}\right] \\
& \quad \dot{ } \pi_{2 n+1}\left(W_{n}\right) \xrightarrow{\eta_{2}} \pi_{2 n+2}\left(W_{n}\right),
\end{aligned}
$$

where η_{1} and η_{2} are induced by Hopf maps $\Sigma^{2 n} \eta: S^{2 n+3} \rightarrow S^{2 n+2}$ and $\Sigma^{2 n-1} \eta$: $S^{2 n+2} \rightarrow S^{2 n+1}$, and j is induced by the inclusion $S^{2 n+1} \hookrightarrow \Sigma^{2 n-2} \mathbb{C P}^{2}$ of the bottom cell. When n is odd, $\pi_{2 n+2}\left(W_{n}\right)$ is zero and $\pi_{2 n+1}\left(W_{n}\right)$ and $\pi_{2 n+3}\left(W_{n}\right)$ are \mathbb{Z}, so $\left[\Sigma^{2 n-2} \mathbb{C} \mathbb{P}^{n-1}, \Omega W_{n}\right]$ is $\mathbb{Z} \oplus \mathbb{Z}$. When n is even, the $(2 n+4)$-skeleton of W_{n} is $S^{2 n+1} \vee S^{2 n+3}$. The inclusions

$$
i_{1}: S^{2 n+1} \rightarrow S^{2 n+1} \vee S^{2 n+3} \quad \text { and } \quad i_{2}: S^{2 n+3} \rightarrow S^{2 n+1} \vee S^{2 n+3}
$$

generate $\pi_{2 n+1}\left(W_{n}\right)$ and the \mathbb{Z}-summand of $\pi_{2 n+3}\left(W_{n}\right)$, and the compositions
$j_{1}: S^{2 n+2} \xrightarrow{\Sigma^{2 n-1} \eta} S^{2 n+1} \xrightarrow{i_{1}} W_{n}$ and $j_{2}: S^{2 n+3} \xrightarrow{\Sigma^{2 n} \eta} S^{2 n+2} \xrightarrow{\Sigma^{2 n-1} \eta} S^{2 n+1} \xrightarrow{i_{1}} W_{n}$
generate $\pi_{2 n+2}\left(W_{n}\right)$ and the $\mathbb{Z} / 2 \mathbb{Z}$-summand of $\pi_{2 n+3}\left(W_{n}\right)$ respectively. Since η_{1} sends j_{1} to j_{2}, the cokernel of η_{1} is \mathbb{Z}. Similarly, η_{2} sends i_{1} to j_{1}, so $\eta_{2}: \mathbb{Z} \rightarrow$ $\mathbb{Z} / 2 \mathbb{Z}$ is surjective. This implies the preimage of j is a \mathbb{Z}-summand. Therefore $\left[\Sigma^{2 n-2} \mathbb{C P}^{2}, \Omega W_{n}\right] \cong \mathbb{Z} \oplus \mathbb{Z}$.

Let C be the quotient $\mathbb{C P} \mathbb{P}^{n-1} / \mathbb{C P} \mathbb{P}^{n-3}$. Since ΩW_{n} is $(2 n-1)$-connected, $\left[\mathbb{C P}^{2} \wedge\right.$ $\left.\mathbb{C} \mathbb{P}^{n-1}, \Omega W_{n}\right]$ is isomorphic to $\left[\mathbb{C P}^{2} \wedge C, \Omega W_{n}\right]$ which is easier to determine.
Lemma 4.2 The group $\left[\mathbb{C P}^{2} \wedge \mathbb{C} \mathbb{P}^{n-1}, \Omega W_{n}\right] \cong\left[\mathbb{C P}^{2} \wedge C, \Omega W_{n}\right]$ is isomorphic to $\mathbb{Z}^{\oplus 3}$.
Proof When n is even, C is $S^{2 n-2} \vee S^{2 n-4}$. By Lemma 4.1, $\left[\mathbb{C P}^{2} \wedge C, \Omega W_{n}\right]$ is $\left[\Sigma^{2 n-2} \mathbb{C P}^{2}, \Omega W_{n}\right] \oplus\left[\Sigma^{2 n-4} \mathbb{C P}^{2}, \Omega W_{n}\right] \cong \mathbb{Z}^{\oplus 3}$.

When n is odd, C is $\Sigma^{2 n-6} \mathbb{C P}^{2}$. Apply $\left[\Sigma^{2 n-6} \mathbb{C} \mathbb{P}^{2} \wedge-, \Omega W_{n}\right]$ to cofibration (4) to obtain the exact sequence

$$
\begin{aligned}
& {\left[\Sigma^{2 n-3} \mathbb{C P}^{2}, \Omega W_{n}\right] \longrightarrow\left[\Sigma^{2 n-2} \mathbb{C P}^{2}, \Omega W_{n}\right] \longrightarrow\left[\Sigma^{2 n-6} \mathbb{C P}^{2} \wedge \mathbb{C P}^{2}, \Omega W_{n}\right]} \\
& \quad \longrightarrow\left[\Sigma^{2 n-4} \mathbb{C P}^{2}, \Omega W_{n}\right] \longrightarrow\left[\Sigma^{2 n-3} \mathbb{C P}^{2}, \Omega W_{n}\right]
\end{aligned}
$$

By Lemma 4.1, the first and the last terms $\left[\Sigma^{2 n-3} \mathbb{C P}^{2}, \Omega W_{n}\right]$ are zero, while the second term $\left[\Sigma^{2 n-2} \mathbb{C P}^{2}, \Omega W_{n}\right.$] is $\mathbb{Z} \oplus \mathbb{Z}$ and the fourth [$\Sigma^{2 n-4} \mathbb{C P}^{2}, \Omega W_{n}$] is \mathbb{Z}. Therefore $\left[\mathbb{C P}^{2} \wedge C, \Omega W_{n}\right]$ is $\mathbb{Z}^{\oplus 3}$.

Define $a:\left[\mathbb{C P}^{2} \wedge \mathbb{C P}^{n-1}, \Omega W_{n}\right] \rightarrow H^{2 n}\left(\mathbb{C P}^{2} \wedge \mathbb{C P}^{n-1}\right) \oplus H^{2 n+2}\left(\mathbb{C P}^{2} \wedge \mathbb{C P}^{n-1}\right)$ to be a map sending $f \in\left[\mathbb{C P}^{2} \wedge \mathbb{C P}^{n-1}, \Omega W_{n}\right]$ to $a(f)=f^{*}\left(a_{2 n}\right) \oplus f^{*}\left(a_{2 n+2}\right)$. The cohomology class $\bar{x}_{2 n+1}$ represents a map $\bar{x}_{2 n+1}: W_{n} \rightarrow K(\mathbb{Z}, 2 n+1)$ and $a_{2 n}=\sigma\left(\bar{x}_{2 n+1}\right)$ represents its loop $\Omega \bar{x}_{2 n+1}: \Omega W_{n} \rightarrow \Omega K(\mathbb{Z}, 2 n+1)$. Similarly $a_{2 n+2}=\sigma\left(\bar{x}_{2 n+3}\right)$ represents a loop map. This implies a is a group homomorphism. Furthermore, $a_{2 n}$ and $a_{2 n+2}$ induce isomorphisms between $H^{i}\left(\Omega W_{n}\right)$ and $H^{i}(K(2 n, \mathbb{Z}) \times K(2 n+2, \mathbb{Z}))$ for $i=2 n$ and $2 n+2$. Since $\left[\mathbb{C P}^{2} \wedge \mathbb{C P}^{n-1}, \Omega W_{n}\right]$ is a free \mathbb{Z}-module by Lemma 4.2, a is a monomorphism. Consider the diagram

In the left square, Φ is defined to be $a \circ p^{*}$. In the right square, ψ is the quotient map and b is defined as follows. Any $f \in\left[\mathbb{C P}^{2} \wedge \mathbb{C} \mathbb{P}^{n-1}, S U(n)\right]$ has a preimage \tilde{f} and $b(f)$ is defined to be $\psi(a(\tilde{f}))$. An easy diagram chase shows that b is well-defined and injective. Since b is injective, the order of $\gamma \in\left[\mathbb{C P}^{2} \wedge \mathbb{C P}^{n-1}, S U(n)\right]$ equals the order of $b(\gamma) \in \operatorname{Coker}(\Phi)$. In [4], Hamanaka and Kono gave an explicit formula for Φ.
Theorem 4.3 (Hamanaka and Kono [4]) Let Y be a $C W$-complex. For any $f \in \tilde{K}^{0}(Y)$ we have

$$
\Phi(f)=n!c h_{2 n}(f) \oplus(n+1)!c h_{2 n+2}(f),
$$

where $\operatorname{ch}_{2 i}(f)$ is the $2 i$ th part of $\operatorname{ch}(f)$.
Let u and v be the generators of $H^{2}\left(\mathbb{C P}^{2}\right)$ and $H^{2}\left(\mathbb{C P}{ }^{n-1}\right)$. For $1 \leq i \leq n-1$, denote L_{i} and L_{i}^{\prime} as the generators of $\tilde{K}^{0}\left(\mathbb{C P}^{2} \wedge \mathbb{C P}^{n-1}\right)$ with Chern characters $\operatorname{ch}\left(L_{i}\right)=u^{2}\left(e^{v}-1\right)^{i}$ and $\operatorname{ch}\left(L_{i}^{\prime}\right)=\left(u+\frac{1}{2} u^{2}\right) \cdot\left(e^{v}-1\right)^{i}$. By Theorem 4.3 we have

$$
\begin{aligned}
& \Phi\left(L_{i}\right)=n(n-1) A_{i} u^{2} v^{n-2}+n(n+1) B_{i} u^{2} v^{n-1} \\
& \Phi\left(L_{i}^{\prime}\right)=\frac{n(n-1)}{2} A_{i} u^{2} v^{n-2}+n B_{i} u v^{n-1}+\frac{n(n+1)}{2} B_{i} u^{2} v^{n-1}
\end{aligned}
$$

where

$$
A_{i}=\sum_{j=1}^{i}(-1)^{i+j}\binom{i}{j} j^{n-2} \text { and } \quad B_{i}=\sum_{j=1}^{i}(-1)^{i+j}\binom{i}{j} j^{n-1}
$$

Write an element $x u^{2} v^{n-2}+y u v^{n-1}+z u^{2} v^{n-1} \in H^{2 n}\left(\mathbb{C P}^{2} \wedge \mathbb{C P}^{n-1}\right) \oplus$ $H^{2 n+2}\left(\mathbb{C P}^{2} \wedge \mathbb{C P}^{n-1}\right)$ as (x, y, z). Then the coordinates of $\Phi\left(L_{i}\right)$ and $\Phi\left(L_{i}^{\prime}\right)$ are $\left(n(n-1) A_{i}, 0, n(n+1) B_{i}\right)$ and $\left(\frac{n(n-1)}{2} A_{i}, n B_{i}, \frac{n(n+1)}{2} B_{i}\right)$ respectively.

Lemma 4.4 For $n \geq 3$, $\operatorname{Im}(\Phi)$ is spanned by $\left(\frac{n(n-1)}{2}, n, \frac{n(n+1)}{2}\right)$, $(n(n-1), 0,0)$ and ($0,2 n, 0$).

Proof By definition, $\operatorname{Im}(\Phi)=\operatorname{span}\left\{\Phi\left(L_{i}\right), \Phi\left(L_{i}^{\prime}\right)\right\}_{i=1}^{n-1}$. For $i=1, A_{1}=B_{1}=1$. Then

$$
\begin{aligned}
\Phi\left(L_{1}\right) & =(n(n-1), 0, n(n+1)) \\
& =2\left(\frac{1}{2} n(n-1), n, \frac{1}{2} n(n+1)\right)-(0,2 n, 0) \\
& =2 \Phi\left(L_{1}^{\prime}\right)-(0,2 n, 0)
\end{aligned}
$$

Equivalently $(0,2 n, 0)=2 \Phi\left(L_{1}^{\prime}\right)-\Phi\left(L_{1}\right)$, so $\operatorname{span}\left\{\Phi\left(L_{1}\right), \Phi\left(L_{1}^{\prime}\right)\right\}=$ $\operatorname{span}\left\{\Phi\left(L_{1}^{\prime}\right),(0,2 n, 0)\right\}$. For other i 's,

$$
\begin{aligned}
\Phi\left(L_{i}\right) & =\left(n(n-1) A_{i}, 0, n(n+1) B_{i}\right) \\
& =2\left(\frac{1}{2} n(n-1) A_{i}, n B_{i}, \frac{1}{2} n(n+1) B_{i}\right)-\left(0,2 n B_{i}, 0\right) \\
& =2 \Phi\left(L_{i}^{\prime}\right)-B_{i}(0,2 n, 0)
\end{aligned}
$$

is a linear combination of $\Phi\left(L_{i}^{\prime}\right)$ and $(0,2 n, 0)$, so

$$
\operatorname{Im}(\Phi)=\operatorname{span}\left\{\Phi\left(L_{1}^{\prime}\right), \ldots, \Phi\left(L_{n-1}^{\prime}\right),(0,2 n, 0)\right\}
$$

We claim that $\operatorname{span}\left\{\Phi\left(L_{i}^{\prime}\right)\right\}_{i=1}^{n-1}=\operatorname{span}\left\{\Phi\left(L_{1}^{\prime}\right),(n(n-1), 0,0)\right\}$. Observe that

$$
\begin{aligned}
\Phi\left(L_{i}^{\prime}\right) & =\left(\frac{n(n-1)}{2} A_{i}, n B_{i}, \frac{n(n+1)}{2} B_{i}\right) \\
& =\left(\frac{n(n-1)}{2} B_{i}, n B_{i}, \frac{n(n+1)}{2} B_{i}\right)+\left(\frac{n(n-1)}{2}\left(A_{i}-B_{i}\right), 0,0\right) \\
& =B_{i} \Phi\left(L_{1}^{\prime}\right)+\frac{A_{i}-B_{i}}{2} \cdot(n(n-1), 0,0)
\end{aligned}
$$

The difference

$$
\begin{aligned}
A_{i}-B_{i} & =\sum_{j=1}^{i}(-1)^{i+j}\binom{i}{j} j^{n-2}-\sum_{j=1}^{i}(-1)^{i+j}\binom{i}{j} j^{n-1} \\
& =\sum_{j=1}^{i}(-1)^{i+j+1}\binom{i}{j}\left(j^{n-1}-j^{n-2}\right) \\
& =\sum_{j=1}^{i}(-1)^{i+j+1}\binom{i}{j}(j-1) j^{n-2}
\end{aligned}
$$

is even since each term $(j-1) j^{n-2}$ is even and $n \geq 3$. Therefore $\frac{A_{i}-B_{i}}{2}$ is an integer and $\Phi\left(L_{i}^{\prime}\right)$ is a linear combination of $\Phi\left(L_{1}^{\prime}\right)$ and $(n(n-1), 0,0)$.

Furthermore,

$$
\begin{aligned}
\Phi\left(L_{2}^{\prime}\right) & =B_{2} \Phi\left(L_{1}^{\prime}\right)+\left(A_{2}-B_{2}\right)\left(\frac{n(n-1)}{2}, 0,0\right) \\
& =B_{2} \Phi\left(L_{1}^{\prime}\right)-2^{n-3}(n(n-1), 0,0)
\end{aligned}
$$

and

$$
\begin{aligned}
\Phi\left(L_{3}^{\prime}\right) & =B_{3} \Phi\left(L_{1}^{\prime}\right)+\left(A_{3}-B_{3}\right)\left(\frac{n(n-1)}{2}, 0,0\right) \\
& =B_{3} \Phi\left(L_{1}^{\prime}\right)-\left(3^{n-2}-3 \cdot 2^{n-3}\right)(n(n-1), 0,0)
\end{aligned}
$$

For $n=3, B_{2}=2$ and $\Phi\left(L_{2}^{\prime}\right)=2 \Phi\left(L_{1}^{\prime}\right)-(n(n-1), 0,0)$, so we have

$$
\operatorname{span}\left\{\Phi\left(L_{i}^{\prime}\right)\right\}_{i=1}^{n-1}=\operatorname{span}\left\{\Phi\left(L_{1}^{\prime}\right), \Phi\left(L_{2}^{\prime}\right)\right\}=\operatorname{span}\left\{\Phi\left(L_{1}^{\prime}\right),(n(n-1), 0,0)\right\}
$$

For $n \geq 4$, since 2^{n-3} and $3^{n-2}-3 \cdot 2^{n-3}$ are coprime to each other, there exist integers s and t such that $2^{n-3} s+\left(3^{n-2}-3 \cdot 2^{n-3}\right) t=1$ and

$$
(n(n-1), 0,0)=\left(s B_{2}+t B_{3}\right) \Phi\left(L_{1}^{\prime}\right)-s \Phi\left(L_{2}^{\prime}\right)-t \Phi\left(L_{3}^{\prime}\right)
$$

Therefore $(n(n-1), 0,0)$ is a linear combination of $\Phi\left(L_{1}^{\prime}\right), \Phi\left(L_{2}^{\prime}\right)$ and $\Phi\left(L_{3}^{\prime}\right)$. This implies $\operatorname{span}\left\{\Phi\left(L_{1}^{\prime}\right),(n(n-1), 0,0)\right\}=\operatorname{span}\left\{\Phi\left(L_{i}^{\prime}\right)\right\}_{i=1}^{n-1}$.

Combine all these together to obtain

$$
\begin{aligned}
\operatorname{Im}(\Phi) & =\operatorname{span}\left\{\Phi\left(L_{i}\right), \Phi\left(L_{i}^{\prime}\right)\right\}_{i=1}^{n-1} \\
& =\operatorname{span}\left\{\Phi\left(L_{1}^{\prime}\right),(n(n-1), 0,0),(0,2 n, 0)\right\} \\
& =\operatorname{span}\left\{\left(\frac{n(n-1)}{2}, n, \frac{n(n+1)}{2}\right),(n(n-1), 0,0),(0,2 n, 0)\right\}
\end{aligned}
$$

Back to diagram (10). The map γ has a lift $\tilde{\gamma}: \mathbb{C P}^{2} \wedge \mathbb{C P}^{n-1} \rightarrow \Omega W_{n}$. By exactness, the order of γ equals the minimum number m such that $m \tilde{\gamma}$ is contained in $\operatorname{Im}\left(p_{*}\right)$. Since a and b are injective, the order of γ equals the minimum number m^{\prime} such that $m^{\prime} a(\tilde{\gamma})$ is contained in $\operatorname{Im}(\Phi)$.

Lemma 4.5 Let $\alpha: \Sigma X \rightarrow S U(n)$ be a map for some space X. If $\alpha^{\prime}: \mathbb{C P}^{2} \wedge X \rightarrow$ $S U(n)$ is the adjoint of the composition

$$
\mathbb{C P}^{2} \wedge \Sigma X \xrightarrow{q \wedge \mathbb{1}} \Sigma S^{3} \wedge \Sigma X \xrightarrow{\Sigma i \wedge \alpha} \Sigma S U(n) \wedge S U(n) \xrightarrow{[e v, e v]} B S U(n),
$$

then there is a lift $\tilde{\alpha}$ of α^{\prime} such that $\tilde{\alpha}^{*}\left(a_{2 i}\right)=u^{2} \otimes \Sigma^{-1} \alpha^{*}\left(x_{2 i-3}\right)$, where Σ is the cohomology suspension isomorphism.

Proof In [4,5], Hamanaka and Kono constructed a lift $\Gamma: \Sigma S U(n) \wedge S U(n) \rightarrow W_{n}$ of [$e v, e v]$ such that $\Gamma^{*}\left(\bar{x}_{2 i+1}\right)=\sum_{j+k=i-1} \Sigma x_{2 j+1} \otimes x_{2 k+1}$. Let $\tilde{\Gamma}$ be the composition

$$
\tilde{\Gamma}: \mathbb{C P}^{2} \wedge \Sigma X \xrightarrow{q \wedge \mathbb{1}} \Sigma S^{3} \wedge \Sigma X \xrightarrow{\Sigma i \wedge \alpha} \Sigma S U(n) \wedge S U(n) \xrightarrow{\Gamma} W_{n} .
$$

Then we have

$$
\begin{aligned}
\tilde{\Gamma}^{*}\left(\bar{x}_{2 i+1}\right) & =(q \wedge \mathbb{1})^{*}\left(\Sigma_{l} \wedge \alpha\right)^{*} \Gamma^{*}\left(\bar{x}_{2 i+1}\right) \\
& =(q \wedge \mathbb{1})^{*}\left(\Sigma_{l} \wedge \alpha\right)^{*}\left(\sum_{j+k=i-1} \Sigma x_{2 j+1} \otimes x_{2 k+1}\right) \\
& =(q \wedge \mathbb{1})^{*}\left(\Sigma u_{3} \otimes \alpha^{*}\left(x_{2 i-3}\right)\right) \\
& =u^{2} \otimes \alpha^{*}\left(x_{2 i-3}\right)
\end{aligned}
$$

where u_{3} is the generator of $H^{3}\left(S^{3}\right)$.
Let $T: \Sigma \mathbb{C P}^{2} \wedge X \rightarrow \mathbb{C P}^{2} \wedge \Sigma X$ be the swapping map and let $\tau:\left[\Sigma \mathbb{C P}^{2} \wedge\right.$ $\left.X, W_{n}\right] \rightarrow\left[\mathbb{C P}^{2} \wedge X, \Omega W_{n}\right]$ be the adjunction. Take $\tilde{\alpha}: \mathbb{C P}^{2} \wedge X \rightarrow \Omega W_{n}$ to be the adjoint of $\tilde{\Gamma}$, that is $\tilde{\alpha}=\tau(\tilde{\Gamma} \circ T)$. Then $\tilde{\alpha}$ is a lift of α^{\prime}. Since

$$
(\tilde{\Gamma} \circ T)^{*}\left(\bar{x}_{2 i+1}\right)=T^{*} \circ \tilde{\Gamma}^{*}\left(\bar{x}_{2 i+1}\right)=T^{*}\left(u^{2} \otimes \alpha^{*}\left(x_{2 i-3}\right)\right)=\Sigma u^{2} \otimes \Sigma^{-1} \alpha^{*}\left(x_{2 i-3}\right),
$$ we have $\tilde{\alpha}^{*}\left(a_{2 i}\right)=u^{2} \otimes \Sigma^{-1} \alpha^{*}\left(x_{2 i-3}\right)$.

Lemma 4.6 In diagram (10), γ has a lift $\tilde{\gamma}$ such that $a(\tilde{\gamma})=u^{2} v^{n-2} \oplus u^{2} v^{n-1}$.
Proof Recall that γ is the adjoint of the composition
$\rho^{\prime}: \mathbb{C P}^{2} \wedge \Sigma \mathbb{C P}^{n-1} \xrightarrow{q \wedge \mathbb{1}} \Sigma S^{3} \wedge \Sigma \mathbb{C P}^{n-1} \xrightarrow{\Sigma\lfloor\wedge \epsilon} \Sigma S U(n) \wedge S U(n) \xrightarrow{[e v, e v]} B S U(n)$.
Now we use Lemma 4.5 and take α to be $\epsilon: \Sigma \mathbb{C} \mathbb{P}^{n-1} \rightarrow S U(n)$. Then γ has a lift $\tilde{\gamma}$ such that $\tilde{\gamma}^{*}\left(a_{2 i}\right)=u^{2} \otimes \Sigma^{-1} \epsilon^{*}\left(x_{2 i-3}\right)=u^{2} \otimes v^{i-2}$. This implies

$$
a(\tilde{\gamma})=\tilde{\gamma}^{*}\left(a_{2 n}\right) \oplus \tilde{\gamma}^{*}\left(a_{2 n+2}\right)=u^{2} v^{n-2} \oplus u^{2} v^{n-1}
$$

Now we can calculate the order of $\partial_{1}^{\prime} \circ \epsilon$, which gives a lower bound on the order of ∂_{1}^{\prime}.
Theorem 4.7 When $n \geq 3$, the order of $\partial_{1}^{\prime} \circ \epsilon$ is $\frac{1}{2} n\left(n^{2}-1\right)$ for n odd and $n\left(n^{2}-1\right)$ for n even.

Proof Since $\partial_{1}^{\prime} \circ \epsilon$ is adjoint to γ, it suffices to calculate the order of γ. By Lemma 4.4, $\operatorname{Im}(\Phi)$ is spanned by $\left(\frac{1}{2} n(n-1), n, \frac{1}{2} n(n+1)\right),(n(n-1), 0,0)$ and $(0,2 n, 0)$. By Lemma 4.6, $a(\tilde{\gamma})$ has coordinates $(1,0,1)$. Let m be a number such that $m a(\tilde{\gamma})$ is contained in $\operatorname{Im}(\Phi)$. Then

$$
m(1,0,1)=s\left(\frac{1}{2} n(n-1), n, \frac{1}{2} n(n+1)\right)+t(n(n-1), 0,0)+r(0,2 n, 0)
$$

for some integers s, t and r. Solve this to get

$$
m=\frac{1}{2} \operatorname{tn}\left(n^{2}-1\right), s=-2 r, s=t(n-1)
$$

Since $s=-2 r$ is even, the smallest positive value of t satisfying $s=t(n-1)$ is 1 for n odd and 2 for n even. Therefore m is $\frac{1}{2} n\left(n^{2}-1\right)$ for n odd and $n\left(n^{2}-1\right)$ for n even.

For $S U(n)$-gauge groups over S^{4}, the order m of ∂_{1} has the form $m=n\left(n^{2}-1\right)$ for $n=3$ and $5[5,19]$. If p is an odd prime and $n<(p-1)^{2}+1$, then m and $n\left(n^{2}-1\right)$ have the same p-components $[9,20]$. These facts suggest it may be the case that $m=$ $n\left(n^{2}-1\right)$ for any $n>2$. In fact, one can follow the method Hamanaka and Kono used in [5] and calculate the order of $\partial \circ \epsilon$ to obtain a lower bound $n\left(n^{2}-1\right)$ for n odd. However, it does not work for the n even case since $\left[S^{4} \wedge \mathbb{C} \mathbb{P}^{n-1}, \Omega W_{n}\right]$ is not a free \mathbb{Z}-module. An interesting corollary of Theorem 4.7 is to give a lower bound on the order of ∂_{1} for n even.

Corollary 4.8 When n is even and greater than 2 , the order of ∂_{1} is at least $n\left(n^{2}-1\right)$.
Proof The order of $\partial_{1}^{\prime} \circ \epsilon$ is a lower bound on the order of ∂_{1}^{\prime}, which is either the same as or half of the order of ∂_{1} by Lemma 2.2. The corollary follows from Theorem 4.7.

5 A necessary condition for $\mathcal{G}_{k}\left(\mathbb{C P}^{\mathbf{2}}\right) \simeq \mathcal{G}_{I}\left(\mathbb{C P}^{\mathbf{2}}\right)$

In this section we follow the approach in [5] to prove Theorem 1.6. The techniques used are similar to that in Sect. 4, except we are working with the quotient $\Sigma C=$ $\Sigma \mathbb{C} \mathbb{P}^{n-1} / \Sigma \mathbb{C P}^{n-1}$ instead of $\Sigma \mathbb{C P}^{n-1}$. When n is odd, C is $\Sigma^{2 n-6} \mathbb{C P}^{2}$, and when n is even, C is $S^{2 n-2} \vee S^{2 n-4}$. Apply [$\Sigma C,-$] to fibration (3) to obtain the exact sequence

$$
\begin{aligned}
& {[\Sigma C, S U(n)] \xrightarrow{\left(\partial_{k}^{\prime}\right)_{*}}\left[\Sigma C, \text { Map }_{0}^{*}\left(\mathbb{C P}^{2}, B S U(n)\right)\right]} \\
& \quad \longrightarrow\left[\Sigma C, B \mathcal{G}_{k}\left(\mathbb{C P}^{2}\right)\right] \longrightarrow[\Sigma C, B S U(n)]
\end{aligned}
$$

where $\left(\partial_{k}^{\prime}\right)_{*}$ sends $f \in[\Sigma C, S U(n)]$ to $\partial_{k}^{\prime} \circ f \in\left[\Sigma C\right.$, Map $\left._{0}^{*}\left(\mathbb{C P}^{2}, B S U(n)\right)\right]$. Since $B S U(n) \rightarrow B S U(\infty)$ is a $2 n$-equivalence and ΣC has dimension $2 n-1$, $[\Sigma C, B S U(n)]$ is $\tilde{K}^{0}(\Sigma C)$ which is zero. Similarly, $[\Sigma C, S U(n)] \cong\left[\Sigma^{2} C, B S U(n)\right]$ is $\tilde{K}^{0}\left(\Sigma^{2} C\right) \cong \mathbb{Z} \oplus \mathbb{Z}$. Furthermore, by adjunction we have [ΣC, Map ${ }_{0}^{*}\left(\mathbb{C P}^{2}\right.$, $B S U(n))] \cong\left[\Sigma C \wedge \mathbb{C P}^{2}, B S U(n)\right]$. The exact sequence becomes

$$
\begin{equation*}
\tilde{K}^{0}\left(\Sigma^{2} C\right) \xrightarrow{\left(\partial_{k}^{\prime}\right)_{*}}\left[\Sigma C \wedge \mathbb{C P}^{2}, B S U(n)\right] \longrightarrow\left[\Sigma C, B \mathcal{G}_{k}\left(\mathbb{C P}^{2}\right)\right] \longrightarrow 0 . \tag{11}
\end{equation*}
$$

This implies $\left[\Sigma C, B \mathcal{G}_{k}\left(\mathbb{C P}^{2}\right)\right] \cong\left[C, \mathcal{G}_{k}\left(\mathbb{C P}^{2}\right)\right]$ is $\operatorname{Coker}\left(\partial_{k}^{\prime}\right)_{*}$. Also, apply $\left[\mathbb{C P}^{2} \wedge\right.$ $C,-]$ to fibration (8) to obtain the exact sequence

$$
\begin{align*}
& {\left[\mathbb{C P}^{2} \wedge C, \Omega S U(\infty)\right] \xrightarrow{p_{*}}\left[\mathbb{C P}^{2} \wedge C, \Omega W_{n}\right]} \\
& \quad \longrightarrow\left[\mathbb{C P}^{2} \wedge C, S U(n)\right] \longrightarrow\left[\mathbb{C P}^{2} \wedge C, S U(\infty)\right] . \tag{12}
\end{align*}
$$

Observe that $\left[\mathbb{C P}^{2} \wedge C, \Omega S U(\infty)\right] \cong \tilde{K}^{0}\left(\mathbb{C P}^{2} \wedge C\right)$ is $\mathbb{Z}^{\oplus 4}$ and $\left[\mathbb{C P}^{2} \wedge\right.$ $C, S U(\infty)] \cong \tilde{K}^{1}\left(\mathbb{C P}^{2} \wedge C\right)$ is zero. Combine exact sequences (11) and (12) to obtain the diagram

where $a(f)=f^{*}\left(a_{2 n}\right) \oplus f^{*}\left(a_{2 n+2}\right)$ for any $f \in\left[\mathbb{C P}^{2} \wedge C, \Omega W_{n}\right]$, and Φ is defined to be $a \circ p_{*}$. By Lemma $4.2\left[\mathbb{C P}^{2} \wedge C, \Omega W_{n}\right]$ is free. Following the same argument in Sect. 4 implies the injectivity of a.

Our strategy to prove Theorem 1.6 is as follows. If $\mathcal{G}_{k}\left(\mathbb{C P}^{2}\right)$ is homotopy equivalent to $\mathcal{G}_{l}\left(\mathbb{C P}^{2}\right)$, then $\left[C, \mathcal{G}_{k}\left(\mathbb{C P}^{2}\right)\right] \cong\left[C, \mathcal{G}_{l}\left(\mathbb{C P}^{2}\right)\right]$ and exactness in (12) implies that $\operatorname{Im}\left(\partial_{k}^{\prime}\right)_{*}$ and $\operatorname{Im}\left(\partial_{l}^{\prime}\right)_{*}$ have the same order in $\left[\mathbb{C P}^{2} \wedge C, S U(n)\right]$, resulting in a necessary condition for a homotopy equivalence $\mathcal{G}_{k}\left(\mathbb{C P}^{2}\right) \simeq \mathcal{G}_{l}\left(\mathbb{C P}^{2}\right)$. To calculate the order of $\operatorname{Im}\left(\partial_{k}^{\prime}\right)_{*}$, we will find a preimage $\tilde{\partial}_{k}$ of $\operatorname{Im}\left(\partial_{k}^{\prime}\right)_{*}$ in $\left[\mathbb{C P}^{2} \wedge C, \Omega W_{n}\right]$. Since a is injective, we can embed $\tilde{\partial}_{k}$ into $H^{2 n}\left(\mathbb{C P}^{2} \wedge C\right) \oplus H^{2 n+2}\left(\mathbb{C P}^{2} \wedge C\right)$ and work out the order of $\operatorname{Im}\left(\partial_{k}^{\prime}\right)_{*}$ there.

Let $u, v_{2 n-4}$ and $v_{2 n-2}$ be generators of $H^{2}\left(\mathbb{C P}^{2}\right), H^{2 n-4}(C)$ and $H^{2 n-2}(C)$. Then we write an element $x u^{2} v_{2 n-4}+y u v_{2 n-2}+z u^{2} v_{2 n-2} \in H^{2 n}\left(\mathbb{C P}^{2} \wedge C\right) \oplus H^{2 n+2}\left(\mathbb{C P}^{2} \wedge\right.$ $C)$ as (x, y, z). First we need to find the submodule $\operatorname{Im}(a)$.
Lemma 5.1 For nodd, $\operatorname{Im}(a)$ is $\{(x, y, z) \mid x+y \equiv z(\bmod 2)\}$, andforn even, $\operatorname{Im}(a)$ is $\{(x, y, z) \mid y \equiv 0(\bmod 2)\}$.

Proof When n is odd, C is $\Sigma^{2 n-6} \mathbb{C P}^{2}$ and the ($2 n+3$)-skeleton of ΩW_{n} is $\Sigma^{2 n-2} \mathbb{C P}^{2}$. To say $(x, y, z) \in \operatorname{Im}(a)$ means there exists $f \in\left[\mathbb{C P}^{2} \wedge C, \Omega W_{n}\right]$ such that

$$
\begin{equation*}
f^{*}\left(a_{2 n}\right)=x u^{2} v_{2 n-4}+y u v_{2 n-2} \text { and } f^{*}\left(a_{2 n+2}\right)=z u^{2} v_{2 n-2} . \tag{13}
\end{equation*}
$$

Reducing to homology with $\mathbb{Z} / 2 \mathbb{Z}$-coefficients, we have

$$
S q^{2}(u)=u^{2}, S q^{2}\left(v_{2 n-4}\right)=v_{2 n-2}, S q^{2}\left(a_{2 n}\right)=a_{2 n+2}
$$

Apply $S q^{2}$ to (13) to get $x+y \equiv z(\bmod 2)$. Therefore $\operatorname{Im}(a)$ is contained in $\{(x, y, z) \mid x+y \equiv z(\bmod 2)\}$. To show that they are equal, we need to show that $(1,0,1),(0,1,1)$ and $(0,0,2)$ are in $\operatorname{Im}(a)$. Consider maps

$$
\begin{aligned}
& f_{1}: \mathbb{C P}^{2} \wedge C \xrightarrow{q_{1}} S^{4} \wedge C \simeq \Sigma^{2 n-2} \mathbb{C P}^{2} \hookrightarrow \Omega W_{n} \\
& f_{2}: \mathbb{C P}^{2} \wedge C \xrightarrow{q_{2}} \mathbb{C P}^{2} \wedge S^{2 n-2} \hookrightarrow \Omega W_{n} \\
& f_{3}: \mathbb{C P}^{2} \wedge C \xrightarrow{q_{3}} S^{2 n+2} \xrightarrow{\theta} \Omega W_{n}
\end{aligned}
$$

where q_{1}, q_{2} and q_{3} are quotient maps and θ is the generator of $\pi_{2 n+3}\left(W_{n}\right)$. Their images are

$$
a\left(f_{1}\right)=(1,0,1) a\left(f_{2}\right)=(0,1,1) a\left(f_{3}\right)=(0,0,2)
$$

respectively, so $\operatorname{Im}(a)=\{(x, y, z) \mid x+y \equiv z(\bmod 2)\}$.
When n is even, C is $S^{2 n-2} \vee S^{2 n-4}$ and the $(2 n+3)$-skeleton of ΩW_{n} is $S^{2 n+2} \vee S^{2 n}$. Reducing to homology with $\mathbb{Z} / 2 \mathbb{Z}$-coefficients, $S q^{2}\left(v_{2 n-4}\right)=0$ and $S q^{2}\left(a_{2 n}\right)=0$. Apply $S q^{2}$ to (13) to get $y \equiv 0(\bmod 2)$. Therefore $\operatorname{Im}(a)$ is contained in $\{(x, y, z) \mid y \equiv 0(\bmod 2)\}$. To show that they are equal, we need to show that $(1,0,0),(0,2,0)$ and $(0,0,1)$ are in $\operatorname{Im}(a)$. The maps

$$
\begin{aligned}
& f_{1}^{\prime}: \mathbb{C P}^{2} \wedge C \xrightarrow{q_{1}^{\prime}} S^{4} \wedge\left(S^{2 n-2} \vee S^{2 n-4}\right) \xrightarrow{p_{1}} S^{4} \wedge S^{2 n-4} \hookrightarrow \Omega W_{n} \\
& f_{2}^{\prime}: \mathbb{C P}^{2} \wedge C \xrightarrow{q_{2}^{\prime}} S^{4} \wedge\left(S^{2 n-2} \vee S^{2 n-4}\right) \xrightarrow{p_{2}} S^{4} \wedge S^{2 n-2} \hookrightarrow \Omega W_{n}
\end{aligned}
$$

where q_{1}^{\prime} and q_{2}^{\prime} are quotient maps and p_{1} and p_{2} are pinch maps, have images $a\left(f_{1}^{\prime}\right)=$ $(1,0,0)$ and $a\left(f_{2}^{\prime}\right)=(0,0,1)$. To find ($0,2,0$), apply $\left[-\wedge S^{2 n-2}, \Omega W_{n}\right]$ to cofibration (4) to obtain the exact sequence

$$
\pi_{2 n+3}\left(W_{n}\right) \longrightarrow\left[\mathbb{C P}^{2} \wedge S^{2 n-2}, \Omega W_{n}\right] \xrightarrow{i^{*}} \pi_{2 n+1}\left(W_{n}\right) \xrightarrow{\eta^{*}} \pi_{2 n+2}\left(W_{n}\right)
$$

where i^{*} is induced by the inclusion $i: S^{2} \hookrightarrow \mathbb{C P}^{2}$ and η^{*} is induced by Hopf map η. The third term $\pi_{2 n+1}\left(W_{n}\right) \cong \mathbb{Z}$ is generated by $i^{\prime}: S^{2 n+1} \rightarrow W_{n}$, the inclusion of the bottom cell, and the fourth term $\pi_{2 n+2}\left(W_{n}\right) \cong \mathbb{Z} / 2 \mathbb{Z}$ is generated by $i^{\prime} \circ \eta$, so $\eta^{*}: \mathbb{Z} \rightarrow \mathbb{Z} / 2 \mathbb{Z}$ is a surjection. By exactness $\left[\mathbb{C P}^{2} \wedge S^{2 n-2}, \Omega W_{n}\right]$ has a \mathbb{Z}-summand
with the property that i^{*} sends its generator g to $2 i^{\prime}$. Therefore the composition

$$
f_{3}^{\prime}: \mathbb{C P}^{2} \wedge\left(S^{2 n-2} \vee S^{2 n-4}\right) \xrightarrow{\text { pinch }} \mathbb{C P}^{2} \wedge S^{2 n-2} \xrightarrow{g} \Omega W_{n}
$$

has image $(0,2,0)$. It follows that $\operatorname{Im}(a)=\{(x, y, z) \mid y \equiv 0(\bmod 2)\}$.
Now we split into the n odd and n even cases to calculate the order of $\operatorname{Im}\left(\partial_{k}^{\prime}\right)_{*}$.

5.1 The order of $\operatorname{Im}\left(\partial_{k}^{\prime}\right)_{*}$ for n odd

When n is odd, C is $\Sigma^{2 n-6} \mathbb{C P}^{2}$. First we find $\operatorname{Im}(\Phi)$ in $\operatorname{Im}(a)$. For $1 \leq i \leq 4$, let L_{i} be the generators of $\tilde{K}^{0}\left(\mathbb{C P}^{2} \wedge C\right) \cong \mathbb{Z}^{\oplus 4}$ with Chern characters

$$
\begin{array}{ll}
\operatorname{ch}\left(L_{1}\right)=\left(u+\frac{1}{2} u^{2}\right) \cdot\left(v_{2 n-4}+\frac{1}{2} v_{2 n-2}\right) & \operatorname{ch}\left(L_{2}\right)=\left(u+\frac{1}{2} u^{2}\right) v_{2 n-2} \\
\operatorname{ch}\left(L_{3}\right)=u^{2}\left(v_{2 n-4}+\frac{1}{2} v_{2 n-2}\right) & \operatorname{ch}\left(L_{4}\right)=u^{2} v_{2 n-2} .
\end{array}
$$

By Theorem 4.3, we have

$$
\begin{aligned}
& \Phi\left(L_{1}\right)=\frac{n!}{2} u^{2} v_{2 n-4}+\frac{n!}{2} u v_{2 n-2}+\frac{(n+1)!}{4} u^{2} v_{2 n-2} \\
& \Phi\left(L_{2}\right)=n!u v_{2 n-2}+\frac{(n+1)!}{2} u^{2} v_{2 n-2} \\
& \Phi\left(L_{3}\right)=n!u^{2} v_{2 n-4}+\frac{(n+1)!}{2} u^{2} v_{2 n-2} \\
& \Phi\left(L_{4}\right)=(n+1)!u^{2} v_{2 n-2} .
\end{aligned}
$$

By Lemma 5.1, $\operatorname{Im}(a)$ is spanned by $(1,0,1),(0,1,1)$ and $(0,0,2)$. Under this basis, the coordinates of the $\Phi\left(L_{i}\right)$'s are

$$
\begin{array}{ll}
\Phi\left(L_{1}\right)=\left(\frac{n!}{2}, \frac{n!}{2}, \frac{(n-3) \cdot n!}{8}\right), & \Phi\left(L_{2}\right)=\left(0, n!, \frac{(n-1) \cdot n!}{4}\right), \\
\Phi\left(L_{3}\right)=\left(n!, 0, \frac{(n-1) \cdot n!}{4}\right), & \Phi\left(L_{4}\right)=\left(0,0, \frac{(n+1)!}{2}\right)
\end{array}
$$

We represent their coordinates by the matrix

$$
M_{\Phi}=L\left(\begin{array}{ccc}
\frac{n(n-1)}{2} & \frac{n(n-1)}{2} & \frac{n(n-1)(n-3)}{8} \\
0 & n(n-1) & \frac{n(n-1)^{2}}{4} \\
n(n-1) & 0 & \frac{n(n-1)^{2}}{4} \\
0 & 0 & \frac{n\left(n^{2}-1\right)}{2}
\end{array}\right)
$$

where $L=(n-2)!$. Then $\operatorname{Im}(\Phi)$ is spanned by the row vectors of M_{Φ}.

Next, we find a preimage of $\operatorname{Im}\left(\partial_{k}^{\prime}\right)_{*}$ in $\left[\mathbb{C P}^{2} \wedge C, \Omega W_{n}\right]$. In exact sequence (11) $\tilde{K}^{0}\left(\Sigma^{2} C\right)$ is $\mathbb{Z} \oplus \mathbb{Z}$. Let α_{1} and α_{2} be its generators with Chern classes

$$
\begin{array}{ll}
c_{n-1}\left(\alpha_{1}\right)=(n-2)!\Sigma^{2} v_{2 n-4} & c_{n}\left(\alpha_{1}\right)=\frac{(n-1)!}{2} \Sigma^{2} v_{2 n-2} \\
c_{n-1}\left(\alpha_{2}\right)=0 & c_{n}\left(\alpha_{2}\right)=(n-1)!\Sigma^{2} v_{2 n-2} .
\end{array}
$$

Lemma 5.2 For $i=1,2,\left(\partial_{k}^{\prime}\right)_{*}\left(\alpha_{i}\right)$ has a lift $\tilde{\alpha}_{i, k}: \mathbb{C P}^{2} \wedge C \rightarrow \Omega W_{n}$ such that

$$
a\left(\tilde{\alpha}_{i, k}\right)=k u^{2} \otimes \Sigma^{-2} c_{n-1}\left(\alpha_{i}\right) \oplus k u^{2} \otimes \Sigma^{-2} c_{n}\left(\alpha_{i}\right) .
$$

Proof For dimension and connectivity reasons, $\alpha_{i}: \Sigma^{2} C \rightarrow B S U(\infty)$ lifts through $B S U(n) \rightarrow B S U(\infty)$. Label the lift $\Sigma^{2} C \rightarrow B S U(n)$ by α_{i} as well. Let $\alpha_{i}^{\prime}: \Sigma C \rightarrow$ $S U(n)$ be the adjoint of α_{i}. Then $\left(\partial_{k}^{\prime}\right)_{*}\left(\alpha_{i}\right)$ is the adjoint of the composition

$$
\mathbb{C P}^{2} \wedge \Sigma C \xrightarrow{q \wedge \mathbb{1}} \Sigma S^{3} \wedge \Sigma C \xrightarrow{\Sigma k i \wedge \alpha_{i}^{\prime}} \Sigma S U(n) \wedge S U(n) \xrightarrow{[e v, e v]} B S U(n) .
$$

By Lemma 4.5, $\left(\partial_{k}^{\prime}\right)_{*}\left(\alpha_{i}\right)$ has a lift $\tilde{\alpha}_{i, k}$ such that $\tilde{\alpha}_{i, k}^{*}\left(a_{2 j}\right)=k u^{2} \otimes \Sigma^{-1}\left(\alpha^{\prime}\right)^{*}\left(x_{2 j-3}\right)$. Since $\sigma\left(c_{j-1}\right)=x_{2 j-3}$, we have $\tilde{\alpha}_{i, k}^{*}\left(a_{2 j}\right)=k u^{2} \otimes \Sigma^{-2} c_{j-1}\left(\alpha_{i}\right)$ and

$$
a\left(\tilde{\alpha}_{i, k}\right)=k u^{2} \otimes \Sigma^{-2} c_{n-1}\left(\alpha_{i}\right) \oplus k u^{2} \otimes \Sigma^{-2} c_{n}\left(\alpha_{i}\right)
$$

By Lemma 5.2, $\left(\partial_{k}^{\prime}\right)_{*}\left(\alpha_{1}\right)$ and $\left(\partial_{k}^{\prime}\right)_{*}\left(\alpha_{2}\right)$ have lifts

$$
\tilde{\alpha}_{1, k}=(n-2)!k u^{2} v_{2 n-4}+\frac{(n-1)!}{2} k u^{2} v_{2 n-2} \quad \text { and } \quad \tilde{\alpha}_{2, k}=(n-1)!k u^{2} v_{2 n-2} .
$$

We represent their coordinates by the matrix

$$
M_{\partial}=k L\left(\begin{array}{ccc}
1 & 0 & \frac{n-3}{4} \\
0 & 0 & \frac{n-1}{2}
\end{array}\right) .
$$

Let $\tilde{\partial}_{k}=\operatorname{span}\left\{\tilde{\alpha}_{1, k}, \tilde{\alpha}_{2, k}\right\}$ be the preimage of $\operatorname{Im}\left(\partial_{k}^{\prime}\right)_{*}$ in $\left[\mathbb{C P}^{2} \wedge C, \Omega W_{n}\right]$. Then $\tilde{\partial}_{k}$ is spanned by the row vectors of M_{∂}.
Lemma 5.3 When n is odd, the order of $\operatorname{Im}\left(\partial_{k}^{\prime}\right)_{*}$ is

$$
\left|\operatorname{Im}\left(\partial_{k}^{\prime}\right)_{*}\right|=\frac{\frac{1}{2} n\left(n^{2}-1\right)}{\left(\frac{1}{2} n\left(n^{2}-1\right), k\right)} \cdot \frac{n}{(n, k)}
$$

Proof Suppose $n=4 m+3$ for some integer m. Then

$$
M_{\Phi}=(4 m+3) L\left(\begin{array}{ccc}
2 m+1 & 2 m+1 & 2 m^{2}+m \\
0 & 4 m+2 & 4 m^{2}+4 m+1 \\
4 m+2 & 0 & 4 m^{2}+4 m+1 \\
0 & 0 & 8 m^{2}+12 m+4
\end{array}\right)
$$

and

$$
M_{\partial}=k L\left(\begin{array}{ccc}
1 & 0 & m \\
0 & 0 & 2 m+1
\end{array}\right) .
$$

Transform M_{Φ} into Smith normal form

$$
A \cdot M_{\Phi} \cdot B=(4 m+3) L\left(\begin{array}{ccc}
(2 m+1) & & \\
& (2 m+1) & \\
& & (2 m+1)(4 m+4) \\
& & 0
\end{array}\right)
$$

where

$$
A=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-2 & 0 & 1 & 0 \\
4 m+2 & 1 & -(2 m+1) & 0 \\
4 & -2 & -2 & 1
\end{array}\right) \text { and } B=\left(\begin{array}{ccc}
1 & -m-(2 m+1) \\
0 & 0 & 1 \\
0 & 1 & 2
\end{array}\right) .
$$

The matrix B represents a basis change in $\operatorname{Im}(a)$ and A represents a basis change in $\operatorname{Im}(\Phi)$. Therefore $\left[\mathbb{C P}^{2} \wedge C, S U(n)\right]$ is isomorphic to

$$
\frac{\mathbb{Z}}{\frac{1}{2}(4 m+3)!\mathbb{Z}} \oplus \frac{\mathbb{Z}}{\frac{1}{2}(4 m+3)!\mathbb{Z}} \oplus \frac{\mathbb{Z}}{\frac{1}{2}(4 m+4)!\mathbb{Z}}
$$

We need to find the representation of $\tilde{\partial}_{k}$ under the new basis represented by B. The new coordinates of $\tilde{\alpha}_{1, k}$ and $\tilde{\alpha}_{2, k}$ are the row vectors of the matrix

$$
M_{\partial} \cdot\left(\begin{array}{ccc}
1 & -m & -(2 m+1) \\
0 & 0 & 1 \\
0 & 1 & 2
\end{array}\right)=\left(\begin{array}{ccc}
k L & 0 & -k L \\
0 & (2 m+1) k L & (4 m+2) k L
\end{array}\right) .
$$

Apply row operations to get
$\left(\begin{array}{cc}1 & 0 \\ 4 m+2 & 1\end{array}\right) \cdot\left(\begin{array}{ccc}k L & 0 & -k L \\ 0 & (2 m+1) k L & (4 m+2) k L\end{array}\right)=\left(\begin{array}{ccc}k L & 0 & -k L \\ (4 m+2) k L & (2 m+1) k L & 0\end{array}\right)$.
Let $\mu=(k L, 0,-k L)$ and $v=((4 m+2) k L,(2 m+1) k L, 0)$. Then

$$
\tilde{\partial}_{k}=\left\{x \mu+y v \in\left[\mathbb{C P}^{2} \wedge C, \Omega W_{n}\right] \mid x, y \in \mathbb{Z}\right\}
$$

If $x \mu+y v$ and $x^{\prime} \mu+y^{\prime} \nu$ are the same modulo $\operatorname{Im}(\Phi)$, then we have

$$
\begin{cases}x k L+(4 m+2) y k L \equiv x^{\prime} k L+(4 m+2) y^{\prime} k L & (\bmod (2 m+1)(4 m+3) L) \\ (2 m+1) y k L \equiv(2 m+1) y^{\prime} k L & (\bmod (2 m+1)(4 m+3) L) \\ x k L \equiv x^{\prime} k L & (\bmod (2 m+1)(4 m+3)(4 m+4) L)\end{cases}
$$

These conditions are equivalent to

$$
\begin{cases}x k \equiv x^{\prime} k & (\bmod (2 m+2)(4 m+3)(4 m+2)) \\ y k \equiv y^{\prime} k & (\bmod (4 m+3))\end{cases}
$$

This implies that there are $\frac{(2 m+2)(4 m+3)(4 m+2)}{((2 m+2)(4 m+3)(4 m+2), k)}$ distinct values of x and $\frac{4 m+3}{(4 m+3, k)}$ distinct values of y, so we have

$$
\left|\operatorname{Im}\left(\partial_{k}^{\prime}\right)_{*}\right|=\frac{(2 m+2)(4 m+3)(4 m+2)}{((2 m+2)(4 m+3)(4 m+2), k)} \cdot \frac{4 m+3}{(4 m+3, k)}
$$

When $n=4 m+1$, we can repeat the calculation above to obtain

$$
\left|\operatorname{Im}\left(\partial_{k}^{\prime}\right)_{*}\right|=\frac{2 m(4 m+2)(4 m+1)}{(2 m(4 m+2)(4 m+1), k)} \cdot \frac{4 m+1}{(4 m+1, k)} .
$$

5.2 The order of $\operatorname{Im}\left(\partial_{\boldsymbol{k}}^{\prime}\right)_{*}$ for n even

When n is even, C is $S^{2 n-2} \vee S^{2 n-4}$. For $1 \leq i \leq 4$, let L_{i} be the generators of $\tilde{K}^{0}\left(\mathbb{C P}^{2} \wedge C\right) \cong \mathbb{Z}^{\oplus 4}$ with Chern characters

$$
\begin{aligned}
& \operatorname{ch}\left(L_{1}\right)=\left(u+\frac{1}{2} u^{2}\right) v_{2 n-4} \operatorname{ch}\left(L_{2}\right)=u^{2} v_{2 n-4} \\
& \operatorname{ch}\left(L_{3}\right)=\left(u+\frac{1}{2} u^{2}\right) v_{2 n-2} \operatorname{ch}\left(L_{4}\right)=u^{2} v_{2 n-2}
\end{aligned}
$$

By Theorem 4.3, we have

$$
\begin{aligned}
& \Phi\left(L_{1}\right)=\frac{n!}{2} u^{2} v_{2 n-4} \\
& \Phi\left(L_{2}\right)=n!u^{2} v_{2 n-4} \\
& \Phi\left(L_{3}\right)=n!u v_{2 n-2}+\frac{(n+1)!}{2} u^{2} v_{2 n-2} \\
& \Phi\left(L_{4}\right)=(n+1)!u^{2} v_{2 n-2} .
\end{aligned}
$$

By Lemma 5.1, $\operatorname{Im}(a)$ is spanned by $(1,0,0),(0,2,0)$ and $(0,0,1)$. Under this basis, the coordinates of the $\Phi\left(L_{i}\right)$'s are

$$
\begin{array}{ll}
\Phi\left(L_{1}\right)=\left(\frac{n!}{2}, 0,0\right), & \Phi\left(L_{2}\right)=(n!, 0,0) \\
\Phi\left(L_{3}\right)=\left(0, \frac{n!}{2}, \frac{(n+1)!}{2}\right), & \Phi\left(L_{4}\right)=(0,0,(n+1)!)
\end{array}
$$

We represent the coordinates of $\Phi\left(L_{i}\right)$'s by the matrix

$$
M_{\Phi}=\frac{n(n-1)}{2} L\left(\begin{array}{ccc}
1 & 0 & 0 \\
2 & 0 & 0 \\
0 & 1 & n+1 \\
0 & 0 & 2 n+2
\end{array}\right)
$$

Then $\operatorname{Im}(\Phi)$ is spanned by the row vectors of M_{Φ}.
In exact sequence (11) $\tilde{K}^{0}\left(\Sigma^{2} C\right)$ is $\mathbb{Z} \oplus \mathbb{Z}$. Let α_{1} and α_{2} be its generators with Chern classes

$$
\begin{aligned}
& c_{n-1}\left(\alpha_{1}\right)=(n-2)!\Sigma^{2} v_{2 n-4} c_{n}\left(\alpha_{1}\right)=0 \\
& c_{n-1}\left(\alpha_{2}\right)=0 \quad c_{n}\left(\alpha_{2}\right)=(n-1)!\Sigma^{2} v_{2 n-2} .
\end{aligned}
$$

By Lemma 5.2, $\left(\partial_{k}^{\prime}\right)_{*}\left(\alpha_{1}\right)$ and $\left(\partial_{k}^{\prime}\right)_{*}\left(\alpha_{2}\right)$ have lifts

$$
\tilde{\alpha}_{1, k}=(n-2)!k u^{2} v_{2 n-4} \text { and } \tilde{\alpha}_{2, k}=(n-1)!k u^{2} v_{2 n-2} .
$$

We represent their coordinates by a matrix

$$
M_{\partial}=k L\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & n-1
\end{array}\right)
$$

Then the preimage $\tilde{\partial}_{k}=\operatorname{span}\left\{\tilde{\alpha}_{1, k}, \tilde{\alpha}_{2, k}\right\}$ of $\operatorname{Im}\left(\partial_{k}^{\prime}\right)_{*}$ is spanned by the row vectors of M_{∂}. We calculate as in the proof of Lemma 5.3 to obtain the following lemma.
Lemma 5.4 When n is even, the order of $\operatorname{Im}\left(\partial_{k}^{\prime}\right)_{*}$ is

$$
\left|\operatorname{Im}\left(\partial_{k}^{\prime}\right)_{*}\right|=\frac{\frac{1}{2} n(n-1)}{\left(\frac{1}{2} n(n-1), k\right)} \cdot \frac{n(n+1)}{(n(n+1), k)} .
$$

5.3 Proof of Theorem 1.6

Before comparing the orders of $\operatorname{Im}\left(\partial_{k}^{\prime}\right)_{*}$ and $\operatorname{Im}\left(\partial_{k}^{\prime}\right)_{*}$, we prove a preliminary lemma.

Lemma 5.5 Let n be an even number and let p be a prime. Denote the p-component of t by $v_{p}(t)$. If there are integers k and l such that

$$
v_{p}\left(\frac{1}{2} n, k\right) \cdot v_{p}(n, k)=v_{p}\left(\frac{1}{2} n, l\right) \cdot v_{p}(n, l),
$$

then $v_{p}(n, k)=v_{p}(n, l)$.
Proof Suppose p is odd. If p does not divide n, then $v_{p}(n, k)=v_{p}(n, l)=1$, so the lemma holds. If p divides n, then $v_{p}\left(\frac{1}{2} n, k\right)=v_{p}(n, k)$. The hypothesis becomes $v_{p}(n, k)^{2}=v_{p}(n, l)^{2}$, implying that $v_{p}(n, k)=v_{p}(n, l)$.

Suppose $p=2$. Let $\nu_{2}(n)=2^{r}, \nu_{2}(k)=2^{t}$ and $\nu_{2}(l)=2^{s}$. Then the hypothesis implies

$$
\begin{equation*}
\min (r-1, t)+\min (r, t)=\min (r-1, s)+\min (r, s) \tag{14}
\end{equation*}
$$

To show $\nu_{2}(n, k)=\nu_{2}(n, l)$, we need to show $\min (r, t)=\min (r, s)$. Consider the following cases: (1) $t, s \geq r$, (2) $t, s \leq r-1$, (3) $t \leq r-1, s \geq r$ and (4) $s \leq$ $r-1, t \geq r$.

Case (1) obviously gives $\min (r, t)=\min (r, s)$. In case (2), when $t, s \leq r-1$, equation (14) implies $2 t=2 s$. Therefore $t=s$ and $\min (r, t)=\min (r, s)$.

It remains to show cases (3) and (4). For case (3) with $t \leq r-1, s \geq r$, equation (14) implies

$$
2 t=\min (r-1, s)+r .
$$

Since $s \geq r \min (r-1, s)=r-1$ and the right hand side is $2 r-1$ which is odd. However, the left hand side is even, leading to a contradiction. This implies that this case does not satisfy the hypothesis. Case (4) is similar. Therefore $\nu_{2}(n, k)=\nu_{2}(n, l)$ and the asserted statement follows.

Proof of Theorem 1.6 In exact sequence (11), $\left[C, \mathcal{G}_{k}\left(\mathbb{C P}^{2}\right)\right]$ is $\operatorname{Coker}\left(\partial_{k}^{\prime}\right)_{*}$. By hypothesis, $\mathcal{G}_{k}\left(\mathbb{C P}^{2}\right)$ is homotopy equivalent to $\mathcal{G}_{l}\left(\mathbb{C P}^{2}\right)$, so $\left|\operatorname{Im}\left(\partial_{k}^{\prime}\right)_{*}\right|=\left|\operatorname{Im}\left(\partial_{k}^{\prime}\right)_{*}\right|$. The n odd and n even cases are proved similarly, but the even case is harder.

When n is even, by Lemma 5.4 the order of $\operatorname{Im}\left(\partial_{k}^{\prime}\right)_{*}$ is

$$
\left|\operatorname{Im}\left(\partial_{k}^{\prime}\right)_{*}\right|=\frac{\frac{1}{2} n(n-1)}{\left(\frac{1}{2} n(n-1), k\right)} \cdot \frac{n(n+1)}{(n(n+1), k)},
$$

so we have

$$
\begin{equation*}
\left(\frac{1}{2} n(n-1), k\right) \cdot(n(n+1), k)=\left(\frac{1}{2} n(n-1), l\right) \cdot(n(n+1), l) . \tag{15}
\end{equation*}
$$

We need to show that

$$
\begin{equation*}
v_{p}\left(n\left(n^{2}-1\right), k\right)=v_{p}\left(n\left(n^{2}-1\right), l\right) \tag{16}
\end{equation*}
$$

for all primes p. Suppose p does not divide $\frac{1}{2} n\left(n^{2}-1\right)$. Equation (16) holds since both sides are 1 . Suppose p divides $\frac{1}{2} n\left(n^{2}-1\right)$. Since $n-1, n$ and $n+1$ are coprime, p divides only one of them. If p divides $n-1$, then $v_{p}\left(\frac{1}{2} n, k\right)=v_{p}(n, k)=v_{p}(n+1, k)=1$. Equation (15) implies $v_{p}(n-1, k)=v_{p}(n-1, l)$. Since

$$
v_{p}\left(n\left(n^{2}-1\right), k\right)=v_{p}(n-1, k) \cdot v_{p}(n, k) \cdot v_{p}(n+1, k)
$$

this implies equation (16) holds. If p divides $n+1$, then equation (16) follows from a similar argument. If p divides n, then equation (15) implies $v_{p}\left(\frac{1}{2} n, k\right) \cdot v_{p}(n, k)=$ $v_{p}\left(\frac{1}{2} n, l\right) \cdot v_{p}(n, l)$. By Lemma $5.5 v_{p}(n, k)=v_{p}(n, l)$, so equation (16) holds.

When n is odd, by Lemma 5.3 the order of $\operatorname{Im}\left(\partial_{k}^{\prime}\right)_{*}$ is

$$
\left|\operatorname{Im}\left(\partial_{k}^{\prime}\right)_{*}\right|=\frac{\frac{1}{2} n\left(n^{2}-1\right)}{\left(\frac{1}{2} n\left(n^{2}-1\right), k\right)} \cdot \frac{n}{(n, k)}
$$

so we have

$$
\left(\frac{1}{2} n\left(n^{2}-1\right), k\right) \cdot(n, k)=\left(\frac{1}{2} n\left(n^{2}-1\right), l\right) \cdot(n, l) .
$$

We can argue as above to show that for all primes p,

$$
v_{p}\left(\frac{1}{2} n\left(n^{2}-1\right), k\right)=v_{p}\left(\frac{1}{2} n\left(n^{2}-1\right), l\right) .
$$

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Atiyah, M., Bott, R.: The Yang-Mills equations over Riemann surfaces. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 308, 523-615 (1983)
2. Cutler, T., Theriault, S.: The homotopy types of $S U(4)$-gauge groups. J. Homotopy Relat. Struct. (submitted)
3. Gottlieb, D.: Applications of bundle map theory. Trans. Am. Math. Soc. 171, 23-50 (1972)
4. Hamanaka, H., Kono, A.: On $[X, U(n)]$ when $\operatorname{dim} X$ is $2 n$. J. Math. Kyoto Univ. 43-2, 333-348 (2003)
5. Hamanaka, H., Kono, A.: Unstable K-group and homotopy type of certain gauge groups. Proc. R. Soc. Edinb. A 136, 149-155 (2006)
6. Hasui, S., Kisihmoto, D., So, T., Theriault, S.: Odd primary homotopy types of the gauge groups of exceptional Lie groups. Proc. Am. Math. Soc. 147(4), 1751-1762 (2018). https://doi.org/10.1090/ proc/14333
7. Kishimoto, D., Kono, A.: On the homotopy types of $S p(n)$ gauge groups.arXiv:1803.06477
8. Kishimoto, D., Kono, A., Theriault, S.: Refined gauge group decomposition. J. Math. Kyoto Univ. 54, 679-691 (2014)
9. Kishimoto, D., Kono, A., Tsutaya, M.: On p-local homotopy types of gauge groups. Proc. R. Soc. Edinburgh A 144, 149-160 (2014)
10. Kishimoto, D., Theriault, S., Tsutaya, M.: The homotopy types of G_{2}-gauge groups. Topol. Appl. 228, 92-107 (2017)
11. Kono, A.: A note on the homotopy type of certain gauge groups. Proc. R. Soc. Edinb. A 117, 295-297 (1991)
12. Kono, A., Tsukuda, S.: A remark on the homotopy type of certain gauge groups. J. Math. Kyoto Univ. 36, 115-121 (1996)
13. Lang, G.: The evaluation map and EHP sequences. Pac. J. Math. 44, 201-210 (1973)
14. So, T.: Homotopy types of gauge groups over non-simply-connected closed 4-manifolds. Glasgow Math J. (2018). https://doi.org/10.1017/S0017089518000241
15. So, T., Theriault, S.: The homotopy types of $S p(2)$-gauge groups over closed, simply-connected fourmanifolds. arXiv: 1807.02337 (submitted to Proceedings of the Steklov Institute of Mathematics)
16. Theriault, S.: Odd primary homotopy decompositions of gauge groups. Algebr. Geom. Topol. 10, 535-564 (2010)
17. Theriault, S.: The homotopy types of $S p(2)$-gauge groups. J. Math. Kyoto Univ. 50, 591-605 (2010)
18. Theriault, S.: Homotopy types of $S U(3)$-gauge groups over simply connected 4-manifolds. Publ. Res. Inst. Math. Sci. 48, 543-563 (2012)
19. Theriault, S.: The homotopy types of $S U(5)$-gauge groups. Osaka J. Math. 1, 15-31 (2015)
20. Theriault, S.: Odd primary homotopy types of $S U(n)$-gauge groups. Algebr. Geom. Topol. 17, 11311150 (2017)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[^0]: Communicated by Ronald Brown.

 Tseleung So
 tls1g14@soton.ac.uk
 1 Mathematical Sciences, University of Southampton, Building 54, Southampton SO17 1BJ, UK

