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Supercomputing power has been doubling approximately every 14 months for at least

three decades, increasing the capabilities of scientific modelling at a similar rate. The

first machines capable of one ExaFLOP (1018 floating-point operations per second)

are expected by 2020. However, architectural changes required to reach ‘exascale’ are

significant, with energy efficiency constraints leading to a huge growth in parallelization.

A new era of computing has arrived, dubbed the ‘many-core’ era, in which the number

of computing cores is increasing faster than CFD simulation sizes – prompting the

research question for this thesis:

‘What limits the strong scalability of CFD and its ability to handle many-core

architectures? What can be done to improve the CFD algorithms in this

respect?’

A number of scalability investigations have been performed from 1 through to 2048

cores, using a semi-implicit, finite-volume CFD code: ReFRESCO ; and the University

of Southampton supercomputer: Iridis4. The main bottleneck to strong scalability is

shown to be the linear equation-system solvers, occupying up to 95% of total wall-time

on 2048 cores – where the poor scalability arises from synchronous, global, inter-process

communications. Experiments have been performed with alternative, state-of-the-art

linear solvers and preconditioners, without significant improvements, which motivates

novel research into scalable linear solvers for CFD.

The theory of ‘chaotic relaxation’ has been used to create a completely asynchronous

Jacobi-like ‘chaotic solver’, showing almost perfect scalability, and performance far

greater than their synchronous counterparts. However, these solvers lack the absolute

numerical power to compete with existing solvers, especially as the resolution of the

simulations increases. Following this, chaotic relaxation theory has been used to create

a novel ‘chaotic-cycle’ multigrid solver, combining aspects of the chaotic solver and

classical multigrid methods.

Both of the solvers have been verified and tested using canonical test cases and

practical CFD simulations. On 2048 cores, the chaotic-cycle multigrid solver performs

up to 7.7× faster than a typical Krylov Subspace solver and 13.3× faster than classical

V-cycle multigrid. With improvements to the implementation of coarse-grid commu-

nications and desynchronized residual computations, it is likely that the chaotic-cycle

multigrid method will continue scaling to many thousands of cores, thus removing the

main bottleneck to the strong-scalability of CFD.

The novel chaotic solver and chaotic-cycle multigrid methods have been implemented

as an open-source library, Chaos. It is hoped that work on these scalable solvers can be

continued and applied to other disciplines.
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Nomenclature

Symbols may be reused on occasion, to remain consistent with literature. Other symbols

and abbreviations may appear with limited scope.
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A The coefficient matrix of a linear equation-system
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M The iteration matrix of a linear equation-system solver; usually the

Jacobi iteration matrix

m Multigrid level

N The number of elements in a CFD simulation, or rows in a linear

equation-system

n The number of elements in a CFD simulation, or rows in a linear

equation-system, local to a single process

P Multigrid prolongation matrix

p Number of pre- and post-smoothing iterations in a multigrid method

R Multigrid restriction matrix

r The residual vector of a linear equation-system

xv



ri Component of r

Re Reynolds Number

S Scalability factor on C cores, normalized to performance on X cores,

given by = XTx/TC

s Asynchronicity of a chaotic relaxation

t Iteration counter for the SIMPLE time-step loop

TC Absolute wall-time consumed by a program or routine on C cores [s]

U The upper triangle of a coefficient matrix A

V Velocity [m/s]

w Iteration counter for the SIMPLE outer loop

x The solution vector of a linear equation-system

xi Component of x

α Under- or over-relaxation factor of the outer loop

ω Under- or over-relaxation factor of a linear iterative solver

ρ(·) Spectral radius of a matrix

A Subscript denoting the process-local block of a vector or matrix

B Subscript denoting the off-process portion of a vector; or local portion

of a matrix which should be multiplied by said vector portion

Abbreviations

BCGS Bi-Conjugate Gradient Squared method

CFD Computational Fluid Dynamics: the practice of simulating fluid

flows using numerical methods

CPU Central Processing Unit: a single processing chip or processor, often

consisting of many cores

FLOPS Floating-Point Operations per Second: often given with a unit prefix

(i.e. TFLOPS, PFLOPS, EFLOPS)

GMRES Generalized Minimal Residual method

HPC High-Performance Computing: the practice of using supercomputers

to perform large-scale computations

I/O Input/Output, typically referring to non-volatile data storage (i.e.

hard drive storage)

ILCT Inner-Loop Convergence Tolerance: the relative convergence toler-

ance of individual linear equation-systems in the SIMPLE algorithm

KSP Krylov-subspace methods for the solution of linear equation systems

LES Large-Eddy Simulation

xvi



LLC Last-Level Cache: the largest cache register on a chip, typically

shared between cores

MARIN Maritime Research Institute Netherlands

MPI Message Passing Interface: a standardized, portable message-passing

interface, enabling communication between processes

OpenMP Open Multi-Processing: a standardized API enabling multi-threading

within a process, using shared memory

PETSc Portable, Extensible Toolkit for Scientific Computation: includes a

range of linear equation-system solvers

QUICK Quadratic Upstream Interpolation for Convective Kinematics: a 2nd

order discretization scheme

RAM Random-Access Memory: volatile off-process memory accessible by

all CPUs on a node

RANS Reynold’s Averaged Navier-Stokes Equations

ReFRESCO Reliable & Fast RANS Equations solver for Ships, Cavitation and

Offshore

SIMD Single-Instruction Multiple-Data: a fine level of intra-core paralleliza-

tion based on vectorization

SIMPLE Semi-Implicit Method for Pressure-Linked Equations

SOR Successive Over-Relaxation

SpMV Sparse-Matrix Vector multiplication

Definitions

Accelerator Generic term for any co-processor, GPU, or other device, designed to

attach to a node and supplement the capabilities of the main CPU(s)

Cache Small on-chip memory for fast storage of frequently-used data and

instructions

Core An individual processing unit, forming part of a processor, capable

of independently reading and executing program instructions

Inner Loop The iterative loop performed to solve each linearized equation-system

in the SIMPLE algorithm

Node Resembles an independent computer, with dedicated CPU(s) and

(usually) RAM; many nodes are joined together to create a super-

computer

Outer Loop The iterative loop performed by the SIMPLE algorithm, to up-

date non-linear quantities and couple equations; synonymous with

‘SIMPLE loop’ or ‘non-linear loop’
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Process An execution space for a program, with dedicated memory which is

not shared with other processes; a message-passing interface is often

used to communicate between parallel processes

Supercomputer A group of independent nodes connected with an inter-nodal network

to create a large parallel computer

Thread An entity within a process, which shares memory of said process,

and is scheduled and managed by the process – typically using a

multi-threading API such as OpenMP
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Chapter 1

Introduction

Computational Fluid Dynamics (CFD) is the science of modelling fluid flows and heat

transfer using numerical techniques. The equations that describe Mother Nature herself

are approximated and solved, creating simulations which provide important physical

results – often as an alternative to expensive experimental testing and prototyping.

CFD can be used to model dynamics around aircraft, ships and land vehicles; and also

has uses in engine design, civil engineering, weather forecasting, blood-flow prediction,

computer-generated imagery (CGI) and much more (see figure 1.1). The research and

development presented herein is particularly focused on the maritime industry, but is

transferable to many applications of CFD.

Figure 1.1: Examples of CFD applications. Clockwise from top left: aircraft simulation;
flow and heat transfer within an internal combustion engine; prediction of pedestrian
wind environment around buildings; computed flow through a cerebral aneurysm; severe
weather prediction; coolant flow through a pump, used to cool a nuclear reactor core
(cfd4aircraft.com, ec.europa.eu, flometrics.com, htf.fl, hko.gov.hk, aij.or.jp).

In the maritime industry, CFD simulations are often used to estimate power require-

ments for vessels; to aid the design of propellers; to predict seakeeping performance; and

to determine manoeuvring characteristics (see figure 1.2). As new features are added to
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state-of-the-art codes, CFD becomes an increasingly useful tool to assist in the design

of maritime vessels, offshore structures and renewable-energy infrastructure.

To enable such rich simulations, CFD codes are often run on high-performance com-

puting (HPC) facilities, using supercomputers which consist of many parallel computing

nodes. As the compute power from these supercomputers grows, with technological

advancements in both hardware and underlying algorithms, CFD simulations can be per-

formed with higher resolution and at higher speeds, improving accuracy and turnaround

time. To make use of these supercomputers, the CFD algorithm is parallelized – that

is, the simulation is split into spatial partitions which can be run on individual nodes

within a supercomputer, with some communication overhead.

Figure 1.2: Examples of maritime CFD simulations. A cavitating propeller [left] and a
vessel undergoing manoeuvring trials [right] (refresco.org).

Over the last few decades, growth in supercomputing power has been exponential,

with floating-point-operations-per-second (FLOPS) doubling approximately every 13.85

months [96]. Whilst this growth is relatively constant, the underlying architectures

which achieve such growth are not. Until 2004, the speed and electricity consumption

of transistors was governed by Dennard’s Scaling: as transistors shrank in size, their

speed increased linearly and their electricity consumption dropped quadratically [23].

Unfortunately, the transistors used in modern processors are so small that electrons are

able to ‘leak’ across the dielectric gates, and voltages must be increased to maintain

stability. This limitation, known as the ‘power wall’, has stopped the exponential growth

of core clock speeds – and in order to continue exponential scaling of supercomputers,

manufacturers must adapt. Since 2004, ‘multi-core’ machines have become commonplace:

packaging multiple ‘slow’ cores into a single processor in order to continue an exponential

increase in FLOPS-per-node.

Moore’s law [28], which predicted that transistors would halve in size every 18

months, underestimates the exponential growth in supercomputing power (doubling

every 13.85 months), because supercomputers capitalize on other hardware developments,

such as improvements to inter-nodal network and simple scaling of the number of nodes

in a system. Unfortunately, these technologies are also slowing due to other electrical

efficiency constraints [54]. For example, inter-nodal scaling reached limitations due to

the simple cost of transmitting bytes of data through a copper wire – and developments
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into optical interconnects have not provided exponential improvements.

By 2020, the first exascale supercomputer is expected, capable of 1018 FLOPS (or 1

ExaFLOPS), but it is heavily limited by electrical efficiency constraints. To put this

electrical efficiency problem into perspective, if current multi-core architectures were

scaled to exascale capability, they would require 60MW of electrical power (approximately

$60-million US dollars per year at 2014 rates)[85]. Currently1, the most powerful

computer in the world, Sunway TaihuLight, consumes 15.3MW of electrical power

(US$15.3-million/year) to produce 93 PFLOPS of compute power – it cost US$273-

million to build.

The only remaining means of efficiently scaling FLOPS, and maintaining super-

computer growth, within a reasonable power envelope, is to increase the number of

cores-per-node exponentially. The multi-core era is ending, and a new era, dubbed the

‘many-core’ era has begun, where hundreds or thousands of cores may be packaged into

a single node to counteract stagnated core-clock speeds and inter-nodal scaling.

The many-core era is already established at the cutting edge of supercomputer

development, although there are multiple competing many-core architectures. Sunway

TaihuLight (#1 of the Top500) uses 260-core processors to achieve a peak performance of

93 PFLOPS with a power consumption of 15.3MW. Tianhe-2 (#2) uses 3 Xeon Phi co-

processors to accelerate each node, providing 192 cores-per-node (totalling 34 PFLOPS

at 17.8MW). The #3 supercomputer, achieving 17.6 PFLOPS (at 8.2MW), uses k20

graphics cards providing 2496 low-speed cores per node. The Argonne Leadership

Computing Facility (ALCF) have recently commissioned a new supercomputer, Aurora,

to be complete in 2018 [4]. It is likely to be the most powerful supercomputer in the

world upon completion, with a projected performance of 180 PFLOPS and an electrical

power consumption of just 13MW – see figure 1.3. Aurora follows the predicted trends

for next-generation supercomputing:

“Aurora will deliver more than eighteen times the computational perfor-

mance of Mira, its predecessor at the ALCF, using a nearly equal number of

compute nodes. Aurora will be a many-core system but with nearly an order

of magnitude more [Xeon Phi] processors.”

– ALCF, aurora.alcf.anl.gov

Whilst these machines are the highest-calibre, largest-scale supercomputers available,

the hardware which they use is not exclusive to these machines. No matter the size of

machine which individual institutions acquire, their hardware is usually similar, in order

to take advantage of all the technological improvements (such as decreased electricity

consumption) that are available – although these technologies do take some time to

trickle down to the industrial or academic level.

CFD has benefited from good weak-scalability for many years. Good weak scal-

ability means that if the number of mesh cells and computational cores grow at the

1Supercomputing statistics in this thesis are based on the Top500 list published in November 2016
[96].
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Figure 1.3: Artists rendering of Aurora, commissioned by the Argonne Leadership
Computing Facility (ALCF) for 2018, will be capable of 180 PFLOPS. [intel.com]

same rate (thus the cells-per-core ratio stays the same), then the computational time

remains more-or-less constant. Below a certain cells-per-core ratio, efficiency losses

become overwhelming as parallel-overhead in the CFD algorithms becomes large. The

critical ratio depends heavily on the code, computing facility and simulation specifics.

Maintaining this ratio, and thus maintaining weak-scalability, has required little in the

way of algorithmic changes for CFD.

An exascale supercomputer is predicted to contain between 1-billion and 10-billion

cores, by 2020; an increase of approximately 100-1000× compared to Sunway TaihuLight,

for just a 10.75× increase in FLOPS. If one assumes that the size of CFD simulations

increases proportionally with total FLOPS, then the cells-per-core ratio will decrease

by a factor of 10-100 in the next 4 years.

This translates to more practical levels too. Iridis4 is the University of Southamp-

ton’s multi-core supercomputer, built in 2013 and capable of 250 TFLOPS, using 770

16-core nodes (for a total of 12,320 cores). If one makes the same analysis, again

assuming that maximum CFD simulation sizes are proportional to total FLOPS, a

numerical code that performs well on Iridis4 must maintain this performance when the

cells-per-core ratio is reduced by a factor of 20-200, in order to perform well at exascale.

This abrupt increase in parallelization, and reduction in cells-per-core ratio, means

that the weak scalability of CFD is no longer relevant. In order for CFD to increase

its capabilities, and even just to remain competitive, it is important to consider strong

scalability : the ability to achieve an X-times speed-up when X-times more cores are

employed, with a constant problem size. In other words, the ability to reduce the

cells-per-core ratio without loss of efficiency must be improved.

The nature of simulations at the forefront of maritime CFD capability are also

changing. Most state-of-the-art simulations are unsteady (time-dependent) requiring

CFD algorithms to simulate multiple time-steps of a flow field. The three spatial

dimensions can be parallelized, by partitioning the domain, but the time dimension is

strictly serial (excepting new parallel-in-time methods [24]) – requiring each previous

time-step to be computed before another can begin. To improve the capabilities of these

unsteady simulations, by bringing their simulation cost down to reasonable levels, the

spatial dimensions must be parallelized further in order to accelerate each time-step.
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Thus, another motivation for efficiently reducing the cells-per-core ratio.

To summarize, changes in computing architecture and emphasis on unsteady simula-

tions place pressure on CFD codes to adapt. Particularly, emphasis must be placed on

improving the strong scalability of existing codes and their underlying algorithms, in

order to enable feature-rich, high-resolution, accurate simulations utilizing many-core

architectures.

1.1 Research Question

Inefficient utilization of many-core computing architectures limits the capabilities of

computational fluid dynamics, thus driving the research question for this PhD:

“What limits the strong scalability of CFD and its ability to handle many-

core architectures? What can be done to improve the CFD algorithms in this

respect?”

1.2 Aim

The aim of this PhD is to prepare CFD for the many-core era. Using Iridis4 and a state-

of-the-art CFD code, ReFRESCO, an in-depth investigation of the strong scalability of

CFD will be performed. Following this, the principle bottlenecks to scalability will be

examined in more detail – attempting to find or develop novel methods to circumvent

these bottlenecks and unlock the potential of massively-parallel supercomputing.

1.3 Objectives

The objectives of this PhD are incremental, with the results of each study guiding the

goals for further work. This process is explained below:

� Research into the current state and future trends of CFD and HPC.

The first objective is to thoroughly examine the CFD and HPC environment:

firstly considering the current state-of-the-art and core technologies; and secondly,

identifying ways in which the HPC ecosystem is changing, and ways in which

the CFD algorithm is likely to change, over the next few years. The knowledge

gained from this objective will define the main scalability concerns, highlight

opportunities for improvements, and ensure that any work carried out during this

PhD is compatible with other developments in the CFD domain.

� Perform scalability experiments to determine the bottlenecks to strong-

scalability of CFD. The next objective is to measure the current state of CFD

in terms of strong scalability. Advanced software-profiling and extensive testing

on a large number of computational nodes and a variety of test cases can be

used to provide insight into the code – complementing and extending existing

literature. By intelligently partitioning the CFD algorithm into key routines, it

is possible to identify which areas require further development. As will be seen,
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the results of this study show that overall scalability suffers due to the linear

equation-system solver for the Poisson pressure equation, thus motivating research

into the scalability of linear solvers.

� Investigate state-of-the-art methods to circumvent strong-scalability

bottlenecks. Here, the objective is to determine whether the previously-identified

scalability bottlenecks can be bypassed using state-of-the-art algorithms. A wide

variety of linear equation-system solvers and preconditioners are tested; particularly

those which are designed to improve strong scalability. Although the results showed

some improvements from these newer solvers, the bottlenecks are not adequately

removed. Thus, a further outcome from this objective is to determine the short-

comings of these methods, and identify the reasons for their poor scalability.

One of the main reasons identified is excessive global synchronization, caused by

communications between processes.

� Develop and test a linear equation-system solver designed for strong

scalability, based on the theory of Chaotic Relaxation. The theory of

Chaotic Relaxations [16] is an interesting foundation for the development of

a highly-scalable ‘chaotic solver’, which could provide fast approximations to

the pressure equation by avoiding all forms of synchronization. The objective

is to develop this solver, verify the implementation, and measure performance

and scalability against other state-of-the-art solvers. The results showed good

scalability, but poor numerical performance compared to state-of-the-art solvers,

thus motivating the next objective.

� Develop and test a novel ‘chaotic-cycle’ multigrid method, combining

chaotic relaxation theory with algebraic multigrid solvers. Earlier inves-

tigation showed that the scalability of algebraic multigrid methods is poor; but

there is potential to combine chaotic relaxation theory and multigrid methods,

building on the chaotic solver developed previously. The objective is to develop,

verify and test the performance of a multigrid method using a novel ‘chaotic-cycle’

algorithm. The overall goal is to determine whether these methods can replace

existing linear-solvers and allow CFD to scale efficiently on foreseeable computing

architectures.

� Assessing the suitability of chaotic solvers and multigrid methods for

practical CFD test cases. This final objective seeks to determine whether

the chaotic methods developed in this thesis can be applied safely to practical

CFD problems. In particular, it should be verified that the non-deterministic,

chaotic nature of these solvers does not negatively affect the overall flow solution,

especially when the flow is unsteady and takes several days to compute (with

thousands of independent calls to the chaotic methods). Larger grids are used for

these tests, which also provides an opportunity to verify the O(N) performance of

the chaotic-cycle multigrid method and observe some scalability characteristics on

larger grids.

6



1.4 Publications

The following publications have been produced during this PhD. The following informa-

tion is correct at the time of writing:

� Performance Analysis Of Massively-Parallel Computational Fluid Dy-

namics, presented at The 11th International Conference on Hydrodynamics

(ICHD) in 2014 [36]. Appendix A.

� Potential of Chaotic Iterative Solvers for CFD, presented at The 17th

Numerical Towing Tank Symposium (NuTTS) in 2014 [37]. Appendix B.

� Chaotic Linear Equation-System Solvers for Unsteady CFD, presented

at The 6th International Conference on Computational Methods in Marine Engi-

neering (MARINE) in 2015 [38]. Appendix C.

� On the Strong Scalability of Maritime CFD, published in the Journal of

Maritime Science and Technology in 2017 [39]. Appendix D.

� Chaotic Multigrid Methods for the Solution of Poisson Equations, sub-

mitted to the Journal of Computational Physics in 2017 [40]. Under review.

Appendix E.

A further paper has been submitted as co-author, Modelling Transition us-

ing Turbulence and Transition Models for a Flat Plate Flow: Uncertainty,

Verification and Sensitivity [81], studying laminar-turbulent transition models in

ReFRESCO; though this is largely unrelated to the thesis.

A bitbucket repository for the open-source Chaos library, published as part of this

PhD, is publicly available at https://bitbucket.org/jamesnhawkes/chaos.

1.5 Thesis Outline

This thesis begins with a preliminary background chapter (2), which covers the funda-

mentals of Computational Fluid Dynamics (CFD) and High-Performance Computing

(HPC). This background chapter also serves to describe the semi-implicit, viscous-flow,

CFD code used during this thesis (ReFRESCO) and the University of Southampton

supercomputer (Iridis4). In the following chapter (3), literature is reviewed which focuses

on the future of CFD and HPC, and methods for dealing with the changes to each –

including changes in programming paradigms and numerical algorithms. The intent of

these two chapters is to show the present and future, respectively, of CFD and HPC,

and reinforce the aim of this PhD. This also covers the first objective described above.

Each of the subsequent objectives are presented in the following chapters, introducing

their own background and literature where necessary.

Chapter 4 focuses on an initial strong scalability assessment of ReFRESCO, in which

software profiling tools are used to break down the algorithm and measure scalability.

This portion of the PhD provided unique research to the field by carrying out a detailed

scalability assessment, whilst considering the effects of multiple user-settings (such as

discretization techniques, modelling techniques, convergence tolerances, choice of linear
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equation-system solvers, and mesh structure). Following this, chapter 5 investigates,

in more detail, the effects of alternative linear solvers and preconditioners on the

performance and scalability of the code. These two chapters thoroughly identify the

bottlenecks to massively-parallel CFD, and the reasons for their poor scalability.

Chapter 6 covers the development and testing of a chaotic solver, based on the

theory of chaotic relaxation [16]. Chaotic solvers have been tested in literature and

show good results in terms of scalability – but only compared to their non-chaotic

counterparts (Jacobi and Gauss-Seidel). Practical comparisons to state-of-the-art solvers

(such as those investigated in earlier chapters) could not be found in the literature;

and the application of chaotic solvers to CFD had also not been considered. In this

chapter, a novel type of chaotic solver is implemented and tested via ReFRESCO, and

it’s performance compared to a large range of state-of-the-art solvers. An open-source

library, Chaos, which encapsulates all of the novel developments of this PhD, is also

introduced in this chapter.

Overall, the scalability of the chaotic solvers is impressive, but their raw numerical

performance is not competitive with modern solvers, especially as the size of the CFD

simulation increases. However, applying the same chaotic theories to an algebraic

multigrid method may provide good scalability without any sacrifice to numerical

performance. Chapter 7 covers the design of a novel ‘chaotic-cycle’ multigrid, including

an in-depth discussion of the various nuances and intricacies of the algorithm. The

chaotic-cycle multigrid has been developed in Chaos and tested against various other

solvers with good results, although there is still scope for improvement.

In chapter 8, the chaotic solver and chaotic-cycle multigrid are used on a modern,

relevant, maritime CFD test case – the BB2 submarine [97]. The intent of this study is

to: (a) show that the flow solution generated by non-deterministic solvers is as good

as that from deterministic solvers; (b) show that the performance of the chaotic-cycle

multigrid method scales correctly (linearly) with the size of the CFD simulation; and

(c) investigate whether unsteadiness (time-dependence) of the CFD simulation affects

the performance of the chaotic and non-chaotic solvers. The submarine is simulated at

a 20◦ angle of drift, and is highly unsteady. In reality, this simulation should be carried

out at much higher resolution, but the purpose here is not to create a perfect physical

solution – but to demonstrate the overall correctness of chaotic solvers in the context of

practical CFD. These last two chapters aim to prove the performance and suitability,

respectively, of the chaotic-cycle multigrid method for massively-parallel CFD.

Chapter 9 (Conclusions), discusses the successes and short-comings of the work

carried out during this PhD, and assesses the extent to which the research question

was answered. It also frames the novel contributions of this work in the wider context

of CFD and numerical science in general. Chapter 10 identifies areas of further work

and research, including improvements to the performance of Chaos and the chaotic-

cycle multigrid algorithm. Finally, the aforementioned publications are included as

appendices.
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Chapter 2

Background

Here, a brief background to CFD and HPC is given. The intention is to highlight and

explain those aspects of each which are relevant for this thesis. The CFD code (Re-

FRESCO) and supercomputer (Iridis4 ) used throughout this PhD are also introduced.

2.1 Computational Fluid Dynamics (CFD)

There are a huge variety of CFD methodologies, which cannot all be discussed here.

Instead, the methodology employed by ReFRESCO is described, since it is most relevant

to this thesis. Much of the following derivation is interpreted from Kuzmin [55], and

is favoured for its succinctness. Alternative approaches can be found in Ferziger &

Perić [26] or Murthy & Mathur [67]. Ferziger & Perić illustrates the integral form of

the equations which are used here, since they are most relevant for the finite-volume

method used by most hydrodynamic CFD codes – including ReFRESCO.

2.1.1 Fundamentals

The governing equations for CFD are derived by considering the quantity of any general

variable, φ, within a fluid domain, V (figure 2.1). ρ is the density of the variable, Γ is a

diffusion coefficient matrix and qφ represents production (sources & sinks) of φ. S is

the enclosing surface of V with normal vector n. u is the velocity vector of the fluid.

∂

∂t

∫

V

ρφ dV

︸ ︷︷ ︸
Transient

+

∫

S

(ρφu)·n ds

︸ ︷︷ ︸
Convection

−
∫

S

(Γ∇ρφ)·n ds

︸ ︷︷ ︸
Diffusion

=

∫

V

qφ dV

︸ ︷︷ ︸
Production

(2.1)

When multiple control volumes are considered in a mesh, this equation can be used

to find the transport of a variable through a large domain. Hence this equation is often

referred to as the general transport equation – its various components representing the

different means of transporting some variable. If each cell, c, in a mesh, has f faces

– each shared between exactly two cells, then one can approximate the total flow in

a domain by discretizing the general transport equation, and applying it to each cell

(figure 2.2). In this example (equation 2.2), a backwards-differencing scheme is used to
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V S

ds

n

Figure 2.1: A diagram of an arbitrary fluid domain V , with surface S.

discretize the transient term. Vc denotes the volume of each cell, Sf is the area-vector

of each surface (A · n) and subscript f and p represent where the variable is evaluated –

at the face-centre or cell-centre respectively:

3
2φ

n
p − 2φn−1

p + 1
2φ

n−2
p

∆t
ρVp

︸ ︷︷ ︸
Transient

+
∑

f

Sf ·(ρuφ)f

︸ ︷︷ ︸
Convection

−
∑

f

Sf ·(ρΓ∇φ)f

︸ ︷︷ ︸
Diffusion

= sφpVp︸ ︷︷ ︸
Sources

(2.2)

P

f

Sf

Cell

Cell Centres

Vertices

Faces

Figure 2.2: [Left] A single three-dimensional cell and [right] a diagram of a small
two-dimensional mesh.

An approximation due to the discretization of the transient term has already

been introduced. Further approximation may be introduced through interpolation or

geometric approximation, which are required to solve the discretized general transport

equation.

Firstly, we consider interpolation of face-centred values from cell-centred values. Note

that the convection term requires face-centred values of φf , but φ is only computed at

cell centres. Interpolation between two (or more) neighbouring cell-centres is required to

find a face-centred value. The simplest scheme is the central differencing scheme, which

takes a weighted average of the neighbouring cell-centred values to produce a second-

order approximation. It frequently suffers from non-physical oscillations of transported

variables. A common first-order scheme is the upwind scheme which approximates the

face-centred value by taking only the cell-centred value from the cell upstream. A blend
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of the two schemes is often used for reasonable accuracy and stability. Higher-order

upwind methods such as QUICK (Quadratic Upwind Interpolation for Convective

Kinematics) are often used for greater accuracy. Interpolation is also required to obtain

face-centred gradients ∇φf in the diffusion term. Central differencing suffices in this

case.

Note that the cell-centred gradients ∇φc are found by applying Gauss theorem

with the just-interpolated face values of φf , thus the diffusive term suffers from any

interpolative inaccuracy in the convection term.

∫

Vp

∇φ dVp =

∫

S

φ·nds, ∴ (∇φ)p =
1

Vp

∑

f

Sfφf (2.3)

These interpolations are approximations, made worse by highly eccentric or non-

orthogonal meshes. Eccentricity causes problems for convection approximations, since

the face-centre no longer lies between the cell-centres. Non-orthogonality causes problems

for diffusion approximations, where the face-normal vector is no longer parallel to cell-

centre vector (figure 2.3).

φp φn

φf

e

∇φp ∇φn∇φf

Sf

Figure 2.3: [Left] A diagram illustrating eccentricity problems for convective interpolation
and [right] non-orthogonality problems for diffusive interpolation.

Secondly, geometric approximation can be introduced through non-planar surfaces.

The area and normal vector of a face can be calculated by splitting the face into triangles,

summing the areas and averaging the normal vectors. In some cases, the normal vectors

are not parallel and an approximation of a twisted face to a planar face is applied. This

has repercussions for the computation of cell volumes, which is performed via Gauss

theorem. ∫

Vp

dVp =

∫

S

nds, ∴ Vp =
∑

f

Sf (2.4)

Momentum Equations

In the discretized general transport equation, φ can be replaced by any quantity of

interest. First and foremost, it can be used to find the momentum of the flow itself, in

the x−, y− and z− dimensions. In this case φ = u, the diffusion term vanishes (Γ = 0),

and the equation takes the general form ma = ΣF (Newton’s Second Law), where the

source term qφ has become the sum of forces acting on the cell volume. The expression
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for production of φ in the general transport equation assumes sources of momentum

can be expressed as body forces (acting on the volume) – which is true for gravitational,

electromagnetic, Coriolis or centrifugal forces. However, momentum is also produced

through surface shear stresses, due to fluid viscosity, which must be captured. For

Newtonian fluids it is possible to express the shear stresses τ in terms of strain rate:

τ = µ(∇u + (∇u)T )− 2

3
δµ∇ · u (2.5)

where δ is the Kronecker delta and superscript T represents the transpose. This has a

similar format to the missing diffusion term, so shear stress (τ) and pressure (−p) can

be combined, yielding the following:

3
2unp − 2un−1

p + 1
2un−2

p

∆t
ρVp +

∑

f

Sf ·(ρuu)f

−
∑

f

Sf ·
(
µ(∇u + (∇u)T )− δ(p+

2

3
µ∇ · u)

)
f

= FbVp,

(2.6)

where Fb is the sum of all body forces evaluated at the cell centre.

Continuity Equation

To close this system, the pressure term which has just be introduced must also be

transported. In this case φ ≡ 1, qφ = 0, and Γ = 0. For a fluid with low Mach number

(< 0.3) density can be considered constant, thus the transient term also vanishes.

∑

f

Sf ·uf = 0. (2.7)

Equations 2.6 and 2.7 are the Navier-Stokes equations, in their discrete form. They

create a coupled, non-linear system that can be solved to simulate unsteady (time-

dependent) fluid flows within a domain. To fully resolve these equations, the discrete

mesh must be fine enough to resolve the smallest scales of turbulence in the flow. For

most practical cases this is impossible, and techniques are used to model smaller-scale

motions of the flow, instead of simulating them directly.

A common approach is to use Reynolds Averaging, whereby the velocity u is split

into its mean value and turbulent fluctuations, ū + u′. The Navier-Stokes equations are

then time-averaged to produce the Reynold’s Averaged Navier-Stokes (RANS) equations.

In the linear terms of the RANS equations: ū + u′ = ū; the mean of the fluctuations is

simply zero. However, in the non-linear terms appearing in the momentum equations:

(ū + u′)(ū + u′) = uu + u′u′; the mean of the squared fluctuations cannot be evaluated

to zero. Thus an additional item (ρu′u′) has been created in the convective term.
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This part of the equation is usually shifted into the diffusive term, with the notation

τr = −ρu′u′. In this format, it is similar to a stress tensor, and hence τr is called the

Reynold’s-stress tensor.

The Boussinesq hypothesis allows a relation between the Reynold’s stresses and the

mean velocity gradients, thus:

τr = −ρu′u′ = µT (∇ū + (∇ū)T )− δ2

3
ρk (2.8)

where µT is the eddy viscosity (a flow-dependent equivalent to molecular viscosity µ), δ

is the Kronecker delta, and k = 1
2u′ · u′ is the turbulent kinetic energy. These terms are

then modelled via additional transport equations for relevant turbulent variables.

A common turbulence model, the Spalart-Allmaras model [89], is a one-equation

model that transports µT directly and ignores k. A variety of two-equation models exist,

such as the commonly-used k − ω SST-2003 model [63], which transports the kinetic

energy and dissipation rate ω, granting:

µT =
ρk

ω
(2.9)

Turbulence can also be modelled in other ways. Large-Eddy Simulations (LES), as

the name suggests, simulates the larger turbulent structures but models the smaller,

geometry-independent structures. The equations are similar, although low-pass filtering

is used instead of Reynold’s averaging; and special turbulence models are used which only

model sub-grid-scale structures. In all of these cases, the modelled turbulence quantities

are transported using the general form of the transport equation (equation 2.6).

For specialist flows, as appearing in maritime CFD, other flow features are often

modelled and their variables transported via additional transport equations. Commonly,

equations are used to create homogeneous two-phase flows (i.e. for modelling air-water

interfaces, where each fluid is considered constant-density). For free-surface type flows,

a volume-fraction variable is modelled and transported, representing the proportions

of air/water in any given cell. For some maritime flows, cavitation is important; and

similar equations are used to model the production, growth and collapse of underwater

air bubbles.

2.1.2 Solution Methodologies

The previous section has shown how the flow of a fluid within a domain can be

approximated, simulated and modelled via the RANS equations and various additional

transport equations, by applying them at each point in a discretized mesh. For a typical

maritime application, there may be many non-linear, tightly coupled partial differential

equations to solve; including those for momentum, continuity, turbulence, free-surface

and cavitation modelling.

The additional transport equations depend on the solution of the momentum and

continuity equations – but also directly feed back into them via Reynold’s Stresses or

through additional production terms in the Navier-Stokes equations. All the while,
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the momentum equations are coupled together; and the continuity equation must be

satisfied.

In this section, the methodology for solving this complex system of equations

will be introduced. The CFD code being used for this thesis, ReFRESCO, uses the

SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) algorithm; and this

will be explored here. Other options for solving this system include PISO (Pressure

Implicit with Splitting of Operators), SIMPLER (SIMPLE-Revised) and SIMPLEC

(SIMPLE-Corrected) algorithms. The fundamentals of all the methods are similar [26].

The first principle is that of linearization, performed using a Picard’s method,

whereby the system of non-linear PDEs are converted to their linear counterparts which

can be solved iteratively to achieve a correct solution. Consider a loop with counter w,

which shall be called the non-linear or outer loop. Any non-linear terms in the RANS

equations are replaced by a linear equivalent, by taking higher-order components from

the previous loop, w − 1. For example, the term uu can be replaced by uwuw−1. A

seed for the flow field at w = 0 must be provided, typically set to a uniform flow-field or

using some pre-supposed flow information.

At each non-linear iteration, w, every equation must be solved and coupled; but the

equations are now linear PDEs which means they can be solved individually, via linear

equation-system solvers. In a segregated solver, the momentum equations are solved first

– taking other momentum quantities, turbulent quantities, pressure values, etc., from the

previous non-linear iteration. Rather than solve the continuity equation, the equation is

re-arranged as a pressure-correction (or just ‘pressure’) equation; essentially computing

offsets required to the just-computed velocity field in order to satisfy continuity. The

velocities are then corrected as necessary, and the additional transport equations can

be solved using a flow field that is guaranteed to conserve mass. A coupled solver is

sometimes used as an alternative, whereby the momentum and pressure equations are

solved together, in one large linear system, followed by additional transport equations.

At the start of each non-linear iteration, Neumann or Dirichlet boundary conditions

(which close the system in a suitable way), may need to be updated. In advanced CFD

codes, meshes may be dynamic and updated between non-linear loops too. A suitable

end for the non-linear loop is found by monitoring the maximum (L∞) or root-mean

square (L2) residuals of each equation’s linear equation-system.

In order to stabilize the iterative process, under-relaxation is applied between each

non-linear loop. This damps changes in the solution to prevent rapid divergence, and

cancels out when the solution is converged. Relaxation can be applied explicitly or

implicitly. Explicit relaxation is applied once a solution vector has been computed, by

taking a weighting of the computed value and the old value:

xw = xαexp + (1− αexp)xw−1 (2.10)

For implicit relaxation: during the assembly of each set of equations, the diagonal of

the matrix, D = diag(A), is magnified by some factor and cancelled on the right-hand
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side by the same amount (but using the previous solution):

(
A +

(1− αimp)
αimp

D
)
xw = b +

(1− αimp)
αimp

Dxw−1 (2.11)

In an unsteady flow, the transient term, which was discretized using backwards

differencing, must be iterated in an even coarser loop, with each non-linear (steady)

flow solution representing a single timestep. This loop is given the counter t; and only

advances when the non-linear loop reaches convergence (or after a predefined number of

iterations, wmax).

Update Boundary
Conditions & Mesh

Initial Guess of Field Values

Update
Time Step

Non-Linear Iteration

Solve Discretized Momentum Equations (x,y,z)

Solve Pressure Correction Equation

Solve Other Discretized Transport Equations

Converged?No Yes
OR

STOP

Figure 2.4: A diagram of the SIMPLE algorithm, showing the non-linear loop and the
time-stepping loop.

Figure 2.4 shows the SIMPLE algorithm, and therefore the two coarsest loops of

a typical CFD simulation. The routines within these loops are important to examine,

from a computational perspective, since they are repeated many hundreds or thousands

of times in a particular simulation. The routine is virtually the same for each equation,

thus here we examine the process of solving any general linearized transport equation.

Figure 2.5 shows the process, which can be split into 4 main sub-routines.

� Assembly

This routine is responsible for creating a system of N linear equations, where N

is the number of cells in the discretized mesh. The equation system will have

the form Ax = b where A is a constant N -by-N sparse matrix, x is the solution

vector and b is the constant right-hand-side vector (both of length N). The

process involves applying all discretization, interpolation, eccentricity corrections

and orthogonality corrections. All higher-order discretization schemes apply their
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Assemble Equation System
Discretization, Interpolation,

Eccentricity Correction, Orthogonality Correction,
Matrix Construction

Solve Equation System
Iteratively solve the linear equation-system

Exchange Cell-Centre Values
Ghost-cell exchange of cell-centre values

Compute Gradients
Using Gauss Theorem or otherwise

Exchange Gradient Values
Ghost-cell exchange of gradients

 

A x b

( )

( )
Figure 2.5: A diagram illustrating the steps required to solve an individual, linearized
transport equation.

low-order terms, implicitly, to the left side of the equation system; and their

higher-order terms explicitly to the right side of the system, using values from

w− 1, in a process known as deferred correction. The sparse matrix will represent

the connectivity of the underlying mesh. Figure 2.6 shows an example of a

sparse matrix, demonstrating the simple connectivity pattern of a two-dimensional

Cartesian mesh.

Figure 2.6: An example of a sparse matrix constructed for a simple two-dimensional,
square domain.

� Solve

The linear equation system must then be solved. Due to the size of N , direct

solvers which completely invert A to find the solution vector are impractical.

Iterative solvers are used to rapidly approximate the solution to each linearized

equation system, and this iterative loop is called the inner loop, with counter k,
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thus creating a third nested loop in the overall CFD algorithm. The residual of

this system, r = Ax− b, can be monitored until a desired inner-loop convergence

tolerance (ILCT) is reached. There are many iterative solvers to choose from,

often with many deeper subroutines, and a more thorough examination will be

performed later in this thesis (chapter 5).

� Gradients

Using Gauss theorem, the gradients of the transported variable must be calculated,

so that they are available for other equations. Any necessary orthogonality and

eccentricity corrections must be applied.

� Exchange

When computing in parallel, the discretized mesh may be partitioned across

computing nodes which do not have direct memory-access to the variables after

they have been computed. In this case, data exchange must occur along the

boundaries of the partitions, via halo or ghost cells, such that each partition

has enough information to perform its discretization and interpolation. This

data exchange must happen after the initial linear solution (so that ghost data is

available to compute gradients), and also to communicate the gradients once they

are computed. Data exchange also occurs as part of the linear solution process,

but this can be considered part of the solve routines.

As will be demonstrated later, the majority of computational effort is spent in the

solve routines when using parallel computing. Most of the other named routines, above,

are efficient (including assembly, calculation of gradients, time-stepping, updating

boundary conditions); although every case is different. Short simulations may be

dominated by one-time overheads such as file input/output; or cases involving large

amounts of dynamic meshing may spend more time in those relevant routines.

2.1.3 ReFRESCO

The work presented in this thesis focuses on the development of ReFRESCO – a

typical viscous-flow CFD code. ReFRESCO solves multiphase, unsteady, incompressible

flows with the Reynolds-Averaged Navier Stokes (RANS) equations, complemented

with turbulence models, cavitation models and volume-fraction transport equations for

different fluid phases [99]. ReFRESCO represents a general-purpose, finite-volume CFD

code, with state-of-the-art features such as moving, sliding and deforming grids and

automatic grid refinement – but has been verified, validated and optimized for numerous

maritime industry problems. ReFRESCO is currently being developed at MARIN

(Netherlands), who were the sponsor of this PhD, and also part of the supervising team.

Fifteen months of this PhD were spent working in the MARIN offices in the Netherlands,

directly alongside the main developers. The development of ReFRESCO is highly

collaborative, with contributions from IST (Portugal) [76], the University of Sao Paulo

(Brazil) [80], the Technical University of Delft (the Netherlands) [52], the University of

Groningen (the Netherlands) [7] and now from the University of Southampton (UK)
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[36, 37, 38, 39, 40]. The University of Southampton/MARIN collaboration began in

2012, during an internship, which focused on turbulence and transition model verification

and validation, along with the University of Sao Paulo [81].

The overarching theories and processes in ReFRESCO have been described broadly

in the previous sections. To summarize, ReFRESCO is a finite-volume, viscous-flow

CFD code, capable of modeling RANS, LES, and hybrid-RANS/LES. The code is

based on the SIMPLE algorithm, with its three nested loops (t,w,k) for unsteady time-

stepping, non-linearity/equation-coupling and the iterative solution of the linearized

equations. ReFRESCO is ‘face-based’ with cell-centred collocated variables, designed

to handle unstructured grids in a pseudo-object-oriented manner. Nothing prevents

ReFRESCO from using structured or block-structured grids (which are often of higher

quality than unstructured meshes), but this scheme does not take advantage of the

inherent structured data/memory layout of these grids (unlike pure structured-grid

CFD solvers).

ReFRESCO is written in free-format Fortran, and linked to many state-of-the-art

external tools. ReFRESCO uses MPI (Message Passing Interface), specifically OpenMPI

and IntelMPI, to perform communications between parallel partitions – including

data exchange routines and communications occurring inside the solve routines [66].

ReFRESCO uses a single-level parallelization scheme (MPI-only), and does not use

other layers such as OpenMP threading which will be described in the following section.

METIS [27], a tool for accurate and fast partitioning of unstructured meshes, is

used to partition the domain into parallel chunks. METIS attempts to make a fair

trade-off between computational work-load (number of cells per MPI domain) and

communicational work-load (size of domain boundaries or number of ‘halo’ cells).

ReFRESCO relies upon PETSc (Portable Extensible Toolkit for Scientific Comput-

ing), for most of its linear algebra needs. The work of the solve routines is completely

off-loaded to PETSc, by building the linear system (Ax = b) inside PETSc, and using

PETSc’s suites of linear solvers and preconditioners [6]. PETSc is written in C, but has a

Fortran interface which is used by ReFRESCO. PETSc has an object-oriented structure,

with objects for matrices, vectors, preconditioners and ‘KSP’s (Krylov subspace solvers).

During this PhD, ReFRESCO has also been linked to Trilinos, as a direct substitution

for PETSc [41]. Trilinos is similar to PETSc, but provides alternative parallelization

schemes (including GPU/co-processor acceleration) and is written in heavily-templated

C++. Trilinos is a collection of packages including Ifpack2 (preconditioners), Belos

(solvers), Kokkos (parallelization schemes) and Tpetra (matrices/vectors). The interface

to Trilinos is similar to PETSC, but is in C++, so it was linked to ReFRESCO using

ISO-C bindings and a wrapper. Unfortunately, Trilinos underperforms (by an order of

magnitude) compared to expectations and the cause of this has not been identified.

Although ReFRESCO is a maritime-focused CFD code, most of the fundamental

algorithm is unaffected by this specialization. There are differences in the transport

equations (free-surface, cavitation, turbulence, etc.), the additional features (sliding

meshes, for propellers, for example) and the validation test cases – but overall, Re-
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FRESCO is a general-purpose semi-implicit CFD solver. It is used for a wide variety of

applications, including in the design of maritime vessels, offshore structures (especially

for the oil & gas industry) and renewable energy industries (tidal and wind energy).

2.2 High-Performance Computing (HPC)

For a detailed understanding of high-performance computing, the author recommends

Kogge et al. [54], which offers a very in-depth view of modern supercomputers. Saltzer &

Kaashoek [84] helps to give a complete picture, by explaining the design and operation

of computers in general.

A supercomputer (a.k.a. a cluster or a high-performance computer) is a large

computer, consisting of many small nodes which resemble individual computers. The

nodes are connected using a high-speed inter-nodal network, for fast data transfer; and

a slower Ethernet connection for management functions.

The inter-nodal network is often copper-wire based, although optical interconnects

are becoming popular for their higher speed and power efficiency [17]. Iridis4, the

University of Southampton supercomputer, uses a copper-wire Infiniband network,

grouping ∼30 nodes together with a 14 Gbit/s connection, and connecting these groups

via four (parallel) 10Gbit/s connections in a tree-like hierarchy. Other networks, often

designed for higher performance, include multi-dimensional torus connection patterns.

Nodes are the coarsest level of parallelization in a supercomputer. There is no shared

memory between independent nodes, so data must be shared by sending messages

(packets of data) across the inter-nodal network. Programming standards such as MPI

(Message Passing Interface) are commonly used to parallelize scientific code at this

level. For example, MPI communications are used in ReFRESCO to handle ghost-

cell data exchange. In this programming model, each node runs a separate instance

(process), or several instances, of a parallel application, each with its own memory,

sharing data via MPI and memory buffers. This level of parallelization is often referred

to as Distributed-Memory Parallelization.

An individual node is normally a fully-functional computer in its own right, consisting

of central processing unit(s) (CPU(s) or processors), random-access memory (RAM

or just memory), and specialist controllers which interface with hard drives, external

networks (such as Ethernet or Infiniband), and much more. These devices are connected

via the front-side bus (FSB). Figure 2.7 shows the layout of a typical node, with two

CPUs on a shared FSB.

Often, multiple processors are placed on a single node in sockets, each with their

own set of memory which can be directly accessed via an integrated memory controller

(IMC) on each CPU. Processors can access their own memory quickly via the IMC,

but they can also access the memory of other sockets via the FSB. This composition is

known as symmetric multi-processing (SMP). Iridis4 consists of two symmetric sockets

per node.

An individual CPU consists of various, complex sub-systems which perform particular

tasks, but at its heart are processing cores which are fed pipelines of data to operate on
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Figure 2.7: A diagram of a typical node, consisting of two 8-core CPUs on a shared
FSB. Brands such as AMD and Intel have variations on the standard FSB design, such
as Quick-Path Interconnect (QPI).

and instructions which must be performed. As well as the IMC, CPUs often contain

small amounts of on-board memory, called cache, which can be used to store small

amounts of re-usable data or to pre-fetch data from RAM. In the case of Iridis4, which

comprises of Intel Xeon E5-2670 CPUs, there are 8 cores per CPU, each with a level-1

(L1) instruction cache of 32KB, an L1 data cache of 32KB and a 256KB L2 cache. There

is also a shared 20MB L3 LLC (last-level cache) which every core can access. The higher

levels are larger and slower, as they move further from the physical cores. This process

of combining multiple cores on a single processor is called chip-level multiprocessing

(CMP).

In the eyes of the programmer, SMP and CMP can be considered the second level

of parallelization. Memory is shared between all cores on a node, so message-passing is

no longer necessary in order to perform parallel computations. A common standard for

enabling parallelization at this level is OpenMP (Open Multi-Processing)[75]; which

creates threads (often one per core) operating on different segments of the available

data within a single process. It is possible to take advantage of both inter-nodal and

intra-nodal parallelization by performing MPI communications between processes, on

separate nodes, and using multi-threading within each node – this is known as hybrid

parallelization or MPI+X. It is also common to run multiple processes on a single

node, each with their own memory partition, thereby using MPI for intra-nodal and
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inter-nodal parallelization. These MPI-only implementations may struggle to compete

with multi-threading at the intra-nodal level, due to unnecessary memory copying and

inability to effectively use shared cache.

An important concept at the intra-nodal level is that of non-uniform memory access

(NUMA). When data is accessed by a core, it could come from L1 cache, L2 cache, L3

cache, the local memory (via IMC) or SMP memory (via FSB); and although compilers

optimize data locality as much as possible, asynchronicity naturally occurs. It is often

the job of the programmer, or algorithm, to hide this asynchronicity or to improve data

locality.

In a modern computer, so-called accelerators are often added to nodes as expansion

cards. These expansion cards could be graphics processing units (GPUs) or specially-

designed coprocessors, and they communicate via a PCIe (Peripheral Component

Interconnect Express) switch which connects to the system bus. These accelerators

act in a similar way to a node, with their own memory and processor (typically with

many more cores than a CPU). Communication and scheduling of parallel workloads is

handled by the host node, offloading data and instructions via standards such as CUDA

[71], OpenCL [92], or (more-recently) cross-vendor OpenMP [75] and OpenACC [73]

standards. Newer co-processors, such as Intel’s Knight’s Landing, have network cards

which allow them to act as nodes in their own right, communicating via MPI.

Another level of paralellization occurs at the sub-core level, sometimes referred to

as vectorization, single-instruction-multiple-data (SIMD) parallelization, superscaling or

data-level parallelization (DLP). If there are blocks of aligned memory (i.e. vectors)

which are operated on in a non-dependent loop; it is possible to perform operations

on much of the data at the same time. The size of the SIMD register determines

the size of vectorized blocks – for example, a 256-bit register will allow blocks of 4

double-precision floating points numbers to be operated together. In ideal situations,

this is a 4x speed-up. For processors based on the x86 architecture, vector processing

is handled by the Advanced Vector Extensions (AVX) protocol – which constantly

improves by offering larger SIMD registers and improving the amount of operations

that can be vectorized.

Compilers can do a reasonable job of auto-vectorization; but they must be conserva-

tive when evaluating data-dependency. As such, it is often the job of the programmer

to exploit SIMD parallelization. Unfortunately, for applications without well-aligned

memory (such as unstructured-grid CFD codes) it becomes difficult to use vectorization

effectively due to limited memory bandwidth.

The final level of parallelization, referred to as pipelining or instruction-level par-

allelization (ILP) is handled automatically by the compiler. It allows, for example,

pre-fetching data whilst computing by overlapping different operations, performed by

different processing elements. Pipelining improvements are a means of improving core

efficiency, allowing more FLOPS without increasing core clock rates. Figure 2.8 shows

an illustration of pipelining.

This section has given an overview of a classical supercomputer architecture, following
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Figure 2.8: An illustration of pipelining/instruction-level parallelization (ILP). Colours
represent operations which can be performed concurrently (Creative Commons: Colin
M.L. Burnett).

the hierarchy of parallelization schemes from the coarsest to finest level:

1. Distributed-memory parallelization, at the inter-nodal level, handled via a message-

passing interface.

2. Shared-memory parallelization, at the intra-nodal level, handled via shared-

memory threading interfaces or by a distributed-memory-style message-passing

interface.

3. SIMD vectorization, at the sub-core level. Handled via compiler directives or

subsets of the OpenMP standard.

4. Pipelining or instruction-level parallelization (ILP), at the sub-core level, auto-

matically handled by the compiler.

Accelerators or co-processors, tied to a host but with their own distributed memory,

can be considered an additional layer of parallelization – handled via specialist standards

such as CUDA, OpenCL, OpenACC, or subsets of the OpenMP standard.

Over the years the emphasis on different levels of paralellization has changed;

with a trend towards finer levels of parallelization. It is critical that algorithms used

within scientific applications, including CFD, are designed to co-exist within this parallel

framework, and are capable of utilizing multiple layers of parallelization. In the literature

review, the historical trends and future trajectories of high-performance computing are

demonstrated; showing where developers of CFD should be focusing.
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2.2.1 Iridis4

Iridis4, the University of Southampton supercomputer which has been used throughout

this PhD, has been introduced as an example above. Iridis4 has 750 nodes, consisting

of two Intel Xeon E5-2670 Sandybridge processors (8 cores, 2.6 Ghz), for a total of

12,200 cores. Each 16-core node is diskless, but is connected to a parallel file system,

and has 64GB of memory split into two NUMA domains (one per processor). The

nodes run Red Hat Enterprise Linux version 6.3. Nodes are grouped into sets of 30,

which communicate via 14 Gbit/s Infiniband. Each of these groups is connected to

a leaf switch, and inter-switch communication is then via four 10 Gbit/s Infiniband

connections to each of the core switches. Management functions are controlled via an

ethernet network.

Iridis4 ranked #179 on the Top500 list of November 2013 with a peak performance of

227 TFLOPS [96]. Iridis4 cannot be classified as a next-generation, many-core machine,

with only 16 cores per node. Indeed, it is several years behind the state-of-the-art.

Nonetheless, it should be able to give sensible insight into the limitations of the CFD

algorithm if appropriately-sized simulations are used.

2.3 Closure

This chapter has given an overview of the fundamentals of CFD and HPC, and described

how they cooperate. It has also introduced the CFD code used during this thesis

(ReFRESCO) and the supercomputer on which it is run (Iridis4).

The decomposition of the CFD methodology into the key routines of the SIMPLE

algorithm, {assembly, solve, gradients, data exchange}, will be used later to break

down the performance of ReFRESCO, and identify areas where scalability is poorest.

Meanwhile, the knowledge of HPC-related technologies, such as cache, vectorization

and MPI communications, will help identify the cause of poor scaling and guide the

development of algorithmic improvements.

The following chapter will build on this background chapter, by considering the

state-of-the-art of CFD and HPC, and how both these environments may be changing

in the near future.
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Chapter 3

Literature Review

Literature relating to the future of HPC and CFD will be examined herein. To begin,

the state of next-generation ‘exascale’ computing is examined, providing the main

motivation for the research question of this thesis and defining the ‘strong scalability’

problem which CFD must overcome (§ 3.1). In order to answer the research question,

and tackle the strong scalability problem, there are two complementary fields of research

which will be investigated. Broadly-speaking, these fields are inter-disciplinary – taking

aspects of computer science and applied mathematics, respectively.

Firstly, the methods of parallelizing the CFD algorithm may need to be adapted

to suit modern architectures. This may include, for example, moving the existing

implementations to accelerated devices or hybrid-parallel schemes which utilize shared-

memory more efficiently. Parallel-programming paradigms for CFD will be explored in

section 3.2.

Secondly, fundamental changes to the core CFD algorithms may be required in order

to improve strong scalability. These algorithmic changes are not necessarily dependent

on any particular architecture or parallel-programming model; although it is difficult

to avoid cross-over between these two fields. Areas in which numerical algorithms are

being improved for strong scalability and performance are discussed in section 3.3.

Briefly, other developments in the overall CFD methodology are also discussed, in

order to understand how developments towards exascale CFD must merge with other

areas of research.

More specific literature will be introduced in subsequent chapters where it is more

relevant.

3.1 Exascale Computing & The Strong Scalability

Problem

The Top500 list, which has recorded the development of state-of-the-art supercomputers

since 1993, provides excellent insight into historical trends of hardware capability [96].

The maximum performance (based on Linpack, a linear algebra solver and benchmark

tool) has doubled approximately every 13.85 months, considerably faster than Moore’s
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law would predict (18-24 months) [28] – see figure 3.1.

Figure 3.1: Growth of the Top500 supercomputers since 1993, showing exponential
growth in performance of the #1 machine, the # 500 machine, and the sum of the
Top500 machines. Data compiled from [96].

The first exascale computer, capable of one exaFLOPs (1018 floating-point opera-

tions per second), should be in operation by 2020 according to this trend. This is a

10.75-times performance increase compared to the current #1 supercomputer (Sunway

TaihuLight). The challenges associated with reaching exascale will redefine the entire

high-performance computing ecosystem, and fundamentally break the current program-

ming paradigm. Some make the argument that the first exascale machine will be late,

due to the complexities that must be overcome [46], and this seems quite likely. A new

supercomputer, Aurora, commissioned by the Argonne Leadership Computing Facility,

is scheduled for 2018 with a peak performance of 180 PFLOPS – which is slightly behind

current growth trends.

In 2008, a report was commissioned by DARPA (Defense Advanced Research Projects

Agency) which, in part, assessed the possibility of exascale computing [54]. Despite

being written in 2008, most of the predictions have held true so far, and it is still used

today as a valid analysis of exascale computing. There are a few key points to extract

from this 297-page report:

� The amount of energy required to move one bit of data along a copper wire

remains constant, whilst the energy cost of floating point operations decreases. As

the FLOP rate of HPC systems increases, the power requirements of inter-nodal

communication becomes a driving factor. Using the current growth trends, an

exascale computer would consume over 60MW of electricity (around $60 million

US dollars per year); to bring this value to manageable levels (around 20MW) the

rate of increase of inter-nodal communication must decrease. There are advances in

optical interconnect technologies, which aim to improve bandwidth and efficiency

compared to copper-wire interconnects [17]; but their development cannot keep

up with current node-scaling rates. Essentially, node-scaling will slow down and

computational power must come from elsewhere.
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� Core clock rates have stagnated, since 2004, due to a breakdown in Dennard’s Law

[23]. Dennard’s Law states that as transistors become smaller, their speed increases

linearly and their total electrical power consumption decreases quadratically.

Quantum effects, causing electrons to ‘leak’ across the silicon insulators, cause

leakage currents in modern transistors – thus breaking the latter part of Dennard’s

Law. To avoid runaway power consumption due to leakage currents, core clock

rates must remain constant. Indeed, core clock rates may even decrease to

allow a larger margin for other electricity-consuming systems such as inter-nodal

communications.

Fortunately, some gains can still be made without increasing power consumption.

Pipelining and other similar technologies allow instructions-per-cycle to increase,

allowing a greater FLOP rate without increasing clock frequencies. Despite this,

to achieve an exponential growth rate in total performance, whilst limiting the

number of nodes and decreasing core clock-rates, a huge growth of intra-nodal

(cores-per-node) concurrency must occur.

A modest increase in intra-nodal parallelization is already apparent. Since 2004,

manufacturers have been packaging multiple cores into single processors in order

to keep up with exponential performance increases. Figure 3.2 shows how the

performance of the Top500 supercomputers can be attributed to core-clock speeds

and number-of-cores since this shift towards a multi-core architecture.

Figure 3.2: Growth of the Top500 supercomputers since 1993, showing how total
performance is attributed to total parallelization and the FLOP rate of individual
cores. Note the critical point in 2004, where FLOPS-per-core began decelerating and
parallelization began accelerating. Data compiled from [96].

An exascale machine is likely to have O(1k) to O(100k) cores per node, depending

on the specific architecture. Similarly, total concurrency is likely to grow to an

order of 1 billion cores (x10-100 for latency hiding). Sunway TaihuLight has only

10.6 million cores, so this is a growth in parallelization of approximately 100× in

just three years. This corresponds to over a 25× acceleration of parallelization

rates, compared to the trends illustrated in figure 3.2. This sudden acceleration
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demarks the end of the multi-core era, and the start of the ‘many-core’ era.

� Memory bandwidth grows more slowly than processor-performance (approximately

half the speed), so data locality, cache usage and latency-hiding will become more

important. Memory capacity is also growing at a similar rate, which limits the

maximum size of scientific simulations [46].

� Heterogeneous architectures are likely to become the norm. Most likely this will

mean that nodes consist of multiple types of core, each specialized for different

tasks. This is already visible in accelerated nodes, where CPU cores are augmented

by vectorized GPU cores or low-speed co-processor cores. This system may be

adopted within individual CPUs; where various types of core exist to achieve

specialist tasks more efficiently. This trend is partly driven by the consumer market

for embedded systems: tablets, phones and laptops already use heterogeneous

processors (such as for embedded graphics).

Some aspects of heterogeneity are already visible on regular CPUs. Modern

CPUs down-clock cores when operating near the thermal design envelope in

order to maintain efficiency without sacrificing peak performance; thus creating

a pseudo-heterogeneous environment. This is often marketed from the opposite

perspective, as a ‘turbo’ feature. This concept, known as ‘dark silicon’ will become

commonplace and much more pronounced. In Esmaeilzadeh et al. [25], the authors

discuss the power challenges facing exascale computing, and predict that the

homogeneous-core architecture will not be sufficient in achieving exascale, due to

the sheer number of cores which must ‘go dark’. Indeed, the authors propose that

specialized, heterogeneous cores are needed.

� Due to increasing pressure to reduce operating voltages the MTBF (mean time

between failure) of individual cores will decrease. Combining this effect with the

sheer number of cores participating in a simulation, it will become necessary for

simulations to survive core-failures. It is not clear whether this will come entirely

from low-level systems (such as the operating system or parallel-programming

libraries) or whether user codes will each have to adapt.

Many of these trends are already visible with the recent growth of many-core

supercomputers, which exhibit higher FLOP/MW ratios in response to energy efficiency

constraints [46]. Tianhe-2 (the #2 fastest supercomputer in the world, according to the

Top500 list [96]) uses 3 Xeon Phi co-processors to accelerate each node, providing 192

cores-per-node (totalling 34 PFLOPS at 17.8MW). The #3 supercomputer, achieving

17.6 PFLOPS (at 8.2MW), uses k20 graphics cards providing 2496 low-speed cores-per-

node. However, it could be that accelerators are just a stepping-stone to many-core

CPU-based architectures.

Sunway TaihuLight (#1 of the Top500 [96]) uses 260-core CPUs to achieve a peak

performance of 94 PFLOPS with a power consumption of 15.3MW. Each processor

contains 256 vectorizable, low-frequency cores and 4 more-conventional cores. It is a

heterogeneous architecture with just 123MB of memory per core (32GB per node). To

put this in perspective, Iridis4 contains 64GB of memory per node, but only 16 cores.
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These new machines, and upcoming supercomputers such as Aurora [4], continue to

validate the predictions made in Kogge et al. [54]. Changes in architecture will require

the fundamental parallel programming paradigms of CFD to adapt. Furthermore, huge

growth in parallelization will require the CFD algorithm to scale more efficiently.

In the following two sections, the way in which CFD has, or can, adapt to this next-

generation computing environment will be examined. Firstly, programming paradigms

will be considered, looking at ways in which CFD can adapt to make use of new hardware.

This will focus on computational changes to the code – using different parallelization

techniques, exploiting accelerators, and examining data-level (SIMD) parallelization –

without changing the numerics of the code. Secondly, the numerical algorithms which

form the core of the CFD methodology will be examined, identifying areas where the

numerical algorithms themselves have already been adapted for strong scalability, and

where further work is required.

3.2 Parallel Programming Paradigms for CFD at

Exascale

Most commercial and open-source CFD codes are based on an MPI-only model, including

ReFRESCO [99], Star-CCM+ [13, 14, 15], OpenFOAM [74, 77] and ANSYS CFX [19] –

in general, their methodology, performance and scalability are similar. However, there

is now an increasing amount of literature discussing alternatives to this MPI-only

model. For example, there have been experimentations with hybrid parallelization

in OpenFOAM [20] and GPU-acceleration in ANSYS CFX [42]. In this section, this

literature will be investigated in order to understand the state-of-the-art with respect to

CFD and parallel programming paradigms – including hybrid parallelization, accelerators

and vectorization.

3.2.1 Hybrid Parallelization

A popular concept for strong scalability is that of hybrid parallelization, whereby

distributed-memory processes communicate via MPI (across node or NUMA bound-

aries), and within each shared-memory process multiple threads operate together, using

OpenMP or similar [78]. Neither ANSYS nor Star-CCM+ have mentioned hybrid

programming paradigms, but they may be investigating this. Developers of OpenFOAM

have experimented with hybrid paralellization with good results [20]. The hybrid schemes

were shown to be faster at high core counts (C = 4096), but their implementation was

badly optimized for memory locality, and many start-up routines were not hybridized.

On routines which were well-optimized, hybrid execution was up to 15 times faster; but

this speed-up was probably due to cache effects or better optimization and should not

be considered a benchmark.

This OpenFOAM study shows some benefits of hybrid paralellization with respect

to strong scalability and large core-counts; further improvements to memory locality

and more wide-spread hybridization may make this an accessible performance gain
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for CFD. PETSc, the scientific algebra library on which ReFRESCO depends, has

been fully hybridized with modest results [56], with some performance increase when

task-based threading was used (dedicating one thread purely to MPI communications).

However, official support for the hybrid parallelization model in PETSc was recently

dropped. Instead, the PETSc developers hope that MPI-only will remain relevant as

MPI standards develop over the next decade. There have been many interesting debates

on their mailing lists regarding this decision.

Some of the advantages of hybrid parallelization include better memory capacity

usage (reducing duplication of data within the same node), better memory locality, better

usage of inter-nodal networks and dynamic fine-grained load-balancing [78, 90]. That

being said, numerical codes using non-hybrid schemes can also realize these advantages,

albeit with greater programming effort.

3.2.2 Accelerators

Accelerators include graphics-processing units (GPUs) or co-processors (such as Intel’s

Xeon Phi) which are attached to a host node. Usually, these devices are connected via

the PCI serial interface to the host node (see figure 2.7). The Xeon Phi can be operated

as an MPI node in its own right, or work can be off-loaded (either partially or entirely)

by OpenMP directives. GPUs work in a similar way to off-load-mode Xeon Phis, using

programming standards such as CUDA or OpenCL. Functions performed on GPUs

(kernels) must be re-written in an appropriate syntax; whereas Xeon Phi’s understand

the same instructions as the host (thus they are much easier to use). All forms of

accelerators are designed to provide large throughput computing power; favouring SIMD

(Single-Instruction-Multiple-Data) vectorized routines. This is opposed to CPUs which

are latency-optimized, focused on performing complex, varied tasks via large caches and

diverse processing elements. The usage of accelerators is usually a trade-off between

the speed-up obtained from using high-throughput processing compared to the cost of

moving data to the accelerator.

Gorobets et al. [32] presents one of the most comprehensive CFD-acceleration studies,

translating the vast majority of CFD operations into OpenCL kernels – including those for

discretization, interpolation, gradient computation and linear-equation-system solving.

The author demonstrates that the routines run 7.6 – 22.5x faster on an NVidia C2050

GPU, and 11.6 – 96x faster on an AMD 7970 GPU, as compared to the run-time on a

standard Intel CPU (X5670). However, comparisons between CPUs and accelerators are

not very revealing (their hardware is fundamentally different). The author goes on to

show that the GPU kernels achieve very poor throughput compared to their theoretical

peak; and that the CPUs are used more efficiently. This is mostly due to the limited

memory bandwidth and host-to-accelerator communication which creates a bottleneck.

Furthermore, the code used by Gorobets et al. used a structured (Cartesian) mesh which

could be vectorized for efficient computation on GPUs.

Soukov et al. [88] performed a similar study, specifically looking at higher-order

discretization routines for unstructured CFD meshes accelerated on GPUs. The GPU
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shows good performance up until memory bandwidth is saturated. In order to compare

between CPUs and GPUs, the author shows that the speed-up is greater than the

relative electrical power consumption of the two devices (the GPU requiring 2.5x more

power, but producing a larger speed-up). Similarly, Rossi et al. [82] presents GPU

acceleration of an unstructured finite-element code. The accelerator becomes more

efficient as the test case becomes larger – when 1-million cells were offloaded the GPU

became up to 4.11x faster than the CPU.

Gorobets et al. [33] performed a study comparing the performance of NVidia GPUs,

AMD GPUs and first-generation 5110P Xeon Phis for unstructured discretization

routines. The Xeon Phi performed poorly compared to the GPUs, but the author

provides many explanations for this. Most notably, the code is optimized for massive

multi-threading; and this is only possible in embarrassingly-parallel parts of the CFD

code (such as in the assembly and gradients routines). The Xeon Phi behaves more

like a standard CPU, with larger caches and more hierarchical memory access, which

should allow it to maintain speed-up on more complex routines (with irregular memory

access or inter-thread communication). In Liu et al. [59], an NVidia K20X GPU is

compared to a Xeon Phi for sparse-matrix-vector-multiplication (SpMV) routines, which

feature heavily in the solve routines for CFD. Xeon Phi’s were considerably faster in

this test case, which could be much more meaningful for overall CFD speed, as the solve

routines are expected to be a bottleneck to strong scalability. Gorobets et al. notes

that despite the poor comparison to GPUs in the näıvely parallel code, the Xeon Phi

achieved very good internal scaling, achieving approximately 83% parallel efficiency

over its 240 threads (compared to serial run-time on a single Xeon Phi thread).

The latest generation of Xeon Phi, dubbed Knight’s Landing (KNL), was released

in 2015, featuring 3x the raw compute power of the first-generation Xeon Phi [94, 95].

KNL features an even more hierarchical memory architecture, with a bank of ‘near

memory’ (8 or 16GB) acting as a form of large cache. This is very attractive for CFD,

which is often memory-bandwidth limited.

Recent developments in the OpenMP standard (4.0) support offloading of data to

an accelerator without re-writing special vendor-specific kernels. The much younger

OpenACC standard was created for the same purpose. Unfortunately, few compilers

support the full OpenMP or OpenACC standard; with most offering partial coverage

for their preferred hardware. For example, the Intel compilers support OpenMP 4.0

offloading, but only to Intel Xeon Phis. Similarly, the Portland Group compilers support

OpenACC for NVidia GPUs – but nothing else.

In Horst [46], a certain amount of scepticism around the long-term usage of accelera-

tors is presented. The author suggests that accelerators may be a short-term solution to

achieve a pseudo-many-core architecture. The expectation being that these throughput

cores will move on to the same package as the typical CPU cores. The reasoning is that

most supercomputing technological advances are driven by changes in the consumer

market. Mobile phones, tablets, and laptops typically use embedded systems, with

specialist cores for general-purpose computing, graphics processing (SIMD) and other
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specific applications – all on the same chip. The recently-developed Sunway TaihuLight

fits this prediction very well. In some ways, the heterogeneous, embedded vectorization

cores act similarly to an accelerator, so programming standards such as OpenMP are

likely to adapt well to this environment.

3.2.3 Vectorization

A key part of modern processors, including graphics cards and co-processors, are

their SIMD vector extensions to the standard (x86) instruction set. As more complex

instructions become vectorizable and the SIMD registers on these devices get larger,

vectorization cannot be ignored [91].

Ierotheou et al. [49] performed some work on vector processing for CFD in 1989

(when array processors were popularized), showing substantial speed-up in some areas of

the code. The author states that vectorization could be exploited in the solve routines,

offering up to 20x speed-up for simple iterative solvers (such as Jacobi methods).

The limiting factor for other routines, such as assembly routines was difficult branch

prediction (conditional if statements inside a loop make it difficult to vectorize) due to

boundary conditions and irregular source terms from the turbulence equations. Vector

extensions in modern processors are quite different. Firstly, the maximum speed-up is

proportional to the vector register size – on Iridis4, a 256-bit (4 double precision floats)

vector register grants an ideal 4x speed-up. Secondly, the vectorization has become more

robust – ‘masking’ of different conditional statements allows difficult branch prediction,

and some indirect memory access is allowed. Compared to the hardware available to

Ierotheou et al., speed-ups should be smaller but perhaps applied to more of the code.

Memory alignment is an important factor for effective vectorization. In a structured

CFD code, where cells can be expressed in Cartesian (i,j,k) format, and relationships

between cells can be expressed as constant offsets, memory access is very uniform (which

leads to high performance in itself) and vectorization is trivial. In an unstructured

code, which typically uses pointers to non-contiguous memory, memory alignment is

much harder (and is the reason that CFD is often memory-bandwidth bottlenecked).

Vectorization is often possible, but inefficient, since the vector processor will be starved

of data. Attempting Intel’s auto-vectorization on sections of the solve routines in PETSc

results in a compiler warning: “Vectorization possible but seems inefficient” [51].

The operational intensity (the ratio of FLOPS per memory operation) is often

used as a metric to assess the performance characteristics of numerical algorithms –

often visualized on roofline diagrams (figure 3.3). The operational intensity of most

unstructured CFD is low, making vectorization unproductive unless the memory access

can also be vectorized.

Sparse matrix storage structures have been developed which can improve operational

intensity, such that vectorization becomes possible. One such format is based on ELL

(originally designed for solving ELLiptic boundary condition problems), which pads each

row of the sparse matrix such that it is the same length, allowing some vectorization.

Saad & van der Vorst [83] discusses the ELL format, as well as standard formats such
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Figure 3.3: An example of a roofline diagram, used to visualize operational intensity and
its affect on maximum performance of any particular algorithm [Wikimedia Commons:
Giu.natale].

as CSR (Compressed Storage Rows) used by most CFD codes, including ReFRESCO.

Other formats exist, such as JAD (Jagged Diagonal) with optimal vectorization, but

require impractical matrix re-ordering. D’Azevedo et al. [22] shows order-of-magnitude

speed-up using ELL on SpMV routines on specific Cray vector machines, which is

encouraging for CFD. The status of PETSc implementation of such formats is unclear;

they appear to feature in well-developed GPU kernels, but not for modern CPUs.

In Basermann et al. [9], an automatic-vectorization script called Scout was developed

and applied to two CFD codes: one structured (TRACE) and one unstructured (TAU),

using modern vector extensions. Convective discretization routines achieved perfect

speed-up (x4) in the structured code, and a 2x speed-up in the unstructured code.

Other assembly and gradients routines achieved up to a 50% speed-up. The ability

to vectorize was heavily influenced by memory storage patterns and specifics of the

implementation – which differ somewhat from ReFRESCO’s implementation. The

significant performance differences between structured and unstructured meshes raise

the possibility of recovering structured blocks from hexahedral unstructured meshes, for

the purposes of vectorization. This is done successfully in EXN/Aero [24].

In this section the programming paradigms surrounding exascale have been discussed,

exploring the ways in which existing CFD algorithms can be adapted to perform

on exascale machines. Hybrid parallelization, accelerators and SIMD vectorization

have been discussed. Of the methods described, OpenMP stands out as a powerful

programming standard to tackle multiple exascale challenges. OpenMP is primarily

designed to handle shared-memory (multi-threaded) parallelization, which can be used to

build a hybrid MPI+OpenMP parallelization scheme; but it also offers means to offload

to both GPUs and Xeon Phi co-processors, and is well suited to heterogeneous CPUs.

In addition, it provides the necessary directives to control SIMD vectorization. The

competing schemes, such as OpenCL, CUDA or OpenACC, only address accelerators,

and may be better for this specific purpose. Hybrid parallelization with MPI+OpenMP

appears to be a logical starting-point for exascale CFD.
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3.3 Numerical Advances in CFD

The previous section evaluated programming paradigms which may change the way

numerical algorithms translate into the hardware on which they run. In this section,

means of changing the numerical algorithms are examined: identifying areas where

the numerics themselves could be improved for strong scalability. All the numerical

algorithms in the SIMPLE scheme can be broken down into three patterns: serial

computations, neighbour-to-neighbour communications and global communications;

which can be used to identify their scaling patterns.

� Serial Computations: Any computations that are performed purely on local

data. If ghost-cells are up-to-date, then all the routines in the assembly and

gradients, including discretization, interpolation, corrections and matrix assembly

are entirely serial computations. Serial computations scale well at the inter-nodal

level, with each node providing a proportional speed-up of any serial computations.

At the intra-node level serial computations may scale with number of cores or

memory bandwidth – usually some complex mixture of both.

� Neighbour-to-Neighbour Communications: The exchange of data between

ghost cells is an example of neighbour-to-neighbour communication. Neighbouring

partitions of a mesh must communicate data on their borders to a handful of

processes, but not every process. As the number of partitions increases, with

more processes, the number of neighbours should not change dramatically. Since

various neighbours can communicate simultaneously, this is (mostly) a scalable

communication pattern. Eventually, a decreasing cells-per-core ratio will reduce

the size of these MPI messages such that they are limited by inter-nodal latency –

this is a hard limit on the scalability of these routines.

� Global Communications: Some routines, particularly those in the solve routines

require global communication. Typically these communications are used to find

global maxima, minima or averages across all cells in the domain. In the linear

equation-system solvers, they are typically used to compute vector norms or

residuals across partitioned vectors. Sometimes called collective communications,

they perform a tree-like hierarchical communication pattern, where every single

message is latency-bound. Global communications are not scalable, increasing

(not even decreasing!) at a rate of log2(P ), where P is the number of participating

MPI processes.

The two communication patterns can cause additional problems due to synchro-

nization. Synchronization occurs implicitly wherever processes must communicate, in

the case of two MPI processes performing neighbour-to-neighbour communications,

the two processes must reach the same point in the code before they can proceed. If

the two processes are not perfectly load-balanced then there is an implicit synchro-

nization delay, as one process waits for the other. If every MPI process is involved

in neighbour-to-neighbour communications at once, a global implicit synchronization

can be created. In many situations, (non-blocking) communication can be overlapped
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with useful computations to hide communication costs, including synchronization –

but as the cells-per-core ratio decreases this becomes more difficult, as the amount

of serial work decreases (per process). In some cases, overlapping computations and

communications is not possible at all, and a blocking communication is used, causing

explicit synchronization. Implicit or explicit global synchronizations can cause a serious

scalability problem.

The assembly and gradients routines are of relatively little interest to strong scala-

bility; as they are entirely serial computations. Improvements at the intra-node level

mostly come from computational optimization, such as vectorization, as discussed in

the previous section.

The ghost-cell data exchange, which uses neighbour-to-neighbour communications, is

scalable but subject to implicit synchronization delays. From an algorithmic perspective,

overlapping communication and computation does improve this. Some studies have

reported that data exchange routines are the main bottlneck to strong scalability of

CFD [34], but it is suspected that poor load balancing reduced the quality of these

findings.

The solve routines are the subject of modern scalability research. Other studies

concerning CFD state that the linear equation-system solvers (or just linear solvers)

are the main bottleneck to scalability due to their global communication patterns [18].

The pressure-correction is (by far) the hardest of the equations to solve, due to its

elliptic nature [11] – as will be shown later. Modern research focuses on reducing the

amount of global communication required by the solve routines [61, 108], or reverting to

algorithms with worse numerical convergence, but no global communication [2, 10]. The

linear solver will become one of the main focuses of this thesis, and a more complete

review of literature will be presented in the relevant chapter.

There is much research into numerical methods which do not directly influence

strong scalability, but may have a profound effect. It is important to be aware of these

developments when attempting to make any developments to the fundamental CFD

algorithms. Indeed, many of these methods put more emphasis on the linear solver,

which may negatively affect scalability of the code overall.

� Higher-Order Discretization: With memory operations becoming more expen-

sive relative to floating-point-operations, more complex discretization is achievable

for a relatively low cost. Higher-order discretization methods such as Discontinu-

ous Galerkin are gaining popularity for their relative cheapness and high accuracy

[69]. In turn, these higher-order schemes could reduce overall solution time (by

allowing smaller meshes). Discontinuous Galerkin is a powerful scheme because

it does not change the discretization stencil (cells only have links to their direct

neighbours), and thus the linear-equation system matrix structure remains the

same. The linear system is likely to become stiffer, requiring more iterations, thus

this becomes a trade-off between performing fewer outer loops but requiring more

inner loops.

� Higher-Order Linearization: Linearization in ReFRESCO, and most other
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codes, is performed by Picard’s method which takes ‘lagged’ values from the

previous outer loop (w − 1) to create a linear system. Higher-order systems such

as variations on Newton’s method, could be advantageous [43]. The trade-off is

between memory requirements, additional computation steps, faster convergence,

and once again – a stiffer linear equation system.

� Pressure-Velocity Coupling: The three momentum equations and the pressure-

correction equation can be coupled together into one single linear-equation system.

This requires a more powerful linear solver (with complex pre-conditioning), but

can converge the overall system faster; since the burden of coupling momentum

and pressure equations is transferred to the linear solver. Klaij & Vuik [52] reports

reductions in the number of outer loops by a factor of 5–20, reducing computation

time by factors of 2–5, depending on the particular test case. For more challenging

cases, it can be very difficult to converge the coupled system, and the benefit

is lost. The pre-conditioning of the coupled linear system may also be a big

enough bottleneck to scalability to negate these benefits, depending on the global

communication requirements. At their heart, the coupled solvers still rely on

classical linear solvers, which brings the scalability concerns to the forefront once

again.

With similar motivation, the PISO algorithm (popular in OpenFOAM) computes

the pressure-correction multiple times per outer loop (correcting momentum

equations each time) to provide more coupling between momentum and pressure

[100].

� Parallel-in-Time Methods: It is possible to apply parallelization to the time

dimension. This is done by solving multiple time-steps at once, with a prediction

for the initial conditions and a correction after each ‘block’ of parallel time-steps.

The technology is still young, but exciting for unsteady CFD. There are issues with

scalability, due to the large amount of data which must be globally communicated

[24].

� LES or Hybrid RANS-LES: For the accurate and reliable prediction of turbu-

lence, particularly in regions of flow separation, RANS modelling is unsatisfactory.

Large-Eddy Simulation (LES) is becoming accessible due to increasing compu-

tational power; and hybrid RANS-LES models or wall-modelled LES are also

becoming common [30, 107]. LES models require higher fidelity simulations, with

larger grids and shorter timesteps. Since the time dimension cannot be efficiently

parallelized, it is necessary to provide greater parallelization and partitioning of

the spatial dimensions, in order to increase the capabilities of LES simulations.

This provides additional motivation for reducing the efficient cells-per-core ratio

and improving strong scalability; but the SIMPLE algorithm is unchanged.

� Additional Physical Models: As simulations become more complex, CFD

practitioners wish to model more complex flow features. For maritime CFD,

this includes transition modelling and advanced multiphase modelling (such as

cavitation) [45, 80, 81]. These models typically require higher fidelity simulations
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with reduced timesteps – again, motivating strong scalability of CFD.

� Automatic Mesh Refinement: Automatic mesh refinement/adaptation is a

means to methodically increase or decrease mesh resolution according to maturing

flow features in an active simulation [105]. It is an impressive technology that

reduces the labour associated with creating meshes, and improves the efficiency of

the CFD algorithm by adding and removing mesh resolution exactly where it is

needed. From a scalability perspective, there are particular issues with dynamic

load balancing, but this is a very active area of development.

� Overset Meshing: In a similar vein, overset-mesh technologies have been de-

veloped, which allow different parts of the domain to be meshed independently

and overlapped [102]. The flow-solver dynamically cuts holes in and interpolates

between the non-contiguous meshes, allowing complex geometries to be meshed

easily (reducing labour) and enabling multi-body, dynamic simulations. There

is a computational overhead, including difficulties in load balancing, and there

are many physical and numerical challenges too. For example, the structure (or a

mask) of the linear system Ax = b will change every time the meshes move [60].

� Immersed Boundary Methods: As an alternative to both automatic mesh

refinement and overset meshing, immersed boundary methods are an interesting

area of research – completely removing the need for mesh generation and enabling

extremely complex multi-body, dynamic simulations [64, 104]. Immersed boundary

methods use simple meshes, such as uniform Cartesian grids, and adjust the

equations of motions (rather than the mesh) to account for solid bodies in the flow.

In terms of scalability, the structured-grid formulation allows better utilization of

memory bandwidth and vectorization – but the overall algorithm is not significantly

changed, still requiring accurate and fast solution of elliptic and non-elliptic

governing equations, for example. Current research focuses on improving accuracy

and efficiency of immersed boundary methods.

� Multidisciplinary Design Analysis and Optimization (MDAO): NASA

(National Aeronautics and Space Administration) recently conducted a study which

outlines the main priorities and concerns for CFD in 2030, entitled CFD Vision

Study 2030 [87]. One of the key goals includes the coupling of various numerical

tools. The coupling of, for example, fluid flow solutions and structural deformation

simulations, is now possible and desirable. Fluid-Structure Interactions (FSI) are

particularly important in maritime CFD for the design of offshore structures and

vessels. It is not clear what effects this may have on scalability and performance.

3.4 Summary

The aforementioned NASA study describes multiple expectations of CFD in 2030 –

including improvements to physical modelling, MDAO, grid generation, post-processing

and knowledge extraction [87]. NASA also calls for dramatic improvements to handle

the paradigm-shift in HPC technology; conjointly, they also call for revolutionary

algorithmic improvements to the core CFD algorithms in order to efficiently handle
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larger simulations and more complex hardware. They state that developments in this

area have been stagnant for too long. This thesis aims to tackle the cross-over between

these last two points, by improving the scalability of the core SIMPLE algorithms

(assembly, solve or gradients, for example).

In order to do this effectively, it is important to understand what the future of both

HPC and CFD will look like – and this chapter has provided this understanding. The

shift towards ‘many-core’ machines with limited memory bandwidth, heterogeneous

architectures, and higher levels of vectorization, will influence design decisions throughout

this PhD and may encourage, for example, the use of OpenMP. Furthermore, a shift

towards higher-order discretization and linearization techniques is likely to put more

pressure on the solve routines – and this should be considered when investigating

scalability.

This literature review has been deliberately broad, in order to capture a wide range

of future HPC technologies and CFD advancements – some of which reinforce the

overall aim of the thesis, and some of which provide direction or understanding for the

research that will follow. More focused literature will be discussed in relevant sections

throughout this thesis, such as in the following chapter, where a detailed scalability

study of ReFRESCO is performed.
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Chapter 4

Investigating the Strong

Scalability of CFD

This chapter follows the second objective of the thesis, which is to examine the scalabil-

ity characteristics of ReFRESCO, identifying important bottlenecks and building on

insufficient results from the literature. In order to do this, the CFD code is instrumented

using profiling tools and hardware counters, and the time spent in various parts of the

SIMPLE algorithm is measured. In an attempt to generalize the results and gain a

wider picture of the scalability issues facing CFD, permutations of common simulation

settings are investigated – including inner-loop convergence tolerances and discretization

schemes. This chapter closely resembles and references the work presented in Hawkes

et al. [36], available as appendix A, but has been updated with scalability results up to

2048 cores, as in Hawkes et al. [39] – appendix D.

4.1 Introduction

In the literature review, a variety of scalability studies were identified [11, 13, 15, 18,

19, 34, 77]. However, there are a number of deficiencies and disagreements between

the literature, and the results are often subjective to the particular code and hardware,

which makes it difficult to generalize. This prompts a detailed study of the scalability

of ReFRESCO.

In Bhushan et al. [11] the linear-equation system solver, particularly for the Poisson

pressure equation, is the main bottleneck to scalability. Culpo [18] reinforces this by

considering the main elements of the linear-equation system solver and how they could

be improved. However, neither paper investigates the reason for their poor scalability

in detail, and neither considers alternative solver algorithms. Gropp et al. [34] provides

a good grounding in both these areas, but is now 15 years old – and the conclusions

drawn could be somewhat outdated due to changes in hardware.

For commercial CFD codes, such as Ansys CFX [19, 42] and Star-CCM+ [13, 15],

the results of scalability tests are not thorough enough to draw conclusions. The tests

either show scalability up to a limited number of cores, or hide intra-nodal efficiency
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losses by normalizing scalability to single-node performance. The details of the test case

and mesh size are also not clear. These reports double as marketing material, so it is

not in their interest to clearly present scalability issues.

In this chapter, an in-depth review of the scalability of ReFRESCO is conducted

on up to 2048 cores. In order to glean information from these tests, profiling tools are

used to measure the time spent in key portions of the code. In section 2.1.2, the four

most expensive portions of the SIMPLE algorithm were introduced: {assembly, solve,

gradients, data exchange}. This logical subdivision was created by analyzing the results

of the profiling tools discussed below, and will be used to break down the scalability in

a meaningful way.

The results of this scalability study encapsulate years of development of the CFD

algorithm, the underlying hardware, messaging libraries (such as MPI [66]), partitioning

methodologies [27] and other external tools, such as PETSc [6]; thus should be more

relevant than Gropp et al. [34]. As has become apparent during this PhD, it is more-or-

less impossible to generalize performance results between different codes and hardware

– even when they are fundamentally based on the same algorithm, such as SIMPLE.

For example, in EXN/Aero [24], the pressure equation undergoes implicit relaxation,

increasing the diagonal of the linear equation-system matrix, thereby making the pressure

equation much easier to solve. This removes work from the solve routines, but requires

that more outer loops are performed to cancel out the relaxation (thus more time spent

in assembly, gradients, data exchange). Differences in linearization and discretization

strategies can also have a similar effect.

In an attempt to provide some generalization, various common user settings have

been tested. This includes different discretization strategies for convective flux terms,

different meshing methods and various turbulence models. For the most part, this had

no effect on scalability. Overall, the results appear to correlate well with Bhushan

et al. [11] and Culpo [18], showing that the solve routines are the bottleneck to strong

scalability. In later chapters, the scalability of the solve routines is investigated in more

detail, and solutions are presented.

These results were initially presented in Hawkes et al. [36] (appendix A), but have

been updated multiple times throughout this PhD. Shortly after this publication,

fundamental changes were made to the data exchange routines in ReFRESCO which

dramatically improved their scalability – updated results were presented in Hawkes

et al. [39] (appendix D). In both the aforementioned studies, the scalability results

were performed up to 512 cores. For the majority of this PhD, all experiments were

limited to 512 cores due to the default permissions on Iridis4. At the end of this PhD, a

special opportunity was granted to test on 1024/2048 cores – some additional results are

presented here to reflect this, but it was not possible to re-run all previous experiments.

4.2 Methodology

The scalability of ReFRESCO is measured on Iridis4, from 1 through to 512 cores (and

up to 2048 in section 4.3.5). Two test cases, both of approximately 2.7-million cells, are
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used to evaluate the scalability of the code and algorithms. Various tools have been

used to instrument the code – measuring the performance of the code in a non-intrusive

way. These are introduced below.

4.2.1 Test Cases

Two test cases are used in these experiments, and will be used throughout this thesis.

The first is a laminar-flow, canonical, unit-length, cubical, three-dimensional lid-driven

cavity flow (LDCF). A uniform structured mesh of 2.69-million cells (1393) is used,

and only momentum and pressure equations are solved. The simulation mimics an

infinite domain, with two cyclic boundary conditions. The remaining four boundaries

are constrained with Dirichlet boundary conditions, one of which specifies a tangential,

non-dimensional velocity of 1. The domain is shown in figure 4.1. The Reynolds number

is 1000.

The second test case is the Kriso Very Large Crude Carrier (KVLCC2) double-body

wind-tunnel model. This test case is chosen as it is a well-known maritime CFD test

case, and is used for a variety of CFD workshops – and is backed up by experimental

model-testing [57]. The mesh is a three-dimensional, multi-block structured mesh

consisting of 2.67m cells. A k-ω, two-equation shear stress transport turbulence model

is used [63]. The domain and mesh are shown in figures 4.2 and 4.3 respectively. The

Reynolds number is 4.6× 106.

Figure 4.1: The 3D lid-driven cavity flow (LDCF) domain, with three stationary walls,
two cyclic boundaries and one velocity-forcing wall. All edges of unit length.

The two test-cases are designed to have a similar number of cells and the size of

the mesh has been chosen to show the full range of scalability issues. On 512 cores, the

cells-per-core ratio reaches approximately 5200 which helps demonstrate the parallel

bottlenecks on a large number of cores; yet the problem is substantial enough to show

memory bandwidth issues on a single node. On 2048 cores, the cells-per-core ratio

reaches 1300. An initial study was performed on meshes ranging from 317k to 23.5m

cells in order to determine the most useful mesh size.

It is important to note that whilst the two meshes are structured, ReFRESCO treats

them as unstructured meshes and does not gain any direct computational benefits of a
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Figure 4.2: The domain used for the KVLCC2 double-body wind-tunnel simulation.
Symmetry boundary conditions are applied at the water-plane, but port- and starboard-
sides of the centre-line are both simulated.

structured memory layout. However, in order to observe any indirect effects of mesh

structure (such as coincidentally improved memory bandwidth or reduced stiffness in

the linear equation-systems due to improved mesh geometry), scalability of a truly

unstructured mesh has been compared to the structured mesh described. The results

are discussed in section 4.3.3.

For scalability tests, the CFD solver is not executed to convergence – it would simply

be too expensive. Initially, scalability studies were performed over 400 outer-loops;

however, this was reduced to 100 outer loops when experiments began on 1024/2048

cores. On 1024/2048 cores, each case required approximately 6 minutes of wall-time;

allowing 28 permutations of the solver to be tested in the 3 hours that were available.

It is generally observed that the equation systems are stiffer at the start of a simulation,

where the flow is uninitialized, but the effects were found to be negligible in these

particular test cases. Thus, unless specified, all of the scalability experiments in this

thesis have been (re-)run with 100 outer loops.

An inner-loop relative convergence tolerance (ILCT) of 0.1 is used for momen-

tum, pressure and turbulence equations. ILCT= 0.01 and 0.001 were also tested in

section 4.3.1, in order to cover a common range of ILCT settings used with ReFRESCO.

Relaxation is applied to all outer-loops to stabilize the non-linear iterative process.

For momentum and turbulence, αexp = 0.15 and αimp = 0.8, ramping up to αimp = 0.85

linearly over the first 100 iterations. For the pressure equation, αexp = 0.1 and no

implicit relaxation is used.

QUICK with flux limiters [44] is used to discretize the convective terms in the

momentum equations. This scheme is second-order, reducing to first-order where flux

gradients are high. A first-order upwind scheme is used to discretize the convective

terms of the turbulence equations. The effects of changing the discretization scheme

will be observed in section 4.3.2. It may be that higher-order terms impact the cost of

assembly routines, or impact the linear equation-systems and solve routines. For all

equations, the diffusion terms are discretized using a 2nd-order central scheme. The
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Figure 4.3: The KVLCC2 mesh is a multi-block structured mesh consisting of 2.67-
million cells.
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gradients of any variable (velocity, pressure, turbulence quantities) are discretized using

a 2nd-order Gauss-theorem scheme.

For the solution of the linear equation-systems (for all equations), a GMRES

(Generalized Minimal Residual method) solver is used with a right-side Block Jacobi

preconditioner, from PETSc [6], as in the scalability study of Gropp et al. [34]. The

choice of linear solver has a very large impact on the scalability of the solve routines,

and a more thorough investigation is performed in chapter 5.

4.2.2 Instrumentation

In order to observe how the assembly, solve, gradients and data exchange routines scale,

ReFRESCO has been profiled using Score-P [101]. Score-P is a compile-time wrapper

which automatically logs various run-time events, such as function calls and durations.

It has been carefully filtered such that only critical functions are measured, and the

effect on total run-time is less than 2%. Score-P can be linked to PAPI (Performance

Application Programming Interface)[12] which gathers additional information from

physical hardware-counters.

Two hardware counters are enabled for these tests. The first measures FLOPS, which

helps to determine whether the processing units are saturated. For an unstructured

CFD code this is an unlikely situation, as the indirect memory access tends to delay

the processor. Structured-mesh codes are more likely to reach these limits due to

vectorization of memory operations.

It would be ideal if memory bandwidth could be measured, however, it is not possible

to measure this directly. Instead, one can measure cache misses – any occurrence of

when a CPU instruction is halted and required to wait for a memory transaction. Level

one (L1) cache misses give a good indication of memory-fetching issues (since a cache

miss must result in a memory or next-level cache transaction). However, there are two

issues. Firstly, the compiler will often pre-fetch memory into the cache, resulting in

memory bandwidth usage which is not detected by this hardware counter. Secondly,

an L1 cache-miss will be registered even when the data resides in L2 or shared cache

(which is still very fast compared to off-chip memory).

Due to these imperfections, it is often difficult to use the hardware counters to draw

concrete conclusions. However, they can assist in understanding scalability bottlenecks

which are revealed by ordinary profiling, particularly at the shared-memory level. Other

hardware counters are available (such as L2 cache misses) on Iridis4, but they cannot

be enabled concurrently due to limited register sizes and competing circuitry.

4.3 Scalability Tests

The results of the initial scalability tests are shown in figure 4.4. These scalability graphs

are used throughout this thesis in various forms, so it is worth explicitly explaining

their format. The graphs show the scalability of various routines from 1 through to

512 cores. Let TC be the time required for any given routine on C cores, thus T1 is the

44



serial run-time. A scalability factor (S) can be determined for any C, where:

S =
T1

TC

thus the scalability at C = 1 is one; and ideal scalability is a linear relationship where

S = C. When normalized to serial run-time (T1) in this way, this factor is often called

the parallel speed-up factor, but the more generic term is preferred here. Parallel

efficiency, often given as a percentage, is defined as S
C where 100% parallel efficiency

represents ideal scalability.

When comparing the scalability of two fictional routines, R1 & R2, the normalization

of each routine to T1 hides the absolute time spent in each routine, thus hiding an

important part of the result. Regardless of scalability, if T1,R1 >> T1,R2 then this may

be an overriding factor in determining which routines are the greatest bottleneck to

exascale computing, since any scalability losses in R1 will be amplified by their relative

cost.

In the scalability plots, an embedded bar-chart is provided which shows the absolute

(not normalized) time spent in each routine. This is plotted as C×TC (core-hours), and

is shown for various C. With ideal scalability (S = C), C × TC should remain constant.

It is often helpful to see this scalability information duplicated in this view, and the

relative differences between routines can be quantified.

Figure 4.4.a and 4.4.b show the scalability of the code as the number of cores

increases. The results from the hardware counters are shown in figure 4.5, for the LDCF

test case.

Total scalability is poor overall, suffering significantly on just 16 cores due to intra-

nodal bottlenecks and worsening to the point at which almost no speed-up is gained

from adding additional nodes. On 512 cores the parallel speed-up is just 128 (KVLCC2)

and 100 (LDCF). This scalability is similar to other codes, such as OpenFOAM [18, 77],

STAR-CCM+ [13] or Ansys Fluent [HP 2014]. Exact comparisons between various

codes on identical hardware were not feasible.

The routines outlined earlier {assembly, solve, data exchange and gradients}, for

each equation in each outer loop, account for the large majority of overall run-time.

The remaining time (other) is spent (mostly) in one-off functions such as file IO or

MPI initialization, thus is subjective to the length of the simulation and amount of IO

required. These other routines may also increase significantly if additional features such

as moving, deforming and adaptive grids are used – again, this is highly subjective.

The assembly and gradients routines scale favourably, reaching almost 90% parallel

efficiency. The high, and increasing, cache-miss rate of the gradients routines is curious,

as it does not seem to affect performance (FLOP rate is maintained). It is likely that

the data required resides in L2 or shared-cache, rather than off-chip memory, so the

impact of these L1 cache misses is much lower.

The data exchange routines are not visible in the scalability plots, because nor-

malizing against (T1 ≈ 0) gives inverse scalability (no communications are required in

serial operation). In reality, these routines scale reasonably – as the number of cores
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Figure 4.4: Scalability of the code, and the profiled routines within, as the number of
cores increases. These results used GMRES as the linear solver with a Block Jacobi
preconditioner, and an inner-loop relative convergence tolerance of 0.1. (a) KVLCC2
breakdown by routine, (b) LDCF breakdown by routine, (c) KVLCC2 breakdown by
equation, (d) LDCF breakdown by equation.

increases the size of the messages become smaller, and these messages can be sent

concurrently. With inadequate load-balancing these data exchanges could become costly,

due to the implicit synchronization of MPI processes. However, the results show that

these communications account for a small proportion of overall run-time.

As consistent with literature, the solve routines have poor scaling and are a major

contributor to total run-time, thus are the main concern for scalability.

For the solve routines, the hardware performance counters show a high cache-miss

rate between 16 and 128 cores, corresponding to saturated memory bandwidth at the

intra-nodal level. Memory-bandwidth-per-node has been growing at approximately

half the rate of processing power leading to problems with memory bandwidth [85].

In Gropp et al. [34], conducted in 2000 on single-core processors, memory-bandwidth

problems were apparent but not as concerning – changes in architecture over the last

decade have made memory bandwidth issues more critical.

Beyond 128 cores, it becomes difficult to utilize the hardware-counter results for

more meaningful analysis. Scalability worsens at this point, and cache misses in the solve

routines become less frequent as FLOP rate continues to decrease. This is due to the

oft-observed global communication bottleneck, which overtakes memory bandwidth as

the main problem with the solve routines. An illustration of a single GMRES iteration is
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Figure 4.5: An example of the information gleaned from PAPI hardware counters. For
all routines in the LDCF test case, the number of first-level (L1) cache-misses per
thousand clock cycles [left] and the total floating-point operation rate (FLOPs) [right]
are shown.

shown in figure 4.6. This pattern includes sparse-matrix-vector-multiplication (SpMV),

involving scalable neighbour-to-neighbour communications; and two global reduction-

broadcast routines which require a hierarchical global communication (scaling poorly

with TC ∝∼ log2(C)). These global communications create a scalability bottleneck when

a high number of cores are used, and has been well-documented in the literature [18].

To demonstrate this further, results are shown in figure 4.7, showing the scalability

of a single GMRES iteration. The SpMV routines are shown to scale well, whilst the

remainder (including global communications) scale poorly. This kind of detailed analysis

can be performed with Score-P or the built-in profiling features of PETSc, and is used

throughout this PhD to provide more qualitative insight into the scalability of linear

solvers.

SpMV local dot reduct/bcast axpy reduct/bcast scale

PR
OC

ES
SE

S

TIME

Figure 4.6: An illustrative trace of a GMRES iteration on 8 cores (not to scale). Note
the local neighbour-to-neighbour communications performed asynchronously in the
SpMV routine, and the two reduction-broadcast patterns. There are many variations
of the reduction-broadcast algorithm which cannot be illustrated clearly. The most
common is the ‘butterfly’ algorithm which completes in log2(C)-time, combining the
reduction and broadcast into a single hierarchy of latency-bound messages. As the
number of cores increases, this reduction-broadcast takes longer, whilst other routines
take less time.

Figure 4.4.c and 4.4.d shows the breakdown of time spent in the various equations

(pressure, momentum, turbulence). In both cases, the single pressure equation took

47



Figure 4.7: Profiling of SpMV and Reduction routines within a benchmark test of
GMRES.

considerable time to compute – similar to all three momentum equations combined.

In incompressible-flow simulations the pressure equation is much harder to solve than

other transport equations, due to its elliptic Poisson form. Overall, the solve routines

appear to be the biggest concern for scalability; but in order to help generalize these

results, a variety of control parameters are tested in the following sections.

4.3.1 Inner-Loop Convergence Tolerance

It is often desired to run the CFD solver with a stricter inner loop convergence tolerance

(ILCT), as this allows less outer-loop relaxation to be used and may also be required

in order to converge particularly challenging simulations. A brief investigation was

performed using the KVLCC2 test case to determine the effects of changing ILCT in a

practical simulation, before considering the effect on scalability.

In these tests, ILCT is varied between 0.5 and 10−6, starting from a restarted

solution (of 100 outer loops) with the default settings (described above). Two outer

loop relaxation schemes are tested: αimp = 0.9 & αexp = 0.1 (tight), and αimp = 0.8

& αexp = 0.2 (relaxed). In this way, the computational effort associated with linearity

and non-linearity of the transport equations can be changed by shifting the focus to the

inner loop or outer loop respectively. The total time to reach 10−5 L∞-norm outer loop

convergence was observed. The L∞-norm was used (absolute maximum residual) instead

of the L2 norm (least-squares residual), as it is stricter and ensures no specific parts of

the flow are under-converged when the ILCT is increased. The study was performed

using C = 16 in order to minimize scalability problems.

Figure 4.8 shows the results of this study. In general, a stricter inner loop convergence

tolerance provides no benefit to overall convergence and serves only to increase the

time-per-iteration except in the case where the linear set of equations is not solved

well enough to allow the non-linear iterations to converge. The best-case scenario is

the relaxed scheme with an ILCT of 0.1, which is approximately 50% faster than the

tighter scheme at its optimal ILCT of 0.01. Nonetheless, it is often necessary to use
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a stricter ILCT, particularly for the pressure equation, and the effects on scalability

should be documented.

Figure 4.8: Effects of ILCT on total wall-time using two different outer loop relaxation
factors.

The scalability tests from the previous section were repeated using a tolerance of

0.01 and 0.001 (see figure 4.9). As one would expected, this results in a far greater

time spent in the solve routines, particularly for the pressure equation. This provides

further motivation for improving the strong scalability of the solve routines. LDCF is

not shown here, but the results were similar.

4.3.2 Discretization Schemes

The previous scalability studies have been performed with a QUICK momentum con-

vective discretization scheme with a flux limiter. Here, this discretization scheme is

varied to ensure that the scalability was independent of the chosen scheme. A first order

upwind (UD1), a 50%-central-difference-50%-upwind blend (CD5-UD5), a 90%-central-

difference-10%-upwind blend (CD9-UD1), QUICK with limiter and QUICK without

limiter (QUICK-NL) were tested. This study was performed early in the PhD, and

does not encapsulate recent performance improvements to ReFRESCO. This is unlikely

to affect these results in a significant manner. This study was performed only for the

KVLCC2 test case, and uses 400 outer loops.

Firstly, the difference in scalability is demonstrated in figure 4.10.a for a subset of

these discretization schemes. There is no discernible difference between the different

schemes in terms of performance (not shown) and scalability. A full scalability assessment

was not performed with QUICK-NL and CD5-UD5, it is assumed that scalability was

similar. Due to the methods used by ReFRESCO (particularly deferred correction, see

section 2.1.2), the stencil of the linear equation system does not change regardless of

the order of the discretization. This means that it is unlikely to have any effect on

the already-poor solve routines. This is also an encouraging result for higher-order

Discontinuous Galerkin methods, as discussed in chapter 3. These methods also do not

increase the stencil size of the linear equation systems, although they do create other
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Figure 4.9: Scalability of the code with an inner-loop convergence tolerance of (a, c)
0.01 and (b, d) 0.001 for the KVLCC2 test case as in figure 4.4, showing scalability
of (a, b) the various routines and (c, d) the various equations, using GMRES with a
Block Jacobi preconditioner. The results show poor scaling of the solve routines, which
particularly influences the cost of the pressure equation. Similar results were obtained
for the LDCF test case.

issues for the linear solver [69, 72].

Although somewhat unrelated, a grid convergence study has been conducted using a

range of grids from 317k to 23.4m cells. The solution was allowed to reach an outer loop

L2-norm convergence of 10−5. The computed form factor (1 + k)[65] is compared to

wind-tunnel experimental results [57] in figure 4.10.b. The results are presented against

the grid coarsening factor, which is the ratio of cells compared to the finest grid.

As expected, the higher-order schemes provide much higher levels of accuracy, with

QUICK matching CD9-UD1 using far fewer cells (1.11m vs. 10.0m). The importance

of higher-order methods such as Discontinuous Galerkin methods is clearly not to be

underestimated.

4.3.3 Unstructured vs. Structured Meshes

Structured grids are often not feasible for practical applications, where the labour cost of

creating the grid is too high. Thus it is important to measure the scalability differences

between structured- and unstructured-grid simulations. Internally, ReFRESCO treats

the two identically, and does not have the advantages of a solver designed solely for

structured meshes. However, grid quality may affect the smoothness of the linear
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(a) (b)

Figure 4.10: (a) Total scalability of ReFRESCO using various convective schemes over
400 outer loops. (b) Grid convergence study and verification for the KVLCC2 test
case using various convective discretization schemes; showing form factor error as a
percentage, compared to experimental results.

equation-systems, and some pseudo-structure may have advantages for memory access.

Unfortunately, it was not possible to create two grids of exactly the same number of

cells. An unstructured KVLCC2 grid of 12.5m cells was used, and the scalability of two

structured grids (10.0m and 15.8m) was linearly interpolated to obtain comparisons.

This method is not the most accurate, but the results showed no noticeable difference

in scalability or absolute performance, suggesting that mesh structure had negligible

impact. The reader is referred to appendix A for further details and results.

4.3.4 Turbulence Models

Similarly, the effect of choosing different turbulence models was investigated. The default

two-equation k − ω shear-stress transport (SST 2003) model [63] was tested against a

two-equation KSKL model [62] and a one-equation Spalart-Allmaras (SA) model. The

reader is referred to appendix A again, for further details and results, however, these

results are somewhat out-dated. The results favoured the one-equation SA model due to

lower absolute wall-time and better scalability; but these differences were amplified by

inefficiencies in the data exchange routines, which have since been corrected. It is not

expected that scalability concerns will determine which turbulence model should be used

– the physical properties of these models are more important – so these experiments have

not been re-run. It is, however, important to note that the inclusion of other transport

equations – such as those for cavitation, may have a larger effect on total scalability.

These models typically add additional terms to the pressure equation, affecting the solve

routines. Additionally, some models, such as two-equation turbulence models, require

additional parallel communications – for example, to compute eddy viscosity.

4.3.5 1024/2048-Core Scalability Experiments

The scalability studies from section 4.3, earlier in this chapter, were repeated on 1024

and 2048 cores. The results are shown in figure 4.11. These scalability studies clearly

validate the conclusions drawn in section 4.3; showing a further degradation of the solve
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routines, especially in the pressure equation. On 2048 cores, the parallel efficiency of

the solve routines drops to just 2.1%, and occupies 95% of the total wall-time. Some

problems are also noted in the assembly routines – due to oft-overlooked communications

required to update boundary conditions – but there was no opportunity to investigate

this further on this number of cores, due to the complexities of scheduling these large

experiments.

Scaling to this level is likely to require careful optimization of parallel communications

(for example, the assembly communications could easily be overlapped and hidden), as

well as improvements at the algorithmic level. ReFRESCO has never been tested on

this many cores before, and there are many minor improvements and optimizations that

should be made before this becomes a practicality. Usually, these optimizations are of

little academic interest and are therefore outside the scope of this PhD.
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Figure 4.11: Scalability of the code, and the profiled routines within, as the number of
cores increases up to C = 2048. These results used GMRES as the linear solver with a
Block Jacobi preconditioner, and an inner-loop relative convergence tolerance of 0.1.
(a) KVLCC2 breakdown by routine, (b) LDCF breakdown by routine, (c) KVLCC2
breakdown by equation, (d) LDCF breakdown by equation.

4.4 Summary & Conclusions

Throughout this chapter, the solve routines, particularly for the pressure equation,

have revealed themselves as the least scalable and most expensive part of the CFD

algorithm, achieving a parallel efficiency of just 2.1% on 2048 cores, and occupying 95%

of total walltime. There are likely to be other scalability bottlenecks, especially when
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considering more advanced features such as adaptive meshing. However, these concerns

are subjective to the particular CFD code or test case, whereas the unscalable pressure-

equation solvers will be an overarching, core problem. Furthermore, the scalability of

the solve routines has been shown to be mostly independent of control parameters such

as discretization scheme and mesh structure, and are likely to remain a concern in the

future.

In the simple test cases used so far, performance is optimum with an inner-loop

convergence tolerance of just 0.1, but more complex test cases require much better

convergence (as will be shown in chapter 8). This is particularly true when considering

some of the new CFD methodologies that are likely to become prevalent, such as

additional transport equations, higher-order linearization and discretization, and much

higher fidelity simulations (enabling LES, for example). As was shown in this chapter,

the scalability problems of the solve routines are amplified even further as the ILCT is

reduced to 0.01 or 0.001. Indeed, on just 512 cores the solve routines occupy 92% of

total wall-time with an ILCT of 0.01.

Although this scalability bottleneck is severe, it does at least provide a clear direc-

tion for researchers aiming to improve the scalability of CFD. Asides from relatively

uninteresting optimizations required to scale to 2048-cores, the assembly, gradients and

data exchange routines all scale well.

Thus far, only one linear solver has been tested – a Krylov Subspace solver (GMRES)

with Block Jacobi preconditioning. Investigation into scalable Krylov Subspace methods

is a very active area of research [31, 61, 108]; as is research into other types of solver,

such as multigrid methods [3, 29] or asynchronous methods [2, 5, 10]. This research

encompasses a wide range of numerical sciences (not just CFD), and there are often

complexities in applying these solvers specifically to CFD. However, it may be that the

scalability concerns investigated in this chapter can be circumvented or diminished by

using alternative linear solvers.

Investigation into alternative solvers is the subject of the following chapter. Indeed,

the remainder of this thesis is focused on discovering new, scalable methods, to solve

the pressure equation efficiently.

53



54



Chapter 5

Investigating Alternative Linear

Solvers and Preconditioners

In this chapter, the theory behind linear equation-system solvers is explored – cov-

ering simple stationary solvers such as Jacobi and Gauss-Seidel; and moving on to

non-stationary methods such as Krylov Subspace methods and multigrid methods.

Preconditioning of the equation-systems is also discussed. Various solvers and precondi-

tioners are then tested, in an attempt to circumvent the scalability problems identified in

the previous chapter. Furthermore, this chapter will investigate the reasons for the poor

scalability of the various linear solvers and preconditioners, by using the instrumentation

tools (Score-P and PAPI) in more detail. This will provide insight into the scalability

problems and guide further research. This work was first presented in Hawkes et al.

[36], and later updated in Hawkes et al. [39], available as appendices.

5.1 Introduction

The task of the linear solver, for each transport equation in each outer loop, is to solve:

Ax = b, (5.1)

where x is the unknown solution vector, A is an N -by-N sparse coefficient matrix, b is

the constant right-hand-side (RHS) vector, and N is the number of elements.

There are a number of methods that can be used to solve this system. The most

basic, so-called stationary methods will be considered first.

Henceforth, the term linear solver or solver is used to refer to linear equation-system

solvers – not to be confused with the overarching CFD solver.

5.1.1 Stationary Solvers

Beginning with an initial guess for x, the system can be solved iteratively:

xk = −D−1(L + U)xk−1 + D−1b (5.2)
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where D is the diagonal of A, and L/U are the lower- and upper-triangles respectively.

The notation k represents the iteration number. This is the Jacobi method, and the

matrix D−1(L + U) is the iteration matrix, M. Each equation (from 1 to N) can be

solved (a.k.a. relaxed) independently as follows:

xi,k =

(
−

n∑

j=1
j 6=i

aijxj,k−1 + bi

)
/aii, i = 1, . . . , N. (5.3)

where a, x and b are the individual components of A, x and b respectively. This

algorithm is trivial to parallelize, since each individual relaxation in the system can be

performed independently in a process or thread. However, at the end of each iteration

the new values of x must be communicated before the next iteration can begin, and

this introduces an implicit global synchronization – no process or thread can become

more than one iteration out of sync with its neighbours. Each Jacobi iteration can be

considered as a sparse-matrix-vector-multiplication, which has been shown to scale well

(figure 4.7).

Numerically, improvements to this scheme can be made by using values from the

current iteration as they are available. This is the Gauss-Seidel method, and is rarely

used due its strictly sequential operation (since the equations must be performed in

order).

xk = −(D− L)−1Uxk−1 + (D− L)−1b (5.4)

A variation on lecixographical Gauss-Seidel is a parallel Block Gauss-Seidel, where each

process owns a block of the matrix. Each block undergoes Gauss-Seidel internally, with

Jacobi-style updates at block boundaries [98, chap. 5]. ‘Gauss Seidel’ is often used to

refer to parallel Block Gauss-Seidel whenever a parallel implementation is implied .

An extension of the Gauss-Seidel method, called Successive Over-Relaxation (SOR),

adds a scalar magnification to each relaxation for faster convergence. When ω = 1

SOR is equivalent to Gauss-Seidel, and it is common to use the term SOR to refer to

Gauss-Seidel or Block Gauss-Seidel solvers.

xk = −(D− ωL)−1[ωU + (1− ω)D]xk−1 + (D− ωL)−1ωb, 0 < ω < 2 (5.5)

These methods are known as stationary methods, because their formulation does

not change between iterations. For all stationary methods, to determine whether

the solution is converged, the `2-norm of the residual vector (r = b −Ax) must be

computed. This requires an explicit global communication. It is common to compute a

residual periodically (for example, every 100 iterations) in order to avoid unnecessary

communications. A more thorough description of stationary methods can be found in

Barrett et al. [8].

Numerically, the Jacobi method, or its derivatives such as Gauss-Seidel or Successive

Over-Relaxation methods, are weak. Their convergence rate is limited by the spectral

radius of the iteration matrix, ρ(M), which is dependent on the matrix size and stiffness.
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5.1.2 On The Spectral Radius

The linear-equation systems arising from CFD contain various frequencies of error,

which must be removed. High-frequency errors, corresponding to low wave-numbers and

low eigenvalues, can be quickly smoothed using simple solvers. Low-frequency errors,

corresponding to high eigenvalues, are much more difficult to remove. In ReFRESCO,

the momentum and turbulence equations do not contain high-frequency errors. This

is usually the case in SIMPLE-based CFD solvers, depending upon the linearization

strategy. However, the pressure equation is an elliptic Poisson equation; meaning that

the lowest frequency errors traverse the entire domain. High-frequency errors can be

considered local errors, reduced quickly by simple relaxations. Low-frequency errors

can be considered global errors, requiring a more global solution – and, often, global

communications.

The maximum eigenvalue of the iteration matrix M is known as the spectral radius,

ρ(M), and, for Poisson equations, it approaches 1 as N increases [103]. For stationary

methods, the error in the lowest frequency cannot be reduced faster than 1− ρ(M) per

iteration, and ρ(M) < 1 is a necessary condition for convergence. Higher-frequency

errors can be reduced more quickly, allowing faster convergence, but the convergence

properties of stationary methods eventually deteriorate with O(N2). Since the size of the

equation-system also increases with O(N), the total work required by stationary methods

scales with O(N3). Over-relaxation with SOR does not help, because ωρ(M) < 1 must

be satisfied for convergence, thus ω > 1 is infeasible for the solution of the pressure

equation.

5.1.3 Non-Stationary Solvers

It is possible to add a form of ‘memory’ to a linear equation-system solver, where some

information about the solution path is stored in a vector subspace, known as the Krylov

Subspace (KSP). For example, in the popular (Bi-)Conjugate Gradient Squared (BCGS)

algorithm, the solver remembers the previous gradients that it followed. By searching

orthogonally to previous gradients, the solver becomes smarter and more effective. In

GMRES (Generalized Minimal Residual Method) the subspace is based on the Arnoldi

iteration, and is used to find an approximate solution based on the minimal residual of

these vectors [8].

These non-stationary KSP methods are not limited by spectral radius, thus continue

to reduce low-frequency errors when N increases. Figure 5.1 shows a comparison between

a KSP (GMRES) and a non-KSP solver (Block Gauss-Seidel), illustrating the effect this

has on the number of iterations to convergence. The equation-systems being solved are

pressure equations extracted from a two-dimensional lid-driven cavity flow simulation.

Note the initial grace period, where high-frequency errors are rapidly smoothed.

Though numerically powerful, the KSP methods are computationally inefficient

on a larger number of cores due to global communication patterns, as discussed in

chapter 4 and figure 4.6. Improvements have been made to GMRES, in the form of

‘pipelined’ GMRES (P-GMRES) which attempt to overlap the first reduction with serial
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Figure 5.1: Convergence rates for a sample pressure equation extracted from a two-
dimensional lid-driven cavity simulation, with 225 cells (left), 14.4k cells (middle) and
1m cells (right) – comparing GMRES to Block Gauss-Seidel. Horizontal lines represent
0.1, 0.05 and 0.01 relative convergence respectively. The relative residual is the residual
of the system normalized to the residual at the initial condition.
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computations [31]1. Figure 5.2 illustrates this algorithm. Similar improvements have

been invented for the conjugate gradient solver [61, 108]; both papers quoting massively-

parallel computing architectures as the motivation for more scalable algorithms.
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Figure 5.2: Illustrative parallel trace of a Pipelined GMRES iteration, showing the
computation and communication patterns when utilizing 8 cores. Not to scale.

5.1.4 Algebraic Multigrid Methods

For elliptic equations (such as the pressure equation) algebraic multigrid methods such

as ML [29] should be very powerful. Multigrid methods cover a broad category, with

multiple formulations and many opportunities for fine-tuning. They are all based on

the principle that multiple scales of the problem can be solved efficiently by solving

coarse-grid approximations to the actual (fine) grid. The coarsest grid will have a much

lower spectral radius than the finest, allowing low-frequency errors to be reduced quickly.

Meanwhile, the fine grid solves high-frequency errors, and the results are combined. Since

each grid is much easier to solve, ‘smoothers’ are used instead of complete solvers at each

level. A typical smoother may just be one iteration of SOR or an ILU factorization, for

example, although the coarsest grid is often solved directly. There are many variations

of multigrid methods: different methods for coarse-grid construction; different methods

for coarse-grid interpolation; various methods of communicating on coarse grids; and so

on. All of these variations will have a large effect on scalability.

An ideal multigrid method can solve a linear equation-system in O(1) iterations,

with work-per-iteration increasing with O(N). Thus the entire multigrid algorithm

scales with O(N). However, this ideal situation is rarely obtainable, and depends on

the ability of the coarse-grid operators to reduce the maximum eigenvalue effectively

[68, 103].

ML is a state-of-the-art smoothed-aggregation algebraic multi-grid method from

Sandia’s National Laboratories, and is one of the most commonly-used multigrid packages

[29]. ML automatically creates coarse grids until a minimum size is reached, using a

smoothed aggregation process. For the KVLCC2 test case, ML automatically creates

six grids when running on one core, and four grids on 512 cores. Multigrid methods,

1‘Pipelined’ in this context is not related to instruction-level parallelization as introduced in section 2.2
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including ML, can be used as standalone solvers or preconditioners for a Krylov Subspace

method.

Further discussion on multigrid methods will be introduced in chapter 7.

5.1.5 Preconditioning

To improve the convergence rates of non-stationary solvers, preconditioning is often

applied. The principal is to transform the coefficient matrix A into something less stiff,

maintaining a system with the same solution, using a preconditioning matrix P:

P−1Ax = P−1b (5.6)

The difficulty is in finding a matrix P which approximates A−1 and is easily invertable.

At the extremes, if P is the identity matrix I, finding P−1 is trivial, but the system is

unchanged. At the other extreme, if P = A−1, then the system is trivial to solve, but

the calculation of P−1 is as difficult as the initial problem.

Finding a trade-off between cost of preconditioning and its effectiveness is difficult,

and depends on the matrix system, the solver that will be used on the preconditioned

system, and the number of iterations that are likely to be performed. The simplest

preconditioner, the Jacobi preconditioner, takes P = D (the diagonal of M), and has the

effect of normalizing the equation system. More complex methods, such as Incomplete

Factorization (ILU) perform semi-complete direct methods to obtain P ≈ A−1.

Preconditioning is usually applied to all KSP solvers, since the simplest precondi-

tioners are relatively cheap compared to a KSP iteration. Stationary methods rarely

use preconditioners, since the preconditioners would mostly be more expensive than the

solver itself.

In most KSP methods, the residual is computed as part of the solution process,

thus additional communications are not required. When preconditioning a linear

system, it becomes difficult to compute accurate residuals. With left preconditioning,

described here, these solvers base their convergence on the preconditioned residual

P−1r = P−1(b−Ax) which is not proportional to the true residual. If the preconditioner

does not treat all error frequencies equally, and particularly if the matrix is close to

singular (spectral radius close to 1) then an ILCT of 0.01 in the preconditioned residual

may be equivalent to a much higher ILCT in the true residual.

For the Block Jacobi preconditioner used in the previous chapter, experiments

were conducted to determine the magnitude of this effect. An ILCT of 0.1 in the

preconditioned residual was equivalent to just 0.6 in the true residual, but was less

obvious with other preconditioners. This effect had previously been unnoticed in

ReFRESCO, and caused issues in early experiments. This issue is rarely documented in

literature, and probably affects other CFD packages.

To circumvent this problem, a true residual can be computed at the end of each

iteration, but this requires additional global communications. Instead, one can solve
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the right-preconditioned system:

AP−1Px = b

via the solution of AP−1y = b and Px = b. This leaves the true residual intact. For

GMRES, another solution is to switch to Flexible GMRES (FGMRES) – a modified

version of GMRES which preserves the residual in its true state.

ReFRESCO has switched to using right preconditioning instead of left precondition-

ing, in order to obtain a more consistent and predictable solution to the linear system.

Unless specified, right preconditioning is used in this thesis – but comparisons to a

left-preconditioned FGMRES are also performed. Early experiments, such as in Hawkes

et al. [36], suffered because of left-preconditioned residuals.

5.2 Scalability Experiments

Thus far, scalability experiments have used a basic GMRES solver with a Block Jacobi

(right-)preconditioner. More modern solvers or preconditioners could provide very

different scalability characteristics. For example, a powerful preconditioner could reduce

the number of KSP iterations (and global communications) required; but may be

unscalable in itself due to communication or high set-up costs. CFD is unique in that a

solution to the linear system is only solved to a relatively lax ILCT, since the solution

to the linear system is a small part of a non-linear system. Compared to applications

which require machine accuracy of linear systems, CFD is very sensitive to start-up

(initialization of linear solvers, memory allocation, etc.) costs which may rule more

advanced solvers or preconditioners. Indeed, it may be that the simpler preconditioners,

such as Block Jacobi, provide the best scaling. In this section, the scalability of various

linear solvers will be tested. Following this, a number of preconditioning techniques will

be investigated – including block preconditioning techniques, multigrid preconditioners

and simple smoothers.

5.2.1 Alternative Solvers

The scalability of various solvers has been tested using the aforementioned test cases

(KVLCC2 and LDCF). The same parameters as in chapter 4 are used. Instead of

showing scalability for all profiled routines, the scalability plots are adjusted to show

just the solve routines for the pressure equation. Note that the embedded core-hours

plots in the following scalability plots utilize a logarithmic scale due to large differences

in performance.

The scalability of GMRES, Pipelined-GMRES, Flexible-GMRES, BCGS, Improved-

BCGS, SOR, and a multigrid method (ML) are compared in figure 5.3. The four Krylov

Subspace methods have been preconditioned with a Block Jacobi preconditioner. Right

preconditioning is used for all solvers except FGMRES, which uses left preconditioning

but still provides a true residual. The SOR solver is configured to compute a residual

every 100 iterations, and ω = 1 (equivalent to Gauss-Seidel). An ILCT of 0.1 and 0.01
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is tested. All of the solvers and preconditioners presented are provided by PETSc [6],

except ML – which is provided by Trilinos [29, 41] via a PETSc interface. Some KSP

methods were not performed on the LDCF test case.
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Figure 5.3: Scalability of the solve routines in the pressure equation, using the KVLCC2
test case (left) and LDCF test case (right) with inner-loop convergence tolerance set to
0.1 (top) and 0.01 (bottom). Note the exponential scale of the inset core-hours chart.

GMRES performs as previously noted, with poor performance at the intra-nodal

level due to memory-bandwidth contention and poor performance on a large number of

cores due to global communication patterns. FGMRES exhibits similar scalability to

GMRES. PGMRES scales worse in the memory-bandwidth zone than either GMRES or

FGMRES, but the gradient of the scalability factor, dS/dC, between 256 and 512 cores

is approximately double that of GMRES – consistent with the algorithmic improvement

(half the number of global communications). Overall, the wall-time gains from PGMRES

on 512 cores are minimal.

BCGS gives strong numerical performance in serial operation and similar memory-

limited scaling at the intra-nodal level. BCGS requires four global communications per

iteration (instead of two), thus inter-nodal scaling suffers. IBCGS improves on these

results slightly.

As expected, SOR performs much worse than the KSP methods, but has far superior

scalability. SOR is limited by memory bandwidth briefly, but quickly recovers this as

the simulation fits into cache. The SOR algorithm still uses one global communication

pattern to compute a residual every 100 iterations; though this did not appear to be

significant when in-depth profiling results were examined. Time spent in MPI Recv was
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dominant, implying that implicit synchronization is the bottleneck to scalability where

C > 256.

ML is very strong in serial operation, but quickly loses ground to other solvers

due to poor scalability. It is not completely clear what causes this. Profiling of the

solver reveals a lot of time spent in local MPI communications (MPI Recv), which could

be caused by the smoothers used on each level; particularly the very coarse levels.

However, this could also be caused during the aggregation/set-up of the coarse grids.

The convoluted way in which ML is exposed to ReFRESCO via PETSc makes the

profiling much more difficult. Some other permutations of ML are tested later in this

chapter, when applying it as a preconditioner to FGMRES.

5.2.2 Block Preconditioners

ReFRESCO has access to a large range of preconditioners through its use of PETSc,

many of which have been tested as follows, and collocated into a single figure (5.4).

Left-preconditioned FGMRES was used for these tests. Its flexibility is specifically

designed to allow complex preconditioning, such as multigrid preconditioners, which

change P every iteration. Only the KVLCC2 test case was used to test the majority

of these preconditioners, due to the amount of simulations required to perform these

experiments. Many of these experiments were repeated using right-preconditioned

GMRES and PGMRES, with no noticeable differences (not shown).

The Block Jacobi algorithm used thus far implements a block-wise Incomplete LU

(ILU) factorization with zero-level fill, and sets a high benchmark for other precondi-

tioners. ILU(0) is performed on each MPI process’s local portion of the matrix, leading

to an interesting problem: convergence deteriorates as the number of cores increases, as

the local portion becomes less significant to the global solution. An Additive Schwarz

Method (ASM) was tested, with the same block-wise ILU(0) solver. ASM is similar to

Block Jacobi, but allows communication between neighbouring blocks to augment the

process and prevent this degradation of convergence. The results are shown in figure 5.4.

The differences between Block Jacobi and ASM were small, with ASM fairing worse

overall. ILU(0), ILU(1) and ILU(2) were also tested as preconditioners in their own

right, with poor results in all regards (not shown).

5.2.3 Multigrid Preconditioners

Multigrid methods such as ML can also be used to precondition the equation system.

The results, also shown in figure 5.4, show that ML is highly capable at the intra-nodal

level – just as when it is used as a standalone solver. It exhibits strong serial performance

and moderate scaling to 16 cores – better than Block Jacobi. Unfortunately it rapidly

breaks down beyond 64 cores. It was suspected that this was due to the direct solver

used on the coarsest grid, but replacing it with a smoother (5 iterations of SOR) resulted

in worse scalability. Another recommendation is to restrict the number of levels created

by ML, thus reducing expensive start-up costs. Restricting ML to three levels worsened

the scalability; and two levels (not shown) gave similar results. It is expected that less
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Figure 5.4: Scalability of the solve routines in the pressure equation, using the KVLCC2
test case with inner-loop convergence tolerance set to (a) 0.1 and (b) 0.01. The results
compare different preconditioners including Block Jacobi, Additive Schwarz (ASM),
SOR smoothing (SORx10) and a multi-grid method (ML). FGMRES is used as the
solver to allow more flexible preconditioning. Note the exponential scale of the inset
core-hours chart.
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sophisticated multigrid methods (such as non-smoothed aggregation) may provide better

results for CFD, since the start-up cost of creating coarse-grid operators is lower; but

coarse-grid smoothing is likely to remain a bottleneck. Clearly a much deeper study of

multi-grid methods is required, ML certainly cannot be used as a black-box for scalable

CFD – neither as a preconditioner nor as a standalone solver.

5.2.4 Smoothing Preconditioners

Finally, it is worth considering a much simpler preconditioner than even Block Jacobi.

Instead of preconditioning in the classic sense, a smoother can be used before the main

solver. Ten iterations of SOR as a smoother was optimal (compared to 1, 100 or 1000),

with ω = 1, such that SOR becomes a Block Gauss Seidel method. Although it performed

worse than the Block Jacobi preconditioner in serial operation, where Block Jacobi

has good convergence, it was able to catch up due to memory caching, thus providing

excellent scalability. Since a fixed number of smoother iterations were performed,

residual computation in the SOR algorithm was unnecessary. This combination has

minimal set-up costs, since SOR requires no additional memory or pre-computation,

so could be a viable option for scalable CFD. The scalability is slightly worse than

the standalone SOR solver, due to poor scaling of the overarching FGMRES solver.

Furthermore, the numerical performance is not good compared to other preconditioners,

as the smoother cannot reduce low-frequency errors effectively – it is only competitive

on a large number of cores. Overall, this FGMRES+SOR combination appears to be

a good middle-ground between the scalability or SOR, combined with the numerical

performance of FGMRES.

5.3 Summary & Conclusions

This section has looked at the theory and performance of various linear solver and

preconditioners. The most promising result was FGMRES with 10 iterations of SOR as

a preconditioner. Although it was the slowest preconditioner for serial computation,

superior scaling meant that it was often the best performer at C = 512. The initial

scalability study from chapter 4 is re-illustrated using this configuration in figure 5.5.

Inter-nodal scaling is significantly improved (compared to figure 4.4.a), which is encour-

aging, but parallel efficiency is still poor and global communications are still limiting.

Overall wall-time on 512 cores has only been improved by approximately 10%, and

with stricter convergence tolerances these gains are likely to be lost due to the poor

numerical properties of SOR.

Overall, no solver or preconditioner has significantly and reliably solved the strong

scalability problem. In terms of scalability, the most interesting solutions came from sta-

tionary solvers and smoothers; although these only became viable on a large number of

cores and are likely to lose ground when a stricter ILCT is required, or when N increases,

due to their spectral-radius-limited convergence rates. State-of-the-art scalability im-

provements to existing solvers, such as PGMRES, provided minimal improvements – it
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Figure 5.5: Scalability of the code for the KVLCC2 test case, and the profiled routines
within, as the number of cores increases. These results used FGMRES with 10 iterations
of SOR as a smoother, with an inner-loop relative convergence tolerance of 0.1. Similar
results were found for the LDCF test case.

appears that solvers relying upon global communications are fundamentally unscalable.

Multigrid methods are certainly an area which warrants further investigation, since

their numerical performance in serial operation is very good; and there are many per-

mutations of the multigrid algorithm which may offer better scalability, by completely

avoiding global communications. However, coarse-grid communications appear to cause

scalability issues, especially as the cells-per-core ratio becomes small.

In general, the state-of-the-art focuses on improving the scalability of numerically-

powerful solvers such as GMRES [31, 61, 108] – but this has not solved the scalability

problem. In this PhD, an alternative strategy is employed by building on the results

of the simple SOR solvers. A more performant version of SOR is investigated in

the following chapter, using the theory of chaotic relaxations to remove the implicit

synchronization caused by neighbour-to-neighbour communications. To begin, these

solvers will be used as standalone solvers, thus limited to O(N3) performance. In

chapter 7 this chaotic solver will be shaped into a chaotic multigrid method, where

the improved efficiency of these communications will hopefully remove the scalability

problems associated with coarse-grid communications of classical multigrid methods.
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Chapter 6

Chaotic Linear Equation System

Solvers

In the previous section, the performance of stationary solvers was shown in terms

of performance and scalability. The main bottleneck to scalability of these simple

solvers is the implicit synchronization imposed at the end of each iteration. This

motivates research into chaotic methods, which use the theory of chaotic relaxation [16]

to desynchronize iterations and completely remove synchronization. In this chapter,

these chaotic methods are investigated to create a standalone chaotic solver, which may

be able to compete directly with preconditioned GMRES. As will be shown, the chaotic

solver does indeed outperform KSP methods on a large number of cores. However, due

to the intrinsic nature of stationary solvers – with performance proportional to O(N3),

chaotic solvers are not a sustainable solution for scalable CFD. In following chapters,

however, these chaotic principles will be applied to a chaotic multigrid method.

This chapter begins by discussing the theory and applicability of chaotic methods

to CFD, and then follows the implementation, verification and scalability-testing of a

chaotic solver. As part of this PhD, an open-source library, Chaos1 has been published

– which includes the implementation of the chaotic solver2.

6.1 Theory of Chaotic Relaxations

Consider the relaxation of each equation in the Jacobi method, as presented in sec-

tion 5.1.1:

xki =

(
−

N∑

j=1
j 6=i

aijx
k−1
j + bi

)
/aii, i = 1, . . . , N. (6.1)

where a, x and b are the individual components of A, x and b respectively. At the

end of each iteration the new values of x must be globally communicated before the

next iteration can begin. Numerically, improvements to this scheme can be made by

1https://bitbucket.org/jamesnhawkes/chaos
2The chaotic solver implementation can be found in Solver::ChaoticSolve()

(src/solver chaotic.cpp) at the time of writing.
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using values from the current iteration (k) as they are available, thus creating the

Gauss-Seidel method. It is also possible to prove the convergence of the parallel block

Gauss-Seidel methods, where an arbitrary selection of variables from iterations k and

k − 1 are used, based on the partitioning of the domain. All of these methods have an

implicit synchronization point, because no two processes can become more than a single

iteration out of sync – no process may proceed to iteration k until iteration k − 1 is

complete on all of its neighbours.

In 1969, Chazan & Miranker [16] proposed the concept of Chaotic Relaxation

whereby several processes (distributed-memory processes or shared-memory threads)

never synchronize. Instead, the processes freely pull values of off-diagonal xj from

memory whenever they are required, and push new values for the diagonal xi whenever

they have been relaxed. In this way, each relaxation uses the values of x from the latest

iteration that is available – this could be several iterations behind the current relaxation

iteration (s = 1, . . . ,n), or even ahead of it (s < 0):

xki =

(
−

n∑

j=1
j 6=i

aijx
k−s
j + bi

)
/aii, s < smax, i = 1, . . . , N. (6.2)

The order in which the n equations are relaxed is completely arbitrary. With this

scheme, processes never need to wait for each other. Although communication must

still occur, it can be entirely asynchronous, thereby making efficient use of memory

bandwidth, inter-nodal communications and computational resources. Processes may

even iterate multiple times on the same data if necessary, making the best use of the

available hardware. Whilst this method is based on the stationary Jacobi method, s

can vary between iterations implying that chaotic methods are actually non-stationary,

although numerically this makes little difference.

Chazan & Miranker [16] proved that this iterative scheme will converge for any real

Jacobi iteration matrix if ρ(|M|) < 1 so long as smax is bounded. |M| represents the

Jacobi iteration matrix where all the components have been replaced with their absolute

values. The implications of smax being bounded is simply that if two relaxations take

different amounts of time, they cannot be left completely independent indefinitely, such

that s could potentially become infinite. Baudet [10] went on to prove that ρ(|M|) < 1

is a necessary condition for convergence for any smax ≤ k. Bahi [5] further showed that

ρ(|M|) = 1 is also valid, if M is singular and smax is bounded. In this situation, the

error associated with the maximum eigenvalue (1) is not reduced, but the solution can

still be solved up to a constant value, with a rate based on the second-highest eigenvalue

of |M|. This occurs in CFD simulations where the pressure is not bounded by any

Dirichlet boundary conditions.

The extent to which chaotic relaxation is exploited varies significantly in the literature,

and most commonly the exact implementation is not discussed. In Anzt et al. [2] the

theory is used to create a ‘block-asynchronous’ Jacobi solver for GPUs, where a fixed

number of local iterations are performed between communications. These solvers are
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often referred to as asynchronous methods, such that async(5) refers to a Jacobi method

with communications every 5th iteration. This reduces implicit synchronization and

shows good results compared to stationary methods, demonstrating that relaxations on

‘old’ data (s > 1) are not wasted. However, this method could also needlessly throttle

communications, thus reducing convergence rates if communication hardware is not

saturated. Anzt et al. focuses on GPU architectures, where this may not be such a

problem.

In this thesis, chaotic relaxation theory is leveraged further. By separating communi-

cations and computations into shared-memory threads, the fixed asynchronicity can be

removed and the respective hardware can be saturated, leading to increased efficiency

and numerical performance. In this truly chaotic method, computation threads never

need to wait for communications to be complete and communication hardware is never

wasted waiting for computations. Furthermore, a multi-threaded model can exploit

access to shared memory, inserting updated values (from communications) directly into

the active relaxations, which should give numerical advantages. The targeted architec-

ture for this chaotic solver is a hybrid-parallel (MPI + OpenMP) CPU environment;

but it would be possible to extend these chaotic methods to heterogeneous environments

with relative ease.

The convergence criteria for chaotic relaxations, ρ(|M|) < 1, is stricter than that

of standard stationary methods, which only require ρ(M) < 1, and stricter still than

the oft-used Krylov methods (which have no such requirements). The following section

aims to determine if a range of standard CFD test cases will produce matrices that

satisfy the criteria, thus testing the applicability of chaotic relaxations to CFD.

6.2 Determining Convergence Criteria for CFD

All the equation-systems in CFD are diagonally dominant by design, which is a sufficient

condition for convergence of standard stationary methods – since diagonal dominance

implies the necessary condition ρ(M) ≤ 1. It also implies that ρ(|M|) ≤ 1 is satisfied,

since the diagonal dominance is computed, on each row, as:

|Mii| −
∑

j 6=i
|Mij | ≥ 0, i = 1, ..., n.

In this section, a number of linear equation systems are extracted from typical test

cases, and ρ(|M|) is calculated to demonstrate this diagaonal dominance and adherence

to the convergence criteria. This also provides a good opportunity to investigate the

matrices produced in the SIMPLE algorithm and gain more insight into the linear

systems. Some additional transport equations, which may affect M (by modifying the

right-hand-side of the equation system) can be tested, along with some simulations with

more complex flow features. The following test cases are chosen:

� 2D Lid-Driven Cavity Flow (LDCF) on a number of structured grids (225,

14.4k, 1m elements). No turbulence models. See Klaij & Vuik [52].
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� NACA0015 hydrofoil (15◦ angle-of-attack) with a two-dimensional multi-block

structured grid (28k elements) and a two-eqn. κ-ω SST turbulence model [63].

See Rijpkema [79].

� NACA0015(C), as above, but with a Sauer-modified cavitation model. See [45].

� KVLCC2 with a three-dimensional multi-block structured grid (317k elements)

and a hexahedral unstructured grid (U) with hanging nodes (167k elements).

Using a κ-ω SST turbulence. See chapter 4.

� Dambreak, a homogeneous two-phase (air/water), three-dimensional problem

with a simple structured grid (16k cells) and a volume-fraction equation. No

turbulence model. See [99].

� Cylinder, a low Reynold’s number, unsteady (10 non-linear loops per time-step)

simulation with a structured grid (4.3k elements) and a poor initial flow estimation

(designed to create ill-conditioned matrices). No turbulence model. See [80].

The matrices were extracted at outer loops 1, 5, 10, 50 and 100. The momentum

equations (in x, y and z) are identical, due to the way in which they are assembled. The

size of mesh that could be extracted and examined was limited because the matrices

had to be inverted directly, using Gaussian-Elimination.

A C++ tool was developed to perform analysis on these matrices. For each matrix,

it is possible to plot the connectivity graph, following the methods of Hu [47] – this

gives a qualitative, visual insight into the sparse matrices by graphically connecting

the elements of the matrix. The sparsity pattern of the matrix A may also be plotted

directly in order to view the matrix structure.

The largest eigenvalues of |M| can be found using ARPACK [58] routines, and

plotted in an Argand diagram – for ρ(|M|) ≤ 1 all eigenvalues must lie within a unit

circle.

Assuming a satisfactory spectral radius, the condition number (the ratio of the

largest to smallest eigenvalue) of the original matrix A can be used to assess the

sensitivity of the equation system to errors in the input. For example, in the solution to

the pressure-equation, approximations (geometric, interpolation, rounding, etc.) are

transferred to A and b. When the solution to the linear system is found, these errors

will have been amplified by the condition number into the solution vector x. The

condition number is computed using a 1-norm condition estimator [35].

Figure 6.1 shows a qualitative view of the simple 2D LDCF, the more complex 2D

hydrofoil, and the 3D KVLCC2 case at the 5th outer loop. The connectivity graphs

show resemblance to the underlying geometry and mesh structure – for example, the

NACA0015 connectivity resembles the O-grid from which it arose.

The sparsity patterns are closely related to the structure of the grid and the cell-

numbering – the more complex KVLCC2 case is highly irregular compared to the

Cartesian, structured LDCF grid. It should be noted that the matrices were extracted

from single-process simulations, so the matrices have not been subject to domain

decomposition. It would be interesting to extract parallel matrices and observe their

communication patterns, but this was beyond the scope of this analysis.
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Table 6.1 shows the quantitative results from all the test cases, taking the maximum

values of all the extracted outer loops. The condition number appears to have some

correlation with spectral radius and some are worryingly high. In all cases, ρ(|M|) ≤ 1,

meeting the requirements for chaotic solvers as expected.

The pressure equation was virtually singular for the LDCF and Dambreak case,

where only Neumann boundary conditions are applied – specifying a null space may

help to reduce the condition number in these cases. In all the other cases, a Dirichlet

condition on the outflow reduced the spectral radius, although it was still close to

one; and the condition number also dropped considerably. For the unsteady cylinder,

the spectral radius was also very high – these cases both feature complex flows with

poorly-initialized flows and coarse meshes; this large discrepancy and poor resolution

could be the reason for the the near-singular matrices.

Additional matrices for the KVLCC2 case (up to 2.67m elements) and a 21.7m-

element INSEAN E779A propeller (with sliding interface) were tested, but could not be

fully post-processed due to memory requirements. However, the spectral radius of the

pressure equation was computed at a single iteration for these cases, and was shown to

satisfy ρ(|M|) ≤ 1. It took 2.5 days and 232 GB of memory to compute the maximum

eigenvalue of a single matrix for the INSEAN propeller. Optimizations may be possible

to check other matrices, but the test cases appear conclusive.

In all-but-one case (the ill-conditioned cylinder at the first time-step), the momentum,

turbulence, cavitation and volume-fraction equations all exhibited much lower spectral

radii. Thus demonstrating that these transport equations do not contain low-frequency

errors, as expected.

Table 6.1: Quantitative results for a range of test matrices, showing condition number
and spectral radius for momentum-, pressure-, turbulence- and free-surface-/cavitation-
equations. Note that the spectral radius was always less than or equal to one, within
double-precision floating-point tolerances.

Mom. Pres. Turb. 1 Turb. 2 V.F./Cav.
cond(A) ρ(|M|) cond(A) ρ(|M|) cond(A) ρ(|M|) cond(A) ρ(|M|) cond(A) ρ(|M|)

LDCF-225 210 0.955 9.4·e17 1.000
LDCF-14.4k 7 0.500 2.1·e18 1.000
LDCF-1m 4 0.500 2.9·e19 1.000
NACA0015 9.0·e3 0.884 6.53·e6 0.999 4.5·e3 0.849 4.8·e3 0.851

NACA0015(C) 6.3·e3 0.734 4.67·e6 0.999 5.1·e3 0.688 5.2·e3 0.690 2.3·e8 0.240
KVLCC2 2.6·e6 0.845 2.63·e8 0.999 1.2·e7 0.588 1.2·e7 0.594

KVLCC2 (unst.) 5.2·e6 0.810 5.4·e7 0.999 8.3·e6 0.726 7.7·e6 0.728
Dambreak 105 0.048 5.6·e18 1.000 7 0.048

Cylinder (t=1) 111 0.999 1.1·e6 0.999
Cylinder (t=2–10) 4.4·e2 0.520 1.1·e6 0.999

6.3 Chaos: An Open-Source Library for Chaotic

Methods

The chaotic methods discussed in this paper have been written as a standalone library,

Chaos3. The Chaos library is available under an open-source MIT license, in the hope

3https://bitbucket.org/jamesnhawkes/chaos
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Figure 6.1: Connectivity, 100 largest eigenvalues, sparsity and statistics for the momen-
tum equation (outer loop 5). [Top] LDCF-225, [Middle] NACA0015-28k and [Bottom]
KVLCC2-317k.

that the results herein can be reproduced, developed and applied to other scientific

codes and disciplines. The library is written in C++ and can be bound to Fortran and

C easily. Bindings are also created for Python and Ruby automatically, using SWIG [93].

Many other languages could also be bound easily. Chaos is a hybrid-parallel library,

using MPI and OpenMP, and has been tested under multiple compilers, multiple MPI

implementations and multiple operating systems.

The interface is similar to other linear-solver toolkits, such as PETSc [6] and Trilinos

[41]; it should be easy for codes which use these libraries to interface with Chaos. The

main difficulty is in connecting MPI-only codes (such as ReFRESCO) with the hybrid

MPI+OpenMP scheme used in Chaos. Although most of Chaos can be run in MPI-only

mode, the chaotic methods developed here rely on the hybrid, multi-threading layer of

parallelization. For now, ReFRESCO is left in MPI-only mode, but with most of the

CFD code running on 1
8

th
of the available hardware. A long-term solution would be to

add OpenMP parellelization to ReFRESCO, which may have benefits as discussed in

section 3.2. For true mixing of hybrid and non-hybrid codes, shared-memory paradigms

of MPI (such as one-sided communication) could be considered.

Currently, the Chaos library includes over 4500 lines of code, and several basic

examples/tests. This library, with accompanying publication focused on chaotic solvers

and chaotic multigrid methods (Hawkes et al. [40]), represents the largest deliverable

from this PhD – and a large, novel contribution to the fields of CFD and numerical
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analysis.

One can easily make the argument that all of the solvers described in this thesis

could have been built within the framework of PETSc. Indeed, the first iteration

of chaotic solver was written in PETSc. Unfortunately, PETSc recently rescinded its

support for hybrid parallelization, and it thus became infeasible to maintain these solvers

within PETSc. Regaining control over much of the matrix structure and communication

patterns also provided advantages when implementing chaotic methods. Most of the

interfaces in PETSc are designed to be abstracted and safe; when writing chaotic

methods it is common to hack these methods to allow deliberate data races and ‘unsafe’

asynchronism.

6.4 Implementation

Consider the matrix A, partitioned contiguously across multiple MPI domains, such

that each process owns a block of n rows of length N . It also owns the corresponding

portion of the vectors x and b. To perform a chaotic relaxation on this block, as in

equation 6.2, the off-diagonal elements of the matrix are multiplied by the solution

vector. Where these off-diagonal elements correspond to the local portions of x this is

trivial. For non-local elements, the value of xj must be obtained from another process

via MPI communications.

For the purposes of implementation it is helpful to store the partitioned matrix as

two compressed-row-storage (CRS) matrices, AA and AB, as shown in figure 6.2. AA

is an n-by-n square matrix (containing the diagonal) which can be directly multiplied

by xA, the local portion of x. AB contains all the remaining off-diagonal elements,

which must be multiplied by off-process elements xB. The structure of AB and xB are

re-arranged so that xB becomes a local, sparse representation of the parallel vector.

The process of updating this buffer is known as vector-scattering. Each process

must pack (only) the required local values of xA into an a buffer, which is sent to an

neighbouring process via an MPI message, and inserted directly into xB.

In a classical Jacobi solver, it is common to perform part of the relaxation with AA

and xA whilst the scatter is being performed, and complete the iteration using AB and

xB when the communication is complete. In asynchronous methods, vector-scattering

can be overlapped over a fixed number of iterations and old values of xB are used in

the meantime.

Here, we consider a truly chaotic solver in which scattering and relaxing occurs

simultaneously on independent threads, and the relaxation uses the most up-to-date

values of xB that are available. To achieve this, a hybrid-parallel scheme is used. The

matrix is still partitioned into MPI sub-domains, but within each MPI process several

shared-memory OpenMP threads operate. It is commonly recommended to run such

a system with each MPI process occupying a single socket (or NUMA-node) of the

supercomputer so that all threads are using the same memory channels (avoiding ‘Non-

Uniform Memory Access’ problems). Each OpenMP thread is then given one physical

core. For example, a problem previously using 64 MPI processes may be replaced by
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Figure 6.2: An illustration of the MPI parallel partitioning scheme for the matrix A,
and vectors x and b. Note that the column indices of AB are altered to point to the
correct location in xb, the vector-scatter buffer.

8 MPI processes, each running 8 threads. Actually distributing MPI processes and

threads correctly can be quite challenging. In the case of Iridis4, job host-files do not

correctly describe the physical layout of the system, and manual intervention is required

to correctly distribute MPI processes and set OpenMP thread affinity.

On each MPI process, one thread is designated as the communications thread and the

remainder are assigned to computation (and perform the relaxations). This task-based

thread assignment has been shown to provide benefits, even for synchronous methods,

since the computation threads are often limited by memory bandwidth anyway [56].

The computation threads have shared-memory access to all of AA, AB, xA and

xB and continuously perform relaxations on this data. Each thread takes a contiguous

portion of the n rows and relaxes them in order (using equation 6.2), and repeats until

the stop criteria are reached. It is not necessary to synchronize the computation threads,

so each thread may perform a different number of iterations. Values of xA are pushed

and pulled from local memory without synchronization or mutexing. Values of xB are

pulled from local memory too, whilst the communication thread updates them.

The role of the communication thread is to continuously perform vector-scatter

operations between MPI processes. It is responsible for collecting local values xA and

packaging them into MPI messages – once again, no synchronization or mutexing is

required and these values are pulled directly from the active memory of the computa-

tion threads. On receiving a message, the incoming data is pushed directly into xB,

immediately making it available for relaxations. In this implementation, a vector-scatter

must be completed by the communication thread on all processes, before the next can

begin. As such, every MPI process will perform the same number of communication

iterations and will experience implicit synchronization of communication threads. This

synchronization of communication threads does not affect the computation threads. A

more chaotic scheme could be implemented, allowing pairs of processes to communicate

faster than other pairs if the hardware allowed it. One-sided MPI communications
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would be the ideal method to pursue this, but this was not deemed necessary at this

stage.

This chaotic solver deliberately exploits race conditions to achieve a high level

of asynchronicity. Although no two threads write to the same location in memory

simultaneously, it is quite possible that threads will try to read and write the same

value at the same time. As long as the data type is atomic, this causes no issues. It

is not transparent how the compiler or memory controller deals with cache-coherency

when encountering these data races, but this also caused no discernible problems; no

explicit cache management of the x vector was required.

At the end of a typical solution process, the communication thread on each MPI

process has performed O(1k-10k) communication iterations and each computation thread

has performed a varying number of computation iterations (often O(100-1k) out of

sync). All of this occurs in the time it takes to run just a handful of iterations of a

Krylov Subspace solver such as GMRES.

One of the conditions for convergence of chaotic methods is that s (the difference in

iteration-number between relaxations), in equation 6.2, is bounded. There is no explicit

checking of the value of s, because a residual check is performed every 100 communi-

cation iterations, by the communications thread – providing a sufficient condition for

convergence. Once convergence criteria are reached, the communication thread sets a

flag signalling all threads to cease. There is no guarantee on the number of iterations

that have been performed by each thread.

All of this implementation, including splitting A and B portions of matrices/vectors,

organizing MPI communication patterns and the solution process itself, can be found in

Chaos. Indeed, the C++ classes for vectors and matrices do not include any chaotic-

specific code, and could be used to create a variety of hybrid-parallel solvers.

6.5 Verification

The matrix analysis tool, used to derive numerical properties from CFD matrices in

section 6.2, was developed further to allow verification of linear solvers – the chaotic

solver in particular. This verification uses matrices exported from ReFRESCO and

matrices from the Matrix Marketplace [21].

The solution produced by the chaotic solver was compared against the solution

produced by GMRES (with a restart of 3, 30 and 100), P-GMRES and BCGS. Pre-

conditioners were not used and there was no attempt to compare performance, these tests

were performed purely to compare the absolute solution and verify the implementation.

The solvers were required to iterate until a desired absolute residual in the `2-norm.

Three analytical matrices from the matrix marketplace were tested (pde225, pde900

and orsirr 1), along with a pressure equation matrix extracted from a 14.4k-cell lid-

driven cavity flow simulation (LDCF ). The full results for the smallest case (pde225)

are shown in figure 6.3, and partial results are shown for the other matrices in figure 6.4.

The results were similar for a range of convergence tolerances from 10−1 to 10−7 (not

shown).
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Figure 6.3: Full verification results from the pde225 case, with a requested absolute
`2-norm of 10−6. [Top] A plot of the raw residual vector (r = Ax− b). [Bottom-Left]
Statistical Distribution of the residual vector, showing the mean, upper/lower quartiles,
and minimum/maximum values. [Bottom-Right] Spectral analysis of the residual vector,
with peaks corresponding to frequencies of error in the converged system. The dotted
lines in the results mark the mean value of the residual required in order to satisfy the
`2-norm. This line divides the elements of the residual that positively or negatively
contribute to the `2-norm.

The residual vector r ∈ RN itself was plotted, in order to observe any anomalies in

the solution. Following this, a distribution of the residual values was plotted, which

revealed some differences in the solvers’ behaviour; and finally, spectral analysis was

performed on the residual vector to note the frequency of errors, to ensure that that no

particular frequencies were left under-solved.

Although there are some differences in the solution vector, there are no concerns for

any of the solvers. There is a tendency for the chaotic solver to over-converge the system

(particularly on the smallest case, pde225), presumably because many relaxations can

occur between residual updates. The KSP methods compute residuals each iteration, so

this does not happen.

6.6 Scalability Experiments

The results from chapter 5 are repeated, using the LDCF and KVLCC2 test case

of approximately 2.68m cells – this time comparing preconditioned FGMRES, the
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Figure 6.4: Partial verification results from the analytical cases pde900 and orsirr 1,
and the CFD case (LDCF) respectively, with a requested absolute `2-norm of 10−3 or
10−6 for the LDCF-case.

aforementioned SOR solver, and the chaotic solver. Scalability tests were performed up

to 2048 cores. 100 outer-loops were performed, and the time spent in the solve routines

for the pressure equation (per outer-loop) was measured. In these experiments, the

scalability is normalized to T8 (8-core performance), as this corresponds to a single MPI

process of the chaotic solver. It is worth noting that the chaotic solver is identical, in

all respects, to Gauss-Seidel, if it were run on a single core C = 1. Figure 6.5 shows the

results of this scalability study, and table 6.2 gives a numerical representation of the

same.

As before, the LDCF test case appears much easier to solve than the KVLCC2 test

case, for all solvers and convergence tolerances. The chaotic solver is faster than the

plain SOR solver in all cases, with the gap widening as the equations become easier to

solve – reaching a speed-up of ×37.8 on LDCF at 0.1 ILCT, and ×11.0 on KVLCC2 at

0.01 ILCT (C = 2048). Scalability of the chaotic solver is better than the SOR method,

77



0 256 512 1024 2048Cores
0

256

512

1024

2048

S
ca

la
b
ili

ty

ID
EAL

Chaotic (Solver)
SORx100
FGMRES + BJACOBI

100

101

102

103

104

105

Core-hrs

cores = 8
cores = 128
cores = 2048

(a)

0 256 512 1024 2048Cores
0

256

512

1024

2048

S
ca

la
b
ili

ty

ID
EAL

Chaotic (Solver)
SORx100
FGMRES + BJACOBI

100

101

102

103

104

105

Core-hrs

cores = 8
cores = 128
cores = 2048

(b)

0 256 512 1024 2048Cores
0

256

512

1024

2048

S
ca

la
b
ili

ty

ID
EAL

Chaotic (Solver)
SORx100
FGMRES + BJACOBI

100

101

102

103

104

105

Core-hrs

cores = 8
cores = 128
cores = 2048

(c)

0 256 512 1024 2048Cores
0

256

512

1024

2048

S
ca

la
b
ili

ty
ID

EAL

Chaotic (Solver)
SORx100
FGMRES + BJACOBI

100

101

102

103

104

105

Core-hrs

cores = 8
cores = 128
cores = 2048

(d)

Figure 6.5: Scalability of the linear equation-system solver for the KVLCC2 (left) and
LDCF (right) test cases, at 0.1 (top) and 0.01 (bottom) convergence tolerance.

Table 6.2: Absolute core-hours spent solving the linearized pressure equation over 100
non-linear iterations.

Case (ILCT) FGMRES SOR Chaotic (solver)
C = 8 128 2048 8 128 2048 8 128 2048

LDCF (0.1) 1.8 2.5 54.4 39.5 43.7 211.5 3.6 3.4 5.6
LDCF (0.01) 3.4 5.3 56.8 127.9 146.2 618.4 20.7 16.9 24.5

KVLCC2 (0.1) 3.8 7.1 60.1 104.5 108.1 489.0 27.2 20.8 36.6
KVLCC2 (0.01) 7.8 17.4 144.0 442.2 447.3 1870.0 139.9 111.6 169.6

and is sometimes super-linear due to increasing use of the cache as the cells-per-core ratio

decreases. Above 512 cores, particularly on the easier equation-systems, the scalability of

the chaotic solver begins to deteriorate slightly. Obtaining computing time to thoroughly

debug this was not possible, but it is suspected that the residual-check interval needs to

be increased at this point. This is partly due to the decreasing cells-per-core ratio; and

partly due to the increasing cost of global communications. Although the computation

threads continue to iterate whilst waiting for the residual check, the communication

thread (and vector-scatter updates) are stalled, reducing convergence rates.

Despite this, on all but the hardest equation-system, the chaotic solver is able to

out-perform preconditioned FGMRES on 2048 cores, due to the poor scaling of the

Krylov Subspace method. Indeed, on LDCF at 0.1 ILCT, the chaotic solver is almost

×10 faster than FGMRES. On stiffer equation systems, the gains are smaller because

more low-frequency errors must be reduced (FGMRES is ×1.17 faster than chaotic on

KVLCC2 at 0.01 ILCT). SOR and the chaotic solvers are both ill-equipped to deal with
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these low-frequency errors, especially as N increases to more practical levels. This is

particualy noticable on a lower number of cores, where the scalability of FGMRES is

still good.

6.7 SIMD Vectorization Optimization

Since the core of the chaotic algorithm is just sparse-matrix-vector-multiplication

(SpMV), it is logical to optimize the data layout for this kernel. Experiments were

performed with row-reordering and padding, to create highly-vectorizable loops which

could take advantage of SIMD (single-instruction-multiple-data) optimization. Vector-

ization is already performed by the compiler, whereby aij × xj element multiplications

in each relaxation can be vectorized. However, it is inefficient because the matrix rows

are often short and of variable length.

Padding the matrix rows with zeroes, to force equal lengths, did not provide

any noticeable improvement, despite reducing the branching of vectorized loops. At

worst, the additional unnecessary work of multiplying zeroes reduced performance. An

optimization of this method was performed, where rows were reordered into groups

with the same non-zero pattern (i.e. all rows with 4 non-zeroes per row are looped

separately). This format is known as Jagged Diagonal (JAD); the overhead made this

not worthwhile.

JAD is usually employed so that SpMV can be performed in a column-major way.

The vectorizable dimension in column-major SpMV is of length n – much larger than

the row-major format (where the maximum dimension is the number of non-zeroes per

row) – granting better computational performance. However, since a relaxation is not

complete until every column has been visited, the relaxations must occur in a Jacobi-like

format (updates cannot be used as they are computed as in Gauss-Seidel). This spoilt

the numerical performance of the chaotic solver, requiring many more iterations to

achieve the same convergence. Staggering of these row-major relaxations with striding

or blocking techniques were tried, but with no significant improvement.

Overall, the original implementation using the classic row-major compressed row

storage (CRS) method could not be beaten significantly and consistently. The vector-

ization speed-up remains at approximately 2.2 out of a theoretical 4.0 on Iridis4. It is

assumed that this is limited by the indirect memory access of xj rather than the data

structure of the matrix – this is a property of unstructured CFD codes which cannot be

circumvented.

6.8 Scheduled Relaxation

The biggest problem with the chaotic solver, and other Jacobi-like solvers, is their

inability to converge the lowest-frequency errors in the flow faster than O(N3) [103].

This can be overlooked when N is small, and if ILCT is high then convergence can

often be reached by only smoothing high-frequency errors. To be competitive at solving

the pressure equation in practical CFD simulations, the numerics of the chaotic solver
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must be improved. A recent study by Yang & Mittal [106], entitled Acceleration of the

Jacobi Iterative Method by Factors Exceeding 100 Using Scheduled Relaxation, provides

an interesting start point.

Typically, an over-relaxation parameter ω cannot be applied to iteration matrices

whose spectral radius, ρ, is close to unity. If ρω > 1, then the solution will diverge. The

wave-number associated with with the largest eigenvalue would be over-relaxed so as

to cause instability and divergence. In Yang & Mittal [106] the author shows how a

relaxation schedule can be created to achieve the best of both worlds. If a relaxation

parameter ω1 is chosen at one iteration, it will rapidly converge a particular wave number

in the system whilst attenuating error in other wave numbers. An under-relaxation

parameter ω2 is then used, for several iterations, to reduce the error in the unstable

wave numbers. Multiple layers of this method can be used – for example, 4 different

over-relaxations may be chosen, scattered in between many under-relaxations. The

author describes how to create a schedule which is guaranteed to converge for the Jacobi

method. The over-relaxation values may be very large, often ω > 100.

A simple version of Scheduled Relaxation Jacobi (SRJ) was implemented and briefly

tested as part of this PhD. On simple test cases the SRJ method performed up to

20-times faster than plain Jacobi. Furthermore, an attempt was made to couple the

chaotic solver with the SRJ method, creating an ‘SRC’ scheme, but with some nuances.

The chaotic solver behaves similarly to Gauss-Seidel, in that new values of xk are

used the moment they are computed (in the same, kth iteration). In Yang & Mittal

the schedule is carefully chosen to avoid over-relaxing consecutive iterations, otherwise

the error associated with certain frequencies would overflow the floating-point limits

of the computer. In Gauss-Seidel, over-relaxing xk1 and immediately using this value

to over-relax xk2, and so on, causes a floating-point overflow almost immediately. For

over-relaxation, a Jacobi-type relaxation must be used, so that each relaxation is using

non-over-relaxed values of xk−1
j .

In the SRC scheme, the over-relaxations (of which there are few) are performed using

a standard synchronized Jacobi iterations. The many intermediate under-relaxations

are performed using a truly chaotic solver. It is difficult to guarantee that enough

under-relaxation has been performed, since it is not possible to simply count iterations,

but it is possible. The details of this scheme, for guaranteeing enough under-relaxation,

will be explored further in the following chapter – where it is required for multigrid

methods.

A modest 4.1-times speed-up was achieved with SRC, compared to the pure chaotic

solver, on a simple test cases (3D LDCF, 1-million cells, 16 cores). However, there are

some fundamental problems. Construction of the relaxation schedule requires assumed

information about the maximum and minimum eigenvalues occurring in the system.

For uniform grids (such as LDCF) this is not such a problem, but for realistic CFD

simulations scheduled relaxation becomes impractical. Furthermore, the maximum

acceleration is limited by the largest cells in the domain; for flows with large far-field

elements and very small boundary elements, the speed-up may be limited.
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In the literature, no similar work has been done on asynchronous or chaotic methods

with scheduled relaxation. If scheduling can be generalized to unstructured grids

successfully, then the coupling of scheduling and chaotic methods could be revisited.

6.9 Summary & Conclusions

Overall, the chaotic solver shows excellent results compared to SOR, reaching speed-ups

between ×11.0 and ×37.8; and is even capable of out-performing KSP methods on a

large number of cores (almost ×10 faster, due to poor scaling of FGMRES). As N

increases, the rate of convergence for SOR and chaotic solvers deteriorates with O(N3),

which means these solvers are unsustainable for practical computations. Attempts to

circumvent this O(N3) limitation using scheduled relaxation were unfruitful.

As was noted in chapter 5, multigrid methods have strong numerical properties but

often struggle with scalability. Much of this poor scalability can be attributed to the

smoother, so there may be potential to replace classical SOR smoothers with a chaotic

smoother, hopefully transferring the speed-ups proven in this chapter. The following

chapter explores this possibility.
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Chapter 7

Chaotic-Cycle Algebraic

Multigrid

In this chapter, the intention is to apply the principle of chaotic relaxations to a multigrid

method, gaining the scalability benefits of chaotic methods – particularly on the coarsest

grids of the multigrid algorithm where the cells-per-core ratio is very low. A generic

multigrid algorithm has been developed below, employing an unsmoothed-aggregation

technique and the classical V-, W- and F-cycles. Following this, the extension to a

‘chaotic-cycle’ multigrid is explained, where the boundedness of s and the removal of

other synchronization points is explored. Verification of O(N) performance is shown

on a generic Poisson equation. Finally, scalability and performance of all the multigrid

cycles are tested against the standard chaotic solver, FGMRES and ML. This work

closely follows the latter half of Hawkes et al. [40], available as appendix E.

7.1 The Theory of Algebraic Multigrid

The principle of algebraic multigrid methods is that low-frequency errors can be solved

quickly by translating the problem onto a coarser grid, where low-frequency errors

become high-frequency errors. This coarsening can be applied recursively over many

levels. Smoothers such as SOR can be used to quickly smooth high-frequency errors

on the coarse grids. Often, only a single iteration of the smoother is required. It can

be shown that the number of multigrid iterative cycles required to converge a perfect

multigrid method remains constant as N increases, which makes them competitive

against Krylov Subspace methods and relevant for real-world applications. In theory,

the work done in each multigrid iteration scales with N , since all of the relevant routines

(such as smoothing) are O(N). Thus, a multigrid solution should take O(N)-time,

although this does not include the time taken to construct the coarse grids, and also

depends on the quality of the coarse-grid operators [103, §2.4][68].

There are certain traits of the chaotic solver which make it difficult to substitute

as a smoother in a multigrid method. Most of these issues arise because it is difficult

to impose stopping criterion and guarantee the boundedness of the asynchronicity s.

83



In the chaotic solver, a sufficient condition for convergence was provided by checking

the residual – which was necessary anyway. For a multigrid method it is not necessary

to compute a residual on the coarse grids, and it would be inefficient to do so, so an

alternative method for bounding s is required.

Another issue is that smoothers only need to run for a small number of iterations,

which does not suit chaotic methods well, especially when the equation-systems are

small and easy to solve (as on the coarse grids). Chaotic solvers have a tendency to

over-converge these systems considerably, because the computation threads achieve so

much smoothing before a single communication can even occur. Although they can

never be slower than existing smoothers because of this, much of this free convergence

is wasted if it not required. Since there are other sources of synchronization in the

multigrid cycle, it would be beneficial to trade off some of these synchronizations for

additional smoothing, which can be obtained for free. Indeed, the idea of running a

chaotic solver for one “iteration” is virtually meaningless!

Below, the implementation of a classical algebraic multigrid is considered. Following

this, the extension to a chaotic-cycle multigrid is considered; and the above points –

regarding bounded asynchronicity and removal of unnecessary synchronization – are

tackled.

7.2 Implementation of Classical Multigrid

There are two stages to a multigrid algorithm. The first stage is concerned with

constructing coarse grids and interpolation operators. The second stage is the multigrid

‘cycle’ which is the iterative process used to solve the equation system.

7.2.1 Construction of Coarse Grid Operators

In the coarsening stage, coarse grid operators are recursively created from a fine grid,

such that:

Am = RmAm−1Pm, 1 ≤ m ≤ mmax

where Am is matrix A on the mth level (level zero being the finest, original matrix); Pm

is the prolongation matrix, a sparse rectangular matrix which describes the interpolation

between Am and Am−1; and Rm is the restriction matrix, a sparse rectangular matrix

describing the contraction from Am−1 to Am. Rm is usually the transpose of Pm.

Here, an aggregation-type coarsening is used, loosely based on Notay [70]. In

aggregation schemes, a coarse grid is constructed by grouping fine-grid elements into

single coarse-grid elements (or ‘aggregates’), such that the aggregates form a disjoint

subset of the fine-grid elements. In unsmoothed aggregation, Rm and Pm are simply

boolean matrices which never need to be explicitly stored. In smoothed aggregation, the

prolongation and restriction matrices are smoothed such that coarse-grid elements may

contribute to more than one fine-grid element. The simpler unsmoothed-aggregation is

used here.
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When constructing the coarse grids, it is important that aggregates are created in

the direction of the ‘smoothest error’. In other words, they must be constructed such

that the maximum eigenvalue is successfully reduced on the coarser grid [68].

Notay [70] proposes a pairwise-aggregation scheme which attempts this. The algo-

rithm couples pairs of elements which are ‘strongly-coupled’, which means they have

large negative values in the off-diagonals that connect them. The algorithm attempts

to construct pairs with maximum coupling, but minimum un-paired elements. The

process is computationally expensive, constantly searching for the least strongly-coupled

elements so that they can be paired first. This constant sorting of elements can be

expensive, and a pairwise scheme can only coarsen by a factor of two – meaning that

repeated application is necessary to achieve 4- or 8-times coarsening.

A cheaper, but less rigorous approach has been adapted from this scheme. A

maximum aggregation size amax is specified (for example, 8). For each element ei in the

fine grid (iterated in order), the off-diagonal values of the matrix (Am−1)ij,j 6=i create

a set of coupled elements ej that can form aggregates. For each coupled element, the

strength of the coupling is recorded as vj = −(Am−1)ij . If the coupled element already

belongs to an aggregate, the number of elements already in that aggregate is recorded

as aj , else aj = 1. An aggregate is formed by selecting ej with a minimal aj , and then a

maximal vj . The aggregation of the two elements is abandoned if both elements already

belong to aggregates, or if either element belongs to an aggregate which already has

amax elements. The algorithm achieves close to amax coarsening in a single step, very

cheaply.

At the end of the aggregation process, a set of aggregates Gi, i = 1, ..., nm exist, each

with approximately amax indices which map to Am−1. This mapping is equivalent to

Rm and the tranpose mapping is created for Pm. From this point, Am can be computed

as:

(Am)ij =
∑

k∈Gi

∑

l∈Gj

(Am−1)kl (1 ≤ i, j,≤ nm)

The process is repeated recursively, with m = m+ 1, until the coarsest grid reaches

a specified size. Figure 7.1 shows an example of this coarsening on a two-dimensional

lid-driven cavity flow domain. Investigating the quality of the aggregation is beyond the

scope of this thesis, as it is an active area of research which is not specific to chaotic

methods. The presented method appears to be robust enough for the purposes of these

experiments.

The aggregation is done per MPI domain, such that each process has its own set of

hierarchical grids (as in [70]). Aggregation is not performed across process boundaries,

thus Am in the above discussion is replaced by (AA)m for each MPI domain. AB is

never considered when aggregating. Also, when constructing the coarse grids, (AB)m is

not explicitly constructed because it would require re-mapping the buffered storage of

the parallel vectors, (xB)m. Vector-scattering on coarse grids occurs by mapping into

the buffer of the finest grid, resulting in excess, inefficient MPI communication. A more

rigorous aggregation scheme which performs coarsening across MPI domains may be
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Figure 7.1: A view of the aggregation process, showing four multigrid levels with
amax = 8 on a two-dimensional lid-driven cavity flow domain. The fine matrix begins
with 128× 128 = 16384 degrees of freedom; and the coarsest matrix has just 7.

more performant; especially since this aggregation can be reused over several non-linear

iterations of the overall CFD simulation.

7.2.2 Cycling Techniques

The second stage of the multigrid algorithm is the linear solution process, in which

various different cycles can be used to visit the coarse grids. On each coarse grid, a

‘correction’ to the fine-grid solution is computed using the additive correction scheme

[48]. There are three simple routines which allow a variety of cycles to be created.

� On each level, smoothing is applied to the linear system Amxm = bm. On the

coarsest level a direct solver is often used, but a smoother will suffice too.

� Restriction is used to move from a fine grid (m− 1) to a coarse grid (m): from the

linear system Am−1xm−1 = bm−1, a new system is created Amxm = bm. Am has

been generated by the aggregation process, xm is set to zero, and bm is set to to

the residual vector multiplied by the restriction matrix: Rm(bm−1 −Am−1xm−1).

Smoothing performed before a restriction is called pre-smoothing.

� In the other direction, prolongation is used to apply the coarse-grid correction

to the fine grid. The prolongation matrix, Pm−1 is used to expand xm into

xm−1. The vector Pmxm is summed with xm−1, to provide a correction to the

86



fine grid. Post-smoothing is usually performed after prolongation to smooth the

errors introduced by the unsmooth coarse-grid correction – smoothed-aggregation

techniques reduce the amount of post-smoothing required.

These three routines, combined with different values of amax, different minimum

grid sizes, and different numbers of smoothing steps, can produce a wide variety of

multigrid cycles, such as the V-cycle, F-cycle, W-cycle and sawtooth-cycle (figure 7.2).
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Figure 7.2: A view of the solution process, showing a single iteration of a four-level
multigrid method using the classical recursive V-cycle, W-cycle, F-Cycle and Sawtooth-
Cycle. Restriction, Prolongation and Smoothing are colour-coded.

7.3 Applying Chaotic Principles to Multigrid Methods

Consider the classical V-cycle as illustrated, using an SOR smoother. In each pre-

smoothing step there is an implicit global synchronization during each iteration, as has

been discussed in earlier chapters. For restriction, a vector-scatter is also necessary to

compute bm = Rm(bm−1−Am−1xm−1), causing another implicit global synchronization.

Replacement of the smoother with a chaotic smoother solves the implicit synchro-

nization in the pre-smoothing steps, but since the smoother only needs to run for

a handful of iterations, the synchronization required for restriction still has a large

effect. In order to minimize this, consider a sawtooth cycle, which is simply a V-cycle

with no pre-smoothing – the right-hand sides (bm) of the all the coarse matrices must

still be initialized. In the 4-level example shown in figure 7.2, communication of x0 is

required as usual to create b1, requiring a vector-scatter. x1 is reset to zero. The next

restriction follows immediately to create b2; except now it is known that x1 = 0 there

is no need to scatter x1, and b2 = R2(b1 −A1x1) = R2b1. It follows that the entire

sawtooth restriction requires only one implicit synchronization. The downside of using

a sawtooth method is that more post-smoothing iterations may be required. For the

chaotic smoothers this may not be a disadvantage, because much of this smoothing can

be obtained for free.

Returning from the coarse grid to the fine grid, post-smoothing with a chaotic

smoother does not require any implicit synchronization. Furthermore, prolongation

does not require any synchronization either; because xm−1 += Pmxm does not require

off-process values of xm (it is an entirely local operation). Smoothing on level m− 1

can begin before other processes have performed their own prolongation, because the

off-process values of xm that are not updated are still zero. Updated values will be
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provided by communications in the chaotic smoother when they are ready, but chaotic

relaxations can begin without that information.

That being said, it is still necessary to guarantee the boundedness of s in the

chaotic-cycle prolongation phase. Consider the situation in which p post-smoothing

iterations are requested at each level, and this is expected to provide enough convergence

on the coarse grids to guarantee overall convergence of the multigrid method. Note

that a certain amount of post-smoothing must be performed in order to compensate

for unsmooth prolongation [103], else the multigrid solver will not converge. For the

chaotic smoother, specifying a number of iterations is meaningless because one process

could complete its iterations before receiving updates from any other process or thread,

and parts of the equation-system would not be smoothed correctly. Thus, a method for

bounding s has been developed:

The chaotic-cycle, like the chaotic solver, is designed for a hybrid MPI+OpenMP

environment. The same concept of computation and communication threads is used,

and the communication threads remain in sync across MPI processes. Within each MPI

process, each thread stores an iteration counter k in an array, initialized to k = 0 at

the start of each smoothing phase. After each computation thread completes a chaotic

relaxation on its portion of the equation system, it attempts to increment k – however, it

is only allowed to increment k if the values in the counter array are all ≥ k. If any value is

less than k, it suggests that the relaxations may have used old values and therefore it did

not ‘count’ towards p. This bounds s between computation threads. The communication

thread also participates in the same counter array, attempting to increment k every time

it scatters xm between MPI processes; thus bounding s between all processes. To avoid

an MPI deadlock, additional checks are required to make sure communication threads

perform the same number of iterations on all processes (regardless of k); this is done

using non-blocking MPI barriers (MPI Ibarrier). This method was developed earlier

in the PhD for use in chaotic scheduled relaxation methods (discussed in section 6.8),

in order to guarantee a certain number of meaningful under-relaxation iterations.

It is unlikely that any computation thread will complete exactly p iterations, since

they are usually faster than communications, but it is the absolute lower bound. Most

threads will complete many more than p iterations, so choosing a value for p is not as

intuitive when compared to classical multigrid cycles.

Combining this bounded chaotic smoother with the sawtooth cycle and barrier-

less prolongation: a chaotic-cycle multigrid is created. The entire cycle has only one

implicit global synchronization, required to restrict the finest level. Instead of explicitly

scattering x0 the latest values communicated during the pre-smoothing step are used,

further hiding this implicit synchronization behind useful relaxations. One explicit

thread-barrier (local) is also required at the end of the restriction simply to signal that

all of the coarse grids have been initialized, because it is important that xm has been

reset to zero on every level before prolongation begins – but this is cheap. During each

multigrid cycle, a lagged, non-blocking residual is computed to determine an overall

stopping criteria.
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Figure 7.3: A view of the chaotic-cycle solution process, showing a single iteration of a
four-level multigrid method. Restriction, Prolongation and Smoothing are colour-coded.
Multiple parallel lines are shown during the prolongation stage to depict the non-
deterministic way in which multiple threads (including communication and computation
threads, across multiple processes) may participate in the chaotic-cycle.

Figure 7.3 shows an illustration of the chaotic-cycle, although it is difficult to capture

the chaotic nature in a simple diagram. There are certainly other ways in which chaotic

methods could be applied to create a scalable multigrid cycle – possibly involving

smoothing on multiple levels simultaneously – but this algorithm is the most obvious to

pursue and does not break the standard convergence theorems for multigrid solvers.

7.4 Verification

In order to ascertain that the chaotic-cycle conforms to the convergence expectations

of a multigrid method, verification is performed using a generic 3-dimensional (i, j,

k) Poisson equation with Dirichlet boundaries. A 3D, unit-length, cubic domain of N

elements is created (element spacing h = 1/N
1
3 ). A pre-determined solution xs is created

for the linear system, by combining 20 sinusoidal frequencies:
∑19

f=0 sin(2fπ.i.j.k.h3).

b is created from this solution and x is initialized to zero. The source is included as an

example in Chaos.

The number of iterations to convergence (relative tolerance 10−6) and time-per-

iteration is measured for the chaotic-cycle and V-cycle as N increases from 512 (83) to

1.73-million (1203). With perfect coarsening, the number of iterations to convergence

should be constant, with the time-per-iteration increasing linearly with N . However,

this ideal situation cannot be achieved with piecewise-constant unsmoothed aggregation

[68]. Figure 7.4 shows the results of this verification. The experiment is performed on

64 cores (8 MPI processes with 8 threads each). The aggregation factor, amax, is set to

8, and the number of pre- and post-smoothing iterations is set to p = 3.

The number of iterations required to reach convergence is not quite constant, but

appears to approach an asymptotic maximumum, for both cycles. This suggests small

imperfections in the aggregation process, which is expected. The time-per-iteration is

O(N) as desired, although both the V- and chaotic-cycle show occasional deviations or

noise. This is probably related to the aggregation factor and the discontinuous number
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of levels being created as N increases.

Overall, the two cycles perform similarly; but these tests are not designed to gauge

performance. The important result here is that the chaotic-cycle is at least as good as

the V-cycle from the perspective of multigrid correctness. The following section properly

assesses the performance and scalability of the various cycling techniques.
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Figure 7.4: Number of iterations (a) and time-per-iteration (b) to converge the discrete
Poisson equation, of size N , to a relative convergence tolerance of 10−6.

7.5 Scalability Experiments

The performance experiments from the previous chapter are repeated here, this time

comparing the chaotic-, V-, W- and F-cycle with preconditioned FGMRES, the standard

chaotic solver, and a state-of-the-art multigrid package (ML, [29, 41]). Once again the

solution of the pressure equation is summed over 100 outer-loops of the CFD solver. For

all multigrid methods, including ML, aggregation is only performed once in this time,

and then re-used. This is possible because the non-zero structure of the matrix A does

not change between outer loops, thus the restriction and prolongation matrices do not

need recomputing. Am must still be refilled on the coarser grids using equation 7.2.1.

Aggregation and re-filling time is included in the results. Occasional re-aggregation is

probably required for practical simulations, because the coupling of various elements in

the fine grid may change as the overall CFD solution converges, and the coarser grids

will no longer follow the smoothest errors.

Preliminary studies showed that p (the number of pre- and post-smoothing iterations)

had little effect on the results within a range of 1 to 12. Increasing p resulted in fewer

cycles being required overall (and vice versa), but with almost no effect on scalability

and absolute speed. p = 3 was selected for all of the Chaos multigrid methods; and

p = 1 was used for ML. ML uses a complex smoothed-aggregation coarsening strategy

which achieves smoother coarse-grid-corrections, thus less smoothing is required. An

additive-correction V-cycle was used in ML, with a direct solver on the coarsest grid.

The results are shown in figure 7.5 and (partially) table 7.1. Overall, the scalability of

the V-, W- and F-cycle multigrid is poor, and somewhat similar to the Krylov Subpsace

method (FGMRES). The V-, F- and W-cycle all perform similarly on C = 2048 cores.
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Figure 7.5: Scalability of the linear equation-system solver for the KVLCC2 (left) and
LDCF (right) test cases, at 0.1 (top) and 0.01 (bottom) convergence tolerance.

Table 7.1: Absolute core-hours spent solving the linearized pressure equation over 100
non-linear iterations.

Case (ILCT) FGMRES V-Cycle Chaotic-Cycle Chaotic (solver)
C = 8 128 2048 8 128 2048 8 128 2048 8 128 2048

LDCF (0.1) 1.8 2.5 54.4 2.3 2.7 94.6 2.3 2.5 7.1 3.6 3.4 5.6
LDCF (0.01) 3.4 5.3 56.8 4.3 6.8 124.1 4.0 4.7 10.6 20.7 16.9 24.5

KVLCC2 (0.1) 3.8 7.1 60.1 4.1 6.1 117.2 5.1 5.3 13.6 27.2 20.8 36.6
KVLCC2 (0.01) 7.8 17.4 144.0 9.2 13.9 258.9 12.4 16.3 38.5 139.9 111.6 169.6

On a smaller number of cores, the size of AA in each domain becomes larger, thus

the total number of levels increases and the algorithmic differences between the three

cycles become larger. As the number of levels increases, the W- and F- cycles spend

exponentially more time visiting coarse grids, and perform worse than the V-cycle. If

only two grids existed, all three cycles would be identical. This effect makes it difficult

to differentiate between numerical effects and scalability of the classical multigrid cycles.

The chaotic-cycle exhibits slightly worse absolute performance on C = 8 than the

V-cycle and FGMRES, but offers much greater scalability. In all cases the chaotic-cycle

is the fastest solver on C = 128 cores. On the most difficult test case (KVLCC2 at 0.01

convergence tolerance), the chaotic-cycle is over 6.7× faster than the classical V-cycle

on C = 2048 cores, and 3.7× faster than preconditioned FGMRES. This gap widens

on easier equations, reaching a 13.3× and 7.7× speed-up over V-cycle and FGMRES,

respectively, on LDCF at 0.1 convergence tolerance.

The scalability of ML was poor in all cases. It was suspected that the rigorous
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aggregation process is a bottleneck to scalability when such a lax convergence tolerance

is specified; however, re-use of the aggregation had little effect on scalability. Other

efforts to experiment with ML were unsuccessful in improving scalability – including

adjusting the number of multigrid levels, the amount of smoothing, and replacement of

the direct solver with a smoother on the coarsest grid.

Despite its good performance, the chaotic-cycle multigrid falls short of ideal scalability.

Indeed, in one case the simple chaotic solver is faster than chaotic-cycle multigrid due

to its superior scaling.

7.6 Discussion

Both the classical- (V,W,F) and chaotic-cycle should achieve better scalability if the

vector-scattering on coarse-grids is improved. Currently, the MPI buffers and indexing of

(xB)0 and (AB)0 are also used on the coarse grids, instead of creating smaller, aggregated

buffers for each level, which is inefficient. Computing buffers for each coarse-grid would

certainly improve scalability. It is likely that the chaotic-cycle hides some of these

losses (since extra relaxation can occur whilst waiting for these communications), so

the differences between the two solvers may become smaller.

Perhaps a bigger concern is (once again) the residual computations which currently

occur asynchronously during each multigrid iteration. On 2048 cores the aggregation

process only creates four levels, and with p = 3 a chaotic-cycle will perform a minimum

of 18 vector-scatters in this time. As noticed in the chaotic solver, with a residual

computed every 100 iterations this was already the main limitation to overall scalability.

It is suspected that this is the main cause of poor scalability and is also the only sensible

reason that the standard chaotic solver could out-perform the chaotic-cycle multigrid

(since the chaotic-solver is equivalent to a one-level chaotic-cycle multigrid method).

For both the chaotic-cycle multigrid and chaotic solver, the ideal solution would be to

apply a threaded residual computation check, such that residuals are only computed at

the speed at which they can be communicated. In this way the residual computation

could never stall the communication thread, but it would also never lag unnecessarily.

In some ways this could be considered a ‘chaotic’ residual.

The problem with such a scheme is that it is difficult to stop MPI processes

safely without some form of explicit, predictable barrier or global communication

– because if any process issues MPI Isend/MPI Irecv commands before receiving the

‘stop’ notification, these unmatched communications will cause a deadlock. As mentioned

earlier, some form of one-sided communication would be ideal to allow communication

threads to operate chaotically. This would also allow chaotic residual computations to

be implemented easily.

Throughout this thesis, it has been easy to peer into the internal workings of

each solver using profiling tools such as Score-P. However, profiling the chaotic-cycle

multigrid is somewhat difficult. The numerical and computational properties of both the

chaotic solver and chaotic-cycle multigrid are so closely intertwined, it can be hard to

distinguish between numerical and computational issues. Indeed, the whole purpose of
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chaotic methods is to make use of all available hardware for useful numerics, even when

some systems (such as communications) are struggling. Furthermore, any attempt to

intrusively debug or profile these solvers can affect the non-deterministic solution path

of the solver. This inability to easily debug and profile is possibly the main disadvantage

of chaotic methods – at least from a research and development perspective.

Even though it can be seen that both the coarse-grid communications and residual

checks are slow, it is not clear which is the main source of performance losses. However,

it is suspected that the residual issue is far greater, because whilst waiting for the

residual to complete the communication threads are blocked from updating the commu-

nication buffers (xB) on the finest grid. At least on the coarse grids, xB is periodically

updated, providing fresh values for the excess relaxations to work on – even though the

communications are slow.

It is likely that both of the aforementioned issues affect the V-, W- and F-cycle too.

Indeed, since they do not have the benefit of performing chaotic relaxations they may

be more affected. Nonetheless, the chaotic-cycle multigrid demonstrates good scaling

compared to these classical cycles; and its ability to weather ineffective communications

should allow it to perform well in many-core environments.

7.7 Chaos on Xeon Phi

As a brief aside, Chaos was compiled and tested on a single (non-MPI) Xeon Phi

co-processor (5110P), exploiting up to 60 physical cores and 120 OpenMP threads. It

was not possible to compile the entire ReFRESCO suite for the Xeon Phi – mostly

due to external dependencies; instead, some performance tests were performed on the

generic Poisson case introduced in section 7.4. The convergence tolerance was set to

10−6 and the time-to-convergence was measured for the V-cycle and chaotic-cycle, shown

in table 7.2. There is no MPI partitioning; thus there is a single multigrid hierarchy

(rather than one per MPI process) – this is the main numerical difference between the

experiments performed in section 7.4.

Table 7.2: Performance of V-cycle and Chaotic-cycle multigrid from Chaos on a single
5110P Xeon Phi. The time required for aggregation is ommitted from these results.

N V-Cycle Chaotic Cycle

8k 25ms 26ms
64k 55ms 51ms
1.73m 2169ms 1512ms

As N increases the chaotic-cycle out-performs the V-cycle multigrid, suggesting

strong performance on many-core architectures. According to Intel [50] a Xeon Phi

5110P can expect to outperform a single CPU node (2x E-2670) by a factor of 1.77 (for

general fluid dynamics benchmarks) to 2.38 (Linpack benchmarks)1. Using a single CPU

1Conveniently, nodes in Iridis4 consist of 2x E-2670, although other hardware (i.e. regarding memory
bandwidth) may be different.
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node, the Chaotic-cycle takes 2452ms to converge the largest case shown in table 7.2,

thus the Xeon Phi achieves a 1.62-times speed-up. This is a promising result, but much

more research should be performed in this area.

7.8 Conclusion

This chapter has concerned itself with the development of a chaotic-cycle multigrid

algorithm, which demonstrates the application of chaotic relaxation theory to a typical

multigrid method.

The chaotic-cycle multigrid outperforms all other solvers (including Krylov Subspace

solvers, classical multigrid methods, and state-of-the-art smoothed-aggregation multigrid

methods) in terms of scalability and absolute speed, from 128 cores upwards. Below this,

the chaotic-cycle multigrid is still highly competitive. On 2048 cores the chaotic-cycle

multigrid is up to 7.7× faster than Flexible-GMRES and 13.3× faster than classical V-

cycle multigrid. Scalability of the chaotic-cycle multigrid can still be improved. Indeed,

on the easiest equation system the simple chaotic solver was faster (on 2048 cores) and

this is indicative of an issue with too-frequent residual checks. O(N) performance of

the chaotic-cycle multigrid solver has also been verified.

The potential of chaotic methods compared to synchronous methods has been clearly

demonstrated. In the following chapter, the techniques implemented in Chaos will

be applied to a ‘real-world’ CFD simulation. The intention is to demonstrate that

non-deterministic linear solvers can be used safely for CFD, without any negative affect

on the overall flow results.
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Chapter 8

Suitability of Chaos for CFD

In the previous chapter, the performance and scalability of a chaotic-cycle multigrid

method was tested, showing promising results. However, there are still some remaining

concerns which should be addressed in order to gain complete confidence that the

chaotic-cycle multigrid can be used in everyday CFD.

These concerns are:

1. After thousands of applications of a chaotic, non-deterministic solver, is there any

adverse effect on the overall fluid flow solution? Thus far, verification has been

performed on a per-solve basis, where it has been shown that the actual solution

vectors from various linear solvers can be quite different, despite achieving the

same residual-norm. It is not clear whether this will be noticeable in the final flow

solution.

2. Does the unsteadiness of the flow alter the performance of the linear solver? Until

this point, all of the test-cases have been steady-state. The addition of unsteady

terms is likely to make the equations less stiff, so has not been a major concern.

However, a large difference between the two steady cases (LDCF and KVLCC2)

has already been noticed, so it is worth explicitly testing an unsteady test case.

3. Is the absolute performance of the chaotic-cycle multigrid scaling correctly with

O(N)? Will the performance translate to large, practical grids? This has already

been tested on the pragmatic Poisson test case in the previous chapter, but a

proper performance analysis on ‘real’ CFD equations will be useful.

In order to address these concerns, a highly-unsteady test case of a submarine at a

20◦ yaw angle will be used. The simulations are performed on three grids: N = 2.78m

(similar to earlier test cases), N = 6.96m and N = 14.4m.

The simulation is run over thousands of timesteps, with several SIMPLE iterations

in each timestep. The total wall-time of the simulations reaches several days, thus

the linear solvers are rigorously tested. Initially, the numerics of the simulation are

deliberately chosen to be sub-optimal, giving a poor flow solution. This highlights any

numerical differences between the linear solvers, which are indeed significant.

For the Krylov solver and chaotic-cycle multigrid, the simulation is then run with

much stricter numerics – smaller timesteps, greater number of SIMPLE iterations, and
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stricter ILCT (almost two weeks total wall-time) – section 8.5. Here, the two solvers

arrive at virtually identical solutions, thus addressing concern (1).

Performance testing is performed in section 8.6, in the same manner as the scalability

tests in previous chapters. Both points (2) and (3) are satisfied by these tests.

It should be clearly noted that this chapter does not aim to investigate the quality

of the CFD simulation, the resolved flow, or any physical properties. Practically, even

the largest mesh is too coarse to simulate this highly-unsteady test case accurately.

The purpose of comparing flow solutions is purely to observe differences between the

linear-solver configurations.

Furthermore, the main purpose of the performance testing in section 8.6 is not to

measure scalability. The main purpose is to verify O(N) scaling of the chaotic-cycle

multigrid method, and investigate any differences in absolute performance due to the

unsteady terms in the equation-system. Indeed, scalability bottlenecks are significantly

reduced on the larger grids, because it is not possible to reduce the cells-per-core ratio

to critical levels on Iridis4.

Overall, this chapter aims to ask: “are chaotic methods suitable for real-world

CFD?”, complementing the previous chapters which have focused on the performance

and theoretical applicability of these methods.

8.1 Numerical Setup

The test case used for these studies is the Joubert-hull (“BB2”) model-scale submarine

[97], operating at a Reynolds number of approximately 5.2×106. This test case is used as

a common benchmark for assessing the capabilities of CFD in submarine hydrodynamics

(see, for example, the Submarine Hydrodynamics Working Group [86]). The length L

of the vessel is 3.8260m and the flow velocity V is 1.6309m/s. A yaw angle of 20◦ is

applied by modifying the inflow vector, creating a flow which mimics a sharp left-hand

turn. The grid is a multi-block structured mesh, as illustrated in figure 8.1. The forward

and port-side boundaries are configured as inflow boundaries; with outflow boundaries

opposite. The upper and lower boundaries are constrained by a pressure boundary

condition. All hull surfaces are non-slip walls with fully-resolved boundary layers (no

wall functions). The domain extends 2.5L forward of the hull, and 3.7L aft. The

total height and width of the domain is 6L. The origin, for the purpose of calculating

moments on the hull, is at the aft of the vessel.

To begin, the simulation is deliberately set up as a ‘worst case’ in terms of nu-

merical convergence, in order to amplify any possible issues arising from the use of

non-deterministic, chaotic solvers. It is anticipated that with strict convergence, any

problems would disappear (and this will be shown in section 8.5).

The inner-loop convergence tolerance (ILCT), for all equations, is set to 0.1. Large

(implicit) timesteps are used (0.02 seconds, or 100 × L/V ), and only 5 outer-loop

(SIMPLE iterations) are performed per timestep. The average Courant number is 60,

reaching 6000 in some boundary-layer elements.
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Figure 8.1: A view of the multi-block structured grid and domain for the BB2 test case,
with N = 14.4m.

QUICK with limiters [44] is used for convective flux discretization of the momentum

equation, whilst a first-order upwind method is used for turbulence. Turbulence is

modelled with a two-equation k-ω shear-stress transport model [63]. Relaxation is

applied to the outer-loop: αimp = 0.9 and αexp = 0.15 for momentum and turbulence;

αexp = 0.15 for the pressure equation.

The total length of the simulation is 60 seconds, or 3000 timesteps. For the first

2000 timesteps Flexible GMRES is used with a Block Jacobi preconditioner – for all

equations. The solution is then restarted with alternative pressure-equation solvers for

the remaining 1000 timesteps. The turbulence and momentum equations are not altered1.

96 cores are used throughout – this is largely irrelevant, but does affect the partitioning

of the multigrid algorithm/aggregation and the amount of asynchronicity occurring

across MPI boundaries. For V-cycle and chaotic-cycle multigrid, re-aggregation occurs

once per timestep; thus re-aggregation occurs 20× more frequently than in the previous

chapter. This is done for safety, allowing re-aggregation to occur whenever the matrix

coefficients change significantly, but is absolutely not necessary – further work would be

required to find an optimum re-aggregation frequency2.

1Previous results using chaotic methods for momentum and turbulence were troublesome, due to
the ability of the chaotic methods to significantly over-converge (by 1-2 orders of magnitude) these
equations between residual updates. This had a large (positive) effect on the overall flow residuals, but
interfered with the most significant results regarding the expensive, elliptic pressure equation. The
pressure equation is not noticeably over-converged by chaotic methods, simply because the time taken
to reach convergence is much larger.

2A poor aggregation will never prevent convergence completely, since the multigrid method can never
perform worse than the equivalent one-level solver. However, re-aggregating frequently ensures the full
advantage of the multigrid method is maintained. As the solution converges, and matrix coefficients
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In the following sections, the numerical results of these simulations are examined in

order to determine the suitability of chaotic methods for CFD. Firstly, the convergence

characteristics are examined. Following this, various aspects of the flow solution itself

are observed – including quantitative results of friction/pressure distributions, and

qualitative visualizations of the flow.

8.2 Convergence

Figure 8.2 shows the L2-norm of the residual of the three momentum equations, two

turbulence equations and pressure equation – on all three grids. Note that this is the

residual of the SIMPLE, outer-loops – although it is closely related to the residual

of the linear system. These residuals are computed by taking the absolute residual

of each linear equation-system in each outer-loop, normalized by the diagonal of A.

In general, the residuals are quite unremarkable; but there is some variation between

the linear-solver configurations. It is worth noting that the solutions (x) provided

by the linear solvers are allowed to be different, so long as the relative inner-loop

convergence tolerance (ILCT) of the residual (|r|2) is reached (this was discussed earlier,

in section 6.5). Perhaps this would be an argument for using a different check for

inner-loop convergence, such as an absolute residual or an ∞-norm. However, when

these residuals are visualized, by plotting regions of the flow which are poorly converged,

there is no noticeable difference between the solvers – figure 8.4 shows this visualization.

Figure 8.3 shows the L∞-norm of the same residuals. The differences between the

solvers are greater (than when comparing L2-norms), and also become larger as N

increases, which is to be expected – the relative contributions (to the L2-norm) of a few

stagnated/under-converged equations becomes smaller as N increases, thus allowing a

higher L∞ and noisier results. It is interesting that the choice of linear solver for the

solution of the linearized pressure equation affects the other transport equations more

than the pressure equation itself, with particularly poor convergence of the momentum

equations when using the FGMRES pressure-solver. It would be presumptive to draw

any conclusions from this result, but it does appear that the non-Krylov solvers are

more robust in this poor-convergence scenario. It is suspected that the multigrid and

chaotic methods provide a smoother solution vector (due to superior high-frequency error

smoothing), thus minimizing anomalous under-converged cells. Another argument could

be made for checking ILCT (linear-system convergence) using an ∞-norm – reducing

this problem and also removing dependence on N .

8.3 Transient Forces and Moments

The differences in the overall flow residual, when using various linear solvers, are quite

large. This also translates to small differences in the physical properties of the flow.

Figure 8.5 shows the non-dimensional total force on the hull; figure 8.6 shows total

stop changing significantly, there is likely to be a performance benefit to reducing the re-aggregation
frequency.
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Figure 8.2: L2-norm of the flow solution residuals, on three grids: 2.78m (top), 6.96m
(middle) and 14.4m (bottom). The pressure equation is denoted with a thick solid
line; momentum equations are shown with x = �, y = N and z = H; and turbulence
equations are denoted with k = � and ω = •. The momentum and turbulence equations
are translucent to improve clarity.
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Figure 8.3: L∞-norm of the flow solution residual, on three grids: 2.78m (top), 6.96m
(middle) and 14.4m (bottom). The pressure equation is denoted with a thick solid line;
momentum equations are shown with x = �, y = N and z = H; and turbulence equations
are denoted with k = � and ω = •. The momentum and turbulence equations are
translucent to improve clarity. Notice the under-convergence of the x- and z-momentum
equations (�,H) when using FGMRES (black) on the finest grid. This is the only
significant difference between the residuals achieved by each linear solver configuration.
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Figure 8.4: Control volumes in which the root-mean square of momentum-equation

residuals (
√
L2
x + L2

y + L2
z) is greater than 10−3, showing poor convergence in the sail-

wake region. Identical results were obtained for all linear solver configurations. FGMRES
(top) and Chaotic-Cycle multigrid (bottom) are shown at the final timestep.
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moments. Forces are non-dimensionalized with 1
2ρV

2L2; moments with 1
2ρV

2L3. Only

the finest grid is shown (N = 14.4m) – the coarser grids provided an almost steady-state

result for X, Y , Z, K, M and N with no perceptible difference between the various

linear solvers.

It is not clear whether the variation of the forces and moments is from an attempt

to capture the unsteadiness in the flow, or is an artifact of the poor convergence. To

an extent, it appears that each solver provides a similar solution path, but with some

amount of ‘lag’ – this is particularly visible in the heave force (Y ). This suggests that

some aspects of physical flow oscillation are captured, but is completely dominated by

the poor numerics of the simulation. These plots will be revisited in section 8.5, where

stricter convergence is used.

It is difficult to draw conclusions on which solver provides the most numerically-

correct solution, but it is encouraging to see that the chaotic-cycle multigrid performs

similarly to the V-cycle multigrid solver. This implies that the non-deterministic, chaotic

nature is not having any negative impact on the flow solution.

8.4 Instantaneous Flow Solutions

More insight into the quality of the solution of each linear solver may be gained by

observing local flow features at a single timestep. The solution of the finest grid is

compared by measuring coefficients of friction and pressure at various slices along the

hull; and, qualitatively, by taking slices of the fluid flow at interesting locations. As

shown in the previous section, the transient behaviour of the flow and the numerical

‘lag’ leaves the simulation in a slightly different state, so for each solver the data has

been extracted at a different timestep. The timestep was chosen by taking the last

peak in Y force – this was both the largest and most periodic force experienced by the

submarine, but any signal could be used with similar results. Thus the timesteps used

were FGMRES at t = 2950, Chaotic-cycle at t = 2905, V-cycle at t = 2890 and Chaotic

(solver) at t = 2840 (the penultimate peak, since it lags the least).

The coefficients of friction and pressure are shown in figures 8.7 and 8.8 respectively.

Four slices are taken, at x/L = 0.2, 0.4, 0.6, 0.8 (from aft to bow). x/L = 0.6 includes

the sail/conning tower, just aft of the two forward fins. −180◦ corresponds to the

port-most point of the vessel, whilst −90◦ points directly upwards (0◦ starboard, 90◦

downwards). The flow is generally equal, except in the lee/wake of the sail – this is the

area in which convergence was worst, as shown in the previous section, figure 8.4.

Using the same timesteps, one can observe qualitative differences between the flow

solution in other areas, when comparing the different solver configurations. Figure 8.9

shows surface limiting friction lines and coefficient of pressure on the hull surface,

figure 8.10 shows velocity magnitude in the x-direction at a transverse slice (x/L = 0.6),

and figure 8.11 shows the same at y = 0. The slices are relatively uninteresting, with no

significant differences between the solvers observed. However, the surface friction lines

show much more variation, particularly in the sail-wake area. It appears that most of

the differences between the solvers are occuring in the highly-unsteady boundary layer

102



2000 2200 2400 2600 2800 3000
Timestep

2.0

1.5

1.0

0.5

0.0

X
' 
x
 1

0
0
0

FGMRES + BJACOBI
Chaotic-Cycle
V-Cycle
Chaotic (Solver)

2000 2200 2400 2600 2800 3000
Timestep

29

30

31

32

Y
' 
x
 1

0
0
0

FGMRES + BJACOBI
Chaotic-Cycle
V-Cycle
Chaotic (Solver)

2000 2200 2400 2600 2800 3000
Timestep

8.5

9.0

9.5

10.0

10.5

11.0

Z
' 
x
 1

0
0
0

FGMRES + BJACOBI
Chaotic-Cycle
V-Cycle
Chaotic (Solver)

Figure 8.5: Non-dimensional total forces on the submarine hull in the x-, y- and
z-dimension. Showing only the finest grid (N = 14.4m).

103



2000 2200 2400 2600 2800 3000
Timestep

0.0

0.5

1.0

1.5

P
' 
x
 1

0
0
0

FGMRES + BJACOBI
Chaotic-Cycle
V-Cycle
Chaotic (Solver)

2000 2200 2400 2600 2800 3000
Timestep

0.0

0.5

1.0

1.5

Q
' 
x
 1

0
0
0

FGMRES + BJACOBI
Chaotic-Cycle
V-Cycle
Chaotic (Solver)

2000 2200 2400 2600 2800 3000
Timestep

4.5

5.0

5.5

6.0

6.5

R
' 
x
 1

0
0
0

FGMRES + BJACOBI
Chaotic-Cycle
V-Cycle
Chaotic (Solver)

Figure 8.6: Non-dimensional total moments on the submarine hull around the x- y- and
z-axis (P , Q and R respectively). Showing only the finest grid (N = 14.4m).
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Figure 8.7: Coefficient of friction at 4 slices, from aft to bow at x/L = 0.2, 0.4, 0.6, 0.8
(top to bottom).
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Figure 8.8: Coefficient of pressure at 4 slices, from aft to bow at x/L = 0.2, 0.4, 0.6, 0.8
(top to bottom).

106



in this region – where courant number and residuals are highest.

Figure 8.9: A visualization of the surface flow, showing limiting friction lines on the
hull surface. The hull is also coloured with coefficient of pressure. The four solver
configurations are shown: FGMRES + BJACOBI (top left), Chaotic-Cycle Multigrid
(top right), V-Cycle Multigrid (bottom left) and plain chaotic solver (bottom right).

8.5 Stricter Convergence

The next logical to step is to determine whether the different pressure-solvers converge

on exactly the same solution when overall convergence is improved and timestep fidelity

is increased. To perform these tests, the solution is restarted after 1000 timesteps (20

seconds) of the original simulation. The timestep for the next 20 seconds is halved,

to 0.01 (2000 timesteps). Finally, the last 20 seconds are covered using a timestep of

0.002 (10, 000 timesteps). At the first restart, ILCT is also reduced to 0.01 (previously

0.1) and the number of SIMPLE iterations per timestep is increased to 15 (previously

5). It was not possible to run all solvers due to time constraints, but FGMRES and

the chaotic-cycle multigrid were compared in this configuration – switching solver

configuration at the first restart (20 seconds). The average Courant number dropped, as

expected, to an average of approximately 0.6 – with a maximum of 69 in the boundary

layer.

Overall, the L2 and L∞ residuals dropped by approximately an order of magnitude,

compared to section 8.2, and the discrepancies between the two solvers are less apparent

– see figure 8.12.

Figures 8.13 and 8.14 show the transient forces and moments respectively, for the

last 20 seconds of the simulation. The two solvers show virtually identical results. This
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Figure 8.10: A slice of the simulation domain at x/L = 0.6, showing the magnitude
of velocity in the x-direction. The four solver configurations are shown: FGMRES +
BJACOBI (top left), Chaotic-Cycle Multigrid (top right), V-Cycle Multigrid (bottom
left) and plain chaotic solver (bottom right).

Figure 8.11: A slice of the simulation domain at y = 0.6, showing the magnitude of
velocity in the x-direction. The four solver configurations are shown: FGMRES +
BJACOBI (top left), Chaotic-Cycle Multigrid (top right), V-Cycle Multigrid (bottom
left) and plain chaotic solver (bottom right).
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is encouraging in terms of verifying the chaotic methods, but the numerical properties

of the flow are still very poor. Proper periodicity or statistical convergence it not

achieved, and would probably require a larger grid. Indeed, this type of flow can only be

performed properly using a scale-resolving simulation (such as LES) – but it is beyond

the scope of this thesis to investigate further, and not the purpose of this chapter.

Finally, figure 8.15 shows the limiting friction lines and coefficient of pressure, when

comparing the two linear solvers. To all intents, the flow solutions are now equal,

suggesting that there is no negative affect on the flow solution when using chaotic

methods – assuming that overall convergence is good. This addresses the first concern

raised at the beginning of this chapter.
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Figure 8.12: L2-norm (top) and L∞-norm (bottom) of the flow solution residuals, on the
largest grid (14.4m cells), using stricter convergence criteria. The pressure equation is
denoted with a thick solid line; momentum equations are shown with x = �, y = N and
z = H; and turbulence equations are denoted with k = � and ω = •. The momentum
and turbulence equations are translucent to improve clarity. The last 10, 000 timesteps
are shown, corresponding to the last 20 seconds.

8.6 Performance and Scalability of Chaotic Methods

Next, the scalability of each solver is measured – as in chapter 7. These scalability

experiments are performed on each grid, over the first 100 iterations (20 timesteps) of

the simulation. The performance is not expected to be significantly different to the

KVLCC2 test case used in chapter 7; but the unsteady terms in the governing equations
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Figure 8.13: Non-dimensional total forces on the submarine hull in the x-, y- and
z-dimension. Showing only the finest grid (N = 14.4m), with stricter convergence
criteria.
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Figure 8.14: Non-dimensional total moments on the submarine hull around the x- y-
and z-axis (P , Q and R respectively). Showing only the finest grid (N = 14.4m), with
stricter convergence criteria.
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Figure 8.15: A visualization of the surface flow, showing limiting friction lines on the
hull surface when using stricter convergence criteria. The hull is also coloured with
coefficient of pressure. Two solver configurations are shown: FGMRES + BJACOBI
(top) and Chaotic-Cycle Multigrid (bottom).
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may assist the linear solver. The results are shown in figure 8.16 for ILCT of 0.1 and

0.01. It was, unfortunately, not possible to run these experiments on 1024/2048-cores3,

so care should be taken when comparing to figure 7.5. Only the time spent in the linear

equation-system solver for the pressure equation is shown.

Scalability of the N = 2.78m case is similar to results seen earlier for the KVLCC2.

No significant effects are observed due to the unsteadiness of the simulation, although

scalability of V-cycle and chaotic-cycle multigrid is improved due to extra time spent

in the (very parallel-efficient) aggregation routines. This addresses the second concern

raised at the beginning of this chapter.

As N increases, the cells-per-core ratio also increases, and the scalability bottlenecks

of all solvers are reduced. Encouragingly, the performance of the multigrid methods (V-

cycle and chaotic-cycle) remains competitive with FGMRES as N increases, suggesting

that there are no issues applying these solvers to ‘real-world’ applications. However,

within the realms of good scalability, FGMRES still outperforms these multigrid methods.

If it were possible to increase the number of cores further, one would expect to see

scalability issues, even on the largest grids, which would make the chaotic-cycle multigrid

the fastest solver. Furthermore, reducing the relative amount of time spent in re-

aggregation – by increasing the re-aggregation interval – would provide a significant

benefit to both multigrid methods. On the largest grid, with C = 512, aggregation

accounted for 13% of the total solution time of the chaotic-cycle multigrid.

Table 8.1 shows numeric results from these experiments, which helps to quantify

the O(N)-scaling of the various solvers. None of the solvers achieve O(N) performance

according to this data but the differences between the various solvers are interesting.

Both the chaotic-cycle and V-cycle perform similarly on a low number of cores (approxi-

mately O(3N)), with scalability differences making the comparisons on a larger number

of cores more difficult. Since the chaotic-cycle scales better, and capitalizes on this

when the cells-per-core ratio is lower, it’s scaling with N appears worse. The N -scaling

of the plain chaotic solver is worse, as expected, but is far from O(N3), due to the large

amount of high-frequency errors which can be smoothed quickly (not spectral-radius

limited).

Combining these results with the earlier verification of the chaotic-cycle multigrid

(section 7.4), using a controlled Laplacian equation, this study addresses the third and

final concern identified at the start of this chapter.

Table 8.1: Absolute core-hours spent solving the linearized pressure equation over 100
non-linear iterations on a variety of grid sizes with ILCT= 0.01. The final row shows
the ratio difference between the finest and coarsest grid.

Grid Size Chaotic (solver) Chaotic-Cycle V-Cycle FGMRES
C = 8 128 512 8 128 512 8 128 512 8 128 512

2.78m 120.8 95.6 103.3 9.6 9.9 11.2 9.9 11.6 19.3 5.1 8.9 12.1
6.96m 475.3 475.2 375.1 30.0 38.1 33.8 32.5 56.5 54.3 18.7 28.9 36.6
14.4m 1482.4 1482.4 1319.5 139.1 114.6 98.1 110.2 168.9 123.8 50.7 87.3 87.5

×5.18 12.3 15.5 12.8 14.5 11.5 8.8 11.1 14.6 6.67 9.9 9.8 7.2

3These large jobs were only available during a rare, scheduled maintenance of Iridsi4
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Figure 8.16: Scalability of the linear equation-system solver for the BB2 test case
with N = 2.78m (top), N = 6.96m (middle) and N = 14.4m (bottom) test cases, at
ILCT= 0.1 (left) and 0.01 (right).

8.7 Conclusion

This chapter has answered some of the remaining uncertainties regarding the chaotic

methods developed during this thesis. In particular, it has been shown that chaotic

methods can be used safely in practical CFD simulations. Care should be taken when

the overall flow solution is under-converged, however, because the solution will have

a strong dependence on the linear solver that is used – but this occurs even when

comparing classical solvers such as FGMRES and V-cycle multigrid, suggesting that

this is unrelated to non-determinism.

This chapter has also shown that the performance of chaotic-cycle multigrid is

maintained as N increases and the unsteadiness of the flow has no significant impact on
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the performance of the linear solvers.

The scalability of the chaotic-cycle multigrid is also good on the BB2 test case, even

when N is large – as expected – but could not outperform FGMRES on the largest

grids. As the number of cores increases to levels beyond which can be tested on Iridis4,

the chaotic-cycle multigrid is expected to outperform these KSP methods.
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Chapter 9

Conclusion

Exascale computing architectures and increasing dependence on unsteady simulations

provided the motivation for the research question of this thesis:

“What limits the strong scalability of CFD and its ability to handle many-

core architectures? What can be done to improve the CFD algorithms in this

respect?”

To answer in short: the limit to the strong scalability of CFD is the unscalable

solve routines, used to solve the linear equation-system arising in the semi-implicit

CFD algorithm – occupying up to 95% of total wall-time on 2048 cores. One means

of removing this bottleneck is to use the theory of ‘Chaotic Relaxation’ to create

synchronization-avoiding linear solvers which are highly scalable. A novel ‘Chaotic-

Cycle’ multigrid method has been developed in this thesis – offering superior scalability,

and speed-ups up to 13.3× compared to classical solvers (on 2048 cores). In principle,

this would accelerate the CFD algorithm by a factor of 8.2× on 2048 cores (via Amdahl’s

Law [1]), marking a significant improvement to the strong scalability of CFD. The solver

has been implemented, verified, tested and released as part of an open-source library

(Chaos1) – for transparency and to facilitate further work.

The process of defining the research question began with a thorough investigation into

the key technologies associated with high-performance computing and next-generation

CFD (chapter 3). Concerning HPC, the trend towards many-core exascale machines

highlighted key problems for scalability, especially related to communication bottlenecks,

heterogeneity and memory bandwidth. For CFD, there are clear trends towards higher-

fidelity modelling which create additional scalability problems, since time-stepping

must occur sequentially and spatial dimensions must be more finely partitioned. These

issues were the primary motivation for the research question. A number of other

key technologies were identified at this stage, such as parallelization and acceleration

schemes, multi-disciplinary coupling techniques, higher-order methods and automatic

meshing – some of which had to be borne in mind when answering the research question.

1https://bitbucket.org/jamesnhawkes/chaos
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An initial study was performed in order to identify the current bottlenecks to

strong scalability (chapter 4), using ReFRESCO – a state-of-the-art semi-implicit CFD

code. For the most part, common simulation parameters such as discretization scheme,

mesh structure, and choice of turbulence models had no significant effect on scalability.

However, there was a large dependence on the ‘inner-loop convergence tolerance’ (ILCT) –

the tolerance to which linear sub-systems are solved – and the choice of linear sub-system

solver. For the industry-standard, wind-tunnel KVLCC2 test case with an ILCT of 0.1,

on 2048 cores, 85% of the solution time was spent in the linear solver, rising as ILCT

decreased. Most of this was spent solving the elliptic pressure equation. Profiling showed

that the parallel efficiency of the linear solvers was poor due to memory bandwidth

contention on a single node; and expensive global communications as the number of

cores increased. Other routines, such as matrix assembly and gradient calculations,

scaled to 2048 cores with only minor issues.

Investigation into alternative linear solvers and preconditioners was conducted in

chapter 5. These experiments were performed up to 512 cores, where the parallel effi-

ciency of the de facto linear solver (Flexible GMRES with a Block Jacobi preconditioner)

was between 13.6% and 25.1%. Good scalability was noted from stationary solvers, such

as successive over-relaxation (SOR) – up to 64% parallel efficiency; but their absolute

performance was weak, requiring up to an order of magnitude more wall-time. A hybrid

method of FGMRES with 10 iterations of SOR as a preconditioner worked well, with

57% parallel efficiency; however, the absolute wall-time on 512 cores was barely better

than with a Block Jacobi preconditioner when an ILCT of 0.01 was required – due

to spectral-radius-limited convergence rates. A multigrid preconditioner was tested in

these investigations, but it showed much worse scalability. This appeared to be because

of synchronization costs in the smoothing routines, although it was difficult to profile in

detail.

Following these unsatisfactory results, development began on linear solvers which

would provide optimum scalability without sacrificing absolute performance (chapter 6).

The starting point for this was the theory of ‘chaotic relaxation’, which provides a

means of desynchronizing iterations in SOR-like solvers. A novel ‘chaotic solver’ was

implemented, using a hybrid (MPI + OpenMP) paralellization scheme. Within each

MPI process several ‘computation’ threads iterate through SOR-like relaxations, whilst

a ‘communication’ thread is used solely for inter-process MPI communications. The

threads operate completely out-of-synch, exploiting deliberate data-races to increase

scalability and numerical performance.

The correctness of the chaotic solver was verified by examining the residual vector

of the solution. Scalability tests were then performed. On 512 cores scalability was

super-linear, due to effective use of the cache – beating the scalability of all solvers tested

in the previous chapter. On 2048 cores, scalability worsened slightly, but overall parallel

efficiency was still good; and reducing the interval at which residuals are computed

would improve the scalability further. Absolute performance was up to ×37.8 faster

than plain SOR; and often out-performed FGMRES (almost ×10 faster in some cases).
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However, there are concerns relating to how chaotic or SOR-like solvers scale with the

number of unknowns, N ; because the stiffest error frequencies in the system cannot be

solved faster than O(N3).

Following this, a method for combining the strong scalability of chaotic methods

with the good numerical performance of multigrid methods was explored (chapter 7). A

classical multigrid solver framework was created, utilizing unsmoothed aggregation and

employing normal V-, W- and F-cycles. Extending this, a novel ‘chaotic-cycle’ multigrid

method was created, using aspects of the chaotic solver and a classical sawtooth-cycle to

remove implicit synchronization in the multigrid method. Verification of (close to) O(N)

performance was shown using a pragmatic Laplacian test case, and scalability tests were

performed. The parallel efficiency of the chaotic-cycle multigrid was approximately 38%

(on 2048 cores), compared to just 6% for FGMRES and 3% for V-cycle multigrid. The

reasons for this less-then-ideal scalability have been identified: poor implementation of

coarse-grid communications; and too-frequent residual checks. Correcting these issues

should bring the chaotic-cycle multigrid method close to ideal or super-linear scalability.

Importantly, in absolute terms, the chaotic-cycle multigrid is already up to 7.7× faster

than Flexible-GMRES and 13.3× faster than classical V-cycle multigrid on 2048 cores.

The final content chapter of this thesis has taken the opportunity to test the

suitability of the chaotic methods to realistic CFD simulations (chapter 8). Although

care must be taken when the overall CFD solution is not properly converged, the results

verified that the non-deterministic methods can be used safely for practical CFD and

that they are entirely suitable to replace existing solvers. Furthermore, the experiments

demonstrated (again) that the performance of the chaotic-cycle is maintained as N is

increased, and showed that the unsteady terms in the CFD algorithm had no significant

impact on linear solver performance.

Based on the scalability, performance and suitability of this chaotic-cycle multigrid

solver, it is safe to conclude that this novel solver makes considerable steps towards

improving the strong scalability of CFD. The chaotic-cycle solver could already accelerate

ReFRESCO by a factor of 5.8× compared to KSP methods, or 8.2× compared to classical

V-Cycle; and these gains are likely to increase as new hardware worsens the scalability

bottlenecks of existing methods.

Moreover, there are no foreseeable issues associated with applying chaotic-cycle

multigrid methods to other elliptic and non-elliptic, sparse, linear equation-systems,

arising in other numerical sciences. To this end, all of the methods developed during this

PhD, including the plain chaotic solver, classical multigrid and chaotic-cycle multigrid,

have been implemented as an open-source C++ library, Chaos. This library should

allow further developments of the chaotic methods and facilitate testing with other CFD

codes, disciplines and numerical fields.

A vision for the future of Chaos is laid out in the following chapter, discussing the

scope for further work – including improvements to the algorithm and implementation;

better integration with MPI-only codes such as ReFRESCO; and variations on the

chaotic methods already tested.
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Chapter 10

Further Research

There are a myriad of variations and alternative implementations which could stem

from the research into chaotic methods conducted in this thesis. However, the first

objective should be to remove the scalability bottlenecks which have already been

identified: the poor implementation of coarse-grid communications and too-frequent

residual computations. In tandem with these improvements, investigations into one-sided

MPI communications, allowing desynchronization of communication threads, could be

fruitful.

To interface correctly with the hybrid Chaos library, ReFRESCO should adopt a

hybrid paralellization scheme. This was the original intention and part of the reason

for investigating hybrid solvers, but unfortunately this could not be achieved during

this PhD. Perhaps a more versatile solution would be to adapt Chaos so that it can

interface with MPI-only codes – not just ReFRESCO. A completely flexible interface is

envisioned, where shared-memory multi-threading is used internally (keeping the concept

of communication and computation threads) but MPI-only codes could interface using

shared-memory windows. There are many recent developments in the MPI standard

which may enhance this research [66]. This would also allow Chaos to be included in

other established linear-solver packages such as PETSc.

With these improvements in place, much research can be performed on variations to

the chaotic-cycle. For example, there may be benefits to re-introducing pre-smoothing

(à la V-cycle), or varying the ‘boundedness’ of the chaotic smoother (by relaxing the

constraints on the ‘k’ iteration counter). There may also be significant benefits to

improving the aggregation process. Although the benefits of better aggregation would

not be unique to chaotic-cycle multigrid, adaptation of the chaotic-cycle multigrid to

smoothed aggregation operators may pose some unique challenges and opportunities.

Additionally, some further research should be performed regarding re-aggregation

frequencies – particularly for unsteady CFD simulations.

As mentioned, the numerical theory and practical implementation of the chaotic

methods are closely coupled – and this is part of the reason for releasing Chaos as an

open-source library. However, the underlying chaotic principles and novel algorithms

should be quite hardware-agnostic. Indeed, chaotic methods should be well suited to
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heterogeneous hardware, including accelerated or mixed-core processors, because they

mask the complexities of variable compute power, variable communication latency and

load-balancing. In section 7.7, the possibility of running the chaotic methods on the

Xeon Phi was demonstrated, but specializations of the code are probably needed in

order to get the best results, and this will require further work.

Linking to the wider CFD context, there have been recent developments towards

coupling of momentum and pressure equations in the SIMPLE loop [53]. The resultant

linear equation system is a multi-block linear system, which could potentially be

solved with chaotic methods. There have also been developments into higher-order

discretization methods, such as discontinuous Galerkin methods [69], which do cause

some unique problems for linear solvers and multigrid methods in general [72]. These

are both areas which should be explored as the technology matures.

Due to the issues of interfacing Chaos and ReFRESCO, the original scalability

studies could not be reproduced fairly (since the remainder of ReFRESCO is using 1
8

th

of the available hardware), but it was possible to predict the effects of chaotic methods

in the context of the entire CFD algorithm (approximately a ×5.8 to ×8.2 speed-up

on 2048 cores). Unfortunately, predicting scalability to higher core-counts is almost

impossible. In the SIMPLE algorithm itself, there are parts of the code which scale

with cells-per-core ratio; parts which scale exclusively with the number of processors;

and parts which scale unintuitively with local communications, memory bandwidth and

cache use. With overlapping of communications and computations these interactions

become more complex, and it becomes very difficult to predict scalability bottlenecks.

Chaotic methods make this even more difficult. The only way to thoroughly assess the

scalability of chaotic methods on many-core, exascale architectures will be to test them

on these architectures.

For CFD as a whole, there are still many challenges which must be addressed in

order to guarantee effective use of exascale supercomputers. Scalability issues relating

to file I/O, adaptive meshing, overset meshing, effective pre- & post-processing and

multi-disciplinary coupling are important areas to address. These areas are wide-ranging

and will affect different codes and applications to varying degrees, whereas this thesis has

tried to tackle the universal core of the CFD algorithm. It is hoped that the scalability

studies and novel research presented in this thesis will pave the way to truly scalable

CFD.
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As modern supercomputers edge towards exascale, their architectures are becoming more parallel. In order for computational fluid 

dynamics (CFD) simulations to operate efficiently on newer machines, a complete harmony between hardware, software and 

numerical algorithms is required. In the work presented here, a typical CFD code is instrumented, and a strong-scalability study 
performed to identify areas of the execution which require improvement, using the well-known KVLCC2 test case. The effects of 

changing discretization schemes, mesh structure, turbulence models and linear solvers are all tested. The results show that data-

exchange among cores and the inner-loop pre-conditioners both have a large impact on performance in a massively-parallel 

environment, and should be the focus of future developments. 

1.   Introduction 

The history of the "Top500" supercomputers [1] in figure 1 shows the exponential growth of computing power 

available to CFD since 1993. The maximum performance, based on a linear algebra tool (LINPACK), has doubled 

approximately every 14 months, allowing maritime simulations of up to 32-billion cells to be performed [2]. The 

way in which this growth is achieved varies over time, and programming paradigms for CFD must change as 

necessary to ensure efficient scaling. 

Pre-2004, floating-point operation (FLOP) rates grew exponentially as transistor size decreased. In 2004, 

predictions on the power consumption of central-processing units (CPUs or simply “chips”) broke down, and since 

this point the growth of computational performance has been limited by power requirements [3]. CPUs with chip-

level multiprocessing (CMP) have become the norm, packaging multiple cores on one chip to improve efficiency. 

Figure 2 shows this shift in growth mechanism. 
 

  
 

 
Figure 1: Performance of the Top500 [1] supercomputers. 

Showing the #1, #500 and sum LINPACK max performance 

over 20 years, with exponential trend lines. 

 

 
Figure 2: Changes in FLOPs/core, total FLOPs and number 

of cores, normalized to 1993 values. Values are an average of 

the Top500 data [1]. 

.  
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CFD has benefited from good "weak scalability" for the last 20 years. As the number of cores has increased 

CFD problem-sizes have increased too, such that the efficient ratio of cells-per-core has remained roughly constant 

(anywhere from 20k-100k cells per core, depending on the code, supercomputer and the problem complexity). By 

current trends, parallelization will be around 14-times greater in 6 years, and one could expect CFD simulations 

to also be 14-times larger, but there are great challenges in reaching this level. 

In 2008, a group of over 20 experts in the supercomputing field were commissioned by DARPA (Defense 

Advanced Research Projects Agency) to assess the challenges associated with creating the first exascale machine 

(capable of 1 ExaFLOPs) [4] which should be viable in 2020 according to current growth. Their predictions, which 

have remained valid over the last 6 years, explain that as power efficiency continues to improve (in terms of pico-

Joules per FLOP) the power required to run inter-nodal communication becomes dominant. 

Since 2011, there has been a large push towards many-core nodes, which feature O(100) low-power cores to 

increase efficiency and total FLOP rates using many-core co-processor or graphics-card accelerators [3]. The inter-

nodal power bottleneck is likely to drive this trend further and increase intra-node concurrency to O(1k) or O(10k) 

cores per node [4,5]. With decreasing core clock rates of these many-core nodes, total concurrency on an exascale 

machine is likely to be 300-times that of the current #1 Top500 machine - Tianhe 2. 

Comparing this growth in cores (300x) to the expected growth in CFD complexity (14x), it is clear that there 

is a need to improve the "strong scalability" of CFD codes. By 2020, it will be necessary to reduce the efficient 

cells-per-core ratio to approximately 5% of its current value, if predictions hold true. 

This paper aims to break down the scalability of a CFD code into its fundamental parts – using the well-

known KVLCC2 test case. Profiling tools will be used to extract information on the run-time of the code whilst 

various user-settings are changed, in an attempt to demystify their effects on scalability. Assessments will be made 

to determine the areas of the program which exhibit poor strong scalability, as part of ongoing research which 

aims to develop new techniques to improve the minimum cells-per-core ratio. 

2.   Experimental Setup 

In this section, an overview of the CFD code (ReFRESCO), the supercomputer (IRIDIS4) and the profiling tool 

(Score-P) is given. The test-case setup is also detailed, and the key scalability studies performed in this paper are 

explained. 

2.1.   ReFRESCO 

ReFRESCO is a viscous-flow CFD code that solves multiphase (unsteady) incompressible flows with the 

Reynolds-averaged Navier-Stokes (RANS) equations, complemented with turbulence models, cavitation models 

and volume-fraction transport equations for different phases [6]. The equations are discretized in strong-

conservation form using a finite-volume approach with cell-centered collocated variables. The SIMPLE algorithm 

is used to ensure mass conservation, with pressure-weighted-interpolation (PWI) to tackle the pressure-velocity 

decoupling issue arising from the collocated arrangement [7]. 

Time integration is performed implicitly with first or second-order backward schemes. At each implicit time 

step, the non-linear system for velocity and pressure is linearized with Picard’s method - and a segregated or 

coupled method applied. A segregated approach is adopted for the solution of all other transport equations. All 

non-linearity is tackled by means of an iterative process so-called the outer loop. For each outer-loop iteration, 

and for each transport equation, an algebraic system of linear equations is solved iteratively until a prescribed 

residual decay is achieved - this iterative process is the inner loop. In order to increase the robustness of the 

iterative process, implicit (directly on the left-hand-side matrix diagonal) and explicit (directly on the new solution 

for each variable) relaxation schemes are used. 

All numerical schemes used to discretize the transport equations (convection schemes, diffusion, gradients, 

non-orthogonality corrections, eccentricity corrections) apply their low-order contributions implicitly, to the left-

hand side of the equation system; and their higher-order contributions explicitly, to the right-hand side of the 

system, using values from the previous outer loop. 

The implementation is face-based, which permits grids with elements consisting of an arbitrary number of 

faces and hanging nodes. This also means that all grids, being them structured or unstructured, are treated in the 

same way inside ReFRESCO, even if usually for unstructured grids more outer-loop iterations are needed to take 

into account the lower quality metric characteristics.   

The code is parallelized using MPI (Message Passing Interface) and sub-domain decomposition. The grids 

are partitioned in sub-domains, each one having a layer of common cells so-called ghost-cells. Each of these sub-

domains is calculated in its own MPI process. The ghost-cells are treated as normal cells, as far as the numerical 

algorithms are concerned, and are therefore handled implicitly. 
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In many ways, ReFRESCO represents a general-purpose CFD commercial code, with state-of-the-art features 

such as moving, sliding and deforming grids and automatic grid refinement - but it has been verified, validated 

and optimized for numerous maritime industry problems. 

ReFRESCO is currently being developed at MARIN (Netherlands) [8] in collaboration with IST (Portugal) 

[9], USP-TPN (University of Sao Paulo, Brazil) [10], TUDelft (Technical University of Delft, the Netherlands) 

[7], RuG (University of Groningen, the Netherlands) [11] and recently at UoS (University of Southampton, UK). 

2.2.   IRIDIS4 

ReFRESCO will be run on the University of Southampton's latest supercomputer, IRIDIS4, which was ranked 

#179 on the Top500 list of November 2013 [1]. IRIDIS4 has 750 compute nodes, consisting of two Intel Xeon 

E5-2670 Sandybridge processors (8 cores, 2.6 Ghz), for a total of 12,200 cores and a maximum performance of 

227 TFLOPs. Each node is diskless, but is connected to a parallel file system, and has 64GB of memory. The 

nodes run Red Hat Enterprise Linux (RHEL) version 6.3. Nodes are grouped into sets of ~30, which communicate 

via 14 Gbit/s Infiniband. Each of these groups is connected to a leaf switch, and inter-switch communication is 

then via four 10 Gbit/s Infiniband connections to each of the core switches. Management functions are controlled 

with a GigE network. 

2.3.   Profiling Tools 

ReFRESCO will be instrumented with Score-P [12], a profiling tool developed by VI-HPS (Virtual Institute – 

High Performance Supercomputing). The tool provides compile-time wrappers for ReFRESCO and run-time 

configuration options which provide useful information on program execution. The results show total call-counts 

and total time spent within certain functions, and also give insight into MPI communications and load-balancing. 

All forms of executable instrumentation are intrusive, since the measuring and buffering of various timers 

introduces some overhead. Care must be taken to filter the profiling tool, such that only useful information is 

produced and the overhead is minimized. Profiling tools also disable some compiler optimization (most notably 

function in-lining), which may have some repercussions. 

The total run-time of a profiled ReFRESCO compared to a non-profiled ReFRESCO differs by approximately 

2%, and it is assumed that this does not affect the results of the scalability studies. 

2.4.   Test Case 

The test case for this investigation will be the KVLCC2 double-body wind tunnel model [13]. The model is 

simulated at a Reynolds number of 4.6x106. The domain and boundary conditions are shown in figures 3 and 4. 
 

 
 

The following parameters have been used as a baseline for scalability studies, although some variables are 

tested independently in following studies: 
 

 All tests use a segregated solver. 

 Unless specified, a grid of 2.67m cells is used, which covers the current efficient cells-per-core ratio range 

(20k on ~133 cores, 100k on ~27 cores) with high resolution, and also shows the trends when moving to lower 

cells-per-core ratio. 

 A k-ω, two-equation shear-stress transport turbulence model (SST-2003) is used [14]. 

 The x-, y- and z-momentum equations, and the turbulence equations, are solved with a Block Jacobi pre-

conditioner and a generalized minimal residual (GMRES) solver from the PETSc suite [15]. The inner loop 

relative ℓ2-norm convergence tolerance (henceforth ILCT) is provisionally set to 1% (0.01). An explicit outer-

 
 

Figure 3: The KVLCC2 domain, not to scale. 

 

 
Figure 4: An example of the structured mesh (2.67m cells), 

from below the waterline. 
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loop relaxation factor of 0.15 is used, as well as an implicit relaxation factor which begins at 0.8 and ramps up 

to 0.85 over the first 100 iterations. 

 The pressure equation is solved with a multi-grid pre-conditioner (ML) and a GMRES solver, using an explicit 

relaxation factor of 0.1. The ILCT is also chosen as 1%. 

 The default convection discretization scheme for the momentum equations is QUICK (Quadratic Upstream 

Interpolation for Convective Kinematics) with a flux limiter [16], and first-order upwind for the turbulence 

equations. For all equations, the diffusion terms are discretized using a 2nd-order central scheme. The gradients 

of any variable (velocity, pressure, turbulence quantities) are discretized using a 2nd-order Gauss-theorem 

scheme. 

2.5.   Scalability Studies 

Initially, a scalability study will be performed using the default settings to provide a benchmark and basic 

understanding. Following this, various parameters will be changed which represent common user settings, in an 

attempt to determine their effect, or lack thereof, on strong scalability. The effect of momentum convective flux 

discretization scheme will be observed, as well as the effects of using different turbulence models, different grids 

(structured vs. unstructured) and finally, different pre-conditioners and solvers. 

3.   Scalability Study: A Breakdown of ReFRESCO 

In this section, a basic scalability study inheriting all the default settings from section 2.5 is performed over 1000 

iterations. Profiling tools are used to break down the execution into distinct sets of subroutines: 
 

 Assemble – the assembly of each inner-loop equation system, including construction of the right-hand side 

vector, for each transport equation. 

 Solve – the pre-conditioner and solver used to iterate the systems of linear equations. 

 Gradients – the calculation of gradient values following the iterative solution to each transport equation. 

 Exchange – data exchange between ghost cells, including transported values, gradients, and other computed 

values such as eddy viscosity. 

 Other – the remainder of the above, including initialization routines. 
 

 
Figure 5 shows a typical scalability plot, where the “speedup” is defined as the relative decrease in wall-time 

with N cores compared to the serial runtime. This speedup can be compared to a linear (“ideal”) speedup. Figure 

6 shows the proportions of the total wall-time occupied by different sets of subroutines as the number of cores 

increases. 

Figure 5 shows that the assemble, gradients and other parts of the code scale reasonably well, with other 

dropping off at higher core counts due to a number of parallel broadcasts and higher MPI initialization cost. At 

higher core-counts these parts of the code become a very small proportion of the total run-time due to their efficient 

scaling, as shown in figure 6. The exchange portion of the execution scales inversely with number of cores, which 

causes a serious bottleneck on strong-scalability. The solve routines occupy 48% of the total wall-time in serial 

operation, and also scale poorly. These are both areas requiring improvement. 

 
Figure 5: Scalability breakdown of a typical CFD simulation 

 

 
Figure 6: Proportion of total wall-time spent in different 

subroutines. 
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4.   Scalability Study: Convective Discretization Scheme 

The previous scalability study was performed with a QUICK momentum convective discretization scheme with a 

flux limiter. In the following study, this discretization scheme was varied to ensure that the scalability was 

independent of the chosen scheme. A first order upwind (UD1), a 50%-central-50%-upwind blend (CD5-UD5), a 

90%-central-10%-upwind blend (CD9-UD1), QUICK with limiter and QUICK without limiter (QUICK-NL) were 

used on a range of structured grids from 317k to 23.4m cells. The solution was allowed to reach an outer loop 

ℓinfty-norm convergence of 10-5. 

The computed form factor [17] is compared to wind-tunnel experimental results [13] in figure 7. The results 

are presented against the grid coarsening factor, which is the ratio of cells compared to the finest grid. 
 

 
As expected, the higher-order schemes provide much higher levels of accuracy, with QUICK matching CD9-

UD1 using far fewer cells (1.11m vs. 10.0m). The amount of wall-time required to reach convergence grew 

exponentially with number of cells, as the number of iterations and the time-per-iteration both increased, but on 

similar grids all the schemes took similar computational time. 

More importantly, the discretization schemes were also compared in a scalability study. The simulations ran 

for 1000 iterations on a grid of 2.67m cells. The results are shown in figure 8 – no significant changes in scalability 

were noticed, suggesting that there will be no issues with higher-order schemes in a massively-parallel 

environment. 

Note that ReFRESCO implements a 2nd-order accurate QUICK scheme, since internally the mesh is treated 

as unstructured – and neighbors-of-neighbors information is not readily available. 

5.   Scalability Study: Turbulence Models 

In this study, the default turbulence model (k-ω SST 2003 [14]) will be compared to a square-root-kL (SKL) model 

[18] and a Spalart-Allmaras (SA) model [19]. Differences are expected due to different amounts of data being 

computed and exchanged. The simulations are run for 1000 iterations and the speed-up is shown in figure 9. 

The SA model required 71% of the total serial run-time of the two-equation models (which were virtually 

identical in run-time). The SA model has only one transport equation to solve, but also does not incur the overhead 

of eddy-viscosity and strain-rate computations which, combined, accounts for this wall-time reduction. 

Normalized to the serial run-time of each turbulence model respectively, the SA model yields much better 

scalability. The removal of the second transport equation, eddy viscosity and strain rate computations reduces the 

amount of data exchange required per outer loop: 2 exchanges versus 8 for the two-equation models (the remaining 

momentum and pressure equations require a total of 8 exchanges). 

6.   Scalability Study: Structured vs. Unstructured Grids 

Structured grids are often not feasible for practical applications, where the cost of creating the grid is too high. In 

this study, the scalability of a structured grid simulation is compared to an unstructured one. Unfortunately, it was 

not possible to create two grids of exactly the same number of cells. An unstructured grid of 12.5m cells was used, 

and the scalability of two structured grids (10.0m and 15.8m) was linearly interpolated to obtain comparisons. 

This method is not the most accurate, but any obvious changes in scalability should be clearly visible. 

Once again, the simulation was performed to 1000 iterations, but with a more relaxed outer-loop of 0.25 

explicit and 0.7 implicit. The results are shown in figure 10. 
 

 
Figure 7: Grid convergence study using various momentum 

convection discretization schemes, showing form-factor error 

percentage when compared to experimental results [19]. 

 

 
Figure 8: Total speedup for various momentum convection 

discretization schemes. 
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It is clear that the difference between an unstructured and structured grid is small in terms of scalability. In 

terms of absolute wall-time, the differences between the two are all less than 5%. This is expected, since 

ReFRESCO treats the two identically, and the minor differences (in scalability and absolute time) are probably 

due to the errors associated with linearly interpolating the results. 

7.   Scalability Study: Pre-conditioners and Solvers 

In section 3, the solve subroutines were shown to scale poorly, but there are many combinations of pre-conditioner 

and solver which may perform better. In this scalability study, a number of these combinations will be tested. 

The solve routines are responsible for iterating the set of linear equations created for each transport equation. 

The equations are iterated until the solution vector reaches an ℓ2-norm residual that is a proportion of its initial 

value. This proportion is the inner loop convergence tolerance (ILCT) – and changing this value greatly affects 

the load on the solver. It was important to find a reasonable and efficient value for the ILCT before the pre-

conditioners and solvers could be tested fairly. 

In these tests, starting from a restarted solution of 100 iterations with the default settings, the ILCT is varied 

between 0.5 (50%) and 10-6 (0.0001%). Two outer loop relaxation schemes are tested: implicit 0.9 with explicit 

0.1 (tight), and implicit 0.8 with explicit 0.2 (relaxed). In this way, the computational effort associated with 

linearity and non-linearity of the transport equations can be changed by shifting the focus to the inner loop or outer 

loop respectively. The total time to reach 10-5 ℓinfty-norm outer loop convergence was observed. 

Figure 11 shows the results of this study. In general, reducing the inner loop convergence tolerance provides 

no benefit to overall convergence and serves only to increase the time-per-iteration – except in the case where the 

linear set of equations is not solved well enough to allow the non-linear iterations to converge. It seems that an 

ILCT of 0.01 (1%) is a suitable value for numerical stability and efficiency for the outer loop relaxation chosen in 

section 2.4. 

Using this result, the pre-conditioners and solvers can be tested, employing methods from the PETSc suite 

[15]. For momentum and turbulence, a Block Jacobi, a parallel multi-grid method (BoomerAMG), a parallel 

additive Schwarz method (ASM), and a parallel ILU pre-conditioner (EUCLID) are tested. For the elliptic pressure 

equation the same methods are used, but the multi-grid method is replaced with the ML pre-conditioner, which 

should be faster for elliptic equations. 

Two solvers are tested with these combinations: a generalized minimal residual method (GMRES) and a 

stabilized bi-conjugate gradient squared method (BiCGSTAB). 

The scalability results are shown in figure 12, where the key indicates the momentum-turbulence pre-

conditioner, the pressure pre-conditioner and the solver for both, respectively. With all pre-conditioners, GMRES 

and BiCGSTAB perform similarly, so the BCGS results have been removed from figure 12 for clarity. Only the 

speed-up of the solve subroutines are plotted in this graph, having been extracted with the profiling tools. The 

speed-ups are calculated relative to the serial run-time of BJAC-BJAC-GMRES, in order to make quantitative 

assessments between total wall-times – the large differences between the pre-conditioners is clearly visible. 

Even on low numbers of cores, the Block Jacobi pre-conditioner outperformed all other pre-conditioners, and 

manages to maintain good speedup to 256 cores. Block Jacobi is a naïve pre-conditioner compared to the others, 

but the simplicity works in its favour, leading to an overall speedup. EUCLID and BoomerAMG both offered poor 

scalability, while the additive Schwarz and ML methods offered mediocre scalability. Some of the poorer methods 

could not complete on a low number of cores, as they exceeded wall-time limitations. 

 
Figure 9: Total speedup for various turbulence models. 

 

 
Figure 10: Total speedup with different grids structures. 
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From these studies, it is clear that a Block Jacobi pre-conditioner for all equations is the best starting point for 

highly scalable CFD. The results of the initial breakdown of ReFRESCO (section 3) are repeated here using these 

pre-conditioners and the GMRES solver. Figure 13 shows that the solve routines have become less of a bottleneck; 

but in figure 14 it is clear that these routines still take a large part of the execution time. Ignoring the exchange 

routines, which must be improved, solve occupies 56% of the remaining execution time on 256 cores. 
 

 
Often, this speed-up is plotted relative to the number of nodes only, such that rather than normalizing to serial 

run-time, the results are normalized to the run-time on one node (see Figure 13 – “Total (Node)”). This hides the 

intra-node inefficiency and shows that inter-node scaling is relatively good up to ~42k cells per core (64 cores). 

For next-generation computing the pressure is on intra-node concurrency, so this view is not the most helpful; 

however it is important to note that this inter-node scaling compares well with other codes. STAR-CCM+ [20] 

and ANSYS CFX/FLUENT [21] both show linear speed-up with number of nodes similar to ReFRESCO, but do 

not present data beyond the efficient range. The ANSYS results also show similar intra-node efficiency (10-12x 

speedup on 16 cores) compared to ReFRESCO (~10x speedup on 16 cores) – but it is hard to assess fairly without 

identical hardware and case setup. 

8.   Conclusions 

The breakdown of a typical CFD code was performed in section 3, showing the scalability of the code and the cost 

of various routines at higher core-counts. It was noted that the exchange routines responsible for updating ghost-

cell values between cores were costly and non-scalable. There will be a need to explore alternative communication 

paradigms for massively-parallel CFD – perhaps taking more advantage of shared (intra-node) memory. 

The choice of mesh structure and discretization scheme was shown to have very little effect on strong 

scalability, which is promising for next-generation higher-order CFD simulations. Turbulence models which 

required more communication caused decreased overall scalability, but improvements in the exchange routines 

may negate this. 

Finally, the choice of pre-conditioner had a large effect on the scalability of the code. The more complex pre-

conditioners, such as the multi-grid methods, scaled poorly compared to the straight-forward Block Jacobi method. 

The solver itself seems to have little effect, although only GMRES and BICGStab were tested. 

 
Figure 11: Effects of ILCT on total wall-time using two 

different outer loop relaxation factors. 

 

 
Figure 12: Solve scalability with different pre-conditioners 

and solvers, normalized to BJAC-BJAC-GMRES. 

 

 
Figure 13: A scalability breakdown of ReFRESCO using 

more-scalable pre-conditioners (Block Jacobi). 

 

 
Figure 14: Proportions of total wall-time spent in different 

routines using more-scalable pre-conditioners (Block Jacobi) 
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Even the best pre-conditioners caused the solve routines to scale poorly compared to the assembly and 

gradients routines, and the solve routines also take the largest proportion of wall-time. This should be an area for 

development – especially considering the large differences between the existing pre-conditioners. 

Although attempts have been made to generalize the results obtained in these studies, it is important to note 

that the complex interaction between parts of the code make it difficult to do so. Moreover, only a simple KVLCC2 

case has been tested here, and it is assumptive to extrapolate these results to more complex cases – especially 

where extra features are added, such as cavitation models, free-surfaces or moving interfaces. In addition, some 

significant parameters have not been tested – such as the use of a coupled solver. 

Despite this, there are certain parts of the code such as the solve routines and ghost-cell exchange routines 

that can be identified as areas for improvement. These should be tackled in order to allow CFD simulations to 

continue to benefit from next-generation supercomputing facilities. 

Acknowledgments 

The authors acknowledge the use of the IRIDIS HPC Facility, and associated support services at the University of 

Southampton. Approximately 150k core-hours were used for this work over ~700 jobs. 

References 

1. Top500, top500.org (accessed Feb. 2014). 

2.  T. Nishikawa, Y. Yamade, M. Sakuma, C. Kato, Fully resolved large eddy simulation as an alternative to 

towing tank tests – 32 billion cells computation on K computer, Numerical Towing Tank Symposium 

(NUTTS), Mülheim, Germany, September 2nd-4th (2013). 

3. H. Simon, Why we need exascale and why we won’t get there by 2020, Optical Interconnects Conference, 

Santa Fe, New Mexico, August 27th (2013). 

4. P.M. Kogge (editor), Exascale computing study: technology challenges in achieving exascale systems, 

Univ. of Notre Dame, CSE Dept. Tech. Report TR-2008-13 (2008). 

5. J. Shalf, The evolution of programming models in response to energy efficiency constraints, Oklahoma 

Supercomputing Symposium, Oklahoma, USA, October 2nd (2013). 

6. G. Vaz, F. Jaouen and M. Hoekstra, Free-surface viscous flow computations. Validation of URANS code 

FRESCO, In Proceedings of OMAE, Hawaii, USA, May 31st-June 5th (2009). 

7. C.M. Klaij and C. Vuik, Simple-type preconditioners for cell-centered, collocated, finite volume 

discretization of incompressible Reynolds-averaged Navier-Stokes equations, International Journal for 

Numerical Methods in Fluids, 71(7), pp. 830-849 (2013). 

8. L. Eca and M. Hoekstra, Verification and validation for marine applications of CFD, 29th Symposium on 

Naval Hydrodynamics (ONR), Gothenburg, Sweden, August 26th-31st (2012). 

9. F. Pereira, L. Eca and G. Vaz, On the order of grid convergence of the hybrid convection scheme for RANS 

codes. CMNI, pp. 1–21, Bilbao, Spain, June 25th-28th (2013). 

10. G.F. Rosetti, G. Vaz, and A.L.C. Fujarra, URANS calculations for smooth circular cylinder flow in a wide 

range of Reynolds numbers: solution verification and validation, Journal of Fluids Engineering, ASME, July, 

p. 549 (2012). 

11. H. Bandringa, R. Verstappen, F. Wubbs, C. Klaij and A.v.d. Ploeg, On novel simulation methods for complex 

flows in maritime applications, NUTTS, Cortona, Italy, October 7th-9th (2012). 

12. VI-HPS, Score-P, vi-hps.org/projects/score-p, version 1.2.3, (accessed Nov. 2013). 

13. S. Lee, H. Kim, W. Kim and S. Van, Wind tunnel tests on flow characteristics of the KRISO 3,600 TEU 

containership and 300K VLCC double-deck ship models, Journal of Ship Research, 47(1), pp. 24-38 (2003). 

14. F.R. Menter, M.Kuntz, and R. Langtry, Ten years of industrial experience with the SST turbulence model, 

Turbulence, Heat and Mass Transfer 4, Antalya, Turkey, October 12th-17th (2003). 

15. S. Balay et al., PETSc user manual, mcs.anl. gov/petsc, Argonne National Labatory, ANL-95/11 – Rev. 3.4 

(2013). 

16. M. Hoekstra, Numerical simulation of ship stern flows with a space-marching Navier-Stokes method, PhD 

Thesis, Delft University of Technology (1999). 

17. A.F. Molland, S.R. Turnock and D.A. Hudson, Ship resistance and propulsion: practical estimation of ship 

propulsive power, Cambridge, GB, Cambridge University Press, p.70 (2013) 

18. F.R. Menter, Y. Egorov and D. Rusch, Steady and unsteady flow modelling using the k−√kL model, 

Turbulence, Heat and Mass Transfer 5, Dubrovnik, Croatia, September 25th-29th (2006). 

19. P.R. Spalart and S.R. Allmaras, A one-equation turbulence model for aerodynamic flows, AIAA Paper 92-

0439 (1992). 

20. STAR-CCM+, Performance benchmark and profiling, HPC Advisory Council (Best Practices), July (2010). 

21. D. Mize, Scalability of ANSYS applications on multi-core and floating point accelerator processor systems 

from Hewlett-Packard, Hewlett-Packard, February 7th (2012). 



Potential of Chaotic Iterative Solvers for CFD
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aMARIN Academy; bResearch and Development Department; MARIN, Wageningen, NL.
cFluid Structure Interactions (FSI); dComputational Engineering and Design (CED);

University of Southampton, UK.1 Introduction
Computational Fluid Dynamics (CFD) has enjoyed the speed-up available from supercomputer technology
advancements for many years. In the coming decade, however, the architecture of supercomputers will change,
and CFD codes must adapt to remain current.

Based on the predictions of next-generation supercomputer architectures it is expected that the first com-
puter capable of 1018 floating-point-operations-per-second (1 ExaFLOPS) will arrive in around 2020. Its ar-
chitecture will be governed by electrical power limitations, whereas previously the main limitation was pure
hardware speed. This has two significant repercussions [14, 17, 25]. Firstly, due to physical power limitations
of modern chips, core clock rates will decrease in favour of increasing concurrency. This trend can already been
seen with the growth of accelerated “many-core” systems, which use graphics processing units (GPUs) or co-
processors. Secondly, inter-nodal networks, typically using copper-wire or optical interconnect, must be reduced
due to their proportionally large power consumption. This places more focus on shared-memory communica-
tions, with distributed-memory communication (predominantly MPI - “Message Passing Interface”) becoming
less important.

The current most powerful computer, Tianhe-2 [26], capable of 33 PFlops, consists of 3,120,000 cores. The
first exascale machine, which will be 30 times more powerful, is likely to be 300-times more parallel – which is
a massive acceleration in parallelization compared to the last 50 years. This concurrency will come primarily
from intra-node parallelization. Whereas Tianhe-2 features an already-large O(100) cores per node, an exascale
machine must consist of O(1k-10k) cores per node.

CFD has benefited from weak scalability (the ability to retain performance with a constant elements-per-core
ratio) for many years; its strong scalability (the ability to reduce the elements-per-core ratio) has been poor and
mostly irrelevant. With the shift to massive parallelism in the next few years, the strong scalability of CFD
codes must be investigated and improved.

In this paper, a brief summary of earlier results [12] is given, which identified the linear-equation system
solver as one of the least-scalable parts of the code. Based on these results, a chaotic iterative solver, which is
a totally-asynchronous, non-stationary, linear solver for high-scalability, is proposed. This paper focuses on the
suitability of such a solver, by investigating the linear equation systems produced by typical CFD problems. If
the results are optimistic, future work will be carried out to implement and test chaotic iterative solvers.

2 ReFRESCO
The work presented in this paper focuses on the development of ReFRESCO – a typical viscous-flow CFD
code. ReFRESCO solves multiphase, unsteady, incompressible flows with the Reynolds-Averaged Navier Stokes
(RANS) equations, complemented with turbulence models, cavitation models and volume-fraction transport
equations for different fluid phases [27]. ReFRESCO represents a general-purpose CFD code, with state-of-the-
art features such as moving, sliding and deforming grids and automatic grid refinement – but has been verified,
validated and optimized for numerous maritime industry problems.

The RANS equations are discretized in strong conservation form using a finite-volume approach with cell-
centred collocated variables. The SIMPLE algorithm is used to ensure mass conservation, with pressure-weighted
interpolation (PWI) to tackle pressure-velocity decoupling issue arising from the collocated arrangement [16].

Time integration is performed implicitly with first or second-order backward schemes. At each time step,
the non-linear system for velocity and pressure is linearized with Picard’s method – and a segregated method
applied. All non-linearity is tackled by means of an iterative process so-called the outer loop. For each outer-
loop iteration, and for each transport equation, an algebraic system of linear equations is solved iteratively until
a prescribed residual decay is achieved.

All numerical schemes used to discretize the transport equations (convection schemes, diffusion, gradients,
non-orthogonality corrections, eccentricity corrections) apply their low-order contributions implicitly, to the
left-hand side of the equation system; and their higher-order contributions explicitly, to the right-hand side of
the system, using values from the previous outer loop.

The code is parallelized using MPI and sub-domain decomposition. The grids are partitioned in sub-domains,
each one having a layer of common cells so-called ghost-cells. Each of these sub-domains is calculated in its
own MPI process. The ghost-cells are treated as normal cells, as far as the numerical algorithms are concerned,
and are therefore handled implicitly.

ReFRESCO is currently being developed at MARIN (Netherlands) [8] in collaboration with IST (Portugal)
[22], the University of Sao Paulo (Brazil) [24], the Technical University of Delft (the Netherlands) [16], the
University of Groningen (the Netherlands) [4] and recently at the University of Southampton (UK) [12].
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3 Strong Scalability Investigation
In previous work [12], ReFRESCO was profiled using Score-P [28] to extract timings from the code and its
relevant functions. In a CFD code, these functions can be grouped together into the following categories, giving
a breakdown of the code (see figure 1.a for illustration):
• Assembly – the assembly of each inner-loop linear equation system, including discretization, linearization

and face-value interpolation for each transport equation.
• Solve – the iterative solving of the linear equation system for each transport equation, in each outer loop.
• Gradients – the calculation of gradient values at cell centres, using Gauss theorem.
• Exchange – MPI data exchange of cell-centred variables and gradients across ghost cells.
• Other – the remainder of the above, including initialization routines.
The results of a typical breakdown, using the well-known KVLCC2 case2, are shown in figure 1, where the

“speedup” is defined as the relative decrease in wall-time with N cores compared to the serial or single-node
(16 cores) runtime. The results of the nodal speedup (1.b) show relatively good scalability (up to ≈40k cells-
per-core), but hide the intra-node inefficiencies which are important for next-generation machines (with high
intra-node parallelization). Graphs which show the speed-up relative to the single-core run-time (1.c) are thus
more useful.

Update Boundary
Conditions

Initial Guess of Field Values

Update
Time Step

Outer Loop

Solve Discretized Momentum Equations (x,y,z)

Solve Pressure Correction Equation

Correct Pressure & Velocity Terms

Solve Other Discretized Transport Equations

Converged?No Yes
OR

STOP

Assemble

Solve

Gradients

Data Exchange

Figure 1: (a) An illustration of the SIMPLE algorithm, with colour-coding relating the various profiled functions of the code. (b)
Total scalability of ReFRESCO normalized to single-node runtime, with two different grid sizes. (c) Scalability breakdown of a
typical simulation showing the profiled functions individually and (d) the proportions of execution time spent in those routines [12].

The scalability graph (1.c) shows that assembly and gradient computations scale well, and the relative
proportions graph (1.d) shows that these routines account for a very small proportion of run-time. The other
routines do not scale so well, but are a small contribution to total run-time, so are of little concern.

The solve routines are an area for improvement. They exhibit poor scalability and take considerable amounts
of total runtime, with particularly poor performance at the shared-memory level due to memory bandwidth or
latency. Similarly, the exchange routines, which exhibit inverse scalability, are also a concern at the distributed-
memory level. The data exchange is performed using MPI functions, and possibilities to improve this include
switching to a hierarchical parallelization scheme (i.e. MPI + OpenMP) – as in [9, 10].

Up to ≈24k cells-per-core the iterative solver is the main limitation to scalability and should form the focus
of future work, particularly as shared-memory parallelization grows. However, the data exchange issues are also
an interesting area for further research and should not be neglected.

2KRISO Very Large Crude Carrier 2: half-body; two-equation κ-ω shear-stress transport (SST) turbulence model [21]; single-
phase; based on wind-tunnel experiments [18]; 1000 outer loops; 2.67m structured grid.



4 Background to Iterative Solvers
The results shown in figure 1 used a Krylov subspace solver (GMRES - Generalized Minimal Residual method)
with a Block Jacobi pre-conditioner [3]. Other Krylov methods such as BiCGStab (Bi-Conjugate Gradient
Squared Stabilized) were tested with similar results. Other pre-conditioners were also tested, but Block Jacobi
was (by far) the most scalable [12].

The Krylov solvers are powerful, but create a bottleneck due to the computation of inner products, which
require global communication and synchronization in the form of MPI reductions. Efforts have been made to
reduce the synchronization penalty of the Krylov solvers (down from two synchronized reductions to one, per
iteration), with considerable improvements, but the bottleneck remains [20, 29].

By returning to simple, so-called stationary methods, it may be possible to obtain better performance in the
limits of strong scalability. The task of a stationary solver (or, indeed, any iterative solver), for each transport
equation in each outer loop, is to solve Ax = b, where x is the unknown solution vector, A is an n-by-n sparse
coefficient matrix, b is the constant right-hand-side (RHS) vector, and n is the number of elements.

Beginning with an initial guess for x, the system can be solved iteratively:

xk = −D−1(L + U)xk−1 + D−1b (1)

where D is the diagonal of A, and L/U are the lower- and upper-triangles respectively. The notation k represents
the iteration number. This is the Jacobi method, and the matrix D−1(L + U) is the iteration matrix, M. Each
equation (from 1 to n) can be solved (a.k.a. relaxed) independently as follows:

xk
i =

(
−

n∑

j=1
j 6=i

aijx
k−1
j + bi

)
/aii, i = 1, . . . , n. (2)

where a, x and b are the individual components of A, x and b respectively. At the end of each iteration the
new values of x must be globally communicated before the next iteration can begin.

See Barrett et al. [5] for more information on a variety of iterative solvers – Krylov, stationary and otherwise.

5 Chaotic Iterative Solver
In 1969, Chazan & Miranker [7] proposed the concept of Chaotic Relaxation whereby several processes (distributed-
memory processes or shared-memory threads) never synchronize. Instead, the processes freely pull values of
off-diagonal x from memory whenever they are required, and push new values for the diagonal xi whenever they
have been relaxed. In this way, each relaxation uses the values of x from the latest iteration that is available –
this could be several iterations behind the current relaxation iteration (s = 1,. . . ,n), or even ahead of it (s < 0):

xk
i =

(
−

n∑

j=1
j 6=i

aijx
k−s
j + bi

)
/aii, s < smax, i = 1, . . . , n. (3)

The order in which the n equations are relaxed is completely arbitrary. With this scheme, processes never need to
wait for each other. Although communication must still occur, it can be entirely asynchronous, thereby making
efficient use of memory bandwidth and computational resources. Processes may even iterate multiple times on
the same data if memory bandwidth is completely saturated, making the best use of the available hardware.
Whilst this method is based on the stationary Jacobi method, s can vary between iterations implying that
chaotic methods are actually non-stationary.

Chazan & Miranker proved that this iterative scheme will converge for any real iteration matrix if ρ(|M|) < 1
so long as smax is bounded. ρ(·) denotes the spectral radius (the absolute value of the maximum eigenvalue)
and | · | represents a matrix where all the components have been replaced with their absolute values. The
implications of smax being bounded is simply that if two relaxations take different amounts of time (either due
to imbalanced hardware or relaxation complexity), they cannot be left completely independent indefinitely, such
that s could potentially become infinite. Baudet [6] went on to prove that ρ(|M|) < 1 is a necessary condition
for convergence for any smax ≤ k. Baudet denoted the relaxation method where s = 0, ..., k as an asynchronous
method but the terms “chaotic” and “asynchronous” are often used interchangeably. Bahi [2] further showed
that ρ(|M|) = 1 is also valid, if M is singular and smax is bounded.

Preconditioning of A usually serves to reduce the condition number and spectral radius of the equation
system; however, preconditioning is rarely applied to simpler solvers, since almost all preconditioners are more
complex than the solver itself.

At their conception, chaotic methods were considerably ahead of their time. Although created specifically
for parallel computing, the concurrency of state-of-the-art supercomputers in 1969 was too small to utilize the
methods efficiently. With new architectures, the true potential of chaotic methods may be realized. Anzt et al.
[1] begins to show the use of chaotic or asynchronous methods on a modern architecture, using the GPU to
perform block-relaxations. Despite the intrinsic loss in global convergence rates, Anzt et al. showed that chaotic
iterative methods provided a boost in real-time convergence rates compared to standard stationary methods



(i.e. Jacobi) – although comparisons to the more advanced Krylov methods were not performed, and the chosen
matrices were not derived from CFD applications.

Chaotic methods provide a means to exploit massive parallelism due to the absence of synchronization
points. They are also implicitly heterogeneous, allowing seamless cooperation between CPUs, GPUs or co-
processors running at different speeds – allowing all computational resources to be used to maximum capacity
with little concern for load-balancing. The convergence criteria, ρ(|M|) < 1, is stricter than that of standard
stationary methods which only require ρ(M) < 1, and stricter still than the oft-used Krylov methods (which
have no such requirements). The following section aims to determine if a range of standard CFD test cases
will produce matrices that satisfy the criteria – the results of which will determine whether chaotic solvers are
worth implementing and investigating.

6 Suitability of CFD Equation Systems
In this section, un-preconditioned matrices are extracted from a number of test cases. The matrices are analyzed
to obtain key statistics and determine their suitability to chaotic methods.

For each matrix, it is possible to plot the connectivity graph, following the methods of Hu [15] – this gives
a qualitative, visual insight into the sparse matrices by graphically connecting the elements of the matrix. The
largest eigenvalues of |M| can be found using ARPACK [19] routines, and plotted in an Argand diagram – for
ρ(|M|) < 1 all eigenvalues must lie within a unit circle. The sparsity pattern of the matrix A may also be
plotted directly to give qualitative clues on the matrix structure.

Assuming a satisfactory spectral radius, the condition number (the ratio of the largest to smallest eigenvalue)
of the original matrix A can be used to assess the difficulty of convergence (∝ number of iterations required).
The condition number is computed using a 1-norm condition estimator [11].

As explained in section 2, all higher-order influences on the linear equation system are shifted to the RHS
(the b vector) – which strongly decouples many common user settings (such as discretization scheme) from the
format of the iteration matrix M.

Changes in element-count and geometry may have a more profound effect on the matrices, and special
equations (such as volume-fraction and cavitation equations) should also be examined. Thus the following test
cases are chosen for increasing geometric complexity and their additional equations.
• Lid-Driven Cavity Flow (LDCF) on a number of 2D structured grids (225, 14.4k, 1m elements); no

turbulence model; see [16].
• NACA0015 hydrofoil (15◦ angle-of-attack) on a two-dimensional multi-block structured grid (28k ele-

ments) with a two-eqn. κ-ω SST turbulence model [21]; see [23].
• KVLCC2 (half-body, no free surface, single-phase) on a three-dimensional multi-block structured grid

(317k elements) and a hexahedral unstructured grid (U) with hanging nodes (167k elements); κ-ω SST
turbulence; see [12].

• NACA0015(C), as before, but with a Sauer-modified cavitation model; κ-ω SST turbulence; see [13].
• Dambreak, a homogeneous two-phase, three-dimensional problem with a simple structured grid (16k

cells) with a volume-fraction equation; no turbulence; see [27].
• Cylinder, low Reynold’s number, unsteady (10 timesteps) on a structured grid (4.3k elements); no

turbulence; poor initial flow estimation; see [24].
The matrices were extracted at outer loops 1, 5, 10, 50 and 100. The momentum equations (in x, y and

z) are identical, due to the way in which they are assembled. The differences between ρ(|M|) and ρ(M) were
negligible, implying that M is mostly positive.

Figure 2 shows the qualitative view of the simple 2D LDCF, the more complex 2D hydrofoil, and the 3D
KVLCC2 case at the 5th outer loop. The connectivity graphs show resemblance to the underlying geometry
and mesh structure – for example, the NACA0015 connectivity resembles the O-grid from which it arose.

The sparsity patterns are interesting from a computational perspective, since they highlight communication
patterns when the matrix is split into parallel blocks. Where off-diagonal components of an equation are spread
out, more cross-communication between processes is required – since the variables will be stored in parts of
memory not directly accessible. The sparsity is closely related to the structure of the grid and the cell-numbering
– the more complex KVLCC2 case is highly complex compared to the cartesian, structured LDCF grid.

Table 1 shows the quantitative results from all the test cases, taking the maximum values of all the extracted
outer loops. The condition number appeared to be higher for more complex cases, such as the 3D KVLCC2
case, although there was little correlation with flow features or mesh structure. In all cases, ρ(|M|) ≤ 1, meeting
the requirements for chaotic solvers.

The pressure equation, which takes a Poisson-equation format, was singular for the LDCF and Dambreak
case, where only Neumann boundary conditions are applied. In all the other cases, a Dirichlet condition on
the outflow reduced the spectral radius, although it was still close to one. In the LDCF-225 case and the first
timestep of the unsteady cylinder, the spectral radius was also very high – these cases both feature complex
flows with simple initial-flow estimations and coarse meshes; this large discrepancy and poor resolution could
be the reason for the the near-singular matrices (however, the condition number was still low).



Figure 2: Connectivity, 100 largest eigenvalues, sparsity and statistics for the momentum equation (outer loop 5). [Top] LDCF-225,
[Middle] NACA0015-28k and [Bottom] KVLCC2-317k.

Additional matrices for the KVLCC2 case (up to 2.67m elements) and a 21.7m-element INSEAN E779A
propeller (with sliding interface) were tested, but could not be fully post-processed due to memory requirements
– nonetheless, the original matrices (A) were diagonally dominant: a sufficient condition for ρ(|M|) < 1.

Table 1: Quantitative results for a range of test matrices, showing condition number and spectral radius for momentum-, pressure-,
turbulence- and free-surface-/cavitation-equations.

Mom. Pres. Turb. 1 Turb. 2 V.F./Cav.
cond(A) ρ(|M|) cond(A) ρ(|M|) cond(A) ρ(|M|) cond(A) ρ(|M|) cond(A) ρ(|M|)

LDCF-225 210 0.955 9.4·e17 1.000
LDCF-14.4k 7 0.500 2.1·e18 1.000
LDCF-1m 4 0.500 2.9·e19 1.000
NACA0015 9.0·e3 0.884 6.53·e6 0.999 4.5·e3 0.849 4.8·e3 0.851

NACA0015(C) 6.3·e3 0.734 4.67·e6 0.999 5.1·e3 0.688 5.2·e3 0.690 2.3·e8 0.240
KVLCC2 2.6·e6 0.845 2.63·e8 .9999 1.2·e7 0.588 1.2·e7 0.594

KVLCC2 (unst.) 5.2·e6 0.810 5.4·e7 .9999 8.3·e6 0.726 7.7·e6 0.728
Dambreak 105 0.048 5.6·e18 1.000 7 0.048

Cylinder (t=1) 111 .9999 1.1·e6 .9999
Cylinder (t=2–10) 4.4·e2 0.520 1.1·e6 .9999

7 Conclusion
Chaotic iterative solvers have been proposed as a means to improve the scalability of a typical CFD code, in
preparation for a paradigm-shift towards massive parallelization in supercomputing architectures. The removal
of synchronization points from one of the major bottlenecks in the code (the solve routines) could lead to a vast
improvement in scalability, although the loss in convergence rate which compromises the speed-up is difficult to
predict. The matrices which the chaotic solver would be required to solve have been extracted and evaluated,
and it has been determined that necessary and sufficient conditions for convergence have been satisfied.

Future work will focus on implementing a chaotic solver in a hierarchical parallel environment (MPI &
OpenMP & GPU/coprocessor). At the shared-memory (OpenMP) level, issues associated with double-precision
atomic operations and intra-core cache-coherency will be encountered; and methods must be investigated to hide
any cache latency that may occur. Maintaining true asynchronicity across memory-boundaries (for example,
across nodes, using MPI) will also be a unique challenge – since most MPI communications require at least two
nodes to synchronize. One-sided MPI operations may be investigated to allow direct access to non-shared mem-
ory. Similarly, true asynchronicity between host processes and attached GPUs/coprocessors must be achieved
– perhaps by assigning processes on the host processor purely for these communications.

From a numerical perspective, it is best if each equation in the system is iterated the same number of



times/at the same speed (i.e. the equations do not become too out-of-synch). Regulating this, by moving
equations to different processes dynamically, may be beneficial for overall performance and may be necessary
for convergence when the pressure equation is singular.

Above all, however, is the intrinsic difficulty of debugging a chaotic scheme. As soon as instrumentation
points are added, the chaotic order of the process changes – indeed, every time the process is run, different
numerical results and convergence rates may be obtained.

Chaotic methods introduce a number of unique challenges, but could create a significant speed-up for CFD on
current and next-generation supercomputers. Whilst it has been shown that the chaotic methods will converge
for the relevant equations, it remains to predict their real-world performance for CFD applications; and to
implement and test them successfully.
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Abstract. A Chaotic Iterative Method, which is a form of totally asynchronous linear
equation-system solver, is implemented within an open-source framework. The solver is
similar to simple Jacobi or Gauss-Seidel methods, but is highly optimized for massively-
parallel computations. Processes or threads are free to run computations regardless of the
current state of other processes, iterating individual equations with no limitations on the
state of the variables which they use. Each individual iteration may pull variables from
the same iteration, the previous iteration, or indeed any iteration. This effectively removes
all synchronization from the Jacobi or Gauss-Seidel algorithm, allowing computations to
run efficiently with high concurrency.

The trade-off is that the numerical convergence rate of these simple algorithms is slower
compared to the classical Krylov Subspace methods, which are popular today. However,
unique features of the computational fluid dynamics algorithm work in favour of Chaotic
methods, allowing the fluid dynamics field to exploit these algorithms when other’s cannot.

The results of the Chaotic solver are presented, verifying the numerical results and
benchmarking performance against the Generalized Minimal Residual (GMRES) solver
and a Pipelined GMRES solver. The results show that, under certain circumstances,
Chaotic methods could be used as a standalone solver due to their superior scalability.
The potential to use Chaotic methods as a pre-conditioner or hybrid solver is also revealed.
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1 INTRODUCTION

One of the major objectives in high performance computing for computational fluid
dynamics is to enable complex unsteady simulations. Whilst these computations benefit
from concurrency in three spatial dimensions, time-stepping is strictly serial; and unsteady
computations become bottle-necked by the amount of parallelism that can be utilized in
the spatial dimensions. Combined with this, the architecture of modern supercomputers
is changing rapidly, causing scientific applications to adapt to a many-core era.

Figure 1.a shows the history of the Top 500 supercomputers over the last 20 years.
At current rates, it is expected that the first computer capable of 1018 floating-point-
operations-per-second (1 ExaFLOPS) could be built in 2020. Its capability will be limited
by electrical power consumption, rather than pure hardware speed, and this will lead to
two significant architecture changes [9, 11, 14]. Firstly, core clock rates must decrease
to save power, and total computing power must be improved by dramatically increasing
the total number of cores. Secondly, inter-nodal networks must be reduced due to their
relatively large power consumption. Overall, this means a huge growth in concurrency
within nodes. This trend can already be seen in modern ‘many-core’ systems featuring
GPUs or co-processors.

The current most powerful computer, Tianhe-2 [15], capable of 33 PFlops, consists of
3,120,000 cores. By contrast, the first exascale machine will be 30-times more powerful
and 300-times more parallel. Whilst Tianhe-2 already consists of nodes with O(100) cores,
using co-processors; an exascale machine is likely to feature O(1k-10k) cores per node.

In earlier work [6] the strong scalability of a typical CFD code (ReFRESCO) was
assessed, to discover which parts of the algorithm required improvement for this paradigm-
shift in architecture. Figure 1.b shows the breakdown of the code, which is based on the
SIMPLE algorithm, into its key parts. Figure 1.c shows that the assembly (discretization,
orthogonality & eccentricity corrections, and final assembly of the matrix structure) and
gradient computations scale well, and figure 1.d shows that these routines account for
a small proportion of the overall run-time. The solve routines, responsible for solving
the linear-equation systems that have been assembled, exhibit poor scalability and take
considerable amounts of total runtime. Similarly, the exchange routines (responsible for
sharing of cell-values and gradient values across ghost cells) are a cause for concern,
dominating total run-time when inter-nodal communication becomes large.

Considerable work is being performed to improve the exchange routines, primarily by
overlapping communication with computation more efficiently or reducing global com-
munications; and by utilizing a hybrid parallelization scheme. Cooperatively, the solve
routines must be improved with the same goals.

In this paper, a ‘Chaotic’ iterative solver is proposed as a solution to the strong scala-
bility problem of the solve routines. In the following sections, a brief background is given,
followed by the theory and implementation of a Chaotic solver. Finally, the Chaotic solver
is verified and benchmarked against existing solvers.
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Figure 1: (a) Total floating-point operation (FLOP) rate of the Top500 supercomputers, showing the
#1 machine, the #500, and the sum of the top 500. (b) An illustration of the SIMPLE algorithm, with
colour-coding relating the various sections of the code. (c) Scalability breakdown of a typical simulation
showing the parallel speed-up of the code compared to its serial operation and (d) the proportions of
execution time spent in the various routines [6].

2 BACKGROUND TO LINEAR EQUATION-SYSTEM SOLVERS

The task of the linear equation-system solver, for each transport equation in each non-
linear loop, is to solve Ax = b, where x is the unknown solution vector, A is an n-by-n
sparse coefficient matrix created by the assembly routines, b is the constant right-hand-
side (RHS) vector, and n is the number of elements.

It is possible to solve this system directly, but for large matrices this is expensive. For
CFD, the equation systems can be solved iteratively:

xk = −D−1(L + U)xk−1 + D−1b (1)

where D is the diagonal of A, and L/U are the lower- and upper-triangles respectively.
k is the iteration number. This is the Jacobi method, and the matrix D−1(L + U) is the
iteration matrix, M.

Numerically, the Jacobi method, or its derivatives such as Gauss-Seidel or Successive
Over-Relaxation methods, are weak. Their convergence rate is limited by the spectral
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radius of the iteration matrix, ρ(M), which is dependent on the matrix size and stiffness.
For CFD, this means the pressure equation is hardest to solve, as it is close to singular
[7] and the spectral radius is close to unity.

It is possible to add a form of ‘memory’ to these solvers, where some information about
the solution path is stored in a vector subspace, known as the Krylov Subspace (KSP).
For example, in the popular (Bi-)Conjugate Gradient Squared (BCGS) algorithm, the
solver remembers the previous gradients that it followed, to prevent it from going back on
itself. In the GMRES (Generalized Minimal Residual Method) the subspace is based on
the Arnoldi iteration, and is used to find an approximate solution based on the minimal
residual of these vectors. See Barrett et al. [2] for more information on a variety of iterative
solvers.

There is an initial grace period where high frequency errors can be reduced more
quickly than the spectral radius would normally allow, using the simpler methods, but
KSP solvers typically over-power the simpler solvers when lower frequencies must also
converge.

Though numerically powerful, the KSP methods are computationally inefficient on
a larger number of cores due to certain communication patterns. Figure 2 shows an
illustration of a GMRES iteration. Two significant communication patterns are required,
with very different scaling characteristics. Firstly, the sparse-matrix-vector-multiplication
(SpMV) requires neighbour-to-neighbour communication to obtain boundary data from
other processors. This communication pattern is highly scalable, as different neighbours
can communicate in parallel.

The second communication pattern is a global reduction (and associated broadcast).
Many small messages are sent down a hierarchical tree in a non-concurrent manner. The
time for a reduction increases as the number of cores increases, whereas every other
routine receives a speed-up from increasing the number of cores.

In the GMRES or BCGS algorithm there are two global reductions per iteration. As
the number of cores rises and the scalable routines reduce to a small proportion of overall
time, these reductions dominate wall-time and prevent the KSP solvers from scaling.
Improvements have been made to GMRES, in the form of ‘pipelined’ GMRES (P-GMRES)
which attempt to overlap the first reduction with serial computations [5] – results show
better scalability than GMRES, especially when the so-called ‘latency-factor’ is large, but
as the cells-per-core ratio decreases global reduction latency will once again dominate.

Compared to other applications, where solving linear equation systems to machine
accuracy is important (for example, solving Markov chains for risk analysis), CFD is not so
strict. As the ‘real’ problem is a non-linear one, much of the work done in the linear loops
is discarded as under-relaxation is applied to the non-linear iteration. In fact, for many
cases, it is possible to reach non-linear convergence with a relative convergence factor of
the linear system as high as 60%, although this is not usually beneficial. It highly depends
on the problem and the type of non-linear iterative process; and is only worthwhile if the
non-linear iterative process is efficient, as many more non-linear iterations are required.

With this in mind, it may be possible to take advantage of the initial ‘grace period’
of the simpler solvers such as Jacobi or Gauss-Seidel; however, to compete with a well-
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SpMV local dot reduct b-cast axpy reduct b-cast scale

Figure 2: Illustrative parallel trace of a GMRES iteration, showing the computation and communication
patterns when utilizing 8 cores. Note that as the serial computations and SpMV become small, the
reduction dominates the total wall-time. Not to scale.

preconditioned GMRES solver there must be a significant computational benefit.

3 THEORY AND IMPLEMENTATION OF A CHAOTIC SOLVER

The Jacobi solver is particularly poor numerically, using old values of the solution vector
in each iteration rather than using newly-computed variables from the current iteration.
By contrast, Gauss-Seidel is stronger numerically as it uses newly-computed variables;
but is impossible to parallelize. Forms of Block Gauss-Seidel exist, which are a good
compromise; but both Jacobi and Block Gauss-Seidel can be improved computationally.

The Jacobi or Block Gauss-Seidel methods have no reduction routines, using purely an
SpMV to perform the iterations. This is a huge benefit to scalability, and should allow
these solvers to scale far higher than KSP methods. However, the Jacobi/Block G-S
routine still has room for improvement. In these methods, the k + 1th iteration cannot
start until the kth iteration is complete. This means that the whole solution can only
proceed as fast as the slowest core. A core may be slow due to background operating-
system load, poor load-balancing, heterogeneity in the hardware, irregular communication
times or Non-Uniform Memory Access (NUMA). These irregularities are likely to be more
of a concern in the many-core era, and will significantly slow down computations when
trying to utilize thousands of cores.

In 1969, Chazan & Miranker [3] proposed the concept of Chaotic Relaxation whereby
several processes never synchronize. Instead, the processes freely pull values of off-diagonal
x from memory whenever they are required, and push new values for the diagonal xi
whenever they have been relaxed. By exploiting data races in this way, each relaxation
uses the values of x from the latest iteration that is available – this could be several
iterations behind (s = 1, ..., k), or even ahead of it (s < 0):

xk = −D−1(L + U)xk−s + D−1b (2)

In the average case, this scheme should produce numerical convergence similar to that of
Gauss-Seidel.
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In previous work [7] it was shown that the strict convergence criteria for Chaotic
methods are met by all CFD equations, which prompts the implementation and testing
of a Chaotic solver, as follows.

The solver is written in a hybrid MPI + OpenMP (Open Multi-Processing – a multi-
threading standard) environment, using PETSc (Portable, Extensible Toolkit for Scientific
Computation) [1] as a platform. The MPI processes and OpenMP threads are split in a
NUMA-friendly manner, with one MPI process per socket and one thread per core within
each socket. The test machine is Iridis 4, the University of Southampton’s latest super-
computer, which consists of 750 compute nodes - each with 2 Intel Xeon E5-2670 Sandy-
bridge processors (8 cores, 2.6 Ghz). Within each MPI process one thread is dedicated
to halo-data communication and the remaining seven perform the chaotic matrix-vector
multiplications.

In the following sections, the results of the Chaotic solver will be verified by comparing
the solutions produced by them against KSP methods, and the performance (in terms of
scalability and absolute wall-time) will be assessed.

4 VERIFICATION

The solution produced by the Chaotic solver was compared against the solution pro-
duced by GMRES (with a restart of 3, 30 and 100), P-GMRES and BCGS. Pre-conditioners
were not used and there was no attempt to compare performance, these tests were per-
formed purely to compare the absolute solution and verify the implementation. The
solvers were required to iterate until a desired absolute residual in the l2-norm.

Three analytical matrices from the matrix marketplace [4] were tested (pde225, pde900
and orsirr 1), along with a pressure equation matrix extracted from a 14.4k-cell lid-driven
cavity flow simulation (LDCF ). The results for the smallest case (pde225) are shown in
figure 3. The results were similar for all cases and a range of convergence tolerances from
10−1 to 10−7 (not shown).

There are no concerns for any of the solvers, although there are some differences in
the solution vector. There is a tendency for the Chaotic solver to produce a much lower
l1-norm, presumably as the stiffer equations in the system require many iterations to
solve, the easier equations can progress much more quickly, whereas the KSP methods
have more inter-dependency between the equations.

Due to the squared-weighting of the l2-norm this has little effect on the reliability of
the solution, and differences in the overall flow field are likely to be negligible.

5 PERFORMANCE TESTING

The aim of Chaotic solvers is to improve scalability, and it is expected that at lower
core-counts that KSP solvers will out-perform the Chaotic methods. In order to predict
how these solvers will perform on many-core machines, scalability tests are the main focus
of the following tests. It should be possible to predict the break-even point of Chaotic
methods, where their worse numerical performance overtakes the KSP solvers based on
improved scalability.

6



James N. Hawkes, Stephen R. Turnock, Guilherme Vaz, Alex B. Phillips and Simon J. Cox

1 225i
12

10

8

6

4

2

lo
g

10
|r
i|

Absolute values of the residual vector:
pde225, |r|<1.00e−06, n=225

Chaotic GMRES(3) GMRES(30) GMRES(100) BCGS PGMRES

|r|/
√
n

0.0 0.2 0.4 0.6 0.8 1.0
Freq. Density

12

10

8

6

4

2

lo
g 1

0|r
i|

Statistical Distribution

0.0 0.1 0.2 0.3 0.4 0.5
Freq. (1/i)

20

15

10

5

0

lo
g 1

0P
o
w

e
r

Power Spectrum

Figure 3: Full verification results from the pde225 case, with a requested absolute l2-norm of 10−6.
[Top] A plot of the raw residual vector (r = Ax − b). [Bottom-Left] Statistical Distribution of the
residual vector, showing the mean, upper/lower quartiles, and minimum/maximum values. [Bottom-
Right] Spectral analysis of the residual vector, with peaks corresponding to frequencies of error in the
converged system. The dotted lines in the results mark the mean value of the residual required in order to
satisfy the l2-norm. This line divides the elements of the residual that positively or negatively contribute
to the l2-norm.

A number of benchmark cases are used in order to capture a range of problem sizes:

• KVLCC2 Tanker (half-body, single-phase) on three-dimensional, multi-block struc-
tured grids (317k, 1.11m, 2.67m, 5.99m, 10.0m & 15.8m elements), using a two-
equation κ-ω SST turbulence [12]. See [6].

• Lid-Driven Cavity Flow (LDCF) on 2D structured grids (14.4k & 1m elements).
No turbulence model. See [10].

• NACA0015C hydrofoil (15◦ angle-of-attack) on a two-dimensional multi-block
structured grid (28k elements), using a κ-ω SST turbulence model, and a Sauer-
modified cavitation model. See [8].

• Dambreak, a homogeneous two-phase, three-dimensional problem with a simple
structured grid (16k cells) and a volume-fraction equation. No turbulence model.
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See [16].
• Cylinder at a low Reynold’s number. An unsteady simulation (10 non-linear it-

erations per timestep) on a structured grid (4.3k elements) with a poor initial flow
estimation. No turbulence model. See [13].

A large number of core-counts are tested, beginning from 32 cores, to which the scala-
bility graphs are normalized:

Scalability =
Time(32-cores)

Time(n-cores)
(3)

The linear system convergence tolerance is set to 60% and 50 non-linear iterations are
performed. Chaotic solvers were compared against GMRES and P-GMRES, both with
a restart of 30. The respective solver was applied to every equation (i.e. momentum,
pressure, turbulence, volume-fraction and cavitation), and their average taken for each
case.

It was necessary to use pre-conditioning on the GMRES solvers in order to realize
their true potential. Unfortunately these solvers then base their convergence on the pre-
conditioned residual P−1(Ax − b) which is not proportional to the true residual. If the
pre-conditioner is not smooth, and the matrix is close to singular (as in the pressure
equation) a 10% relative convergence tolerance in the preconditioned residual may be
equivalent to a 50% or higher convergence tolerance in the true residual. To test fairly,
the pre-conditioner was limited to a simple diagonal scaling (Jacobi) and the equivalent
residual was computed in the Chaotic solver. This is not the best-case scenario for the
KSP solver, as pre-conditioning can drastically change their performance. However, there
is some overhead in the Chaotic solver in computing the diagonally-scaled residual, so it
seems the best compromise. Regardless, the effects of pre-conditioning should not have
a huge impact on the scalability results, especially given that Jacobi pre-conditioning is
highly scalable compared to more complex pre-conditioners.

Figure 4 shows the performance results for each solver. Firstly, the tabular results
show the absolute wall-time comparison on 32-cores and 256-cores. The Chaotic solvers
are expectedly slower on all reasonably-sized test cases and up to 6.88 times slower than
GMRES in the largest test case. The differences between GMRES and Chaotic solvers
in terms of absolute time mostly depend on the convergence tolerance (tolerances of 40%
and 20% were partially tested – not shown), however, scalability is mostly unchanged.
P-GMRES performs approximately 50% slower where strong scalability is not a concern.

The scaling graphs require more careful analysis. There are three factors at play: (1)
the cells-per-core ratio, which governs how much serial work and scalable ghost-cell ex-
change each process/thread performs; (2) the absolute number of processes, which governs
how much time is spent performing reductions; and (3) cache effects. The combination of
all three, and their relativity to each other, determines scalability.

The cells-per-core ratio is dominant in terms of scalability, since it changes most dra-
matically with the number of cores (doubling the number of cores halves the time due
to factor (1)); whereas doubling the number of cores has little change on factor (2), as
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the reduction time increases at a rate of log2(cores). Cache effects (3) occur when the
main parts of an algorithm fit into a high-speed memory buffer, located on the CPU.
The cache is responsible for the super-linear scalability demonstrated by each solver. Its
effect is more qualitative, as one could do extensive cache-optimization for each solver
and each CPU to obtain the best results. No such optimization was performed for these
solvers, and one can make the argument that the Chaotic solver more näıvely exploits the
cache, leading to performance benefits at the intra-node level, where memory contention
is a bottleneck. For the Chaotic solver, it is possible to see the point where the working
memory fits into cache (≈20k-30k cells-per-core).

The scalability of GMRES and P-GMRES collapses when a certain cells-per-core ratio
is reached - typically around 10k cells-per-core. Chaotic solvers continue to scale beyond
this point. For example, with the KVLCC2-1.11m case on 512 cores, the scalability of
the Chaotic solver is a factor of 601 compared to GMRES at 104. In absolute terms, the
Chaotic solver is approximately twice as fast at ≈2.2k cells-per-core.

This scalability does not continue indefinitely, as demonstrated by the very small test
cases. This is due to the expense of setting up the 8 OpenMP threads each time the
solver is called, as well as a few other serial bottlenecks in the initialization, finalization
and interface with PETSc’s data structures; there is also some ‘lag’ involved with the
residual computations which can cause over-convergence of very small equations. The
reduction required to compute the residual also blocks the SpMV MPI communications,
which is not ideal.

Some scalability is also lost due to the MPI communications themselves, which, al-
though asynchronous with the computations, ultimately proceed in lock-step with each
other. This means two MPI processes cannot benefit from faster communication between
themselves.

The scalability of P-GMRES is lacklustre for this application. It is suspected that the
very lax convergence tolerance prevents P-GMRES from showing its true benefit (since
the number of total iterations is very small and more time is spent in setting up the
solver), and very näıve pre-conditioning is used. It is also known that the scalability can
be improved by increasing the l-factor of the solver, and this could be further investigated
[5].

It is important to note that the results show the average of all the equation systems,
although the pressure equation dominates the others in terms of total wall-time. Splitting
the analysis between each equation individually is important, but the relative comparison
between solvers is virtually unchanged in these cases.

6 CONCLUSION

The results show that the Chaotic solver provides a correct solution and that the
scalability is better than a typical Krylov solver. The comparison of absolute wall-time is
subjective - utilizing such high convergence tolerance of the linear equation system may
not be viable, depending on the non-linear iterative process, the particular test case, and
the efficiency of the non-linear iteration. Furthermore, more effective pre-conditioning
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32-cores 256-cores
KVLCC2-15.8m Time (s) Factor Time Factor

GMRES 2.72E-01 - 3.08E-02 -
P-GMRES 4.06E-01 1.49 4.47E-02 1.45
Chaotic 1.87E+00 6.88 1.48E-01 4.81

KVLCC2-10.0m Time (s) Factor Time Factor
GMRES 1.48E-01 - 1.79E-02 -

P-GMRES 2.37E-01 1.61 2.65E-02 1.48
Chaotic 6.07E-01 4.11 7.05E-02 3.94

KVLCC2-5.99m Time (s) Factor Time Factor
GMRES 8.04E-02 - 8.63E-03 -

P-GMRES 1.23E-01 1.53 1.15E-02 1.34
Chaotic 2.83E-01 3.52 2.33E-02 2.70

KVLCC2-2.67m Time (s) Factor Time Factor
GMRES 2.98E-02 - 3.19E-03 -

P-GMRES 4.69E-02 1.58 4.29E-03 1.35
Chaotic 9.00E-02 3.02 6.65E-03 2.09

KVLCC2-1.11m Time (s) Factor Time Factor
GMRES 8.39E-03 - 2.09E-03 -

P-GMRES 1.20E-02 1.43 2.09E-03 1.00
Chaotic 2.03E-02 2.42 1.93E-03 0.93

LDCF-1.00m Time (s) Factor Time Factor
GMRES 3.95E-03 - 2.63E-03 -

P-GMRES 5.57E-03 1.41 2.67E-03 1.01
Chaotic 1.05E-02 2.65 1.59E-03 0.61

KVLCC2-317k Time (s) Factor Time Factor
GMRES 1.57E-03 - 1.37E-03 -

P-GMRES 1.91E-03 1.21 1.73E-03 1.27
Chaotic 2.08E-03 1.32 4.41E-04 0.32

NACA0015C-28k Time (s) Factor Time Factor
GMRES 9.68E-04 - 1.60E-03 -

P-GMRES 8.30E-04 0.86 1.47E-03 0.92
Chaotic 3.22E-04 0.33 1.79E-04 0.11

Dambreak-16k Time (s) Factor Time Factor
GMRES 6.24E-04 - 1.54E-03 -

P-GMRES 8.86E-04 1.42 1.49E-03 0.97
Chaotic 3.13E-04 0.50 3.01E-04 0.20

LDCF-14.4k Time (s) Factor Time Factor
GMRES 7.69E-04 - 1.42E-03 -

P-GMRES 7.48E-04 0.97 1.86E-03 1.31
Chaotic 1.99E-04 0.26 5.03E-04 0.35

Cylinder-4.3k Time (s) Factor Time Factor
GMRES 8.06E-04 - 1.68E-03 -

P-GMRES 8.78E-04 1.09 1.66E-03 0.99
Chaotic 1.96E-04 0.24 3.64E-04 0.22

Figure 4: Performance results for the three solvers (GMRES, PGMRES and Chaotic). Scalability graphs
show speed-up relative to 32 cores. The tabular results show absolute wall-time and how this benchmarks
against GMRES (lower factor implies faster than GMRES). Results are based on average solve times for
all equations (momentum, pressure and additional transport equations over 50 non-linear iterations).
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of the KSP methods may make them more favourable – assuming scalability can be
maintained.

For other applications, where the convergence of the linear system is important, Chaotic
solvers could be used in conjunction with more complex methods – either as a pre-
conditioner or a hybrid solver. It is very simple to detect when the Chaotic methods
begin to stagnate (corresponding to the point where high-frequency errors have been
smoothed); and the solver could dynamically switch at this point. For CFD, this could
also be viable, and further analysis will be performed along with improvements to the
Chaotic solver itself.

The performance of the Chaotic solver could be improved further by modifying the
stopping criteria evaluation, in order to prevent over-convergence of very small cases,
and also to remove the blocking reduction used to compute the residual. One concept is
to attach the local component of the residual to the SpMV communication, and have a
delayed residual computed for free as these messages are passed through all the processes.
Another option is to use non-blocking collectives from the MPI-3.0 standard to allow
other communications to continue (however, early attempts at this were slow). Perhaps
the best solution would be a hybrid, whereby the former option is used, but an early-stop
routine could be built which forces an immediate residual-check when the local portion
of the solution is well below the required convergence.

Ensuring the OpenMP threads stay ‘alive’ between the individual calls to the solver
should be simple, and will reduce serial bottlenecks further.

Improving MPI communication routines for higher asynchronicity is likely to be a
good area for improvement. The best way to achieve this would be through one-sided
communication and hardware-level RDMA (Remote Direct Memory Access). This would
be particularly hard to implement, especially without invoking high initialization costs -
and requires significant changes to PETSc and ReFRESCO.

The implementation of the Chaotic solver, using a hybrid MPI + OpenMP paralleliza-
tion scheme, is well-suited to acceleration using Graphics Processings Units (GPUs) or
co-processors, and is also an area for investigation.

REFERENCES

[1] Balay, S., Abhyankar, S., Adams, M. F., Brown, J., Brune, P., Buschelman, K., Eijkhout, V., Gropp,
W. D., Kaushik, D., Knepley, M. G., McInnes, L. C., Rupp, K., Smith, B. F. & Zhang, H. (2013).
PETSc Users Manual. Technical Report ANL-95/11 - Revision 3.4, Argonne National Laboratory.
http://www.mcs.anl.gov/petsc.

[2] Barrett, R., Berry, M., Chan, T. F., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo,
R., Romine, C. & der Vorst, H. V. (1994). Templates for the Solution of Linear Systems: Building
Blocks for Iterative Methods, 2nd Edition. SIAM, Philadelphia, PA.

[3] Chazan, D. & Miranker, W. (1969, April). Chaotic Relaxation. Linear Algebra and its Applications,
2(2):199–222.

[4] Davis, T. A. & Hu, Y. (2011). The university of florida sparse matrix collection. ACM Trans. Math.
Softw., 38(1):1:1–1:25. ISSN 0098-3500. doi:10.1145/2049662.2049663.

[5] Ghysels, P., Ashby, T. J., Meerbergen, K. & Vanroose, W. (2013). Hiding global communication
latency in the GMRES algorithm on massively parallel machines. Journal of Scientific Computing,

11



James N. Hawkes, Stephen R. Turnock, Guilherme Vaz, Alex B. Phillips and Simon J. Cox

35(1):48–71.

[6] Hawkes, J., Turnock, S. R., Cox, S. J., Phillips, A. B. & Vaz, G. (2014, October). Performance
Analysis Of Massively-Parallel Computational Fluid Dynamics. The 11th International Conference
on Hydrodynamics (ICHD), Singapore.

[7] Hawkes, J., Turnock, S. R., Cox, S. J., Phillips, A. B. & Vaz, G. (2014, September). Potential
of Chaotic Iterative Solvers for CFD. The 17th Numerical Towing Tank Symposium (NuTTS 14),
Marstrand, Sweden.

[8] Hoekstra, M. & Vaz, G. (2009, August). The Partial Cavity on a 2D Foil Revisited. In proceedings
of the 7th International Symposium on Cavitation, Ann Arbor, MI, USA.

[9] Horst, S. (2013, May). Why We Need Exascale And Why We Won’t Get There By 2020. Optical
Interconnects Conference, Santa Fe, New Mexico, USA.

[10] Klaij, C. & Vuik, C. (2013). Simple-Type Preconditioners for Cell-centered, Collocated, Finite
Volume Discretization of Incompressible Reynolds-averaged Navier-Stokes Equations. International
Journal for Numerical Methods in Fluids, 71(7):830–849.

[11] Kogge, P., Bergman, K., Borkar, S., Campbell, D., Carlson, W., Dally, W., Denneau, M., Franzon, P.,
Harrod, W., Hill, K., Hiller, J., Karp, S., Keckler, S., Klein, D., Lucas, R., Richards, M., Scarpelli,
A., Scott, S., Snavely, A., Sterling, T., Williams, S. & Yelick, K. (2008, September). ExaScale
Computing Study: Technology Challenges in Achieving Exascale Systems. DARPA IPTO.

[12] Menter, F., Kuntz, M. & Langtry, R. (2003, October). Ten Years of Industrial Experience with the
SST Turbulence Model. In Turbulence, Heat and Mass Transfer 4. Antalya, Turkey.

[13] Rosetti, G., Vaz, G. & Fujarra, A. (2012, July). URANS Calculations for Smooth Circular Cylinder
Flow in a Wide Range of Reynolds Numbers: Solution Verification and Validation. Journal of Fluids
Engineering, ASME, page 549.

[14] Shalf, J. (2013, October). The Evolution of Programming Models in Response to Energy Efficiency
Constraints. Oklahoma Supercomputing Symposium, Norman, Oklahoma, USA.

[15] Top 500 List (Acc. 2013, February). http://www.top500.org.

[16] Vaz, G., Jaouen, F. & Hoekstra, M. (2009, May–June). Free-Surface Viscous Flow Computations:
Validation of URANS Code FRESCO. 28th International Conference on Ocean, Offshore and Arctic
Engineering (OMAE), Honolulu, Hawaii.

12



ORIGINAL ARTICLE

On the strong scalability of maritime CFD

J. Hawkes1,2 • G. Vaz2 • A. B. Phillips3 • S. J. Cox1 • S. R. Turnock1

Received: 26 September 2016 / Accepted: 16 May 2017

� The Author(s) 2017. This article is an open access publication

Abstract Since 2004, supercomputer growth has been

constrained by energy efficiency rather than raw hardware

speeds. To maintain exponential growth of overall com-

puting power, a massive growth in parallelization is under

way. To keep up with these changes, computational fluid

dynamics (CFD) must improve its strong scalability—its

ability to handle lower cells-per-core ratios and achieve

finer-grain parallelization. A maritime-focused, unstruc-

tured, finite-volume code (ReFRESCO) is used to investi-

gate the scalability problems for incompressible, viscous

CFD using two classical test-cases. Existing research sug-

gests that the linear equation-system solver is the main

bottleneck to incompressible codes, due to the stiff Poisson

pressure equation. Here, these results are expanded by

analysing the reasons for this poor scalability. In particular,

a number of alternative linear solvers and preconditioners

are tested to determine if the scalability problem can be

circumvented, including GMRES, Pipelined-GMRES,

Flexible-GMRES and BCGS. Conventional block-wise

preconditioners are tested, along with multi-grid precon-

ditioners and smoothers in various configurations. Mem-

ory-bandwidth constraints and global communication

patterns are found to be the main bottleneck, and no state-

of-the-art solution techniques which solve the strong-scal-

ability problem satisfactorily could be found. There is

significant incentive for more research and development in

this area.

Keywords High-performance computing � Strong
scalability � Software profiling � Linear solvers

1 Introduction

A recent report by Slotnick et al. [28] attempted to create a

‘‘vision’’ of CFD in 2030, identifying some of the areas

which must be improved to allow more widespread and

successful use of CFD. Among these were improved tur-

bulence and separation modelling; better automatic mesh

generation and adaptivity; more capable multi-disciplinary

simulations (for example, coupled CFD and structural

simulations); improved post-processing, particularly of

large simulations; greater accuracy through higher-order

methods; and more practical design optimization. All of

these goals require improvements to the underlying CFD

algorithms—making them more efficient and more scal-

able—particularly considering the major changes in

supercomputer architecture expected in the same era.

Indeed, more scalable numerical methods are one of the

areas highlighted by [28], stating that development has

been stagnant for too long. The particular numerical

methods that require improvement are not clear, and

depend upon the type of CFD code and application.

Here, the strong scalability of CFD is reviewed in detail,

using ReFRESCO. ReFRESCO is an incompressible-flow,

unstructured, finite-volume, SIMPLE-based, segregated

solver specialized for maritime applications; similar in

formulation to many open-source and commercial codes. A

general scalability study of the whole code has been per-

formed (Sect. 4), which shows that the linear equation-
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system solver is the bottleneck in incompressible flow

simulations. This study details the reason for their poor

scalability, and shows that there are new problems facing

scalable CFD since earlier literature [11], due to increasing

memory bandwidth issues. Two test cases are used: lid-

driven cavity flow (LDCF) and the KRISO Very Large

Crude Carrier (KVLCC2) [20], each with around 2.67-

million cells—chosen to show the full range of intra-nodal

and inter-nodal scalability bottlenecks on the University of

Southampton supercomputer (Iridis4).

Following this, a variety of other linear solvers and

preconditioners are tested to determine whether the scala-

bility problems can be circumvented (Sect. 5) and provide

a comprehensive overview of the current ‘best’ solvers for

strong scalability. These studies will aid CFD practioners

in choosing suitable solvers and guide developers to find

more scalable solutions. Widely-used solvers such as

GMRES, Flexible-GMRES, BCGS and SOR are tested,

along with state-of-the-art solvers such as Pipelined

GMRES [10] which is designed to improve scalability.

Similarly, multi-grid preconditioners such as Sandia’s ML

[9] could bring a significant improvement when compared

to block-wise preconditioners (such as Block Jacobi) or

simple smoothers (such as SOR).

2 The strong scalability problem

Over the last few decades, growth in supercomputing

power has been exponential, with floating-point-operation

(FLOP) rates doubling approximately every 14 months

[29]. Whilst this growth is relatively constant, the under-

lying architectures which achieve such growth are not.

Until 2004, the speed and electricity consumption of

transistors was governed by Dennard’s Scaling: as tran-

sistors shrank in size, their speed increased linearly and

their electricity consumption dropped quadratically [7].

Unfortunately, the transistors used in modern processors

are so small that electrons are able to ‘leak’ across the

dielectric gates, and voltages must be increased to maintain

stability. This limitation, known as the ‘power wall’, makes

it more efficient for manufacturer’s to provide multiple,

slower cores in place of fewer, faster cores. Figure 1 shows

the exponential growth rate of computing power and Fig. 2

shows how this computing power is provided—in terms of

FLOP-rate-per-core and number of cores. The critical point

in 2004 is clearly visible, where the shift towards a multi-

core (‘Chip-Level Multiprocessing’) architecture occurred.

This trend is relentless, and has lead to supercomputers

with almost 200 cores-per-node. By 2020, it is expected

that the cores-per-node ratio could be as high as 10-thou-

sand; with the fastest supercomputers containing a total of

10- to 100-billion cores. Meanwhile, memory capacity is

growing at an ever-slower rate, limiting the absolute size of

simulations; and memory bandwidth (per core) is

decreasing, creating new issues for CFD algorithms

[16, 19, 27].

It is often regarded that the CFD algorithm benefits from

good ‘weak scalability’ (the ability to maintain computa-

tional efficiency with a fixed cells-per-core ratio), thus

realizing the benefits of supercomputing advances when

the growth in core-count was moderate [3]. Although dif-

ficult to quantify, it can be assumed that the capabilities of

CFD have grown more-or-less in proportion with super-

computing power because of this trait; especially given that

the maximum problem size (limited by total memory) has

more-or-less grown with the number of nodes.

Fig. 1 Total floating-point operation (FLOP) rate of the most

powerful 500 supercomputers in the world, using data from the

Top500 organization [29]. The data shows the benchmark FLOP rate

of the #1 machine, the #500 machine and the sum of all 500 machines

over time. The exponential growth rate corresponds to a doubling

every 13.85 months

Fig. 2 The FLOP rate, FLOP/core ratio and number of cores (average

of the Top500 [29]) over time, normalized to a snapshot in November

1993. Since the advent of chip-level-multiprocessing (CMP) in 2004,

FLOP/core ratio has grown by only a factor of approx. 4, whereas

number of cores has grown by a factor of approx. 64
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The ‘strong scalability’ of CFD—the ability to decrease

the cells-per-core ratio efficiently—is more important in a

massively-parallel era; and is generally poor [3, 6]. By

2020, supercomputers are expected to contain approxi-

mately 3000-times more cores, but the size of CFD simu-

lations can only increase by a factor of �11, thus the

efficient cells-per-core ratio of CFD must drop by a factor

of at least 250.1 Furthermore, in the maritime industry the

majority of state-of-the-art simulations are unsteady com-

putations. Since it is difficult to parallelize the time

domain, greater spatial domain-decomposition is required

to improve CFD capabilities, requiring further improve-

ments to strong scalability.

Whilst both forms of scalability have been investigated

for incompressible CFD, the results are often subjective to

the particular code and hardware, and difficult to general-

ize. In [3] the linear-equation system solver, particularly

for the Poisson pressure equation, is the main bottleneck to

scalability. Culpo [6] reinforces this by considering the

main elements of the linear-equation system solver and

how they could be improved. However, neither paper

investigates the reason for their poor scalability in detail,

and neither considers alternative solver algorithms. Grop-

pet al. [11] provides a good grounding in both these areas,

but is now 15 years old—and the conclusions drawn could

be somewhat outdated due to changes in hardware.

3 Experimental setup using ReFRESCO

In order to conduct scalability experiments, a sample CFD

code (ReFRESCO) is used on two classical test cases. In

order to get information on the run-time of ReFRESCO, the

code is profiled by injecting timers into the code in key

places. The test cases are run across a range of core-counts,

from 1 to 512, on the University of Southampton super-

computer: Iridis4. The various aspects of the experimental

setup are discussed below.

3.1 ReFRESCO

ReFRESCO2 is a viscous-flow CFD code that solves

multiphase, unsteady, incompressible flows for unstruc-

tured meshes [30]. It is complemented by various turbu-

lence, cavitation and volume-fraction models. In many

ways, ReFRESCO represents a general-purpose CFD code,

with state-of-the-art features such as moving, sliding and

deforming grids and automatic grid refinement—but it has

been verified, validated and optimized for numerous mar-

itime industry problems. ReFRESCO is currently being

developed at MARIN (Netherlands) and a number of uni-

versities around the world [2, 8, 18, 24, 26] including the

University of Southampton [12–14].

In ReFRESCO, the governing equations are discretized

in strong-conservation form using a finite-volume approach

with cell-centred collocated variables. Simulations are

parallelized with MPI (Message Passing Interface) and

partitioned using METIS [17]. ReFRESCO is based on the

SIMPLE (Semi-Implicit Method for Pressure-Linked

Equations) solver with pressure-weighted interpolation

(PWI) [18].

The SIMPLE algorithm is shown in Fig. 3. The coarsest

loop in the SIMPLE algorithm is responsible for unsteady

time-stepping. Time integration is performed implicitly

with first- or second-order backward schemes. All non-

linearity is tackled in the ‘outer loop’, which is performed

several times per time-step (until satisfactory

convergence).

In each outer loop, a Picard-linearized version of each

transport equation is assembled into a system of linear

equations, based on the discretization of all the equation

terms (time-derivatives, convection, diffusion, source

terms) in the associated mesh. This process creates a sparse

matrix of implicit terms (A) and a vector of explicit terms

(b); which can be solved to find new values for the flow

field (x): Ax ¼ b. Iterative solvers are used to solve for x to

a given convergence tolerance (based on the ‘2-norm of the

residual) in an ‘inner loop’, with typical tolerances between

0.1 and 0.001. ReFRESCO uses PETSc (Portable Extensi-

ble Toolkit for Scientific Computing) [1] for its large range

of linear solvers and preconditioners.

Since each MPI process has its own memory space

and its own portion of the mesh, the updated values for

x along partition boundaries must be shared via MPI

data exchange. The gradient of the flow-field variable

can then be computed using Gauss theorem, and the

updated gradients exchanged across domain boundaries

once again.

These four routines {assembly, solve, exchange and

gradients}, which can be seen in Fig. 3, are the heart of the

SIMPLE algorithm and are the most expensive part of the

solution process. They are also the linchpin of other

SIMPLE-derived algorithms and common alternatives such

as SIMPLEC, SIMPLER and PISO.

In order to observe how these key routines scale,

ReFRESCO has been profiled using Score-P [VI-HPS Acc.

2013]. Score-P is a compile-time wrapper which auto-

matically logs various run-time events, such as function

1 Based on Tianhe-2, the current (January 2016) #1 supercomputer

and conservative estimates of an exascale machine expected in 2020.

Maximum capabilities of CFD are based on trends of total compu-

tational power, doubling every 13.85 months. Realistically, maximum

CFD capabilities are limited by memory capacity which grows even

more slowly [19], thus amplifying the problem.
2 See http://www.refresco.org.
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calls and durations. It has been carefully filtered such that

only critical functions are measured, and the effect on total

run-time is less than 2%. Score-P can be linked to PAPI

(Performance Application Programming Interface) [4]

which gathers additional information from physical hard-

ware-counters.

Two hardware counters are enabled for these tests. The

first measures floating point operations per second, which

helps to determine whether the processing units are sat-

urated. For an unstructured CFD code this is an unlikely

situation, as the indirect memory access bottlenecks the

processor. Structured-mesh codes are more likely to reach

these limits due to better memory layout and

vectorization.

Hardware counters for pure memory bandwidth are not

available, but level one (L1) cache misses give a good

indication of memory-fetching issues (since a cache miss

must result in a memory or next-level cache transaction).

However, there are two issues. Firstly, the compiler will

often prefetch memory into the cache, resulting in memory

bandwidth usage which is not detected by this hardware

counter. Secondly, an L1 cache-miss will be registered

even when the data resides in L2 or shared cache (which is

still very fast compared to off-chip memory). Despite these

imperfections, it is possible to see certain bottlenecks due

to memory bandwidth, particularly when combined with

other hardware counters or profiling.

Other hardware counters are available (such as L2 cache

misses), but they cannot be enabled at the same time due to

register sizes or competing circuitry.

3.2 Iridis4

ReFRESCO is run on the University of Southampton’s

latest supercomputer. Iridis4 has 750 nodes, consisting of

two Intel Xeon E5-2670 Sandybridge processors (8 cores,

2.6 Ghz), for a total of 12,200 cores. Each 16-core node is

diskless, but is connected to a parallel file system, and has

64GB of memory. The nodes run Red Hat Enterprise Linux

version 6.3. Nodes are grouped into sets of 30, which

communicate via 14 Gbit/s Infiniband. Each of these

groups is connected to a leaf switch, and inter-switch

communication is then via four 10 Gbit/s Infiniband con-

nections to each of the core switches. Management func-

tions are controlled via an ethernet network.

Iridis4 ranked #179 on the Top500 list of November

2013 with a peak performance of 227 TFLOPS [29]. Iridis4

cannot be classified as a next-generation, many-core

machine, with only 16 cores per node. Indeed, it is several

years behind the state-of-the-art. Nonetheless, it should be

able to give sensible insight into the limitations of the CFD

algorithm.

3.3 LDCF and KVLCC2

Two test cases are used in the experiments. The first is a

laminar-flow, canonical, unit-length, three-dimensional lid-

driven cavity flow (LDCF). A uniform structured mesh of

2.68-million cells (1393) is used, and only momentum and

pressure equations are solved. The simulation mimics an

infinite domain, with two cyclic boundary conditions. The

Initial Guess of Flow Values

Outer Loop: Until Convergence

Compute Flow Momentum (x,y,z)

Compute Flow Pressure

Compute Other Flow Variables
(Turbulence, Cavitation, etc.)

Assemble Equation System
Discretization, Eccentricity Corr., Orthogonality Corr.

Solve Equation System
Iteratively solve the linear equation-system

MPI Data Exchange
Update partition boundaries with flow values

Compute Gradients
Using Gauss Theorem

MPI Data Exchange
Update partiion boundaries with flow gradients

A x b

Time-Step Loop: Until Simulation Time

Fig. 3 An overview of the SIMPLE algorithm. Time discretization is

handled by the time-step loop at the coarsest level. Within each time-

step a number of outer loops are performed in order to solve non-

linearity and couple the governing equations. Within each outer loop,

the solutions to the governing equations (momentum, pressure, etc.)

are computed in their uncoupled, linearized, discretized form. The

solution of each equation follows the same five steps as illustrated on

the right
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remaining four boundaries are constrained with Dirichlet

boundary conditions, one of which specifies a tangential,

non-dimensional velocity of 1.

The second test case is the KRISO Very Large Crude

Carrier (KVLCC2) double-body wind-tunnel model [20].

The mesh is a three-dimensional multi-block structured

mesh consisting of 2.67-million cells. A k-x, two-equation
shear stress transport turbulence model is used [22]. The

domain and mesh are shown in Figs. 4 and 5 respectively.

The two test-cases are designed to have a similar

number of cells. The size of the mesh has been chosen to

show the full range of scalability issues. On 512 cores, the

cells-per-core ratio reaches approximiately 5200 which

helps demonstrate the parallel bottlenecks on a large

number of cores; yet the problem is substantial enough to

show memory bandwidth issues on a single node (with

approximately 167k cells-per-core).

In both cases, 400 outer-loops are performed with no

time-stepping, with an inner-loop (linear) relative

convergence tolerance of 0.1 (0.01 and 0.001 later).

Relaxation is applied to all outer-loops to stabilize the non-

linear iterative process. QUICK (Quadratic Upstream

Interpolation for Convective Kinematics) and first-order

upwind schemes are used to discretize the convective terms

of the momentum and turbulence equations respectively.

A GMRES (Generalized Minimal Residual method) solver

is used with a Block Jacobi preconditioner, as in [11].

4 General scalability study

The scalability of the SIMPLE algorithm has been exam-

ined by measuring the run-time of the two test cases as

successively more cores are added to the simulation. A

scalability factor S can be defined as S ¼ T1=TC where TC
is the wall-time using C cores. Ideal scalability is when

S ¼ C, although this is rarely achieved. This scalability

factor can be found for various subroutines in the SIMPLE

algorithm in order to identify potential bottlenecks. Here,

the scalability factor is normalized to serial operation

(C ¼ 1), and is often called a parallel ‘speed-up’ factor for

this reason.

Figure 6a, b show the scalability of the code as the

number of cores increases. The embedded bar charts show

absolute core-hours (C � TC, which would ideally remain

constant) in serial operation (C ¼ 1), single-node operation

(C ¼ 16) and highly-parallel operation (C ¼ 512). Total

core-hours is shown with black bars; the composite parts

are coloured and keyed with respect to the enclosing

scalability plot. This shows the denormalized costs of

various routines; and also highlights where the scalability

bottlenecks occur—at the intra-nodal or inter-nodal level.

The results from the hardware counters are shown in Fig. 7,

for the LDCF test case.

Total scalability is poor overall, suffering significantly

on just 16 cores due to intra-nodal bottlenecks and

worsening to the point at which almost no speed-up is

gained from adding additional nodes. On 512 cores the

parallel speed-up is just 128 (KVLCC2) and 100 (LDCF).

This scalability is similar to other codes, such as Open-

FOAM [6, 25], STAR-CCM? [5] or Ansys Fluent [15]

although some published results are normalized to nodal

performance (i.e. C ¼ 16, which hides intra-nodal ineffi-

ciency and gives overly-optimistic results) or are trun-

cated (hiding inter-nodal bottlenecks). Exact comparisons

between various codes on identical hardware were not

feasible, but only minor differences are expected since all

of these packages are based off the same algorithm and

share similar implementations. Major differences should

only be observed if coupled solvers or inferior partition-

ing schemes are used.

Fig. 4 The domain used for the KVLCC2 double-body wind-tunnel

simulation. Symmetry boundary conditions are applied at the

waterplane, but port- and starboard-sides of the centre-line are both

simulated

Fig. 5 The KVLCC2 mesh is a multi-block structured mesh

consisting of 2.67-million cells
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a b

c d

Fig. 6 Scalability of the code, and the profiled routines within, as the

number of cores increases. These results used GMRES as the linear

solver with a Block Jacobi preconditioner, and an inner-loop relative

convergence tolerance of 0.1. a KVLCC2 breakdown by routine,

b LDCF breakdown by routine, c KVLCC2 breakdown by equation,

d LDCF breakdown by equation

Fig. 7 An example of the information gleaned from PAPI hardware counters. For all routines in the LDCF test case, the number of first-level

(L1) cache-misses per thousand clock cycles (left) and the total floating-point operation rate (FLOPs) (right) are shown
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The routines outlined earlier assembly, solve, exchange

and gradients, for each equation in each outer loop, account

for the large majority of overall run-time. The remaining

time ( other) is spent (mostly) in one-off functions such as

file IO or MPI initialization, thus is subjective to the length

of the simulation and amount of IO required. These other

routines may also increase significantly if additional fea-

tures such as moving, deforming and adapative grids are

used—again, this is highly subjective.

The assembly and gradients routines scale favourably,

reaching almost 90% parallel efficiency. The high, and

increasing, cache-miss rate of the gradients routines is

curious, as it does not seem to affect performance (FLOP

rate is maintained). It is likely that the data required resides

in L2 or shared-cache, rather than off-chip memory, so the

impact of these L1 cache misses is much lower.

The data exchange routines are not visible in the scal-

ability plots, because normalizing against (T1 � 0) gives

negative scalability (no communications are required in

serial operation). In reality, these routines scale reason-

ably—as the number of cores increases the size of the

messages become smaller, and these messages can be sent

concurrently. With inadequate load-balancing these data

exchanges can become costly, due to the implicit syn-

chronization of MPI processes. However, the results show

that these communications account for a small proportion

of overall run-time.

As consistent with literature, the solve routines have

poor scaling and are a major contributor to total run-time,

thus are the main concern for scalability. The hardware

performance counters show a high cache-miss rate between

16 and 128 cores, corresponding to saturated memory

bandwidth at the intra-nodal level.

Memory-bandwidth-per-node has been growing at

approximately half the rate of processing-power-per-node

leading to today’s problems with memory bandwidth [27].

In [11], conducted in 2000 on single-core processors,

memory-bandwidth problems were apparent but not as

concerning—changes in architecture over the last decade

have made memory bandwidth issues more critical.

Beyond 128 cores, cache misses in the solve routines

become less frequent but FLOP rate continues to decrease and

scalability worsens. This is due to the oft-observed global

communication bottleneck. An illustration of a single

GMRES iteration is shown in Fig. 8. This pattern is compu-

tationally similar to most Krylov Subspace (KSP) solvers,

including conjugate gradient methods—although some dif-

ferences will be mentioned in Sect. 5. In particular, two dis-

tinct communication routines are required by KSP solvers.

Firstly, sparse-matrix-vector-multiplication (SpMV)

requires concurrent neighbour-to-neighbour communica-

tion as in the data exchange routines—scaling reasonably

well.

Secondly, two global reduction-broadcast routines are

required for orthogonalization and normalization of the

Krylov vectors. These require a hierarchical global com-

munication pattern which scales poorly, usually with

TC/
s

log2ðCÞ (where the proportionality factor depends

primarily on network latency). These communication pat-

terns are blocking, and cannot easily be overlapped or

hidden by other useful work. On a large number of cores

spread over an inter-nodal network with relatively high

latency, these global communications become a bottleneck

to scalability of the linear solvers. Whilst most routines

reduce in wall-time as more cores are added (with less-

than-ideal efficiency), wall-time for global communica-

tions increases, as each time the number of cores doubles,

an extra set of messages must be sent (incurring the latency

cost of the network).

These global communications create a scalability bot-

tleneck when a high number of nodes are used, and has

been well-documented in the literature [6]. The memory-

bandwidth problems previously noted are often over-

looked, but are an important bottleneck to overcome for

next-generation supercomputing.

Figure 6c, d shows the breakdown of time spent in the

various equations (pressure, momentum, turbulence). In

both cases, the single pressure equation took considerable

time to compute—similar to all three momentum equations

combined. In incompressible-flow simulations the pressure

equation is much harder to solve than other transport

equations, due to its elliptic Poisson form.

This can be illustrated by considering the spectral radius

(maximum eigenvalue) of the Jacobi iteration matrix:

qðD�1ðLþ UÞÞ, where D, L and U are the diagonal, lower

and upper triangles of A respectively. The rate of conver-

gence of the Jacobi method is proportional to the spectral

radius, and must be less than unity for convergence. Using

SpMV local dot reduct/bcast axpy reduct/bcast scale

Fig. 8 An illustrative trace of a GMRES iteration on 8 cores (not to

scale). Note the local neighbour-to-neighbour communications per-

formed asynchronously in the SpMV routine, and the two reduction-

broadcast patterns. There are many variations of the reduction-

broadcast algorithm which cannot be illustrated clearly. The most

common is the ‘butterfly’ algorithm which completes in log2ðCÞ-time,

combining the reduction and broadcast into a single hierarchy of

latency-bound messages. As the number of cores increases, this

reduction-broadcast takes longer, whilst other routines take less time
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a smaller version of the KVLCC2 mesh (317k cells), the

spectral radius of the KVLCC2 pressure equation was

[0.9999, compared to 0.8450 for the momentum equation

and 0.5888 for the turbulence equation.3 Thus it would take

at least 1700-times more iterations of the pressure equation

to reach the same convergence as in the momentum

equation, if using a naı̈ve Jacobi solver. The pressure

equation also gets stiffer as the mesh gets larger, ampli-

fying the problem. KSP methods, particularly with good

preconditioning, close this gap considerably, but there is

still a large difference between the pressure equation and

other transport Eq. (14).

The above results were performed using an inner-loop

(linear) relative convergence tolerance of 0.1 for all

equations. The results were repeated using a tolerance of

0.01 and 0.001 (see Fig. 9). Note the significant increase in

wall-time, entirely due to the solve routines for the pressure

equation.

These results were also re-run using alternative con-

vective discretization schemes [12], which had no signifi-

cant effect on scalability. Higher order methods, such as

QUICK, apply their high-order terms explicitly (into the b

vector); with only the low-order terms affecting the matrix

(A). It is suggested that higher-order discretization will be

a prominent development in the next decade [28], so this is

a promising result. However, there are difficulties when

going to even higher-order methods, and this remains an

area of active linear-solver development [23].

A fully unstructured mesh was also tested using the

KVLCC2 test case [12]. The unstructured mesh was much

a b

c d

Fig. 9 Scalability of the code with an inner-loop convergence

tolerance of a, c 0.01 and b, d 0.001 for the KVLCC2 test case as in

Fig. 6, showing scalability of a, b the various routines and c, d) the
various equations, using GMRES with a Block Jacobi preconditioner.

The results show poor scaling of the solve routines, which particularly

influences the cost of the pressure equation. Similar results were

obtained for the LDCF test case

3 The spectral radii were found by extracting the matrices from the

fifth outer loop in a separate batch of simulations. The maximum

eigenvalue, and thus spectral radius, of the corresponding Jacobi

iteration matrix could be found using ARPACK routines [21] based

on Arnoldi iterative methods. The size of the matrix that could be

tested was limited by memory capacity.
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larger (12.5 m) and did not directly match a structured

mesh, so the scalabiliy of two structured meshes was

interpolated (10.0 and 15.8 m). The interpolated scalability

of the structured meshes was virtually identical to the

unstructured mesh. Note that ReFRESCO treats all meshes

as unstructured meshes, in terms of data structure—and

therefore does not take advantage of structured meshes and

structured memory layout.

This preliminary study concludes that in their basic

form, the linear equation-system solvers are the primary

bottleneck to strong scalability of CFD, in agreement with

recent literature. In particular, detailed profiling of

ReFRESCO has revealed that memory bandwidth con-

tention and expensive hierarchical communication patterns

are the main bottleneck. However, the scalability may be

significantly altered if different solvers and preconditioners

are used.

5 Effect of linear solvers and preconditioners
on scalability

Thus far, the results have used a basic GMRES solver with

a Block Jacobi preconditioner. More modern solvers or

preconditioners could provide very different scalability

characteristics. For example, a powerful preconditioner

could reduce the number of KSP iterations (and global

communications) required; but may be unscalable in itself

due to communication or high setup costs. CFD is unique

in that a solution to the linear system is only approximated,

since the solution to the linear system is a small part of a

non-linear system. Compared to applications which require

machine accuracy of linear systems, CFD is very sensitive

to start-up (initialization of linear solvers, memory allo-

cation, etc.) costs which may rule out the most advanced

solvers or preconditioners. Indeed, it may be that simpler

preconditioners than Block Jacobi provide better scaling. In

this section, the scalability of the linear solvers will be

tested. Following this, a number of preconditioning tech-

niques will be investigated—including block precondi-

tioning techniques, multi-grid methods and simple

smoothers.

5.1 Solvers

A recent improvement to GMRES has been developed, so-

called Pipelined GMRES (PGMRES) [10], which removes

one of the global communications from the standard

GMRES iteration—replacing it with a correction routine,

and allowing the remaining reduction to be overlapped

with other useful work. The scalability of GMRES and

PGMRES are compared in Fig. 10. Flexible GMRES

(FGMRES) has been tested, as it allows a wider range of

preconditioning techniques to be used later. A Bi-Conju-

gate Gradient Squared (BCGS) method has also been tes-

ted. All of the KSP methods use Block Jacobi as a

preconditioner. A successive over-relaxation (SOR)

method is also shown, demonstrating the differences

between KSP and non-KSP methods.

GMRES performs as previously noted, with poor per-

formance at the intra-nodal level due to memory-band-

width contention and poor performance on a large number

of cores due to global communication patterns. FGMRES

exhibits slightly worse inter-nodal scalability than

GMRES. PGMRES scales worse in the memory-bandwidth

zone than either GMRES or FGMRES, but the gradient of

the scalability factor, dS/dC, between 256 and 512 cores is

approximately double that of GMRES—consistent with the

algorithmic improvement (half the number of global

communications). Overall, the wall-time gains from

PGMRES on 512 cores are minimal.

BCGS gives strong numerical performance in serial

operation and similar memory-limited scaling at the intra-

nodal level. BCGS requires four global communications

per iteration, thus inter-nodal scaling suffers.

As expected, SOR performs much worse than the KSP

methods, but has far superior scalability. SOR is limited by

memory bandwidth briefly, but quickly recovers this as the

simulation fits into cache. The SOR algorithm still uses one

global communication pattern to compute a residual at the

end of each iteration; thus its final gradient is similar to that

of PGMRES. Residuals could be calculated less frequently

to improve scalability of SOR considerably.

ReFRESCO also has access to a large range of pre-

conditioners through its use of PETSc, many of which have

been tested as follows.

Fig. 10 Scalability of the solve routines in the pressure equation,

using the KVLCC2 test case with inner-loop convergence tolerance

set to 0.1. The results compare three Krylov Subspace solvers and a

Successive Over-Relaxation (SOR) algorithm operating as a Block

Gauss-Seidel method. Note the exponential scale of the inset core-

hours chart
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5.2 Block preconditioners

The Block Jacobi algorithm used thus far implements a

block-wise Incomplete LU (ILU) factorization with zero-

level fill, and sets a high benchmark for other precondi-

tioners. ILU(0) is performed on each MPI process’s local

portion of the matrix, leading to an interesting problem:

convergence deteriorates as the number of cores increases,

as the local portion becomes less significant to the global

solution.4 An Additive Schwarz Method (ASM) was tested,

with the same block-wise ILU(0) solver. ASM is similar to

Block Jacobi, but allows communication between neigh-

bouring blocks to augment the process. The results are

shown in Fig. 11. The differences between Block Jacobi

and ASM were small, with ASM fairing worse overall due

to additional communications. ILU(0), ILU(1) and ILU(2)

were also tested as preconditioners in their own right, with

poor results in all regards (not shown).

5.3 Multi-grid preconditioners

For elliptic equations (such as the pressure equation) multi-

grid methods such as ML [9] should be very powerful.

Multi-grid methods cover a broad category, with multiple

formulations and many opportunities for fine-tuning. They

are all based on the principle that multiple scales of the

problem can be solved efficiently by solving coarse-grid

approximations to the actual (fine) grid. The coarsest grid

will have a much lower spectral radius than the finest,

allowing low-frequency errors to be reduced quickly.

Meanwhile, the fine grid solves high-frequency errors, and

the results are combined. Since each grid is much easier to

solve, ‘smoothers’ are used instead of complete solvers at

each level. A typical smoother may just be one iteration of

SOR or an ILU factorization, for example, although the

coarsest grid is often solved directly. There are many

variations of multigrid methods: different methods for

coarse-grid construction; different methods for coarse-grid

interpolation; various methods of communicating (or not)

on coarse grids; and so on. All of these variations will have

a large effect on scalability.

ML is a state-of-the-art smoothed-aggregation algebraic

multi-grid method from Sandia’s National Labaratories,

and is one of the most commonly-used multigrid packages

[9]. ML automatically creates coarse grids until a minimum

size is reached using a smoothed aggregation process. For

the KVLCC2 test case, ML automatically decided to create

six grids when running on one core, and four grids on 512

cores. FGMRES was necessary to accommodate the multi-

grid preconditioner, because the preconditioning matrix

could change between iterations.

The results shown in Fig. 11 show that ML is highly

capable at the intra-nodal level. It exhibits strong serial

performance and moderate scaling to 16 cores—better than

Block Jacobi. Unfortunately it rapidly breaks down beyond

a

b

c

Fig. 11 Scalability of the solve routines in the pressure equation,

using the KVLCC2 test case with inner-loop convergence tolerance

set to a 0.1, b 0.01 and c 0.001. The results compare different

preconditioners including Block Jacobi, Additive Schwarz (ASM),

SOR smoothing (SORx10) and a multi-grid method (ML). FGMRES

is used as the solver to allow more flexible preconditioning. Note the

exponential scale of the inset core-hours chart

4 Indeed, this made it difficult to distinguish between convergence-

loss-problems and global-communication-problems in the previous

section. Profiling of an unpreconditioned GMRES reveals that globals

communications are the leading problem. However, the number of

iterations required with Block Jacobi increased when a tolerance of

0.001 was requested.
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64 cores where global communications dominate. It was

suspected that this was due to the direct solver used on the

coarsest grid, but replacing it with a smoother (5 iterations

of SOR) resulted in worse scalability. Another recom-

mendation is to restrict the number of levels created by

ML, thus reducing expensive start-up costs. Restricting ML

to three levels worsened the scalability; and two levels (not

shown) gave similar results. It is expected that less

sophisticated multigrid methods (such as non-smoothed

aggregation) may provide better results for CFD, since

start-up is cheaper. It is also possible to re-use the coarse-

grid mappings between non-linear iterations, which would

improve the results shown here. Furthermore, the multigrid

method could be used as a standalone solver rather than a

preconditioner, omitting FGMRES entirely. Clearly a

much deeper study of multi-grid methods is required as

they certainly cannot be used as a black-box for scalable

CFD.

5.4 Smoothing as a preconditioner

Finally, it is worth considering a much simpler precondi-

tioner than even Block Jacobi. Instead of preconditioning

in the classic sense, a smoother can be used before the main

solver (FGMRES). Ten iterations of SOR as a smoother

was optimal (compared to 1, 100 or 1000). Although it

performed worse than Block Jacobi in serial operation,

where Block Jacobi has good convergence, it was able to

utilize the super-linear scalability as noted in Sect. 4 due to

caching of memory, thus providing excellent scalability.

Since a fixed number of smoother iterations were per-

formed, residual computation in the SOR algorithm was

unnecessary, improving scalability further. This combina-

tion has minimal setup costs, since SOR requires no

additional memory or pre-computation, so could be a

viable option for scalable CFD. However, the solver is still

unavoidably limited by memory bandwidth contention, and

global reductions from the overruling KSP solver. Fur-

thermore, the numerical performance is not good, so it is

only competitive on a large number of cores.

This section has looked at various linear solver and

preconditioners. The most promising result was from a

SOR smoother instead of a classical preconditioner.

Although it was the slowest configuration for serial com-

putation, superior scaling meant that it was often the best

performer at C ¼ 512. A multi-grid preconditioner was

tested, which performed well on a low number of cores, but

had poor scaling. A more detailed study of multi-grid

preconditioning may yield better results. A more scalable

version of GMRES was also tested (Pipelined GMRES)

with mixed results—global communication problems were

halved; but at the cost of more memory-bandwidth

problems.

Overall, the best setup required using 10 iterations of

SOR as a smoother/preconditioner. The initial study is re-

illustrated using this configuration in Fig. 12. Inter-nodal

scaling is significantly improved (compared to Fig. 6a),

which is encouraging, but parallel efficiency is still poor

and global communications are still limiting. Overall

wall-time on 512 cores has been improved by approxi-

mately 30%, but with stricter convergence tolerances

these gains are lost due to the poor numerical properties

of SOR.

6 Conclusions

The main causes of inefficiency and poor scalability of the

SIMPLE method have been analyzed by profiling the

performance of a state-of-the-art CFD code from 1 to 512

cores. The results show that the main bottleneck is the

linear equation-system solvers, particularly for the Poisson

pressure equation. The main problem with the linear

equation-system solvers is the large amount of expensive,

unscalable global communications that are performed.

Profiling with hardware counters has also revealed further

problems at the intra-nodal level due to memory-bandwidth

contention.

Experiments were performed in order to measure per-

formance differences between various state-of-the-art

linear equation-system solvers and preconditioners.

Recent developments such as a ‘pipelined’ version of

GMRES showed improved inter-nodal scalability but gave

worse absolute speed and intra-nodal scalability—overall

giving only a minor performance increase. Multigrid

methods offer some hope, but their performance is

nuanced and difficult to predict. The results showed that

Fig. 12 Scalability of the code for the KVLCC2 test case, and the

profiled routines within, as the number of cores increases. These

results used FGMRES with 10 iterations of SOR as a smoother, with

an inner-loop relative convergence tolerance of 0.1. Similar results

were found for the LDCF test case
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multigrid preconditioners were able to offer better abso-

lute speed, but did not scale as well as simpler precon-

ditioners such as Block Jacobi. Depending on the

convergence tolerance of the linear equation system,

simple smoothers often gave the best performance.

Replacing the classical Block Jacobi preconditioner with

ten iterations of Successive Overrelaxtion improved

overall wall-time on 512 cores by 30%.

By 2020, supercomputers are expected to be 3000-times

more parallel [19], with total power (and practical simu-

lation size) growing by a factor of just �11. Based on these

hardware predictions, the cells-per-core ratio must drop by

a factor of at least 250 in order to maintain a practical

simulation time. Today, a practical simulation of 50-mil-

lion elements, using 512 cores of Iridis4, would achieve a

cells-per-core ratio of approximately 100-thousand.

Dividing this by 250 gives a predicted cells-per-core ratio

of just 391. The results have shown that scalability at 5200

cells-per-core is already poor, with a maximum parallel

efficiency of 25–50%. Beyond 512 cores, negative scala-

bility is likely, with simulation time increasing as more

cores are added. With the current state of the CFD algo-

rithm, extrapolating to less than 500 cells-per-core is

almost inconceivable.

There are currently developments to improve on the

presented SOR results using ‘chaotic’ iterative methods,

which provide even better scalability by removing the

implicit synchronization in the sparse-matrix-vector

communications; improving cache-use at the intra-nodal

level; and slightly improving convergence rates. These

chaotic methods could also be used to accelerate multi-

grid methods [13, 14]. Regardless of the specific methods,

more research is needed to carry incompressible CFD

codes into the next era of supercomputing, where many-

core machines (including GPU or co-processor architec-

tures) will be commonplace. Minor improvements can be

expected from alternative software models (such as hybrid

parallelization), but significant changes are required at the

algorithmic level to keep up with rapidly-evolving

hardware.
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Abstract

Supercomputer power has been doubling approximately every 14 months for several decades, increasing
the capabilties of scientific modelling at a similar rate. To utilize these machines effectively for CFD,
improvements to strong scalability are required. The largest bottleneck to strong scalability is the parallel
solution of linear Poisson equations. State of the art linear solvers such as Krylov Subspace or multigrid
methods provide excellent numerical performance but do not scale efficiently, due to frequent synchronization
between processes. Complete desynchronization is possible for simpler, Jacobi-like solvers using the theory
of ‘chaotic relaxations’. These non-deterministic, chaotic solvers scale superbly, as demonstrated herein, but
lack the numerical performance to contribute seriously to exascale CFD – despite relatively lax convergence
requirements. However, these chaotic princples can be translated to multigrid solvers. In this paper,
a ‘chaotic-cycle’ algebraic multigrid method is described and implemented as an open-source library, and
tested within the context of an industrial CFD code. The chaotic-cycle shows good scalability and numerical
performance compared to classical V-, W- and F-cycle multigrid cycles. On 2048 cores the chaotic-cycle
multigrid solver performs up to 7.7× faster than Flexible-GMRES and 13.3× faster than classical V-cycle
multigrid; with room for improvement relating to coarse-grid communications and desynchronized residual
computations.

Keywords: Exascale, Strong Scalability, Chaotic Methods, Multigrid, Chaotic Cycle, Chaos, CFD,
ReFRESCO

1. Introduction

Up until approximately 2004, the speed and energy efficiency of supercomputers increased as transistors
became smaller. However, below a critical transistor size, electrons begin ‘leaking’ across the dielectric
gates, and voltages have to be increased to maintain stability. Manufacturers have resorted to packaging
multiple cores onto a single chip to keep up with exponential growth expectations, and core clock-speeds
have stagnated or decreased. By 2020, the first exascale computer, capable of 1 ExaFLOP (1018 floating-
point operations per second), is expected. In order to achieve reasonable energy efficiency at such scale, the
number of cores-per-node must continue increasing exponentially [1, 2, 3].

There are many proposed architectures for a many-core exascale machine, including accelerated ma-
chines (utilizing GPUs or Xeon Phi co-processors) or many-core CPU-based designs. The most powerful
supercomputer according to the Top500 list [4] is Sunway TaihuLight, using 256-core CPUs to achieve a
peak performance of 93 PFLOPS. In second place is Tianhe-2, which achieves 34 PFLOPS using Xeon
Phi accelerators (192 cores-per-node). The current third ranked supercomputer uses NVidia k20 GPUs to
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achieve 17.6 PFLOPS (2496 CUDA cores-per-node). An exascale machine would be 11-times more powerful
than Sunway TaihuLight, but is estimated to be up to two orders-of-magnitude more parallel, with most of
this parallelization coming at the intra-nodal (many-core) level.

In order for computational fluid dynamics (CFD) to keep up with this paradigm-shift, it is important to
consider strong scalability – the ability to maintain parallel efficiency as the cells-per-core ratio decreases.
Over the last decades, a modest increase in parallelization has not required significant changes to the
fundamental algorithms driving CFD.

This paper concerns itself with semi-implicit methods for solving the incompressible Navier-Stokes equa-
tions on unstructured grids. Such CFD solvers are often based on the SIMPLE (Semi-Implicit Method for
Pressure Linked Equations) algorithm or derivatives such as SIMPLEC, SIMPLER or PISO. These methods
linearize the governing equations for momentum, pressure, and other modelled quantities and iterate to find
a solution to the non-linear problem, whilst coupling the equations at each iteration. In each SIMPLE itera-
tion, a linear equation-system for each governing equation is assembled and must be solved to an acceptable
tolerance, using a linear iterative solver.

It has been shown that repeatedly finding a solution to the linearized pressure equation is a severe
bottleneck to the strong scalability of CFD [5]. The pressure equation is a stiff, elliptic, Poisson equation
which contains many low-frequency error components [6]. Krylov Subspace (KSP) methods (such as residual
minimization or conjugate gradient methods) are often employed to solve the pressure equation because
they are numerically powerful and robustly converge low-freqency errors. Unfortunately, these methods
require global communication patterns which scale very poorly. Efforts to hide or reduce the number of
global communications (such as the ‘pipelined’ version of GMRES, P-GMRES [7], or improved bi-conjugate
gradient methods such as IBCGS [8]) provide only minor improvements for CFD. The other equations, such
as for momentum, are not elliptic and do not usually contain low-freqency errors. The high-frequency errors
can be smoothed quickly using simple smoothers such as Jacobi or Gauss-Seidel methods which do not
require global communications – only local neighbour-to-neighbour communications.

Although subjective to the details of the CFD solver and test case, the error in the linear equation-
systems usually only needs to be reduced by one or two orders of magnitude – a lax relative convergence
tolerance of 0.1 or 0.01. This is because the linear system is only an approximation of a larger non-linear
system, and the repeated solution of the governing equations ensures overall convergence. It may be possible
to use less powerful solvers on the pressure equation in order to achieve higher scalability. At any rate, it is
unusual to require machine-accuracy of the linear solver, as is the case in other numerical fields – and this
could be exploited.

Multigrid methods, such as ML [9], are gaining popularity due to their flexibility. By tuning the number
of multigrid levels, the cycle type and number of pre- and post-smoothing steps it is possible to customize
a solver which has a good compromise of numerical power (and therefore, absolute speed) and scalability.
The main bottleneck to scalability of multigrid methods is the amount of implicit global synchronization,
mostly triggered by the Jacobi or Gauss-Seidel smoothing steps.

This synchronization occurs because of neighbour-to-neighbour communications, required to communi-
cate ghost cells (or halo data) across processor boundaries. Although there is no explicit global communi-
cation, and the communication pattern itself is scalable, it is impossible for two processors to become more
than one iteration out-of-sync. Consequently, if there is any imbalance between processors, caused by poor
load balancing, variable clock frequencies, background tasks, or, most commonly, variability in communica-
tion times – then the entire solver is bottlenecked. This is of particular concern as the cells-per-core ratio
decreases, and the ratio of communications to computations increases. Likewise, on the coarsest grids of a
multigrid solver, this implicit synchronization limits scalability.

In order to remove this implicit synchronization from Jacobi-like solvers or smoothers, one can use the
concept of ‘Chaotic Relaxations’ [10] – a method in which individual rows of the equation-system can be
iterated in any chaotic order with guaranteed convergence. This theory has been used to create highly-
asynchronous Jacobi-like solvers, such as in Anzt et al. [11]; but this theory can be leveraged further. Here,
a completely non-deterministic, chaotic solver is developed in which independent threads are used to overlap
computational and communicational work – completely desynchronizing parallel processes and removing a
significant scalabililty bottleneck.
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In section 2 the theory of chaotic relaxation is introduced and the implementation of this chaotic solver
are presented. The solver is tested within the context of a SIMPLE-based CFD solver (ReFRESCO). The
chaotic solver is not expected to outperform state of the art solvers, but the benefits and drawbacks compared
to the Jacobi method will be evaluated. In section 3 these chaotic methods are applied to a multigrid solver.
The objective is to replace Jacobi smoothers with a chaotic smoother, but in order to remove implicit
synchronization between levels a novel ‘chaotic-cycle’ is required to replace normal V-, W- or F-cycling.

The chaotic methods discussed in this paper have been written as a standalone library, Chaos1. The
Chaos library is available under an open-source MIT license, in the hope that the results herein can be
reproduced, developed and applied to other scientific codes and disciplines. The library is written in C++
and can be bound to Fortran and C easily. Bindings are also created for Python and Ruby automatically,
using SWIG[12]. Chaos is a hybrid-parallel library, using MPI and OpenMP, and has been tested under
multiple compilers and multiple operating systems. The interface is similar to other linear-solver toolkits,
such as PETSc [13] and Trilinos [14].

2. Chaotic Relaxation

The task of the linear solver is to solve Ax = b, where x is the unknown solution vector, A is an N -by-N
sparse coefficient matrix, b is the constant right-hand-side (RHS) vector, and N is the number of elements.
Beginning with an initial guess for x, the system can be solved iteratively:

xk = −D−1(L + U)xk−1 + D−1b (1)

where D is the diagonal of A, and L/U are the lower- and upper-triangles respectively. The notation k
represents the iteration number. This is the Jacobi method, and the matrix D−1(L + U) is the Jacobi
iteration matrix, M. Each equation (from 1 to N) can be solved (a.k.a. relaxed) independently as follows:

xki =

(
−

N∑

j=1
j 6=i

aijx
k−1
j + bi

)
/aii, i = 1, . . . , N. (2)

where a, x and b are the individual components of A, x and b respectively. At the end of each iteration
the new values of x must be globally communicated before the next iteration can begin. Numerically,
improvements to this scheme can be made by using values from the current iteration (k) as they are available.
This is the Gauss-Seidel method, and is rarely used due its strictly sequential operation (since the equations
must be performed in order) [15]. It is possible to prove the convergence of a parallel block Gauss-Seidel
methods, where Gauss-Seidel is performed on local processes and remote updates are iterated in a Jacobi-
like fashion – thus an arbitrary selection of variables from iterations k and k − 1 are used. All of these
methods are stationary methods, so-called because their formulation does not change between iterations.
Additionally, they all have an implicit synchronization point, because no two processes can become more
than a single iteration out of sync.

In 1969, Chazan and Miranker [10] proposed the concept of Chaotic Relaxation which proves convergence
when relaxations are performed out of sync. Each relaxation uses the values of x from the latest iteration
that is available – this could be several iterations behind the current relaxation iteration (s = 1,. . . ,n), or
even ahead of it (s < 0):

xki =

(
−

N∑

j=1
j 6=i

aijx
k−s
j + bi

)
/aii, s < smax, i = 1, . . . , N. (3)

The order in which the N equations are relaxed is completely arbitrary. With this scheme, processes never
need to wait for each other at the end of an iteration. Although communication must still occur, it can be

1https://bitbucket.org/jamesnhawkes/chaos
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entirely desynchronized, thereby making efficient use of memory bandwidth and computational resources.
Processes may even iterate multiple times on the same data if communications are completely saturated,
making the best use of the available hardware. Whilst this method is based on the stationary Jacobi method,
s can vary between iterations implying that chaotic methods are actually non-stationary.

Chazan and Miranker proved that this iterative scheme will converge for any real Jacobi iteration matrix
if ρ(|M|) < 1 so long as smax is bounded. ρ(·) denotes the spectral radius (the absolute value of the
maximum eigenvalue) and | · | represents a matrix where all the components have been replaced with their
absolute values. The implications of smax being bounded is simply that if two relaxations take different
amounts of time (either due to imbalanced hardware or relaxation complexity), they cannot be left completely
independent indefinitely, such that s could potentially become infinite. Baudet [16] went on to prove that
ρ(|M|) < 1 is a necessary condition for convergence for any smax ≤ k. Bahi [17] further showed that
ρ(|M|) = 1 is also valid, if M is singular and smax is bounded.

For the pressure Poisson equation it can be shown that ρ(|M|) ≤ 1 [6], but it is often sufficient to show
that the matrix |A| is diagonally dominant.

At their conception, chaotic methods were considerably ahead of their time. Although created specifically
for parallel computing, the concurrency of state-of-the-art supercomputers in 1969 was too small to utilize
the methods efficiently. With new architectures, the true potential of chaotic methods may be realized.

The extent to which chaotic relaxation is exploited varies significantly in the literature, and most com-
monly the exact implementation is not discussed. In Anzt et al. [11] the theory is used to create a ‘block-
asynchronous’ Jacobi solver for GPUs, where a fixed number of local iterations are performed between
communications. These solvers are often referred to as asynchronous methods, such that async(5) refers
to a Jacobi method with communications every 5th iteration. This reduces implicit synchronization and
shows good results compared to stationary methods, demonstrating that relaxations on ‘old’ data are not
wasted. However, this method could also needlessly throttle communications, thus reducing convergence
rates if communication hardware is not saturated. Anzt et al. focuses on GPU architectures, where this may
not be such a problem.

In this paper, chaotic relaxation theory is leveraged further. By separating communications and compu-
tations into shared-memory threads, the fixed asynchronicity can be removed and the respective hardware
can be saturated, leading to increased efficiency and numerical performance. In this truly chaotic method,
computation threads never need to wait for communications to be complete and communication hardware is
never wasted waiting for computations. Furthermore, a multi-threaded model can exploit access to shared
memory, inserting updated values (from communications) directly into the active relaxations, which should
give numerical advantages. The targeted architecture for this ‘chaotic solver’ is a hybrid-parallel (MPI +
OpenMP) CPU environment; but it would be possible to extend these chaotic methods to heterogenous
environments with relative ease. The main disadvantage of this chaotic solver is that it is non-deterministic,
which prevents perfect reproducibility of the solution process – this should not affect the flow solution. The
following sections describe the implementation and testing of a chaotic solver.

2.1. Implementation

Consider the matrix A, partitioned contiguously across multiple MPI domains, such that each process
owns a block of n rows of length N . It also owns the corresponding portion of the vectors x and b. To
perform a chaotic relaxation on this block, as in equation 3, the off-diagonal elements of the matrix are
multiplied by the solution vector. Where these off-diagonal elements correspond to the local portions of
x this is trivial. For non-local elements, the value of xj must be obtained from another process via MPI
communications.

For the purposes of implementation it is helpful to store the partitioned matrix as two compressed-row-
storage (CRS) matrices, AA and AB, as shown in figure 1. AA is an n-by-n square matrix (containing the
diagonal) which can be directly multiplied by xA, the local portion of x. AB contains all the remaining
off-diagonal elements, which must be multiplied by off-process elements xB. The structure of AB and xB

are re-arranged so that xB becomes a local, sparse representation of the parallel vector.

4



The process of updating this buffer is known as vector-scattering. Each process must pack (only) the
required local values of xA into an a buffer, which is sent to an neighbouring process via an MPI message,
and inserted directly into xB.

AA ABAB xA

xB

MPI
Process

0

1

2

3

4

5

6

A x

bA

b

Figure 1: An illustration of the MPI parallel partitioning scheme for the matrix A, and vectors x and b. Note that the column
indices of AB are altered to point to the correct location in xb, the vector-scatter buffer.

In a classical Jacobi solver, it is common to perform part of the relaxation with AA and xA whilst
the scatter is being performed, and complete the iteration using AB and xB when the communication is
complete. In asynchronous methods, vector-scattering can be overlapped over a fixed number of iterations
and old values of xB are used in the meantime.

Here, we consider a truly chaotic solver in which scattering and relaxing occurs simultaneously on inde-
pendent threads, and the relaxation uses the most up-to-date values of xB that are available. To achieve
this, a hybrid-parallel scheme is used. The matrix is still partitioned into MPI subdomains, but within each
MPI process several shared-memory OpenMP threads operate. It is commonly recommended to run such
a system with each MPI process occupying a single socket (or NUMA-node) of the supercomputer so that
all threads are using the same memory channels (avoiding ‘Non-Uniform Memory Access’ problems). Each
OpenMP thread is then given one physical core. For example, a problem previously using 64 MPI processes
may be replaced by 8 MPI processes, each running 8 threads.

On each MPI process, one thread is designated as the communications thread and the remainder are
assigned to computation.

The computation threads have shared-memory access to all of AA, AB, xA and xB and continuously
perform relaxations on this data. Each thread takes a contiguous portion of the n rows and relaxes them
in order, and repeats until the stop criteria are reached. It is not necessary to synchronize the computation
threads, so each thread may perform a different number of iterations. Values of xA are pushed and pulled
from local memory without synchronization or mutexing. Values of xB are pulled from local memory too,
whilst the communication thread updates them.

The role of the communication thread is to continuously perform vector-scatter operations between
MPI processes. It is responsible for collecting local values xA and packaging them into MPI messages –
once again, no synchronization or mutexing is required and these values are pulled directly from the active
memory of the computation threads. On receiving a message, the incoming data is pushed directly into xB ,
immediately making it available for relaxations. In this implementation, a vector-scatter must be completed
by all processes before the next can begin. As such, every MPI process will perform the same number of
communication iterations and will experience implicit synchronization of communication threads. A more
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chaotic scheme could be implemented, allowing pairs of processes to communicate faster than other pairs if
the hardware allowed it. One-sided MPI communications would be the ideal method to pursue this.

This chaotic solver deliberately exploits race conditions to achieve a high level of asynchronicity. Although
no two threads write to the same location in memory simultaneously, it is quite possible that threads will
try to read and write the same value at the same time. As long as the data type is atomic, this causes
no issues. It is not transparent how the compiler or memory controller deals with cache-coherency when
encountering these data races, but this also caused no discernible problems; no explicit cache flushing of the
x vector was required.

At the end of a typical solution process, the communication thread on each MPI process has performed
O(1k-10k) communication iterations and each computation thread has performed a varying number of
computation iterations (often O(100-1k) out of sync). All of this occurs in the time it takes to run just a
handful of iterations of a Krylov Subspace solver such as GMRES.

One of the conditions for convergence of chaotic methods is that s (the difference in iteration-number
between relaxations), in equation 3, is bounded. There is no explicit checking of the value of s, because
a residual check is performed every 100 communication iterations – providing a sufficient condition for
convergence. Once convergence criteria are reached, the communication thread sets a flag signalling all
threads to cease. There is no guarantee on the number of iterations that have been performed by each
thread.

2.2. Numerical Setup for Performance Experiments

The chaotic solver described above has been implemented in Chaos, which has been linked to ReFRESCO,
a state-of-the-art semi-implicit CFD code. Two test cases have been used to conduct performance experi-
ments: a canonical lid-driven cavity flow (LDCF) and a practical, maritime flow simulation around a ship
(KVLCC2). The University of Southampton supercomputer, Iridis4, has been used to run these experiments
from 8 through to 2048 cores. ReFRESCO, Iridis4 and the two test cases are discussed below.

ReFRESCO is a finite-volume, SIMPLE-based, Picard-linearizing, viscous-flow CFD solver, which solves
multiphase, unsteady, incompressible flows with a variety of turbulence, cavitation and volume-fraction
models. ReFRESCO is a general-purpose CFD code, with state of the art features such as moving, sliding and
deforming grids and automatic grid refinement – but has been verified, validated and optimized specifically
for maritime-industry problems. ReFRESCO is similar in formulation to other well-known CFD solvers
such as OpenFOAM [18], Star-CCM+ [19] or Ansys Fluent [20]. ReFRESCO uses PETSc [13], which
provides Krylov Subspace solvers and an interface to ML [9] (via the Trilinos project [14]). Both PETSc
and ReFRESCO are MPI-only, which makes interfacing to Chaos difficult, but this is inconsequential for the
purposes of the following investigation. ReFRESCO is profiled with Score-P [21], providing run-time metrics
on various portions of the code. The results herein show only the time spent in the linear equation-system
solver for the pressure equation.

ReFRESCO is run on the University of Southampton’s latest supercomputer. Iridis4 has 750 nodes,
consisting of two Intel Xeon E5-2670 Sandybridge processors (8 cores, 2.6 Ghz), for a total of 12,200 cores
(8 cores per NUMA-node). Each 16-core node is diskless, but is connected to a parallel file system, and has
64GB of memory. The nodes run Red Hat Enterprise Linux version 6.3. Nodes are grouped into sets of
30, which communicate via 14 Gbit/s Infiniband. Each of these groups is connected to a leaf switch, and
inter-switch communication is then via four 10 Gbit/s Infiniband connections to each of the core switches.
Management functions are controlled via an ethernet network.

Iridis4 ranked #179 on the Top500 list of November 2013 with a peak performance of 227 TFLOPS
[22]. Iridis4 cannot be classified as a many-core machine, with only 16 cores per node. Nonetheless, it
should be able to give sensible insight into the limitations of the CFD algorithm with an appropriately-sized
problem. A one-time opportunity to perform experiments up to 2048 cores was provided for this study, but
all development was done on up to 512 cores.

Two test cases are used throughout. The first is a laminar-flow, canonical, unit-length, three-dimensional
lid-driven cavity flow (LDCF) with a Reynolds number of 1000. A uniform mesh of N = 2.68-million cells
(1393) is used. The simulation mimics an infinite domain with two cyclic boundary conditions. The remain-
ing four boundaries are constrained with Dirichlet boundary conditions, one of which specifies a tangential,
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non-dimensional velocity of 1. The second test case is an industrial model ship case, the KRISO Very Large
Crude Carrier (KVLCC2) double-body wind-tunnel (water phase only) model [23] with a Reynolds number
of 4.6× 106. The mesh is a three-dimensional multi-block mesh consisting of N = 2.67-million cells. A k-ω,
two-equation shear stress transport turbulence model is used. Inflow and outflow boundaries are specified
appropriately. The free-surface is represented as a Neumann boundary condition, and the remaining bound-
aries have Dirichlet conditions. The mesh sizes have been chosen deliberately to show scalability issues on
the available cores: the cells-per-core ratio is approximately 1300 on 2048 cores for both test cases.

2.3. Performance Experiments

The chaotic solver is compared to a simple MPI-only SOR method from PETSc, with residual calculations
every 100 iterations and ω = 1 (equivalent to block Gauss-Seidel); and a Flexible-GMRES solver with right-
side Block Jacobi preconditioning, also from PETSc. A scalability factor S can be defined as S = 8T8/TC
where TC is the wall-time using C core. Figure 2 shows the results of this scalability study, showing scalability
(S) versus the number of cores (C). Ideal scalability is when S = C, illustrated in the figure. Due to the
normalization of T against T8, it is not possible to observe absolute performance differences between solvers
using scalability plots. The embedded bar charts rectify this, by showing absolute core-hours (C×TC , which
would ideally remain constant) at C = 8, C = 128 and C = 2048, coloured and keyed with respect to the
enclosing scalability plot – note the exponential scale. 100 non-linear loops of the SIMPLE algorithm are
performed and the total time spent solving the pressure equation is recorded.
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Figure 2: Scalability of the linear equation-system solver for the KVLCC2 (left) and LDCF (right) test cases, at 0.1 (top) and
0.01 (bottom) convergence tolerance.
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The LDCF test case appears much easier to solve than the KVLCC2 test case, for all solvers and
convergence tolerances. The chaotic solver is faster than SOR in all cases, with the gap widening as the
equations become easier to solve. Scalability of the chaotic solver is better than the SOR method, and is
sometimes super-linear due to increasing use of the cache as the cells-per-core ratio decreases. Above 512
cores, particularly on the easier equation-systems, the scalability of the chaotic solver begins to deteriorate.
Obtaining computing time to thoroughly debug this was not possible, but it is suspected that the residual-
check interval needs to be increased at this point. This is partly due to the decreasing cells-per-core ratio;
and partly due to the increasing cost of global communications2. Although the computation threads continue
to iterate whilst waiting for the residual check, the communication thread (and vector-scatter updates) are
stalled, reducing convergence rates.

Nonetheless, on all but the hardest equation-system (KVLCC2 at 0.01 convergence tolerance), the chaotic
solver is able to out-perform preconditioned FGMRES on 2048 cores, due to the poor scaling of the Krylov
Subspace method. On stiffer equation systems, the gains are smaller because more low-frequency errors
must be reduced – the numerical performance of SOR and the chaotic solver is not competitive. The
two test cases used here are small, designed to show scalability limits on a machine that does not have a
many-core architecture. Practical simulations may be tens or hundreds of times larger than these tests,
and the inability of SOR or the chaotic solver to reduce low-frequency errors will become much more
problematic. The work required by Jacobi-like solvers increases with O(N3) [24, §2.2]3. However, the
ability to reduce high-frequency errors quickly is very desirable for smoothers in multigrid methods. In the
following section, a chaotic-cycle multigrid is developed which allows Jacobi-like smoothers to be replaced
with chaotic smoothers.

3. Chaotic-Cycle Multigrid

The principle of algebraic multigrid methods is that low-frequency errors can be solved quickly by
translating the problem onto a coarser grid, where low-frequency errors become high-frequency errors. This
coarsening can be applied recursively over many levels. Jacobi-like smoothers can be used to quickly smooth
high-frequency errors on the coarse grids. Often, only a single iteration of the smoother is required. It can be
shown that the number of multigrid iterative cycles required to converge a perfect multigrid method remains
constant as N increases, which makes them competitive against Krylov Subspace methods and relevant for
real-world applications. In theory, the work done in each multigrid iteration scales with N , since all of
the relevant routines (such as smoothing) are O(N). Thus, a multigrid solution should take O(N)-time,
although this does not include the time taken to construct the coarse grid operators [24, §2.4].

There are certain traits of the chaotic solver which make it difficult to substitute as a smoother in
a multigrid method: it is difficult to impose stopping criterion; and guarantee the boundedness of the
asynchronicity s. In the chaotic solver, a sufficient condition for convergence was provided by checking the
residual – which was necessary anyway. For a multigrid method it is not necessary to compute a residual on
the coarse grids, and it would be inefficient to do so, so an alternative method for bounding s is required.

Another issue is that smoothers only need to run for a small number of iterations, which does not
suit chaotic methods well, especially when the equation-systems are small and easy to solve (as on the
coarse grids). Chaotic solvers have a tendency to over-converge these systems considerably, because the
computation threads achieve so much smoothing before a single communication can even occur. Although
they can never be slower than existing smoothers because of this, much of this free convergence is wasted if
it not required. Since there are other sources of synchronization in the multigrid cycle, it would be beneficial
to trade off some of these synchronizations for additional smoothing, which can be obtained for free.

2The cost of a global reduction, required for a residual-norm computation, usually scales with log2(C) – increasing each
time the number of cores is doubled. However, this assumes the latency of communications is constant. When performing
global reductions on 2048 cores, one encounters higher latencies as the cores become physically further apart.

3Note that the rate of convergence increases with O(N2), but the work-done-per-iteration also increases with O(N), leading
to overall required work of O(N3).
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A generic multigrid algorithm has been developed below, employing an unsmoothed-aggregation tech-
nique and the classical V-, W- and F-cycles. Following this, the extension to a ‘chaotic-cycle’ multigrid is
explained, where the boundedness of s and the removal of other synchronization points is explored. Verifi-
cation of O(N) performance is shown on a generic Laplace equation. Scalability and performance of all the
multgrid cycles are tested against the standard chaotic solver, FGMRES and a state-of-the-art multigrid
method (ML) from Trilinos [9, 14].

3.1. Implementation

There are two stages to a multigrid algorithm. The first stage is concerned with constructing coarse
grids and interpolation operators. The second stage is the multigrid ‘cycle’ which is the iterative process
used to solve the equation system. In the coarsening stage, coarse grids are recursively created from a fine
grid, such that:

Am = RmAm−1Pm, 1 ≤ m ≤ mmax

where Am is matrix A on the mth level (level zero being the finest, original matrix); Pm is the prolongation
matrix, a sparse rectangular matrix which describes the interpolation between Am and Am−1; and Rm is
the restriction matrix, a sparse rectangular matrix describing the contraction from Am−1 to Am. Rm is
usually the transpose of Pm.

Here, an aggregation-type coarsening is used, loosely based on Notay [25]. In aggregation schemes, a
coarse grid is constructed by grouping fine-grid elements into single coarse-grid elements (or ‘aggregates’),
such that the aggregates form a disjoint subset of the fine-grid elements. In unsmoothed aggregation, Rm

and Pm are simply boolean matrices which never need to be explicitly stored. In smoothed aggregation, the
prolongation and restriction matrices are smoothed such that coarse-grid elements may contribute to more
than one fine-grid element. The simpler unsmoothed-aggregation is used here.

When constructing the coarse grids, it is important that aggregates are created in the direction of the
‘smoothest error’; they must be constructed such that the maximum eigenvalue is successfully reduced on the
coarser grid [26]. Notay [25] proposes a pairwise-aggregation scheme which attempts this. The algorithm
couples pairs of elements which are ‘strongly-coupled’, which means they have large negative values in
the off-diagonals that connect them. For each fine-grid element a list of q strongly-coupled elements is
created. The element with the smallest q is treated first, by grouping it with its most-strongly-coupled
pair. For asymmetric matrices a check can be added to ensure that the coupling is reciprocated, but this
may be skipped. Constantly sorting to find the minimum q can be expensive, and a pairwise scheme can
only coarsen by a factor of two – meaning that repeated application is necessary to achieve 4- or 8-times
coarsening.

A cheaper, but less rigorous approach has been adapted from this scheme. A maximum aggregation size
amax is specified (for example, 8). For each element ei in the fine grid (iterated in order), the off-diagonal
values of the matrix (Am−1)ij,j 6=i provides a set of coupled elements ej that can form aggregates. For each
coupled element, the strength of the coupling is recorded as vj = −(Am−1)ij . If the coupled element already
belongs to an aggregate, the number of elements already in that aggregate is recorded as aj , else aj = 1.
An aggregate is formed by selecting ej with a minimal aj , and then a maximal vj . The aggregation of the
two elements is abandoned if both elements already belong to aggregates, or if either element belongs to an
aggregate which already has amax elements. The algorithm achieves close to amax coarsening in a single
step, very cheaply.

At the end of the aggregation process, a set of aggregates Gi, i = 1, ..., nm exist, each with approximately
amax indices which map to Am−1. This mapping is equivalent to Rm and the tranpose mapping is created
for Pm. From this point, Am can be computed recursively as:

(Am)ij =
∑

k∈Gi

∑

l∈Gj

(Am−1)kl (1 ≤ i, j,≤ nm)

The process is repeated recursively, with m = m+ 1, until the coarsest grid reaches a specified size. Fig-
ure 3 shows an example of this coarsening on a two-dimensional lid-driven cavity flow domain. Investigating
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Figure 3: A view of the aggregation process, showing four multigrid levels with amax = 8 on a two-dimensional lid-driven
cavity flow domain. The fine matrix begins with 128 × 128 = 16384 degrees of freedom; and the coarsest matrix has just 7.

the quality of the aggregation is beyond the scope of this study, but the presented method appears to be
robust enough for the purposes of these experiments.

The aggregation is done per MPI domain, such that each process has its own set of hierarchical grids (as
in [25]). Aggregation is not performed across process boundaries, thus Am in the above discussion is replaced
by (AA)m for each MPI domain. AB is never considered when aggregating. Also, when constructing the
coarse grids, (AB)m is not explicitly constructed because it would require re-mapping the buffered storage
of the parallel vectors, (xB)m. Vector-scattering on coarse grids occurs by mapping into the buffer of the
finest grid, resulting in excess, inefficient MPI communication. A more rigorous aggregation scheme which
performs coarsening across MPI domains may be more performant; especially since this aggregation can be
reused between non-linear iterations of the overall CFD simulation.

The second stage of the multigrid algorithm is the linear solution process, in which various different
cycles can be used to visit the coarse grids. On each coarse grid, a ‘correction’ to the fine-grid solution is
computed using the additive correction scheme [27]. There are three simple routines which allow a variety
of cycles to be created.

• On each level, smoothing is applied to the linear system Amxm = bm. On the coarsest level a direct
solver is often used, but a smoother will suffice too.
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• Restriction is used to move from a fine grid (m − 1) to a coarse grid (m): from the linear system
Am−1xm−1 = bm−1, a new system is created Amxm = bm. Am has been generated by the aggregation
process, xm is set to zero, and bm is set to to the residual vector multiplied by the restriction matrix:
Rm(bm−1 −Am−1xm−1).

• In the other direction, prolongation is used to apply the coarse-grid correction to the fine grid. The
prolongation matrix, Pm−1 is used to expand xm into xm−1. The vector Pmxm is summed with xm−1,
to provide a correction to the fine grid. Post-smoothing is performed after prolongation.

These three routines, combined with different values of amax, different minimum grid sizes, and different
numbers of smoothing steps, can produce a wide variety of multigrid cycles. A four-level V-cycle, F-cycle,
W-cycle and sawtooth-cycle are illustrated in figure 4.
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Figure 4: A view of the solution process, showing a single iteration of a four-level multigrid method using the classical recursive
V-cycle, W-cycle, F-Cycle and Sawtooth-Cycle. Restriction, Prolongation and Smoothing are colour-coded.

3.2. Applying Chaotic Principles to Multigrid Methods

Consider the classical V-cycle as illustrated. In each pre-smoothing step there is an implicit global
synchronization during each iteration, since MPI communications are required to scatter the xm vector on
each level. For restriction, a vector-scatter is necessary to compute bm = Rm(bm−1−Am−1xm−1), causing
another global implicit synchronization.

Replacement of the smoother with a chaotic smoother solves the implicit synchronization in the pre-
smoothing steps, but since the smoother only needs to run for a handful of iterations, the synchronization
required for restriction will still have a large effect. In order to minimize this, consider a sawtooth cycle,
which is simply a V-cycle with no pre-smoothing – the right-hand sides (bm) of the all the coarse matrices
must still be initialized. In the 4-level example shown in figure 4, communication of x0 is required as usual to
create b1, requiring a vector-scatter. x1 is reset to zero. The next restriction follows immediately to create
b2; except now it is known that x1 = 0 there is no need to scatter x1, and b2 = R2(b1 −A1x1) = R2b1.
It follows that the entire sawtooth restriction requires only one implicit synchronization. The downside of
using a sawtooth method is that more post-smoothing iterations may be required. For the chaotic smoothers
this may not be a disadvantage, because much of this smoothing can be obtained for free.

Returning from the coarse grid to the fine grid, post-smoothing with a chaotic smoother does not require
any implicit synchronization. Prolongation does not require any synchronization either; because xm−1 +=
Pmxm does not require off-process values of xm. Smoothing on level m−1 can begin before other processes
have performed their own prolongation, because the off-process values of xm that are not updated are still
zero. Updated values will be provided by communications in the chaotic smoother when they are ready, but
chaotic relaxations can begin without that information.

Next, the boundedness of s in the chaotic smoother must be guaranteed. Consider the situation in
which p post-smoothing iterations are requested, and this is expected to provide enough convergence on
the coarse grids to guarantee overall convergence of the multigrid method. Note that a certain amount of
post-smoothing must be performed in order to compensate for unsmooth prolongation [24]. For the chaotic

11



smoother, specifying a number of iterations is meaningless because one process could complete its iterations
before receiving updates from any other process or thread.

The chaotic-cycle, like the chaotic solver, is designed to be run in a hybrid MPI+OpenMP environment.
The same concept of computation and communication threads is used, and the communication threads
remain in sync across MPI processes. Within each MPI process, each thread stores an iteration counter
k in an array, initialized to k = 0 at the start of each smoothing phase. After each computation thread
completes a chaotic relaxation on its portion of the equation system, it attempts to increment k – however,
it is only allowed to increment k if the values in the counter array are all ≥ k. If any value is less than
k, it suggests that the relaxations may have used old values and therefore it did not ‘count’ as a requested
iteration. This bounds s between computation threads. The communication thread also participates in
the same counter array, attempting to increment k every time it scatters xm between MPI processes; thus
bounding s between all processes. To avoid an MPI deadlock, additional checks are required to make sure
communication threads perform the same number of iterations on all processes (regardless of k); this is done
using non-blocking MPI barriers (MPI Ibarrier).

It is unlikely that any thread will complete exactly p iterations; but it is the absolute lower bound.
Most threads will complete many more than p iterations, so choosing a value for p is not as intuitive when
compared to classical multigrid cycles.

Combining this bounded chaotic smoother with the sawtooth cycle and barrierless prolongation: a
chaotic-cycle multigrid is created. The entire cycle has only one implicit global synchronization, required
to restrict the finest level. Instead of explicitly scattering x0 the latest values communicated during the
pre-smoothing step are used, further hiding this implicit synchronization behind useful relaxations. One
explicit thread-barrier (local) is also required at the end of the restriction simply to signal that all of the
coarse grids have been initialized, but this is cheap. It is important that xm has been reset to zero on every
level before prolongation begins. During each multigrid cycle, a lagged, non-blocking residual is computed
to determine an overall stoping criteria.
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Figure 5: A view of the chaotic-cycle solution process, showing a single iteration of a four-level multigrid method. Restriction,
Prolongation and Smoothing are colour-coded. Multiple parallel lines are shown during the prolongation stage to depict the
non-deterministic way in which multiple threads (including communication and computation threads, across multiple processes)
may participate in the chaotic-cycle.

Figure 5 shows an illustration of the chaotic-cycle, although it is difficult to capture the chaotic nature
in a simple diagram.

3.3. Verification

In order to ascertain that the chaotic-cycle conforms to the convergence expectations of a multigrid
method, verification is performed using a 3-dimensional (i, j, k) Laplace equation with Dirichlet boundaries.

A 3D, unit-length, cubic domain of N elements is created (element spacing h = 1/N
1
3 ). A pre-determined

solution xs is created for the linear system, by combining 20 sinusoidal frequencies:
∑20

f=0 sin(2fπ.i.j.k.h3).
b is created from this solution and x is set to zero. The source is included as an example in Chaos.

The number of iterations to convergence (relative tolerance 10−6) and time-per-iteration is measured for
the chaotic-cycle and V-cycle as N increases from 512 (83) to 1.73-million (1203). With perfect coarsening,
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the number of iterations to convergence should be constant, with the time-per-iteration increasing linearly
with N . However, this ideal situation cannot be achieved with piecewise-constant unsmoothed aggregation
[26]. Figure 6 shows the results of this verification. The solution is performed on 64 cores (8 MPI processes
with 8 threads each). The aggregation factor, amax, is set to 8, and the number of pre- and post-smoothing
iterations is set to p = 3.

The number of iterations required to reach convergence is not quite constant, but appears to approach
an asymptotic maximumum, for both cycles. This suggests small imperfections in the aggregation process,
which is expected. The time-per-iteration is O(N) as desired, although both the V- and chaotic-cycle show
occasional deviations or noise. This is probably connected to the aggregation factor, and the number of
levels being created as N increases.

Overall, the two cycles perform similarly; but these tests are not designed to give performance results.
The important result here is that the chaotic-cycle is at least as good as the V-cycle from the perspective of
multigrid correctness. The following section properly assesses the performance and scalability of the various
cycling techniques.
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Figure 6: Number of iterations (a) and time-per-iteration (b) to converge the discrete Laplace equation, of size N , to a relative
convergence tolerance of 10−6.

3.4. Performance Experiments

The performance experiments from section 2.3 are repeated here, this time comparing the chaotic-, V-,
W- and F-cycle with preconditioned FGMRES, the standard chaotic solver, and a state-of-the-art multigrid
package (ML [9, 14]). Once again the solution of the pressure equation is summed over 100 outer-loops
of the CFD solver. For all multigrid methods, including ML, aggregation is only performed once in this
time, and then re-used. This is possible because the non-zero structure of the matrix A does not change
between outer loops, thus the restriction and prolongation matrices do not need recomputing. Am must
still be refilled on the coarser grids using equation 3.1. Aggregation and re-filling time is included in the
results. Occasional re-aggregation is probably required for practical simulations, because the coupling of
various elements may change as the overall CFD solution converges, and the coarser grids will no longer
follow the smoothest errors.

Preliminary studies showed that p (the number of pre- and post-smoothing iterations) had little effect
on the results within a range of 1 to 12. Increasing p resulted in fewer cycles being required overall (and
vice versa), but with almost no effect on scalability and absolute speed. p = 3 was selected for all of the
Chaos multigrid methods; and p = 1 was used for ML. ML uses a complex smoothed-aggregation coarsening
strategy which crosses process boundaries, thus less smoothing is required. An additive-correction V-cycle
was used in ML, with a direct solver on the coarsest grid.
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Figure 7: Scalability of the linear equation-system solver for the KVLCC2 (left) and LDCF (right) test cases, at 0.1 (top) and
0.01 (bottom) convergence tolerance.

The results are shown in figure 7 and table 1. Overall, the scalability of the V-, W- and F-cycle multigrid
is poor, and somewhat similar to the Krylov Subpsace method (FGMRES). The V-, F- and W-cycle all
perform similarly on C = 2048 cores. On a smaller number of cores, the size of AA in each domain becomes
larger, thus the total number of levels increases and the algorithmic differences between the three cycles
become larger. As the number of levels increases, the W- and F- cycles spend exponentially more time
visiting coarse grids, and perform worse than the V-cycle. If only two grids existed, all three cycles would
be identical. This effect makes it difficult to differentiate between numerical effects and scalability of the
computational methods.

The chaotic-cycle exhibits slightly worse absolute performance on C = 8 than the V-cycle and FGMRES,
but offers much greater scalability. In all cases the chaotic-cycle is the fastest solver on C = 128 cores. On
the most difficult test case (KVLCC2 at 0.01 convergence tolerance), the chaotic-cycle is over 6.7× faster

Table 1: Absolute core-hours spent solving the linearized pressure equation over 100 non-linear iterations.
Case (ILCT) FGMRES V-Cycle Chaotic-Cycle Chaotic (solver)

C = 8 128 2048 8 128 2048 8 128 2048 8 128 2048
LDCF (0.1) 1.8 2.5 54.4 2.3 2.7 94.6 2.3 2.5 7.1 3.6 3.4 5.6
LDCF (0.01) 3.4 5.3 56.8 4.3 6.8 124.1 4.0 4.7 10.6 20.7 16.9 24.5

KVLCC2 (0.1) 3.8 7.1 60.1 4.1 6.1 117.2 5.1 5.3 13.6 27.2 20.8 36.6
KVLCC2 (0.01) 7.8 17.4 144.0 9.2 13.9 258.9 12.4 16.3 38.5 139.9 111.6 169.6
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than the classical V-cycle on C = 2048 cores, and 3.7× faster than preconditioned FGMRES. This gap
widens on easier equations, reaching a 13.3× and 7.7× speed-up over V-cycle and FGMRES, respectively,
on LDCF at 0.1 convergence tolerance.

The scalability of ML was poor in all cases. It was suspected that the rigorous aggregation process is a
bottleneck to scalability when such a lax convergence tolerance is specified; however, re-use of the aggregation
had little effect on scalability. Other efforts to experiment with ML were unsuccessful in improving scalability
– including adjusting the number of multigrid levels, the amount of smoothing, and replacement of the direct
solver with a smoother on the coarsest grid.

Despite its good performance, the chaotic-cycle multigrid falls short of ideal scalability. Indeed, in one
case the simple chaotic solver is faster than chaotic-cycle multigrid due to its superior scaling.

3.5. Discussion

Both the classical- (V,W,F) and chaotic-cycle should achieve better scalability if the vector-scattering
on coarse-grids is improved. Currently, the MPI buffers and indexing of (xB)0 and (AB)0 are recycled
on the coarse grids, which is inefficient. Recomputing buffers for each coarse-grid would certainly improve
scalability. It is likely that the chaotic-cycle hides some of these losses (since extra relaxation can occur
whilst waiting for these communications), so the differences between the two solvers may become smaller.

Perhaps a bigger concern is (once again) the residual computations which currently occur asynchronously
during each multigrid iteration. On 2048 cores the aggregation process only creates four levels, and with p = 3
a chaotic-cycle will perform a minumum of 18 vector-scatters in this time. As noticed in the chaotic solver,
with a residual computed every 100 iterations this was already the main limitation to overall scalability.
It is suspected that this is the main cause of poor scalability and is also the only sensible reason that the
standard chaotic solver could out-perform the chaotic-cycle multigrid (since the chaotic-solver generalizes
to a one-level chaotic-cycle multigrid method). For both the chaotic-cycle multigrid and chaotic solver,
the ideal solution would be to apply a threaded residual computation check, such that residuals are only
computed at the speed at which they can be communicated. In this way the residual computation could
never stall the communication thread, but it would also never lag unnecessarily. In some ways this could be
considered a ‘chaotic’ residual.

The problem with such a scheme is that it is difficult to stop MPI processes safely without some form of
explicit, predictable barrier or residual – because if any process issues MPI Isend/MPI Irecv commands be-
fore receiving the ‘stop’ notification, these unmatched communications will cause a deadlock. As mentioned
earlier, some form of one-sided communication would be ideal to allow communication threads to operate
chaotically. This would also allow chaotic residual computations to be implemented easily.

Profiling the chaotic-cycle multigrid is somewhat difficult because even though it can be seen that coarse-
grid communications or residual checks are slow, it is not clear whether this is the main source of performance
losses. Indeed, the whole purpose of chaotic methods is to make use of all available hardware, even when
some systems (such as communications) are struggling. However, it is suspected that the residual issue is far
greater, because whilst waiting for the residual to complete the communication threads are not updating the
communication buffers on the finest grid. At least on the coarse grids, xB is periodically updated, providing
fresh values for the excess relaxations to work on.

It is likely that both of the aforementioned issues affect the V-, W- and F-cycle too. Indeed, since they
do not have the benefit of performing chaotic relaxations they may be more affected. Nonetheless, the
chaotic-cycle multigrid demonstrates very good scaling compared to these classical cycles; and its ability to
weather ineffective communications should allow it to perform well in many-core environments.

4. Conclusion

The work presented has focused on applying the theory of ‘chaotic relaxations’ to simple Jacobi-like
solvers, to create a ‘chaotic solver’; and adaptation of classical multigrid cycles to allow effective use of
chaotic solvers as smoothers in a ‘chaotic-cycle’ multigrid method.

The chaotic solver provided excellent performance and scalability from 8 through to 2048 cores compared
to a standard SOR solver. The chaotic solver outperformed state-of-the-art solvers in the extremes of strong
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scalability, but could not provide enough numerical power to compete on stiffer equation systems. Since the
work done by SOR and the chaotic solver scales with O(N3), these solvers are not a sustainable solution
and will always be beaten in practical simulations.

The chaotic-cycle multigrid outperforms all other solvers (including Krylov Subspace solvers, classical
multigrid methods, and state-of-the-art smoothed-aggregation multigrid methods) in terms of scalability and
absolute speed, from 128 cores upwards. Below this, the chaotic-cycle multigrid is still highly competitive.
On 2048 cores the chaotic-cycle multigrid is up to 7.7× faster than Flexible-GMRES and 13.3× faster than
classical V-cycle multigrid. Scalability of the chaotic-cycle multigrid can still be improved. Indeed, on the
easiest equation system the simple chaotic solver was faster (on 2048 cores) and this is indicative of an issue
with too-frequent residual checks. O(N) performance of the chaotic-cycle multigrid solver has also been
verified.

The theory of chaotic relaxations can be applied in a huge variety of ways to create chaotic solvers and
multigrid cycles. There are a number of issues with the current implementation which have been discussed,
but the potential of chaotic methods compared to synchronous methods has been clearly demonstrated. The
chaotic methods discussed here have been implemented as an open-source library, Chaos, in the hope that
alternative chaotic schemes can be explored. It is also expected that the chaotic solver and chaotic-cycle
multigrid could be applied to other disciplines and scientific fields where fast, scalable solutions to stiff linear
systems are required.
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