
BeSEPPI: Semantic-Based Benchmarking
of Property Path Implementations

Adrian Skubella1�, Daniel Janke1, and Steffen Staab1,2

1 Institute for Web Science and Technologies
Universität Koblenz-Landau, Germany

{skubella,danijank,staab}@uni-koblenz.de
http://west.uni-koblenz.de/

2 Web and Internet Science Group
University of Southampton, UK
s.r.staab@soton.ac.uk

http://wais.ecs.soton.ac.uk/

Abstract. In 2013 property paths were introducedwith the release of SPARQL 1.1.
These property paths allow for describing complex queries in a more concise and
comprehensive way. The W3C introduced a formal specification of the semantics
of property paths, to which implementations should adhere. Most commonly used
RDF stores claim to support property paths. In order to give insight into how well
current implementations of property paths work we have developed BeSEPPI, a
benchmark for the semantic based evaluation of property path implementations.
BeSEPPI measures execution times of queries containing property paths and
checks whether RDF stores follow the W3Cs semantics by testing the correctness
and completeness of query result sets. The results of our benchmark show that
only one out of 5 benchmarked RDF stores returns complete and correct result
sets for all benchmark queries.

1 Introduction
The SPARQL Protocol and RDF Query Language (SPARQL) is the standard query
language for RDF stores. In 2013 property paths were introduced with SPARQL 1.1.
Property paths allow for describing paths of arbitrary length in graphs, which cannot
be described with a single SPARQL 1.0 query. For instance, all friends of a friend of a
friend etc. from a social network cannot be retrieved with a single SPARQL 1.0 query.
With property paths the construct foaf:knows* could be used to obtain all desired
results with a single query. Furthermore, property paths provide a more concise way to
formulate queries. A query that should return all friends of a friend in a social network
could use the construct foaf:knows/foaf:knows.

In [1] it is shown that more and more queries containing property paths are run
against the Wikipedia Knowledge Graph. For instance, of all queries scheduled in January
2018, over 20% contained property paths. In order to ensure that queries containing
property paths return the same result sets independently of the used RDF store, the W3C
released the official semantics of property paths in [2].

The comparison of query execution times is only meaningful, if the result sets are
complete and correct. Therefore, we have developed a benchmark for semantic-based
evaluation of property path implementations (BeSEPPI). BeSEPPI does not only measure
the execution times of property path queries, but also provides unit tests to check if the
result sets are complete and correct based on the W3Cs semantics (see section 3). Our

benchmark comes with 236 queries and respective reference result sets, testing various
semantic aspects of property paths. Thus, BeSEPPI may also be used by RDF store
developers as a unit test to analyze their own implementation of property paths.

We used BeSEPPI to evaluate Blazegraph, AllegroGraph, Virtuoso, RDF4J and
Apache Jena Fuseki (see section 4). Our evaluation indicates that most RDF stores do not
adhere to the W3Cs semantics completely. The original contributions of this paper3 are:
1. BeSEPPI: A benchmark testing the execution times as well as the result set correctness

and completeness of property path queries (see section 3).
2. An extensive evaluation of 5 common RDF stores (see section 4).

2 Preliminaries
In the following, common definitions for RDF, SPARQL and property paths based on
[4],[5] and [6] are given in order to define the terminology used in this work.

2.1 Graph
The Resource Description Framework (RDF) [7] is a general-purpose language for
representing information in the web. It uses triples to represent the information as
directed, labeled graphs. A graphical representation of an RDF dataset is shown in figure
1. For better legibility prefixes can be used to abbreviate IRIs. An example for such a prefix
is given by PREFIX ppb: <http://ppbenchmark.com/>. This prefix defines
that for instanceppb:B1 actuallymeans<http://www.ppbenchmark.com/B1>.

ppb:A1

ppb:CenterA

ppb:A4ppb:A3ppb:A2

ppb:CenterB

ppb:B3ppb:B2ppb:B1

ppb:C1

ppb:C2

ppb:C3

ppb:C4

ppb:C5

ppb:C6

ppb:e1 ppb:e2 ppb:e3 ppb:e5

ppb:self

ppb:e4 ppb:e2 ppb:e2 ppb:e3 ppb:e4

ppb:e6 ppb:e7 ppb:e8

ppb:e+

ppb:e+2

ppb:e+2

ppb:e+2

ppb:e+

ppb:e+3

ppb:e+3

ppb:e+1ppb:e+ ppb:e+2 ppb:e+3

ppb:e+1 ppb:e+2 ppb:e+3

ppb:e+3 ppb:e+2

Fig. 1: RDF graphs that are part of BeSEPPI.

Definition 1 (RDF triple).
A triple (s, p, o) ∈ (I ∪B)× I × (I ∪B ∪L) is called RDF triple where I, L and B are
disjoint sets of IRIs, literals and blank nodes, respectively. Furthermore, s is called the
subject, p the predicate and o the object of the triple. [4]
3 We have presented some preliminary results in a non-archival workshop contribution in [3].
For this paper, we have improved the benchmark by creating a larger variety of queries as
well as their correct results sets. These queries are a unit test to check whether property paths
implementations adhere to the W3C’s semantics.

Definition 2 (RDF graph).
An RDF graph G is a finite set of RDF triples. Furthermore, the subjects and objects
occurring in G are vertices and occurring predicates are edges in G. VG is the set of all
vertex labels in G and EG is the set of all edge labels in G.

Definition 3 (RDF term).
An RDF term t is an element of I ∪ L ∪ B. The set of all RDF terms in a graph G is
denoted by TG.

Definition 4 (Path and Cycle).
A path P =� v0, e1, v1, e2, v2, ..., en, vn � in an RDF graph G connects two vertices
v0 and vn with each other. In a path vi are vertices, ei are edges, ∀i, j ∈ [0, n − 1] :
i 6= j ⇒ vi 6= vj and ∀i ∈ [1, n − 1] : vi 6= vn. A path is called cycle if v0 = vn.
Furthermore, the path length is defined by the number of edges between v0 and vn.4

Example 1: An example for a path between the vertices ppb:A1 and ppb:A3 in figure
1 is: P =�ppb:A1, ppb:e1, ppb:CenterA, ppb:e3, ppb:A3�. The length of
this path is 2. Moreover, a self loop is a cycle of length one. In case of figure 1 the path P
=�ppb:A1, ppb:eSelf, ppb:A1� is a self loop.

2.2 SPARQL 1.1 Property Paths
The SPARQL Protocol and RDF Query Language (SPARQL) 1.1 is used to query RDF
graphs. In the following section the syntax and semantics of the subset of SPARQL 1.1
that is needed for this paper is introduced. The syntax and semantics of property paths
are defined following the semantic specification of the W3C in [2].5

Syntax
Definition 5 (Property path expression).
A property path expression can be an atomic or a combined property path expression.
Atomic property path expressions:
1) iri ∈ I is a simple property path expression.
2) !(iri1|...|irin|^irin+1|...|^irim) with iri1, ...irim ∈ I is the negated and inverse
negated property set.
Combined property path expressions:
3) ^E with property path expression E, is the inverse property path expression.
4) E1/E2, with property path expressions E1 and E2, is the sequence property path
expression.
5) E1|E2, with property path expressions E1 and E2, is the alternative property path
expression.
6) E? with property path expression E is the existential property path expression.
7) E*, with property path expression E, is the transitive reflexive closure property path
expression.
8)E+, with property path expressionE, is the transitive closure property path expression.
9) (E), groups the expression E.
4 With our definition of paths, we do not allow cycles to appear within a path. We use this
definition since the auxiliary function ALP which is used by the transitive and transitive reflexive
property path expression in the W3Cs semantics of property paths [2] uses the same definition
of paths.

5 The notation of property path semantics presented in this section, is based on the definitions of
property paths in [6].

Example 2: An example for an existential property path expression with the IRI
ppb:e1 is ppb:e1?.

Definition 6 (Property path).
A property path P is defined as sEo where s ∈ V ∪ I ∪ L ∪B, o ∈ V ∪ I ∪ L ∪B and
E is a property path expression.

Example 3: An example for a property path with an existential property path expression
and the variable ?o is ppb:notExisting ppb:e1? ?o.

Definition 7 (Property path Query).
If P is a property path and V’ is a set of variables, then SELECT V’ WHERE {P} and
SELECT * WHERE {P} are SELECT queries.
If P is a property path, then ASK WHERE {P } is an ASK query.[8]

Example 4: An example of a SELECT property path query with one variable is shown in
listing 1.1.

PREFIX ppb : < h t t p : / /www. ppbenchmark . com/ >
SELECT ?o WHERE { ppb : n o t E x i s t i n g ppb : e1? ?o . }

Listing 1.1: Example of a SELECT property path query.
Semantics
Definition 8 (Evaluation of property path expressions). 6
Γ denotes a set of vertex labels with Γ ⊇ VG and p, iri1..irim ∈ I . The evaluation
[[E]]G of a property path expression E over an RDF graphG is a subset of (I ∪L∪B)2

defined as follows:

(1)[[p]]ΓG := {(s, o)|(s, p, o) ∈ G}
(2a)[[!(iri1|...|irin)]]ΓG := {(s, o)|(s, p, o) ∈ G ∧ p 6∈ {iri1, ..., irin}}
(2b)[[!(^iri1|...|^irin)]]ΓG := [[^ !(iri1|...|irin)]]ΓG
(2c)[[!(iri1|...|irin|^irin+1|...|^irim)]]ΓG := [[!(iri1|...|irin)]]ΓG ∪ [[(^irin+1|...|^irim)]]ΓG

(3)[[^E]]ΓG := {(s, o)|(o, s) ∈ [[E]]ΓG}
(4)[[E1/E2]]

Γ
G := {(s, o)|∃r : (s, r) ∈ [[E1]]

Γ
G ∧ (r, o) ∈ [[E2]]

Γ
G}

(5)[[E1|E2]]
Γ
G := [[E1]]

Γ
G ∪ [[E2]]

Γ
G

(6)[[E?]]ΓG := [[E]]ΓG ∪ {(a, a)|a ∈ Γ}

(7)[[E+]]ΓG :=

∞⋃
i=1

[[E/E/.../E︸ ︷︷ ︸
i times

]]ΓG

(8)[[E∗]]ΓG := [[E+]]ΓG ∪ [[E?]]ΓG

(9)[[(E)]]ΓG := [[E]]ΓG

6 In [6] the evaluation of the existential property path expression and the transitive reflexive
closure property path expression are defined slightly differently from the definition of the W3C
in [2]. We have contacted members of the SPARQL working group in order to resolve these
differences [9] [10].

Example 5: Assume the existential property path expression ppb:e1?, the RDF graph G
depicted in figure 1 and Γ = {ppb:notExisting} ∪ VG. The evaluationR of the property
path expression is : R = [[ppb:e1?]]ΓG = [[ppb:e1]]ΓG ∪ {(a, a)|a ∈ Γ} = {(ppb:A1,
ppb:centerA)} ∪ {(ppb : A1, ppb : A1), (ppb : A2, ppb : A2), ...} ∪ {(ppb:notExisting,
ppb:notExisting)}. The first set of the union is the evaluation of [[ppb:e1]]ΓG. The second
set denotes all tuples of vertex labels in G and the third part denotes the tuple of the
element that was included in Γ additionally to VG.

In order to obtain information from an RDF store, elements of Γ are bound to
variables. These bindings are called variable bindings.
Definition 9 (Variable bindings).
The partial function µ : V → T with variables V and RDF terms T, is called a variable
binding. The domain dom(µ) of a variable binding µ is the set of variables on which µ
is defined.
Definition 10 (Evaluation of property paths).
For constants s ∈ I ∪B ∪L, o ∈ I ∪B ∪L and variables v, v1, v2 ∈ V the evaluation
of property paths is defined as:

(1)[[sEo]]G :=

{
{{}}, if(s, o) ∈ [[E]]ΓG where Γ = VG ∪ {s, o}
{}, else

(2)[[sEv]]G := {µ|(s, µ(v)) ∈ [[E]]ΓG ∧ dom(µ) = {v} where Γ = VG ∪ {s}}
(3)[[vEo]]G := {µ|(µ(v), o) ∈ [[E]]ΓG ∧ dom(µ) = {v} where Γ = VG ∪ {o}}
(4)[[v1Ev2]]G := {µ|(µ(v1), µ(v2)) ∈ [[E]]ΓG ∧ dom(µ) = {v1, v2} where Γ = VG}

Example 6: Assume the property path ppb:notExisting ppb:e1? ?owhere ppb:notExisting
6∈ VG. Furthermore, assume R from example 5 as the result of the evaluation of the prop-
erty path expression ppb:e1?. According to definition 10 the evaluation of the property
path is: [[ppb:notExisting ppb:e1? ?o]]G = {µ1} with µ1 = {(?o, ppb:notExisting)}.
Definition 11 (Semantics of SELECT query).
The evaluation [[Q]]G of a query Q of the form SELECT W WHERE {P} is the set of
all projections µ|W of bindings µ from [[P]]G toW , where the projection of µ|W is the
binding that coincides with µ onW and is undefined elsewhere.
The evaluation of SELECT * WHERE {P} is equal to the evaluation of SELECT W
WHERE {P} whereW = var(P) and var(P) denotes the set of all variables in P .

Definition 12 (Semantics of ASK query). [11]
The evaluation [[Q]]G of a query Q of the form ASK WHERE {P} over an RDF graph
G is defined as:

[[Q]]G =

{
false if [[P]]ΓG = {}
true otherwise

3 Property Path Benchmark BeSEPPI
In order to benchmark the performance of RDF stores with regard to property path
queries we introduce our novel benchmark for semantic-based evaluation of property path
implementations (BeSEPPI)7. BeSEPPI measures the execution times of 236 property

7 Available as open source under https://github.com/Institute-Web-Science-and-
Technologies/BeSEPPI

path queries. These queries are executed on a small dataset that was created for evaluating
various aspects of property paths. Furthermore, BeSEPPI comes with reference result
sets for each query, which allow for evaluating correctness and completeness of result
sets.

3.1 Dataset
The benchmark dataset is a graph consisting of 28 triples. It allows for testing various
semantic aspects of each property path expression. The dataset is kept small so that
humans can easily create reference result sets for property path queries and evaluate the
correctness and completeness of query result sets. The graph is depicted in figure 1.

3.2 Queries
The query set of BeSEPPI consists of 236 queries of which 73 are ASK queries and 163
are SELECT queries. In our benchmark we want to evaluate the performance of each
property path expression individually with regard to various semantic aspects. Therefore,
we test each expression separately and omit combinations of property path expressions.
The queries are organized according to the following 3 dimensions.
Dimension 1: The property path expression.
The first dimension is the property path expression that is tested.
Dimension 2: The number and positions of variables and terms in the query.
According to definition 10 there are 4 possibilities for the number and positions of
variables and terms in a query containing a single property path: sEo, sEv, vEo and
v1Ev2 where s and o are terms v, v1 and v2 are variables and E is a property path
expression. Queries of the form sEo test for the existence of the path in the dataset and
do not return any variable bindings. During our evaluation we have observed that some
stores do not support queries with * after the SELECT statement, which do not contain
any variables, even though these queries are syntactically correct. Due to the fact that
such a query simply returns an empty set if the path in the query does not exist and
otherwise an empty variable binding, we have transformed such queries to ASK queries
which return false or true. We expect ASK queries to be supported in all cases
whereas SELECT queries with * and without variables have shown to be not supported
in some cases.
Dimension 3: Semantic aspects.
Semantic aspects are certain characteristics a query fulfills. Semantic aspects are for
instance, that a query returns an empty result set or that the traversed path in the graph
has a length of at least 4. Each property path expression has different semantics and
therefore, not all semantic aspects can be considered for all property path expressions.
Due to the high number of queries in BeSEPPI, describing all queries and the respective
semantic aspects is beyond the scope of this paper. In order to still give insight into the
query structure we give an overview of queries for each expression and variable-constant
combination in table 1. Additionally, we explain two benchmark queries for the existential
property path expression in the following section.

Existential Property Path Expression Queries
In order to evaluate the performance of RDF stores for property path queries with the
existential property path expression, we use 24 queries. Two exemplary queries and their
semantic aspects are presented below. For all queries reference result sets were created to
evaluate the correctness and completeness of the result sets returned by the RDF stores.

Expression
-
sEo sEv vEo v1Ev2 Total

Inverse 6 5 5 4 20
Sequence 7 6 6 5 24
Alternative 6 6 6 5 23
Existential 9 6 6 3 24
Transitive Closure 12 9 9 8 38
Transitive Reflexive Closure 11 8 8 7 34
Negated Property Set 6 5 5 5 21
Inverse Negated Property
Set

6 5 5 5 21

Negated and Inverse
Negated Property Set

10 7 7 7 31

Total 73 57 57 49 236
Table 1: Overview of number of queries for each property path expression.

PREFIX ppb : < h t t p : / /www. ppbenchmark . com/ >
ASK WHERE {

ppb : n o t E x i s t i n g 1 ppb : n o t E x i s t i n g 2 ? ppb : n o t E x i s t i n g 1 . }

Listing 1.2: Existential property path query where vertices and edge are not existing in the dataset.
In the query shown in listing 1.2 none of the stated IRIs exist in the dataset. According
to definition 8 (ppb:notExisting1, ppb:notExisting1) ∈ [[ppb:notExisting2?]]ΓG. Due
to definition 10 the evaluation of the property path in the query is
[[ppb:notExisting1 ppb:notExisting2? ppb:notExisting1]]ΓG = {{}}. Less formally
speaking, this query returns true because ppb:notExisting1 is connected to itself by a
path of length zero.

PREFIX ppb : < h t t p : / /www. ppbenchmark . com/ >
SELECT ∗ WHERE{

ppb : A1 ppb : e1? ?o . }

Listing 1.3: Existential property path query with existing predicate and one variable.
The query shown in listing 1.3 is of the form sEv. This means that there is one variable
in the property path. According to definition 8 (6) the evaluation of the property path
expression is: [[ppb:e1?]]ΓG = {(ppb:A1, ppb:CenterA)} ∪ {(a, a)|a ∈ Γ}. Following
definition 10 the evaluation of the property path is
[[ppb:A1 ppb:e1? ?o]]ΓG = {{?o, ppb:centerA}, {?o, ppb:A1}}. Less formally
speaking ppb:centerA is returned because the triple (ppb:A1, ppb:e1, ppb:centerA) exists
in the dataset and ppb:A1 is returned because a path of length 0 exists between ppb:A1.

3.3 Metrics
In order to allow for comparing benchmark results of different stores with each other and
to make the results comprehensible, meaningful metrics need to be used. For BeSEPPI
we focus on the following metrics.
1. Query correctness

The percentage of correct query results that are returned for each query.
For SELECT queries: If Rq is the set of all correct results for a query q and RS

q

is the set of returned results of query q executed on RDF store S, then the query
correctness is defined as:

corr(q) :=


1, if |RS

q | = 0

|Rq ∩RS
q |

|RS
q |

, otherwise

For ASK queries: If rq is the correct boolean result for the ASK query and rSq is
the returned boolean result for an RDF store S, then the correctness is defined as:

corr(q) =

{
1, if rq = rSq
0 otherwise

2. Query completeness
The percentage of all possible query results of the query.
For SELECT queries: If Rq is the set of all correct results for a query q and RS

q

is the set of returned results of query q executed on RDF store S, then the query
completeness is defined as:

comp(q) :=


1, if |Rq| = 0

|Rq ∩RS
q |

|Rq|
, otherwise

For ASK queries: If rq is the correct boolean result for the ASK query and rSq is
the returned boolean result for an RDF store S , then the completeness is defined as:

comp(q) =

{
1 if rq = rSq
0 otherwise

3. Average execution time per query
The arithmetic mean avexec(q) of the execution time t(q) of each query q is defined
as:
avexec(q) =

∑n
i=1 ti(q)

n
where n is the number of times a query was executed.

3.4 Execution Strategy
In the first step of the benchmark execution, the complete dataset is loaded into the
RDF store that should be benchmarked. Afterwards, all 236 queries are executed once
without measuring any metrics in order to warm up the store. After that the 236 queries
are executed 10 times and the metrics are measured. The queries are executed one after
another and not in parallel. To prevent outliers the highest and lowest execution times are
deleted. Finally, the average execution time, the correctness and the completeness are
stored in a human readable CSV file.
4 Benchmark Results
In order to evaluate the performance of RDF stores in regard to queries containing
property paths we use the property path benchmark BeSEPPI described in section 3.
4.1 Experimental Setting
We benchmarked the property path implementations of 5 common RDF stores, namely
Blazegraph 2.1.48, AllegroGraph 6.4.1 free edition9, Virtuoso 7.2 open source edition10,
RDF4J 2.2.411 and Apache Jena Fuseki 3.8.012. The RDF stores were benchmarked
on an Ubuntu 16.04 machine with 8 GB memory, 500 GB disk space and 4 1.7 Ghz
processor cores. The Java version on the machine was 1.8.0.171.
8 https:/www.blazegraph.com/
9 https://franz.com/agraph/downloads.lhtml
10 http://vos.openlinksw.com/owiki/wiki/VOS
11 http://rdf4j.org/
12 https://jena.apache.org/documentation/fuseki2/

4.2 Completeness and Correctness
In this section the correctness corr(q) and completeness comp(q) of result sets for each
store are presented and it is discussed how the difference between the returned results
and the reference result sets might be caused.

Expression
Store Blaze-

graph
Allegro-
Graph Virtuoso RDF4J Jena

Fuseki Total
Number

of
Queries

In
co
m
pl
.&

Co
rr
ec
t

Co
m
pl
et
e
&

In
co
r.

In
co
m
pl
.&

In
co
r.

Er
ro
r

In
co
m
pl
.&

Co
rr
ec
t

Co
m
pl
et
e
&

In
co
r.

In
co
m
pl
.&

In
co
r.

Er
ro
r

In
co
m
pl
.&

Co
rr
ec
t

Co
m
pl
et
e
&

In
co
r.

In
co
m
pl
.&

In
co
r.

Er
ro
r

In
co
m
pl
.&

Co
rr
ec
t

Co
m
pl
et
e
&

In
co
r.

In
co
m
pl
.&

In
co
r.

Er
ro
r

In
co
m
pl
.&

Co
rr
ec
t

Co
m
pl
et
e
&

In
co
r.

In
co
m
pl
.&

In
co
r.

Er
ro
r

Inverse 0 20
Sequence 0 24
Alternative 0 23
Existential 3 0 1 0 6 0 2 0 0 0 0 3 0 0 3 0 0 0 0 0 24
Transitive Closure 0 0 1 0 0 0 0 0 6 0 4 8 0 0 4 0 0 0 0 0 34
Transitive Reflexive Clo-
sure

7 0 1 0 5 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 38

Negated Property Set 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 11 0 0 0 0 21
Inverse Negated Prop-
erty Set

0 0 0 0 4 0 6 0 0 0 0 11 0 0 0 11 0 0 0 0 21

Negated and Inverse
Negated Property Set

0 0 0 0 6 2 8 0 0 0 0 0 0 0 0 17 0 0 0 0 31

Total 10 0 3 0 24 2 16 0 6 0 4 29 0 0 7 39 0 0 0 0 236
Table 2: Number of queries that returned incomplete, incorrect, or incomplete and incorrect result
sets, or threw an error during the execution.

In table 2 an overview of the numbers of queries, which returned only incomplete, only
incorrect or incomplete and incorrect result sets, or caused an error during the execution
of the query is given. Furthermore, the rightmost column shows the total number of
queries for the respective property path expression.

One observation is that all stores return complete, correct and error-free result sets
for the inverse, sequence and alternative expressions. A reason for this might be the
clarity of their semantics, since their definition is the same in different sources, such as
the official SPARQL 1.1 definition, [2] and [6]. Furthermore, the transformation of these
property path expressions into SPARQL 1.0 queries is straightforward, such that already
implemented SPARQL1.0 query operators could be reused.

In the rest of this section the cases in which queries did not return correct, complete
and error-free result sets for each store are discussed.

Blazegraph: Blazegraph returns complete and correct result sets for most queries,
but there are 13 result sets which are not complete or correct. The first three queries that
did not return complete and correct result sets are ASK queries. These three queries
incorrectly returned true and have in common that the combination of subject and
predicate can be found in the graph whereas the object does not occur. For queries in
which also the object occurred in the graph, true was correctly returned.

All other queries with incomplete result sets return correct results. The tested
property paths of these queries are of the form variable, property path expression,
variable. Furthermore, they all involve either the existential or the transitive reflexive
closure expression. After examining the missing results, we noticed that only results
produced by the term {(a, a)|a ∈ Γ} from definition 8 (6) are missing.
AllegroGraph: Our evaluation indicates that the semantics used by AllegroGraph
deviates from the W3Cs semantics in case of existential E? and transitive reflexive
closure property path expressions E∗. If [[E]]VG

G 6= {}, AllegroGraph uses the W3Cs
semantics. But in cases of [[E]]VG

G = {}, AllegroGraph always returns {}. Furthermore,
if the object and subject are equal in ASK queries the query returns false even though
true would be correct.

AllegroGraph also returns empty result sets, if the negated property set contains at
least one non-existing property. Furthermore, if the property path contains two variables,
AllegroGraph interprets the inverse negated property set as negated property set, leading
to result sets in which the assignments of the two variables to terms are swapped. The
same applies to the inverse part of the negated and inverse negated property set.
Virtuoso: Virtuoso does not execute queries with two variables combined with the
existential, the transitive closure or the transitive reflexive closure property path expression.
For such queries the store returns an error, which says "Transitive start not given". This
behavior seems to be a deliberate choice in the design of the RDF store and might have
to do with the fact that Virtuoso is built on relational databases. In relational databases
very large joins might be necessary in order to answer these queries and therefore, this
feature may have not been implemented.

For queries with one or no variable and the existential or transitive reflexive closure
property path expression Virtuoso returns complete and correct result sets. For the transi-
tive closure property path expression there are 10 queries, which do not return complete
result sets for Virtuoso. These queries all have a cycle like� v1, e, v2, ..., vn, e, v1 �
as tested semantic aspect and the missing result is always the start vertex v1 of the cycle.
This indicates that the transitive closure property path expression might be implemented
in such a way that [[P∗]]ΓG is evaluated and the reflexive start is removed from the result
set. In such a case, queries with cycles would return correct results except for the starting
and the end vertex respectively.

For the negated property set Virtuoso returns correct and complete result sets for
each query. For 11 queries with the inverse negated property set Virtuoso returns errors.
The queries that return errors are distributed over all query forms and semantic aspects
such that we could not identify the underlying cause. Finally, the combination of the
negated and inverse negated property set returns complete and correct result sets.
RDF4J: RDF4J returns false for three ASK queries with the existential property path
expression where the correct result is true. In each of the three queries, the subject and
object are equal. This indicates, that RDF4J ignores the results included in {(a, a) ∈ Γ}
in ASK queries with the existential property path expression. Furthermore, RDF4J
incorrectly returns false as result for ASK queries with a transitive closure property
path expression, if they have a cycle as tested aspect.

For queries with the negated property set, the inverse negated property set and the
combination of both sets RDF4J does not execute queries of the form subject property
path expression object or variable property path object. This means every time such a
query is executed the store returns an error.
Apache Jena Fuseki: Fuseki was the only store that executed every benchmark query

without errors and returned complete and correct result sets. It seems that the store
follows the W3Cs definition of property path semantics.

4.3 Execution Times
In order to compare the current performances of property path implementations we
present and discuss the execution times of the benchmark queries in this section13. For
this discussion we only take the execution times of queries into consideration for which
complete and correct result sets were returned. Out of all 236 queries all stores returned
complete and correct result sets for only 134 queries. In figure 2 the sums of avexec(q)
of these 134 queries are presented for the individual RDF stores.

Blazegraph AllegroGraph Virtuoso RDF4J Jena Fuseki
0

1000
2000
3000
4000
5000

Su
m

 o
f a

ve
ra

ge
ex

ec
ut

io
n

tim
es

 in
 m

s 4443ms
3869ms

707ms 704ms
1142ms

Fig. 2: Sum of average execution times.
When considering all benchmark queries for which complete and correct result sets
were returned by all stores, RDF4J and Virtuoso execute queries the fastest. Fuseki was
approximately 400ms slower and AllegroGraph took more than 5 times as long as RDF4J
or Virtuoso. Blazegraph required 4443ms to execute the queries on average. This means
Blazegraph needs more than 7 times longer than Virtuoso or RDF4J.

Expression
Store Blazegraph AllegroGraph Virtuoso RDF4J Fuseki

Inverse 432 515 96 101 170
Sequence 495 595 125 124 235
Alternative 527 561 112 114 186
Existential 428 334 60 56 84

Transitive Reflexive Closure 976 647 109 99 154
Reflexive Closure 1268 850 121 119 176

Negated Property Set 167 186 43 48 66
Inverse Negated Property Set 61 79 15 19 33

Negated and Inverse Negated Property Set 89 102 26 24 38
Table 3: Total execution times in ms for each property path expression.

In table 3 the sums of avexec(q) are shown for queries containing the different
property path expressions. For these execution times, the 134 queries were considered,
for which complete and correct result sets were returned by all stores. When investigating
the influence of the property path expressions dimension on the execution times, table
3 shows that Blazegraph executes queries containing the inverse, sequence, alternative
property path expression or any form of negated property sets faster than AllegroGraph,
but AllegroGraph is faster when it comes to queries with the existential, transitive or
reflexive transitive closure property path expression. Regardless of this, both stores are
slower than the other 3 stores for each property path expression.
Virtuoso and RDF4J are the fastest stores for each property path expression and the

13 A list of all execution times can be found under:
https://github.com/Institute-Web-Science-and-Technologies/BeSEPPI/tree/master/results

differences between the execution times of these two stores are very small. Virtuoso is
faster than RDF4j in 4 cases and RDF4J is faster in 5 cases. Therefore, it can be said that
both stores have shown a very similar performance in our benchmark. Fuseki averagely
needs 1.6 times longer to execute queries than Virtuoso. RDF4J needs at most 54% of
the time Blazegraph or AllegroGraph need.
In order to compare how the second dimension of queries, which is the number and
position of variables in a query, affect the execution times, we compared the average
execution times of all RDF stores for each combination of property path expression and
variable position in a query. For instance, in figure 3 the average execution times of
queries containing the transitive reflexive property path expression are shown for the
different numbers and positions of variables in a query. Due to the fact that Virtuoso
does not execute queries containing two variables and the reflexive transitive closure
property path expression, the respective bar is missing in figure 3.

Blazegraph AllegroGraph Virtuoso RDF4J Jena Fuseki
0

20

40

60

Ex
ec

ut
io

n
tim

es
 in

 m
s

No Variable
Variable on object position
Variable on subject position
Two variables

Fig. 3: Average execution times for queries containing the transitive reflexive closure property path
expression.

The plots in figure 3 show that Blazegraph processes queries with one variable faster
than queries with no or two variables. Contrary to this we expected that queries with
two variables would need the most time for execution, since these queries may consider
every vertex in the graph as potential start vertex. AllegroGraph executes queries with
no variables slightly faster than queries with one variable and queries with one variable
faster than queries with two variables. There is nearly no difference in execution times
for Virtuoso and RDF4J. Both stores execute the queries faster than the other three stores
and the execution time does not increase with the number of variables. Note that Virtuoso
does not execute queries with two variables and the transitive reflexive property path
expression and therefore, nothing can be said about the execution times for respective
queries. Finally Fuseki executes queries with one variable slightly faster than queries
with no or two variables. We have expected that queries with two variables would have
the highest execution times, but this was only the case for AllegroGraph and Fuseki. Due
to the fact that the increase of execution time might depend on the size of the dataset we
will test larger datasets in the future.

When investigating the influence of the semantic aspects dimension on the query
execution time, most results were not surprising. For instance, transitive closure property
path expressions that match with longer paths take longer to be executed. In [12] it is
stated that query logs of some public SPARQL Endpoints contain a lot of queries, which
return empty result sets. Therefore, it might be beneficial for RDF stores if they can
identify these queries quickly to reduce the workload of the store. When focusing on the
benchmark queries that return an empty result set, we could figure out that their execution
times were similar to the execution times of comparable queries that returned non-empty
result sets. Virtuoso and RDF4J have the fastest query execution times (averagely 24ms
and 23ms) for queries with empty result sets and average execution times of 23ms and

24ms respectively for comparable queries with non-empty result sets. Blazegraph and
AllegroGraph have the longest execution times (averagely 146ms and 114ms) for queries
returning empty result sets and take 143ms and 121ms on average for comparable queries
with non-empty result sets. Fuseki averagely required 44ms and 45ms for queries with
empty and non-empty result sets respectively. This outcome indicates that there is a
potential to improve the performance of these stores for queries with empty result sets.
4.4 Summary of Results
In summary, all stores returned complete and correct result sets for queries with an
inverse, sequence or alternative property path expression. For queries containing an
existential property path expression in it, Blazegraph, AllegroGraph and RDF4J all
handle the term {(a, a)|a ∈ Γ} differently and are not following the W3Cs semantics. In
case of transitive closure property path expressions, Virtuoso and RDF4J ignore results
from cyclic paths. AllegroGraph returns empty result sets for queries with the negated
property set, if one of the IRIs in the negated property set does not exist in the dataset.
Furthermore, AllegroGraph seems to interpret the inverse negated property set as negated
property set in queries with two variables. Virtuoso throws errors for ample queries with
the inverse negated property set and RDF4J does not execute queries with the negated
property set, inverse negated property set or the combination of both sets, where the
object of the property path is an RDF term.

Furthermore, Virtuoso does not allow queries with variable path length without a
fixed starting or ending point. This means whenever a query with 2 variables containing
an existential, a transitive closure or a transitive reflexive closure property path expression
is executed, Virtuoso returns an error. From the tested 5 RDF stores only Apache Jena
Fuseki could return complete and correct result sets for all queries.

When comparing the execution times of queries for which all stores returned complete
and correct result sets, RDF4J and Virtuoso are the two fastest stores in our evaluation.
Fuseki needs averagely 60% more time to execute queries than RDF4J and Virtuoso.
Blazegraph and AllegroGraph need averagely 260% more time than Fuseki. Furthermore,
we have expected that queries with two variables would have the highest execution time
for each store, but this was only the case for AllegroGraph and Fuseki.

5 Related Work
Common benchmarks for RDF stores like the Lehigh University Benchmark [13], the
DBPedia SPARQL Benchmark [14] or the Berlin SPARQL Benchmark [15] are designed
to test the performance of RDF stores in different application scenarios. Since they were
created before the release of SPARQL 1.1 they do not test property paths. Furthermore,
the Lehigh University Benchmark is the only benchmark that also evaluates completeness
and correctness of result sets.

In [16] Gubichev et al. propose an indexing approach called FERRARI to efficiently
evaluate property paths. In order to show the efficiency of their approach they also
propose a small benchmark with 6 queries over the YAGO2[17] RDF dataset. Although
this approach tests queries with property paths, it only measures execution times and
does not evaluate correctness or completeness of result sets. In spite of the fact that the
benchmark proposed in [18] is not a benchmark for property paths in particular rather than
a benchmark primarily designed for streaming RDF/SPARQL engines it tests property
paths among various other SPARQL 1.1 features. Even though the completeness and
correctness of result sets is not calculated, the results of the benchmark show that most
of the benchmarked stream processing systems do not support property path queries.

In [19] a system is presented that generates small datasets based on given queries, their
query features (e.g., the OPTIONAL or FILTER construct) and a data set. Additionally to
the small datasets, the system returns the reference result sets for the given queries. They
allow for checking the completeness and correctness of the query result sets returned
from the evaluated RDF stores. This system is not a benchmark in particular but could be
used to create datasets for benchmarks, which evaluate the completeness and correctness
of result sets.

In [3] a benchmark for the evaluation of property path support is introduced. This
benchmark can use an arbitrary RDF dataset as benchmark dataset and creates queries
based on 8 query templates. Due to the small number of queries and the fact, that these
queries do not test all property path expressions, this benchmark cannot be used for the
semantic evaluation of property path implementations. Nevertheless the results of this
benchmark indicate that ample RDF stores return incomplete or incorrect result sets for
queries containing property paths.

To the best of our knowledge no RDF benchmark exists that tests if the result sets of
property path queries are complete and correct based on the W3Cs semantics.

6 Conclusion
Property paths were introduced with SPARQL 1.1 in 2013. They allow for describing
complex queries in a more concise and comprehensive way. In order to evaluate the
performances of property path query executions of RDF stores, we have developed
a benchmark for semantic-based evaluation of property path implementations called
BeSEPPI. BeSEPPI comes with a small RDF dataset especially created for the evaluation
of property path queries and 236 queries, which test each property path expression. Our
benchmark measures execution times of queries and allows for comparing different RDF
stores with each other. Furthermore, BeSEPPI tests if the result sets of the benchmark
queries adhere to the W3Cs semantics of property paths and calculates completeness
and correctness of result sets.

With BeSEPPI we have benchmarked 5 common stores, namely Blazegraph, Al-
legroGraph, Virtuoso, RDF4J and Apache Jena Fuseki. The results of BeSEPPI show
that only Apache Jena Fuseki could return complete and correct result sets for all 236
queries. Each of the other 4 stores returned incomplete or incorrect result sets for some
queries and Virtuoso and RDF4J do not support all types of queries. Furthermore, we
have compared the execution times of queries, for which all stores returned complete
and correct result sets. This comparison shows that Virtuoso and RDF4J have the lowest
execution times. Fuseki is slightly slower. Blazegraph and AllegroGraph needed the most
time for the execution of queries containing property path expressions.

With our evaluation we could observe that ample RDF stores do not completely
adhere to the W3Cs semantics of property paths. Therefore, BeSEPPI seems to be useful
for RDF store developers to evaluate or improve their property path implementations.
The results in [3] have shown, that the correctness and completeness of property path
query result sets may depend on the size of the loaded dataset. Therefore, we will
perform a semantic evaluation of property path implementations on a large dataset in
the future. Furthermore, we will evaluate the correct associativity (i.e.[[E1/E2/E3]]ΓG =
[[(E1/E2)/E3]]ΓG = [[E1/(E2/E3)]]

Γ
G) and the correct precedence (i.e.[[E1|E2∗]]ΓG =

[[E1/(E2∗)]]ΓG) of several combined property path expressions in the future.

References
1. S. Malyshev, M. Krötzsch, L. González, J. Gonsior, and A. Bielefeldt, “Getting the most out

of wikidata: Semantic technology usage in wikipedia’s knowledge graph,” in Proceedings of
the 17th International Semantic Web Conference (ISWC’18) (D. Vrandečić, K. Bontcheva,
M. C. Suárez-Figueroa, V. Presutti, I. Celino, M. Sabou, L.-A. Kaffee, and E. Simperl, eds.),
LNCS, Springer, 2018.

2. S. Harris and A. S. https://www.w3.org/TR/sparql11 query/, “Sparql 1.1 query language.”
3. D. Janke, A. Skubella, and S. Staab, “Evaluating sparql 1.1 property path support,” in

BLINK/NLIWoD3@ISWC, 2017.
4. M. Arenas and J. Perez, “Federation and navigation in sparql 1.1,” in Reasoning Web. Semantic

Technologies for Advanced Query Answering (T. Eiter and T. Krennwallner, eds.), vol. 7487
of Lecture Notes in Computer Science, pp. 78–111, Springer Berlin Heidelberg, 2012.

5. B. DuCharme, Learning SPARQL, Chapter 2 pp 19-44, Chapter 3 pp 45-100. O’Reilly Media,
Inc., 2011.

6. E. V. Kostylev, J. L. Reutter, M. Romero, and D. Vrgoč, “Sparql with property paths,” in The
Semantic Web - ISWC 2015 (M. Arenas, O. Corcho, E. Simperl, M. Strohmaier, M. d’Aquin,
K. Srinivas, P. Groth, M. Dumontier, J. Heflin, K. Thirunarayan, K. Thirunarayan, and S. Staab,
eds.), (Cham), pp. 3–18, Springer International Publishing, 2015.

7. M. L. Richard Cyganiak, David Wood, “Rdf 1.1 concepts and abstract syntax,” tech. rep.,
W3C Recommendation, 2014.

8. E. Prud’hommeaux and A. S. https://www.w3.org/TR/rdf-sparql query/#ask, “Sparql query
language for rdf w3c recommendation,” 2008.

9. https://lists.w3.org/Archives/Public/public-sparql dev/2017OctDec/0009.html.
10. https://lists.w3.org/Archives/Public/public-sparql dev/2018JanMar/0004.htmls.
11. https://www.w3.org/2001/sw/DataAccess/rq23/sparql defns.html#defn_ASK.
12. M. Saleem, I. Ali, A. Hogan, Q. Mehmood, and A.-C. Ngonga Ngomo, “Lsq: The linked

sparql queries dataset,” in International Semantic Web Conference (ISWC), 2015.
13. Y. Guo, Z. Pan, and J. Heflin, “Lubm: A benchmark for owl knowledge base systems,”Web

Semant., vol. 3, pp. 158–182, Oct. 2005.
14. M. Morsey, J. Lehmann, S. Auer, and A.-C. N. Ngomo, “Dbpedia sparql benchmark: Perfor-

mance assessment with real queries on real data,” in Proceedings of the 10th International
Conference on The Semantic Web - Volume Part I, ISWC’11, (Berlin, Heidelberg), pp. 454–469,
Springer-Verlag, 2011.

15. C. Bizer and A. Schultz, “The berlin sparql benchmark,” International Journal On Semantic
Web and Information Systems, 2009.

16. A. Gubichev, S. Bedathur, and S. Seufert, “Sparqling kleene: fast property paths in rdf-3x,” 06
2013.

17. J. Hoffart, F. M. Suchanek, K. Berberich, and G. Weikum, “Yago2: A spatially and temporally
enhanced knowledge base from wikipedia,” Artificial Intelligence, vol. 194, pp. 28 – 61, 2013.
Artificial Intelligence, Wikipedia and Semi-Structured Resources.

18. Y. Zhang, P. M. Duc, O. Corcho, and J.-P. Calbimonte, “Srbench: A streaming rdf/sparql
benchmark,” in The Semantic Web – ISWC 2012 (P. Cudré-Mauroux, J. Heflin, E. Sirin,
T. Tudorache, J. Euzenat, M. Hauswirth, J. X. Parreira, J. Hendler, G. Schreiber, A. Bernstein,
and E. Blomqvist, eds.), (Berlin, Heidelberg), pp. 641–657, Springer Berlin Heidelberg, 2012.

19. V. Thost and J. Dolby, “QED: out-of-the-box datasets for SPARQL query evaluation,” in
Proceedings of the ISWC 2018 Posters & Demonstrations, Industry and Blue Sky Ideas Tracks
co-located with 17th International Semantic Web Conference (ISWC 2018), Monterey, USA,
October 8th - to - 12th, 2018., 2018.

