PARTICLE POLLUTION DETECTION USING ARTIFICIAL INTELLIGENCE

James A. Grant-Jacob MInstP
J.A.Grant-Jacob@soton.ac.uk

“Towards accurate, real-time, low-cost sensing”

1 Motivation
Every year in the UK, exposure to polluting particles causes:
- 16,500 strokes.
- 4,200 lung cancers.
- Alzheimer’s disease.

40,000 deaths per year
£20 billion per year

Monitoring of pollution is vital to understand its origins and reduce it. Current sensors can lack accuracy and be expensive.

2 Concept
An artificial intelligent neural network (a mathematical transform that mimics the brain’s visual cortex) classifies a particle directly from the light scattered by the particle.

3 Experimental setup
- A red laser beam was directed onto diesel, wood ash, pollen particles in air, and plastic particles in water, and the scattered light was imaged by a camera.
- The images were used for training the neural network.

4 Training neural network
- Scattering patterns were used as an input for the neural network, which was trained to predict the material and number of particles.
- Once trained, the neural network was used in real-time for particle pollution classification.

5 Real-time detection
Real-time sensing of pollen, diesel and wood ash particles. Most likely particle type with its probability of prediction as a function of time.

Detected 0.008 mm plastic particles in water, with the average prediction accuracy of water salinity presented.

6 Future work
Nationwide sensors:
- Developing a network of sensors over the country, such as on lampposts and in marine areas, which send data to the cloud and allow a live map of particle pollution to be viewed online.
- Wearable technology:
 - Rings, watches, headphones.
 - Air pollution monitor with alerts.
 - Hay fever alerts.
 - Personalised.

References
- Holgate, S. “Every breath we take”. Royal College of Physicians. 2016
- EPSRC
- NVIDIA