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Abstract Multiple-input multiple-output (MIMO) technology is envisaged to play an impor-
tant role in future wireless communications. To this end, novel algorithms and architectures are
required to implement high-throughput MIMO communications at low power consumption. In
this paper, we present the hardware implementation of a modified K-best algorithm combining
conventional K-best detection and low-complexity successive interference cancellation at different
levels of the tree search. The detector is implemented using a fully-pipelined architecture, which
detects one symbol vector per clock cycle. To reduce the power consumption of the entire re-
ceiver unit, costly symbol-rate operations such as multiplication are eliminated both within and
outside the detector without any impact on the performance. The hardware implementation of
the modified K-best algorithm achieves area and power reductions of 16% and 38%, respectively,
compared with the conventional K-best algorithm implementation, while incurring a signal-to-
noise ratio penalty of 0.3 dB at the target bit error rate. Post-synthesis analysis shows that the
detector achieves a throughput of 3.29 Gbps at a clock frequency of 137 MHz with a power
consumption of 357 mW using a 65-nm CMOS process, which compares favourably with the
state-of-the-art implementations in the literature.
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1 Introduction

The user demand for high-throughput wireless communications has been growing considerably
in recent years. Some two decades ago, the IEEE 802.11b wireless local area network (WLAN)
standard was introduced, which achieved a modest maximum downlink throughput of 11 Kbps
over a single-antenna communication link. The introduction of multiple-input multiple-output
(MIMO) technology to IEEE 802.11n a decade later made throughputs of over 500 Mbps pos-
sible. More recently, with the support of up to eight antennas, throughputs of several gigabits
per second are attainable with wireless standards such as the IEEE 802.11ac [24]. With the ex-
pected widespread deployment of MIMO technology to diverse devices in future communications
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systems [1], it is necessary to implement novel algorithms and hardware architectures to achieve
the gigabit data rates promised by MIMO technology.

A large number of algorithms have been studied for implementing MIMO detection [28].
Tree search algorithms, which achieve the maximum likelihood (ML) diversity, have attracted
considerable attention, and several hardware implementations have been successfully achieved
[5]. Most notably, the K-best algorithm, which implements the tree search using a breadth-first
strategy, has received significant research interest as it is able to achieve the ML diversity order
with a complexity that is independent of the signal-to-noise ratio (SNR).

The earliest implementations of the K-best detector [10, 33] were based on a bubble-sort tree
search and were only able to achieve a few tens of megabits per second (Mbps) in throughput.
In [30] and [19], single-cycle merge-sort algorithms were proposed to reduce the large latency of
the bubble-sort implementations. In [26] and [22], a winner path extension was proposed, which
generates the best candidates in a time independent of the modulation constellation size. More
recently, the use of fully-pipelined K-best detectors has been proposed in [13] and [18], which
allows vastly improved data rates to be achieved.

The main aim of this paper is to implement a K-best detector achieving the multi-gigabit
data rates required by high-throughput wireless schemes, such as the IEEE 802.11ac. To this
end, a K-best detector will be implemented with a throughput of one symbol vector per second,
which is achieved by using fine-grained pipelining of the processing elements. The resulting
implementation achieves a throughput of over 3 Gbps, which exceeds the throughputs of existing
partially-pipelined K-best implementations. The main contributions of the paper are as follows:

1. We present a modified K-best algorithm combining K-best detection and successive interfer-
ence cancellation at different levels of the tree search, which are determined after extensive
simulations. Simulation results show that the SNR loss of the proposed algorithm for a spatial-
multiplexing MIMO transmission is about 0.3 dB at a target bit error rate (BER) of 1073.
Compared with a reference conventional K-best detector, the area and power consumptions
of the proposed implementation were reduced by 16% and 38%, respectively.

2. The proposed implementation dispenses with costly symbol-rate precomputations outside
the architecture, which are required by the state-of-the-art implementations such as [18].
To the best of our knowledge, this is the first fully-pipelined K-best detector to dispense
with multiplication at the symbol rate within and outside the architecture. Given the high
complexity of fully-pipelined circuits, eliminating costly operations, such as multiplication, is
desirable to reduce the area and power consumption of the entire receiver unit.

3. We propose a novel pipeline schedule, which employs “register sharing” for the signal and
channel inputs, which allows the proposed architecture to process up to 24 independent
channel matrices concurrently, making the implementation to be applicable to fast-fading
channel scenarios.

4. We compare pipelining as a technique for achieving multi-gigabit signal detection with inter-
leaving, where several MIMO detector cores are operated in parallel. Using a 64-QAM 4 x 4
MIMO system, and based on the modified K-best algorithm, our results show that pipelining
can achieve a throughput advantage of approximately 13x compared with interleaving per
unit area.

The paper is organised as follows. In Sect. 2, the MIMO system model and notations used
in the rest of the paper are presented. In Sect. 3, we present the conventional K-best algorithm.
Our proposed modification to the K-best algorithm is also presented in this section, and its error
performance is analysed and compared with other tree search detection algorithms. In Sect. 4,
the hardware implementation details of the proposed K-best detector are presented. The results
of the VLSI implementation of the proposed detector are presented in Sect. 5 and compared with
notable results from the literature. The paper is concluded in Sect. 6.
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The following notations are used in the paper. R{-} and J{-} denote the real and imaginary
parts of a complex number, respectively; A;; represents an element in the ith row and jth

column of the matrix A; A; represents the jth column of A, while A; ;., represents the vector
[AiJ', A¢7j+1, PN AiJf]'

2 Background
2.1 MIMO System Model

We consider a MIMO transmitter employing N7 antennas and transmitting information symbols
over a wireless link to Ny receive antennas. The Ni x 1 received signal vector (RSV), y, at the
MIMO receiver is given by the following equation:

y =Hs +n, (1)

where H represents the Ng x Np channel matrix, s represents the Ny x 1 modulated MIMO
symbol vector from the transmitter, and n represents the additive white Gaussian noise. The
entries of H are assumed to be independent and identically distributed with Rayleigh fading. To
recover the transmitted symbol, s, at the receiver, a QR decomposition can be performed on the
channel matrix as follows:

¥ =Rs+ Q"n, (2)

where H = QR, ¥ = Qfy, Q is a unitary Nz x N matrix, and R is an upper triangular
Npg x Ny matrix. For simplicity, we assume an equal number of antennas at the transmitter and
receiver; i.e. Ny = Ng.

2.2 Real-Valued Channel Model

A real-valued decomposition (RVD) can be performed on the channel matrix to transform (1) as

follows [30]:
[TOH - [JE) ) 3] | [Ai)] @

which transforms the complex constellation set into the integer set as follows:
D={-VM+1,....,vM -1}, (4)

where M is the modulation order. The QR decomposition can then be performed on the basis
of the augmented channel equation in (3).

The RVD transformation simplifies the tree search in hardware as it is easier to operate on
real numbers than complex numbers. In unpipelined detectors, the complex channel model has
the advantage of resulting in a higher throughput since the tree depth is shorter. However, as
we will see in subsequent sections, the channel model employed becomes less relevant to the
throughput of the detector in a fully-pipelined implementation.
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2.3 MIMO Detection

The aim of the MIMO detector is to provide an estimate, §, of the transmitted symbol vectors.
The maximum likelihood (ML) solution is obtained as the symbol vector which minimises the
Euclidean distance, ||y — Hs||?. As a result of the triangular channel matrix, R, the Euclidean
distance, T, of the lattice point, HS, from the received signal can be computed successively as

follows: )

2N 2N
TE) =Y | 9i— Y rijsi| - (5)
i=1 j=i

For example, for Ny = 2, and using a real channel model, the Euclidean distance is computed
incrementally over four levels in the following sequence:

2

(Ua — raa84)"+ }
(U3 — (r3a84 + 73 383))2+ 3 o
(92 — (ro4s4 + 12353 + 72, 282))2+ 3 &
(1 — (r1.484 + 11383 + 11280 +7r1181))° ,

where the Euclidean distance at each level is referred to as the partial Euclidean distance (PED).
Equation (5) describes a tree, initially with |D| branches at the topmost level, which correspond
with the constellation set, D. Interested readers are referred to [11] and [23] for a more in-depth
discussion on tree search detection. Each branch, extended to the last level, i = 1, represents
a potential solution. A total of |D|2NT solutions are possible in the ML search. As a result
of the exponential complexity of the ML detector, a number of algorithms with sub-ML BER
performances have been proposed as alternatives in the literature [28].

3 K-Best Algorithm

The K-best algorithm employs a breadth-first search, where the children of parent nodes retained
from a previous level are expanded in parallel. The PEDs of the nodes can be computed using
the ¢!-norm approximation as follows [6]:

T; (si) = Tig1 (Siv1) + |bi — 15484, (6)

where T; (s;) represents the PED of a symbol at the ith level, T;11 (s;+1) denotes the PED of its

parent, and
2N7

ji — Y Tijs. (7)
j=it1
A node refers to a symbol drawn from the real constellation set in (4) at a given level of the tree
search. For brevity, T; (s;) will be denoted by T; in subsequent discussions. Each level corresponds
with a row of the triangular channel matrix, R. Thereafter, a sorting operation is carried out to
select the best K candidates, which are passed as the parent nodes to the next level. The PED
can also be computed as [6, 13]:

T; = Tit1 + |riyi (e — i)l ®)
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Algorithm 1 Modified K-best Algorithm
i < 2Np
Compute T;Vs; € D

Kivvit <D
14—1—1

while 7 > 1 do

if 4 > I then
Compute T; for all children of KC;jy1 1:x
ICi,l:K «— KBEST(Si7j7k) Vi,j, k
UPDATE(K; 1.x) where i < j < 2Ny

else
Extend the best children of K,1; 1.x using Equation (9)
Compute T; for each extended child

end if

1+1i—1
end while

§<—IC1

where ¢; = b;/r;; and is referred to as the Schnorr-Euchner (SE) centre. Visiting the child nodes
according to their distances from the SE centre speeds up the tree search; however, computing
the SE centre leads to a costly division step which is avoided in (6).

A pitfall of the K-best algorithm is that the complexity tends to be high since the operations
need to be duplicated over 2Nt levels. In [2], a fixed-complexity sphere decoder (FSD) was
proposed, which dispenses with the need for sorting, and instead, combines ML detection with
low-complexity detection techniques at lower levels. The FSD relies on a vertical Bell Laboratories
layered space-time (V-BLAST) [32] channel ordering at the preprocessing stage, which could
result in a high complexity and throughput degradation in fast-fading channels. It is thus desirable
to implement techniques that will reduce the complexity of the K-best detector, without requiring
any additional preprocessing operations. A modified K-best algorithm is proposed in the next
section.

3.1 Proposed K-Best Algorithm

In this paper, we propose a hybrid detector, where the K-best detection is carried out only
for “upper” levels of the tree search, defined as I < ¢ < 2Ny, where i is the level index, and [
is some integer between 1 and 2Np. At ¢ = 1, sorting can be avoided, since only a single path,
not K paths, are required. The rationale of this technique is the fact that it is easier to make an
erroneous decision in the upper levels since any error will be propagated to subsequent levels of
the tree, which progressively worsens the detection symbol error rate. This observation has also
been employed in non-constant K-best detectors [20, 29], where smaller K values are applied
at lower levels. In the detector proposed here, the same value of K is maintained throughout
the detection; however, only a low-complexity successive interference cancellation (SIC)-based
extension is carried out in lower levels. K-best detection is carried out up till ¢ = I. If I = 1,
then the hybrid detector reduces to the conventional K-best detector. In levels ¢ < I, the best
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Fig. 1: BER versus SNR for different MIMO detectors using a real channel model for 64-QAM
and Ny =4

child of each of the K-best paths, SEH, extended up till ¢ = 1, is derived as follows:

st = argmin |b; — 7 ;i . ®)

! s; €D

No sorting operation is carried out to select the best K candidates for levels less than I. However,
at the last level, a minimum (MIN) search amongst all the K-best candidates is carried out
to determine the hard-detection output. It should be noted that at each level below I, this
technique will always select the minimum-metric candidate from each parent node. However, the
K candidates so selected may differ from the K-best candidates selected by the conventional
K-best algorithm. The K-best detection is summarised in Algorithm 1, with the proposed SIC
detection steps highlighted in bold. s; ; ;, represents the jth child of the kth parent at the 7th level.
IC represents a 2N x K matrix of K-best symbols. The KBEST function sorts all the candidates
at a given level in ascending order and selects the top K results. The UPDATE function permutes
the previously detected paths, i 1.2n,,1:x, according to the sorted PEDs of K; 1.k

Unlike conventional SIC-aided linear detection [32], no slicing operation is required to obtain
the detected symbols in the proposed algorithm. Apart from the SIC detection, a low-complexity
SE enumeration is adopted where only the best A < v/M children of a node are enumerated [3].
For the conventional K-best detector, A = v/M for all extended parent nodes. In our implemen-
tation, A = v/M is selected for the first two levels of the tree search, while A < /M is applied in
subsequent levels.
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Table 1: Number of nodes expanded for the different tree search detectors in Fig. 1 for Ny =4
and 64-QAM using a real channel model

Detector  Number of expanded nodes Np =4
KB VM(1+vVM+ K@Np —3))+ K 728
2Np—1
NKB VM + > KipivVM 272
i=1
2Np2Np+1
FSD S I many 1480
i=1 j=i+1
2N —2
KB-SIC VM1+VM)+ > Ki+K(I-1) 312
i=T

3.2 Performance Analysis

In this section, we compare the performance of the proposed hybrid K-best algorithm (KB-
SIC) described in the previous section with the conventional K-best algorithm employing A =
8, for a MIMO system transmitting over a Rayleigh flat-fading channel using four antennas
and 64-QAM. The BER simulation is shown in Fig. 1. The value of K is selected as 16 for
both the conventional and hybrid K-best detectors. A non-constant K-best (NKB) detector [13]
employing K values of [Kg K7 ... K1] = [88884221] is shown, where K; is the number of
candidates extended at the ith level, and Ky, corresponds with the number of constellation
points. A fixed-complexity sphere decoder employing a minimum mean square error V-BLAST
channel ordering is also shown. The FSD uses a real channel model and a node distribution of
[n1m2 ... ngl =[11112288], where n; is the number of nodes extended per parent in the ith
level. A total of 800,000 symbol vectors were used for the simulation, with a new random channel
matrix, with independent and identically distributed gains, generated once for every four symbol
vectors. All detectors are based on the ¢!-norm approximation of the PED proposed in [6].

The hybrid K-best detector is simulated for I = 4,5 and 6. The BER simulation shows that
increasing the value of I also increases the BER. This is because larger values of I increase the
number of levels that erroneous detections will be propagated to. KB-SIC with ] =4 and A =4
suffers an SNR loss of about 0.3 dB and 0.6 dB at a BER target of 1073, compared with the
conventional K-best detector having A = 4 and A\ = 8, respectively. By contrast, KB-SIC with
I = 6 suffers over 1-dB SNR loss compared to the conventional K-best detectors. Despite the
V-BLAST preprocessing, the FSD with the adopted node distribution shows a reduced error
performance compared with the K-best detectors, which is as a result of the low-complexity
detection adopted at lower levels. The performance of the K-best detectors can be improved by
using a V-BLAST channel ordering or sorted QR decomposition [35] in the preprocessing stage,
while the FSD can be further improved by increasing the node distribution.

3.3 Complexity Analysis
The complexity of tree search algorithms is typically defined as the number of nodes visited in

the tree search [11]. As a result of the SIC detection in some levels, the complexity of KB-SIC
is reduced compared with the conventional K-best algorithm as shown in Table 1. For ease of



8 Ibrahim A. Bello et al.

10° T T T T T
—4-K = 8, real channel
—A-K = 8, complex channel
—- K = 16, real channel
—4A— K = 16, complex channel

1071

102

103

10-4 ! ! ! ! ! ! ! ! !
10 12 14 16 18 20 22 24 26 28 30

Fig. 2: Performance of the K-best detector for different values of K using real and complex
channel models for 64-QAM and N7 = 4. All K-best implementations are based on the ¢!-norm
approximation.

comparison, all detection algorithms are based on a real channel model. For I = 4 and A = 4, KB-
SIC expands 312 nodes, which is more than a 50% reduction compared with the number of nodes
expanded by the conventional K-best (KB) detector. For both KB-SIC and KB, only the best
child nodes of each parent are expanded in the last level, which simplifies the SE enumeration.

The FSD expands the largest number of nodes compared with the other algorithms in Fig. 1.
However, it should be noted that the FSD can achieve a much-reduced number of expanded nodes
if a complex channel model is used. For example, the complex FSD with a node distribution of
[11164] expands just 512 real nodes, while achieving a near-ML performance [2]. Each node in
the complex channel model is counted as two real channel model nodes. This result suggests that
it is more advantageous to implement the FSD based on a complex channel model rather than
on a real channel model. On the other hand, the K-best detector expands a fewer number of
nodes in the real channel model. For example, the real K-best algorithm expands 728 nodes and
1384 nodes, respectively, for K = 16 and 32, while the complex K-best algorithm expands 4256
and 8384 real nodes, respectively, for the same values of K. Furthermore, the real channel model
exhibits a better BER performance for the same value of K compared to the complex channel
model as shown in Fig. 2. A more rigorous comparison of the real and complex channel models
is provided in [9].

Although the FSD expands a fewer number of nodes compared with the K-best detector, it
also requires a mandatory V-BLAST preprocessing step. In a slow-fading channel, this additional
preprocessing can be ignored; however, in a fast-fading channel, this can impose additional com-
plexity at the receiver side as the V-BLAST preprocessing requires computationally expensive
operations such as finding the channel matrix inverse. As will be shown later in the paper, the
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Fig. 3: SE enumeration based on a real axis for 16-QAM. The encircled numbers indicate
the child ordering. In this case, b; falls within the positive r;;s; axis and the enumeration is
{+1,43,-1,-3}.

K-best algorithm can be implemented entirely with only simple operations, such as shifts and
additions, without any impact on the performance.

4 Hardware Implementation

The proposed K-best detector is implemented for a MIMO system employing 64-QAM and 4 x 4
antenna configuration. I and A\ are both selected as 4. The inputs, § and R, are represented
using signed 14 bits. The 64-QAM symbols of the real constellation set are represented using
three bits. The PEDs are represented using unsigned 13 bits. All variables are represented using
two’s complement fixed-point format. In the next sections, the hardware implementation details
of the proposed detector are presented.

4.1 Schnorr-Euchner Enumeration

In this work, the Schnorr-Euchner enumeration [25] is employed to list the children of each parent
node according to their metrics. The child nodes can be enumerated in a zigzag fashion by finding
the node that minimises the PED increment term as follows:

(k] _

s; " = argmin|b; — 78/,
s; €D

where k represents the current iteration of the SE enumeration, and s; ¢ {SEI], s?], ey sgkfl]},
where each symbol is drawn from the real constellation set, D. The process is repeated until all
VM children of the parent node are listed. Note that the SE enumerations of the children of
all the K parents are executed in parallel. An SE enumeration for 16-QAM is illustrated in Fig.
3, where the numbers within the circles indicate the enumeration ordering, or the distance of b;
from r; ;s;. To speed up the procedure, a tabular enumeration is employed, where the possible
enumerations are precomputed and stored into a lookup table (LUT). Simulation results show
that this has negligible impact on the BER [31]. It should be noted that the computation of r; ;s;
does not require any multipliers. Since s; is drawn from a known integer set, 7; ;s; can simply be
obtained using adders and shifters [34].

There are 14 possible enumerations overall, based on the location of b; on the r;;s; axis.
However, due to the symmetry of the r;;s; axis, it is sufficient to compute only half of the
enumerations by comparing |b;| with |r; ;s;|. That is, the enumeration with b; on the positive r; ;s;
axis is comparable with the enumeration with b; on the corresponding location on the negative
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Fig. 4: SE enumeration unit using a lookup table. An XOR gate is used to decide whether to
“flip” or “keep” the computed enumeration based on the signs of b; and r; ;.

r;:5; axis with the symbol signs flipped. The actual enumeration can then be determined by
“flipping” the computed enumeration if b; and r; ; have different signs as follows:

Ebi,ris) = +E(|bs|, |ris]) if sign(b;) = sign(r;)
T -E( ) if sign(b;) # sign(ri;),

where E(b;,7; ;) computes the enumeration based on b; and r;; and sign(.) returns the most
significant bit of its argument. A circuit to compute the tabular enumeration is shown in Fig.
4. The circuit consists of six comparators, which compare |b;| with integer multiples of |r;;|.
The outputs of these comparators are passed to a priority encoder, which selects the appropriate
enumeration from the LUT. In the proposed detector, the full enumeration (A = 8) is only
employed in the second level (i = 7), while only the top A = 4 best children are enumerated in
levels ¢ >=I. In levels ¢ < I, only the best child of a parent node is enumerated.

bl| ) |Tivi

4.2 Sorting

Sorting plays an important role in the complexity, performance and throughput of the K-best
detector. In this paper, we employ the Batcher’s bitonic and odd-even algorithms, which utilise
an interconnection of comparators to sort an input list, to compute the best K candidates. From
level 6 to 4, a total of A = 4 children are expanded from each K parent, and these are sent in
pairs to a merge unit. Each candidate is organised as (s; j k. T;,j.k, k), where s; ; 1, is the jth child
of the kth parent node at the ith level and Tj ;. is its corresponding metric. This process is
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Fig. 5: Merge network for selecting 16 candidates. The dashed line represents the discarded
candidates at the output of the merge network.

continued successively until all K x A = 64 candidates are obtained. However, since K is selected
as 16 for the proposed detector, the bottom 48 candidates, and all associated comparators, are
discarded. A tabular Schnorr-Euchner enumeration, described in the previous section, is used to
presort the children of each parent, which reduces the complexity and latency of the merge unit.

The merge process is illustrated in Fig. 5. The first row represents the A children of all
the K parents. Each subsequent horizontal line represents the output of a stage of the merge
network. Four merge stages are thus required to obtain the fully sorted result. In level 7, eight
children are expanded from eight constellation points resulting in a total of three merge stages.
To reduce the latency, the merge network is pipelined such that the best K children are produced
within two clock cycles. A more detailed description of the merge network has been presented
in a separate paper [4].

4.3 Pipeline Schedule

The K-best detector is typically implemented using a multi-stage architecture, where each stage
corresponds with a level in the tree search. Multiple received signal vectors can be processed
concurrently, such that a new detected symbol vector is generated after every C; clock cycles,
where C; is the number of clock cycles required to process the ith stage. If a long-latency sorting
algorithm is employed, such as the bubble sort [33], or distributed sort [26], then achieving a
throughput of 1 Gbps and over is challenging, unless the clock frequency is increased considerably.

The detection latency can be reduced by employing a merge-sort algorithm, such as the
Batcher’s odd-even merge, as described in the previous section. However, a more dramatic im-
provement to the throughput is obtained by fully pipelining the multi-stage architecture, such
that a new result is generated in every clock cycle. The architecture is fully pipelined by ensuring
that no single operation takes more than one cycle to complete, and a different RSV is processed
at the next clock cycle in every pipeline stage. Large combinational blocks, such as the merge
network, are broken into smaller combinational units in order to reduce the latency.

Figure 6 illustrates the pipeline schedule for a MIMO system employing Ny = 4. PAU
represents the path update operation, while INFR represents the interference cancellation step
in (7). PED™ does not execute any arithmetic operation: In this pipeline stage, the outputs of
the first stage of the pipelined merge network are propagated to the second stage, where the fully
sorted PEDs are obtained. The PED computation at the topmost level is denoted by PED. For
the first 17 clock cycles, the normal K-best operations are carried out for the first RSV, while
the low-complexity SIC-based detection is performed from the 18th to the 21st clock cycles.
Normal K-best detection is resumed in the 22nd clock cycle, corresponding with the start of the
last tree level.
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Time slots
1 2 3 4 5 6 7 |---| 18] 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27
K-best SIC K-best
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s}

720 PED |INFR| PED PED*

Fig. 6: Pipeline schedule for a K-best detector with Ny = 4

In the top level of the tree search (i = 8), only a PED operation is executed to expand the
VM constellation points, which marks the beginning of the first RSV, denoted by $(). In the
second clock cycle, the interferences of the expanded constellation points are cancelled from the
signal entry at level 7 as follows:

b7 = g7 — 17 83s.

At the same time, the PEDs of the constellation points for the second RSV are computed. The
PEDs of the candidates at the seventh level for the first RSV are then computed according to (6).
The candidate nodes are sent immediately to the pipelined merge network. The remaining tree
levels are processed similarly until the sixth and seventh levels where only a low-complexity SIC
detection is carried out. These levels are processed within two clock cycles, and no path update
operation is executed since no sorting is carried out. In the final level (i = 1), a minimum-metric
search is carried out, instead of full sorting, and the level is processed within three clock cycles.
Overall, 24 clock cycles are required to completely process one RSV. Thus, in order to fill the
pipeline, such that one result is generated in every clock cycle, 24 RSVs need to be processed
concurrently by the K-best detector. By comparison, the conventional K-best algorithm requires
28 RSVs to achieve a full pipeline, which increases the area and power consumptions. In the next
sections, the data movement of various variables and intermediate results within the pipeline will
be discussed.

4.8.1 Signal and Channel Inputs

Since multiple RSVs are processed in the pipelined detector, multiple registers need to be allo-
cated to the channel entries, y and R. In a straightforward implementation, the registers will
need to be replicated 24 times for a 4 x 4 MIMO system, and multiplexers can then be used to
select the appropriate register corresponding with the current RSV. In this work, we propose a
register-sharing approach, where registers are shared amongst the RSVs as soon as the registers
become available. This is based on the observation that not all inputs and intermediate results
are required for the entire duration of the pipeline. For example, 73 g and gs are only required in
the first clock cycle for the expansion of the constellation points, while r ; is only required in the
23rd clock cycle. Therefore, assuming a new channel realization for each RSV, a shift register of



VLSI Implementation of a Fully-Pipelined K-best MIMO Detector 13

1 2 3 4 5 6 7 8 9 10 11
Cock L [ L [ L [ L/ L7 L1 L1 oL 7 LI [

Operation _PED |
Level 8 ) 7 Y 7 f 7 ¥ 7 ¥ 6 J 6 Y 6 Y 6 J 5 Y 5 |
Data 7 =X _T77 | ) =) T66 ) X L s 755 |

INFR_J__PED ) PED" ) PAU )Y INFR ) PED ) PED" ) PAU ) INFR ) PED )

8.8, Us 7.8, U7 76,7, 76,85 U6 5,65 5,7, 5,8, Us
Fig. 7: Data movement of signal and channel inputs in the K-best pipeline
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Fig. 8: Data movement of the PED in the K-best pipeline

length 23 is required to ensure that r1; is correctly read to compute the PEDs of the last-level
nodes for all RSVs.

Figure 7 shows the pipeline schedule and the clock cycles in which the channel inputs are
read. The non-diagonal entries of the triangular channel matrix are read row-by-row and sent
to a shift register for the computation of the interference terms. Non-diagonal elements in the
upper rows of the triangular matrix require longer shift registers than those in lower rows. For
example, r5¢,...,758 require a shift register of length 10, while r7 g requires a shift register of
length 2. The diagonal elements are read one clock cycle later for the computation of the PED.
Unlike some authors [27], no assumption is made about the sampling rate of the channel, and
the proposed pipeline schedule can potentially support a new set of channel realizations in every
clock cycle. By utilizing the register-sharing technique, the detector is able to process a maximum
of 24 independent channel matrices concurrently.

4.8.2 Partial Fuclidean Distance

The PEDs and intermediate interference cancellation results, b;, can also be stored in time-
multiplexed registers similar to the channel inputs described in the previous section. In the first
clock cycle of the pipeline schedule, Ty is computed for the first RSV. In the second clock cycle,
b7 for the first RSV is computed; however, its value is only used in the third clock cycle where
T7 is computed. Thus, a single register, multiplexed amongst 24 successive RSVs, is sufficient to
store the computed values of b7. The computed T7 values are propagated into the pipelined merge
network, and the fully sorted 77 values are obtained in the fourth clock cycle. In the seventh
clock cycle, the computed 77 values are consumed to compute Tg. Therefore, T7 can be stored
in a shift register of length two, which reduces the number of T registers by more than 85%
compared with the direct implementation allocating a dedicated register to each RSV. However,
for levels 2 and 1, only a single register is required to store the values of T3 and T3, since the
SIC detection in levels 3 and 2 eliminates the PAU pipeline stage. The data movement of the
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Fig. 9: Overall architecture of the fully-pipelined K-best detector. The entries of the input signal
and triangular channel matrix are stored in shift registers, which are sized to ensure that the
inputs are correctly read in the appropriate pipeline stage.

PEDs and interference terms is illustrated in Fig. 8, with the number of clock cycles required for
holding the values of Tg and 77 shown in the circles.

4.4 Overall Architecture

The overall architecture of the K-best detector is demarcated into a controller unit and a data-
path as shown in Fig. 9. The inputs to the detector include the signal vector, comprising eight
entries, and the triangular matrix, comprising 36 entries. All inputs to the detector are real num-
bers represented in fixed-point format. The datapath comprises eight processing elements (PEs),
with each PE corresponding with a level of the tree search. A PE finds the best K candidates
at a level, and these are forwarded as the parent nodes to the next PE. All the PEs adopt a
multiplier-free datapath to reduce the area and power consumption. The controller oversees the
operation of the datapath and is implemented as a finite state machine (FSM), whose states
correspond with each of the pipeline stages shown in Fig. 6. A frame_ready signal is used to
launch the FSM from its idle state to the first state of the pipeline. After the pipeline is filled,
the controller asserts an output_ready signal, and the detected symbol vectors become available
at the next clock cycle. In the next section, the processing elements at the various levels of the
tree search will be discussed in more detail.
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4.4.1 Processing Elements 8 and 7

The first two processing elements in Fig. 9 correspond with levels eight and seven of the tree
search. The two PEs expand the constellation points and their v/M children to derive the initial
K paths. Initially, only v/M symbol registers, corresponding with the constellation points, are
filled in level 8. However, after the path update operation of level 7, the topmost symbols are
expanded to fill K symbol registers. All v/M children of the top level constellation points are
expanded. For PE 8, no SE enumeration is required; however, in PE 7, a tabular enumeration
is used to list the v/M children of each level 8 constellation point, according to their PEDs, as
illustrated in Fig. 4.

4.4.2 Processing Elements 6 to 4

The PEs in this level are quite similar. The main difference is in the computation of (7), with
PEs at lower levels requiring longer adder chains to sum up the interference terms, r; ;3;. Each
PE in these levels consists of K expansion units for computing (6) for each of the child nodes
of the previous K parents, and a merge network, for computing the best K candidates. The SE
enumeration units in these levels are simplified compared to that of PE 7 since only the top A
child nodes are required. The PEs are divided into three pipeline stages: INFR, PED, PED*.
As such, each PE processes three RSVs concurrently.

4.4.8 Processing Elements 3 and 2

These processing elements perform the SIC detection described in Sect. 3.1. The minimum-metric
node of each parent is precomputed and is determined dynamically based on the values of b; and
7;,i. Since only a single child node is required (i.e. A = 1), this simplifies the implementation of
the lookup table compared with PEs 7 to 4. Each PE in this stage comprises two pipeline stages:
INFR and PED. As such, a total of four RSVs are processed concurrently in levels 3 and 2.

4.4.4 Processing Element 1

This is the final processing element in the datapath. Unlike PEs 7 to 4, no sorting is required,
since only one path is needed to obtain the hard-detection output. A minimum-metric path unit
compares the best child of each K parent from level 2 and successively determines the minimum-
metric candidate by comparing two candidates at a time. After the best node at the last level is
obtained, a path update operation is performed, which updates the previously detected symbols
up to level 8 according to the path index of the best node in level 1. In contrast to the symbol
registers in previous levels, only a single symbol register is required to store the last-level symbols,
51, for all RSVs, since the last-level symbols are held for only one clock cycle.

5 Results and Discussion

In this section, we will present the implementation results of the proposed K-best detector and
compare with other notable MIMO detector implementations for a 64-QAM 4 x 4 MIMO system.
We will also compare the proposed implementation with a conventional K-best detector utilizing
K-best detection in all stages of the tree search in order to assess the impact of the SIC-based
detection in the proposed implementation. To ensure a fair comparison with other works, the
power consumption (P) is scaled to a common technology reference of 65 nm at a core voltage
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of 1.05 V according to 1/U?, while the throughput (@) is scaled according to S, where U is the
ratio of the voltage to the reference voltage, and S is the ratio of the target technology to the
reference technology [8].

Two detectors are implemented. The first implementation (ASIC I) is based on the con-
ventional K-best algorithm while the second implementation (ASIC II), is based on the pro-
posed hybrid KB-SIC algorithm. Both implementations employ A = 4. The power consumption
of the proposed detector is determined using Power Compiler after a post-synthesis gate-level
simulation, while the area consumption is determined after a place-and-route step in Cadence
Encounter, and is expressed in terms of the gate equivalent (GE). One GE is the area of one
two-input drive-1 NAND gate. The throughput of the K-best detector is computed as follows:

_ Ny xlogog M x fax X R

D
Neix

Mbps,

where fq is the clock frequency of the detector, and R is the code rate, which is equal to
one for the hard-detection case considered. For the fully-pipelined detector, the number of clock
cycles required to generate a symbol vector, Ny, after the pipeline is filled, is equal to one.
Thus, at a clock frequency of 137 MHz, the detector achieves a throughput of 3288 Mbps,
which makes it suitable to high-throughput standards such as the IEEE 802.11ac. As presented
in Table 2, ASIC II achieves area and power consumption figures of 1467 kGE and 357 mW,
respectively, which correspond with reductions in the area and power consumption by 16% and
38%, respectively, compared with the reference detector, ASIC 1.

5.1 Comparison with State-of-the-Art

The proposed detector is compared with notable ASIC implementations of MIMO detectors in
Table 2. All detectors are based on a 64-QAM 4 x 4 MIMO communication system. As expected,
our implementation achieves a higher throughput than all the partially-pipelined detectors (i.e.
detectors with symbol-vectors-per-cycle less than one), even at the moderate clock frequency of
137 MHz. Apart from Mondal et al. [22], our design employs the largest K value, which has
beneficial effects on the BER, but is also partly responsible for the comparatively large area. In
[3], only a subset of the children of a parent node is considered for the sorting similar to the
proposed implementation. However, in that implementation, an approximate sorting scheme was
used leading to more than a 3-dB SNR loss at a target BER of 10~3. Furthermore, the work
employed a folded architecture resulting in a modest throughput of 300 Mbps.

Huang and Tsai [13] and Mahdavi and Shabany [18] employ a similar fully-pipelined tree
search as our implementation. In the case of Huang and Tsai [13], a low complexity is achieved
by employing small non-constant values of K depending on the tree level. However, this results in
an appreciable performance loss as highlighted in Fig. 1. Furthermore, the use of small K values
makes the architecture less suitable for generating accurate reliability information on the detected
bits in a soft-output implementation. It should also be mentioned that the area presented does not
include the contribution of the channel matrices as is the case in the proposed implementation.

Mahdavi and Shabany [18] report a high scaled throughput of over 20 Gbps based on a
complex-model K-best implementation. To reduce the complexity of the architecture, g; and
r;,; are scaled by r;; outside the architecture in order to compute the complex-domain SE
enumeration at each level. To achieve the scaling, both the real and imaginary parts of g; and
r;,; are divided by r; ;. It should be noted that the impact of these extra-architectural overheads
is not reflected in the results presented in Table 2. To implement the receiver unit with low
power consumption and high throughput, it is important that the MIMO detector, as well as
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interfacing architecture, is implemented with low complexity. In [18], it can easily be shown
that the total number of divisions required by the architecture scales quadratically with the
number of antennas. Overall, 20 real 16-bit divisions are required to detect one symbol vector
for Ny = 4 using this architecture. Although the scaling of r; ; could be done infrequently if
the channel is fairly stationary, the scaling of § must be carried out for every RSV, which could
significantly impact the throughput and power consumption in a practical scenario. Furthermore,
if the divisions are implemented using combinational logic, the impact on the area of the overall
receiver unit is likely to be considerable.

Due to the use of a precomputed tabular enumeration, and the computation of the PED
using (6), our implementation completely avoids multiplications at the symbol rate, which are
required by [13] and [18]. In fact, if the QR decomposition is implemented using the CORDIC
implementation of the Givens rotation [12], the signal detection could be realised completely
multiplier free.

5.2 Cost of Pipelining

The proposed detector is implemented using a multi-stage architecture, where multiple tree
searches are executed concurrently. To compute the hardware cost of pipelining, we implement
a multi-stage detector with single-tree processing. In [15], it is shown that several unpipelined
single-tree multi-stage (STMS) detectors can be interleaved to achieve a higher detection rate.
The key advantage of the STMS detector is its low power consumption; however, its throughput
is tied to the latency and the channel model employed.

We implement the STMS detector using the ST 65 nm technology, and it achieves a post-
layout area of 790 kGE and a latency of 25 clock cycles. We can determine the pipelining cost
by comparing the throughput-to-area ratios (TAR) of the pipelined detector to that of the
unpipelined STMS detector as follows:

TAR of pipelined detector

Relative TAR = )
catve TAR of unpipelined detector

which gives the throughput advantage of the pipelined detector over the STMS detector per kilo
gate equivalent of the area. Assuming the same clock frequency, the relative TAR is 13.46. This
implies that given the same area, the fully-pipelined detector achieves a throughput of more
than 13x compared with the unpipelined STMS detector. Thus, we can conclude that despite
the additional complexity incurred, pipelining is more hardware efficient than interleaving several
unpipelined detectors in order to achieve gigabit data rates.

5.3 Complex Versus Real Fully-Pipelined K-Best Detector
In the following, we highlight the relative advantages of the real and complex model K-best

detector with respect to different metrics. We conclude that in most scenarios, implementing the
K-best detector using a real channel model is advantageous.

5.8.1 Performance

Both the real and complex K-best detectors are “suboptimal” algorithms with respect to achiev-
ing the ML bit error rate performance. Given the same value of K, however, the real K-best
detector achieves a better BER performance as highlighted in Fig. 2. Intuitively, we can attribute
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this performance discrepancy to the fact that since there are more branches per level in the com-
plex channel model, more potential solutions will be discarded for the same value of K compared
with the real channel model.

5.3.2 Complexity

Implementing the K-best detector using the real channel model has three major advantages with
respect to the hardware complexity. Firstly, it simplifies the PED blocks by substituting complex-
valued symbols with integers; secondly, the SE enumeration can be obtained using simple integral
comparisons as illustrated in Fig. 3, and finally, since the complex K-best detector requires a
larger K value to achieve the same BER as the real channel model, its complexity is further
increased. There is yet no easy analytical method to determine which channel model to adopt for
all communications requirements to achieve the lowest complexity. This can only be conclusively
determined using actual hardware implementations based on the two models.

5.3.83 Throughput

Both the real and complex channel models can achieve a throughput of one symbol vector
per clock cycle using a fully-pipelined approach. However, the simplified datapath of the real
channel model is advantageous as there is better potential to achieve a higher maximum clock
frequency, thereby, achieving a higher throughput. However, in single-tree architectures [3, 21],
the shorter latency of the complex channel model is advantageous, as the throughput is now
directly proportional to the latency. As a result, the real channel model is more attractive for
applications where high throughput is the most critical requirement.

6 Conclusion

In this paper, we have presented the VLSI implementation of a fully-pipelined K-best detector
based on a 65-nm CMOS process. The detector is based on a hybrid K-best algorithm, which
utilises a successive interference cancellation detection at lower levels of the tree search to reduce
the complexity of the detector compared with the conventional K-best algorithm, incurring a
0.3-dB SNR loss at a target BER of 1072, The implementation results indicate that the hybrid
detector reduces the area and power consumption by approximately 16% and 38%, respectively,
compared with a reference fully-pipelined K-best detector employing K-best detection at all
levels of the tree search. Using a real channel model and tabular enumeration, the proposed
implementation also eliminates the use of multiplication at the symbol rate, which helps to
reduce the overall power consumption of the receiver unit. At a clock frequency of 137 MHz,
the detector achieves a throughput of over 3 Gbps making it suitable to low-latency wireless
standards such as the IEEE 802.11ac. A potential area for future research is to implement the
detector using a different sorting algorithm, such as the multi-cycle winner path extension, in
order to further explore latency, power and area tradeoffs.
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