Orbital Forcing, Ice Volume, and CO₂ Across the Oligocene-Miocene Transition

Rosanna Greenop1,2, Sindia M. Sosdian1, Michael J. Henehan4, Paul A. Wilson1, Caroline H. Lear3, and Gavin L. Foster1

1School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, UK, 2School of Earth and Environmental Science, University of St Andrews, St Andrews, UK, 3School of Earth and Ocean Sciences, Cardiff University, Cardiff, UK, 4GFZ German Research Centre for Geosciences, Telegrafenberg, Potsdam, Germany

Abstract: Paleoclimate records suggest that a rapid major transient Antarctic glaciation occurred across the Oligocene-Miocene transition (OMT; ca. 23 Ma; ~50-m sea level equivalent in 200–300 kyr). Orbital forcing has long been cited as an important factor determining the timing of the OMT glacial event. A similar orbital configuration occurred 1.2 Myr prior to the OMT, however, and was not associated with a major climate event, suggesting that additional mechanisms play an important role in ice sheet growth and decay. To improve our understanding of the OMT, we present a boron isotope-based CO₂ record between 22 and 24 Ma. This new record shows that δ¹³B/CO₂ was comparatively stable in the million years prior to the OMT glaciation and decreased by 0.7‰ (equivalent to a CO₂ increase of ~65 ppm) over ~300 kyr during the subsequent deglaciation.

1. Introduction

Over the last 55 Myr, Earth’s climate has gradually cooled, but superimposed upon this long-term evolution are numerous intervals of more rapid change (Zachos et al., 2008). One such example of rapid change is the glaciation that coincides with the Oligocene-Miocene stratigraphic boundary (terminology of Miller et al., 1991; ca. 23 Ma, see Figure 1). This transient cooling event is evident in the oxygen isotope record as a two-step increase in benthic foraminiferal δ¹⁸O over 200–300 kyr. The magnitude of this change has typically been estimated to be approximately 1‰ and interpreted to represent a temporary expansion in continental ice volume of between 30- and 90-m sea level equivalent (Liebrand et al., 2011; Mawbey & Lear, 2013; Miller et al., 1991; Pälike, Frazier, & Zachos, 2006; Pälike, Norris, et al., 2006; Paul et al., 2000; Pekar et al., 2002).

However, a recent reevaluation of stacked benthic δ¹⁸O records (Mudelsee et al., 2014), alongside a new oxygen isotope record from IODP Site U1334 in the equatorial Pacific (Beddow et al., 2016), suggests that the excursion is smaller (~0.6‰) and that previous work placed too much emphasis on the extremes in the interpretation of the individual records published across the interval. Assuming the same δ¹⁸O change during the Neogene (Gasson, Deconto, & Pollard, 2016; Gasson, Deconto, Pollard, & Levy, 2016; Langebroek et al., 2010), slightly higher ice volume changes are estimated in a study by Liebrand et al. (2017), which uses the benthic δ¹⁸O record from Site 1264 and assumptions about bottom water temperature. That study estimates that the Oligocene-Miocene transition (OMT) was associated with a change in the East Antarctic ice sheet from near-fully deglaciated to one as large as the modern day. While it is not possible to discount a Northern Hemisphere contribution to the...
continental ice budget of the OMT, despite the uncertainties in total ice volume change, Antarctica is likely to have been the main locus of ice growth at this time (DeConto et al., 2008; Naish et al., 2001).

Existing studies have shown that orbital forcing plays a key role in OMT glaciation because its timing is closely associated with the 1.2-Myr minimum in the modulation of the Earth’s orbit and axial tilt (an obliquity “node”), as well as a minimum in the ~400-kyr-long eccentricity cycle (i.e., a very circular orbit), both of which reduce seasonal extremes and increase the chances of winter snowfall surviving the summer ablation season (Coxall et al., 2005; Pälike, Frazier, & Zachos, 2006; Zachos, Shackleton, et al., 2001) (Figure 1). However, obliquity nodes and eccentricity minima occur regularly throughout the late Oligocene (Laskar et al., 2004), and the amplitude of the preceding node at 24.4 Ma is more extreme than the one associated with the OMT (Pälike, Frazier, & Zachos, 2006). Consequently, despite a clear orbital pacing to the OMT glaciation, changes in other boundary conditions are required to fully explain this climate perturbation (Liebrand et al., 2017).

Records of deep-ocean cooling and ice sheet expansion/recession associated with the OMT glaciation exhibit a number of orbitally paced steps (Lear et al., 2004; Liebrand et al., 2017, 2011; Mawbey & Lear, 2013; Naish et al., 2001; Pälike, Frazier, & Zachos, 2006; Pälike, Norris, et al., 2006; Zachos, Shackleton, et al., 2001). There is a ~100-kyr periodicity throughout the OMT in a number of benthic oxygen isotope records, as well as in δ18Osw (calculated from paired benthic δ18O and Mg/Ca measurements), which is expressed particularly clearly following the main glaciation (Beddow et al., 2016; Liebrand et al., 2011, 2012; Mawbey & Lear, 2013; Zachos, Shackleton, et al., 2001). Statistical analysis of the benthic δ18O record from Ocean Drilling Program (ODP) Site 1264 across the Oligocene-Miocene suggests that the symmetry of ~100-kyr glacial-interglacial cycles changes across the OMT with a switch to more asymmetric cycles, indicative of longer-lived ice sheets that survive deeper into insolation maxima (increased ice sheet hysteresis) together with more abrupt glacial terminations after ~23 Ma (Liebrand et al., 2017).

It has also been suggested that OMT glaciation was associated with a perturbation of the carbon cycle (Mawbey & Lear, 2013; Paul et al., 2000; Zachos et al., 1997). Modeling studies (DeConto & Pollard, 2003; Gasson et al., 2012) and proxy reconstructions (e.g., Foster et al., 2012; Foster & Rohling, 2013; Greenop et al., 2014; Martinez-Boti, Foster, et al., 2015; Pagani et al., 2011; Pearson et al., 2009) both suggest that CO2 plays an important role in controlling the timing of ice sheet expansion and retreat throughout the Cenozoic. The long-term increase of 0.8% in carbon isotopes from 24 to 22.9 Ma, alongside an increase in benthic foraminiferal U/Ca, has been attributed to an increase in global organic carbon burial and the associated reduction in atmospheric CO2 (Mawbey & Lear, 2013; Paul et al., 2000; Stewart et al., 2017; Zachos et al., 1997) (Figure 1). On the basis of deep-ocean CaCO3 preservation indicators and estimates of deep-ocean CO2, an increase in CO2 has also been implicated as one of the driving forces of the deglaciation that followed the glacial maximum at 23 Ma (Mawbey & Lear, 2013). Yet published CO2 records are not of sufficient temporal resolution to test these hypotheses or evaluate the presence of a CO2 decline that would be expected to accompany an increase in organic carbon burial prior to OMT glaciation (Figure 1).
The overall OMT glaciation-deglaciation event as seen in the δ18O record shows a duration of about 1 Myr and is largely symmetrical, with little evidence of ice sheet hysteresis (Beddow et al., 2016; Liebrand et al., 2011; Mawbey & Lear, 2013; Zachos, Shackleton, et al., 2001). While the first generation of Antarctic ice sheet models suggested that the CO2 threshold for retreat of a major ice sheet was high (>1,000 ppm; Pollard & DeConto, 2005), more recent studies suggest that it is possible to simulate a more dynamic ice sheet by (i) incorporating an atmospheric component to the model to account for ice sheet-climate feedbacks, (ii) allowing for ice sheet retreat into subglacial basins via ice cliff collapse, and (iii) accounting for changes in the oxygen isotope composition of the ice sheet (Gasson, DeConto, Pollard, & Levy, 2016; Pollard et al., 2015). Based on modeling experiments for the early to mid-Miocene Antarctic ice sheet, a seawater oxygen isotope change of 0.52‰–0.66‰ can be simulated by changing atmospheric CO2 between 280 and 500 ppm together with applying an astronomical configuration favorable for Antarctic deglaciation (Gasson, DeConto, Pollard, & Levy, 2016). To assess the controls on ice sheet dynamics and the potential applicability of this new generation of ice sheet models to the OMT glaciation, CO2 data are required at substantially higher resolution than is currently available (one sample per ~500 kyr; Figure 1). Here we present a new boron isotope record with an average 50-kyr resolution across the OMT glaciation and use published δ18O records to explore the relationship between ice volume and CO2 across this interval.

2. Methods and Site Information

2.1. Site Location and Information

We utilize sediments from two open ocean drill site holes: ODP Hole 926B from Ceara Rise (3°43′N, 42°54′W; 3,598 m water depth) in the Equatorial Atlantic Ocean and ODP Hole 872C situated in the tropical north Pacific gyre on the sedimentary cap of a flat-topped seamount (10°05.62′N, 162°52.002′E; water depth of 1,082 m). Both sites are currently located in regions where surface water is close to equilibrium (+25 ppm) with the atmosphere with respect to CO2 (Figure 2; Takahashi et al., 2009). Age models for Sites 926 and 872 are from Pälike, Frazier, and Zachos (2006; and references therein) and Sosdian et al. (2018) updated to GTS2012 (Gradstein et al., 2012), respectively. Samples from ODP Site 926 were taken from between 469 and 522 meters composite depth (mcd) and between 110 and 117 mcd at ODP Site 872.

2.2. Boron Isotope Measurements

Trace element and boron isotope (described in delta notation as δ11B—permil variation from the boric acid standard SRM 951; Catanzaro et al., 1970) measurements were made on the CaCO3 shells of the mixed-layer dwelling foraminifera Globigerina praebulloides (250–300 μm) at Site 926. At Site 872, mixed layer dwelling foraminifera Trilobatus trilobus (300–355 μm) was analyzed. The foraminifera were cleaned following the oxidative cleaning methodology of Barker et al. (2003) before dissolution by incremental addition of 0.5 M HNO3. Trace element analysis was then conducted on a small aliquot of the dissolved sample at the University of Southampton using a ThermoFisher Scientific Element XR to measure Mg/Ca for ocean temperature estimates and Al/Ca to assess the competency of the sample cleaning. For boron isotope analysis, the boron was first separated from the Ca (and other trace elements) matrix using the boron specific resin Amberlite IRA 743 (Foster, 2008; Foster et al., 2013). The boron isotopic composition was then determined using a sample-standard bracketing routine on a ThermoFisher Scientific Neptune multicollector inductively coupled plasma mass spectrometer at the University of Southampton (closely following Foster et al., 2013). The uncertainty in δ11B is determined from the long-term reproducibility of Japanese Geological Survey Porites coral standard following Greenop et al. (2017).

2.3. Determining pH From δ11B

The relationship between δ11Bcalcite and pH is very closely approximated by the following equation:

\[
pH = pK_a^* - \log \left(\left(\frac{\delta^{11}B_{sw} - \delta^{11}B_{calcite}}{\delta^{11}B_{sw} - \delta^{11}B_{calcite} - 1,000 \times (\alpha_B - 1)} \right) \right),
\]

where pK_a^* is the equilibrium constant, dependent on salinity, pressure, temperature, and seawater major ion composition (i.e., [Ca]sw and [Mg]sw), \(\alpha_B\) is the fractionation factor between the two boron species (1.0272; Klochko et al., 2006), and \(\delta^{11}B_{sw}\) is the boron isotope composition of seawater. In the absence of changes in
the local hydrography, variations of atmospheric CO₂ have a dominant influence on pH and [CO₂]aq in the surface water.

2.3.1. Vital Effects

Although the δⁱ¹B of foraminifera correlates well with pH and [CO₂]aq, the δ¹¹Bcalcite is often not exactly equal to δ¹¹Bborate (e.g., Foster, 2008; Henehan et al., 2013; Sanyal et al., 2001). For instance, while the pH sensitivity of δ¹¹B in modern G. bulloides is similar to the pH sensitivity of δ¹¹B in borate ion, the relationship between pH and δ¹¹B falls below the theoretical δ¹¹Bborate–pH line (Martínez-Botí, Marino, et al., 2015; i.e., a lower δ¹¹B for a given pH). This effect has been attributed to the dominance, in this asymbiotic foraminifer, of respiration and calcification on the foraminifer’s microenvironment, which both act to drive down local pH (Hönisch et al., 2003; Zeebe et al., 2003). In contrast, photosynthetic processes in symbiont-bearing foraminifera can cause the pH of the microenvironment to be elevated above that of the ambient seawater (Henehan et al., 2013), and the magnitude of the pH elevation determines the offset between δ¹¹Bborate and δ¹¹Bcalcite, which is expressed in a species-specific calibration (Henehan et al., 2016; Hönisch et al., 2003; Zeebe et al., 2003). In order to use modern calibrations further back in time, when the foraminifera were growing under different δ¹¹Bsw, it is necessary to also correct the calibration for the δ¹¹Bsw to avoid overcorrecting for vital effects (see supporting information Figures S1 and S2). Here we adjust the modern calibration intercept using

\[
c_{\delta^{11}B_{\text{sw}}} = c_0 + \Delta \delta^{11}B_{\text{sw}}(m_0-1),
\]

where \(c_0\) and \(m_0\) are the intercept and slope of the calibration at modern δ¹¹Bsw and \(\Delta \delta^{11}B_{\text{sw}}\) is the difference in δ¹¹Bsw between modern δ¹¹Bsw and the δ¹¹Bsw of interest (calculated from the midpoint in the OMT δ¹¹Bsw range; see below). Using the calibration corrected for OMT, δ¹¹Bsw leads to a marginally higher calculated δ¹¹Bborate (~0.25‰ and hence lower pCO₂) compared to the modern calibration.

At Site 872, we measure T. trilobus from the 300- to 350-μm size fraction and use the calibration of Sanyal et al. (2001) with a modified intercept so that it passes through the core top value for the related T. sacculifer (300–355 μm) from ODP 999A (Seki et al., 2010) to correct for vital effects (Sosdian et al., 2018):

\[
\delta^{11}B_{\text{borate}} = (\delta^{11}B_{T.trilobus} - 2.69)/0.833.
\]

At Site 926, G. praebulloides was measured from the 250- to 300-μm size fraction. Studies based on the change in δ¹³C and δ¹⁸O with size fraction have shown that at the OMT, G. praebulloides appears to be symbiotic (Pearson & Wade, 2009), in contrast to the asymbiotic modern G. bulloides that is considered to be its nearest living relative. Consequently, the modern δ¹¹B–pH calibration of G. bulloides (Martínez-Botí, Marino, et al., 2015) is not applicable. Instead, we use the calibration for the symbiotic foraminifera T. sacculifer. In the absence of a T. sacculifer calibration for the 250- to 300-μm size fraction, we apply the
same calibration as at Site 872 from Sosdian et al. (2018). We then use the close temporal overlap between the data from our two sites and with the different species to examine the validity of these vital effect assumptions.

2.3.2. Parameters for Calculating pK_a

Temperature changes across the Miocene-Oligocene boundary are assessed here using Mg/Ca-derived temperatures. Sea surface temperatures (SSTs) are calculated from tandem Mg/Ca analyses using the generic Mg/Ca temperature calibration of Anand et al. (2003). Adjustments were made for changes in Mg/Ca using the records of Brennan et al. (2013) and Horita et al. (2002) and correcting for changes in dependence on Mg/Ca following Evans and Müller (2012) using H = 0.42 calculated from T. sacculifer (Delaney et al., 1985; Evans & Müller, 2012; Hasiuk & Lohmann, 2010). We apply a conservative estimate of uncertainty in Mg/Ca-SST of ±3 °C (2σ), to account for analytical and calibration uncertainty, as well as uncertainty in the magnitude of the Mg/Ca correction. The temperature effect on CO2 calculated from δ11B is −10–15 ppm/°C; consequently uncertainty in SSTs does not significantly contribute to the final pH and CO2 uncertainty. We assume salinity values of the same as modern day at both sites and apply a conservative estimate of ±3 psu to account for any changes in this parameter through time. Salinity has little effect on CO2 uncertainty calculated using δ11B (±3–14 ppm for a ±3‰). We use the MyAMI Specific Ion Interaction Model (Hain et al., 2015) to adjust pK_a for changing Mg/Ca based on the [Mg]sw and [Ca]sw reconstructions of Brennan et al. (2013) and Horita et al. (2002) (Figure S3).

2.3.3. The Boron Isotopic Composition of Seawater (δ11Bsw)

The long residence time of boron in the oceans (~10 to 20 Myr) ensures that major changes in δ11Bsw during our 2-Myr-long study interval are unlikely (Lemarchand et al., 2000), but it is probable that δ11Bsw has shifted from its present value of 39.61‰ over the past 24 Myr. The δ11Bsw during the Oligo-Miocene is therefore a large source of uncertainty and can have a significant effect on the absolute CO2. For instance, Greenop et al. (2017) showed that the various records of δ11Bsw diverge significantly in the early Miocene leading to large uncertainties in absolute CO2 estimates across this interval (Sosdian et al., 2018). Here we apply a flat probability for δ11Bsw in the range of 37.17‰ to 39.73‰ to encompass the different estimates. The minimum of this range is set to the lower 1σ uncertainty of the smoothed Greenop et al. (2017) record between 22.6 and 23.1 Ma calculated from paired planktic-benthic foraminiferal δ11B and δ13C analyses. The maximum extent is the average upper 1σ uncertainty of the δ11Bsw estimates between 21.7 and 24.4 Ma from Raitzsch and Hönisch (2013) calculated from the δ11B of benthic foraminifera, coupled to assumptions in past changes in CO2, using a K0 of 1.0272 (Klochko et al., 2006). This range also encompasses the geochemical modeling estimates of δ11Bsw from Lemarchand et al. (2000) and estimates based on the nonlinear relationship between δ11B and pH alongside estimates of surface to thermocline pH gradients (Palmer et al., 1998; Pearson & Palmer, 2000) from the same time interval (Figure S3).

2.4. Estimating Absolute CO2

To define atmospheric CO2, a second carbonate system parameter, in addition to pH, is required. We use the regression of the Neogene dissolved inorganic carbon (DIC) estimates from Sosdian et al. (2018), where deep-ocean DIC is calculated from benthic δ11B derived estimates of bottom water pH and deep-ocean carbonate ion concentration ([CO3^2-]) constrained by the calcite compensation depth and [Ca]sw. A linear regression is fitted through the deep-ocean DIC estimates and used to estimate changes in surface DIC relative to the modern value of 2,000 μmol/kg (Figure S3). The major source of uncertainty in the DIC estimates is the δ11Bsw record used to calculate bottom water pH (Sosdian et al., 2018). For instance, the three δ11Bsw record used in Sosdian et al. (2018) results in a wide range of calculated DIC estimates (e.g., 1,430 to 1,940 μmol/kg at 21.2 Ma). Consequently, to incorporate this uncertainty, we calculate absolute CO2 using the DIC regressions determined from the three δ11Bsw records (Sosdian et al., 2018). We undertake a full error propagation of CO2 using a Monte Carlo simulation (n = 10,000) by perturbing each data point within the 2σ uncertainty limits in the δ11B measurement (±0.16–0.85‰), SST (±3 °C), sea surface salinity (SSS; ±3 psu), δ13C seawater (flat probability estimate between 37.15‰ and 39.51‰), and DIC (±378–502 μmol/kg). We then combine all the Monte Carlo simulations of CO2 calculated using the three different DIC regressions (n = 30,000) to determine the mean and 2σ of the final CO2 estimate (Figure S4). By using this approach, the final CO2 estimate (and associated uncertainty) reflects the full spread of DIC estimates while utilizing the overlap in the DIC estimates calculated using different δ11Bsw records to increase the
2.5. Estimating Relative Climate Forcing

On time scales of less than a few million years, the close relationship between pH and atmospheric CO2 forcing means that relative pH (ΔpH) can be used to determine the relative climate forcing from CO2 change (ΔF_{CO2}; see Hain et al., 2018, for a full discussion). The estimates of δ^{13}B seawater, DIC, SSTs, SSSs, and the δ^{11}B measurements (and the associated uncertainties) used in the calculation are the same as in sections 2.3 and 2.4; however, in analyzing ΔF_{CO2} rather than absolute CO2 forcing, the uncertainty in the δ^{11}Bsw and secondary carbonate system parameter become less significant with the primary source of uncertainty originating from the δ^{11}Bcalcite measurements (Hain et al., 2018).

ΔF_{CO2} is calculated from ΔCO2 change using the following equation:

\[\Delta F_{CO2} = 5.32 \ln \left(\frac{C}{C_0} \right) + 0.39 \left(\ln \left(\frac{C}{C_0} \right) \right)^2, \]

where C and C₀ are the calculated CO2 values (Byrne & Goldblatt, 2014). Here C₀ corresponds to the oldest sample at 24.02 Ma, and the climate forcing is calculated for the rest of the record relative to this point.

3. Results and Discussion

3.1. δ^{13}B and Temperature Changes Across the OMT

Our record from *G. praebulloides* at Site 926 shows high and relatively stable δ^{13}B values (17.1 ± 0.4‰; hence the lowest CO2) prior to and during the OMT glaciation (Figure 3). After 23 Ma, δ^{13}B decreases in a number of cycles reaching minimum values of 16.3 ± 0.5‰ at 22.5 Ma (the highest CO2). The data from Site 872 extend the record from Site 926 between 21 and 22 Ma, and while the samples from the two sites do not overlap in the time domain, there appears to be good consistency with the data from Site 926, adding confidence to our treatment of vital effects for *G. praebulloides* at Site 926 (Figure 3). When comparing the benthic foraminiferal δ^{18}O record to our δ^{13}B data, there appears to be a decoupling between the two series in the lead up to the glaciation (Figure 3). The δ^{11}B record during this interval shows little change, whereas the δ^{18}O increases by ~0.6‰ between 23.2 and 23.1 Ma. During the deglaciation phase, however, the δ^{11}B rise broadly tracks the decrease in δ^{18}O although the δ^{11}B record shows a transient increase to pre-OMT glaciation levels around 22.8 Ma that is less pronounced in the δ^{18}O record. The δ^{13}B data from Site 872 suggest that elevated CO2 levels are only maintained until ~22.2 Ma, after which CO2 returns to approximately pre-OMT event values. More data are needed to determine whether the δ^{13}B change between 22.2 and 22 Ma reflects a trend in CO2 or whether orbital-scale variations have been undersampled across this interval.

It has been widely hypothesized that a decrease in CO2 prior to the OMT glaciation may have been one of the key triggers of the event (Mawbey & Lear, 2013; Paul et al., 2000; Zachos et al., 1997). Yet we find no evidence, within the resolution of our data, for a δ^{13}B increase (CO2 decrease) across the benthic δ^{13}C increase that has been suggested to signify organic carbon burial in the lead-up to the OMT glaciation (Paul et al.,...
2000; Zachos et al., 1997). That said, the relationship between CO₂ and positive benthic δ¹³C excursions is not always straightforward. For example, a δ¹³C increase during the warming into the Miocene Climate Optimum coincides with a well-documented CO₂ increase (Foster et al., 2012; Greenop et al., 2014) suggesting that organic carbon burial was not the dominant control on CO₂ during that interval. Consequently, while carbon burial may occur prior to the OMT, other factors may act to keep atmospheric CO₂ levels at approximately constant levels.

The Mg/Ca-derived surface ocean temperatures at Site 926 show no clear temperature decrease during the OMT glaciation event (Figure 3), consistent with estimates of thermocline temperatures and planktic δ¹⁸O estimates from the same site (Pearson et al., 1997; Stewart et al., 2017). Mg/Ca measured in thermocline dwelling *Denticuligerina venezuelana* at Site 926 shows no long-term change between 24.0 and 21.5 Ma, with temperature variations of less than 3 °C across the interval and no reduction in thermocline temperatures during the OMT glaciation (Stewart et al., 2017). In our new record, we see a counterintuitive multimillion year decrease in temperature of ~2 °C between 24 and 22 Myr and no clear relationship between temperature and δ¹³O_benthic. Temperatures decrease from ~28 °C prior to the OMT, to values comparable to modern at 23 Ma (modern 26.7 °C; Schlitzer, 2000). Several different factors could explain the lack of coherence between surface water temperature and the other proxy records such as (i) nonthermal control on Mg/Ca (e.g., salinity; e.g., Hönisch et al., 2013), (ii) variable degree of postdepositional dissolution of higher-Mg phases (Brown & Elderfield, 1996), or (iii) local influences on surface water temperature such as variability in the position of the Intertropical Convergence Zone or changes in latitudinal heat transport (Hyeong et al., 2014). The inferred temperature offset between Sites 926 and 872 may be real or attributed to the different taxa used between sites. Further work is needed at multiple sites in order to better understand the surface ocean temperature change associated with the OMT glaciation. We should stress, however, that the temperature effect on the calculation of CO₂ from δ¹³B is relatively minor, and we propagate a large uncertainty in SSTs (3 °C; 2σ).

3.2. The Relationship Between δ¹¹B and δ¹⁸O_sw Across the Transition at ODP Site 926

Benthic δ¹⁸O is a compound record of local salinity, temperature, and global continental ice volume changes. Salinity changes in the deep sea are typically considered negligible, and therefore if an independent reconstruction of temperature can be made, the ice volume component (δ¹⁸O_sw) of the δ¹⁸O record can be isolated. At ODP Site 926, a δ¹⁸O_sw record was developed across the OMT using Mg/Ca temperature estimates from *O. umbonatus* (Mawbey & Lear, 2013). To evaluate the relationship between δ¹⁸O_sw and δ¹¹B across this interval, we have interpolated the δ¹⁸O_sw to our δ¹¹B age points and generated crossplots of the time equivalent data. The crossplots are based on changes in δ¹¹B and relative δ¹⁸O_sw, rather than CO₂ and ice volume, because the large uncertainties in δ¹¹B and Mg/Ca_sw make it difficult to analyze the relationship between the two parameters. This treatment is appropriate because the seawater composition influences absolute values but has a negligible effect on relative changes. That said, the uncertainty of the δ¹¹B and δ¹⁸O_sw records is still relatively large, and there are relatively few data points defining each line; therefore, these patterns should be treated as preliminary. While no relationship exists between ice volume and δ¹¹B/CO₂ ($R^² = 0.06$, p-value = 0.36) across the whole data set, when the δ¹⁸O_sw/δ¹¹B data points are split into peak glacial conditions (low sea level; Figure 4, blue data points) and pre/post-δ¹⁸O excursion (Figure 4, red data points), the data fall along two distinct trends. The exceptions to this finding are two δ¹¹B data points from within the OMT glaciation that coincide with the maximum in eccentricity when δ¹⁸O_sw values were similar to pre/post-OMT event conditions.

Based on the central estimates of the data available, the two different trend lines are statistically significant at the 95% confidence level and thus could reflect the different sensitivity of the ice sheet to CO₂ forcing under different orbital forcing. It is possible that the cool summers associated with low eccentricity would enable the ice sheet to expand further for a given CO₂ forcing compared to high eccentricity conditions, shifting these points from the other trend lines. Alternatively, the observed relationships could be interpreted as evidence for there being two components to the cryosphere, which respond differently for a given CO₂ forcing. Statistical analysis of a long Oligo-Miocene benthic δ¹⁸O record from Walvis Ridge suggests that the OMT is characterized by more nonlinear interactions compared to other intervals with similarly high amplitude δ¹⁸O change, possibly related to cryosphere changes (Liebrand et al., 2017). While we cannot identify
the ice sheet that forms during the OMT glaciation, the Greenland ice sheet, the marine-based West Antarctic ice sheet, and sections of East Antarctic ice sheet have all been shown to be highly sensitive to CO$_2$ and orbital forcing (DeConto et al., 2008; Gasson, DeConto, Pollard, & Levy, 2016; Pollard & DeConto, 2009). While these new δ^{11}B data show some tentative evidence for both an orbital configuration and CO$_2$ control on ice sheet growth over the OMT, more data are clearly needed to further investigate these relationships.

3.3. ΔF_{CO2} Associated With OMT Deglaciation

To assess the significance of CO$_2$ in driving the OMT deglaciation phase, it is instructive to calculate the climate forcing change from the δ^{11}B data. The uncertainty in δ^{11}B$_{sw}$ and the secondary carbonate system parameter become less significant when considering the relative change in CO$_2$ forcing on climate (ΔF_{CO2}) over short time scales (in this case over <1 Myr), compared to when calculating absolute CO$_2$ (Hain et al., 2018). To further reduce uncertainty, we estimate the ΔF_{CO2} between two time windows, identified using the δ^{18}O$_{benthic}$ records (Pälike, Frazier, & Zachos, 2006). A comparison is made between the peak glacial (23.1–22.9 Ma) identified from the δ^{18}O$_{benthic}$ record and a snapshot postevent when δ^{18}O$_{benthic}$ values have stabilized (22.7–22.2 Ma) following the post-OMT seafloor dissolution event (Mawbey & Lear, 2013). Based on this assessment, we calculate that the rebound out of the OMT glaciation was associated with a change in radiative forcing of 1.15 W/m2 (2σ range 0.8–1.5 W/m2). However, we note that while comparing ΔF_{CO2} between two time windows reduces the calculated uncertainty, it may also underestimate the amplitude of ΔF_{CO2} as the CO$_2$ change associated with the maximum change in δ^{18}O$_{sw}$ is not captured.

Our new ΔF_{CO2} estimate can then be compared to published estimates of $\Delta \delta^{18}$O$_{sw}$ to investigate the sensitivity of ice to CO$_2$ forcing over the OMT. Combining several estimates (Beddow et al., 2016; Mawbey & Lear, 2013; Mudelsee et al., 2014), the change in δ^{18}O$_{sw}$ associated with the ΔF_{CO2} of ~1.15 W/m2 can be estimated at ~0.41 ± 0.19‰ (Figure 5). Intriguingly, this estimate is consistent with the range in $\Delta \delta^{18}$O$_{sw}$ modeled for a range of CO$_2$ change scenarios by Gasson, DeConto, Pollard, and Levy (2016; Figure 5). In this way, our data support predictions from new-generation ice sheet models of a dynamic Antarctic ice sheet during the early Miocene that waxed and waned in response to both orbital configuration and atmospheric CO$_2$. However, we note that the changes in ice volume modeled by Gasson, DeConto, Pollard, and Levy (2016) require extreme orbits in favor of Antarctic deglaciation, and it is as yet unclear what effect our observed CO$_2$ change would cause in these models under variable or average orbital configurations. Furthermore, the resolution of our data is not sufficient to determine whether the rate and timing of CO$_2$ and ice volume change is strictly comparable to that used in the modeling runs of Gasson, DeConto, Pollard, and Levy (2016).

3.4. CO$_2$ Changes Prior to the OMT Glaciation

While more robustly determined relative change in ΔF_{CO2} is clearly instructive, absolute reconstructions of CO$_2$ are required to shed light on the role of atmospheric CO$_2$ thresholds in the initiation of the OMT glaciation. Our new δ^{11}B-CO$_2$ data suggest that CO$_2$ rises from a baseline value of ~265 ppm (2σ = 166 ppm) to ~325 ppm (2σ = 218 ppm) following the
deglaciation (average CO2 values are calculated from the postglaciation and peak glaciation windows defined in Figure 5). While the uncertainty on the CO2 estimates is large, primarily as a result of large uncertainties on $\delta^{11}B_{sw}$ and DIC estimates (Figure S5), our data show that, within 1σ uncertainty (68% confidence interval; 200–345 ppm), CO2 is below 400 ppm prior to and during the OMT (Figure 3).

Previous estimates of CO2 across the OMT are sparse. Nonetheless, the absolute values of CO2 during the Oligocene-Miocene transition relative climate forcing (a) $\delta^{18}O$ record from Site 926 (Pälike, Frazier, & Zachos, 2006 and references therein). (b) Relative climate forcing across the Oligocene-Miocene transition calculated from $\delta^{11}B$ data from this study and Greenop et al. (2017; see text for details). Dark and light bands show the uncertainty on relative climate forcing at the 68% and 95% confidence intervals, respectively, at Site 926 (red) and Site 872 (blue). All climate forcing is calculated relative to the data point at 24.02 Ma. The dashed box and grey shaded area highlight the two windows where relative climate forcing is calculated from for the data in (c). In order to investigate the step change in CO2 associated with the deglaciation, we have excluded any data within the deep-ocean dissolution event (Mawbey & Lear, 2013) between 22.9 and 22.8 Ma where $\delta^{11}B$ is highly variable. (c) Relative climate forcing (with a 95% confidence interval; red box) for data from this study plotted with an estimate of Oligocene-Miocene transition relative $\delta^{18}O_{sw}$ change (-0.41 ± 0.19‰; see text for details). The modeled CO2 from Gasson, DeConto, and Pollard (2016) converted to relative climate forcing is also plotted with the model output $\delta^{18}O_{sw}$ and shows good agreement with our data (orange circles).

deglaciation (average CO2 values are calculated from the postglaciation and peak glaciation windows defined in Figure 5). While the uncertainty on the CO2 estimates is large, primarily as a result of large uncertainties on $\delta^{11}B_{sw}$ and DIC estimates (Figure S5), our data show that, within 1σ uncertainty (68% confidence interval; 200–345 ppm), CO2 is below 400 ppm prior to and during the OMT (Figure 3). Previous estimates of CO2 across the OMT are sparse. Nonetheless, the absolute values of CO2
reconstructed here agree well with the published alkenone records of Pagani et al. (2005) and Zhang et al. (2013; when the data are plotted on the age model in Pagani et al., 2011, and updated to the Geological Timescale 2012; Gradstein et al., 2012), as well as leaf stomata CO2 records of Kürschner et al. (2008) (Figure S6). Based on the good agreement between alkenone and boron-isotope based CO2 records across the OMT, in Figure 6, we have plotted records derived using both methodologies to evaluate the multimillion year trends in CO2 leading up to the OMT glaciation. The currently available data for the late Oligocene are sparse; however, it appears that the OMT glaciation occurs following a multimillion year decrease in CO2 and when the orbital forcing was favorable for ice growth. According to our combined multiproxy data set, the CO2 decline begins at 29.5 Ma from values of ~1,000 ppm to a minimum of ~265 ppm at 23.5 Ma (Figure 6).

A potential issue with the interpretation of a long-term late Oligocene CO2 decrease is that the CO2 fall between 27 and 24 Ma is at odds with the ~1‰ secular decrease in benthic δ18O across the same interval, interpreted as an interval of climate warming and reduced ice volume (Mudelsee et al., 2014; Zachos, Pagani, et al., 2001). One possibility is that climate—as far as it is represented by benthic δ18O—and CO2 were decoupled during the late Oligocene (as has been proposed for the Miocene; Herbert et al., 2016). A second possibility is that the relationship between Antarctic climate and deep-water temperature is not straightforward (Lear et al., 2015). For instance, a climate modeling study from the Mid-Miocene Climatic Transition suggests that the emplacement of an Antarctic ice sheet caused short-term Southern Ocean sea surface warming alongside deep-water cooling (Knorr & Lohmann, 2014). The hypothesized initiation or strengthening of the Antarctic circumpolar current during the late Oligocene (Hill et al., 2013; Ladant et al., 2014; Lyle et al., 2007; Pfuhl & McCave, 2005) may also have resulted in large oceanographic changes, with impacts on global temperatures and benthic foraminiferal δ18O, although the timing of Antarctic circumpolar current development is uncertain. A third possibility is that the ice volume accommodated on Antarctica was reduced during the Late Oligocene because of the tectonic subsidence of West Antarctica below sea level (Fretwell et al., 2013; Gasson, DeConto, Pollard, & Levy, 2016; Levy et al., 2016). Indeed, tectonic subsidence and a shift to smaller marine-based ice sheets on West Antarctica during the Late Oligocene has been hypothesized to explain the long-term transition from highly symmetrical to saw-toothed δ18O glacial-interglacial cycles (Liebrand et al., 2017). Finally, it is possible that the current estimates of CO2 do not capture the full extent of the changes across this interval. More work is needed to better understand the relationship between ice volume and global climate changes of the Late Oligocene in order to give further context to the changes in CO2, ice volume, and climate across the OMT glaciation.

4. Conclusions

The new CO2 data presented here, when combined with published Oligocene CO2 data, suggest that the timing of the OMT glaciation is controlled by a combination of declining CO2 below a critical threshold and a favorable orbital configuration for ice sheet expansion on Antarctica. This combination of factors has previously been used to explain the inception of sustained Antarctic glaciation across the Eocene-Oligocene transition, potentially pointing to a common behavior of the climate system as CO2 levels approach an ice sheet expansion threshold through the Cenozoic. Our best estimate of CO2 suggests that values were around ~265 ppm (2σ+166−111 ppm) immediately prior to and during the OMT glaciation and increased by ~65 ppm during the deglaciation phase. Further work is needed, however, to gain a deeper understanding of the
background climate and CO₂ conditions during the late Oligocene so that the relative contribution of the different ice sheets to the volume changes associated with the OMT glaciation can be better determined.

References

Paleoceanography and Paleoclimatology

