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Abstract The solution of Reynolds–averaged Navier–Stokes equations em-

ploys an appropriate set of equations for the turbulence modelling. The clo-

sure coefficients of the turbulence model were calibrated using empiricism and

arguments of dimensional analysis. These coefficients are considered univer-

sal, but there is no guarantee this property applies to test cases other than

those used in the calibration process. This work aims at revisiting the cali-

bration of the closure coefficients of the original Spalart–Allmaras turbulence

model using machine learning, adaptive design of experiments and accessing

a high–performance computing facility. The automated calibration procedure

is carried out once for a transonic, wall–bounded flow around the RAE 2822

aerofoil. It was found that: a) an optimal set of closure coefficients exists that

minimises numerical deviations from experimental data; b) the improved pre-

diction accuracy of the calibrated turbulence model is consistent across differ-

ent flow solvers; and c) the calibrated turbulence model outperforms slightly

the standard model in analysing complex flow features around additional test

cases (ONERA M6 wing, axisymmetric transonic bump, forced sinusoidal mo-

tion of NACA 0012 aerofoil). A by–product of this study is a fully calibrated

turbulence model that leverages on current state–of–the–art computational

techniques, overcoming inherent limitations of the manual fine–tuning pro-

cess.

Keywords Uncertainty Quantification · Calibration · Turbulence model

closure coefficients · Machine–learning · Sobol indices · Adaptive design of

experiments
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1 Introduction

A deterministic computational fluid dynamics (CFD) analysis gives a single

solution for a certain set of input parameters, e.g. geometry, free–stream flow

conditions, etc. In practice, these parameters may be uncertain and the asso-

ciated variability may have a significant impact on the final results. For this

reason, stochastic CFD analyses are needed to assess the uncertainty in the

solution and to achieve a certain level of robustness or reliability in the fi-

nal aerodynamic design [24]. The point–collocation nonintrusive polynomial

chaos technique is the method of choice to propagate the uncertainty in CFD

analyses, as exemplified in [8] (and references therein). This technique requires

less deterministic CFD analyses than Monte Carlo techniques by assuming a

polynomial chaos expansion of low degree for the uncertain output variables.

Today, it is apparent that CFD workflows contain considerable uncertainty,

often not quantified [18]. Numerical uncertainties in the results come from:

a) physical modelling errors and uncertainties, for example, in accurate pre-

dictions of turbulent flows; b) numerical errors arising from mesh and dis-

cretisation inadequacies; and c) aleatory uncertainties derived from natural

variability, and epistemic uncertainties due to the lack of knowledge in the pa-

rameters of a specific fluid problem. The work presented in the current paper

addresses the last type of uncertainty above–mentioned, which calls for turbu-

lence modelling uncertainty quantification, sensitivity analysis and parameter

calibration.
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Uncertainty in the closure coefficients of a turbulence model is an impor-

tant source of error in Reynolds–averaged Navier–Stokes (RANS) analyses, but

no reliable estimator for this error component exists. It is important to stress

that RANS equations rely on several assumptions, e.g. the Boussinesq approx-

imation, which assumes that the turbulent shear stress depends linearly on the

mean rate of strain rate. Due to this, it is very unlikely that truly universal co-

efficients exist. There is no consensus on the best values of these coefficients, as

suggested by the wide range of values proposed in the open literature [1]. Cur-

rent efforts to address these concerns use Bayesian approaches. For example,

Ref. [6] described a stochastic error estimate of turbulence models based on

variability in the model coefficients. In a sensitivity analysis, it was found that

Von Kármán constant, k, has the largest impact on uncertainty in u+ in the log

layer of a flat plate boundary layer. This conclusion was suggested analysing

results from several turbulence models, including Spalart–Allmaras [21] and

Wilcox k − ω models. In [12], a Bayesian inference framework was used to

quantify the uncertainty in Spalart–Allmaras model due to the uncertainty in

the closure coefficients. For a flat plate and a backward–facing step problem,

the coefficients k, cv1, and cb1 were found to contribute most to the uncertainty

in Spalart–Allmaras model for the chosen output quantities of interest.

References [11,10] proposed methodologies to estimate the closure coef-

ficients of the Wilcox k − ω turbulent model for steady and unsteady flow

scenarios, respectively. In [11], similar in scope to the one proposed herein, a

gradient–based optimization strategy was employed to find the values of the
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model coefficients providing the best fit between experimental observations

and simulated data. Differently from [11], the methodology developed in this

work exploits machine learning techniques to build accurate surrogate models

that: (a) are used to perform a global sensitivity analysis, providing interest-

ing insights about the problem under study; and (b) are coupled with a global

optimization strategy, mitigating the impact of the choice of the initial point

on the optimizer’s behaviour and the risk to find sub–optimal solutions due to

local minima.

Reference [14] quantified the uncertainty and sensitivity of three turbulence

models (Spalart–Allmaras, Wilcox k − ω, and Menter shear–stress transport

models) due to uncertainty in the values of closure coefficients for transonic,

wall–bounded flows. The analysis was carried out using point–collocation non-

intrusive polynomial chaos technique. The test cases were for the flow around

an asymmetric bump at zero degrees angle of attack and for Case 6 of the

RAE 2822 aerofoil at a prescribed normal force coefficient [2]. For the aerofoil

case, the angle of attack was adjusted for each (baseline) turbulence model to

match the target normal force coefficient. The same angle of attack was then

used in all subsequent simulations where the closure coefficients were modified

for uncertainty quantification. Observe that this approach fails to meet the

prescribed normal force coefficient for any variation of the closure coefficients

from their baseline values. Furthermore, no indications were given on the best

values of the closure coefficients for each turbulence model that improved the

agreement with experimental data.
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The aim of this study is to revisit the calibration of the standard values

of the closure coefficients commonly employed in Spalart–Allmaras turbulence

model. The work is structured around three technical objectives. The first

objective is to exploit current state–of–the–art machine–learning techniques to

assess the sensitivity of the output quantities of interest on the uncertainty in

turbulence model closure coefficients. The second objective is to calibrate the

closure coefficients of Spalart–Allmaras turbulence model by minimising the

deviation of numerical results from available experimental data for transonic

flows around an aerofoil (Case 6 of RAE 2822). The third objective evaluates

the generality of the calibrated Spalart–Allmaras turbulence model on different

flow solvers and the expected improvements in prediction accuracy for a variety

of transonic flows (Case 9 of RAE 2822, ONERA M6, axisymmetric transonic

bump, forced sinusoidal motion of NACA 0012 aerofoil).

The need for an automated calibration, which overcomes the limitations

imposed by a manual tuning, is not a conjecture, but an intrinsic requirement

to deliver a complete and usable turbulence model. As an example, ANSYS

Fluent informs the user that:

”The γ transition model has only been calibrated for classical bound-

ary layer flows. Application to other types of wall–bounded flows is pos-

sible, but might require a modification of the underlying correlations.”1

1 https://www.sharcnet.ca/Software/Ansys/17.0/en-us/help/flu_th/flu_th_sec_

turb_intermittency_over.html (retrieved December 21, 2018).

https://www.sharcnet.ca/Software/Ansys/17.0/en-us/help/flu_th/flu_th_sec_turb_intermittency_over.html
https://www.sharcnet.ca/Software/Ansys/17.0/en-us/help/flu_th/flu_th_sec_turb_intermittency_over.html
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The uncertainty quantification, the sensitivity analyses, and the calibration

of the turbulence model closure coefficients suffer from the curse of dimension-

ality [3]. In this respect, the reader is invited to reflect upon the work by

Sørensen [20]:

”Determining the empirical correlations by numerical optimization,

along with debugging the model, demands a very large amount of com-

putations, and it is the hope that other researchers can confirm the

present expressions by implementation in other flow solvers.”

To overcome the large amount of computations, a strategy based on surro-

gate models is employed. This requires setting up and running a design of

experiments (DOE) plan to acquire the relevant information on the system

behaviour. A surrogate model that mimics the dependence between the tur-

bulence model closure coefficients and the output quantities of interest is then

built and employed to perform the sensitivity analysis and the model calibra-

tion. The key aspect of this strategy is to minimise the number of deterministic

CFD simulations while maintaining an accurate representation of the system

behaviour. In this study, these aspects are encapsulated in an adaptive DOE

(ADOE) algorithm that: a) identifies the regions of the design space that are

more difficult to model due to strong non–linearities or scarcity of data, for

example; b) distributes iteratively the design points in those areas of the de-

sign space; and c) selects automatically the surrogate model that best fits the

results obtained from the DOE plan. All these features are supported by the

machine–learning framework described in [4], where the robustness, efficiency
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and accuracy of the proposed ADOE algorithm were found to be superior to

traditional DOE techniques.

The paper continues in Section 2 with a description of the flow solver and

the machine–learning approach used to calibrate the closure coefficients of

Spalart–Allmaras turbulence model. Then, the sensitivity and calibration of

Spalart–Allmaras turbulence model is presented in Section 3. The application

of the calibrated turbulence model to cases different from the calibration case

is discussed in Section 4. Finally, conclusions and future recommendations are

given in Section 5.

2 Methodology

The computational framework consists of two software tools. The flow solver in

Section 2.1 was used for the flow predictions. The uncertainty quantification,

the sensitivity analysis and the optimisation of the closure coefficients were

carried out with the software described in Section 2.2.

2.1 Flow Solver

The flow solver employed in this study is DLR–Tau [17], a finite volume

based CFD flow solver used by several aerospace industries across Europe.

The DLR–Tau solver uses an edge–based vertex–centred scheme, where the

convective terms are computed via several first and second–order schemes,

including central and upwind types. The viscous terms are computed with a
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second–order central scheme. Time integration is performed either with var-

ious explicit Runge–Kutta schemes or the Lower–Upper Symmetric Gauss-

Seidel (LU–SGS) implicit approximate factorisation scheme. For time accurate

computations, the dual time stepping approach of Jameson [9] is employed.

Convergence is improved with a multi–grid acceleration technique based on

agglomerated coarse grids. Several models for turbulence closure are available.

For the Spalart–Allmaras model [21], the transport equation is

∂ν̃

∂t
+ uj

∂ν̃

∂xj
= cb1 (1 − ft2) S̃ ν̃ −

[
cw1 fw − cb1

k2
ft2

] ( ν̃
d

)2

+ . . .

1

σ

[
∂
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(
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∂ν̃

∂xj

)
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∂xi

∂ν̃
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] (1)

The turbulent eddy viscosity is calculated by

µt = ρ ν̃ fv1 (2)

where

fv1 =
χ3

χ3 + c3v1
, χ =

ν̃

ν
, and ν =

µ

ρ
(3)

Furthermore, one has that
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k2 d2
fv2 Ω =

√
2WijWij fv2 = 1 − χ

1 + χfv1
(4)
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(
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g6 + c6w3

) 1
6
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(
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)
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[
ν̃

S̃ k2 d2
, 10

]
(5)

ft2 = ct3 e
(−ct4 χ2) Wij =

1

2

(
∂ui
∂xj

− ∂uj
∂xi

)
cw1 =

cb1
k2

+
1 + cb2

σ
(6)

In its original formulation [21], Spalart–Allmaras model includes 11 closure

coefficients. In DLR–Tau, the model implementation neglects the trip terms,

ct1 and ct2, which are also passive for the transonic, wall–bounded flows of

this study. Herein, nine closure coefficients (after removing ct1 and ct2) were
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Table 1 Spalart–Allmaras closure coefficients and epistemic intervals

Parameter Standard value Lower bound Upper bound

σ 0.6666̄ 0.6000 1.4000

k × 101 4.1000 3.6000 4.2000

cv1 7.1000 6.9000 7.5000

cw3 2.0000 1.5000 2.7500

ct3 1.2000 1.0000 2.0000

ct4 × 101 5.0000 3.0000 7.0000

cb1 × 101 1.3550 1.2893 1.4000

cb2 × 101 6.2200 6.0983 7.0000

cw2 × 101 3.0000 0.5500 3.5250

varied for the uncertainty quantification and sensitivity analysis. A summary

of Spalart–Allmaras closure coefficients to be varied and their associated epis-

temic intervals are reported in Table 1. The choice of the epistemic intervals,

some of which differ slightly from [14], lies on empirical suggestions, physical

constraints, and experimental evidence [1,14,21].

The choice for using DLR–Tau was made to demonstrate that uncertainty

in closure coefficients has been overlooked in the past, even for an industrial–

grade software tool. This situation may have arisen for convenience, by remov-

ing additional difficulties from the multifaced complexities of CFD algorithmic

implementation, or negligence, by treating CFD as an established technique.

The present work carries out an investigation into an intrinsic weakness of

turbulence modelling, and creates a preliminary background knowledge for a

robust engineering design.
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2.2 Machine–learning Framework

The machine–learning framework is provided by the software platform Noe-

sis Optimus 2. The framework consists of an iterative ADOE technique that

analyses available data, generally produced by previous iterations or previous

DOE runs, to distribute the design points of the next iteration in areas of

the parameter space considered of interest. The choice of the location of new

sample points is driven by two competing factors. The first factor, denoted

space–learning, tends to cover uniformly the design space. No information

about the response of the model is therefore needed. The second factor, de-

noted feature–learning, aims at improving the accuracy of the surrogates by

identifying critical areas of the design space, such as non–linearities and discon-

tinuities. The reader is referred to [4] for more details on our implementation

of space–learning and feature–learning factors, the associated algorithms, and

the relevant benchmark cases (analytical and industrially–relevant).

A key aspect of the machine–learning framework, which represents the

backbone of the ADOE algorithm, is the capability to identify automatically

the best surrogate models for a given set of design points. In the current im-

plementation, Kriging interpolating models together with linear, cubic and

thin–plate radial basis functions are considered, without applying any regu-

larization technique. The selection of the best model is accomplished through

the following steps:

2 https://www.noesissolutions.com/our-products/optimus (retrieved December 21,

2018).

https://www.noesissolutions.com/our-products/optimus
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1. for each type of model, a leave–1–out cross–validation is applied;

2. the corresponding values of the coefficient of determination (denoted as

R2
PRESS) is calculated based on the cross-validation residuals;

3. the best model is identified as the one characterized by the smallest value

of the R2
PRESS metric.

The advantages of the ADOE algorithm consist therefore on the possibility to

perform in a completely unsupervised fashion: a) the iterative selection of the

design point locations considered in the DOE campaign; and b) the choice of

the response surface model type. These features, embedded in Noesis Opti-

mus, are exploited in the current study to assess the sensitivity of the output

quantities of interest (flow solution and aerodynamic coefficients) on the un-

certainty in the closure coefficients of Spalart–Allmaras turbulence model, and

to calibrate automatically the values of these coefficients based on available

experimental data.

3 Transonic Wall–bounded Test Case

Uncertainty quantification and sensitivity analysis for the aerofoil test case

are reported in this Section. The Section continues with the calibration of the

closure coefficients, discusses the implementation across different flow solvers,

and investigates the influence of the spatial discretisation on the results.
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3.1 Description

Navier–Stokes calculations for Case 6 of the RAE 2822 aerofoil [2] were per-

formed with Spalart–Allmaras turbulence model. The experimental data for

this case are for M = 0.729 and Re = 6.5 · 106 at a prescribed normal force

coefficient CN = 0.743. For all calculations, the angle of attack, α, was ad-

justed to match this value of CN . This is a countermeasure taken to minimise

the possibility of an inaccurate measurement of the angle of attack, favouring

the use of the numerical integration of the measured pressure coefficient data

as a more reliable reference condition. Ensuring the accuracy of experimental

data is at the centre of much research, and the interested reader is referred to

the concluding remarks for recent initiatives in this direction.

The computational grid adopted for the flow simulations, shown in Fig-

ure 1(a), is available from the NPARC Alliance Validation Archive web site 3.

The C–grid, denoted hereafter the coarse grid, consists of a single–block with

369 × 65 points. The far–field boundary is placed at about 20 chords from

the aerofoil, and the distance of the first grid points off the aerofoil surface is

about 10−5 chord.

For all steady calculations, the explicit time stepping and the fourth order

Runge–Kutta scheme were used. To accelerate the convergence to a steady

state, a local time–stepping, implicit residual smoothing and a full multigrid

method were used. The discretisation of the convective and diffusive fluxes

3 https://www.grc.nasa.gov/WWW/wind/valid/raetaf/raetaf.htm (retrieved December

21, 2018).

https://www.grc.nasa.gov/WWW/wind/valid/raetaf/raetaf.htm
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of both RANS and Spalart–Allmaras equations is based on the second order

Roe’s flux difference splitting scheme. Venkatakrishnan’s flux limiter was used

for all simulations reported in this paper. A no–slip boundary condition was

applied on the aerofoil surface, and far–field boundary conditions were applied

to the far–field boundaries. The ratio of eddy viscosity to molecular viscosity

0.5 is prescribed at the far–field boundaries, whereas at smooth walls, zero

turbulence condition is enforced. The CFL number was set to 1.2 and the

number of multigrid (MG) levels to 3. Simulations were run for 4,000 MG cycles

to compute the steady state solution. With this setup, the overall residuals of

Navier–Stokes and Spalart–Allmaras equations decreased by about five orders

of magnitude, and all force and moment components converged within 2,000

MG cycles.

For Case 6 (M = 0.729, Re = 6.5 · 106, and prescribed CN = 0.743),

the angle of attack with the standard Spalart–Allmaras model was found to

be α = 2.51 deg, the drag coefficient CD = 0.0150, and the pitch moment

coefficient about quarter chord Cm = −0.0909, compared, respectively, with

2.92 deg, 0.0127, and -0.095 in the experiment. The comparison of the pressure

coefficient distribution with experimental data is shown in Figure 1(b). The

overall agreement is good, but differences are visible near the leading edge and

at the shock front (x/c = 0.15 and 0.55, respectively).
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(a) Coarse grid (b) Pressure coefficient at α = 2.51 deg

Fig. 1 Validation of RAE 2822 aerofoil; in (a), C–type structured grid; in (b), pressure

coefficient distribution for Case 6 (M = 0.729, Re = 6.5 · 106, and CN = 0.743)

3.2 Generation of the Response Surface Model

The computational framework described in Section 2 was used to generate a

response surface model between the input parameters and the system outputs.

The input parameters include nine uncertain closure coefficients of Spalart–

Allmaras turbulence model, which are described by the epistemic intervals in

Table 1, and the angle of attack for matching the prescribed normal force co-

efficient. The system outputs that were monitored consist of three quantities:

the lift and drag coefficients, and the sum of squared errors (SSE) between

the pressure coefficient distribution from experimental data and that from nu-

merical results. For uncertainty quantification and sensitivity analysis, and for

the calibration of the closure coefficients, SSE is used as the output quantity

of interest.

The generation of the response surface model followed the procedure:
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1. the ADOE algorithm was initialised with 1,025 sample points selected by

a two–level full factorial approach including the central point;

2. these results were then used to initialize the ADOE strategy and to com-

pute sequentially (in batches of 25 analyses) an additional set of 1,500

CFD simulations. At the end of this step, the machine–learning framework

identified automatically the best surrogate models to link the ten input

variables to the system outputs based on a table containing 2,525 design

points;

3. for each set of values of the closure coefficients included in this table, the

surrogate models were interrogated to find the angle of attack that matched

the target CN = 0.743. By removing the dependence on the angle of

attack, the 1,024 sample points of the full factorial plan were reduced to

512. Hence, this step reduced the size of the table to 2,013 sample points

by adjusting the angle of attack to match the target CN ;

4. finally, results at the previous step were validated by running a set of

deterministic CFD simulations. Due to problems occurred on the local

network connectivity, only 1,980 experiments out of 2,013 were successful

and used to build the final surrogate models employed in the sensitivity

analysis and calibration of the turbulence closure coefficients.

A total of 4,538 deterministic CFD simulations were run on the high–

performance computing (HPC) facility of the University of Southampton (Iridis4)

in just over 1,000 CPU hours. As an example, the Optimus simulation workflow

is shown in Figure 2. This workflow integrates and automates the following
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main tasks that are performed during each iteration of the DOE/optimisation

analyses:

1. map the value assigned to the turbulence coefficients within the input file

required to run the CFD analysis;

2. submit the job with the instructions to launch the DLR-Tau flow solver to

the resource manager of the HPC facility Iridis4, monitor its status and

retrieve the output files upon job completion;

3. parse the output files to extract the values of the drag, lift, pitch moment,

and pressure coefficients;

4. reorder the list of the calculated pressure coefficients to match those avail-

able from the experimental dataset;

5. calculate the mismatch between simulated and measured pressure coeffi-

cients in terms of the SSE metric.

Fig. 2 Optimus workflow for the job submissions on the HPC facility and for running the

ADOE and optimisation analyses
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Similar to the approach in [13], we employ the generated response surface

models to assess how the uncertainty characterizing the turbulence model co-

efficients impacts the values of the SSE metric. The latter provides a global

quantification of the deviation occurring between experimental and numerical

pressure coefficients along the section of the airfoil. This uncertainty quantifi-

cation study is performed by evaluating the SSE values for 10,000 random per-

turbations of the turbulence model coefficients. A uniform distribution within

the design space identified by the low and high boundaries defined in Table 1

was adopted. As depicted in Figure 3, the uncertainty in the turbulence model

coefficients has a significant impact on the SSE metric, with a variation rang-

ing between 0.14 and 0.24, corresponding to values of the root mean square

error equal to 0.037 and 0.048, respectively. The observed degree of uncer-

tainty highlights the need to perform a sensitivity analysis study to identify

the set of turbulence model coefficients that have the greatest impact on the

uncertainty of SSE.

3.3 Global Sensitivity Analysis

The global sensitivity analysis of the SSE between measured and simulated

pressure coefficient on the uncertainty of the turbulence closure coefficients

was analysed using the surrogate model generated with 1,980 sample points.

The relative contribution of the input parameters to the total variability of

SSE was quantified by relying on the variance–based Sobol indices [19]. This

information is a useful measure as it allows identifying the closure coefficients
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Fig. 3 Histogram of SSE values obtained from 10,000 random

with the largest influence on the output variability. This, in turn, informs

the calibration process by retaining only those coefficients with a Sobol index

larger than a user predefined threshold.

Table 2 reports the values of the first order Sobol indices estimated via

Monte Carlo integration performed with 10,000 random points evaluated on

the surrogate model. In agreement with [6], the Von Kármán constant, k, is

the parameter that has the greatest impact on the variability of the system

output. The mismatch between experimental data and numerical simulations

is also influenced by the value of cv1 and, to a lesser extent, by cb1 and σ. The

sensitivities with respect to the remaining five parameters (cw2, cb2, ct3, cw3,

ct4) are virtually null. Being the value of the residual approximately equal to
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Table 2 First order Sobol indices of Spalart–Allmaras closure coefficients with respect to

SSE

Parameter Sobol index

k 0.775

cv1 0.111

σ 0.046

cb1 0.046

cw2 0.006

cb2 0.004

ct3 0.001

cw3 0.001

ct4 0.000

0.01 (not reported in Table 2), no significant sensitivity can be attributed to

the mutual interaction between the different input parameters.

Results in Table 2 are not unexpected because Spalart–Allmaras model

consists of four nested versions, from the simplest which is applicable to free

shear flows to the most complete, applicable to viscous flows past solid bodies

and with laminar regions. The terms of each version are passive in all the lower

versions of the model. The test case is for transonic wall–bounded flow, and

only few terms of Spalart–Allmaras model (k, cv1, cb1, σ) are therefore active.

3.4 Calibration of Turbulence Model Closure Coefficients

A two–steps approach was adopted to calibrate the closure coefficients of

Spalart–Allmaras turbulence model.
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The first step entails the identification of a global optimum by a differential

evolution algorithm [22]. The differential evolution is a genetic algorithm that

is well–suited to find the global minimum of continuous functions, but at the

cost of many expensive evaluation calls to reach convergence. To overcome

this problem, the function evaluations were performed on the surrogate model,

without the need to run the (expensive) CFD analyses. Because the differential

evolution algorithm is characterised by a non–deterministic behaviour, three

separate runs initialised with different values of the random number generator

seed were performed. This action was taken to mitigate the impact of the

inherent randomness of the optimisation scheme on the obtained solution.

Table 3 lists the optimum values of the turbulence model closure coefficients

for the three optimisation runs. The five parameters with the lowest Sobol

indices (cw2 through ct4) were kept at their nominal values. As expected, the

optimum solutions found by the three test runs yield consistent results for the

input parameters with the highest Sobol indices (k, cv1, σ, cb1). These findings

agree well with the set of optimised closure coefficients obtained through one of

the deterministic CFD analyses executed during the DOE plan. Discrepancies

on the remaining five parameters (cw2 through ct4) are non–influential, being

their Sobol indices virtually null.

The second step of the calibration procedure uses a gradient–based ap-

proach that launches additional deterministic CFD analyses. The non–linear

programming quadratic line (NLPQL) optimisation scheme [15] was the method

of choice. To mitigate the possibility of being entrapped in local minima, the
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Table 3 Optimal values of closure coefficients and corresponding SSE based on genetic

algorithm evaluated on surrogate model and best experiment found during the DOE plan

Parameter Optimisation 1 Optimisation 2 Optimisation 3 Optimal DOE point

SSE = 0.140 SSE = 0.140 SSE = 0.140 SSE = 0.139

k × 101 3.600 3.600 3.600 3.610

cv1 7.500 7.500 7.500 7.431

σ 0.997 1.003 1.009 1.163

cb1 × 101 1.400 1.400 1.400 1.380

cw2 × 101 3.000 3.000 3.000 3.260

cb2 × 101 6.220 6.220 6.220 6.260

ct3 1.200 1.200 1.200 1.963

cw3 2.000 2.000 2.000 1.815

ct4 × 101 5.000 5.000 5.000 3.040

algorithm is initialised from the optimal point found during the second global

optimisation run and reported in Table 3. The optimal values of the closure

coefficients are summarised in Table 4 after only one iteration that entailed

5 additional CFD analyses. It was found that the results of the gradient–

based optimisation are virtually unchanged compared with the optimal values

reported in Table 3. This reflects the good quality of the surrogate model

generated by the machine–learning framework and provides also a validation

of the overall optimisation approach, according to which: a) a large number

of model evaluations performed on the surrogate model is firstly employed to

find a global optimum; and b) a smaller number of CFD analyses is then used

to refine the output of the calibration.
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Table 4 Spalart–Allmaras closure coefficients for the standard and calibrated versions

Parameter Standard value Calibrated value

k × 10−1 4.100 3.600

cv1 7.100 7.500

σ 0.666̄ 1.003

cb1 × 10−1 1.355 1.400

cw2 × 10−1 3.000 3.000

cb2 × 10−1 6.220 6.220

ct3 1.200 1.200

cw3 2.000 2.000

ct4 × 10−1 5.000 5.000

3.5 Improved Prediction Accuracy

This section discusses two aspects related to the optimal values of the closure

coefficients in Table 4. The first aspect is concerned with the improved predic-

tion accuracy of the flow solution for Case 6. Figure 4(a) shows a comparison

of the pressure coefficient obtained with the standard and calibrated Spalart–

Allmaras models. Qualitatively, the solution with the optimal values of the

closure coefficients improves the agreement with the experimental data near

the leading edge and at the shock front. Quantitatively, the SSE is reduced

from 0.206 for the standard Spalart–Allmaras model, obtained for α = 2.51

deg, to 0.137 for the calibrated model, for α = 2.37 deg. The second aspect

is about consistency and generality of the above conclusions across different

flow solvers. For this purpose, two runs were performed with the SU2 flow

solver [5] using the standard and calibrated Spalart–Allmaras models, on the
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same grid employed in DLR–Tau. Numerical settings were similar to those of

DLR–Tau simulations. Figure 4 shows the pressure coefficient obtained with

the standard and calibrated turbulence models in SU2. From the comparison,

the improvement in prediction accuracy when using the calibrated model in

SU2 is identical to that observed in DLR–Tau. This confirms the above con-

clusions are consistent on different flow solvers, and so the advantages of using

the calibrated turbulence model are solver–independent.

(a) DLR–Tau solutions (b) SU2 solutions

Fig. 4 Case 6 of RAE 2822 aerofoil, coarse grid: pressure coefficient with standard and

calibrated turbulence models

3.6 Concluding Remarks

A finer grid was generated to investigate the influence of the spatial discretisa-

tion on the prediction capability for Case 6. The grid of Figure 5(a), denoted

hereafter the medium grid, consists of a single–block with 865×161 points. The
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far–field boundary is placed at 50 chords from the aerofoil, and the distance

of the first grid points off the aerofoil surface is about 5 × 10−6 chord.

As similarly observed for the pressure coefficient distribution on the coarse

grid, the calibrated turbulence model achieves a better agreement with exper-

imental data than the standard version. The comparison is reported in Fig-

ure 5(b). A finer grid resolution improves significantly the pressure coefficient

on the upper surface close to the leading edge and the shock position.

(a) Medium grid (b) Pressure coefficient

Fig. 5 Case 6 of RAE 2822 aerofoil, medium grid: pressure coefficient with standard and

calibrated turbulence models

A quantitative analysis of the influence of the spatial discretisation (coarse

and medium grids) and of the turbulence model (standard and calibrated

versions) on aerodynamic coefficients is summarised in Table 5. In all cases, the

reported angle of attack is such that CN = 0.743±0.0005. On the coarse grid,

the solution of the calibrated Spalart–Allmaras model leads to good predictions

of the drag and pitch moment coefficients. Taking as reference the experimental
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Table 5 Case 6 of RAE 2822 aerofoil: impact of spatial discretisation on aerodynamic

coefficients for standard and calibrated Spalart–Allmaras turbulence models

Exp Data Coarse grid Medium grid

Standard Calibrated Standard Calibrated

α [deg] 2.29 2.51 2.37 2.39 2.27

CD [counts] 127 150 137 142 124

Cm −0.095 −0.091 −0.096 −0.092 −0.096

values, the percentage error in CD is reduced from 18.1 to 7.9%, and the error

in Cm from 4.2 to 1.1% when switching from the standard to the calibrated

turbulence model. Furthermore, results converge towards the experimental

values as the grid is refined, for both versions of the turbulence model. On

the medium grid, the solution of the calibrated turbulence model achieves an

error of 2.3% in CD, compared to 7.9% on the coarse grid. The pitch moment

coefficient is unaffected by the spatial discretisation, with an error as small as

1.1%.

With the above paragraphs as background, one can identify different sce-

narios for the applicability of the current work. In a research scenario, the work

can be used to determine the robustness of a turbulence model, and whether

efforts should be addressed to improve the model in some way. In a design

scenario, there is an interest to reduce the uncertainty arising from the turbu-

lence modelling, or else to design a factor of safety around it. In a commercial

scenario, the work could be used in a cost analysis, whereby uncertainty in

drag coefficient will affect projected fuel costs.
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4 Additional Test Cases

The prediction capability of the calibrated turbulence model was assessed on

additional test cases which were not used in the calibration process. These

four cases include three steady–state problems, and one unsteady problem for

forced sinusoidal oscillations in pitch.

4.1 RAE 2822 Aerofoil, Case 9

The first additional test case involves Case 9 of the RAE 2822 aerofoil. The ex-

perimental measurements suffered from wind tunnel interference effects, which

cannot be estimated a posteriori. Hence, the analyses presented herein are per-

formed for a fixed normal force coefficient, as done for Case 6 in Section 3.

Case 9 is run at M = 0.73, Re = 6.5 · 106, and CN = 0.803, and this results

in little separation downstream of the shock position. Both the coarse and

medium grids were used with the standard and calibrated Spalart–Allmaras

turbulence models.

Computed results of the pressure coefficient are compared to experimen-

tal data in Figure 6. The suction peak on the upper surface and the shock

location are predicted reasonably well by the standard Spalart–Allmaras tur-

bulence model. The improvement revealed by the calibrated turbulence model

is however visible at these two locations. As reference, the pitch moment coef-

ficient from experiments is -0.099, compared to -0.094 for the standard model
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computed at α = 2.7 deg, and -0.098 for the calibrated version at α = 2.6

deg.

Fig. 6 Case 9 of RAE 2822 aerofoil, medium grid: pressure coefficient with standard and

calibrated Spalart–Allmaras turbulence model (M = 0.73, Re = 6.5 · 106, CN = 0.803).

4.2 ONERA M6 Wing

The ONERA M6 wing is a swept wing with no twist, built with the symmetric

ONERA D aerofoil. The computational grid is available from the validation

web site of the NASA CFD code CFL3D 4. The grid with 288 × 64 × 48

cells consists of one zone wrapped as a C–grid about the wing leading edge.

Symmetry boundary condition was used on one side of the domain. The wing

span features 256 cells in the chord–wise direction and 48 cells in the span–

wise direction. The minimum wall distance of the first grid points off the wing

surface is about 2.5 × 10−6 chords at the leading edge and about 5 × 10−6

4 http://cfl3d.larc.nasa.gov/ (retrieved December 21, 2018).

http://cfl3d.larc.nasa.gov/
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chords at the trailing edge. The grid is non–dimensionalised by the span, and

the mean aerodynamic chord is c = 0.54 b.

Calculations were performed with Spalart–Allmaras turbulence model. Ex-

perimental data are available for M = 0.84 and Reynolds number, based on

the mean aerodynamic chord, Re = 12.7 · 106 at a prescribed angle of attack

α = 3.06 deg [16].

As for the aerofoil case, an explicit time stepping and the fourth order

Runge–Kutta scheme were used. To accelerate the convergence to a steady

state, a local time–stepping and implicit residual smoothing were used. The

discretisation of the convective and diffusive fluxes of the RANS equations

was based on the second order Roe’s flux difference splitting scheme, and the

first order accurate scheme was used for Spalart–Allmaras fluxes. Venkatakr-

ishnan’s flux limiter was used. A no–slip boundary condition was set at the

wing surface, and far–field boundary conditions were applied to the far–field

boundaries. The CFL number was set to 1.2 and simulations were run for

20,000 iterations to compute the steady state solution. With this setup, the

overall residuals of Navier-Stokes and Spalart–Allmaras equations decreased

by about five orders of magnitude, and all force and moment components

converged within 15,000 iterations.

The pressure coefficients at six span–wise locations of the ONERA M6

wing are shown in Figure 7. The agreement with experimental data reveals the

difficulty of a RANS solution to capture the double shock at 80% span–wise

location and to predict the pressure coefficient in the cove region at 99% span–
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wise location. These deficiencies, commonly documented in the open literature,

are attributed to physical modelling errors. The calibrated turbulence model

has no effect in these two areas, suggesting that the deficiency is intrinsic to

turbulence modelling and requires higher modelling fidelity in flow physics. By

close inspection, the shock position and intensity of the calibrated turbulence

model achieves a favourable agreement with experimental data, particularly,

at locations 90 and 95% of the span. Although of limited extent, the solution

of the calibrated Spalart–Allmaras model moves towards the reference data.

4.3 Axisymmetric Transonic Bump

The axisymmetric transonic bump is one of the turbulence validation test cases

available from the validation web site of the NASA CFD code CFL3D 5. The

experiment, which used a circular–arc bump, was performed in the NASA–

Ames wind tunnel at Mach 0.875 and Reynolds number 2.8 million. The grid

with dimensions of 360×160 cells (available from the NASA website) was used

in this study, see Figure 8.

A preliminary study was carried out to compare DLR–Tau results with

CFL3D results. The agreement between codes, using the standard Spalart–

Allmaras turbulence model, was good. We then proceeded to assess the in-

fluence of the turbulence closure coefficients using DLR–Tau. Computed re-

sults of pressure coefficient are shown in Figure 9(a). The standard and cal-

ibrated turbulence models provide a similar overall trend, but the calibrated

5 https://turbmodels.larc.nasa.gov/axibump_val.html (retrieved December 21, 2018).

https://turbmodels.larc.nasa.gov/axibump_val.html
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Fig. 7 ONERA M6 wing: pressure coefficient with standard and calibrated Spalart–

Allmaras turbulence model (M = 0.84, Re = 12.7 · 106, α = 3.06 deg).

model provides a sharper pressure jump at the location of separation which is

caused by a combination of shock and trailing–edge adverse gradient, and a

slight under–prediction at or around the flow reattachment. Figure 9(b) shows

the skin friction coefficient. The computed flow separation point is at about

x/c = 0.7 and the reattachment point is observed between x/c = 1.1 and
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Fig. 8 Axisymmetric transonic bump.

1.2, in agreement with the locations extracted from oil–flow visualizations.

The sensitivity of the skin friction coefficient on the turbulence closure co-

efficients is visible in the attached (x/c < 0.7), separated, and reattached

(x/c > 1.1) flow regions, but the locations of separation and reattachment

points are virtually unaffected.

(a) Pressure coefficient (b) Skin friction coefficient

Fig. 9 Axisymmetric transonic bump: standard and calibrated Spalart–Allmaras turbu-

lence model (M = 0.875 and Re = 2.8 · 106)
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4.4 NACA 0012 Aerofoil Forced Sinusoidal Motion

This test case concerns transonic flow predictions for the NACA 0012 aero-

foil undergoing a forced sinusoidal motion in pitch around one–quarter of the

chord. The flow conditions for AGARD CT5 are Mach number 0.755 and

Reynolds number 5.5 million. The motion is characterised by the reduced fre-

quency k = 0.0814, mean angle of attack α0 = 0.016 deg, and amplitude

αA = 2.51 deg.

The unstructured grid, which was also used in a previous work [7], consists

of about 15.3 thousand mesh elements, see Figure 10(a). The first grid layer

on the wall was placed at 5 · 10−6 (for a chord of one) to ensure that y+ was

smaller than 1. An implicit dual–time stepping scheme was used, with a target

residual drop of three orders at each physical time step.

The flow field presents the formation of a strong and highly dynamic shock

wave experiencing Tijdeman and Seebass’s [23] type–B shock motion. The

steady solution includes a virtually symmetric shock wave which periodically

appears and disappears on the upper and lower surfaces as consequence of

the harmonic motion. Figure 10 reports the hysteresis in the normal force

coefficient. Deviations between experiments and analyses are standard and

have already been reported in the literature. The calibrated Spalart–Allmaras

turbulence model has a marginal improvement, mostly confined to the down–

stroke for positive angles of attack and to the up–stroke for negative values.

Corresponding to these two regions, the computed instantaneous pressure co-

efficient distributions are presented in Figure 11. In both cases, the calibrated
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model reveals a sharper pressure jump across the shock compared to that of

the standard model, and the shock location moves closer to the experimentally

measured data.

(a) Unstructured grid (b) Normal force coefficient

Fig. 10 NACA 0012 aerofoil; in (a), unstructured grid; in (b), normal force coefficient

hysteresis loop for AGARD CT5 (M = 0.755, k = 0.0814, α0 = 0.016 deg, αA = 2.51

deg)

5 Conclusions

Uncertainty in the closure coefficients of a turbulence model is an impor-

tant source of error in Reynolds–averaged Navier–Stokes simulations. This

requires turbulence modelling uncertainty quantification, sensitivity analysis

and parameter calibration. The work detailed in this study addressed these as-

pects using state–of–the–art computational techniques, including a machine–

learning software platform with an adaptive design of experiments algorithm,

a modern flow solver, and a high–performance computing facility. The original
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(a) α = 2.01 deg, down–stroke (b) α = −2.00 deg, up–stroke

Fig. 11 NACA 0012 aerofoil: instantaneous pressure coefficient for AGARD CT5 (M =

0.755, k = 0.0814, α0 = 0.016 deg, αA = 2.51 deg)

Spalart–Allmaras turbulence model was analysed. The key elements of this

work are: a) uncertainty quantification and sensitivity analysis required only

about 1,000 CPU hours to explore a ten–dimensional design space; b) only a

selected number of closure coefficients have a large impact on the uncertainty

of the output quantities of interest; this is not unexpected because Spalart–

Allmaras turbulence model has a nested structure, with the outer versions

not altering the lower ones; c) the optimal values of the closure coefficients,

which were implemented in a calibrated version of Spalart–Allmaras model,

were chosen to minimise the sum of square error of the pressure coefficient

between experimental data and numerical results; d) the closure coefficients

with the largest Sobol indices are determined accurately as they have the

largest impact on the output quantities of interest. It was found that the cali-

brated Spalart–Allmaras turbulence model slightly outperforms the standard
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version for transonic, wall–bounded flows around the RAE 2822 aerofoil. The

expected prediction accuracy holds for a variety of other test cases (Case 9 of

RAE 2822, ONERA M6, axisymmetric transonic bump, forced sinusoidal mo-

tion of NACA 0012 aerofoil) other than that used in the calibration process,

as well as across different flow solvers.

Part of the problem with improving the simulation accuracy of the var-

ious effects that occur at challenging flow conditions has been the inability

to access unbiased, data–rich experimental data–banks. There certainly are

alternative computational approaches, e.g. Direct Numerical Simulation, that

are being developed and play an important role in turbulence modelling de-

velopment and validation. However, these approaches are limited in the types

of geometries and flow conditions to be simulated. Recently, the European

Commission through the Horizon 2020 programme has recognised these chal-

lenging issues, and supported the ”Holistic Optical Metrology for Aero–elastic

Research” (HOMER, project ID: 769237) project. Among the basic science

research directions, the project aims at providing space and time–accurate

experimental measurements of fluid and structure for a range of aeronauti-

cal flows, and at supporting the development and enhancement of numerical

methods following a similar approach to that presented herein. Considering a

variety of flow conditions and geometries is necessary to extend the approach

here discussed to a large subset of the turbulence model closure coefficients.
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