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Abstract 

 

Complex-shaped aluminium panels are adopted in many structures to make them 

lighter and stronger. The vibro-acoustic behaviour of these complex panels has been of 

interest for many years but conventional finite element and boundary element methods are 

not efficient in predicting their performance at higher frequencies. Where the cross-sectional 

properties of the panels are constant in one direction, which is the case for extruded panels, 

wavenumber domain numerical analysis can be applied and this becomes particularly suitable 

for panels with complex cross-sectional geometries. Because they are based on a two-

dimensional model, these methods can reduce the computational cost compared with other 

numerical methods using full three-dimensional models, while nevertheless including three-

dimensional effects. In this paper, a coupled waveguide finite element and boundary element 

method is applied to predict the radiation efficiency and sound transmission of a double-

layered aluminium extruded panel from a train carriage floor. The results are interpreted in 

the wavenumber domain from which the contributions of different types of waves can be 

identified. In the calculations, the air cavities between top and bottom panels are considered 

to examine their contributions to the vibro-acoustic behaviour of the panel. The predicted 

results are compared with measured ones obtained using a finite length panel. To reflect the 
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finite length of the actual panel used in the measurement, spatial window functions are 

applied to the sound transmission through the infinitely long panel, giving improved 

agreement with the measurements. 

 

Keywords: aluminium extruded panel; radiation efficiency; sound transmission loss; 

waveguide finite element and boundary element method 

 

1. Introduction 

 

Complex-shaped stiffened panels are widely used nowadays in many structures such 

as railway vehicles, ships and offshore structures, in order to make them lighter and stronger. 

To predict the acoustic performance of these structures, it is essential to understand the vibro-

acoustic behaviour of such complex-shaped panels. As an example of such panels, an 

extruded aluminium panel used in the floor of a railway vehicle, which has a uniform cross-

section along its length, is considered in this study. 

For structures with uniform cross-sections like these extruded panels, wavenumber 

domain analysis becomes particularly suitable for predicting their vibro-acoustic performance. 

The radiation efficiency and sound transmission loss (STL) are two important vibro-acoustic 

properties that are investigated in this study. The radiation efficiency is a measure of sound 

radiation from a vibrating structure, defined as the radiated sound power normalised by the 

surface averaged mean-squared velocity, surface area and characteristic acoustic impedance 

of air. The STL is a measure of airborne sound transmission through a partition, given in 

decibels and defined as the incident sound intensity level minus the transmitted intensity level. 

These properties have been studied previously for extruded panels by a few 

researchers. The radiation efficiency for a simple plate strip has been studied theoretically by 

Xie et al. [1] and they proposed simplified formulae which were used in modelling 

aluminium extrusions from railway vehicles [2]. A numerical analysis for the radiation 

efficiency of plate strips and sound transmission through them has been carried out by 

Prasetiyo [3] using a wavenumber domain numerical method. He found that the numerical 

results coincided well with analytical results. 

For plate strips with longitudinal stiffeners, Orrenius and Finnveden [4] have 

examined the contributions of the stiffeners in terms of dispersion relations by using the 

waveguide finite element (WFE) method. This, also known as the 2.5D FE method, has 
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previously been used for the vibration analysis of waveguide structures such as car tyres [5], 

rails [6, 7], plates [3], etc. From their study, it was found that at high frequencies waves travel 

mainly along the strips (or bays) which are bounded by two adjacent stiffeners. Kim and 

Ryue [8] have predicted the radiation efficiency for single and double layered stiffened plate 

strips numerically and investigated the effect on the results of the stiffeners and an added 

second layer. However, they only studied an extruded panel possessing a relatively simple 

cross-sectional geometry and did not investigate the STL. Zhang et al. [9] recently 

investigated the effect of different reinforcement rib arrangements on the STL through a 

complex shaped panel. Kim and Ryue [10] have examined the STL of an extruded panel used 

for a railway vehicle. They investigated the effects of where the panel is truncated in the 

periodic arrangement of stiffeners and found that the main influence appears below the first 

cut-on frequency of the global bending waves due to differences in stiffness of the strips at 

the edges. 

In predicting the internal noise of a train constructed from extruded panels, Shaw [11] 

applied the statistical energy analysis (SEA) technique. This technique is useful for mid to 

high frequencies but it is not straightforward to apply it to extruded panels. Xie et al. [12] 

studied the mode count and modal density of extruded panels in an attempt to develop an 

SEA model. They used this model to predict the radiation efficiency of the extruded panel [2]. 

Chronopoulos et al. [13] used SEA combined with the 2D wave finite element method, 

also known as the periodic unit cell (PUC) method, to predict the radiation efficiency and 

STL for a sandwich panel. Kohrs [14] used the PUC method to investigate wave propagation 

through light-weight double-layered plates connected by inclined or vertical interior stiffeners. 

Orrenius et al. [15] reviewed both the PUC and 2.5D WFE methods and compared them for 

application to several structures including a complex-shaped extruded panel. In both methods, 

one-way coupling between the structure and outer fluid domains was assumed, making use of 

the Rayleigh integral. These studies have shown that these methods are applicable for 

predicting the radiation efficiency and STL of extruded panels. 

The wavenumber domain analysis is based on the assumption that panels have infinite 

extent in the axial direction. To reflect the finite length of practical panels, Orrenius et al. 

[15] introduced a Rayleigh-Ritz procedure to the WFE method. However, the modal 

summation used in this combined method requires a high computational cost. Alternatively, a 

spatial window technique can also be applied to the wavenumber domain analysis. Villot et al. 

[16] applied a spatial window function in the width and length directions to results from an 
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infinite panel to predict the radiation efficiency and STL through a simple panel. For the STL 

through orthogonally stiffened panels, Legault et al. [17] found that the spatial window 

technique is effective for the stiffened plates at mid to high frequencies where the bending 

wavelength of the panel is smaller than the stiffener spacing. 

In terms of experimental study, Müller [18] has measured the radiation efficiency and 

sound transmission of an extruded panel with a complex geometry, which is a typical floor 

panel of a railway carriage. Nilsson et al. [19] have also measured the STL for the same 

extruded panel in a different test condition. In these experiments, Müller mounted the 

extruded panel in an aperture between two reverberation chambers, whereas Nilsson et al. 

used the reverberation and anechoic chambers. Orrenius et al. [15] also presented 

experimental results obtained using intensity scanning and compared the measured 

transmission losses for a train floor panel with those obtained from both the PUC and WFE 

methods. 

In this paper, the radiation efficiency and STL of an extruded panel from a railway 

vehicle are investigated using the waveguide finite element and boundary element (WFE/BE) 

method. The WFE/BE approach has previously been used to predict the sound radiated from 

rails [20, 21], simple plate strips [3] and stiffened double plates [5, 9, 10]. In this work, the 

dependence of the radiation efficiency on two different types of excitation positions is 

investigated; a point force in the middle of the strip or on an interior stiffener. Also, the air 

cavities between the top and bottom panels are included to examine their contributions to the 

radiation efficiency and STL of the panel. To give insight into the radiation and transmission 

behaviours, results will be presented in the wavenumber domain, from which the 

contributions of different types of waves can be identified. In addition, to consider the finite 

length of the extruded panel in the prediction of the STL, a windowing technique [16, 17] is 

applied in this paper in the length direction. Finally, the numerical results are validated 

through comparison with experiments carried out with a finite length extruded panel. 

 

2. Waveguide finite element and boundary element analysis for an extruded panel 

 

In this section, the waveguide finite element and boundary element (WFE/BE) method 

is described briefly. This method is known to be particularly useful for waveguide structures 

which have a uniform cross-section along one direction ( x  direction in this paper), such as 

rails, plates, pipes, ducts, etc. Details of the derivation of the governing equations are well-
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reported in the literature [5, 20] so only a brief introduction of the method is given here. For 

the results presented in this paper, a software program, called WANDS [22], is used to 

 

Fig. 1. Coordinates and scheme of wave propagation used in WFE analysis. 

 

analyse the vibro-acoustic behaviour of the extruded panel. 

In this wavenumber domain method, only a two-dimensional cross-section of the 

structure is meshed, assuming harmonic dependence on time and on the third direction in 

space, as indicated in Fig. 1. The governing equation of the WFEs for a waveguide structure 

modelled with plate elements is given by 

   2

s s s    K M Φ F , (1) 

where Φ  is the nodal displacement vector in the wavenumber domain,   is the angular 

frequency and   is the structural wavenumber along the x  direction and 

     4 2

4 2 1 0( i ) ( i ) ( i ) 1 is s s s s           K K K K K , (2) 

in which 4sK , 2sK , 1sK , and 0sK  are related to the stiffness of the structure and   is 

the damping loss factor (which may be frequency-dependent). sM  is the mass matrix and 

sF  is the vector of excitation forces at these nodes. For free vibration, i.e. s F 0  and 0  , 

Eq. (2) can be solved for   at given real wavenumbers. This general eigenvalue problem 

provides dispersion relations of waves propagating along the x  direction of the structure. 

If the internal region of the structure is filled with a fluid, such as air, this can also be 

modelled with WFEs. The WFE equation for the fluid is given by 

   2

inf f f    K M Ψ F , (3) 

where 

   2

2 0( i )f f f   K K K , (4) 
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in which 2fK  and 0fK  are the ‘mass’ matrices of the internal fluid and fM  is its 

‘stiffness’ matrix, which are derived from the kinetic and potential energies, respectively [22]. 

inΨ  is the velocity potential at the WFE nodes of the internal fluid and 
fF  is the vector of 

external forces that excite the fluid. The potential formulation is used in preference to a 

displacement formulation as it requires only a single degree of freedom at each node point 

and also the velocity potential can be coupled to the structure as a damping. Accounting for 

the coupling condition between the internal fluid and the structure, the combined governing 

equation becomes 

 
 

 
3 2

3 in

i
ss s

ff f


 



          
           

           
T

M 0K 0 0 C FΦ

0 M0 K C 0 FΨ
, (5) 

where 3C  is the coupling matrix between the waveguide structure and internal fluid and the 

superscript T denotes a matrix transpose. The dispersion relations of this coupled system can 

be obtained by converting Eq. (5) into a generalized eigenvalue problem by setting the right-

hand side to zero [23]. 

When the exterior of the waveguide structure is connected to a fluid domain, 

wavenumber domain boundary elements (WBE) are introduced on the periphery of the 

structure to model the external fluid and these are coupled with the WFEs. The sound 

pressure and the fluid particle velocity in the direction normal to the fluid boundary are 

expressed as  

 0 exip   , ex
nv


 

n
, (6) 

where ex  and ex n  are the velocity potential and the normal velocity at the nodes of 

the boundary elements and n  denotes the unit normal directional vector pointing out of the 

acoustic domain. For a given frequency   and axial wavenumber  , the governing 

equation for the external fluid is given by 

     ex
ex

i

i 



 



Ψ P
H Ψ G

n
, (7) 

where iP  are the incident acoustic pressures acting at the nodes of WBEs,  H  and 

 G  are matrices of acoustic Green’s functions for wavenumber  . In the coupling 

between the WFEs and the external fluid, the pressure from the external fluid is applied as an 
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additional load to the structure. Then the equation of the structure coupled with the external 

fluid is given by 

   2

0 1 exis s s      K M Φ F C Ψ , (8) 

where 
1C  denotes the coupling matrix between the WFEs and WBEs and 

0  is the fluid 

density. In addition, the continuity condition of the normal velocity on the ‘wet’ surface is 

given by 

 ex
2i


 



Ψ
I C Φ 0

n
, (9) 

where I  is the identity matrix and 2C  is the matrix transforming WFE displacements onto 

the normal directions of the coupled WBEs. For the coupling between two-noded BEs having 

a linear shape function and two-noded plate FEs having a cubic shape function, 2C  can be 

determined as 
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w


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 
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 
    

     
    

 
 
  

T , (10) 

where ,n jv  is the normal velocity at jth node of each WBE, T  is the transformation matrix 

from the global coordinates to the local coordinates and is given in Eq. (11.29) in ref. [22]. 

jv  and jw  are the displacements in the y  and z  directions and j  is the rotational 

angle in the x  direction at jth node of each WFE. For WBEs not coupled with WFEs, 

constraints are needed for the uncoupled WBE nodes. The boundary conditions are written in 

matrix form as  

 ex
0 exi a b c


 



Ψ
C Ψ C C

n
. (11) 

For example, fixed boundary conditions are specified by 0aC  , 1bC   and 0cC   at 

each node on the boundary. For the coupled analysis of the complete system, the governing 

equation of the WFE/BEs is given by 
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0 0 H G PΨ
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0 0 C C Cn

. (12) 

Once 
exΨ  and 

ex Ψ n  have been found from Eq. (12), the sound pressure and fluid 

particle velocity at the fluid nodes are obtained in the wavenumber domain from Eq. (6).  

 

3. Modelling the panel and fluid 

 

In this study, the extruded panel shown in Fig. 2(a), which is a part of typical floor 

panel of a railway vehicle, is examined by WFE/BE analysis. The panel is made of 

aluminium but the top plate is covered with a heavy rubber mat. The cross-sectional model of 

the panel structure is illustrated in Fig. 2(b); this is composed of two-noded plate elements 

with a cubic shape function. The rubber mat attached on the top plate is included in the model 

by increasing the mass and damping of the top plate. The stiffening effects by the rubber mat 

is excluded in this modelling because the Young’s modulus of the rubber is much lower than 

that of the aluminium. In principle, it would be possible to introduce an additional WFE layer  

Fig. 2. (a) A specimen of an extruded floor panel for a railway vehicle. (b) Cross-sectional 

WFE model of the extruded panel, (c) WBE model for external air and (d) WFE 

model for internal air. (Dots represent nodes in each model.) 

(a)  

(b) 

 
(c) 

(d) 
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Table 1. Properties and dimensions of the extruded panel. 

Material Model 
Thickness 

(mm) 

Density 

(kg/m3) 

Poisson’s 

ratio 

Young’s 

modulus (GPa) 

Aluminium 

Top plate 2.8 

2700 0.3 70 
Bottom plate 2.7 

Vertical stiffeners 2.3 

Oblique stiffeners 2.6 

Rubber Rubber mat 4.0 1500 - - 

 

for the rubber mat but this would require the use of solid elements rather than plates and 

would increase the mesh size considerably. Each plate element has an average length of about 

12.5 mm and it was checked that this element size is acceptable to represent wave modes up 

to 5 kHz. (The model has about five nodes per bending wavelength along the y direction in 

each bay for the highest order waves at 5 kHz.) The dimensions and properties of the panel 

are listed in Table 1. To consider the stiffening effects of the joints where the interior 

stiffeners are connected to top or bottom plate, the WFEs close to the joints are modelled 

with a thickness that is 20% larger than the remaining plates. 

The damping loss factors of the top and bottom plates of the panel were measured in 

experiments by Zhang et al. [9]. The panel was freely suspended and the damping loss factors 

for each bay of the top and bottom plates are obtained using the energy method [24]. The 

damping loss factors for each bay can be yielded as [9] 

 
 

2

Re p

i

t

Y

m Y



 , (13) 

where i  is the damping loss factor measured at the i th bay, pY  is the point mobility,  

m  is the mass of the extruded panel, tY  is the transfer mobility, and   denotes the 

spatially averaged quantity. The transfer mobilities were measured in each bay with the fixed 

accelerometer varying the impact position along the bay. In total, 50 points were randomly 

excited to measure the spatially-averaged mean squared transfer mobility. The measured 

point mobilities in each bay are presented in Sec. 5.1. 

In the present modelling, the two damping loss factors for the top and bottom plates 

are evaluated by means of the reciprocal average of the values measured in each bay, given 

by 
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Fig. 3. The damping loss factors for the top compound plate and the bottom purely 

aluminium plate. 

 

 

1

1N

i i

N







, (14) 

where   denotes the averaged damping loss factor and N  is the number of bays measured 

in each top and bottom plate. This scheme of averaging is based on the fact that the low 

values of damping will dominate the response and hence the sound radiation and transmission.  

The averaged damping loss factors for the top and bottom plates are illustrated in Fig. 

3. This shows that damping of the top plate is greater than that of the bottom plate due to the 

rubber mat and they both decrease in general as frequency increases. These damping loss 

factors are used for the calculation. The interior stiffeners of the panel are assigned the same 

damping as the bottom plate. 

In the WFE modelling for the radiation efficiency, the panel is set to have free-free 

boundary conditions at both ends for compatibility with the measurements described in Sec. 5 

below. The acoustic model needs to have a closed boundary because a direct BE method is 

implemented for the WBEs. Due to the complicated layout of the interior stiffeners, a proper 

coupling between the WFEs and WBEs at both ends would be quite challenging. So, for 

simplicity, the WBEs enclose the panel in a rectangular shape, as shown in Fig. 2(c). Since 

the height of the panel (about 0.07 m) is relatively small compared with the width of the 

panel (1 m), it is expected that most of the sound will be radiated from the top and bottom 

plates. Hence, the WBEs on both sides are assigned to have zero velocity. The total number 
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of dofs in the model in Fig. 2(b) is 1364, consisting of 1012 for the WFEs (268 elements) and 

352 for the WBEs (172 elements). 

For the case of sound transmission, two separate WBE domains are located on the top 

and bottom plates (at 0z   and z  0.07 m in Fig. 2(c)) and it is assumed that each panel is 

rigidly baffled for 0y   and y  1 m by using half-space Green’s functions in the WBE 

formulation. In the experiments discussed in Sec. 5, the sound transmission was measured by 

installing the panel in a frame set in a wall aperture between two rooms. The practical 

boundary conditions of the panel were somewhere between simply supported and fixed. In 

the numerical study, these two boundary conditions are applied at both ends of the panel to 

examine their effect on the sound transmission of the panel. For the simply supported 

boundary condition, the number of total dofs is 1324, which consists of 1000 for the WFEs 

(268 elements) and 324 for the WBEs (160 elements). For the fixed condition, the total 

number of dofs is 1320, of which 996 are for the WFEs. 

The internal air modelled with WFEs in Fig. 2(d) is composed of 519 four-noded 

quadrilateral elements with linear shape functions. This fluid domain has 721 dofs. 

 

4. Numerical results for the extruded panel 

 

4.1 Dispersion relation 

 

In order to understand the characteristics of waves propagating along the extruded 

panels with different boundary conditions, dispersion diagrams are illustrated in Fig. 4, 

obtained from WFE models of the panels (i.e. without coupling with the interior or exterior 

fluid). These are based on 201 logarithmically spaced wavenumbers from 10-1 to 102 

rad / m with the corresponding frequencies identified from the eigenvalue analysis of Eq. (2). 

For comparison, the acoustic wavenumber is also plotted with a dashed line. 

It can be seen from Fig. 4 that the effects of the boundary conditions are more obvious 

in the low frequency range. There are several waves at low frequencies in the case of the free-

free boundary condition, as shown in Fig. 4(a). These correspond to global motions of the 

extruded panel, i.e. the vertical bending, torsion, lateral bending and longitudinal waves of 

the whole section, in descending order of the wavenumber at 100 Hz. On the other hand, the 

panel with the simply supported boundary condition (Fig. 4(b)) does not have any wave 

below about 87 Hz. However, at frequencies above about 400 Hz and at high wavenumbers, 
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many local modes occur in the plate strips and the dispersion diagrams in Figs 4(a) and 4(b) 

show similar features. 

For the extruded panel with the free-free boundary condition in Fig. 4(a), an 

equivalent single plate can be introduced, which possesses the same dispersion relation as the 

first vertical bending wave in the extruded panel. The density of this equivalent plate is 

obtained by using the longitudinal wave speed, l ec E   where E  is Young’s modulus 

of aluminium and 
e  is the density of the equivalent panel. Since 

lc  evaluated from the 

longitudinal wave in Fig. 4(a) is 4584 m/s, e  becomes 3380 kg/m3. The thickness, eh , of 

the equivalent plate is specified by the radius gyration, 
er , which is given by 

212e e b lr h c c   where bc  is the bending wave speed. bc  is evaluated from Fig. 4(a) 

as 206 m/s at 50 Hz. So, eh  is found to be 10 cm. The vertical bending wavenumber of this 

equivalent plate is plotted in Fig. 4 with the dash-dotted line. Since this bending wave has 

global vertical deformation, its bending stiffness is predominantly governed by the interior 

stiffeners, particularly by the six vertical stiffeners, located between the top and bottom plates. 

 

 

 (a)                                  (b) 

Fig. 4. Dispersion diagrams of the extruded panel with (a) free boundary conditions and (b) 

simply supported boundary conditions. (Acoustic wavenumber is added with a thin 

dashed line; the vertical bending wave of an equivalent plate is presented with a dash-

dotted line; two thick dashed lines in Fig. 4(b) are two first order waves of a single 

bay of the top plate having a width of 0.153 m with simply supported and fixed 

boundary conditions at both ends.) 
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(a)                                    (b) 

Fig. 5. The deformation shapes of two waves marked in Fig. 4(b) with (a) ‘ ’ at 91 Hz and 

0.6 rad/m, and (b) ‘◯’ at 710 Hz and 26 rad/m. 

 

It is seen from Fig. 4 that most of the waves change their dispersion characteristics as 

frequency and wavenumber increase. To observe these features, cross-sectional deformation 

shapes of the first wave (the thick solid line in Fig. 4(b)) at two different frequencies (and 

wavenumbers) marked with ‘ ’ and ‘◯’ are shown in Fig. 5. It can be seen from Fig. 5(a) 

that the wave possesses a global deformation of the panel at 91 Hz and 0.6 rad/m, marked 

with ‘ ’. On the contrary, Fig. 5(b) shows that this wave is converted to a wave localized in a 

strip (or bay), between two adjacent inclined interior stiffeners at 710 Hz and 26 rad/m, 

marked with ‘◯’. Fig. 5(a) also shows that the left-end ( 0y  ) of the panel is much flexible 

compared to the other end at 1y  m due to the disconnection with the interior stiffener. 

In order to see the asymptotic behaviour of the local waves occurring in the top plate, 

the waves propagating along a single bay with a width of 0.153 m (which is typical of the 

strips in the top panel) were investigated for two different ideal boundary conditions: simply 

supported or fixed [4]. The two cut-on frequencies are 217 Hz for simply supported boundary 

condition and 553 Hz for fixed boundary condition. These two first-order mode waves in the 

strip for each boundary condition are illustrated in Fig. 4(b) with thick dashed lines. It can be 

observed that three waves, including the one in thick solid line, are bounded by these two 

asymptote waves of a single bay. (These three are the waves localized in three wide bays in 

the top plate, respectively.) It can be deduced from this that the extruded panel begins to have 

localized deformation within a bay from around 400 Hz. In ref. [18], it was also found from 

experiments that vibration modes localized within a bay in the top plate exist above 400 Hz. 

In addition, it is noted that all the dispersion curves in Fig. 4(a) or (b) do not cross 

each other but instead the waves swap their wave modes when two dispersion curves come 

close [25]. In order to see the conversion of the wave modes, the dispersion diagram in Fig. 

4(b) is replotted in linear frequency-wavenumber scale in Fig. 6(a) and a single wave curve is 

chosen. The wave curve chosen is distinguished with a thick solid line in Fig. 6(a) and six 

frequency-wavenumber points selected are marked with symbols. To display the variation of 
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(a)                                    (b) 

Fig. 6. (a) The dispersion diagram of the extruded panel in Fig. 4(b) replotted in linear scale 

and (b) the magnified diagram between 700 Hz and 2 kHz. (The thin dashed and dash-

dotted lines are the same as in Fig. 4(b).) 

 

the wave modes in the chosen curve more clearly, a magnified diagram of Fig. 6(a) is plotted 

in Fig. 6(b). 

The cross-sectional deformations of the six waves marked are shown in Fig. 7. Fig. 

7(a) shows that the wave chosen cuts on with a global deformation of the panel. Then, this 

wave in Fig. 7(b) is converted to a wave which is governed by the vertical bending stiffness 

of the internal stiffeners so that the slope of the wave curve is largely declined (i.e., the 

bending stiffness is increased) [4]. Since the six vertical interior stiffeners are very stiff in the 

z  direction, their vertical deformations are not much visible in Fig. 7(b) although they 

govern the global panel behaviour. Then, at 1129 Hz and 15.6 rad/m (marked with ‘  ’), the 

 

(a)                       (b)                      (c) 

 

(d)                       (e)                      (f) 

Fig. 7. The deformation shapes of the wave chosen in Fig. 6. (a) ‘ ’ at 812 Hz and 1.4 rad/m, 

(b) ‘ ’ at 939 Hz and 6.5 rad/m, (c) ‘ ’ at 1129 Hz and 15.6 rad/m, (d) ‘ ’ at 1418 

Hz and 25.1 rad/m, (e) ‘◯’ at 1929 Hz and 38.2 rad/m, and (f) ‘△ ’ at 4135 Hz and 

72.9 rad/m. 
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wave has a localized deformation restricted to the left one-third section of the panel which is 

bordered by the pair of vertical internal stiffeners as shown in Fig. 7(c). According to Fig. 

6(b), there are two more wave curves in parallel on the lefthand side of the wave chosen and 

they also have localized deformations within the middle and right one-third sections of the 

panel, respectively. The deformation shape of the wave marked with ‘ ’ is illustrated in Fig. 

7(d). Fig. 7(d) shows that this wave is localized mainly within a single bay in the right one-

third region of the bottom plate. This bay has an external stiffener in the middle which 

stiffens the bay so that the slope of the wave curve becomes declined as shown in Fig. 6(b). 

The wave type at 1929 Hz and 38.2 rad/m where marked with ‘◯’ is shown in Fig. 7(e). This 

wave now has large deformations of two narrow bays and inclined interior stiffeners in the 

mid one-third section of the top plate. At a higher frequency of 4135 Hz and 72.9 rad/m 

(marked with ‘△ ’), the wave type is illustrated in Fig. 7(f). This wave is localized within a 

region bounded by interior and exterior stiffeners in the bottom plate which is narrower than 

the width of the bay. 

The dispersion diagrams for the panel coupled with the internal fluid are shown in Fig. 

8. It is seen from comparison with Fig. 8 that strong coupling between the structure and 

internal air occurs around the acoustic wavenumber. For the free-free boundary condition in 

Fig. 8(a), global wave modes of the panel interact strongly with the internal acoustic wave at 

low frequencies. On the other hand, for the simply supported boundary condition in Fig. 8(b), 

relatively weak interactions take place at low frequencies because the structural 

wavenumbers of the global wave modes are lower than the acoustic wavenumbers. 

 

(a)                                  (b) 

Fig. 8. Dispersion diagrams of the extruded panel coupled with the internal air with (a) free 

boundary conditions and (b) simply supported boundary conditions. 
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4.2 Radiation efficiency of the extruded panel 

 

4.2.1 Calculation of the radiation efficiency 

The radiation efficiency ( ) of the waveguide structure can be determined by 

 rad

2

0 0
inf

c v








, (15) 

where 
0c  is the sound speed in the fluid,   is the perimeter of the cross-section in contact 

with the fluid and 2

inf

v  represents the integral of the mean-squared velocity over the 

length and averaged over the width. This differs from the usual definition of   due to the 

infinite extent of the panel in the waveguide direction. The radiated power, rad , and 

average mean-squared velocity, 2

inf

v , of the panel in Eq. (15) can be obtained from 

     *
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1
Re , , d d
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k

p y v y y  
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    , (16) 
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






 


   , (17) 

where 0k c  is the acoustic wavenumber and the superscript   denotes the complex 

conjugate. In Eq. (16), the integration with respect to   is limited to k  because the panel 

does not radiate sound into the far field for k  . Since the sound pressure,  ,p y , and 

velocity,  ,nv y , can be found from Eq. (6), Eqs (16) and (17) can be evaluated from the 

WFE/BE solutions without transforming the results from the wavenumber domain into the 

spatial domain. 

 

4.2.2 Predicted results for the radiation efficiency 

In the prediction of the radiation efficiency, a unit amplitude point force is applied at 

two different types of location on the bottom plate; one is in the middle of a strip between 

two interior stiffeners and the other is where an interior stiffener is connected to the plate. 

These positions correspond to P1 (or P2) on the strip and P3 and P4 on the stiffener as 

specified in Sec. 5.2.1 below. 
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The radiation efficiency was calculated at 175 logarithmically spaced frequencies 

from 50 Hz to 5 kHz. It was validated that the result does not change significantly if the 

number of frequency steps is doubled. For the prediction of the radiated power, the 

wavenumbers at each frequency were set to have 512 evenly spaced points from k  to k . 

It was confirmed that convergence of the results was achieved with this number of 

wavenumbers. The same number of wavenumbers was also used for the calculation of the 

averaged mean-squared velocity but the wavenumber span for the integral with respect to   

in Eq. (17) was set to 100 rad/m to encompass the entire range of propagating waves at each 

frequency. The calculation time for the average mean-squared velocity and radiated sound 

power at each frequency is in each case about 50 seconds using a 3.5 GHz interior computer 

with 8GB RAM. If the internal air cavity is added, the calculation time increases by about a 

factor of three. 

For the panel model disregarding the internal air, the average mean-squared velocity 

and the sound power radiated from both the top and bottom plates are illustrated in Figs 9 and 

10, as image plots against the frequency and wavenumber. The results in Fig. 9 are obtained 

for a point force applied in the middle of a strip at 0.528y  m (P1 or P2), whereas the 

results in Fig. 10 correspond to a position on a stiffening rib at 0.635y  m (P3). The 

acoustic wavenumber is also plotted with a dashed line. Additionally, the vertical bending 

wavenumber of the equivalent plate displayed in Fig. 4(a) is presented with a dash-dotted line 

in Figs 9 and 10. 

  

(a)                                   (b) 

Fig. 9. Image plots of (a) the average mean-squared velocity and (b) radiated sound power of 

the panel for excitation in the middle of a strip at 0.528y  m, plotted against 

frequency and wavenumber. 
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(a)                                   (b) 

Fig. 10. Image plots of (a) the average mean-squared velocity and (b) radiated sound power 

of the panel for excitation on a stiffener at 0.635y  m, plotted against frequency 

and wavenumber. 

 

For the excitation in the middle of the strip, as shown in Fig. 9, a small number of 

global wave modes generate the vibration at frequencies below about 400 Hz and many 

waves having higher order cross-sectional deformations contribute above about 400 Hz. 

However, in terms of the radiated sound power, the waves which have wavenumbers larger 

than that of the acoustic wave do not contribute at all, see Fig. 9(b). Also, because of the 

higher damping of the top plate, strong vibration and radiation at high frequencies mainly 

come from the local waves in the bottom plate. It is seen from Fig. 9(a) that two wave curves 

possess strong vibration. The deformation shapes of them at 579 Hz (‘ ’), and 700 Hz (‘◯’) 

  

(a)                                    (b) 

Fig. 11. The deformation shapes of the waves marked with (a) ‘ ’ at 579 Hz and 8.9 rad/m 

and (b) ‘◯’ at 700 Hz and 8.9 rad/m in Fig. 9(a). 

  

(a)                                    (b) 

Fig. 12. The deformation shapes of the waves marked with (a) ‘ ’ at 556 Hz and 0.2 rad/m 

and (b) ‘ ’ at 744 Hz and 0.2 rad/m in Fig. 10(a).  
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are illustrated in Fig. 11. Fig. 11 shows that these two waves are localized in the two bays in 

the middle of the bottom plate. Due to the two sets of double vertical stiffeners about 

0.28y  m and 0.62 m, the vibration of the panel is trapped within the two bays in the mid 

section. 

On the other hand, for the excitation on the stiffener, it can be seen from Fig. 10 that 

relatively weak vibration and radiation occur compared with the strip excitation. In addition, 

Fig. 10 shows that the responses are mostly limited to wavenumbers below the vertical 

bending wavenumber of the equivalent single plate. This implies that the interior stiffeners 

govern the global rigidity of the extruded panel so that the panel deforms mainly globally by 

the stiffener excitation. To examine it, the deformation shapes of the two waves, marked with 

‘ ’ and ‘ ’ in Fig. 10(a), generating the relatively large vibration are illustrated in Fig. 12. 

Since the excitation is now applied on a vertical stiffener, the two waves have global 

deformations.  

It is observed from Figs 9 and 10 that the excitation on the stiffener causes less 

vibration and sound radiation than the excitation on the strip. To show this effect more clearly, 

the average mean-squared velocities and the radiated sound powers integrated over 

wavenumber at each frequency are compared in Fig. 13 for the two types of excitation. It can 

be seen from Fig. 13(a) that the excitation on the strip causes much larger vibration than that 

on the stiffener above about 200 Hz and the level difference increases above 400 Hz to 

almost 30 dB. The strip excitation also generates about 15 dB greater sound power on 

  

(a)                                   (b) 

Fig. 13. Comparison of (a) the average mean-squared velocity and (b) radiated sound power 

of the panel, predicted from the two different excitations in the frequency domain 

(integrated over the wavenumber).  
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Fig. 14. The predicted radiation efficiencies of extruded panel with and without air-filled 

cavity. 

 

average than the stiffener excitation above 400 Hz, increasing rapidly from 400 Hz with a 

maximum difference of 25 dB at 630 Hz, as shown in Fig. 13(b). The differences in the 

averaged velocity are bigger than those in the sound power due to the contribution of the 

waves located above the acoustic wavenumber.  

Radiation efficiencies predicted are presented in Fig. 14 in one-third octave bands for 

the two different types of excitation. This shows that the strip and stiffener excitations yield a 

significant variation of radiation efficiency between 1 kHz and 3.15 kHz. In this frequency 

range, the radiation efficiency for the stiffener excitation has levels about 15~20 dB larger 

than those for the strip excitation. This increase can be explained by the fact that the strong 

vibration existing above the acoustic wavenumber, which is created by the strip excitation, 

does not radiate sound into the far field, as indicated in Figs 9 and 10. 

So far, the internal spaces filled with air between the top and bottom plates were 

excluded in the calculation. The effects of the internal air on the radiation efficiency are 

compared in Fig. 14. In this prediction the loss factor of the air cavity is neglected because 

the results are only changed by 1 dB for a loss factor of 10-3, as reported in [3, 26]. It is found 

from Fig. 15 that interactions between the panel structure and internal air occur mainly below 

about 400 Hz for both excitation positions and around 1 kHz for the strip excitation. Below 

about 400 Hz, a reduction by up to 3 dB in the radiation efficiency takes place because global 

wave modes of the panel interact strongly with the internal acoustic wave, see Fig. 8(a). This 

coupling effect at low frequencies appears regardless of the excitation positions. On the other 

hand, around 1 kHz, the radiation efficiency increases by about 5 dB for the strip excitation 
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(a)                                   (b) 

Fig. 15. (a) The average mean-squared velocity and (b) radiated sound power of the panel 

with and without air-filled cavity against wavenumber at 1 kHz for the strip 

excitation. 

 

due to the internal air. To help explain this, Fig. 15 shows the wavenumber domain responses 

at 1 kHz with and without the air-filled cavity for the strip excitation. Fig. 15(a) shows that 

there is a considerable change of the velocity due to the internal air cavities around 18 rad/m, 

which corresponds to the acoustic wavenumber at 1 kHz. However, when this is integrated 

over the whole wavenumber range, the results with and without air cavity become nearly 

identical. In terms of the radiated power, however, the waves above the acoustic wavenumber 

do not radiate sound into the far field as seen in Fig. 15(b). Hence, the integral of the radiated 

power over the wavenumber domain results in a considerable increase of the radiated power. 

For stiffener excitation, on the contrary, the air cavities do not make a significant variation to 

the predicted result at high frequencies because the vibration responses are mostly limited to 

wavenumbers below the vertical bending wavenumber of the equivalent plate. Base on this 

examination, the averaged mean-squared velocity and radiation efficiencies predicted by 

including the air cavities will be compared with experimental results in Sec. 5.2.2. 

 

4.3 STL of the extruded panel 

 

4.3.1 Calculation of the STL 

For the calculation of sound transmission using the WFE/BE method, incident waves 

which excite the panel should be defined, i.e., iP  in Eq. (12). It is assumed that the sound is 
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(a)                                 (b) 

Fig. 16. Coordinates used to define a wave incident on the bottom plate (a) in 3D space and 

(b) in the y z  plane. 

 

incident on the bottom plate with an angle,  , in the y z  plane and an angle,  , relative 

to the x -axis, as depicted in Fig. 16. The incident sound pressure at a frequency   can be 

written as 

  
ii i

, , e e eyx z
k yk x k z

i ip x y z P
 

 , (18) 

where iP  is the amplitude of the incident sound pressure and xk , yk  and zk  are the 

wavenumbers along the x , y  and z  directions, respectively. These can be expressed in 

terms of the angles   and   as 

 cosxk k  ,  sin cosyk k   ,  sin sinzk k    (19) 

where xk  is equal to the structural wavenumber,  , and the acoustic wavenumber of the 

incident wave is written as  
1 2

2 2 2

x y zk k k k   . Since the component of fluid particle 

velocity of the incident wave normal to the bottom plate is given by 
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the incident power per unit length in the x -direction, ˆ
i , can be obtained by 

  
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2

i

i

P
y

c

 
 


   . (21) 
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The sound pressure,  , ,tp y  , and fluid particle velocity,  , ,tv y  , on the surface of 

the top plate can be used to determine the transmitted power per unit length,  ˆ ,t   , given 

by 

       *1ˆ , Re , , , , d
2

t t tp y v y y     


   . (22) 

The sound power transmission coefficient,  , is defined by the ratio between the 

incident and transmitted powers as 

  
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


. (23) 

Since Eq. (23) applies to the specific angles   and  , the diffuse field transmission 

coefficient, d , is evaluated using [27] 
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. (24) 

According to ref. [15, 28], the range of elevation angles which gives a good agreement 

between the predicted and measured results is from 12  to 90  in the coordinates given in 

Fig. 16. Hence, the lower limits of the integration range for   and   are set to 

0 0 12    in this prediction. Finally, the STL through the panel for an incident diffuse 

sound field is determined using  

 10

1
10log

d

R


 
  

 
. (25) 

 

4.3.2 Application of the spatial window functions for finite length panels 

The WFE/BE approach adopted in the present paper is based on the assumption that 

the model is infinitely long in the x  direction. For practical applications to structures with a 

finite length, however, this assumption is not suitable. In general, the STL of a panel is 

evaluated in experiments by installing it in an aperture in a rigid wall located between two 

chambers. This corresponds to a baffled condition along the x  direction of the panel. To 

represent this in the WFE/BE method, a rectangular window function is introduced here 

corresponding to the length of the actual panel.  



24 

 

A Hanning window, which gives zero displacements at the boundaries, may be more 

appropriate than a rectangular window for the comparison with the measured results. 

However, it was confirmed that the STL with a Hanning window is only approximately 2 dB 

higher than that with a rectangular window below 400 Hz for the present model. Hence, only 

the STL with the rectangular window will be presented in this paper. Windowing was not 

applied to the prediction of the radiation efficiency in the previous section because in the 

corresponding measurement the baffled boundary condition along the x  direction is not 

satisfied (see Sec. 5.2.1). 

A rectangular window function in the spatial domain is applied to the infinitely long 

waveguide structure, given by   1w x   for 2wx L  and   0w x   for elsewhere. wL  

denotes the length of the window function which corresponds to the length of the finite panel. 

This rectangular window can be represented in the wavenumber domain by the Fourier 

transform as 

  
 sin 2

2

w

w

w

L
w L

L





 . (26) 

The wavenumber domain window function in Eq. (26) is used for calculating the sound 

transmission in this study. 

The entire process of implementing spatial windows can be decomposed into three 

steps [16]. As a first step, the window function is applied to the incident pressure which 

impinges with the angles   and   in the spatial domain by 

      , , , , , , ,i w ip x y p x y w x    , (27) 

where the subscript w  denotes the windowed quantity. Eq. (27) can be expressed as a 

convolution in the wavenumber domain 

      , , , , , , ,i w ip y p y w        , (28) 

where the operator   denotes the convolution. The windowed fluid particle velocity of the 

incident plane wave is found from ,i wp  by 
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
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Then, the windowed incident power,  , ,i w   , can be obtained by  
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Fig. 17. The spatial windowing effects on the incident and transmitted sides of the panel. 
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As the second step, the transmitted power by the windowed incident wave, ,t w , can be 

obtained from the WFE/BE solutions ( ,t wv  and ,t wp ). The ratio between  , ,i w    and 

 , ,t w    for the infinite panel has already been evaluated as  ,    by Eq. (23). In the 

third step, the second window function (velocity window in Fig. 17) is applied to the panel’s 

velocity at the transmitting side. After finding the windowed normal velocity, ,t wwv , of the 

top panel, the transmitted sound pressure, ,t wwp , can be calculated by 

    1

, 0 ,, i ,t ww t wwp y v y    H G , (31) 

and finally the power transmitted through the finite length panel,  , ,t ww   , can be 

predicted by integration as in Eq. (30). 

Hence, the transmission coefficient, w , for the windowed panel can be expressed as 

a combination of the three steps by 
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, (32) 

where ˆ
i w iL   . Eq. (32) shows that the windowed transmission coefficient can be 

calculated from the product of the transmission coefficient of the infinite panel,  ,   , and 

the ratios between the powers before and after applying the window functions. The two terms 

 ,i    and  , ,i w    for the incident side in Eq. (32) can be found theoretically, 

whereas the remaining three parameters (  ,   ,  , ,t w    and  , ,t ww   ) are 
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evaluated from the WFE/BE analysis. For diffuse incidence, the STL of the windowed panel 

can be obtained by following the calculation given in Eqs (24) and (25), replacing   with 

w  in Eq. (24). 

 

4.3.3 Predicted results for the STL 

To check the convergence of the result for the number of incident angles, the STLs for 

two different numbers of incident angles are compared. The angles   and   are both set 

to vary from 12  to 90  with 15 or 25 equally spaced steps so that 225 or 625 incident 

angles in total are considered. It was found from this comparison that the STL remains nearly 

the same for these two different intervals of the angles. Based on this result, 225 incident 

angles with 15 equally spaced intervals are used in the remainder of this study. The 

calculation time is about 25 seconds per frequency using the same computer used in the 

calculation of radiation efficiency. If the internal air cavity is considered in the calculation, 

the time is again increased by about a factor of three. 

The STLs with and without air cavities between the two outer plates are also 

compared. This examination showed that the air cavities do not make a considerable change 

to the predicted STL in the whole frequency range. This can be explained from the influence 

of the internal fluid on the dispersion relations, see Figs 4(b) and 6(b). The structural 

wavenumbers in the extruded panel remain lower than the acoustic wavenumbers below 350 

Hz. This implies that the air cavities do not interact strongly with the structural waves at low 

frequencies. Moreover, at high frequencies the coupling with the internal fluid will be 

relatively weak because of the strong mechanical connection between the top and bottom 

panels. Consequently, this ensures that the effects of the air cavity on the sound transmission 

is negligible for this complex-shaped panel. Based on this result, the air cavities are 

disregarded in the further calculations to make the model small and to save computing times. 

In the case of a double layered panel having less structural connections between the two 

plates, the effects of the air cavities would become significant [3], leading to the so-called 

mass-air-mass resonance [28]. 

The STL predicted for the simply supported boundary conditions is presented in Fig. 

18(a). In order to see the contribution of each wave to sound transmission, the transmission 

coefficient     is evaluated for each frequency and illustrated in Fig. 18(b) as an image 

plot over frequency-wavenumber domain by using cosxk k  .     in Fig. 18(b) is 



27 

 

 

(a)                                 (b) 

Fig. 18. (a) Predicted STLs through the extruded panel and (b) image plot of the transmission 

coefficient     for simply supported boundary conditions against frequency and 

wavenumber. 

 

calculated by performing only a single integration over   in Eq. (24). The vertical bending 

wave curve of the equivalent plate is also plotted in Fig. 18(b). 

 Fig. 18(a) shows that the lowest STL (i.e., the largest transmission in Fig. 18(b)) 

occurs at 150 Hz but the first cut-on frequency of the simply supported panel is about 87 Hz 

as shown in Fig. 4(b). In general, simple panels having a constant damping over frequency 

have the minimum STL at the first cut-on frequency of the global motion but the extruded 

panel does not due to the high damping at this frequency (see Fig. 3). Fig. 18(b) reveals that 

the sound generated from the global wave mode is transmitted well at low frequency below 

 

(a)                                (b) 

 

(c)                                (d) 

Fig. 19. (a), (b) and (c) The deformation shapes of the three waves marked with ‘◯’ at 724 

Hz and 10 rad/m and (d) a wave marked with ‘ ’ at 724 Hz and 1.4 rad/m in Fig. 

18(b). 
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Fig. 20. The deformation shapes of the waves around 2 kHz and 16.6 rad/m, marked with ‘ ’, 

in Fig. 18(b). 

 

400 Hz. Also, there are several waves which make distinguishable transmission around 800 

Hz and 2 kHz, corresponding to the dips in Fig. 18(a). 

To check the wave modes contributing to the dip of STL around 800 Hz in Fig. 18(a), 

the waves marked with ‘◯’ and ‘ ’ at 724 Hz in Fig. 18(b) are chosen. At the wavenumber 

of 10 rad/m, marked with ‘◯’, three wave curves overlap as presented in Fig. 4(b). The 

deformation shapes of these three waves are illustrated in Figs 19(a), 19(b) and 19(c). All of 

them are the waves localised in each one-third section of the panel and have the first order 

modes of the two individual bays in there. Since these waves are located above the vertical 

bending wavenumber of the equivalent plate, it is also justified that they are said to localized 

waves. Meanwhile, there exists two waves at 1.4 rad/m (marked with ‘ ’), which is below 

the vertical bending wave curve of the equivalent plate. The deformation shape of one of the 

two waves are shown in Fig. 19(d). This wave has the global deformation of the top and 

bottom plates but each bay has the first order mode. 

Another dip of STL at 2 kHz in Fig. 18(a) is caused mainly by the waves around 

16.6 rad/m marked with ‘ ’ in Fig. 18(b). Five waves exist there, and the deformation shapes 

of four of them are illustrated in Fig. 20. They are the waves having the localized second 

order mode of the bays in the bottom plate and the first order mode of the narrow bays in the 

top plate. It is found from Figs 18, 19 and 20 that the STL drops due to the local resonances 

of the bays in the extruded panel. 

In order to see the effect of the boundary conditions on the STL, the fixed boundary 

conditions are applied at both ends of 0y   and 1 m. The dispersion diagram of the 

extruded panel with the fixed boundary conditions are illustrated in Fig. 21(a). It is found 

from Fig. 21(a) that the first global wave mode cuts on at 136 Hz, which is higher than for the  
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(a)                                 (b) 

Fig. 21. (a) The dispersion diagram for the fixed boundary condition and (b) image plot of the 

transmission coefficient     for fixed boundary conditions against frequency and 

wavenumber. 

 

simply supported boundary condition in Fig. 4(b) but the dispersion curves for these two 

different boundary conditions become similar as frequency increases. The STL predicted for 

the fixed boundary condition is illustrated in Fig. 18(a) together with that for simply 

supported boundary conditions. Fig. 18(a) shows that there is an increase of STL up to about 

10 dB at frequencies below 125 Hz, where the first global wave mode cuts on with the fixed 

boundary condition. However, the variation in the predicted results due to the boundary 

conditions is negligible above 125 Hz, except around 1 kHz where about 3 dB drops due to 

the fixed boundary condition. Also, they still have two dips at 800 Hz and 2 kHz.  

To see the wavenumber domain feature, the transmission coefficient     is 

presented in Fig. 21(b) as an image plot. In comparison between Figs 18(b) and 21(b), it is 

seen that the panel with the fixed boundary condition transmits more power around 900 Hz 

than that with the simply supported boundary conditions because there are a couple of more 

waves around that frequency. Hence, the STL for fixed boundary conditions becomes about 3 

dB lower than that for simply supported boundary conditions, as shown in Fig. 18(a). Since, 

in the experiment, the actual fixture condition would be in between the simply supported and 

fixed boundary conditions, the STLs for the both boundary conditions will be compared with 

the experimental results in Sec. 5.3.2. 

The effect of the spatial window on the STL is also examined and illustrated in Fig. 

18(a). This investigation shows that the rectangular window increases the STL by up to about 
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7 dB at frequencies below about 400 Hz, where the global wave modes contribute dominantly. 

However, the applied window function makes negligible effects to the predicted STL above 

400 Hz. This implies that an extruded panel with a finite length can be regarded as infinitely 

long at frequencies above the cut-on of the strip wave modes. The predicted STL using the 

spatial window will be compared with the experimental results in Sec. 5.3.2. 

 

5. Comparison of numerical results with experiments 

 

In this section, the results obtained from the WFE/BE approach are compared with 

those obtained experimentally on a finite panel. The extruded panel used in the experiment is 

shown in Fig. 2(a) and has a length of 1.5 m along the extrusion. Regarding the actual length 

of the train coaches and the assumption of waveguide, the length 1.5 m would not be long 

enough but chosen for lab experiments. The experiments for the radiation efficiency and 

sound transmission were done separately with different set-ups. 

 

5.1 Comparison of point mobility 

 

In this section, the predicted point mobility of the extruded panel is compared with 

measured ones obtained by Zhang et al. [9], who hung the panel freely with elastic ropes and 

measured the point mobilities using an impact hammer and an accelerometer. The measured 

positions are illustrated in Fig. 22. S1 to S4 are located midway between two adjacent interior 

and exterior stiffeners on the bottom side, except S2 which is off-centre on a strip. S5 to S10 

are midway between two adjacent interior stiffeners on the top side. All these positions are 

located at about 1/5 of panel length from one end. 

 

 

Fig. 22. The cross section of the panel and measured points for the point mobilities [9]. 
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(a)                                 (b) 

Fig. 23. Comparison of point mobilities obtained from numerical simulation and experiments 

at (a) S1 and S4, and (b) S2 and S3 on the bottom plate. 

 

The point mobilities at S1 and S4 are illustrated together in Fig. 23(a) because they 

are in similar geometric conditions (width of bay and location of exterior stiffener). The 

predicted results at these two points agree well with the measured ones in the whole 

frequency range. The point mobilities in Fig. 23(a) have two peaks around 600 Hz and 2 kHz, 

coming from the cut-on of the first and second local wave modes of the corresponding bays 

formed by the two adjacent internal stiffeners, respectively. On the other hand, point 

mobilities measured and predicted at S2 and S3 are compared in Fig. 23(b). The predicted 

ones coincide well with the measured ones below 400 Hz but become about 8 dB less 

between 500 Hz and 2.5 kHz but its reason is not clearly identified yet. 

The predicted point mobilities at S5 to S10 on the rubber mat side (top plate) are 

compared with the measured ones in Fig. 24, grouping them based on analogous geometric 

condition of the measurement positions. The predicted and measured results at S5 and S9 are 

presented in Fig. 24(a). Since S5 and S9 are in nearly the same geometric condition (strip 

width and the location within the strip), the point mobilities at these two points are expected 

to be similar. However, the measured result at S5 have a large discrepancy below 315 Hz so 

that it seems to have a measurement error there. The numerical and measured results at S6 

and S8 in Fig. 24(b) and at S7 and S10 in Fig. 24(c) show good agreements. The frequencies 

at which the peak responses occur in Fig. 24 correspond to the cut-on of the first order 

bending wave modes of each bay where the measurement points belong to.  
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(a)                                 (b) 

 

(c) 

Fig. 24. Comparison of point mobilities obtained from numerical simulation and experiments 

at (a) S5 and S9, (b) S6 and S8, and (c) S7 and S10 on the top plate. 

 

5.2 Comparison of radiation efficiency  

 

5.2.1 Experimental set-up of radiation efficiency 

To measure the radiation efficiency, the panel was hung freely with elastic ropes in a 

reverberation chamber [18] so that that the coupling effects between the panel and chamber 

would be excluded. A mechanical excitation was applied with a shaker. This shaker was 

attached to the panel via a slender rod stinger connected to the force transducer. This was 

necessary to allow the panel to be excited in only one direction so that no rotation was 

introduced. The measurements were made of the surface-averaged panel vibration using a 
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Fig. 25. The locations of four excitation points applied on the bottom plate. 

 

Table 2. The coordinates of excitation points represented in Fig. 25. (The origin is at the top 

left-hand corner of the plate.) 

Excitation point  x (m) y (m) 

P1 0.78 0.528 

P2 1.10 0.528 

P3 0.78 0.635 

P4 1.05 0.460 

 

scanning laser vibrometer. The spatially-averaged sound pressure in the reverberation 

chamber was measured, from which the sound power could be determined. 

In these measurements, two types of excitation point were chosen on the bottom plate 

as described in Sec. 4.2.2. One is in the middle of a bay (or a strip), and the other is where an 

interior stiffener is connected. The specific locations of each excitation point are indicated in 

Fig. 25, and their coordinates are listed in Table 2. 

 

5.2.2 Results of radiation efficiency 

In the experiment for the radiation efficiency, the first bay of the bottom plate from 

the left were excluded in measuring the average mean-squared velocity because the panel was 

hung there by a wire. To reflect the reduced scanned area in the calculation of the radiation 

efficiency, the width of 0.87 m, excluding the portion of the first bay of the bottom plate on 

the left from the panel, is considered at top and bottom plates. The reduced width is also 

considered in the calculation of the radiated powers because there are few changes of the 

radiated powers by the reduced width. 
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The numerical results of the averaged mean-squared velocity of the panel are 

compared with experimental ones in Fig. 26. It is stated in ref. [18] that the x  directional 

modes of the extruded panel occur below 400 Hz. The resonance frequencies of the finite 

length panel are listed in Table 3. m  and n  in Table 3 denote the orders of the modes in 

the x  and y  directions. Since these x  directional modes do not appear in the numerical 

results, there are considerable discrepancies between the predicted and measured results at 

these resonance frequencies below 400 Hz. For the strip excitation shown in Fig. 26(a), the 

predicted result shows fair agreement with the measured ones but there is a level drop of 

about 10 dB at around 500 Hz. For the stiffener excitation shown in Fig. 26(b), the predicted 

results are much less than the measured ones in whole frequency range. This increased 

discrepancy in the stiffener excitation seems to be caused by the fact that the stiffener 

excitation creates mainly global wave modes which have long wavelength and then easily 

affected by the finite length.  

Fig. 27 shows numerical results of the vibration transmissibility, i.e. the ratio between 

the average mean-squared velocities on the top and bottom plates. Since the global resonance 

 

Table 3. The resonance frequencies corresponding to the global wave modes [18]. 

Mode ( m , n ) (1, 1) (2, 0) (2, 1) (1, 2) 

Frequency (Hz)  154 190 312 384 

 

 

(a)                                    (b) 

Fig. 26. Comparison of averaged mean-squared velocity obtained from numerical simulation 

and experiments for (a) strip excitations at P1 and P2 and (b) stiffener excitations at 

P3 and P4. 
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(a)                                    (b) 

Fig. 27. Comparison of the vibration level difference between the top and bottom plates 

obtained from numerical simulation and experiments for (a) strip excitations at P1 

and P2 and (b) stiffener excitations at P3 and P4. 

 

modes in Table 3 will have similar level of vibration on the top and bottom plates, the x  

directional resonances disappear in the vibration transmissibility. For the strip excitation, the 

vibration transmissibility simulated increases above 400 Hz where the local strip wave modes 

occur. This tendency also appears in the experimental results. However, the numerical and 

measured results have level differences of about 7 dB around 1.25 kHz. On the other hand, 

 

 

(a)                                    (b) 

Fig. 28. Comparison of radiation efficiencies obtained from numerical simulation and 

experiments for (a) strip excitations at P1 and P2 and (b) stiffener excitations at P3 

and P4. 
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for the stiffener excitation, the predicted vibration transmissibilities are within about 5 dB on 

average except between 400 Hz and 1 kHz where the bottom plate has bigger deformations 

than the top plate (see Fig. 12). The measured results in Fig. 27(b) give similar behaviours to 

the predicted ones but have at most 10 dB larger transmissibility between 600 Hz and 2.5 

kHz. This implies that the vibration of the bottom plate is underestimated in the simulation. 

Some of these differences may be caused by the fact that the measurements were conducted 

on a finite panel whereas the model is for an infinite one. 

The measured radiation efficiencies are compared with the predicted ones in Fig. 28. 

For the strip excitation, the results generally look similar although there are considerable gaps 

around 500 Hz and between 1.25 kHz and 2.5 kHz. This discrepancy looks coincide with the 

level of discrepancy in the mean-squared velocity shown in Fig. 26(a), which becomes a 

denominator in the calculation of the radiation efficiency. Nevertheless, it can be said that the 

WFE/BE approach is applicable in predicting the radiation efficiency of the finite length 

panel for the strip excitation. On the other hand, for the stiffener excitation, the predicted 

results in Fig. 28(b) provide bigger discrepancy than the strip excitation. This may be 

attributed to the fact that the stiffener excitation generates mainly low wavenumber waves as 

shown in Fig. 10. Hence, the responses predicted by the WFE/BE approach for the stiffener 

excitation are likely to be discrepant from those measured from the short finite length panel. 

Therefore, the WFE/BE method becomes less suitable for the prediction of radiation 

efficiency from this finite length panel in case of the stiffener excitation. 

 

5.3 Comparison of STL  

 

5.3.1 Experimental set-up of STL 

The experiment for the sound transmission through the extruded panel was conducted 

according to the International Standard, ISO 140 part 3 [29]. For acoustic excitation, the 

 

Fig. 29. The cross-section of the extruded panel mounted between two rooms. 
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diffuse sound field in the source room was implemented by a loudspeaker driven by random 

white noise. The diaphragm of loudspeaker faced towards a wall to reduce the contribution of 

direct sound waves at the microphone. The panel was mounted between two reverberation 

chambers within a wooden frame and the exposed edges were sealed with silicone rubber as 

illustrated in Fig. 29. One room was excited using a loudspeaker and the spatially-averaged 

sound pressures in each room were measured using a pressure microphone attached to a 

rotating boom. Further details for the experimental set-ups and post-processing of the results 

are given in ref. [18]. 

 

5.3.2 Result of STL  

For the same extruded panel, Nilsson et al. carried out an experiment to measure the 

STL by mounting it between an anechoic and reverberation chambers [19]. Comparisons are 

made with this result as well as the one from [18] measured between two reverberant 

chambers. In the WFE/BE analysis, two STLs are evaluated for simply supported and fixed 

boundary conditions by applying the spatial rectangular window function. In the STL 

prediction, the damping loss factors in Fig. 3 measured from the free panel are again used 

although these may differ from the actual damping of the panel mounted in the wall, 

especially at low frequencies. However, no measurements were made of the damping in this 

mounted configuration. 

The predicted and measured STLs are compared in Fig. 30 together with that 

estimated by the field incidence mass law [28]. The STL measured from ref. [19] is about 2 

dB higher than that in the measurement from ref. [18] above 300 Hz. The STL from the mass 

law is over 5 dB higher than the measured ones at low frequencies and the gaps gradually  

 

Fig. 30. Comparison of STLs obtained from the numerical simulation and experiments. 
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grow as frequency increases. It is sure that STL by the mass law is not suitable for predicting 

the STL for the complex shaped panel. The WFE/BE results for the simply supported and 

fixed boundary conditions have similar features with the measured ones in general above 125 

Hz with about 3~5 dB margins. However, the predicted results are about 3~5 dB higher on 

average than the measured ones between 600 Hz and 1.25 kHz. 

 

6. Conclusions 

 

The vibro-acoustic behaviour of a complex shaped extruded panel has been 

investigated by using the waveguide finite element and boundary element (WFE/BE) method.  

In terms of the mechanical excitation, two different types of excitation position were 

considered; on a strip or on an internal stiffener. It was found that the strip excitation 

generates localised waves strongly while the stiffener excitation makes global wave modes 

which are limited to low wavenumbers. Due to this difference in wavenumber domain 

responses, the strip excitation drops the radiation efficiency at mid frequencies compared to 

the stiffener excitation because the localized waves existing above the acoustic wavenumber 

do not radiate sound into far field in spite of their strong vibration. For an acoustic excitation, 

a diffuse field STL was predicted for the extruded panel. It had its minimum at 160 Hz and 

then increased as frequency grows having repeated slight dips at frequencies where the strip 

mode waves are generated (globally and locally). The STL predicted was not much 

dependant on the boundary conditions of the panel at mid to high frequencies. The effect of 

the internal air between the top and bottom plates was not much considerable in terms of the 

radiation efficiency and STL due to the strong mechanical coupling between the two outer 

plates by the interior stiffeners. Meanwhile, the applied spatial windows increased the STL at 

frequencies below 400 Hz. 

The predicted results were validated from experiments using a 1.5 m length extruded 

panel. It was observed from this comparison that the predicted radiation efficiency for the 

strip excitation gives better agreement to the measured ones than that for the stiffener 

excitation. This is because the waves generated by the stiffener excitation have low 

wavenumbers. Hence, the waveguide assumption in WFE/BE analysis does not suitable to the 

1.5 m length panel for the stiffener excitation. In terms of the STL, WFE/BE results agreed 

with the measured ones within about 3 dB margins at frequencies above 200 Hz. 
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In this study, the WFE/BE method was validated with the results measured from a 

short length panel of 1.5 m. The measured and predicted results showed fair agreements in 

general but revealed some discrepancies, especially when the waves of the low wavenumbers 

are dominant. Nevertheless, it was shown that the WFE/BE analysis will be helpful to study 

design measures to improve the vibro-acoustic performance of the extruded panel, 

particularly for high frequencies where the conventional FE/BE method is unsuitable. 
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