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Supercomputing power has been doubling approximately every 14 months for at least
three decades, increasing the capabilities of scientific modelling at a similar rate. The
first machines capable of one ExaFLOP (10'® floating-point operations per second)
are expected by 2020. However, architectural changes required to reach ‘exascale’ are
significant, with energy efficiency constraints leading to a huge growth in parallelization.
A new era of computing has arrived, dubbed the ‘many-core’ era, in which the number
of computing cores is increasing faster than CFD simulation sizes — prompting the
research question for this thesis:

‘What limits the strong scalability of CFD and its ability to handle many-core
architectures? What can be done to improve the CFD algorithms in this
respect?’

A number of scalability investigations have been performed from 1 through to 2048
cores, using a semi-implicit, finite-volume CFD code: ReFRESCO; and the University
of Southampton supercomputer: Iridis4. The main bottleneck to strong scalability is
shown to be the linear equation-system solvers, occupying up to 95% of total wall-time
on 2048 cores — where the poor scalability arises from synchronous, global, inter-process
communications. Experiments have been performed with alternative, state-of-the-art
linear solvers and preconditioners, without significant improvements, which motivates
novel research into scalable linear solvers for CFD.

The theory of ‘chaotic relaxation’ has been used to create a completely asynchronous
Jacobi-like ‘chaotic solver’, showing almost perfect scalability, and performance far
greater than their synchronous counterparts. However, these solvers lack the absolute
numerical power to compete with existing solvers, especially as the resolution of the
simulations increases. Following this, chaotic relaxation theory has been used to create
a novel ‘chaotic-cycle’ multigrid solver, combining aspects of the chaotic solver and
classical multigrid methods.

Both of the solvers have been verified and tested using canonical test cases and
practical CFD simulations. On 2048 cores, the chaotic-cycle multigrid solver performs
up to 7.7x faster than a typical Krylov Subspace solver and 13.3x faster than classical
V-cycle multigrid. With improvements to the implementation of coarse-grid commu-
nications and desynchronized residual computations, it is likely that the chaotic-cycle
multigrid method will continue scaling to many thousands of cores, thus removing the
main bottleneck to the strong-scalability of CFD.

The novel chaotic solver and chaotic-cycle multigrid methods have been implemented
as an open-source library, Chaos. It is hoped that work on these scalable solvers can be
continued and applied to other disciplines.
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Nomenclature

Symbols may be reused on occasion, to remain consistent with literature. Other symbols

and abbreviations may appear with limited scope.
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equation-system

The number of elements in a CFD simulation, or rows in a linear

equation-system, local to a single process

Multigrid prolongation matrix

Number of pre- and post-smoothing iterations in a multigrid method
Multigrid restriction matrix

The residual vector of a linear equation-system
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T4 Component of r
Re Reynolds Number

S Scalability factor on C' cores, normalized to performance on X cores,
given by = XT, /T

s Asynchronicity of a chaotic relaxation

t Iteration counter for the SIMPLE time-step loop

Tco Absolute wall-time consumed by a program or routine on C' cores [s]
U The upper triangle of a coefficient matrix A

Vv Velocity [m/s]

w Iteration counter for the SIMPLE outer loop

X The solution vector of a linear equation-system

T; Component of x
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w Under- or over-relaxation factor of a linear iterative solver

p(+) Spectral radius of a matrix

A Subscript denoting the process-local block of a vector or matrix
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of a matrix which should be multiplied by said vector portion

Abbreviations
BCGS Bi-Conjugate Gradient Squared method
CFD Computational Fluid Dynamics: the practice of simulating fluid
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CPU Central Processing Unit: a single processing chip or processor, often
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(i.e. TFLOPS, PFLOPS, EFLOPS)

GMRES Generalized Minimal Residual method
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to perform large-scale computations
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hard drive storage)

ILCT Inner-Loop Convergence Tolerance: the relative convergence toler-

ance of individual linear equation-systems in the SIMPLE algorithm
KSP Krylov-subspace methods for the solution of linear equation systems

LES Large-Eddy Simulation
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Message Passing Interface: a standardized, portable message-passing
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Open Multi-Processing: a standardized API enabling multi-threading

within a process, using shared memory

Portable, Extensible Toolkit for Scientific Computation: includes a

range of linear equation-system solvers

Quadratic Upstream Interpolation for Convective Kinematics: a 2"¢

order discretization scheme
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all CPUs on a node
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Single-Instruction Multiple-Data: a fine level of intra-core paralleliza-
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Semi-Implicit Method for Pressure-Linked Equations
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Sparse-Matrix Vector multiplication
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Chapter 1

Introduction

Computational Fluid Dynamics (CFD) is the science of modelling fluid flows and heat
transfer using numerical techniques. The equations that describe Mother Nature herself
are approximated and solved, creating simulations which provide important physical
results — often as an alternative to expensive experimental testing and prototyping.
CFD can be used to model dynamics around aircraft, ships and land vehicles; and also
has uses in engine design, civil engineering, weather forecasting, blood-flow prediction,
computer-generated imagery (CGI) and much more (see figure 1.1). The research and
development presented herein is particularly focused on the maritime industry, but is

transferable to many applications of CFD.

Figure 1.1: Examples of CFD applications. Clockwise from top left: aircraft simulation;
flow and heat transfer within an internal combustion engine; prediction of pedestrian
wind environment around buildings; computed flow through a cerebral aneurysm; severe
weather prediction; coolant flow through a pump, used to cool a nuclear reactor core
(cfd4aircraft.com, ec.europa.eu, flometrics.com, htf.fl, hko.gov.hk, aij.or.jp).

In the maritime industry, CFD simulations are often used to estimate power require-
ments for vessels; to aid the design of propellers; to predict seakeeping performance; and

to determine manoeuvring characteristics (see figure 1.2). As new features are added to



state-of-the-art codes, CFD becomes an increasingly useful tool to assist in the design
of maritime vessels, offshore structures and renewable-energy infrastructure.

To enable such rich simulations, CFD codes are often run on high-performance com-
puting (HPC) facilities, using supercomputers which consist of many parallel computing
nodes. As the compute power from these supercomputers grows, with technological
advancements in both hardware and underlying algorithms, CFD simulations can be per-
formed with higher resolution and at higher speeds, improving accuracy and turnaround
time. To make use of these supercomputers, the CFD algorithm is parallelized — that
is, the simulation is split into spatial partitions which can be run on individual nodes

within a supercomputer, with some communication overhead.

Figure 1.2: Examples of maritime CFD simulations. A cavitating propeller [left] and a
vessel undergoing manoeuvring trials [right] (refresco.org).

Over the last few decades, growth in supercomputing power has been exponential,
with floating-point-operations-per-second (FLOPS) doubling approximately every 13.85
months [96]. Whilst this growth is relatively constant, the underlying architectures
which achieve such growth are not. Until 2004, the speed and electricity consumption
of transistors was governed by Dennard’s Scaling: as transistors shrank in size, their
speed increased linearly and their electricity consumption dropped quadratically [23].
Unfortunately, the transistors used in modern processors are so small that electrons are
able to ‘leak’ across the dielectric gates, and voltages must be increased to maintain
stability. This limitation, known as the ‘power wall’; has stopped the exponential growth
of core clock speeds — and in order to continue exponential scaling of supercomputers,
manufacturers must adapt. Since 2004, ‘multi-core’ machines have become commonplace:
packaging multiple ‘slow’ cores into a single processor in order to continue an exponential
increase in FLOPS-per-node.

Moore’s law [28], which predicted that transistors would halve in size every 18
months, underestimates the exponential growth in supercomputing power (doubling
every 13.85 months), because supercomputers capitalize on other hardware developments,
such as improvements to inter-nodal network and simple scaling of the number of nodes
in a system. Unfortunately, these technologies are also slowing due to other electrical
efficiency constraints [54]. For example, inter-nodal scaling reached limitations due to

the simple cost of transmitting bytes of data through a copper wire — and developments



into optical interconnects have not provided exponential improvements.

By 2020, the first erascale supercomputer is expected, capable of 10!® FLOPS (or 1
ExaFLOPS), but it is heavily limited by electrical efficiency constraints. To put this
electrical efficiency problem into perspective, if current multi-core architectures were
scaled to exascale capability, they would require 60MW of electrical power (approximately
$60-million US dollars per year at 2014 rates)[85]. Currently!, the most powerful
computer in the world, Sunway TaithuLight, consumes 15.3MW of electrical power
(US$15.3-million/year) to produce 93 PFLOPS of compute power — it cost US$273-
million to build.

The only remaining means of efficiently scaling FLOPS, and maintaining super-
computer growth, within a reasonable power envelope, is to increase the number of
cores-per-node exponentially. The multi-core era is ending, and a new era, dubbed the
‘many-core’ era has begun, where hundreds or thousands of cores may be packaged into
a single node to counteract stagnated core-clock speeds and inter-nodal scaling.

The many-core era is already established at the cutting edge of supercomputer
development, although there are multiple competing many-core architectures. Sunway
TaihuLight (#1 of the Top500) uses 260-core processors to achieve a peak performance of
93 PFLOPS with a power consumption of 15.3MW. Tianhe-2 (#2) uses 3 Xeon Phi co-
processors to accelerate each node, providing 192 cores-per-node (totalling 34 PFLOPS
at 17.8MW). The #3 supercomputer, achieving 17.6 PFLOPS (at 8.2MW), uses k20
graphics cards providing 2496 low-speed cores per node. The Argonne Leadership
Computing Facility (ALCF) have recently commissioned a new supercomputer, Aurora,
to be complete in 2018 [4]. It is likely to be the most powerful supercomputer in the
world upon completion, with a projected performance of 180 PFLOPS and an electrical
power consumption of just 13MW — see figure 1.3. Aurora follows the predicted trends

for next-generation supercomputing:

“Aurora will deliver more than eighteen times the computational perfor-
mance of Mira, its predecessor at the ALCF, using a nearly equal number of
compute nodes. Aurora will be a many-core system but with nearly an order

of magnitude more [Xeon Phi] processors.”
— ALCF, aurora.alcf.anl.gov

Whilst these machines are the highest-calibre, largest-scale supercomputers available,
the hardware which they use is not exclusive to these machines. No matter the size of
machine which individual institutions acquire, their hardware is usually similar, in order
to take advantage of all the technological improvements (such as decreased electricity
consumption) that are available — although these technologies do take some time to
trickle down to the industrial or academic level.

CFD has benefited from good weak-scalability for many years. Good weak scal-

ability means that if the number of mesh cells and computational cores grow at the

!Supercomputing statistics in this thesis are based on the Top500 list published in November 2016
[96].



Figure 1.3: Artists rendering of Aurora, commissioned by the Argonne Leadership
Computing Facility (ALCF) for 2018, will be capable of 180 PFLOPS. [intel.com]

same rate (thus the cells-per-core ratio stays the same), then the computational time
remains more-or-less constant. Below a certain cells-per-core ratio, efficiency losses
become overwhelming as parallel-overhead in the CFD algorithms becomes large. The
critical ratio depends heavily on the code, computing facility and simulation specifics.
Maintaining this ratio, and thus maintaining weak-scalability, has required little in the
way of algorithmic changes for CFD.

An exascale supercomputer is predicted to contain between 1-billion and 10-billion
cores, by 2020; an increase of approximately 100-1000x compared to Sunway TaihuLight,
for just a 10.75x increase in FLOPS. If one assumes that the size of CFD simulations
increases proportionally with total FLOPS, then the cells-per-core ratio will decrease
by a factor of 10-100 in the next 4 years.

This translates to more practical levels too. Iridis4 is the University of Southamp-
ton’s multi-core supercomputer, built in 2013 and capable of 250 TFLOPS, using 770
16-core nodes (for a total of 12,320 cores). If one makes the same analysis, again
assuming that maximum CFD simulation sizes are proportional to total FLOPS, a
numerical code that performs well on Iridis4 must maintain this performance when the
cells-per-core ratio is reduced by a factor of 20-200, in order to perform well at exascale.

This abrupt increase in parallelization, and reduction in cells-per-core ratio, means
that the weak scalability of CFD is no longer relevant. In order for CFD to increase
its capabilities, and even just to remain competitive, it is important to consider strong
scalability: the ability to achieve an X-times speed-up when X-times more cores are
employed, with a constant problem size. In other words, the ability to reduce the
cells-per-core ratio without loss of efficiency must be improved.

The nature of simulations at the forefront of maritime CFD capability are also
changing. Most state-of-the-art simulations are unsteady (time-dependent) requiring
CFD algorithms to simulate multiple time-steps of a flow field. The three spatial
dimensions can be parallelized, by partitioning the domain, but the time dimension is
strictly serial (excepting new parallel-in-time methods [24]) — requiring each previous
time-step to be computed before another can begin. To improve the capabilities of these
unsteady simulations, by bringing their simulation cost down to reasonable levels, the

spatial dimensions must be parallelized further in order to accelerate each time-step.



Thus, another motivation for efficiently reducing the cells-per-core ratio.

To summarize, changes in computing architecture and emphasis on unsteady simula-
tions place pressure on CFD codes to adapt. Particularly, emphasis must be placed on
improving the strong scalability of existing codes and their underlying algorithms, in
order to enable feature-rich, high-resolution, accurate simulations utilizing many-core

architectures.

1.1 Research Question

Inefficient utilization of many-core computing architectures limits the capabilities of

computational fluid dynamics, thus driving the research question for this PhD:

“What limits the strong scalability of CFD and its ability to handle many-
core architectures? What can be done to improve the CFD algorithms in this

respect?”

1.2 Aim

The aim of this PhD is to prepare CFD for the many-core era. Using Iridis4 and a state-
of-the-art CFD code, ReFRESCO, an in-depth investigation of the strong scalability of
CFD will be performed. Following this, the principle bottlenecks to scalability will be
examined in more detail — attempting to find or develop novel methods to circumvent

these bottlenecks and unlock the potential of massively-parallel supercomputing.

1.3 Objectives

The objectives of this PhD are incremental, with the results of each study guiding the

goals for further work. This process is explained below:

¢ Research into the current state and future trends of CFD and HPC.
The first objective is to thoroughly examine the CFD and HPC environment:
firstly considering the current state-of-the-art and core technologies; and secondly,
identifying ways in which the HPC ecosystem is changing, and ways in which
the CFD algorithm is likely to change, over the next few years. The knowledge
gained from this objective will define the main scalability concerns, highlight
opportunities for improvements, and ensure that any work carried out during this
PhD is compatible with other developments in the CFD domain.

e Perform scalability experiments to determine the bottlenecks to strong-
scalability of CFD. The next objective is to measure the current state of CFD
in terms of strong scalability. Advanced software-profiling and extensive testing
on a large number of computational nodes and a variety of test cases can be
used to provide insight into the code — complementing and extending existing
literature. By intelligently partitioning the CFD algorithm into key routines, it

is possible to identify which areas require further development. As will be seen,



the results of this study show that overall scalability suffers due to the linear
equation-system solver for the Poisson pressure equation, thus motivating research

into the scalability of linear solvers.

Investigate state-of-the-art methods to circumvent strong-scalability
bottlenecks. Here, the objective is to determine whether the previously-identified
scalability bottlenecks can be bypassed using state-of-the-art algorithms. A wide
variety of linear equation-system solvers and preconditioners are tested; particularly
those which are designed to improve strong scalability. Although the results showed
some improvements from these newer solvers, the bottlenecks are not adequately
removed. Thus, a further outcome from this objective is to determine the short-
comings of these methods, and identify the reasons for their poor scalability.
One of the main reasons identified is excessive global synchronization, caused by

communications between processes.

Develop and test a linear equation-system solver designed for strong
scalability, based on the theory of Chaotic Relaxation. The theory of
Chaotic Relaxations [16] is an interesting foundation for the development of
a highly-scalable ‘chaotic solver’, which could provide fast approximations to
the pressure equation by avoiding all forms of synchronization. The objective
is to develop this solver, verify the implementation, and measure performance
and scalability against other state-of-the-art solvers. The results showed good
scalability, but poor numerical performance compared to state-of-the-art solvers,

thus motivating the next objective.

Develop and test a novel ‘chaotic-cycle’ multigrid method, combining
chaotic relaxation theory with algebraic multigrid solvers. Earlier inves-
tigation showed that the scalability of algebraic multigrid methods is poor; but
there is potential to combine chaotic relaxation theory and multigrid methods,
building on the chaotic solver developed previously. The objective is to develop,
verify and test the performance of a multigrid method using a novel ‘chaotic-cycle’
algorithm. The overall goal is to determine whether these methods can replace
existing linear-solvers and allow CFD to scale efficiently on foreseeable computing

architectures.

Assessing the suitability of chaotic solvers and multigrid methods for
practical CFD test cases. This final objective seeks to determine whether
the chaotic methods developed in this thesis can be applied safely to practical
CFD problems. In particular, it should be verified that the non-deterministic,
chaotic nature of these solvers does not negatively affect the overall flow solution,
especially when the flow is unsteady and takes several days to compute (with
thousands of independent calls to the chaotic methods). Larger grids are used for
these tests, which also provides an opportunity to verify the O(NN) performance of
the chaotic-cycle multigrid method and observe some scalability characteristics on

larger grids.



1.4 Publications

The following publications have been produced during this PhD. The following informa-

tion is correct at the time of writing:

e Performance Analysis Of Massively-Parallel Computational Fluid Dy-
namics, presented at The 11th International Conference on Hydrodynamics
(ICHD) in 2014 [36]. Appendix A.

e Potential of Chaotic Iterative Solvers for CFD, presented at The 17th
Numerical Towing Tank Symposium (NuTTS) in 2014 [37]. Appendix B.

e Chaotic Linear Equation-System Solvers for Unsteady CFD, presented
at The 6th International Conference on Computational Methods in Marine Engi-
neering (MARINE) in 2015 [38]. Appendix C.

¢ On the Strong Scalability of Maritime CFD, published in the Journal of
Maritime Science and Technology in 2017 [39]. Appendix D.

e Chaotic Multigrid Methods for the Solution of Poisson Equations, sub-
mitted to the Journal of Computational Physics in 2017 [40]. Under review.
Appendix E.

A further paper has been submitted as co-author, Modelling Transition us-
ing Turbulence and Transition Models for a Flat Plate Flow: Uncertainty,
Verification and Sensitivity [81], studying laminar-turbulent transition models in
ReFRESCO; though this is largely unrelated to the thesis.

A bitbucket repository for the open-source Chaos library, published as part of this
PhD, is publicly available at https://bitbucket.org/jamesnhawkes/chaos.

1.5 Thesis Outline

This thesis begins with a preliminary background chapter (2), which covers the funda-
mentals of Computational Fluid Dynamics (CFD) and High-Performance Computing
(HPC). This background chapter also serves to describe the semi-implicit, viscous-flow,
CFD code used during this thesis (ReFRESCO) and the University of Southampton
supercomputer (Iridis4). In the following chapter (3), literature is reviewed which focuses
on the future of CFD and HPC, and methods for dealing with the changes to each —
including changes in programming paradigms and numerical algorithms. The intent of
these two chapters is to show the present and future, respectively, of CFD and HPC,
and reinforce the aim of this PhD. This also covers the first objective described above.
Each of the subsequent objectives are presented in the following chapters, introducing
their own background and literature where necessary.

Chapter 4 focuses on an initial strong scalability assessment of ReFRESCO, in which
software profiling tools are used to break down the algorithm and measure scalability.
This portion of the PhD provided unique research to the field by carrying out a detailed
scalability assessment, whilst considering the effects of multiple user-settings (such as

discretization techniques, modelling techniques, convergence tolerances, choice of linear
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equation-system solvers, and mesh structure). Following this, chapter 5 investigates,
in more detail, the effects of alternative linear solvers and preconditioners on the
performance and scalability of the code. These two chapters thoroughly identify the
bottlenecks to massively-parallel CFD, and the reasons for their poor scalability.

Chapter 6 covers the development and testing of a chaotic solver, based on the
theory of chaotic relaxation [16]. Chaotic solvers have been tested in literature and
show good results in terms of scalability — but only compared to their non-chaotic
counterparts (Jacobi and Gauss-Seidel). Practical comparisons to state-of-the-art solvers
(such as those investigated in earlier chapters) could not be found in the literature;
and the application of chaotic solvers to CFD had also not been considered. In this
chapter, a novel type of chaotic solver is implemented and tested via ReFRESCO, and
it’s performance compared to a large range of state-of-the-art solvers. An open-source
library, Chaos, which encapsulates all of the novel developments of this PhD, is also
introduced in this chapter.

Overall, the scalability of the chaotic solvers is impressive, but their raw numerical
performance is not competitive with modern solvers, especially as the size of the CFD
simulation increases. However, applying the same chaotic theories to an algebraic
multigrid method may provide good scalability without any sacrifice to numerical
performance. Chapter 7 covers the design of a novel ‘chaotic-cycle’ multigrid, including
an in-depth discussion of the various nuances and intricacies of the algorithm. The
chaotic-cycle multigrid has been developed in Chaos and tested against various other
solvers with good results, although there is still scope for improvement.

In chapter 8, the chaotic solver and chaotic-cycle multigrid are used on a modern,
relevant, maritime CFD test case — the BB2 submarine [97]. The intent of this study is
to: (a) show that the flow solution generated by non-deterministic solvers is as good
as that from deterministic solvers; (b) show that the performance of the chaotic-cycle
multigrid method scales correctly (linearly) with the size of the CFD simulation; and
(c) investigate whether unsteadiness (time-dependence) of the CFD simulation affects
the performance of the chaotic and non-chaotic solvers. The submarine is simulated at
a 20° angle of drift, and is highly unsteady. In reality, this simulation should be carried
out at much higher resolution, but the purpose here is not to create a perfect physical
solution — but to demonstrate the overall correctness of chaotic solvers in the context of
practical CFD. These last two chapters aim to prove the performance and suitability,
respectively, of the chaotic-cycle multigrid method for massively-parallel CFD.

Chapter 9 (Conclusions), discusses the successes and short-comings of the work
carried out during this PhD, and assesses the extent to which the research question
was answered. It also frames the novel contributions of this work in the wider context
of CFD and numerical science in general. Chapter 10 identifies areas of further work
and research, including improvements to the performance of Chaos and the chaotic-
cycle multigrid algorithm. Finally, the aforementioned publications are included as

appendices.



Chapter 2
Background

Here, a brief background to CFD and HPC is given. The intention is to highlight and
explain those aspects of each which are relevant for this thesis. The CFD code (Re-
FRESCO) and supercomputer (Iridis/) used throughout this PhD are also introduced.

2.1 Computational Fluid Dynamics (CFD)

There are a huge variety of CFD methodologies, which cannot all be discussed here.
Instead, the methodology employed by ReFRESCO is described, since it is most relevant
to this thesis. Much of the following derivation is interpreted from Kuzmin [55], and
is favoured for its succinctness. Alternative approaches can be found in Ferziger &
Perié¢ [26] or Murthy & Mathur [67]. Ferziger & Peri¢ illustrates the integral form of
the equations which are used here, since they are most relevant for the finite-volume
method used by most hydrodynamic CFD codes — including ReFRESCO.

2.1.1 Fundamentals

The governing equations for CFD are derived by considering the quantity of any general
variable, ¢, within a fluid domain, V' (figure 2.1). p is the density of the variable, T" is a
diffusion coefficient matrix and g4 represents production (sources & sinks) of ¢. S is

the enclosing surface of V' with normal vector n. u is the velocity vector of the fluid.
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Transient Convection Diffusion Production

When multiple control volumes are considered in a mesh, this equation can be used
to find the transport of a variable through a large domain. Hence this equation is often
referred to as the general transport equation — its various components representing the
different means of transporting some variable. If each cell, ¢, in a mesh, has f faces
— each shared between exactly two cells, then one can approximate the total flow in
a domain by discretizing the general transport equation, and applying it to each cell

(figure 2.2). In this example (equation 2.2), a backwards-differencing scheme is used to



n

Figure 2.1: A diagram of an arbitrary fluid domain V', with surface S.

discretize the transient term. V. denotes the volume of each cell, S is the area-vector
of each surface (A - n) and subscript f and p represent where the variable is evaluated —

at the face-centre or cell-centre respectively:

303 - 205! + 3oy~
At

oV, +ZSf-(pu¢)f —ZSf~(pFV¢)f = 54,V (2.2)
L4 - N

Convection Diffusion

Sources

Transient

Faces

Vertices
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Figure 2.2: [Left] A single three-dimensional cell and [right] a diagram of a small
two-dimensional mesh.

An approximation due to the discretization of the transient term has already
been introduced. Further approximation may be introduced through interpolation or
geometric approximation, which are required to solve the discretized general transport
equation.

Firstly, we consider interpolation of face-centred values from cell-centred values. Note
that the convection term requires face-centred values of ¢, but ¢ is only computed at
cell centres. Interpolation between two (or more) neighbouring cell-centres is required to
find a face-centred value. The simplest scheme is the central differencing scheme, which
takes a weighted average of the neighbouring cell-centred values to produce a second-
order approximation. It frequently suffers from non-physical oscillations of transported
variables. A common first-order scheme is the upwind scheme which approximates the

face-centred value by taking only the cell-centred value from the cell upstream. A blend
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of the two schemes is often used for reasonable accuracy and stability. Higher-order
upwind methods such as QUICK (Quadratic Upwind Interpolation for Convective
Kinematics) are often used for greater accuracy. Interpolation is also required to obtain
face-centred gradients V¢, in the diffusion term. Central differencing suffices in this
case.

Note that the cell-centred gradients V¢, are found by applying Gauss theorem
with the just-interpolated face values of ¢y, thus the diffusive term suffers from any

interpolative inaccuracy in the convection term.
1
/qu dV, = /¢-nds, S (Vo) = A Zquﬁf (2.3)
P
f

These interpolations are approximations, made worse by highly eccentric or non-
orthogonal meshes. Fccentricity causes problems for convection approximations, since
the face-centre no longer lies between the cell-centres. Non-orthogonality causes problems
for diffusion approximations, where the face-normal vector is no longer parallel to cell-

centre vector (figure 2.3).

Figure 2.3: [Left] A diagram illustrating eccentricity problems for convective interpolation
and [right] non-orthogonality problems for diffusive interpolation.

Secondly, geometric approximation can be introduced through non-planar surfaces.
The area and normal vector of a face can be calculated by splitting the face into triangles,
summing the areas and averaging the normal vectors. In some cases, the normal vectors
are not parallel and an approximation of a twisted face to a planar face is applied. This

has repercussions for the computation of cell volumes, which is performed via Gauss

/dv; = /nds, V=D 8y (2.4)
Vp S f

theorem.

Momentum Equations

In the discretized general transport equation, ¢ can be replaced by any quantity of
interest. First and foremost, it can be used to find the momentum of the flow itself, in
the z—, y— and z— dimensions. In this case ¢ = u, the diffusion term vanishes (I" = 0),
and the equation takes the general form ma = ¥ F (Newton’s Second Law), where the

source term g4 has become the sum of forces acting on the cell volume. The expression
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for production of ¢ in the general transport equation assumes sources of momentum
can be expressed as body forces (acting on the volume) — which is true for gravitational,
electromagnetic, Coriolis or centrifugal forces. However, momentum is also produced
through surface shear stresses, due to fluid viscosity, which must be captured. For

Newtonian fluids it is possible to express the shear stresses 7 in terms of strain rate:
2
7 =pu(Vu+ (Vu)') — gaw ‘u (2.5)

where ¢ is the Kronecker delta and superscript © represents the transpose. This has a
similar format to the missing diffusion term, so shear stress (7) and pressure (—p) can

be combined, yielding the following:

3,1 n—1 1..n—2
su”” — 2u +s5u
PV, + ) Sy (puu);

f
=385 (u(Va - (Vu)T) = 6o+ aV ) = RV,
f
(2.6)

where Fj, is the sum of all body forces evaluated at the cell centre.

Continuity Equation

To close this system, the pressure term which has just be introduced must also be
transported. In this case ¢ =1, g, = 0, and I' = 0. For a fluid with low Mach number

(< 0.3) density can be considered constant, thus the transient term also vanishes.

> Spup=0. (2.7)
!

Equations 2.6 and 2.7 are the Navier-Stokes equations, in their discrete form. They
create a coupled, non-linear system that can be solved to simulate unsteady (time-
dependent) fluid flows within a domain. To fully resolve these equations, the discrete
mesh must be fine enough to resolve the smallest scales of turbulence in the flow. For
most practical cases this is impossible, and techniques are used to model smaller-scale
motions of the flow, instead of simulating them directly.

A common approach is to use Reynolds Averaging, whereby the velocity u is split
into its mean value and turbulent fluctuations, @ + u’. The Navier-Stokes equations are
then time-averaged to produce the Reynold’s Averaged Navier-Stokes (RANS) equations.
In the linear terms of the RANS equations: @ + u’ = @1; the mean of the fluctuations is

simply zero. However, in the non-linear terms appearing in the momentum equations:

(0 +u)(a+ v') = uu+ u'v’; the mean of the squared fluctuations cannot be evaluated

to zero. Thus an additional item (pu’u’) has been created in the convective term.
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This part of the equation is usually shifted into the diffusive term, with the notation
7, = —pu/w’. In this format, it is similar to a stress tensor, and hence 7, is called the
Reynold’s-stress tensor.

The Boussinesq hypothesis allows a relation between the Reynold’s stresses and the

mean velocity gradients, thus:
— _ T 2
7 = —pu'v’ = pp(Va+ (Va)') — 5§pl~c (2.8)

where pp is the eddy viscosity (a flow-dependent equivalent to molecular viscosity p), &
is the Kronecker delta, and k = %W is the turbulent kinetic energy. These terms are
then modelled via additional transport equations for relevant turbulent variables.

A common turbulence model, the Spalart-Allmaras model [89], is a one-equation
model that transports pr directly and ignores k. A variety of two-equation models exist,
such as the commonly-used k& — w SST-2003 model [63], which transports the kinetic
energy and dissipation rate w, granting:

pk

Hr = o (2-9)

Turbulence can also be modelled in other ways. Large-Eddy Simulations (LES), as
the name suggests, simulates the larger turbulent structures but models the smaller,
geometry-independent structures. The equations are similar, although low-pass filtering
is used instead of Reynold’s averaging; and special turbulence models are used which only
model sub-grid-scale structures. In all of these cases, the modelled turbulence quantities
are transported using the general form of the transport equation (equation 2.6).

For specialist flows, as appearing in maritime CFD, other flow features are often
modelled and their variables transported via additional transport equations. Commonly,
equations are used to create homogeneous two-phase flows (i.e. for modelling air-water
interfaces, where each fluid is considered constant-density). For free-surface type flows,
a volume-fraction variable is modelled and transported, representing the proportions
of air/water in any given cell. For some maritime flows, cavitation is important; and

similar equations are used to model the production, growth and collapse of underwater
air bubbles.

2.1.2 Solution Methodologies

The previous section has shown how the flow of a fluid within a domain can be
approximated, simulated and modelled via the RANS equations and various additional
transport equations, by applying them at each point in a discretized mesh. For a typical
maritime application, there may be many non-linear, tightly coupled partial differential
equations to solve; including those for momentum, continuity, turbulence, free-surface
and cavitation modelling.

The additional transport equations depend on the solution of the momentum and
continuity equations — but also directly feed back into them via Reynold’s Stresses or

through additional production terms in the Navier-Stokes equations. All the while,
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the momentum equations are coupled together; and the continuity equation must be
satisfied.

In this section, the methodology for solving this complex system of equations
will be introduced. The CFD code being used for this thesis, ReFRESCO, uses the
SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) algorithm; and this
will be explored here. Other options for solving this system include PISO (Pressure
Implicit with Splitting of Operators), SIMPLER (SIMPLE-Revised) and SIMPLEC
(SIMPLE-Corrected) algorithms. The fundamentals of all the methods are similar [26].

The first principle is that of linearization, performed using a Picard’s method,
whereby the system of non-linear PDEs are converted to their linear counterparts which
can be solved iteratively to achieve a correct solution. Consider a loop with counter w,
which shall be called the non-linear or outer loop. Any non-linear terms in the RANS
equations are replaced by a linear equivalent, by taking higher-order components from
the previous loop, w — 1. For example, the term uu can be replaced by uvuv-1. A
seed for the flow field at w = 0 must be provided, typically set to a uniform flow-field or

using some pre-supposed flow information.

At each non-linear iteration, w, every equation must be solved and coupled; but the
equations are now linear PDEs which means they can be solved individually, via linear
equation-system solvers. In a segregated solver, the momentum equations are solved first
— taking other momentum quantities, turbulent quantities, pressure values, etc., from the
previous non-linear iteration. Rather than solve the continuity equation, the equation is
re-arranged as a pressure-correction (or just ‘pressure’) equation; essentially computing
offsets required to the just-computed velocity field in order to satisfy continuity. The
velocities are then corrected as necessary, and the additional transport equations can
be solved using a flow field that is guaranteed to conserve mass. A coupled solver is
sometimes used as an alternative, whereby the momentum and pressure equations are

solved together, in one large linear system, followed by additional transport equations.

At the start of each non-linear iteration, Neumann or Dirichlet boundary conditions
(which close the system in a suitable way), may need to be updated. In advanced CFD
codes, meshes may be dynamic and updated between non-linear loops too. A suitable
end for the non-linear loop is found by monitoring the maximum (Ls,) or root-mean

square (L2) residuals of each equation’s linear equation-system.

In order to stabilize the iterative process, under-relaxation is applied between each
non-linear loop. This damps changes in the solution to prevent rapid divergence, and
cancels out when the solution is converged. Relaxation can be applied explicitly or
implicitly. Explicit relaxation is applied once a solution vector has been computed, by

taking a weighting of the computed value and the old value:
Xy = XOegp + (1 — Qeap)Xw—1 (2.10)

For implicit relaxation: during the assembly of each set of equations, the diagonal of

the matrix, D = diag(A), is magnified by some factor and cancelled on the right-hand
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side by the same amount (but using the previous solution):

(A + mew g L)y (2.11)
Qimp Qimp

In an unsteady flow, the transient term, which was discretized using backwards

differencing, must be iterated in an even coarser loop, with each non-linear (steady)

flow solution representing a single timestep. This loop is given the counter ¢; and only

advances when the non-linear loop reaches convergence (or after a predefined number of

iterations, Wmax)-
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Update Boundary Update |

Conditions & Mesh Time Step
_Non-Linear Iteration Y

Solve Discretized Momentum Equations (x,y,z)
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Solve Pressure Correction Equation

!

Solve Other Discretized Transport Equations

No

W

Figure 2.4: A diagram of the SIMPLE algorithm, showing the non-linear loop and the
time-stepping loop.

Figure 2.4 shows the SIMPLE algorithm, and therefore the two coarsest loops of
a typical CFD simulation. The routines within these loops are important to examine,
from a computational perspective, since they are repeated many hundreds or thousands
of times in a particular simulation. The routine is virtually the same for each equation,
thus here we examine the process of solving any general linearized transport equation.

Figure 2.5 shows the process, which can be split into 4 main sub-routines.

o Assembly

This routine is responsible for creating a system of N linear equations, where N
is the number of cells in the discretized mesh. The equation system will have
the form Ax = b where A is a constant N-by-NN sparse matrix, x is the solution
vector and b is the constant right-hand-side vector (both of length N). The
process involves applying all discretization, interpolation, eccentricity corrections

and orthogonality corrections. All higher-order discretization schemes apply their
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Figure 2.5: A diagram illustrating the steps required to solve an individual, linearized

transport equation.

low-order terms, implicitly, to the left side of the equation system; and their
higher-order terms explicitly to the right side of the system, using values from
w — 1, in a process known as deferred correction. The sparse matrix will represent
the connectivity of the underlying mesh. Figure 2.6 shows an example of a
sparse matrix, demonstrating the simple connectivity pattern of a two-dimensional

Cartesian mesh.

~
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Figure 2.6: An example of a sparse matrix constructed for a simple two-dimensional,
square domain.

e Solve

The linear equation system must then be solved. Due to the size of N, direct
solvers which completely invert A to find the solution vector are impractical.
Tterative solvers are used to rapidly approximate the solution to each linearized

equation system, and this iterative loop is called the inner loop, with counter k,
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thus creating a third nested loop in the overall CFD algorithm. The residual of
this system, r = Ax — b, can be monitored until a desired inner-loop convergence
tolerance (ILCT) is reached. There are many iterative solvers to choose from,
often with many deeper subroutines, and a more thorough examination will be

performed later in this thesis (chapter 5).

Using Gauss theorem, the gradients of the transported variable must be calculated,
so that they are available for other equations. Any necessary orthogonality and
eccentricity corrections must be applied.

s Exchange

When computing in parallel, the discretized mesh may be partitioned across
computing nodes which do not have direct memory-access to the variables after
they have been computed. In this case, data exchange must occur along the
boundaries of the partitions, via halo or ghost cells, such that each partition
has enough information to perform its discretization and interpolation. This
data exchange must happen after the initial linear solution (so that ghost data is
available to compute gradients), and also to communicate the gradients once they
are computed. Data exchange also occurs as part of the linear solution process,

but this can be considered part of the solve routines.

As will be demonstrated later, the majority of computational effort is spent in the
solve routines when using parallel computing. Most of the other named routines, above,
are efficient (including assembly, calculation of gradients, time-stepping, updating
boundary conditions); although every case is different. Short simulations may be
dominated by one-time overheads such as file input/output; or cases involving large

amounts of dynamic meshing may spend more time in those relevant routines.

2.1.3 ReFRESCO

The work presented in this thesis focuses on the development of ReFRESCO — a
typical viscous-flow CFD code. ReFRESCO solves multiphase, unsteady, incompressible
flows with the Reynolds-Averaged Navier Stokes (RANS) equations, complemented
with turbulence models, cavitation models and volume-fraction transport equations for
different fluid phases [99]. ReFRESCO represents a general-purpose, finite-volume CFD
code, with state-of-the-art features such as moving, sliding and deforming grids and
automatic grid refinement — but has been verified, validated and optimized for numerous
maritime industry problems. ReFRESCO is currently being developed at MARIN
(Netherlands), who were the sponsor of this PhD, and also part of the supervising team.
Fifteen months of this PhD were spent working in the MARIN offices in the Netherlands,
directly alongside the main developers. The development of ReFRESCO is highly
collaborative, with contributions from IST (Portugal) [76], the University of Sao Paulo
(Brazil) [80], the Technical University of Delft (the Netherlands) [52], the University of
Groningen (the Netherlands) [7] and now from the University of Southampton (UK)
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[36, 37, 38, 39, 40]. The University of Southampton/MARIN collaboration began in
2012, during an internship, which focused on turbulence and transition model verification

and validation, along with the University of Sao Paulo [81].
The overarching theories and processes in ReFRESCO have been described broadly

in the previous sections. To summarize, ReFRESCO is a finite-volume, viscous-flow
CFD code, capable of modeling RANS, LES, and hybrid-RANS/LES. The code is
based on the SIMPLE algorithm, with its three nested loops (t,w,k) for unsteady time-
stepping, non-linearity /equation-coupling and the iterative solution of the linearized
equations. ReFRESCO is ‘face-based’ with cell-centred collocated variables, designed
to handle unstructured grids in a pseudo-object-oriented manner. Nothing prevents
ReFRESCO from using structured or block-structured grids (which are often of higher
quality than unstructured meshes), but this scheme does not take advantage of the
inherent structured data/memory layout of these grids (unlike pure structured-grid
CFD solvers).

ReFRESCO is written in free-format Fortran, and linked to many state-of-the-art
external tools. ReFRESCO uses MPI (Message Passing Interface), specifically OpenMPI
and IntelMPI, to perform communications between parallel partitions — including
data exchange routines and communications occurring inside the solve routines [66].
ReFRESCO uses a single-level parallelization scheme (MPI-only), and does not use
other layers such as OpenMP threading which will be described in the following section.

METIS [27], a tool for accurate and fast partitioning of unstructured meshes, is
used to partition the domain into parallel chunks. METIS attempts to make a fair
trade-off between computational work-load (number of cells per MPI domain) and

communicational work-load (size of domain boundaries or number of ‘halo’ cells).

ReFRESCO relies upon PETSc (Portable Extensible Toolkit for Scientific Comput-
ing), for most of its linear algebra needs. The work of the solve routines is completely
off-loaded to PETSc, by building the linear system (Ax = b) inside PETSc, and using
PETSc’s suites of linear solvers and preconditioners [6]. PETSc is written in C, but has a
Fortran interface which is used by ReFRESCO. PETSc has an object-oriented structure,
with objects for matrices, vectors, preconditioners and ‘KSP’s (Krylov subspace solvers).
During this PhD, ReFRESCO has also been linked to Trilinos, as a direct substitution
for PETSc [41]. Trilinos is similar to PETSc, but provides alternative parallelization
schemes (including GPU/co-processor acceleration) and is written in heavily-templated
C++. Trilinos is a collection of packages including Ifpack2 (preconditioners), Belos
(solvers), Kokkos (parallelization schemes) and Tpetra (matrices/vectors). The interface
to Trilinos is similar to PETSC, but is in C++, so it was linked to ReFRESCO using
ISO-C bindings and a wrapper. Unfortunately, Trilinos underperforms (by an order of
magnitude) compared to expectations and the cause of this has not been identified.

Although ReFRESCO is a maritime-focused CFD code, most of the fundamental
algorithm is unaffected by this specialization. There are differences in the transport
equations (free-surface, cavitation, turbulence, etc.), the additional features (sliding

meshes, for propellers, for example) and the validation test cases — but overall, Re-
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FRESCO is a general-purpose semi-implicit CFD solver. It is used for a wide variety of
applications, including in the design of maritime vessels, offshore structures (especially

for the oil & gas industry) and renewable energy industries (tidal and wind energy).

2.2 High-Performance Computing (HPC)

For a detailed understanding of high-performance computing, the author recommends
Kogge et al. [54], which offers a very in-depth view of modern supercomputers. Saltzer &
Kaashoek [84] helps to give a complete picture, by explaining the design and operation
of computers in general.

A supercomputer (a.k.a. a cluster or a high-performance computer) is a large
computer, consisting of many small nodes which resemble individual computers. The
nodes are connected using a high-speed inter-nodal network, for fast data transfer; and
a slower Ethernet connection for management functions.

The inter-nodal network is often copper-wire based, although optical interconnects
are becoming popular for their higher speed and power efficiency [17]. Iridis4, the
University of Southampton supercomputer, uses a copper-wire Infiniband network,
grouping ~30 nodes together with a 14 Gbit/s connection, and connecting these groups
via four (parallel) 10Gbit/s connections in a tree-like hierarchy. Other networks, often
designed for higher performance, include multi-dimensional torus connection patterns.

Nodes are the coarsest level of parallelization in a supercomputer. There is no shared
memory between independent nodes, so data must be shared by sending messages
(packets of data) across the inter-nodal network. Programming standards such as MPI
(Message Passing Interface) are commonly used to parallelize scientific code at this
level. For example, MPI communications are used in ReFRESCO to handle ghost-
cell data exchange. In this programming model, each node runs a separate instance
(process), or several instances, of a parallel application, each with its own memory,
sharing data via MPI and memory buffers. This level of parallelization is often referred
to as Distributed-Memory Parallelization.

An individual node is normally a fully-functional computer in its own right, consisting
of central processing unit(s) (CPU(s) or processors), random-access memory (RAM
or just memory), and specialist controllers which interface with hard drives, external
networks (such as Ethernet or Infiniband), and much more. These devices are connected
via the front-side bus (FSB). Figure 2.7 shows the layout of a typical node, with two
CPUs on a shared FSB.

Often, multiple processors are placed on a single node in sockets, each with their
own set of memory which can be directly accessed via an integrated memory controller
(IMC) on each CPU. Processors can access their own memory quickly via the IMC,
but they can also access the memory of other sockets via the FSB. This composition is
known as symmetric multi-processing (SMP). Iridis4 consists of two symmetric sockets
per node.

An individual CPU consists of various, complex sub-systems which perform particular

tasks, but at its heart are processing cores which are fed pipelines of data to operate on
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Figure 2.7: A diagram of a typical node, consisting of two 8-core CPUs on a shared
FSB. Brands such as AMD and Intel have variations on the standard FSB design, such
as Quick-Path Interconnect (QPI).

and instructions which must be performed. As well as the IMC, CPUs often contain
small amounts of on-board memory, called cache, which can be used to store small
amounts of re-usable data or to pre-fetch data from RAM. In the case of Iridis4, which
comprises of Intel Xeon E5-2670 CPUs, there are 8 cores per CPU, each with a level-1
(L1) instruction cache of 32KB, an L1 data cache of 32KB and a 256KB L2 cache. There
is also a shared 20MB L3 LLC (last-level cache) which every core can access. The higher
levels are larger and slower, as they move further from the physical cores. This process
of combining multiple cores on a single processor is called chip-level multiprocessing
(CMP).

In the eyes of the programmer, SMP and CMP can be considered the second level
of parallelization. Memory is shared between all cores on a node, so message-passing is
no longer necessary in order to perform parallel computations. A common standard for
enabling parallelization at this level is OpenMP (Open Multi-Processing)[75]; which
creates threads (often one per core) operating on different segments of the available
data within a single process. It is possible to take advantage of both inter-nodal and
intra-nodal parallelization by performing MPI communications between processes, on
separate nodes, and using multi-threading within each node — this is known as hybrid
parallelization or MPI+X. It is also common to run multiple processes on a single

node, each with their own memory partition, thereby using MPI for intra-nodal and
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inter-nodal parallelization. These MPI-only implementations may struggle to compete
with multi-threading at the intra-nodal level, due to unnecessary memory copying and

inability to effectively use shared cache.

An important concept at the intra-nodal level is that of non-uniform memory access
(NUMA). When data is accessed by a core, it could come from L1 cache, L2 cache, L3
cache, the local memory (via IMC) or SMP memory (via FSB); and although compilers
optimize data locality as much as possible, asynchronicity naturally occurs. It is often
the job of the programmer, or algorithm, to hide this asynchronicity or to improve data

locality.

In a modern computer, so-called accelerators are often added to nodes as expansion
cards. These expansion cards could be graphics processing units (GPUs) or specially-
designed coprocessors, and they communicate via a PCle (Peripheral Component
Interconnect Express) switch which connects to the system bus. These accelerators
act in a similar way to a node, with their own memory and processor (typically with
many more cores than a CPU). Communication and scheduling of parallel workloads is
handled by the host node, offloading data and instructions via standards such as CUDA
[71], OpenCL [92], or (more-recently) cross-vendor OpenMP [75] and OpenACC [73]
standards. Newer co-processors, such as Intel’s Knight’s Landing, have network cards

which allow them to act as nodes in their own right, communicating via MPI.

Another level of paralellization occurs at the sub-core level, sometimes referred to
as vectorization, single-instruction-multiple-data (SIMD) parallelization, superscaling or
data-level parallelization (DLP). If there are blocks of aligned memory (i.e. vectors)
which are operated on in a non-dependent loop; it is possible to perform operations
on much of the data at the same time. The size of the SIMD register determines
the size of vectorized blocks — for example, a 256-bit register will allow blocks of 4
double-precision floating points numbers to be operated together. In ideal situations,
this is a 4x speed-up. For processors based on the x86 architecture, vector processing
is handled by the Advanced Vector Extensions (AVX) protocol — which constantly
improves by offering larger SIMD registers and improving the amount of operations

that can be vectorized.

Compilers can do a reasonable job of auto-vectorization; but they must be conserva-
tive when evaluating data-dependency. As such, it is often the job of the programmer
to exploit SIMD parallelization. Unfortunately, for applications without well-aligned
memory (such as unstructured-grid CFD codes) it becomes difficult to use vectorization

effectively due to limited memory bandwidth.

The final level of parallelization, referred to as pipelining or instruction-level par-
allelization (ILP) is handled automatically by the compiler. It allows, for example,
pre-fetching data whilst computing by overlapping different operations, performed by
different processing elements. Pipelining improvements are a means of improving core
efficiency, allowing more FLOPS without increasing core clock rates. Figure 2.8 shows

an illustration of pipelining.

This section has given an overview of a classical supercomputer architecture, following
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Figure 2.8: An illustration of pipelining/instruction-level parallelization (ILP). Colours

represent operations which can be performed concurrently (Creative Commons: Colin
M.L. Burnett).

the hierarchy of parallelization schemes from the coarsest to finest level:

1. Distributed-memory parallelization, at the inter-nodal level, handled via a message-

passing interface.

2. Shared-memory parallelization, at the intra-nodal level, handled via shared-
memory threading interfaces or by a distributed-memory-style message-passing

interface.

3. SIMD vectorization, at the sub-core level. Handled via compiler directives or
subsets of the OpenMP standard.

4. Pipelining or instruction-level parallelization (ILP), at the sub-core level, auto-

matically handled by the compiler.

Accelerators or co-processors, tied to a host but with their own distributed memory,
can be considered an additional layer of parallelization — handled via specialist standards
such as CUDA, OpenCL, OpenACC, or subsets of the OpenMP standard.

Over the years the emphasis on different levels of paralellization has changed;
with a trend towards finer levels of parallelization. It is critical that algorithms used
within scientific applications, including CFD, are designed to co-exist within this parallel
framework, and are capable of utilizing multiple layers of parallelization. In the literature
review, the historical trends and future trajectories of high-performance computing are

demonstrated; showing where developers of CFD should be focusing.
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2.2.1 Iridis4

Iridis4, the University of Southampton supercomputer which has been used throughout
this PhD, has been introduced as an example above. Iridis4 has 750 nodes, consisting
of two Intel Xeon E5-2670 Sandybridge processors (8 cores, 2.6 Ghz), for a total of
12,200 cores. Each 16-core node is diskless, but is connected to a parallel file system,
and has 64GB of memory split into two NUMA domains (one per processor). The
nodes run Red Hat Enterprise Linux version 6.3. Nodes are grouped into sets of 30,
which communicate via 14 Gbit/s Infiniband. Each of these groups is connected to
a leaf switch, and inter-switch communication is then via four 10 Gbit/s Infiniband
connections to each of the core switches. Management functions are controlled via an
ethernet network.

Iridis4 ranked #179 on the Top500 list of November 2013 with a peak performance of
227 TFLOPS [96]. Iridis4 cannot be classified as a next-generation, many-core machine,
with only 16 cores per node. Indeed, it is several years behind the state-of-the-art.
Nonetheless, it should be able to give sensible insight into the limitations of the CFD

algorithm if appropriately-sized simulations are used.

2.3 Closure

This chapter has given an overview of the fundamentals of CFD and HPC, and described
how they cooperate. It has also introduced the CFD code used during this thesis
(ReFRESCO) and the supercomputer on which it is run (Iridis4).

The decomposition of the CFD methodology into the key routines of the SIMPLE
algorithm, {assembly, solve, , data exchange}, will be used later to break
down the performance of ReFRESCO, and identify areas where scalability is poorest.
Meanwhile, the knowledge of HPC-related technologies, such as cache, vectorization
and MPI communications, will help identify the cause of poor scaling and guide the
development of algorithmic improvements.

The following chapter will build on this background chapter, by considering the
state-of-the-art of CFD and HPC, and how both these environments may be changing

in the near future.
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Chapter 3

Literature Review

Literature relating to the future of HPC and CFD will be examined herein. To begin,
the state of next-generation ‘exascale’ computing is examined, providing the main
motivation for the research question of this thesis and defining the ‘strong scalability’
problem which CFD must overcome (§ 3.1). In order to answer the research question,
and tackle the strong scalability problem, there are two complementary fields of research
which will be investigated. Broadly-speaking, these fields are inter-disciplinary — taking
aspects of computer science and applied mathematics, respectively.

Firstly, the methods of parallelizing the CFD algorithm may need to be adapted
to suit modern architectures. This may include, for example, moving the existing
implementations to accelerated devices or hybrid-parallel schemes which utilize shared-
memory more efficiently. Parallel-programming paradigms for CFD will be explored in
section 3.2.

Secondly, fundamental changes to the core CFD algorithms may be required in order
to improve strong scalability. These algorithmic changes are not necessarily dependent
on any particular architecture or parallel-programming model; although it is difficult
to avoid cross-over between these two fields. Areas in which numerical algorithms are
being improved for strong scalability and performance are discussed in section 3.3.

Briefly, other developments in the overall CFD methodology are also discussed, in
order to understand how developments towards exascale CFD must merge with other
areas of research.

More specific literature will be introduced in subsequent chapters where it is more

relevant.

3.1 Exascale Computing & The Strong Scalability
Problem

The Top500 list, which has recorded the development of state-of-the-art supercomputers
since 1993, provides excellent insight into historical trends of hardware capability [96].
The maximum performance (based on Linpack, a linear algebra solver and benchmark

tool) has doubled approximately every 13.85 months, considerably faster than Moore’s
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law would predict (18-24 months) [28] — see figure 3.1.
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Figure 3.1: Growth of the Top500 supercomputers since 1993, showing exponential
growth in performance of the #1 machine, the # 500 machine, and the sum of the
Top500 machines. Data compiled from [96].

The first exascale computer, capable of one exaFLOPs (108 floating-point opera-
tions per second), should be in operation by 2020 according to this trend. This is a
10.75-times performance increase compared to the current #1 supercomputer (Sunway
TaihuLight). The challenges associated with reaching exascale will redefine the entire
high-performance computing ecosystem, and fundamentally break the current program-
ming paradigm. Some make the argument that the first exascale machine will be late,
due to the complexities that must be overcome [46], and this seems quite likely. A new
supercomputer, Aurora, commissioned by the Argonne Leadership Computing Facility,
is scheduled for 2018 with a peak performance of 180 PFLOPS — which is slightly behind
current growth trends.

In 2008, a report was commissioned by DARPA (Defense Advanced Research Projects
Agency) which, in part, assessed the possibility of exascale computing [54]. Despite
being written in 2008, most of the predictions have held true so far, and it is still used
today as a valid analysis of exascale computing. There are a few key points to extract

from this 297-page report:

e The amount of energy required to move one bit of data along a copper wire
remains constant, whilst the energy cost of floating point operations decreases. As
the FLOP rate of HPC systems increases, the power requirements of inter-nodal
communication becomes a driving factor. Using the current growth trends, an
exascale computer would consume over 60MW of electricity (around $60 million
US dollars per year); to bring this value to manageable levels (around 20MW) the
rate of increase of inter-nodal communication must decrease. There are advances in
optical interconnect technologies, which aim to improve bandwidth and efficiency
compared to copper-wire interconnects [17]; but their development cannot keep
up with current node-scaling rates. Essentially, node-scaling will slow down and

computational power must come from elsewhere.
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e Core clock rates have stagnated, since 2004, due to a breakdown in Dennard’s Law
[23]. Dennard’s Law states that as transistors become smaller, their speed increases
linearly and their total electrical power consumption decreases quadratically.
Quantum effects, causing electrons to ‘leak’ across the silicon insulators, cause
leakage currents in modern transistors — thus breaking the latter part of Dennard’s
Law. To avoid runaway power consumption due to leakage currents, core clock
rates must remain constant. Indeed, core clock rates may even decrease to
allow a larger margin for other electricity-consuming systems such as inter-nodal

communications.

Fortunately, some gains can still be made without increasing power consumption.
Pipelining and other similar technologies allow instructions-per-cycle to increase,
allowing a greater FLOP rate without increasing clock frequencies. Despite this,
to achieve an exponential growth rate in total performance, whilst limiting the
number of nodes and decreasing core clock-rates, a huge growth of intra-nodal

(cores-per-node) concurrency must occur.

A modest increase in intra-nodal parallelization is already apparent. Since 2004,
manufacturers have been packaging multiple cores into single processors in order
to keep up with exponential performance increases. Figure 3.2 shows how the
performance of the Top500 supercomputers can be attributed to core-clock speeds

and number-of-cores since this shift towards a multi-core architecture.
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Figure 3.2: Growth of the Top500 supercomputers since 1993, showing how total
performance is attributed to total parallelization and the FLOP rate of individual
cores. Note the critical point in 2004, where FLOPS-per-core began decelerating and
parallelization began accelerating. Data compiled from [96].

An exascale machine is likely to have O(1k) to O(100k) cores per node, depending
on the specific architecture. Similarly, total concurrency is likely to grow to an
order of 1 billion cores (x10-100 for latency hiding). Sunway TaihuLight has only
10.6 million cores, so this is a growth in parallelization of approximately 100x in
just three years. This corresponds to over a 25x acceleration of parallelization

rates, compared to the trends illustrated in figure 3.2. This sudden acceleration

27



demarks the end of the multi-core era, and the start of the ‘many-core’ era.

e Memory bandwidth grows more slowly than processor-performance (approximately
half the speed), so data locality, cache usage and latency-hiding will become more
important. Memory capacity is also growing at a similar rate, which limits the
maximum size of scientific simulations [46].

e Heterogeneous architectures are likely to become the norm. Most likely this will
mean that nodes consist of multiple types of core, each specialized for different
tasks. This is already visible in accelerated nodes, where CPU cores are augmented
by vectorized GPU cores or low-speed co-processor cores. This system may be
adopted within individual CPUs; where various types of core exist to achieve
specialist tasks more efficiently. This trend is partly driven by the consumer market
for embedded systems: tablets, phones and laptops already use heterogeneous

processors (such as for embedded graphics).

Some aspects of heterogeneity are already visible on regular CPUs. Modern
CPUs down-clock cores when operating near the thermal design envelope in
order to maintain efficiency without sacrificing peak performance; thus creating
a pseudo-heterogeneous environment. This is often marketed from the opposite
perspective, as a ‘turbo’ feature. This concept, known as ‘dark silicon’ will become
commonplace and much more pronounced. In Esmaeilzadeh et al. [25], the authors
discuss the power challenges facing exascale computing, and predict that the
homogeneous-core architecture will not be sufficient in achieving exascale, due to
the sheer number of cores which must ‘go dark’. Indeed, the authors propose that
specialized, heterogeneous cores are needed.

e Due to increasing pressure to reduce operating voltages the MTBF (mean time
between failure) of individual cores will decrease. Combining this effect with the
sheer number of cores participating in a simulation, it will become necessary for
simulations to survive core-failures. It is not clear whether this will come entirely
from low-level systems (such as the operating system or parallel-programming

libraries) or whether user codes will each have to adapt.

Many of these trends are already visible with the recent growth of many-core
supercomputers, which exhibit higher FLOP /MW ratios in response to energy efficiency
constraints [46]. Tianhe-2 (the #2 fastest supercomputer in the world, according to the
Top500 list [96]) uses 3 Xeon Phi co-processors to accelerate each node, providing 192
cores-per-node (totalling 34 PFLOPS at 17.8MW). The #3 supercomputer, achieving
17.6 PFLOPS (at 8.2MW), uses k20 graphics cards providing 2496 low-speed cores-per-
node. However, it could be that accelerators are just a stepping-stone to many-core
CPU-based architectures.

Sunway TaihuLight (#1 of the Top500 [96]) uses 260-core CPUs to achieve a peak
performance of 94 PFLOPS with a power consumption of 15.3MW. Each processor
contains 256 vectorizable, low-frequency cores and 4 more-conventional cores. It is a
heterogeneous architecture with just 123MB of memory per core (32GB per node). To

put this in perspective, Iridis4 contains 64GB of memory per node, but only 16 cores.
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These new machines, and upcoming supercomputers such as Aurora [4], continue to
validate the predictions made in Kogge et al. [54]. Changes in architecture will require
the fundamental parallel programming paradigms of CFD to adapt. Furthermore, huge
growth in parallelization will require the CFD algorithm to scale more efficiently.

In the following two sections, the way in which CFD has, or can, adapt to this next-
generation computing environment will be examined. Firstly, programming paradigms
will be considered, looking at ways in which CFD can adapt to make use of new hardware.
This will focus on computational changes to the code — using different parallelization
techniques, exploiting accelerators, and examining data-level (SIMD) parallelization —
without changing the numerics of the code. Secondly, the numerical algorithms which
form the core of the CFD methodology will be examined, identifying areas where the
numerical algorithms themselves have already been adapted for strong scalability, and

where further work is required.

3.2 Parallel Programming Paradigms for CFD at

Exascale

Most commercial and open-source CFD codes are based on an MPI-only model, including
ReFRESCO [99], Star-CCM+ [13, 14, 15|, OpenFOAM [74, 77] and ANSYS CFX [19] —
in general, their methodology, performance and scalability are similar. However, there
is now an increasing amount of literature discussing alternatives to this MPI-only
model. For example, there have been experimentations with hybrid parallelization
in OpenFOAM [20] and GPU-acceleration in ANSYS CFX [42]. In this section, this
literature will be investigated in order to understand the state-of-the-art with respect to
CFD and parallel programming paradigms — including hybrid parallelization, accelerators

and vectorization.

3.2.1 Hybrid Parallelization

A popular concept for strong scalability is that of hybrid parallelization, whereby
distributed-memory processes communicate via MPI (across node or NUMA bound-
aries), and within each shared-memory process multiple threads operate together, using
OpenMP or similar [78]. Neither ANSYS nor Star-CCM+ have mentioned hybrid
programming paradigms, but they may be investigating this. Developers of OpenFOAM
have experimented with hybrid paralellization with good results [20]. The hybrid schemes
were shown to be faster at high core counts (C' = 4096), but their implementation was
badly optimized for memory locality, and many start-up routines were not hybridized.
On routines which were well-optimized, hybrid execution was up to 15 times faster; but
this speed-up was probably due to cache effects or better optimization and should not
be considered a benchmark.

This OpenFOAM study shows some benefits of hybrid paralellization with respect
to strong scalability and large core-counts; further improvements to memory locality

and more wide-spread hybridization may make this an accessible performance gain
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for CFD. PETSc, the scientific algebra library on which ReFRESCO depends, has
been fully hybridized with modest results [56], with some performance increase when
task-based threading was used (dedicating one thread purely to MPI communications).
However, official support for the hybrid parallelization model in PETSc was recently
dropped. Instead, the PETSc developers hope that MPI-only will remain relevant as
MPI standards develop over the next decade. There have been many interesting debates
on their mailing lists regarding this decision.

Some of the advantages of hybrid parallelization include better memory capacity
usage (reducing duplication of data within the same node), better memory locality, better
usage of inter-nodal networks and dynamic fine-grained load-balancing [78, 90]. That
being said, numerical codes using non-hybrid schemes can also realize these advantages,

albeit with greater programming effort.

3.2.2 Accelerators

Accelerators include graphics-processing units (GPUs) or co-processors (such as Intel’s
Xeon Phi) which are attached to a host node. Usually, these devices are connected via
the PCI serial interface to the host node (see figure 2.7). The Xeon Phi can be operated
as an MPI node in its own right, or work can be off-loaded (either partially or entirely)
by OpenMP directives. GPUs work in a similar way to off-load-mode Xeon Phis, using
programming standards such as CUDA or OpenCL. Functions performed on GPUs
(kernels) must be re-written in an appropriate syntax; whereas Xeon Phi’s understand
the same instructions as the host (thus they are much easier to use). All forms of
accelerators are designed to provide large throughput computing power; favouring SIMD
(Single-Instruction-Multiple-Data) vectorized routines. This is opposed to CPUs which
are latency-optimized, focused on performing complex, varied tasks via large caches and
diverse processing elements. The usage of accelerators is usually a trade-off between
the speed-up obtained from using high-throughput processing compared to the cost of
moving data to the accelerator.

Gorobets et al. [32] presents one of the most comprehensive CFD-acceleration studies,
translating the vast majority of CFD operations into OpenCL kernels — including those for
discretization, interpolation, gradient computation and linear-equation-system solving.
The author demonstrates that the routines run 7.6 — 22.5x faster on an NVidia C2050
GPU, and 11.6 — 96x faster on an AMD 7970 GPU, as compared to the run-time on a
standard Intel CPU (X5670). However, comparisons between CPUs and accelerators are
not very revealing (their hardware is fundamentally different). The author goes on to
show that the GPU kernels achieve very poor throughput compared to their theoretical
peak; and that the CPUs are used more efficiently. This is mostly due to the limited
memory bandwidth and host-to-accelerator communication which creates a bottleneck.
Furthermore, the code used by Gorobets et al. used a structured (Cartesian) mesh which
could be vectorized for efficient computation on GPUs.

Soukov et al. [88] performed a similar study, specifically looking at higher-order

discretization routines for unstructured CFD meshes accelerated on GPUs. The GPU
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shows good performance up until memory bandwidth is saturated. In order to compare
between CPUs and GPUs, the author shows that the speed-up is greater than the
relative electrical power consumption of the two devices (the GPU requiring 2.5x more
power, but producing a larger speed-up). Similarly, Rossi et al. [82] presents GPU
acceleration of an unstructured finite-element code. The accelerator becomes more
efficient as the test case becomes larger — when 1-million cells were offloaded the GPU
became up to 4.11x faster than the CPU.

Gorobets et al. [33] performed a study comparing the performance of NVidia GPUs,
AMD GPUs and first-generation 5110P Xeon Phis for unstructured discretization
routines. The Xeon Phi performed poorly compared to the GPUs, but the author
provides many explanations for this. Most notably, the code is optimized for massive
multi-threading; and this is only possible in embarrassingly-parallel parts of the CFD
code (such as in the assembly and routines). The Xeon Phi behaves more
like a standard CPU, with larger caches and more hierarchical memory access, which
should allow it to maintain speed-up on more complex routines (with irregular memory
access or inter-thread communication). In Liu et al. [59], an NVidia K20X GPU is
compared to a Xeon Phi for sparse-matrix-vector-multiplication (SpMV) routines, which
feature heavily in the solve routines for CFD. Xeon Phi’s were considerably faster in
this test case, which could be much more meaningful for overall CFD speed, as the solve
routines are expected to be a bottleneck to strong scalability. Gorobets et al. notes
that despite the poor comparison to GPUs in the naively parallel code, the Xeon Phi
achieved very good internal scaling, achieving approximately 83% parallel efficiency

over its 240 threads (compared to serial run-time on a single Xeon Phi thread).

The latest generation of Xeon Phi, dubbed Knight’s Landing (KNL), was released
in 2015, featuring 3x the raw compute power of the first-generation Xeon Phi [94, 95].
KNL features an even more hierarchical memory architecture, with a bank of ‘near
memory’ (8 or 16GB) acting as a form of large cache. This is very attractive for CFD,

which is often memory-bandwidth limited.

Recent developments in the OpenMP standard (4.0) support offloading of data to
an accelerator without re-writing special vendor-specific kernels. The much younger
OpenACC standard was created for the same purpose. Unfortunately, few compilers
support the full OpenMP or OpenACC standard; with most offering partial coverage
for their preferred hardware. For example, the Intel compilers support OpenMP 4.0
offloading, but only to Intel Xeon Phis. Similarly, the Portland Group compilers support
OpenACC for NVidia GPUs — but nothing else.

In Horst [46], a certain amount of scepticism around the long-term usage of accelera-
tors is presented. The author suggests that accelerators may be a short-term solution to
achieve a pseudo-many-core architecture. The expectation being that these throughput
cores will move on to the same package as the typical CPU cores. The reasoning is that
most supercomputing technological advances are driven by changes in the consumer
market. Mobile phones, tablets, and laptops typically use embedded systems, with

specialist cores for general-purpose computing, graphics processing (SIMD) and other
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specific applications — all on the same chip. The recently-developed Sunway TaithuLight
fits this prediction very well. In some ways, the heterogeneous, embedded vectorization
cores act similarly to an accelerator, so programming standards such as OpenMP are

likely to adapt well to this environment.

3.2.3 Vectorization

A key part of modern processors, including graphics cards and co-processors, are
their SIMD vector extensions to the standard (x86) instruction set. As more complex
instructions become vectorizable and the SIMD registers on these devices get larger,
vectorization cannot be ignored [91].

Ierotheou et al. [49] performed some work on vector processing for CFD in 1989
(when array processors were popularized), showing substantial speed-up in some areas of
the code. The author states that vectorization could be exploited in the solve routines,
offering up to 20x speed-up for simple iterative solvers (such as Jacobi methods).
The limiting factor for other routines, such as assembly routines was difficult branch
prediction (conditional if statements inside a loop make it difficult to vectorize) due to
boundary conditions and irregular source terms from the turbulence equations. Vector
extensions in modern processors are quite different. Firstly, the maximum speed-up is
proportional to the vector register size — on Iridis4, a 256-bit (4 double precision floats)
vector register grants an ideal 4x speed-up. Secondly, the vectorization has become more
robust — ‘masking’ of different conditional statements allows difficult branch prediction,
and some indirect memory access is allowed. Compared to the hardware available to
Terotheou et al., speed-ups should be smaller but perhaps applied to more of the code.

Memory alignment is an important factor for effective vectorization. In a structured
CFD code, where cells can be expressed in Cartesian (i,j,k) format, and relationships
between cells can be expressed as constant offsets, memory access is very uniform (which
leads to high performance in itself) and vectorization is trivial. In an unstructured
code, which typically uses pointers to non-contiguous memory, memory alignment is
much harder (and is the reason that CFD is often memory-bandwidth bottlenecked).
Vectorization is often possible, but inefficient, since the vector processor will be starved
of data. Attempting Intel’s auto-vectorization on sections of the solve routines in PETSc
results in a compiler warning: “Vectorization possible but seems inefficient” [51].

The operational intensity (the ratio of FLOPS per memory operation) is often
used as a metric to assess the performance characteristics of numerical algorithms —
often visualized on roofline diagrams (figure 3.3). The operational intensity of most
unstructured CFD is low, making vectorization unproductive unless the memory access
can also be vectorized.

Sparse matrix storage structures have been developed which can improve operational
intensity, such that vectorization becomes possible. One such format is based on ELL
(originally designed for solving ELLiptic boundary condition problems), which pads each
row of the sparse matrix such that it is the same length, allowing some vectorization.

Saad & van der Vorst [83] discusses the ELL format, as well as standard formats such
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Figure 3.3: An example of a roofline diagram, used to visualize operational intensity and
its affect on maximum performance of any particular algorithm [Wikimedia Commons:
Giu.natale].

as CSR (Compressed Storage Rows) used by most CFD codes, including ReFRESCO.
Other formats exist, such as JAD (Jagged Diagonal) with optimal vectorization, but
require impractical matrix re-ordering. D’Azevedo et al. [22] shows order-of-magnitude
speed-up using ELL on SpMV routines on specific Cray vector machines, which is
encouraging for CFD. The status of PETSc implementation of such formats is unclear;

they appear to feature in well-developed GPU kernels, but not for modern CPUs.

In Basermann et al. [9], an automatic-vectorization script called Scout was developed
and applied to two CFD codes: one structured (TRACE) and one unstructured (TAU),
using modern vector extensions. Convective discretization routines achieved perfect
speed-up (x4) in the structured code, and a 2x speed-up in the unstructured code.
Other assembly and routines achieved up to a 50% speed-up. The ability
to vectorize was heavily influenced by memory storage patterns and specifics of the
implementation — which differ somewhat from ReFRESCO’s implementation. The
significant performance differences between structured and unstructured meshes raise
the possibility of recovering structured blocks from hexahedral unstructured meshes, for

the purposes of vectorization. This is done successfully in EXN/Aero [24].

In this section the programming paradigms surrounding exascale have been discussed,
exploring the ways in which existing CFD algorithms can be adapted to perform
on exascale machines. Hybrid parallelization, accelerators and SIMD vectorization
have been discussed. Of the methods described, OpenMP stands out as a powerful
programming standard to tackle multiple exascale challenges. OpenMP is primarily
designed to handle shared-memory (multi-threaded) parallelization, which can be used to
build a hybrid MPI4+OpenMP parallelization scheme; but it also offers means to offload
to both GPUs and Xeon Phi co-processors, and is well suited to heterogeneous CPUs.
In addition, it provides the necessary directives to control SIMD vectorization. The
competing schemes, such as OpenCL, CUDA or OpenACC, only address accelerators,
and may be better for this specific purpose. Hybrid parallelization with MPI+OpenMP

appears to be a logical starting-point for exascale CFD.
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3.3 Numerical Advances in CFD

The previous section evaluated programming paradigms which may change the way
numerical algorithms translate into the hardware on which they run. In this section,
means of changing the numerical algorithms are examined: identifying areas where
the numerics themselves could be improved for strong scalability. All the numerical
algorithms in the SIMPLE scheme can be broken down into three patterns: serial
computations, neighbour-to-neighbour communications and global communications;

which can be used to identify their scaling patterns.

e Serial Computations: Any computations that are performed purely on local
data. If ghost-cells are up-to-date, then all the routines in the assembly and

, including discretization, interpolation, corrections and matrix assembly

are entirely serial computations. Serial computations scale well at the inter-nodal
level, with each node providing a proportional speed-up of any serial computations.
At the intra-node level serial computations may scale with number of cores or

memory bandwidth — usually some complex mixture of both.

e Neighbour-to-Neighbour Communications: The exchange of data between
ghost cells is an example of neighbour-to-neighbour communication. Neighbouring
partitions of a mesh must communicate data on their borders to a handful of
processes, but not every process. As the number of partitions increases, with
more processes, the number of neighbours should not change dramatically. Since
various neighbours can communicate simultaneously, this is (mostly) a scalable
communication pattern. Eventually, a decreasing cells-per-core ratio will reduce
the size of these MPI messages such that they are limited by inter-nodal latency —

this is a hard limit on the scalability of these routines.

¢ Global Communications: Some routines, particularly those in the solve routines
require global communication. Typically these communications are used to find
global maxima, minima or averages across all cells in the domain. In the linear
equation-system solvers, they are typically used to compute vector norms or
residuals across partitioned vectors. Sometimes called collective communications,
they perform a tree-like hierarchical communication pattern, where every single
message is latency-bound. Global communications are not scalable, increasing
(not even decreasing!) at a rate of log,(P), where P is the number of participating

MPI processes.

The two communication patterns can cause additional problems due to synchro-
nization. Synchronization occurs implicitly wherever processes must communicate, in
the case of two MPI processes performing neighbour-to-neighbour communications,
the two processes must reach the same point in the code before they can proceed. If
the two processes are not perfectly load-balanced then there is an implicit synchro-
nization delay, as one process waits for the other. If every MPI process is involved
in neighbour-to-neighbour communications at once, a global implicit synchronization

can be created. In many situations, (non-blocking) communication can be overlapped

34



with useful computations to hide communication costs, including synchronization —
but as the cells-per-core ratio decreases this becomes more difficult, as the amount
of serial work decreases (per process). In some cases, overlapping computations and
communications is not possible at all, and a blocking communication is used, causing
explicit synchronization. Implicit or explicit global synchronizations can cause a serious
scalability problem.

The assembly and routines are of relatively little interest to strong scala-
bility; as they are entirely serial computations. Improvements at the intra-node level
mostly come from computational optimization, such as vectorization, as discussed in
the previous section.

The ghost-cell data exchange, which uses neighbour-to-neighbour communications, is
scalable but subject to implicit synchronization delays. From an algorithmic perspective,
overlapping communication and computation does improve this. Some studies have
reported that data exchange routines are the main bottlneck to strong scalability of
CFD [34], but it is suspected that poor load balancing reduced the quality of these
findings.

The solve routines are the subject of modern scalability research. Other studies
concerning CFD state that the linear equation-system solvers (or just linear solvers)
are the main bottleneck to scalability due to their global communication patterns [18].
The pressure-correction is (by far) the hardest of the equations to solve, due to its
elliptic nature [11] — as will be shown later. Modern research focuses on reducing the
amount of global communication required by the solve routines [61, 108], or reverting to
algorithms with worse numerical convergence, but no global communication [2, 10]. The
linear solver will become one of the main focuses of this thesis, and a more complete
review of literature will be presented in the relevant chapter.

There is much research into numerical methods which do not directly influence
strong scalability, but may have a profound effect. It is important to be aware of these
developments when attempting to make any developments to the fundamental CFD
algorithms. Indeed, many of these methods put more emphasis on the linear solver,

which may negatively affect scalability of the code overall.

¢ Higher-Order Discretization: With memory operations becoming more expen-
sive relative to floating-point-operations, more complex discretization is achievable
for a relatively low cost. Higher-order discretization methods such as Discontinu-
ous Galerkin are gaining popularity for their relative cheapness and high accuracy
[69]. In turn, these higher-order schemes could reduce overall solution time (by
allowing smaller meshes). Discontinuous Galerkin is a powerful scheme because
it does not change the discretization stencil (cells only have links to their direct
neighbours), and thus the linear-equation system matrix structure remains the
same. The linear system is likely to become stiffer, requiring more iterations, thus
this becomes a trade-off between performing fewer outer loops but requiring more

inner loops.

e Higher-Order Linearization: Linearization in ReFRESCO, and most other
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codes, is performed by Picard’s method which takes ‘lagged’ values from the
previous outer loop (w — 1) to create a linear system. Higher-order systems such
as variations on Newton’s method, could be advantageous [43]. The trade-off is
between memory requirements, additional computation steps, faster convergence,

and once again — a stiffer linear equation system.

Pressure-Velocity Coupling: The three momentum equations and the pressure-
correction equation can be coupled together into one single linear-equation system.
This requires a more powerful linear solver (with complex pre-conditioning), but
can converge the overall system faster; since the burden of coupling momentum
and pressure equations is transferred to the linear solver. Klaij & Vuik [52] reports
reductions in the number of outer loops by a factor of 5-20, reducing computation
time by factors of 2-5, depending on the particular test case. For more challenging
cases, it can be very difficult to converge the coupled system, and the benefit
is lost. The pre-conditioning of the coupled linear system may also be a big
enough bottleneck to scalability to negate these benefits, depending on the global
communication requirements. At their heart, the coupled solvers still rely on
classical linear solvers, which brings the scalability concerns to the forefront once

again.

With similar motivation, the PISO algorithm (popular in OpenFOAM) computes
the pressure-correction multiple times per outer loop (correcting momentum
equations each time) to provide more coupling between momentum and pressure
[100].

Parallel-in-Time Methods: It is possible to apply parallelization to the time
dimension. This is done by solving multiple time-steps at once, with a prediction
for the initial conditions and a correction after each ‘block’ of parallel time-steps.
The technology is still young, but exciting for unsteady CFD. There are issues with
scalability, due to the large amount of data which must be globally communicated
[24].

LES or Hybrid RANS-LES: For the accurate and reliable prediction of turbu-
lence, particularly in regions of flow separation, RANS modelling is unsatisfactory.
Large-Eddy Simulation (LES) is becoming accessible due to increasing compu-
tational power; and hybrid RANS-LES models or wall-modelled LES are also
becoming common [30, 107]. LES models require higher fidelity simulations, with
larger grids and shorter timesteps. Since the time dimension cannot be efficiently
parallelized, it is necessary to provide greater parallelization and partitioning of
the spatial dimensions, in order to increase the capabilities of LES simulations.
This provides additional motivation for reducing the efficient cells-per-core ratio
and improving strong scalability; but the SIMPLE algorithm is unchanged.
Additional Physical Models: As simulations become more complex, CFD
practitioners wish to model more complex flow features. For maritime CFD,
this includes transition modelling and advanced multiphase modelling (such as

cavitation) [45, 80, 81]. These models typically require higher fidelity simulations
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with reduced timesteps — again, motivating strong scalability of CFD.

¢ Automatic Mesh Refinement: Automatic mesh refinement/adaptation is a
means to methodically increase or decrease mesh resolution according to maturing
flow features in an active simulation [105]. It is an impressive technology that
reduces the labour associated with creating meshes, and improves the efficiency of
the CFD algorithm by adding and removing mesh resolution exactly where it is
needed. From a scalability perspective, there are particular issues with dynamic
load balancing, but this is a very active area of development.

¢ Overset Meshing: In a similar vein, overset-mesh technologies have been de-
veloped, which allow different parts of the domain to be meshed independently
and overlapped [102]. The flow-solver dynamically cuts holes in and interpolates
between the non-contiguous meshes, allowing complex geometries to be meshed
easily (reducing labour) and enabling multi-body, dynamic simulations. There
is a computational overhead, including difficulties in load balancing, and there
are many physical and numerical challenges too. For example, the structure (or a
mask) of the linear system Ax = b will change every time the meshes move [60].

e Immersed Boundary Methods: As an alternative to both automatic mesh
refinement and overset meshing, immersed boundary methods are an interesting
area of research — completely removing the need for mesh generation and enabling
extremely complex multi-body, dynamic simulations [64, 104]. Immersed boundary
methods use simple meshes, such as uniform Cartesian grids, and adjust the
equations of motions (rather than the mesh) to account for solid bodies in the flow.
In terms of scalability, the structured-grid formulation allows better utilization of
memory bandwidth and vectorization — but the overall algorithm is not significantly
changed, still requiring accurate and fast solution of elliptic and non-elliptic
governing equations, for example. Current research focuses on improving accuracy
and efficiency of immersed boundary methods.

e Multidisciplinary Design Analysis and Optimization (MDAQO): NASA
(National Aeronautics and Space Administration) recently conducted a study which
outlines the main priorities and concerns for CFD in 2030, entitled CFD Vision
Study 2030 [87]. One of the key goals includes the coupling of various numerical
tools. The coupling of, for example, fluid flow solutions and structural deformation
simulations, is now possible and desirable. Fluid-Structure Interactions (FSI) are
particularly important in maritime CFD for the design of offshore structures and

vessels. It is not clear what effects this may have on scalability and performance.

3.4 Summary

The aforementioned NASA study describes multiple expectations of CFD in 2030 —
including improvements to physical modelling, MDAOQO, grid generation, post-processing
and knowledge extraction [87]. NASA also calls for dramatic improvements to handle
the paradigm-shift in HPC technology; conjointly, they also call for revolutionary

algorithmic improvements to the core CFD algorithms in order to efficiently handle
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larger simulations and more complex hardware. They state that developments in this
area have been stagnant for too long. This thesis aims to tackle the cross-over between
these last two points, by improving the scalability of the core SIMPLE algorithms
(assembly, solve or , for example).

In order to do this effectively, it is important to understand what the future of both
HPC and CFD will look like — and this chapter has provided this understanding. The
shift towards ‘many-core’ machines with limited memory bandwidth, heterogeneous
architectures, and higher levels of vectorization, will influence design decisions throughout
this PhD and may encourage, for example, the use of OpenMP. Furthermore, a shift
towards higher-order discretization and linearization techniques is likely to put more
pressure on the solve routines — and this should be considered when investigating
scalability.

This literature review has been deliberately broad, in order to capture a wide range
of future HPC technologies and CFD advancements — some of which reinforce the
overall aim of the thesis, and some of which provide direction or understanding for the
research that will follow. More focused literature will be discussed in relevant sections
throughout this thesis, such as in the following chapter, where a detailed scalability
study of ReFRESCO is performed.
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Chapter 4

Investigating the Strong
Scalability of CFD

This chapter follows the second objective of the thesis, which is to examine the scalabil-
ity characteristics of ReFRESCO, identifying important bottlenecks and building on
insufficient results from the literature. In order to do this, the CFD code is instrumented
using profiling tools and hardware counters, and the time spent in various parts of the
SIMPLE algorithm is measured. In an attempt to generalize the results and gain a
wider picture of the scalability issues facing CFD, permutations of common simulation
settings are investigated — including inner-loop convergence tolerances and discretization
schemes. This chapter closely resembles and references the work presented in Hawkes
et al. [36], available as appendix A, but has been updated with scalability results up to
2048 cores, as in Hawkes et al. [39] — appendix D.

4.1 Introduction

In the literature review, a variety of scalability studies were identified [11, 13, 15, 18,
19, 34, 77]. However, there are a number of deficiencies and disagreements between
the literature, and the results are often subjective to the particular code and hardware,
which makes it difficult to generalize. This prompts a detailed study of the scalability
of ReFRESCO.

In Bhushan et al. [11] the linear-equation system solver, particularly for the Poisson
pressure equation, is the main bottleneck to scalability. Culpo [18] reinforces this by
considering the main elements of the linear-equation system solver and how they could
be improved. However, neither paper investigates the reason for their poor scalability
in detail, and neither considers alternative solver algorithms. Gropp et al. [34] provides
a good grounding in both these areas, but is now 15 years old — and the conclusions
drawn could be somewhat outdated due to changes in hardware.

For commercial CFD codes, such as Ansys CFX [19, 42] and Star-CCM+ [13, 15],
the results of scalability tests are not thorough enough to draw conclusions. The tests

either show scalability up to a limited number of cores, or hide intra-nodal efficiency
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losses by normalizing scalability to single-node performance. The details of the test case
and mesh size are also not clear. These reports double as marketing material, so it is
not in their interest to clearly present scalability issues.

In this chapter, an in-depth review of the scalability of ReFRESCO is conducted
on up to 2048 cores. In order to glean information from these tests, profiling tools are
used to measure the time spent in key portions of the code. In section 2.1.2, the four
most expensive portions of the SIMPLE algorithm were introduced: {assembly, solve,

, data exchange}. This logical subdivision was created by analyzing the results
of the profiling tools discussed below, and will be used to break down the scalability in
a meaningful way.

The results of this scalability study encapsulate years of development of the CFD
algorithm, the underlying hardware, messaging libraries (such as MPI [66]), partitioning
methodologies [27] and other external tools, such as PETSc [6]; thus should be more
relevant than Gropp et al. [34]. As has become apparent during this PhD, it is more-or-
less impossible to generalize performance results between different codes and hardware
— even when they are fundamentally based on the same algorithm, such as SIMPLE.
For example, in EXN/Aero [24], the pressure equation undergoes implicit relaxation,
increasing the diagonal of the linear equation-system matrix, thereby making the pressure
equation much easier to solve. This removes work from the solve routines, but requires
that more outer loops are performed to cancel out the relaxation (thus more time spent
in assembly, , data exchange). Differences in linearization and discretization
strategies can also have a similar effect.

In an attempt to provide some generalization, various common user settings have
been tested. This includes different discretization strategies for convective flux terms,
different meshing methods and various turbulence models. For the most part, this had
no effect on scalability. Overall, the results appear to correlate well with Bhushan
et al. [11] and Culpo [18], showing that the solve routines are the bottleneck to strong
scalability. In later chapters, the scalability of the solve routines is investigated in more
detail, and solutions are presented.

These results were initially presented in Hawkes et al. [36] (appendix A), but have
been updated multiple times throughout this PhD. Shortly after this publication,
fundamental changes were made to the data exchange routines in ReFRESCO which
dramatically improved their scalability — updated results were presented in Hawkes
et al. [39] (appendix D). In both the aforementioned studies, the scalability results
were performed up to 512 cores. For the majority of this PhD, all experiments were
limited to 512 cores due to the default permissions on Iridis4. At the end of this PhD, a
special opportunity was granted to test on 1024/2048 cores — some additional results are

presented here to reflect this, but it was not possible to re-run all previous experiments.

4.2 Methodology

The scalability of ReFRESCO is measured on Iridis4, from 1 through to 512 cores (and

up to 2048 in section 4.3.5). Two test cases, both of approximately 2.7-million cells, are
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used to evaluate the scalability of the code and algorithms. Various tools have been
used to instrument the code — measuring the performance of the code in a non-intrusive

way. These are introduced below.

4.2.1 Test Cases

Two test cases are used in these experiments, and will be used throughout this thesis.
The first is a laminar-flow, canonical, unit-length, cubical, three-dimensional lid-driven
cavity flow (LDCF). A uniform structured mesh of 2.69-million cells (1393) is used,
and only momentum and pressure equations are solved. The simulation mimics an
infinite domain, with two cyclic boundary conditions. The remaining four boundaries
are constrained with Dirichlet boundary conditions, one of which specifies a tangential,
non-dimensional velocity of 1. The domain is shown in figure 4.1. The Reynolds number
is 1000.

The second test case is the Kriso Very Large Crude Carrier (KVLCC2) double-body
wind-tunnel model. This test case is chosen as it is a well-known maritime CFD test
case, and is used for a variety of CFD workshops — and is backed up by experimental
model-testing [57]. The mesh is a three-dimensional, multi-block structured mesh
consisting of 2.67m cells. A k-w, two-equation shear stress transport turbulence model
is used [63]. The domain and mesh are shown in figures 4.2 and 4.3 respectively. The

Reynolds number is 4.6 x 10.

Non-Slip Wall Cyclic

Non-Slip Wall

Figure 4.1: The 3D lid-driven cavity flow (LDCF) domain, with three stationary walls,
two cyclic boundaries and one velocity-forcing wall. All edges of unit length.

The two test-cases are designed to have a similar number of cells and the size of
the mesh has been chosen to show the full range of scalability issues. On 512 cores, the
cells-per-core ratio reaches approximately 5200 which helps demonstrate the parallel
bottlenecks on a large number of cores; yet the problem is substantial enough to show
memory bandwidth issues on a single node. On 2048 cores, the cells-per-core ratio
reaches 1300. An initial study was performed on meshes ranging from 317k to 23.5m
cells in order to determine the most useful mesh size.

It is important to note that whilst the two meshes are structured, ReFRESCO treats

them as unstructured meshes and does not gain any direct computational benefits of a
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Inflow Non-Slip Wall
Symmetry

Pressure

Slip Wall

Figure 4.2: The domain used for the KVLCC2 double-body wind-tunnel simulation.
Symmetry boundary conditions are applied at the water-plane, but port- and starboard-
sides of the centre-line are both simulated.

structured memory layout. However, in order to observe any indirect effects of mesh
structure (such as coincidentally improved memory bandwidth or reduced stiffness in
the linear equation-systems due to improved mesh geometry), scalability of a truly
unstructured mesh has been compared to the structured mesh described. The results
are discussed in section 4.3.3.

For scalability tests, the CFD solver is not executed to convergence — it would simply
be too expensive. Initially, scalability studies were performed over 400 outer-loops;
however, this was reduced to 100 outer loops when experiments began on 1024/2048
cores. On 1024/2048 cores, each case required approximately 6 minutes of wall-time;
allowing 28 permutations of the solver to be tested in the 3 hours that were available.
It is generally observed that the equation systems are stiffer at the start of a simulation,
where the flow is uninitialized, but the effects were found to be negligible in these
particular test cases. Thus, unless specified, all of the scalability experiments in this
thesis have been (re-)run with 100 outer loops.

An inner-loop relative convergence tolerance (ILCT) of 0.1 is used for momen-
tum, pressure and turbulence equations. ILCT= 0.01 and 0.001 were also tested in
section 4.3.1, in order to cover a common range of ILCT settings used with ReFRESCO.

Relaxation is applied to all outer-loops to stabilize the non-linear iterative process.
For momentum and turbulence, cerp = 0.15 and ajpp = 0.8, ramping up to iy = 0.85
linearly over the first 100 iterations. For the pressure equation, oz, = 0.1 and no
implicit relaxation is used.

QUICK with flux limiters [44] is used to discretize the convective terms in the
momentum equations. This scheme is second-order, reducing to first-order where flux
gradients are high. A first-order upwind scheme is used to discretize the convective
terms of the turbulence equations. The effects of changing the discretization scheme
will be observed in section 4.3.2. It may be that higher-order terms impact the cost of
assembly routines, or impact the linear equation-systems and solve routines. For all

equations, the diffusion terms are discretized using a 2nd-order central scheme. The
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gradients of any variable (velocity, pressure, turbulence quantities) are discretized using
a 2nd-order Gauss-theorem scheme.

For the solution of the linear equation-systems (for all equations), a GMRES
(Generalized Minimal Residual method) solver is used with a right-side Block Jacobi
preconditioner, from PETSc [6], as in the scalability study of Gropp et al. [34]. The
choice of linear solver has a very large impact on the scalability of the solve routines,

and a more thorough investigation is performed in chapter 5.

4.2.2 Instrumentation

In order to observe how the assembly, solve, and data exchange routines scale,
ReFRESCO has been profiled using Score-P [101]. Score-P is a compile-time wrapper
which automatically logs various run-time events, such as function calls and durations.
It has been carefully filtered such that only critical functions are measured, and the
effect on total run-time is less than 2%. Score-P can be linked to PAPI (Performance
Application Programming Interface)[12] which gathers additional information from
physical hardware-counters.

Two hardware counters are enabled for these tests. The first measures FLOPS, which
helps to determine whether the processing units are saturated. For an unstructured
CFD code this is an unlikely situation, as the indirect memory access tends to delay
the processor. Structured-mesh codes are more likely to reach these limits due to
vectorization of memory operations.

It would be ideal if memory bandwidth could be measured, however, it is not possible
to measure this directly. Instead, one can measure cache misses — any occurrence of
when a CPU instruction is halted and required to wait for a memory transaction. Level
one (L1) cache misses give a good indication of memory-fetching issues (since a cache
miss must result in a memory or next-level cache transaction). However, there are two
issues. Firstly, the compiler will often pre-fetch memory into the cache, resulting in
memory bandwidth usage which is not detected by this hardware counter. Secondly,
an L1 cache-miss will be registered even when the data resides in L2 or shared cache
(which is still very fast compared to off-chip memory).

Due to these imperfections, it is often difficult to use the hardware counters to draw
concrete conclusions. However, they can assist in understanding scalability bottlenecks
which are revealed by ordinary profiling, particularly at the shared-memory level. Other
hardware counters are available (such as L2 cache misses) on Iridis4, but they cannot

be enabled concurrently due to limited register sizes and competing circuitry.

4.3 Scalability Tests

The results of the initial scalability tests are shown in figure 4.4. These scalability graphs
are used throughout this thesis in various forms, so it is worth explicitly explaining
their format. The graphs show the scalability of various routines from 1 through to

512 cores. Let T be the time required for any given routine on C' cores, thus 77 is the
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serial run-time. A scalability factor (S) can be determined for any C', where:

=T

thus the scalability at C' =1 is one; and ideal scalability is a linear relationship where
S = C. When normalized to serial run-time (77) in this way, this factor is often called
the parallel speed-up factor, but the more generic term is preferred here. Parallel
efficiency, often given as a percentage, is defined as % where 100% parallel efficiency
represents ideal scalability.

When comparing the scalability of two fictional routines, R1 & R2, the normalization
of each routine to 77 hides the absolute time spent in each routine, thus hiding an
important part of the result. Regardless of scalability, if 71 g1 >> T g2 then this may
be an overriding factor in determining which routines are the greatest bottleneck to
exascale computing, since any scalability losses in R1 will be amplified by their relative
cost.

In the scalability plots, an embedded bar-chart is provided which shows the absolute
(not normalized) time spent in each routine. This is plotted as C' x T (core-hours), and
is shown for various C. With ideal scalability (S = C), C' x T¢ should remain constant.
It is often helpful to see this scalability information duplicated in this view, and the
relative differences between routines can be quantified.

Figure 4.4.a and 4.4.b show the scalability of the code as the number of cores
increases. The results from the hardware counters are shown in figure 4.5, for the LDCF
test case.

Total scalability is poor overall, suffering significantly on just 16 cores due to intra-
nodal bottlenecks and worsening to the point at which almost no speed-up is gained
from adding additional nodes. On 512 cores the parallel speed-up is just 128 (KVLCC2)
and 100 (LDCF). This scalability is similar to other codes, such as OpenFOAM [18, 77],
STAR-CCM+ [13] or Ansys Fluent [HP 2014]. Exact comparisons between various
codes on identical hardware were not feasible.

The routines outlined earlier {assembly, solve, data exchange and }, for
each equation in each outer loop, account for the large majority of overall run-time.
The remaining time (other) is spent (mostly) in one-off functions such as file IO or
MPI initialization, thus is subjective to the length of the simulation and amount of IO
required. These other routines may also increase significantly if additional features such
as moving, deforming and adaptive grids are used — again, this is highly subjective.

The assembly and routines scale favourably, reaching almost 90% parallel
efficiency. The high, and increasing, cache-miss rate of the gradients routines is curious,
as it does not seem to affect performance (FLOP rate is maintained). It is likely that
the data required resides in L2 or shared-cache, rather than off-chip memory, so the
impact of these L1 cache misses is much lower.

The data exchange routines are not visible in the scalability plots, because nor-
malizing against (7} = 0) gives inverse scalability (no communications are required in

serial operation). In reality, these routines scale reasonably — as the number of cores
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Figure 4.4: Scalability of the code, and the profiled routines within, as the number of
cores increases. These results used GMRES as the linear solver with a Block Jacobi
preconditioner, and an inner-loop relative convergence tolerance of 0.1. (a) KVLCC2
breakdown by routine, (b) LDCF breakdown by routine, (¢) KVLCC2 breakdown by
equation, (d) LDCF breakdown by equation.

increases the size of the messages become smaller, and these messages can be sent
concurrently. With inadequate load-balancing these data exchanges could become costly,
due to the implicit synchronization of MPI processes. However, the results show that
these communications account for a small proportion of overall run-time.

As consistent with literature, the solve routines have poor scaling and are a major
contributor to total run-time, thus are the main concern for scalability.

For the solve routines, the hardware performance counters show a high cache-miss
rate between 16 and 128 cores, corresponding to saturated memory bandwidth at the
intra-nodal level. Memory-bandwidth-per-node has been growing at approximately
half the rate of processing power leading to problems with memory bandwidth [85].
In Gropp et al. [34], conducted in 2000 on single-core processors, memory-bandwidth
problems were apparent but not as concerning — changes in architecture over the last
decade have made memory bandwidth issues more critical.

Beyond 128 cores, it becomes difficult to utilize the hardware-counter results for
more meaningful analysis. Scalability worsens at this point, and cache misses in the solve
routines become less frequent as FLOP rate continues to decrease. This is due to the
oft-observed global communication bottleneck, which overtakes memory bandwidth as

the main problem with the solve routines. An illustration of a single GMRES iteration is
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Figure 4.5: An example of the information gleaned from PAPI hardware counters. For
all routines in the LDCF test case, the number of first-level (L1) cache-misses per
thousand clock cycles [left] and the total floating-point operation rate (FLOPs) [right]
are shown.

shown in figure 4.6. This pattern includes sparse-matrix-vector-multiplication (SpMV),
involving scalable neighbour-to-neighbour communications; and two global reduction-
broadcast routines which require a hierarchical global communication (scaling poorly
with T X logy(C')). These global communications create a scalability bottleneck when
a high number of cores are used, and has been well-documented in the literature [18].
To demonstrate this further, results are shown in figure 4.7, showing the scalability
of a single GMRES iteration. The SpMV routines are shown to scale well, whilst the
remainder (including global communications) scale poorly. This kind of detailed analysis
can be performed with Score-P or the built-in profiling features of PETSc, and is used
throughout this PhD to provide more qualitative insight into the scalability of linear

solvers.

PROCESSES

SpMvVv local dot reduct/bcast axpy reduct/bcast scale
TIME —

Figure 4.6: An illustrative trace of a GMRES iteration on 8 cores (not to scale). Note
the local neighbour-to-neighbour communications performed asynchronously in the
SpMV routine, and the two reduction-broadcast patterns. There are many variations
of the reduction-broadcast algorithm which cannot be illustrated clearly. The most
common is the ‘butterfly’” algorithm which completes in log,(C)-time, combining the
reduction and broadcast into a single hierarchy of latency-bound messages. As the
number of cores increases, this reduction-broadcast takes longer, whilst other routines
take less time.

Figure 4.4.c and 4.4.d shows the breakdown of time spent in the various equations

(pressure, momentum, turbulence). In both cases, the single pressure equation took
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Figure 4.7: Profiling of SpMV and Reduction routines within a benchmark test of
GMRES.

considerable time to compute — similar to all three momentum equations combined.
In incompressible-flow simulations the pressure equation is much harder to solve than
other transport equations, due to its elliptic Poisson form. Overall, the solve routines
appear to be the biggest concern for scalability; but in order to help generalize these

results, a variety of control parameters are tested in the following sections.

4.3.1 Inner-Loop Convergence Tolerance

It is often desired to run the CFD solver with a stricter inner loop convergence tolerance
(ILCT), as this allows less outer-loop relaxation to be used and may also be required
in order to converge particularly challenging simulations. A brief investigation was
performed using the KVLCC2 test case to determine the effects of changing ILCT in a
practical simulation, before considering the effect on scalability.

In these tests, ILCT is varied between 0.5 and 107°, starting from a restarted
solution (of 100 outer loops) with the default settings (described above). Two outer
loop relaxation schemes are tested: aymp = 0.9 & egp = 0.1 (tight), and ajpy = 0.8
& aeyp = 0.2 (relaxed). In this way, the computational effort associated with linearity
and non-linearity of the transport equations can be changed by shifting the focus to the
inner loop or outer loop respectively. The total time to reach 107> Loo-norm outer loop
convergence was observed. The Lo,-norm was used (absolute maximum residual) instead
of the L2 norm (least-squares residual), as it is stricter and ensures no specific parts of
the flow are under-converged when the ILCT is increased. The study was performed
using C' = 16 in order to minimize scalability problems.

Figure 4.8 shows the results of this study. In general, a stricter inner loop convergence
tolerance provides no benefit to overall convergence and serves only to increase the
time-per-iteration except in the case where the linear set of equations is not solved
well enough to allow the non-linear iterations to converge. The best-case scenario is
the relaxed scheme with an ILCT of 0.1, which is approximately 50% faster than the

tighter scheme at its optimal ILCT of 0.01. Nonetheless, it is often necessary to use
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a stricter ILCT, particularly for the pressure equation, and the effects on scalability

should be documented.
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Figure 4.8: Effects of ILCT on total wall-time using two different outer loop relaxation
factors.

The scalability tests from the previous section were repeated using a tolerance of
0.01 and 0.001 (see figure 4.9). As one would expected, this results in a far greater
time spent in the solve routines, particularly for the pressure equation. This provides
further motivation for improving the strong scalability of the solve routines. LDCF is

not shown here, but the results were similar.

4.3.2 Discretization Schemes

The previous scalability studies have been performed with a QUICK momentum con-
vective discretization scheme with a flux limiter. Here, this discretization scheme is
varied to ensure that the scalability was independent of the chosen scheme. A first order
upwind (UD1), a 50%-central-difference-50%-upwind blend (CD5-UD5), a 90%-central-
difference-10%-upwind blend (CD9-UD1), QUICK with limiter and QUICK without
limiter (QUICK-NL) were tested. This study was performed early in the PhD, and
does not encapsulate recent performance improvements to ReFRESCO. This is unlikely
to affect these results in a significant manner. This study was performed only for the
KVLCC2 test case, and uses 400 outer loops.

Firstly, the difference in scalability is demonstrated in figure 4.10.a for a subset of
these discretization schemes. There is no discernible difference between the different
schemes in terms of performance (not shown) and scalability. A full scalability assessment
was not performed with QUICK-NL and CD5-UD5, it is assumed that scalability was
similar. Due to the methods used by ReFRESCO (particularly deferred correction, see
section 2.1.2), the stencil of the linear equation system does not change regardless of
the order of the discretization. This means that it is unlikely to have any effect on
the already-poor solve routines. This is also an encouraging result for higher-order
Discontinuous Galerkin methods, as discussed in chapter 3. These methods also do not

increase the stencil size of the linear equation systems, although they do create other
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Figure 4.9: Scalability of the code with an inner-loop convergence tolerance of (a, c)
0.01 and (b, d) 0.001 for the KVLCC2 test case as in figure 4.4, showing scalability
of (a, b) the various routines and (c, d) the various equations, using GMRES with a
Block Jacobi preconditioner. The results show poor scaling of the solve routines, which
particularly influences the cost of the pressure equation. Similar results were obtained
for the LDCF test case.

issues for the linear solver [69, 72].

Although somewhat unrelated, a grid convergence study has been conducted using a
range of grids from 317k to 23.4m cells. The solution was allowed to reach an outer loop
L2-norm convergence of 107°. The computed form factor (1 + k)[65] is compared to
wind-tunnel experimental results [57] in figure 4.10.b. The results are presented against
the grid coarsening factor, which is the ratio of cells compared to the finest grid.

As expected, the higher-order schemes provide much higher levels of accuracy, with
QUICK matching CD9-UD1 using far fewer cells (1.11m vs. 10.0m). The importance
of higher-order methods such as Discontinuous Galerkin methods is clearly not to be

underestimated.

4.3.3 Unstructured vs. Structured Meshes

Structured grids are often not feasible for practical applications, where the labour cost of
creating the grid is too high. Thus it is important to measure the scalability differences
between structured- and unstructured-grid simulations. Internally, ReFRESCO treats
the two identically, and does not have the advantages of a solver designed solely for

structured meshes. However, grid quality may affect the smoothness of the linear
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Figure 4.10: (a) Total scalability of ReFRESCO using various convective schemes over
400 outer loops. (b) Grid convergence study and verification for the KVLCC2 test
case using various convective discretization schemes; showing form factor error as a
percentage, compared to experimental results.

equation-systems, and some pseudo-structure may have advantages for memory access.
Unfortunately, it was not possible to create two grids of exactly the same number of
cells. An unstructured KVLCC2 grid of 12.5m cells was used, and the scalability of two
structured grids (10.0m and 15.8m) was linearly interpolated to obtain comparisons.
This method is not the most accurate, but the results showed no noticeable difference
in scalability or absolute performance, suggesting that mesh structure had negligible

impact. The reader is referred to appendix A for further details and results.

4.3.4 Turbulence Models

Similarly, the effect of choosing different turbulence models was investigated. The default
two-equation k — w shear-stress transport (SST 2003) model [63] was tested against a
two-equation KSKL model [62] and a one-equation Spalart-Allmaras (SA) model. The
reader is referred to appendix A again, for further details and results, however, these
results are somewhat out-dated. The results favoured the one-equation SA model due to
lower absolute wall-time and better scalability; but these differences were amplified by
inefficiencies in the data exchange routines, which have since been corrected. It is not
expected that scalability concerns will determine which turbulence model should be used
— the physical properties of these models are more important — so these experiments have
not been re-run. It is, however, important to note that the inclusion of other transport
equations — such as those for cavitation, may have a larger effect on total scalability.
These models typically add additional terms to the pressure equation, affecting the solve
routines. Additionally, some models, such as two-equation turbulence models, require

additional parallel communications — for example, to compute eddy viscosity.

4.3.5 1024/2048-Core Scalability Experiments

The scalability studies from section 4.3, earlier in this chapter, were repeated on 1024
and 2048 cores. The results are shown in figure 4.11. These scalability studies clearly

validate the conclusions drawn in section 4.3; showing a further degradation of the solve
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routines, especially in the pressure equation. On 2048 cores, the parallel efficiency of
the solve routines drops to just 2.1%, and occupies 95% of the total wall-time. Some
problems are also noted in the assembly routines — due to oft-overlooked communications
required to update boundary conditions — but there was no opportunity to investigate
this further on this number of cores, due to the complexities of scheduling these large
experiments.

Scaling to this level is likely to require careful optimization of parallel communications
(for example, the assembly communications could easily be overlapped and hidden), as
well as improvements at the algorithmic level. ReFRESCO has never been tested on
this many cores before, and there are many minor improvements and optimizations that
should be made before this becomes a practicality. Usually, these optimizations are of

little academic interest and are therefore outside the scope of this PhD.
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Figure 4.11: Scalability of the code, and the profiled routines within, as the number of
cores increases up to C' = 2048. These results used GMRES as the linear solver with a
Block Jacobi preconditioner, and an inner-loop relative convergence tolerance of 0.1.
(a) KVLCC2 breakdown by routine, (b) LDCF breakdown by routine, (¢) KVLCC2
breakdown by equation, (d) LDCF breakdown by equation.

4.4 Summary & Conclusions

Throughout this chapter, the solve routines, particularly for the pressure equation,
have revealed themselves as the least scalable and most expensive part of the CFD
algorithm, achieving a parallel efficiency of just 2.1% on 2048 cores, and occupying 95%
of total walltime. There are likely to be other scalability bottlenecks, especially when
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considering more advanced features such as adaptive meshing. However, these concerns
are subjective to the particular CFD code or test case, whereas the unscalable pressure-
equation solvers will be an overarching, core problem. Furthermore, the scalability of
the solve routines has been shown to be mostly independent of control parameters such
as discretization scheme and mesh structure, and are likely to remain a concern in the
future.

In the simple test cases used so far, performance is optimum with an inner-loop
convergence tolerance of just 0.1, but more complex test cases require much better
convergence (as will be shown in chapter 8). This is particularly true when considering
some of the new CFD methodologies that are likely to become prevalent, such as
additional transport equations, higher-order linearization and discretization, and much
higher fidelity simulations (enabling LES, for example). As was shown in this chapter,
the scalability problems of the solve routines are amplified even further as the ILCT is
reduced to 0.01 or 0.001. Indeed, on just 512 cores the solve routines occupy 92% of
total wall-time with an ILCT of 0.01.

Although this scalability bottleneck is severe, it does at least provide a clear direc-
tion for researchers aiming to improve the scalability of CFD. Asides from relatively
uninteresting optimizations required to scale to 2048-cores, the assembly, and
data exchange routines all scale well.

Thus far, only one linear solver has been tested — a Krylov Subspace solver (GMRES)
with Block Jacobi preconditioning. Investigation into scalable Krylov Subspace methods
is a very active area of research [31, 61, 108]; as is research into other types of solver,
such as multigrid methods [3, 29] or asynchronous methods [2, 5, 10]. This research
encompasses a wide range of numerical sciences (not just CFD), and there are often
complexities in applying these solvers specifically to CEFD. However, it may be that the
scalability concerns investigated in this chapter can be circumvented or diminished by
using alternative linear solvers.

Investigation into alternative solvers is the subject of the following chapter. Indeed,
the remainder of this thesis is focused on discovering new, scalable methods, to solve

the pressure equation efficiently.
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Chapter 5

Investigating Alternative Linear

Solvers and Preconditioners

In this chapter, the theory behind linear equation-system solvers is explored — cov-
ering simple stationary solvers such as Jacobi and Gauss-Seidel; and moving on to
non-stationary methods such as Krylov Subspace methods and multigrid methods.
Preconditioning of the equation-systems is also discussed. Various solvers and precondi-
tioners are then tested, in an attempt to circumvent the scalability problems identified in
the previous chapter. Furthermore, this chapter will investigate the reasons for the poor
scalability of the various linear solvers and preconditioners, by using the instrumentation
tools (Score-P and PAPI) in more detail. This will provide insight into the scalability
problems and guide further research. This work was first presented in Hawkes et al.

[36], and later updated in Hawkes et al. [39], available as appendices.

5.1 Introduction
The task of the linear solver, for each transport equation in each outer loop, is to solve:
Ax =b, (5.1)

where x is the unknown solution vector, A is an N-by-N sparse coefficient matrix, b is
the constant right-hand-side (RHS) vector, and N is the number of elements.

There are a number of methods that can be used to solve this system. The most
basic, so-called stationary methods will be considered first.

Henceforth, the term linear solver or solver is used to refer to linear equation-system

solvers — not to be confused with the overarching CFD solver.

5.1.1 Stationary Solvers

Beginning with an initial guess for x, the system can be solved iteratively:
Xp = —Dil(L + U)Xk_l + D 'b (52)
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where D is the diagonal of A, and L/U are the lower- and upper-triangles respectively.
The notation k represents the iteration number. This is the Jacobi method, and the
matrix D~!(L 4 U) is the iteration matrix, M. Each equation (from 1 to N) can be

solved (a.k.a. relaxed) independently as follows:

n
T = ( — Z aijTjp—1 + bi> Jayi, 1=1,...,N. (5.3)
j=1
J#
where a, x and b are the individual components of A, x and b respectively. This
algorithm is trivial to parallelize, since each individual relaxation in the system can be
performed independently in a process or thread. However, at the end of each iteration
the new values of x must be communicated before the next iteration can begin, and
this introduces an implicit global synchronization — no process or thread can become
more than one iteration out of sync with its neighbours. Each Jacobi iteration can be
considered as a sparse-matrix-vector-multiplication, which has been shown to scale well
(figure 4.7).

Numerically, improvements to this scheme can be made by using values from the
current iteration as they are available. This is the Gauss-Seidel method, and is rarely
used due its strictly sequential operation (since the equations must be performed in
order).

x; = —(D-L)"'Uxp_1 +(D-L)"'b (5.4)

A variation on lecixographical Gauss-Seidel is a parallel Block Gauss-Seidel, where each
process owns a block of the matrix. Each block undergoes Gauss-Seidel internally, with
Jacobi-style updates at block boundaries [98, chap. 5]. ‘Gauss Seidel’ is often used to

refer to parallel Block Gauss-Seidel whenever a parallel implementation is implied .

An extension of the Gauss-Seidel method, called Successive Over-Relaxation (SOR),
adds a scalar magnification to each relaxation for faster convergence. When w = 1
SOR is equivalent to Gauss-Seidel, and it is common to use the term SOR to refer to

Gauss-Seidel or Block Gauss-Seidel solvers.

xF = (D —wL) 'wU+ (1 —w)Djx* 1+ (D —wL)lwb, 0<w<?2 (55)

These methods are known as stationary methods, because their formulation does
not change between iterations. For all stationary methods, to determine whether
the solution is converged, the £?-norm of the residual vector (r = b — Ax) must be
computed. This requires an explicit global communication. It is common to compute a
residual periodically (for example, every 100 iterations) in order to avoid unnecessary
communications. A more thorough description of stationary methods can be found in
Barrett et al. [8].

Numerically, the Jacobi method, or its derivatives such as Gauss-Seidel or Successive
Over-Relaxation methods, are weak. Their convergence rate is limited by the spectral

radius of the iteration matrix, p(IM), which is dependent on the matrix size and stiffness.
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5.1.2 On The Spectral Radius

The linear-equation systems arising from CFD contain various frequencies of error,
which must be removed. High-frequency errors, corresponding to low wave-numbers and
low eigenvalues, can be quickly smoothed using simple solvers. Low-frequency errors,
corresponding to high eigenvalues, are much more difficult to remove. In ReFRESCO,
the momentum and turbulence equations do not contain high-frequency errors. This
is usually the case in SIMPLE-based CFD solvers, depending upon the linearization
strategy. However, the pressure equation is an elliptic Poisson equation; meaning that
the lowest frequency errors traverse the entire domain. High-frequency errors can be
considered local errors, reduced quickly by simple relaxations. Low-frequency errors
can be considered global errors, requiring a more global solution — and, often, global
communications.

The maximum eigenvalue of the iteration matrix M is known as the spectral radius,
p(M), and, for Poisson equations, it approaches 1 as N increases [103]. For stationary
methods, the error in the lowest frequency cannot be reduced faster than 1 — p(M) per
iteration, and p(M) < 1 is a necessary condition for convergence. Higher-frequency
errors can be reduced more quickly, allowing faster convergence, but the convergence
properties of stationary methods eventually deteriorate with O(N?). Since the size of the
equation-system also increases with O(N), the total work required by stationary methods
scales with O(N?3). Over-relaxation with SOR does not help, because wp(M) < 1 must
be satisfied for convergence, thus w > 1 is infeasible for the solution of the pressure

equation.

5.1.3 Non-Stationary Solvers

It is possible to add a form of ‘memory’ to a linear equation-system solver, where some
information about the solution path is stored in a vector subspace, known as the Krylov
Subspace (KSP). For example, in the popular (Bi-)Conjugate Gradient Squared (BCGS)
algorithm, the solver remembers the previous gradients that it followed. By searching
orthogonally to previous gradients, the solver becomes smarter and more effective. In
GMRES (Generalized Minimal Residual Method) the subspace is based on the Arnoldi
iteration, and is used to find an approximate solution based on the minimal residual of
these vectors [8].

These non-stationary KSP methods are not limited by spectral radius, thus continue
to reduce low-frequency errors when N increases. Figure 5.1 shows a comparison between
a KSP (GMRES) and a non-KSP solver (Block Gauss-Seidel), illustrating the effect this
has on the number of iterations to convergence. The equation-systems being solved are
pressure equations extracted from a two-dimensional lid-driven cavity flow simulation.
Note the initial grace period, where high-frequency errors are rapidly smoothed.

Though numerically powerful, the KSP methods are computationally inefficient
on a larger number of cores due to global communication patterns, as discussed in
chapter 4 and figure 4.6. Improvements have been made to GMRES, in the form of
‘pipelined” GMRES (P-GMRES) which attempt to overlap the first reduction with serial
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Figure 5.1: Convergence rates for a sample pressure equation extracted from a two-
dimensional lid-driven cavity simulation, with 225 cells (left), 14.4k cells (middle) and
1m cells (right) — comparing GMRES to Block Gauss-Seidel. Horizontal lines represent
0.1, 0.05 and 0.01 relative convergence respectively. The relative residual is the residual
of the system normalized to the residual at the initial condition.
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computations [31]'. Figure 5.2 illustrates this algorithm. Similar improvements have
been invented for the conjugate gradient solver [61, 108]; both papers quoting massively-

parallel computing architectures as the motivation for more scalable algorithms.

PROCESSES

SpMv scale axpy correction local dot

reduct b-cast

TIME ——

Figure 5.2: Illustrative parallel trace of a Pipelined GMRES iteration, showing the
computation and communication patterns when utilizing 8 cores. Not to scale.

5.1.4 Algebraic Multigrid Methods

For elliptic equations (such as the pressure equation) algebraic multigrid methods such
as ML [29] should be very powerful. Multigrid methods cover a broad category, with
multiple formulations and many opportunities for fine-tuning. They are all based on
the principle that multiple scales of the problem can be solved efficiently by solving
coarse-grid approximations to the actual (fine) grid. The coarsest grid will have a much
lower spectral radius than the finest, allowing low-frequency errors to be reduced quickly.
Meanwhile, the fine grid solves high-frequency errors, and the results are combined. Since
each grid is much easier to solve, ‘smoothers’ are used instead of complete solvers at each
level. A typical smoother may just be one iteration of SOR or an ILU factorization, for
example, although the coarsest grid is often solved directly. There are many variations
of multigrid methods: different methods for coarse-grid construction; different methods
for coarse-grid interpolation; various methods of communicating on coarse grids; and so
on. All of these variations will have a large effect on scalability.

An ideal multigrid method can solve a linear equation-system in O(1) iterations,
with work-per-iteration increasing with O(N). Thus the entire multigrid algorithm
scales with O(N). However, this ideal situation is rarely obtainable, and depends on
the ability of the coarse-grid operators to reduce the maximum eigenvalue effectively
(68, 103].

ML is a state-of-the-art smoothed-aggregation algebraic multi-grid method from
Sandia’s National Laboratories, and is one of the most commonly-used multigrid packages
[29]. ML automatically creates coarse grids until a minimum size is reached, using a
smoothed aggregation process. For the KVLCC2 test case, ML automatically creates

six grids when running on one core, and four grids on 512 cores. Multigrid methods,

LPipelined’ in this context is not related to instruction-level parallelization as introduced in section 2.2
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including ML, can be used as standalone solvers or preconditioners for a Krylov Subspace
method.

Further discussion on multigrid methods will be introduced in chapter 7.

5.1.5 Preconditioning

To improve the convergence rates of non-stationary solvers, preconditioning is often
applied. The principal is to transform the coefficient matrix A into something less stiff,

maintaining a system with the same solution, using a preconditioning matrix P:
P 'Ax=P b (5.6)

The difficulty is in finding a matrix P which approximates A~! and is easily invertable.
At the extremes, if P is the identity matrix I, finding P~! is trivial, but the system is
unchanged. At the other extreme, if P = A~! then the system is trivial to solve, but

the calculation of P~ is as difficult as the initial problem.

Finding a trade-off between cost of preconditioning and its effectiveness is difficult,
and depends on the matrix system, the solver that will be used on the preconditioned
system, and the number of iterations that are likely to be performed. The simplest
preconditioner, the Jacobi preconditioner, takes P = D (the diagonal of M), and has the
effect of normalizing the equation system. More complex methods, such as Incomplete

Factorization (ILU) perform semi-complete direct methods to obtain P ~ A1

Preconditioning is usually applied to all KSP solvers, since the simplest precondi-
tioners are relatively cheap compared to a KSP iteration. Stationary methods rarely
use preconditioners, since the preconditioners would mostly be more expensive than the

solver itself.

In most KSP methods, the residual is computed as part of the solution process,
thus additional communications are not required. When preconditioning a linear
system, it becomes difficult to compute accurate residuals. With left preconditioning,
described here, these solvers base their convergence on the preconditioned residual
P~1r = P71(b— Ax) which is not proportional to the true residual. If the preconditioner
does not treat all error frequencies equally, and particularly if the matrix is close to
singular (spectral radius close to 1) then an ILCT of 0.01 in the preconditioned residual

may be equivalent to a much higher ILCT in the true residual.

For the Block Jacobi preconditioner used in the previous chapter, experiments
were conducted to determine the magnitude of this effect. An ILCT of 0.1 in the
preconditioned residual was equivalent to just 0.6 in the true residual, but was less
obvious with other preconditioners. This effect had previously been unnoticed in
ReFRESCO, and caused issues in early experiments. This issue is rarely documented in

literature, and probably affects other CFD packages.

To circumvent this problem, a true residual can be computed at the end of each

iteration, but this requires additional global communications. Instead, one can solve
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the right-preconditioned system:
AP 'Px=b

via the solution of AP~'y = b and Px = b. This leaves the true residual intact. For
GMRES, another solution is to switch to Flexible GMRES (FGMRES) — a modified
version of GMRES which preserves the residual in its true state.

ReFRESCO has switched to using right preconditioning instead of left precondition-
ing, in order to obtain a more consistent and predictable solution to the linear system.
Unless specified, right preconditioning is used in this thesis — but comparisons to a
left-preconditioned FGMRES are also performed. Early experiments, such as in Hawkes

et al. [36], suffered because of left-preconditioned residuals.

5.2 Scalability Experiments

Thus far, scalability experiments have used a basic GMRES solver with a Block Jacobi
(right-)preconditioner. More modern solvers or preconditioners could provide very
different scalability characteristics. For example, a powerful preconditioner could reduce
the number of KSP iterations (and global communications) required; but may be
unscalable in itself due to communication or high set-up costs. CFD is unique in that a
solution to the linear system is only solved to a relatively lax ILCT, since the solution
to the linear system is a small part of a non-linear system. Compared to applications
which require machine accuracy of linear systems, CFD is very sensitive to start-up
(initialization of linear solvers, memory allocation, etc.) costs which may rule more
advanced solvers or preconditioners. Indeed, it may be that the simpler preconditioners,
such as Block Jacobi, provide the best scaling. In this section, the scalability of various
linear solvers will be tested. Following this, a number of preconditioning techniques will
be investigated — including block preconditioning techniques, multigrid preconditioners

and simple smoothers.

5.2.1 Alternative Solvers

The scalability of various solvers has been tested using the aforementioned test cases
(KVLCC2 and LDCF). The same parameters as in chapter 4 are used. Instead of
showing scalability for all profiled routines, the scalability plots are adjusted to show
just the solve routines for the pressure equation. Note that the embedded core-hours
plots in the following scalability plots utilize a logarithmic scale due to large differences
in performance.

The scalability of GMRES, Pipelined-GMRES, Flexible-GMRES, BCGS, Improved-
BCGS, SOR, and a multigrid method (ML) are compared in figure 5.3. The four Krylov
Subspace methods have been preconditioned with a Block Jacobi preconditioner. Right
preconditioning is used for all solvers except FGMRES, which uses left preconditioning
but still provides a true residual. The SOR solver is configured to compute a residual
every 100 iterations, and w = 1 (equivalent to Gauss-Seidel). An ILCT of 0.1 and 0.01
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is tested. All of the solvers and preconditioners presented are provided by PETSc [6],
except ML — which is provided by Trilinos [29, 41] via a PETSc interface. Some KSP

methods were not performed on the LDCF test case.
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Figure 5.3: Scalability of the solve routines in the pressure equation, using the KVLCC2
test case (left) and LDCF test case (right) with inner-loop convergence tolerance set to
0.1 (top) and 0.01 (bottom). Note the exponential scale of the inset core-hours chart.

GMRES performs as previously noted, with poor performance at the intra-nodal
level due to memory-bandwidth contention and poor performance on a large number of
cores due to global communication patterns. FGMRES exhibits similar scalability to
GMRES. PGMRES scales worse in the memory-bandwidth zone than either GMRES or
FGMRES, but the gradient of the scalability factor, dS/dC, between 256 and 512 cores
is approximately double that of GMRES — consistent with the algorithmic improvement
(half the number of global communications). Overall, the wall-time gains from PGMRES
on 512 cores are minimal.

BCGS gives strong numerical performance in serial operation and similar memory-
limited scaling at the intra-nodal level. BCGS requires four global communications per
iteration (instead of two), thus inter-nodal scaling suffers. IBCGS improves on these
results slightly.

As expected, SOR performs much worse than the KSP methods, but has far superior
scalability. SOR is limited by memory bandwidth briefly, but quickly recovers this as
the simulation fits into cache. The SOR algorithm still uses one global communication
pattern to compute a residual every 100 iterations; though this did not appear to be

significant when in-depth profiling results were examined. Time spent in MPI_Recv was
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dominant, implying that implicit synchronization is the bottleneck to scalability where
C > 256.

ML is very strong in serial operation, but quickly loses ground to other solvers
due to poor scalability. It is not completely clear what causes this. Profiling of the
solver reveals a lot of time spent in local MPI communications (MPI_Recv), which could
be caused by the smoothers used on each level; particularly the very coarse levels.
However, this could also be caused during the aggregation/set-up of the coarse grids.
The convoluted way in which ML is exposed to ReFRESCO via PETSc makes the
profiling much more difficult. Some other permutations of ML are tested later in this

chapter, when applying it as a preconditioner to FGMRES.

5.2.2 Block Preconditioners

ReFRESCO has access to a large range of preconditioners through its use of PETSc,
many of which have been tested as follows, and collocated into a single figure (5.4).
Left-preconditioned FGMRES was used for these tests. Its flexibility is specifically
designed to allow complex preconditioning, such as multigrid preconditioners, which
change P every iteration. Only the KVLCC2 test case was used to test the majority
of these preconditioners, due to the amount of simulations required to perform these
experiments. Many of these experiments were repeated using right-preconditioned
GMRES and PGMRES, with no noticeable differences (not shown).

The Block Jacobi algorithm used thus far implements a block-wise Incomplete LU
(ILU) factorization with zero-level fill, and sets a high benchmark for other precondi-
tioners. ILU(0) is performed on each MPI process’s local portion of the matrix, leading
to an interesting problem: convergence deteriorates as the number of cores increases, as
the local portion becomes less significant to the global solution. An Additive Schwarz
Method (ASM) was tested, with the same block-wise ILU(0) solver. ASM is similar to
Block Jacobi, but allows communication between neighbouring blocks to augment the
process and prevent this degradation of convergence. The results are shown in figure 5.4.
The differences between Block Jacobi and ASM were small, with ASM fairing worse
overall. ILU(0), ILU(1) and ILU(2) were also tested as preconditioners in their own

right, with poor results in all regards (not shown).

5.2.3 Multigrid Preconditioners

Multigrid methods such as ML can also be used to precondition the equation system.
The results, also shown in figure 5.4, show that ML is highly capable at the intra-nodal
level — just as when it is used as a standalone solver. It exhibits strong serial performance
and moderate scaling to 16 cores — better than Block Jacobi. Unfortunately it rapidly
breaks down beyond 64 cores. It was suspected that this was due to the direct solver
used on the coarsest grid, but replacing it with a smoother (5 iterations of SOR) resulted
in worse scalability. Another recommendation is to restrict the number of levels created
by ML, thus reducing expensive start-up costs. Restricting ML to three levels worsened

the scalability; and two levels (not shown) gave similar results. It is expected that less
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Figure 5.4: Scalability of the solve routines in the pressure equation, using the KVLCC2
test case with inner-loop convergence tolerance set to (a) 0.1 and (b) 0.01. The results
compare different preconditioners including Block Jacobi, Additive Schwarz (ASM),
SOR smoothing (SORx10) and a multi-grid method (ML). FGMRES is used as the
solver to allow more flexible preconditioning. Note the exponential scale of the inset
core-hours chart.
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sophisticated multigrid methods (such as non-smoothed aggregation) may provide better
results for CFD, since the start-up cost of creating coarse-grid operators is lower; but
coarse-grid smoothing is likely to remain a bottleneck. Clearly a much deeper study of
multi-grid methods is required, ML certainly cannot be used as a black-box for scalable

CFD — neither as a preconditioner nor as a standalone solver.

5.2.4 Smoothing Preconditioners

Finally, it is worth considering a much simpler preconditioner than even Block Jacobi.
Instead of preconditioning in the classic sense, a smoother can be used before the main
solver. Ten iterations of SOR as a smoother was optimal (compared to 1, 100 or 1000),
with w = 1, such that SOR becomes a Block Gauss Seidel method. Although it performed
worse than the Block Jacobi preconditioner in serial operation, where Block Jacobi
has good convergence, it was able to catch up due to memory caching, thus providing
excellent scalability. Since a fixed number of smoother iterations were performed,
residual computation in the SOR algorithm was unnecessary. This combination has
minimal set-up costs, since SOR requires no additional memory or pre-computation,
so could be a viable option for scalable CFD. The scalability is slightly worse than
the standalone SOR solver, due to poor scaling of the overarching FGMRES solver.
Furthermore, the numerical performance is not good compared to other preconditioners,
as the smoother cannot reduce low-frequency errors effectively — it is only competitive
on a large number of cores. Overall, this FGMRES+SOR combination appears to be
a good middle-ground between the scalability or SOR, combined with the numerical
performance of FGMRES.

5.3 Summary & Conclusions

This section has looked at the theory and performance of various linear solver and
preconditioners. The most promising result was FGMRES with 10 iterations of SOR as
a preconditioner. Although it was the slowest preconditioner for serial computation,
superior scaling meant that it was often the best performer at C' = 512. The initial
scalability study from chapter 4 is re-illustrated using this configuration in figure 5.5.
Inter-nodal scaling is significantly improved (compared to figure 4.4.a), which is encour-
aging, but parallel efficiency is still poor and global communications are still limiting.
Overall wall-time on 512 cores has only been improved by approximately 10%, and
with stricter convergence tolerances these gains are likely to be lost due to the poor
numerical properties of SOR.

Overall, no solver or preconditioner has significantly and reliably solved the strong
scalability problem. In terms of scalability, the most interesting solutions came from sta-
tionary solvers and smoothers; although these only became viable on a large number of
cores and are likely to lose ground when a stricter ILCT is required, or when N increases,
due to their spectral-radius-limited convergence rates. State-of-the-art scalability im-

provements to existing solvers, such as PGMRES, provided minimal improvements — it
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Figure 5.5: Scalability of the code for the KVLCC2 test case, and the profiled routines
within, as the number of cores increases. These results used FGMRES with 10 iterations
of SOR as a smoother, with an inner-loop relative convergence tolerance of 0.1. Similar
results were found for the LDCF test case.

appears that solvers relying upon global communications are fundamentally unscalable.
Multigrid methods are certainly an area which warrants further investigation, since
their numerical performance in serial operation is very good; and there are many per-
mutations of the multigrid algorithm which may offer better scalability, by completely
avoiding global communications. However, coarse-grid communications appear to cause
scalability issues, especially as the cells-per-core ratio becomes small.

In general, the state-of-the-art focuses on improving the scalability of numerically-
powerful solvers such as GMRES [31, 61, 108] — but this has not solved the scalability
problem. In this PhD, an alternative strategy is employed by building on the results
of the simple SOR solvers. A more performant version of SOR is investigated in
the following chapter, using the theory of chaotic relaxations to remove the implicit
synchronization caused by neighbour-to-neighbour communications. To begin, these
solvers will be used as standalone solvers, thus limited to O(N?3) performance. In
chapter 7 this chaotic solver will be shaped into a chaotic multigrid method, where
the improved efficiency of these communications will hopefully remove the scalability

problems associated with coarse-grid communications of classical multigrid methods.
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Chapter 6

Chaotic Linear Equation System

Solvers

In the previous section, the performance of stationary solvers was shown in terms
of performance and scalability. The main bottleneck to scalability of these simple
solvers is the implicit synchronization imposed at the end of each iteration. This
motivates research into chaotic methods, which use the theory of chaotic relazation [16]
to desynchronize iterations and completely remove synchronization. In this chapter,
these chaotic methods are investigated to create a standalone chaotic solver, which may
be able to compete directly with preconditioned GMRES. As will be shown, the chaotic
solver does indeed outperform KSP methods on a large number of cores. However, due
to the intrinsic nature of stationary solvers — with performance proportional to O(N?),
chaotic solvers are not a sustainable solution for scalable CFD. In following chapters,
however, these chaotic principles will be applied to a chaotic multigrid method.

This chapter begins by discussing the theory and applicability of chaotic methods
to CFD, and then follows the implementation, verification and scalability-testing of a
chaotic solver. As part of this PhD, an open-source library, Chaos' has been published

— which includes the implementation of the chaotic solver?.

6.1 Theory of Chaotic Relaxations

Consider the relaxation of each equation in the Jacobi method, as presented in sec-
tion 5.1.1:

N
{E?: (—Zaijx§_1+bi>/aii, i=1,...,N. (61)
j=1
J#i
where a, x and b are the individual components of A, x and b respectively. At the

end of each iteration the new values of x must be globally communicated before the

next iteration can begin. Numerically, improvements to this scheme can be made by

"ttps://bitbucket.org/jamesnhawkes/chaos
2The chaotic solver implementation can be found in Solver::ChaoticSolve()
(src/solver_chaotic.cpp) at the time of writing.
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using values from the current iteration (k) as they are available, thus creating the
Gauss-Seidel method. It is also possible to prove the convergence of the parallel block
Gauss-Seidel methods, where an arbitrary selection of variables from iterations k£ and
k — 1 are used, based on the partitioning of the domain. All of these methods have an
implicit synchronization point, because no two processes can become more than a single
iteration out of sync — no process may proceed to iteration k£ until iteration k£ — 1 is

complete on all of its neighbours.

In 1969, Chazan & Miranker [16] proposed the concept of Chaotic Relazation
whereby several processes (distributed-memory processes or shared-memory threads)
never synchronize. Instead, the processes freely pull values of off-diagonal z; from
memory whenever they are required, and push new values for the diagonal x; whenever
they have been relaxed. In this way, each relaxation uses the values of x from the latest
iteration that is available — this could be several iterations behind the current relaxation

iteration (s = 1, ... n), or even ahead of it (s < 0):

n
xf = <— Zaijx?_s + bi> J@iiy, 8 < Smaz, t=1,...,N. (6.2)
j=1
J#1
The order in which the n equations are relaxed is completely arbitrary. With this
scheme, processes never need to wait for each other. Although communication must
still occur, it can be entirely asynchronous, thereby making efficient use of memory
bandwidth, inter-nodal communications and computational resources. Processes may
even iterate multiple times on the same data if necessary, making the best use of the
available hardware. Whilst this method is based on the stationary Jacobi method, s
can vary between iterations implying that chaotic methods are actually non-stationary,

although numerically this makes little difference.

Chazan & Miranker [16] proved that this iterative scheme will converge for any real
Jacobi iteration matrix if p(|M]) < 1 so long as S;q, is bounded. |M] represents the
Jacobi iteration matrix where all the components have been replaced with their absolute
values. The implications of s,,,, being bounded is simply that if two relaxations take
different amounts of time, they cannot be left completely independent indefinitely, such
that s could potentially become infinite. Baudet [10] went on to prove that p(|M]) < 1
is a necessary condition for convergence for any $,,4, < k. Bahi [5] further showed that
p(IM]) = 1 is also valid, if M is singular and $,,4, is bounded. In this situation, the
error associated with the maximum eigenvalue (1) is not reduced, but the solution can
still be solved up to a constant value, with a rate based on the second-highest eigenvalue
of |M|. This occurs in CFD simulations where the pressure is not bounded by any

Dirichlet boundary conditions.

The extent to which chaotic relaxation is exploited varies significantly in the literature,
and most commonly the exact implementation is not discussed. In Anzt et al. [2] the
theory is used to create a ‘block-asynchronous’ Jacobi solver for GPUs, where a fixed

number of local iterations are performed between communications. These solvers are
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often referred to as asynchronous methods, such that async(5) refers to a Jacobi method
with communications every 5 iteration. This reduces implicit synchronization and
shows good results compared to stationary methods, demonstrating that relaxations on
‘old’ data (s > 1) are not wasted. However, this method could also needlessly throttle
communications, thus reducing convergence rates if communication hardware is not
saturated. Anzt et al. focuses on GPU architectures, where this may not be such a
problem.

In this thesis, chaotic relaxation theory is leveraged further. By separating communi-
cations and computations into shared-memory threads, the fixed asynchronicity can be
removed and the respective hardware can be saturated, leading to increased efficiency
and numerical performance. In this truly chaotic method, computation threads never
need to wait for communications to be complete and communication hardware is never
wasted waiting for computations. Furthermore, a multi-threaded model can exploit
access to shared memory, inserting updated values (from communications) directly into
the active relaxations, which should give numerical advantages. The targeted architec-
ture for this chaotic solver is a hybrid-parallel (MPI + OpenMP) CPU environment;
but it would be possible to extend these chaotic methods to heterogeneous environments
with relative ease.

The convergence criteria for chaotic relaxations, p(|M|) < 1, is stricter than that
of standard stationary methods, which only require p(M) < 1, and stricter still than
the oft-used Krylov methods (which have no such requirements). The following section
aims to determine if a range of standard CFD test cases will produce matrices that

satisfy the criteria, thus testing the applicability of chaotic relaxations to CFD.

6.2 Determining Convergence Criteria for CFD

All the equation-systems in CFD are diagonally dominant by design, which is a sufficient
condition for convergence of standard stationary methods — since diagonal dominance
implies the necessary condition p(M) < 1. It also implies that p(|M|) < 1 is satisfied,

since the diagonal dominance is computed, on each row, as:

M| =Y My >0, i=1,..,n.
J#

In this section, a number of linear equation systems are extracted from typical test
cases, and p(|M)|) is calculated to demonstrate this diagaonal dominance and adherence
to the convergence criteria. This also provides a good opportunity to investigate the
matrices produced in the SIMPLE algorithm and gain more insight into the linear
systems. Some additional transport equations, which may affect M (by modifying the
right-hand-side of the equation system) can be tested, along with some simulations with

more complex flow features. The following test cases are chosen:

¢ 2D Lid-Driven Cavity Flow (LDCF) on a number of structured grids (225,
14.4k, 1m elements). No turbulence models. See Klaij & Vuik [52].
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e NACAO0015 hydrofoil (15° angle-of-attack) with a two-dimensional multi-block
structured grid (28k elements) and a two-eqn. r-w SST turbulence model [63].
See Rijpkema [79].

¢ NACAO0015(C), as above, but with a Sauer-modified cavitation model. See [45].

¢ KVLCC2 with a three-dimensional multi-block structured grid (317k elements)
and a hexahedral unstructured grid (U) with hanging nodes (167k elements).
Using a k-w SST turbulence. See chapter 4.

e Dambreak, a homogeneous two-phase (air/water), three-dimensional problem
with a simple structured grid (16k cells) and a volume-fraction equation. No
turbulence model. See [99].

e Cylinder, a low Reynold’s number, unsteady (10 non-linear loops per time-step)
simulation with a structured grid (4.3k elements) and a poor initial flow estimation

(designed to create ill-conditioned matrices). No turbulence model. See [80].

The matrices were extracted at outer loops 1, 5, 10, 50 and 100. The momentum
equations (in z, y and z) are identical, due to the way in which they are assembled. The
size of mesh that could be extracted and examined was limited because the matrices
had to be inverted directly, using Gaussian-Elimination.

A C++ tool was developed to perform analysis on these matrices. For each matrix,
it is possible to plot the connectivity graph, following the methods of Hu [47] — this
gives a qualitative, visual insight into the sparse matrices by graphically connecting
the elements of the matrix. The sparsity pattern of the matrix A may also be plotted
directly in order to view the matrix structure.

The largest eigenvalues of |M| can be found using ARPACK [58] routines, and
plotted in an Argand diagram — for p(|M]) < 1 all eigenvalues must lie within a unit
circle.

Assuming a satisfactory spectral radius, the condition number (the ratio of the
largest to smallest eigenvalue) of the original matrix A can be used to assess the
sensitivity of the equation system to errors in the input. For example, in the solution to
the pressure-equation, approximations (geometric, interpolation, rounding, etc.) are
transferred to A and b. When the solution to the linear system is found, these errors
will have been amplified by the condition number into the solution vector x. The
condition number is computed using a 1-norm condition estimator [35].

Figure 6.1 shows a qualitative view of the simple 2D LDCF, the more complex 2D
hydrofoil, and the 3D KVLCC2 case at the 5" outer loop. The connectivity graphs
show resemblance to the underlying geometry and mesh structure — for example, the
NACAO0015 connectivity resembles the O-grid from which it arose.

The sparsity patterns are closely related to the structure of the grid and the cell-
numbering — the more complex KVLCC2 case is highly irregular compared to the
Cartesian, structured LDCF grid. It should be noted that the matrices were extracted
from single-process simulations, so the matrices have not been subject to domain
decomposition. It would be interesting to extract parallel matrices and observe their

communication patterns, but this was beyond the scope of this analysis.
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Table 6.1 shows the quantitative results from all the test cases, taking the maximum
values of all the extracted outer loops. The condition number appears to have some
correlation with spectral radius and some are worryingly high. In all cases, p(|]M]) < 1,
meeting the requirements for chaotic solvers as expected.

The pressure equation was virtually singular for the LDCF and Dambreak case,
where only Neumann boundary conditions are applied — specifying a null space may
help to reduce the condition number in these cases. In all the other cases, a Dirichlet
condition on the outflow reduced the spectral radius, although it was still close to
one; and the condition number also dropped considerably. For the unsteady cylinder,
the spectral radius was also very high — these cases both feature complex flows with
poorly-initialized flows and coarse meshes; this large discrepancy and poor resolution
could be the reason for the the near-singular matrices.

Additional matrices for the KVLCC2 case (up to 2.67m elements) and a 21.7m-
element INSEAN E779A propeller (with sliding interface) were tested, but could not be
fully post-processed due to memory requirements. However, the spectral radius of the
pressure equation was computed at a single iteration for these cases, and was shown to
satisfy p(|M]|) < 1. It took 2.5 days and 232 GB of memory to compute the maximum
eigenvalue of a single matrix for the INSEAN propeller. Optimizations may be possible
to check other matrices, but the test cases appear conclusive.

In all-but-one case (the ill-conditioned cylinder at the first time-step), the momentum,
turbulence, cavitation and volume-fraction equations all exhibited much lower spectral
radii. Thus demonstrating that these transport equations do not contain low-frequency
errors, as expected.

Table 6.1: Quantitative results for a range of test matrices, showing condition number
and spectral radius for momentum-, pressure-, turbulence- and free-surface-/cavitation-

equations. Note that the spectral radius was always less than or equal to one, within
double-precision floating-point tolerances.

Mom. Pres. Turb. 1 Turb. 2 V.F./Cav.
cond(A) p([M])| cond(A) p(IMJ)| cond(A) p(|M])| cond(A) p(IM])| cond(A) p(/M])
LDCF-225 210 0.955 | 9.4-el7  1.000
LDCF-14.4k 7 0.500 |2.1-e18 1.000
LDCF-1m 4 0.500 |2.9-e19 1.000
NACAO0015 9.0.e3  0.884 |6.53-e6 0.999 | 4.5-e3  0.849 | 4.8-e3  0.851
NACA0015(C) 6.3-e3 0.734 [ 4.67-e6 0.999 | 5.1-e3 0.688 | 5.2-e3 0.690 | 2.3-e8 0.240
KVLCC2 2.6-e6  0.845 |2.63-e8 0.999 | 1.2.e7  0.588 | 1.2:e7  0.594
KVLCC2 (unst.) 5.2.e6  0.810 | 5.4-e7 0999 | 83-e6  0.726 | 7.7-e6  0.728
Dambreak 105 0.048 | 5.6-e18  1.000 7 0.048
Cylinder (t=1) 111 0999 | 1.1.e6  0.999
Cylinder (t=2-10) | 4.4-e2 0.520 | 1.1-e6 0.999

6.3 Chaos: An Open-Source Library for Chaotic
Methods

The chaotic methods discussed in this paper have been written as a standalone library,

Chaos3. The Chaos library is available under an open-source MIT license, in the hope

3https://bitbucket.org/jamesnhawkes/chaos
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Figure 6.1: Connectivity, 100 largest eigenvalues, sparsity and statistics for the momen-
tum equation (outer loop 5). [Top] LDCF-225, [Middle] NACA0015-28k and [Bottom)]
KVLCC2-317k.

that the results herein can be reproduced, developed and applied to other scientific
codes and disciplines. The library is written in C++ and can be bound to Fortran and
C easily. Bindings are also created for Python and Ruby automatically, using SWIG [93].
Many other languages could also be bound easily. Chaos is a hybrid-parallel library,
using MPI and OpenMP, and has been tested under multiple compilers, multiple MPI
implementations and multiple operating systems.

The interface is similar to other linear-solver toolkits, such as PETSc [6] and Trilinos
[41]; it should be easy for codes which use these libraries to interface with Chaos. The
main difficulty is in connecting MPI-only codes (such as ReFRESCO) with the hybrid
MPI+OpenMP scheme used in Chaos. Although most of Chaos can be run in MPI-only
mode, the chaotic methods developed here rely on the hybrid, multi-threading layer of
parallelization. For now, ReFRESCO is left in MPI-only mode, but with most of the

CFD code running on 1% of the available hardware. A long-term solution would be to

8
add OpenMP parellelization to ReFRESCO, which may have benefits as discussed in
section 3.2. For true mixing of hybrid and non-hybrid codes, shared-memory paradigms
of MPT (such as one-sided communication) could be considered.
Currently, the Chaos library includes over 4500 lines of code, and several basic
examples/tests. This library, with accompanying publication focused on chaotic solvers
and chaotic multigrid methods (Hawkes et al. [40]), represents the largest deliverable

from this PhD — and a large, novel contribution to the fields of CFD and numerical
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analysis.

One can easily make the argument that all of the solvers described in this thesis
could have been built within the framework of PETSc. Indeed, the first iteration
of chaotic solver was written in PETSc. Unfortunately, PETSc recently rescinded its
support for hybrid parallelization, and it thus became infeasible to maintain these solvers
within PETSc. Regaining control over much of the matrix structure and communication
patterns also provided advantages when implementing chaotic methods. Most of the
interfaces in PETSc are designed to be abstracted and safe; when writing chaotic
methods it is common to hack these methods to allow deliberate data races and ‘unsafe’

asynchronism.

6.4 Implementation

Consider the matrix A, partitioned contiguously across multiple MPI domains, such
that each process owns a block of n rows of length N. It also owns the corresponding
portion of the vectors x and b. To perform a chaotic relaxation on this block, as in
equation 6.2, the off-diagonal elements of the matrix are multiplied by the solution
vector. Where these off-diagonal elements correspond to the local portions of x this is
trivial. For non-local elements, the value of x; must be obtained from another process
via MPI communications.

For the purposes of implementation it is helpful to store the partitioned matrix as
two compressed-row-storage (CRS) matrices, Aa and Ap, as shown in figure 6.2. Aa
is an n-by-n square matrix (containing the diagonal) which can be directly multiplied
by xa, the local portion of x. Ap contains all the remaining off-diagonal elements,
which must be multiplied by off-process elements xg. The structure of Ag and xp are
re-arranged so that xg becomes a local, sparse representation of the parallel vector.

The process of updating this buffer is known as vector-scattering. Each process
must pack (only) the required local values of xa into an a buffer, which is sent to an
neighbouring process via an MPI message, and inserted directly into xg.

In a classical Jacobi solver, it is common to perform part of the relaxation with Az
and xa whilst the scatter is being performed, and complete the iteration using Ag and
xp when the communication is complete. In asynchronous methods, vector-scattering
can be overlapped over a fixed number of iterations and old values of xg are used in
the meantime.

Here, we consider a truly chaotic solver in which scattering and relaxing occurs
simultaneously on independent threads, and the relaxation uses the most up-to-date
values of xg that are available. To achieve this, a hybrid-parallel scheme is used. The
matrix is still partitioned into MPI sub-domains, but within each MPI process several
shared-memory OpenMP threads operate. It is commonly recommended to run such
a system with each MPI process occupying a single socket (or NUMA-node) of the
supercomputer so that all threads are using the same memory channels (avoiding ‘Non-
Uniform Memory Access’ problems). Each OpenMP thread is then given one physical

core. For example, a problem previously using 64 MPI processes may be replaced by
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Figure 6.2: An illustration of the MPI parallel partitioning scheme for the matrix A,
and vectors x and b. Note that the column indices of Ag are altered to point to the
correct location in xp, the vector-scatter buffer.

8 MPI processes, each running 8 threads. Actually distributing MPI processes and
threads correctly can be quite challenging. In the case of Iridis4, job host-files do not
correctly describe the physical layout of the system, and manual intervention is required

to correctly distribute MPI processes and set OpenMP thread affinity.

On each MPI process, one thread is designated as the communications thread and the
remainder are assigned to computation (and perform the relaxations). This task-based
thread assignment has been shown to provide benefits, even for synchronous methods,

since the computation threads are often limited by memory bandwidth anyway [56].

The computation threads have shared-memory access to all of Ax, Ag, xa and
xp and continuously perform relaxations on this data. Each thread takes a contiguous
portion of the n rows and relaxes them in order (using equation 6.2), and repeats until
the stop criteria are reached. It is not necessary to synchronize the computation threads,
so each thread may perform a different number of iterations. Values of xa are pushed
and pulled from local memory without synchronization or mutexing. Values of xg are

pulled from local memory too, whilst the communication thread updates them.

The role of the communication thread is to continuously perform vector-scatter
operations between MPI processes. It is responsible for collecting local values x4 and
packaging them into MPI messages — once again, no synchronization or mutexing is
required and these values are pulled directly from the active memory of the computa-
tion threads. On receiving a message, the incoming data is pushed directly into xp,
immediately making it available for relaxations. In this implementation, a vector-scatter
must be completed by the communication thread on all processes, before the next can
begin. As such, every MPI process will perform the same number of communication
iterations and will experience implicit synchronization of communication threads. This
synchronization of communication threads does not affect the computation threads. A
more chaotic scheme could be implemented, allowing pairs of processes to communicate

faster than other pairs if the hardware allowed it. One-sided MPI communications
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would be the ideal method to pursue this, but this was not deemed necessary at this
stage.

This chaotic solver deliberately exploits race conditions to achieve a high level
of asynchronicity. Although no two threads write to the same location in memory
simultaneously, it is quite possible that threads will try to read and write the same
value at the same time. As long as the data type is atomic, this causes no issues. It
is not transparent how the compiler or memory controller deals with cache-coherency
when encountering these data races, but this also caused no discernible problems; no
explicit cache management of the x vector was required.

At the end of a typical solution process, the communication thread on each MPI
process has performed O(1k-10k) communication iterations and each computation thread
has performed a varying number of computation iterations (often O(100-1k) out of
sync). All of this occurs in the time it takes to run just a handful of iterations of a
Krylov Subspace solver such as GMRES.

One of the conditions for convergence of chaotic methods is that s (the difference in
iteration-number between relaxations), in equation 6.2, is bounded. There is no explicit
checking of the value of s, because a residual check is performed every 100 communi-
cation iterations, by the communications thread — providing a sufficient condition for
convergence. Once convergence criteria are reached, the communication thread sets a
flag signalling all threads to cease. There is no guarantee on the number of iterations
that have been performed by each thread.

All of this implementation, including splitting A and B portions of matrices/vectors,
organizing MPI communication patterns and the solution process itself, can be found in
Chaos. Indeed, the C++ classes for vectors and matrices do not include any chaotic-

specific code, and could be used to create a variety of hybrid-parallel solvers.

6.5 Verification

The matrix analysis tool, used to derive numerical properties from CFD matrices in
section 6.2, was developed further to allow verification of linear solvers — the chaotic
solver in particular. This verification uses matrices exported from ReFRESCO and
matrices from the Matrix Marketplace [21].

The solution produced by the chaotic solver was compared against the solution
produced by GMRES (with a restart of 3, 30 and 100), P-GMRES and BCGS. Pre-
conditioners were not used and there was no attempt to compare performance, these tests
were performed purely to compare the absolute solution and verify the implementation.
The solvers were required to iterate until a desired absolute residual in the ¢?-norm.

Three analytical matrices from the matrix marketplace were tested (pde225, pde900
and orsirr_1), along with a pressure equation matrix extracted from a 14.4k-cell lid-
driven cavity flow simulation (LDCF). The full results for the smallest case (pde225)
are shown in figure 6.3, and partial results are shown for the other matrices in figure 6.4.
The results were similar for a range of convergence tolerances from 10~! to 10~7 (not

shown).
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Figure 6.3: Full verification results from the pde225 case, with a requested absolute
¢2-norm of 107, [Top] A plot of the raw residual vector (r = Ax — b). [Bottom-Left]
Statistical Distribution of the residual vector, showing the mean, upper/lower quartiles,
and minimum/maximum values. [Bottom-Right] Spectral analysis of the residual vector,
with peaks corresponding to frequencies of error in the converged system. The dotted
lines in the results mark the mean value of the residual required in order to satisfy the
¢?-norm. This line divides the elements of the residual that positively or negatively
contribute to the /2-norm.

The residual vector r € RY itself was plotted, in order to observe any anomalies in
the solution. Following this, a distribution of the residual values was plotted, which
revealed some differences in the solvers’ behaviour; and finally, spectral analysis was
performed on the residual vector to note the frequency of errors, to ensure that that no
particular frequencies were left under-solved.

Although there are some differences in the solution vector, there are no concerns for
any of the solvers. There is a tendency for the chaotic solver to over-converge the system
(particularly on the smallest case, pde225), presumably because many relaxations can
occur between residual updates. The KSP methods compute residuals each iteration, so

this does not happen.

6.6 Scalability Experiments

The results from chapter 5 are repeated, using the LDCF and KVLCC2 test case
of approximately 2.68m cells — this time comparing preconditioned FGMRES, the
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Figure 6.4: Partial verification results from the analytical cases pde900 and orsirr_1,
and the CFD case (LDCF) respectively, with a requested absolute #2-norm of 10~ or
1076 for the LDCF-case.

aforementioned SOR solver, and the chaotic solver. Scalability tests were performed up
to 2048 cores. 100 outer-loops were performed, and the time spent in the solve routines
for the pressure equation (per outer-loop) was measured. In these experiments, the
scalability is normalized to T3 (8-core performance), as this corresponds to a single MPI
process of the chaotic solver. It is worth noting that the chaotic solver is identical, in
all respects, to Gauss-Seidel, if it were run on a single core C' = 1. Figure 6.5 shows the
results of this scalability study, and table 6.2 gives a numerical representation of the

same.

As before, the LDCF test case appears much easier to solve than the KVLCC2 test
case, for all solvers and convergence tolerances. The chaotic solver is faster than the
plain SOR solver in all cases, with the gap widening as the equations become easier to
solve — reaching a speed-up of x37.8 on LDCF at 0.1 ILCT, and x11.0 on KVLCC2 at
0.01 ILCT (C = 2048). Scalability of the chaotic solver is better than the SOR method,
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Figure 6.5: Scalability of the linear equation-system solver for the KVLCC2 (left) and
LDCEF (right) test cases, at 0.1 (top) and 0.01 (bottom) convergence tolerance.

Table 6.2: Absolute core-hours spent solving the linearized pressure equation over 100

non-linear iterations.

Case (ILCT) FGMRES SOR Chaotic (solver)
C =8 128 2048 8 128 2048 8 128 2048

LDCF (0.1) 1.8 25 544|395 43.7 2115 | 3.6 3.4 5.6
LDCF (0.01) 34 53 56.8 1279 146.2 618.4 | 20.7 169 24.5
KVLCC2 (0.1) 3.8 7.1 60.1 |104.5 108.1 489.0 | 27.2 20.8 36.6
KVLCC2 (0.01)| 7.8 17.4 144.0|442.2 447.3 1870.0|139.9 111.6 169.6

and is sometimes super-linear due to increasing use of the cache as the cells-per-core ratio

decreases. Above 512 cores, particularly on the easier equation-systems, the scalability of
the chaotic solver begins to deteriorate slightly. Obtaining computing time to thoroughly
debug this was not possible, but it is suspected that the residual-check interval needs to

be increased at this point. This is partly due to the decreasing cells-per-core ratio; and

partly due to the increasing cost of global communications. Although the computation

threads continue to iterate whilst waiting for the residual check, the communication

thread (and vector-scatter updates) are stalled, reducing convergence rates.

Despite this, on all but the hardest equation-system, the chaotic solver is able to
out-perform preconditioned FGMRES on 2048 cores, due to the poor scaling of the
Krylov Subspace method. Indeed, on LDCF at 0.1 ILCT, the chaotic solver is almost
x 10 faster than FGMRES. On stiffer equation systems, the gains are smaller because
more low-frequency errors must be reduced (FGMRES is x1.17 faster than chaotic on

KVLCC2 at 0.01 ILCT). SOR and the chaotic solvers are both ill-equipped to deal with
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these low-frequency errors, especially as N increases to more practical levels. This is
particualy noticable on a lower number of cores, where the scalability of FGMRES is

still good.

6.7 SIMD Vectorization Optimization

Since the core of the chaotic algorithm is just sparse-matrix-vector-multiplication
(SpMV), it is logical to optimize the data layout for this kernel. Experiments were
performed with row-reordering and padding, to create highly-vectorizable loops which
could take advantage of SIMD (single-instruction-multiple-data) optimization. Vector-
ization is already performed by the compiler, whereby a;; x x; element multiplications
in each relaxation can be vectorized. However, it is inefficient because the matrix rows
are often short and of variable length.

Padding the matrix rows with zeroes, to force equal lengths, did not provide
any noticeable improvement, despite reducing the branching of vectorized loops. At
worst, the additional unnecessary work of multiplying zeroes reduced performance. An
optimization of this method was performed, where rows were reordered into groups
with the same non-zero pattern (i.e. all rows with 4 non-zeroes per row are looped
separately). This format is known as Jagged Diagonal (JAD); the overhead made this
not worthwhile.

JAD is usually employed so that SpMV can be performed in a column-major way.
The vectorizable dimension in column-major SpMYV is of length n — much larger than
the row-major format (where the maximum dimension is the number of non-zeroes per
row) — granting better computational performance. However, since a relaxation is not
complete until every column has been visited, the relaxations must occur in a Jacobi-like
format (updates cannot be used as they are computed as in Gauss-Seidel). This spoilt
the numerical performance of the chaotic solver, requiring many more iterations to
achieve the same convergence. Staggering of these row-major relaxations with striding
or blocking techniques were tried, but with no significant improvement.

Overall, the original implementation using the classic row-major compressed row
storage (CRS) method could not be beaten significantly and consistently. The vector-
ization speed-up remains at approximately 2.2 out of a theoretical 4.0 on Iridis4. It is
assumed that this is limited by the indirect memory access of x; rather than the data
structure of the matrix — this is a property of unstructured CFD codes which cannot be

circumvented.

6.8 Scheduled Relaxation

The biggest problem with the chaotic solver, and other Jacobi-like solvers, is their
inability to converge the lowest-frequency errors in the flow faster than O(N?3) [103].
This can be overlooked when N is small, and if ILCT is high then convergence can
often be reached by only smoothing high-frequency errors. To be competitive at solving

the pressure equation in practical CFD simulations, the numerics of the chaotic solver
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must be improved. A recent study by Yang & Mittal [106], entitled Acceleration of the
Jacobi Iterative Method by Factors Exceeding 100 Using Scheduled Relazxation, provides

an interesting start point.

Typically, an over-relaxation parameter w cannot be applied to iteration matrices
whose spectral radius, p, is close to unity. If pw > 1, then the solution will diverge. The
wave-number associated with with the largest eigenvalue would be over-relaxed so as
to cause instability and divergence. In Yang & Mittal [106] the author shows how a
relaxation schedule can be created to achieve the best of both worlds. If a relaxation
parameter w; is chosen at one iteration, it will rapidly converge a particular wave number
in the system whilst attenuating error in other wave numbers. An under-relaxation
parameter wo is then used, for several iterations, to reduce the error in the unstable
wave numbers. Multiple layers of this method can be used — for example, 4 different
over-relaxations may be chosen, scattered in between many under-relaxations. The
author describes how to create a schedule which is guaranteed to converge for the Jacobi

method. The over-relaxation values may be very large, often w > 100.

A simple version of Scheduled Relaxation Jacobi (SRJ) was implemented and briefly
tested as part of this PhD. On simple test cases the SRJ method performed up to
20-times faster than plain Jacobi. Furthermore, an attempt was made to couple the

chaotic solver with the SRJ method, creating an ‘SRC’ scheme, but with some nuances.

The chaotic solver behaves similarly to Gauss-Seidel, in that new values of x¥ are
used the moment they are computed (in the same, k™" iteration). In Yang & Mittal
the schedule is carefully chosen to avoid over-relaxing consecutive iterations, otherwise
the error associated with certain frequencies would overflow the floating-point limits
of the computer. In Gauss-Seidel, over-relaxing 2} and immediately using this value
to over-relax xlg, and so on, causes a floating-point overflow almost immediately. For

over-relaxation, a Jacobi-type relaxation must be used, so that each relaxation is using
non-over-relaxed values of xffl.

In the SRC scheme, the over-relaxations (of which there are few) are performed using
a standard synchronized Jacobi iterations. The many intermediate under-relaxations
are performed using a truly chaotic solver. It is difficult to guarantee that enough
under-relaxation has been performed, since it is not possible to simply count iterations,
but it is possible. The details of this scheme, for guaranteeing enough under-relaxation,
will be explored further in the following chapter — where it is required for multigrid

methods.

A modest 4.1-times speed-up was achieved with SRC, compared to the pure chaotic
solver, on a simple test cases (3D LDCF, 1-million cells, 16 cores). However, there are
some fundamental problems. Construction of the relaxation schedule requires assumed
information about the maximum and minimum eigenvalues occurring in the system.
For uniform grids (such as LDCF) this is not such a problem, but for realistic CFD
simulations scheduled relaxation becomes impractical. Furthermore, the maximum
acceleration is limited by the largest cells in the domain; for flows with large far-field

elements and very small boundary elements, the speed-up may be limited.
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In the literature, no similar work has been done on asynchronous or chaotic methods
with scheduled relaxation. If scheduling can be generalized to unstructured grids

successfully, then the coupling of scheduling and chaotic methods could be revisited.

6.9 Summary & Conclusions

Overall, the chaotic solver shows excellent results compared to SOR, reaching speed-ups
between x11.0 and x37.8; and is even capable of out-performing KSP methods on a
large number of cores (almost x10 faster, due to poor scaling of FGMRES). As N
increases, the rate of convergence for SOR and chaotic solvers deteriorates with O(N3),
which means these solvers are unsustainable for practical computations. Attempts to
circumvent this O(N?3) limitation using scheduled relaxation were unfruitful.

As was noted in chapter 5, multigrid methods have strong numerical properties but
often struggle with scalability. Much of this poor scalability can be attributed to the
smoother, so there may be potential to replace classical SOR smoothers with a chaotic
smoother, hopefully transferring the speed-ups proven in this chapter. The following

chapter explores this possibility.
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Chapter 7

Chaotic-Cycle Algebraic
Multigrid

In this chapter, the intention is to apply the principle of chaotic relaxations to a multigrid
method, gaining the scalability benefits of chaotic methods — particularly on the coarsest
grids of the multigrid algorithm where the cells-per-core ratio is very low. A generic
multigrid algorithm has been developed below, employing an unsmoothed-aggregation
technique and the classical V-, W- and F-cycles. Following this, the extension to a
‘chaotic-cycle’ multigrid is explained, where the boundedness of s and the removal of
other synchronization points is explored. Verification of O(N) performance is shown
on a generic Poisson equation. Finally, scalability and performance of all the multigrid
cycles are tested against the standard chaotic solver, FGMRES and ML. This work

closely follows the latter half of Hawkes et al. [40], available as appendix E.

7.1 The Theory of Algebraic Multigrid

The principle of algebraic multigrid methods is that low-frequency errors can be solved
quickly by translating the problem onto a coarser grid, where low-frequency errors
become high-frequency errors. This coarsening can be applied recursively over many
levels. Smoothers such as SOR can be used to quickly smooth high-frequency errors
on the coarse grids. Often, only a single iteration of the smoother is required. It can
be shown that the number of multigrid iterative cycles required to converge a perfect
multigrid method remains constant as IV increases, which makes them competitive
against Krylov Subspace methods and relevant for real-world applications. In theory,
the work done in each multigrid iteration scales with N, since all of the relevant routines
(such as smoothing) are O(N). Thus, a multigrid solution should take O(N)-time,
although this does not include the time taken to construct the coarse grids, and also
depends on the quality of the coarse-grid operators [103, §2.4][68].

There are certain traits of the chaotic solver which make it difficult to substitute
as a smoother in a multigrid method. Most of these issues arise because it is difficult

to impose stopping criterion and guarantee the boundedness of the asynchronicity s.
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In the chaotic solver, a sufficient condition for convergence was provided by checking
the residual — which was necessary anyway. For a multigrid method it is not necessary
to compute a residual on the coarse grids, and it would be inefficient to do so, so an
alternative method for bounding s is required.

Another issue is that smoothers only need to run for a small number of iterations,
which does not suit chaotic methods well, especially when the equation-systems are
small and easy to solve (as on the coarse grids). Chaotic solvers have a tendency to
over-converge these systems considerably, because the computation threads achieve so
much smoothing before a single communication can even occur. Although they can
never be slower than existing smoothers because of this, much of this free convergence
is wasted if it not required. Since there are other sources of synchronization in the
multigrid cycle, it would be beneficial to trade off some of these synchronizations for
additional smoothing, which can be obtained for free. Indeed, the idea of running a
chaotic solver for one “iteration” is virtually meaningless!

Below, the implementation of a classical algebraic multigrid is considered. Following
this, the extension to a chaotic-cycle multigrid is considered; and the above points —
regarding bounded asynchronicity and removal of unnecessary synchronization — are
tackled.

7.2 Implementation of Classical Multigrid

There are two stages to a multigrid algorithm. The first stage is concerned with
constructing coarse grids and interpolation operators. The second stage is the multigrid

‘cycle’ which is the iterative process used to solve the equation system.

7.2.1 Construction of Coarse Grid Operators

In the coarsening stage, coarse grid operators are recursively created from a fine grid,
such that:
Ay =RpAp 1Py, 1 <m <My

where A, is matrix A on the m" level (level zero being the finest, original matrix); P,,
is the prolongation matrix, a sparse rectangular matrix which describes the interpolation
between A,, and A,,_1; and R,, is the restriction matrix, a sparse rectangular matrix
describing the contraction from A,,_1 to A,,. R,, is usually the transpose of P,,.
Here, an aggregation-type coarsening is used, loosely based on Notay [70]. In
aggregation schemes, a coarse grid is constructed by grouping fine-grid elements into
single coarse-grid elements (or ‘aggregates’), such that the aggregates form a disjoint
subset of the fine-grid elements. In unsmoothed aggregation, R,, and P,, are simply
boolean matrices which never need to be explicitly stored. In smoothed aggregation, the
prolongation and restriction matrices are smoothed such that coarse-grid elements may
contribute to more than one fine-grid element. The simpler unsmoothed-aggregation is

used here.
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When constructing the coarse grids, it is important that aggregates are created in
the direction of the ‘smoothest error’. In other words, they must be constructed such

that the maximum eigenvalue is successfully reduced on the coarser grid [68].

Notay [70] proposes a pairwise-aggregation scheme which attempts this. The algo-
rithm couples pairs of elements which are ‘strongly-coupled’, which means they have
large negative values in the off-diagonals that connect them. The algorithm attempts
to construct pairs with maximum coupling, but minimum un-paired elements. The
process is computationally expensive, constantly searching for the least strongly-coupled
elements so that they can be paired first. This constant sorting of elements can be
expensive, and a pairwise scheme can only coarsen by a factor of two — meaning that

repeated application is necessary to achieve 4- or 8-times coarsening.

A cheaper, but less rigorous approach has been adapted from this scheme. A
maximum aggregation size aq, is specified (for example, 8). For each element e; in the
fine grid (iterated in order), the off-diagonal values of the matrix (A,,_1);; 2 create
a set of coupled elements e; that can form aggregates. For each coupled element, the
strength of the coupling is recorded as v; = —(A,,—1);. If the coupled element already
belongs to an aggregate, the number of elements already in that aggregate is recorded
as aj, else a; = 1. An aggregate is formed by selecting e; with a minimal a;, and then a
maximal v;. The aggregation of the two elements is abandoned if both elements already
belong to aggregates, or if either element belongs to an aggregate which already has
amaz €lements. The algorithm achieves close to a,,q; coarsening in a single step, very
cheaply.

At the end of the aggregation process, a set of aggregates G;, 7 = 1, ..., n,, exist, each
with approximately a,,q, indices which map to A,,—1. This mapping is equivalent to
R, and the tranpose mapping is created for P,,,. From this point, A,, can be computed

as:

(Am)l] = Z Z (Amfl)kl (1 <1,j,< nm)

keG; lEGj

The process is repeated recursively, with m = m + 1, until the coarsest grid reaches
a specified size. Figure 7.1 shows an example of this coarsening on a two-dimensional
lid-driven cavity flow domain. Investigating the quality of the aggregation is beyond the
scope of this thesis, as it is an active area of research which is not specific to chaotic
methods. The presented method appears to be robust enough for the purposes of these

experiments.

The aggregation is done per MPI domain, such that each process has its own set of
hierarchical grids (as in [70]). Aggregation is not performed across process boundaries,
thus A,, in the above discussion is replaced by (A 4),, for each MPI domain. Ap is
never considered when aggregating. Also, when constructing the coarse grids, (Ap),, is
not explicitly constructed because it would require re-mapping the buffered storage of
the parallel vectors, (xB)nm,. Vector-scattering on coarse grids occurs by mapping into
the buffer of the finest grid, resulting in excess, inefficient MPI communication. A more

rigorous aggregation scheme which performs coarsening across MPI domains may be

85



Figure 7.1: A view of the aggregation process, showing four multigrid levels with
Gmaz = 8 on a two-dimensional lid-driven cavity flow domain. The fine matrix begins
with 128 x 128 = 16384 degrees of freedom; and the coarsest matrix has just 7.

more performant; especially since this aggregation can be reused over several non-linear

iterations of the overall CFD simulation.

7.2.2 Cycling Techniques

The second stage of the multigrid algorithm is the linear solution process, in which
various different cycles can be used to visit the coarse grids. On each coarse grid, a
‘correction’ to the fine-grid solution is computed using the additive correction scheme

[48]. There are three simple routines which allow a variety of cycles to be created.

e On each level, smoothing is applied to the linear system A,,x,, = b,,. On the
coarsest level a direct solver is often used, but a smoother will suffice too.

e Restriction is used to move from a fine grid (m — 1) to a coarse grid (m): from the
linear system A,,_1X;,—1 = b;—1, a new system is created A,,X,, = b,,. A, has
been generated by the aggregation process, X,, is set to zero, and b,, is set to to
the residual vector multiplied by the restriction matrix: Ry, (by—1 — Apm—1Xm—1)-
Smoothing performed before a restriction is called pre-smoothing.

e In the other direction, prolongation is used to apply the coarse-grid correction
to the fine grid. The prolongation matrix, P,,_1 is used to expand x,, into

Xm—1. The vector P,,x,, is summed with x,,_1, to provide a correction to the
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fine grid. Post-smoothing is usually performed after prolongation to smooth the
errors introduced by the unsmooth coarse-grid correction — smoothed-aggregation

techniques reduce the amount of post-smoothing required.

These three routines, combined with different values of a4z, different minimum
grid sizes, and different numbers of smoothing steps, can produce a wide variety of

multigrid cycles, such as the V-cycle, F-cycle, W-cycle and sawtooth-cycle (figure 7.2).

V-Cycle W-Cycle F-Cycle Sawtooth-Cycle

m=0

m=1

m=3

Figure 7.2: A view of the solution process, showing a single iteration of a four-level
multigrid method using the classical recursive V-cycle, W-cycle, F-Cycle and Sawtooth-
Cycle. Restriction, Prolongation and Smoothing are colour-coded.

7.3 Applying Chaotic Principles to Multigrid Methods

Consider the classical V-cycle as illustrated, using an SOR smoother. In each pre-
smoothing step there is an implicit global synchronization during each iteration, as has
been discussed in earlier chapters. For restriction, a vector-scatter is also necessary to
compute by, = Ry, (by—1— A, —1X,—1), causing another implicit global synchronization.

Replacement of the smoother with a chaotic smoother solves the implicit synchro-
nization in the pre-smoothing steps, but since the smoother only needs to run for
a handful of iterations, the synchronization required for restriction still has a large
effect. In order to minimize this, consider a sawtooth cycle, which is simply a V-cycle
with no pre-smoothing — the right-hand sides (b,,) of the all the coarse matrices must
still be initialized. In the 4-level example shown in figure 7.2, communication of xq is
required as usual to create b1, requiring a vector-scatter. xy is reset to zero. The next
restriction follows immediately to create bo; except now it is known that x; = 0 there
is no need to scatter xj, and by = Ro(b; — A1x1) = Raob;. It follows that the entire
sawtooth restriction requires only one implicit synchronization. The downside of using
a sawtooth method is that more post-smoothing iterations may be required. For the
chaotic smoothers this may not be a disadvantage, because much of this smoothing can
be obtained for free.

Returning from the coarse grid to the fine grid, post-smoothing with a chaotic
smoother does not require any implicit synchronization. Furthermore, prolongation
does not require any synchronization either; because x,,—1 += P,;,Xx,,, does not require
off-process values of x,, (it is an entirely local operation). Smoothing on level m — 1
can begin before other processes have performed their own prolongation, because the

off-process values of x,, that are not updated are still zero. Updated values will be
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provided by communications in the chaotic smoother when they are ready, but chaotic

relaxations can begin without that information.

That being said, it is still necessary to guarantee the boundedness of s in the
chaotic-cycle prolongation phase. Consider the situation in which p post-smoothing
iterations are requested at each level, and this is expected to provide enough convergence
on the coarse grids to guarantee overall convergence of the multigrid method. Note
that a certain amount of post-smoothing must be performed in order to compensate
for unsmooth prolongation [103], else the multigrid solver will not converge. For the
chaotic smoother, specifying a number of iterations is meaningless because one process
could complete its iterations before receiving updates from any other process or thread,
and parts of the equation-system would not be smoothed correctly. Thus, a method for

bounding s has been developed:

The chaotic-cycle, like the chaotic solver, is designed for a hybrid MPI4+OpenMP
environment. The same concept of computation and communication threads is used,
and the communication threads remain in sync across MPI processes. Within each MPI
process, each thread stores an iteration counter k£ in an array, initialized to k£ = 0 at
the start of each smoothing phase. After each computation thread completes a chaotic
relaxation on its portion of the equation system, it attempts to increment k& — however, it
is only allowed to increment k if the values in the counter array are all > k. If any value is
less than k, it suggests that the relaxations may have used old values and therefore it did
not ‘count’ towards p. This bounds s between computation threads. The communication
thread also participates in the same counter array, attempting to increment k every time
it scatters x,, between MPI processes; thus bounding s between all processes. To avoid
an MPI deadlock, additional checks are required to make sure communication threads
perform the same number of iterations on all processes (regardless of k); this is done
using non-blocking MPI barriers (MPI_Ibarrier). This method was developed earlier
in the PhD for use in chaotic scheduled relaxation methods (discussed in section 6.8),

in order to guarantee a certain number of meaningful under-relaxation iterations.

It is unlikely that any computation thread will complete exactly p iterations, since
they are usually faster than communications, but it is the absolute lower bound. Most
threads will complete many more than p iterations, so choosing a value for p is not as

intuitive when compared to classical multigrid cycles.

Combining this bounded chaotic smoother with the sawtooth cycle and barrier-
less prolongation: a chaotic-cycle multigrid is created. The entire cycle has only one
implicit global synchronization, required to restrict the finest level. Instead of explicitly
scattering xg the latest values communicated during the pre-smoothing step are used,
further hiding this implicit synchronization behind useful relaxations. One explicit
thread-barrier (local) is also required at the end of the restriction simply to signal that
all of the coarse grids have been initialized, because it is important that x,, has been
reset to zero on every level before prolongation begins — but this is cheap. During each
multigrid cycle, a lagged, non-blocking residual is computed to determine an overall

stopping criteria.
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Chaotic-Cycle

Figure 7.3: A view of the chaotic-cycle solution process, showing a single iteration of a
four-level multigrid method. Restriction, Prolongation and Smoothing are colour-coded.
Multiple parallel lines are shown during the prolongation stage to depict the non-
deterministic way in which multiple threads (including communication and computation
threads, across multiple processes) may participate in the chaotic-cycle.

Figure 7.3 shows an illustration of the chaotic-cycle, although it is difficult to capture
the chaotic nature in a simple diagram. There are certainly other ways in which chaotic
methods could be applied to create a scalable multigrid cycle — possibly involving
smoothing on multiple levels simultaneously — but this algorithm is the most obvious to

pursue and does not break the standard convergence theorems for multigrid solvers.

7.4 Verification

In order to ascertain that the chaotic-cycle conforms to the convergence expectations
of a multigrid method, verification is performed using a generic 3-dimensional (i, j,
k) Poisson equation with Dirichlet boundaries. A 3D, unit-length, cubic domain of N
elements is created (element spacing h = 1/N %) A pre-determined solution x; is created
for the linear system, by combining 20 sinusoidal frequencies: 2}9:0 sin(2/m.i.5.k.h3).
b is created from this solution and x is initialized to zero. The source is included as an
example in Chaos.

The number of iterations to convergence (relative tolerance 107%) and time-per-
iteration is measured for the chaotic-cycle and V-cycle as N increases from 512 (8%) to
1.73-million (120%). With perfect coarsening, the number of iterations to convergence
should be constant, with the time-per-iteration increasing linearly with N. However,
this ideal situation cannot be achieved with piecewise-constant unsmoothed aggregation
[68]. Figure 7.4 shows the results of this verification. The experiment is performed on
64 cores (8 MPI processes with 8 threads each). The aggregation factor, amqz, is set to
8, and the number of pre- and post-smoothing iterations is set to p = 3.

The number of iterations required to reach convergence is not quite constant, but
appears to approach an asymptotic maximumum, for both cycles. This suggests small
imperfections in the aggregation process, which is expected. The time-per-iteration is
O(N) as desired, although both the V- and chaotic-cycle show occasional deviations or

noise. This is probably related to the aggregation factor and the discontinuous number

89



of levels being created as IV increases.

Overall, the two cycles perform similarly; but these tests are not designed to gauge
performance. The important result here is that the chaotic-cycle is at least as good as
the V-cycle from the perspective of multigrid correctness. The following section properly

assesses the performance and scalability of the various cycling techniques.
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Figure 7.4: Number of iterations (a) and time-per-iteration (b) to converge the discrete
Poisson equation, of size N, to a relative convergence tolerance of 1075,

7.5 Scalability Experiments

The performance experiments from the previous chapter are repeated here, this time
comparing the chaotic-, V-, W- and F-cycle with preconditioned FGMRES, the standard
chaotic solver, and a state-of-the-art multigrid package (ML, [29, 41]). Once again the
solution of the pressure equation is summed over 100 outer-loops of the CFD solver. For
all multigrid methods, including ML, aggregation is only performed once in this time,
and then re-used. This is possible because the non-zero structure of the matrix A does
not change between outer loops, thus the restriction and prolongation matrices do not
need recomputing. A,, must still be refilled on the coarser grids using equation 7.2.1.
Aggregation and re-filling time is included in the results. Occasional re-aggregation is
probably required for practical simulations, because the coupling of various elements in
the fine grid may change as the overall CFD solution converges, and the coarser grids
will no longer follow the smoothest errors.

Preliminary studies showed that p (the number of pre- and post-smoothing iterations)
had little effect on the results within a range of 1 to 12. Increasing p resulted in fewer
cycles being required overall (and vice versa), but with almost no effect on scalability
and absolute speed. p = 3 was selected for all of the Chaos multigrid methods; and
p =1 was used for ML. ML uses a complex smoothed-aggregation coarsening strategy
which achieves smoother coarse-grid-corrections, thus less smoothing is required. An
additive-correction V-cycle was used in ML, with a direct solver on the coarsest grid.

The results are shown in figure 7.5 and (partially) table 7.1. Overall, the scalability of
the V-, W- and F-cycle multigrid is poor, and somewhat similar to the Krylov Subpsace
method (FGMRES). The V-, F- and W-cycle all perform similarly on C = 2048 cores.
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Figure 7.5: Scalability of the linear equation-system solver for the KVLCC2 (left) and
LDCEF (right) test cases, at 0.1 (top) and 0.01 (bottom) convergence tolerance.

Table 7.1: Absolute core-hours spent solving the linearized pressure equation over 100
non-linear iterations.

Case (ILCT) FGMRES V-Cycle Chaotic-Cycle | Chaotic (solver)
C=8 128 2048 | 8 128 2048 | 8 128 2048| 8 128 2048

LDCF (0.1) 1.8 25 544 |23 27 946 |23 25 71| 36 34 5.6
LDCF (0.01) 34 53 568 |43 6.8 124.1| 4.0 4.7 10.6| 20.7 169 24.5
KVLCC2 (0.1) 38 7.1 601 (41 6.1 117.2| 5.1 5.3 13.6| 27.2 20.8 36.6
KVLCC2 (0.01)| 7.8 17.4 144.0]9.2 13.9 258.9|12.4 16.3 38.5|139.9 111.6 169.6

On a smaller number of cores, the size of A 4 in each domain becomes larger, thus
the total number of levels increases and the algorithmic differences between the three
cycles become larger. As the number of levels increases, the W- and F- cycles spend
exponentially more time visiting coarse grids, and perform worse than the V-cycle. If
only two grids existed, all three cycles would be identical. This effect makes it difficult
to differentiate between numerical effects and scalability of the classical multigrid cycles.

The chaotic-cycle exhibits slightly worse absolute performance on C' = 8 than the
V-cycle and FGMRES, but offers much greater scalability. In all cases the chaotic-cycle
is the fastest solver on C' = 128 cores. On the most difficult test case (KVLCC2 at 0.01
convergence tolerance), the chaotic-cycle is over 6.7x faster than the classical V-cycle
on C' = 2048 cores, and 3.7x faster than preconditioned FGMRES. This gap widens
on easier equations, reaching a 13.3x and 7.7x speed-up over V-cycle and FGMRES,

respectively, on LDCF at 0.1 convergence tolerance.

The scalability of ML was poor in all cases. It was suspected that the rigorous
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aggregation process is a bottleneck to scalability when such a lax convergence tolerance
is specified; however, re-use of the aggregation had little effect on scalability. Other
efforts to experiment with ML were unsuccessful in improving scalability — including
adjusting the number of multigrid levels, the amount of smoothing, and replacement of
the direct solver with a smoother on the coarsest grid.

Despite its good performance, the chaotic-cycle multigrid falls short of ideal scalability.
Indeed, in one case the simple chaotic solver is faster than chaotic-cycle multigrid due

to its superior scaling.

7.6 Discussion

Both the classical- (V,W,F) and chaotic-cycle should achieve better scalability if the
vector-scattering on coarse-grids is improved. Currently, the MPI buffers and indexing of
(xB)o and (A p)g are also used on the coarse grids, instead of creating smaller, aggregated
buffers for each level, which is inefficient. Computing buffers for each coarse-grid would
certainly improve scalability. It is likely that the chaotic-cycle hides some of these
losses (since extra relaxation can occur whilst waiting for these communications), so
the differences between the two solvers may become smaller.

Perhaps a bigger concern is (once again) the residual computations which currently
occur asynchronously during each multigrid iteration. On 2048 cores the aggregation
process only creates four levels, and with p = 3 a chaotic-cycle will perform a minimum
of 18 vector-scatters in this time. As noticed in the chaotic solver, with a residual
computed every 100 iterations this was already the main limitation to overall scalability.
It is suspected that this is the main cause of poor scalability and is also the only sensible
reason that the standard chaotic solver could out-perform the chaotic-cycle multigrid
(since the chaotic-solver is equivalent to a one-level chaotic-cycle multigrid method).
For both the chaotic-cycle multigrid and chaotic solver, the ideal solution would be to
apply a threaded residual computation check, such that residuals are only computed at
the speed at which they can be communicated. In this way the residual computation
could never stall the communication thread, but it would also never lag unnecessarily.
In some ways this could be considered a ‘chaotic’ residual.

The problem with such a scheme is that it is difficult to stop MPI processes
safely without some form of explicit, predictable barrier or global communication
— because if any process issues MPI_Isend/MPI_Irecv commands before receiving the
‘stop’ notification, these unmatched communications will cause a deadlock. As mentioned
earlier, some form of one-sided communication would be ideal to allow communication
threads to operate chaotically. This would also allow chaotic residual computations to
be implemented easily.

Throughout this thesis, it has been easy to peer into the internal workings of
each solver using profiling tools such as Score-P. However, profiling the chaotic-cycle
multigrid is somewhat difficult. The numerical and computational properties of both the
chaotic solver and chaotic-cycle multigrid are so closely intertwined, it can be hard to

distinguish between numerical and computational issues. Indeed, the whole purpose of
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chaotic methods is to make use of all available hardware for useful numerics, even when
some systems (such as communications) are struggling. Furthermore, any attempt to
intrusively debug or profile these solvers can affect the non-deterministic solution path
of the solver. This inability to easily debug and profile is possibly the main disadvantage
of chaotic methods — at least from a research and development perspective.

Even though it can be seen that both the coarse-grid communications and residual
checks are slow, it is not clear which is the main source of performance losses. However,
it is suspected that the residual issue is far greater, because whilst waiting for the
residual to complete the communication threads are blocked from updating the commu-
nication buffers (xp) on the finest grid. At least on the coarse grids, xp is periodically
updated, providing fresh values for the excess relaxations to work on — even though the
communications are slow.

It is likely that both of the aforementioned issues affect the V-, W- and F-cycle too.
Indeed, since they do not have the benefit of performing chaotic relaxations they may
be more affected. Nonetheless, the chaotic-cycle multigrid demonstrates good scaling
compared to these classical cycles; and its ability to weather ineffective communications

should allow it to perform well in many-core environments.

7.7 Chaos on Xeon Phi

As a brief aside, Chaos was compiled and tested on a single (non-MPI) Xeon Phi
co-processor (5110P), exploiting up to 60 physical cores and 120 OpenMP threads. It
was not possible to compile the entire ReFRESCO suite for the Xeon Phi — mostly
due to external dependencies; instead, some performance tests were performed on the
generic Poisson case introduced in section 7.4. The convergence tolerance was set to
10~% and the time-to-convergence was measured for the V-cycle and chaotic-cycle, shown
in table 7.2. There is no MPI partitioning; thus there is a single multigrid hierarchy
(rather than one per MPI process) — this is the main numerical difference between the

experiments performed in section 7.4.

Table 7.2: Performance of V-cycle and Chaotic-cycle multigrid from Chaos on a single
5110P Xeon Phi. The time required for aggregation is ommitted from these results.

N V-Cycle Chaotic Cycle

8k 25ms 26ms
64k 55ms 51ms
1.73m 2169ms 1512ms

As N increases the chaotic-cycle out-performs the V-cycle multigrid, suggesting
strong performance on many-core architectures. According to Intel [50] a Xeon Phi
5110P can expect to outperform a single CPU node (2x E-2670) by a factor of 1.77 (for
general fluid dynamics benchmarks) to 2.38 (Linpack benchmarks)!. Using a single CPU

! Conveniently, nodes in Iridis4 consist of 2x E-2670, although other hardware (i.e. regarding memory
bandwidth) may be different.
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node, the Chaotic-cycle takes 2452ms to converge the largest case shown in table 7.2,
thus the Xeon Phi achieves a 1.62-times speed-up. This is a promising result, but much

more research should be performed in this area.

7.8 Conclusion

This chapter has concerned itself with the development of a chaotic-cycle multigrid
algorithm, which demonstrates the application of chaotic relaxation theory to a typical
multigrid method.

The chaotic-cycle multigrid outperforms all other solvers (including Krylov Subspace
solvers, classical multigrid methods, and state-of-the-art smoothed-aggregation multigrid
methods) in terms of scalability and absolute speed, from 128 cores upwards. Below this,
the chaotic-cycle multigrid is still highly competitive. On 2048 cores the chaotic-cycle
multigrid is up to 7.7x faster than Flexible-GMRES and 13.3x faster than classical V-
cycle multigrid. Scalability of the chaotic-cycle multigrid can still be improved. Indeed,
on the easiest equation system the simple chaotic solver was faster (on 2048 cores) and
this is indicative of an issue with too-frequent residual checks. O(N) performance of
the chaotic-cycle multigrid solver has also been verified.

The potential of chaotic methods compared to synchronous methods has been clearly
demonstrated. In the following chapter, the techniques implemented in Chaos will
be applied to a ‘real-world” CFD simulation. The intention is to demonstrate that
non-deterministic linear solvers can be used safely for CFD, without any negative affect

on the overall flow results.
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Chapter 8

Suitability of Chaos for CFD

In the previous chapter, the performance and scalability of a chaotic-cycle multigrid
method was tested, showing promising results. However, there are still some remaining
concerns which should be addressed in order to gain complete confidence that the
chaotic-cycle multigrid can be used in everyday CFD.

These concerns are:

1. After thousands of applications of a chaotic, non-deterministic solver, is there any
adverse effect on the overall fluid flow solution? Thus far, verification has been
performed on a per-solve basis, where it has been shown that the actual solution
vectors from various linear solvers can be quite different, despite achieving the
same residual-norm. It is not clear whether this will be noticeable in the final flow
solution.

2. Does the unsteadiness of the flow alter the performance of the linear solver? Until
this point, all of the test-cases have been steady-state. The addition of unsteady
terms is likely to make the equations less stiff, so has not been a major concern.
However, a large difference between the two steady cases (LDCF and KVLCC2)
has already been noticed, so it is worth explicitly testing an unsteady test case.

3. Is the absolute performance of the chaotic-cycle multigrid scaling correctly with
O(N)? Will the performance translate to large, practical grids? This has already
been tested on the pragmatic Poisson test case in the previous chapter, but a

proper performance analysis on ‘real’ CFD equations will be useful.

In order to address these concerns, a highly-unsteady test case of a submarine at a
20° yaw angle will be used. The simulations are performed on three grids: N = 2.78m
(similar to earlier test cases), N = 6.96m and N = 14.4m.

The simulation is run over thousands of timesteps, with several SIMPLE iterations
in each timestep. The total wall-time of the simulations reaches several days, thus
the linear solvers are rigorously tested. Initially, the numerics of the simulation are
deliberately chosen to be sub-optimal, giving a poor flow solution. This highlights any
numerical differences between the linear solvers, which are indeed significant.

For the Krylov solver and chaotic-cycle multigrid, the simulation is then run with

much stricter numerics — smaller timesteps, greater number of SIMPLE iterations, and
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stricter ILCT (almost two weeks total wall-time) — section 8.5. Here, the two solvers
arrive at virtually identical solutions, thus addressing concern (1).

Performance testing is performed in section 8.6, in the same manner as the scalability
tests in previous chapters. Both points (2) and (3) are satisfied by these tests.

It should be clearly noted that this chapter does not aim to investigate the quality
of the CFD simulation, the resolved flow, or any physical properties. Practically, even
the largest mesh is too coarse to simulate this highly-unsteady test case accurately.
The purpose of comparing flow solutions is purely to observe differences between the
linear-solver configurations.

Furthermore, the main purpose of the performance testing in section 8.6 is not to
measure scalability. The main purpose is to verify O(N) scaling of the chaotic-cycle
multigrid method, and investigate any differences in absolute performance due to the
unsteady terms in the equation-system. Indeed, scalability bottlenecks are significantly
reduced on the larger grids, because it is not possible to reduce the cells-per-core ratio
to critical levels on Iridis4.

Overall, this chapter aims to ask: “are chaotic methods suitable for real-world
CFD?”, complementing the previous chapters which have focused on the performance

and theoretical applicability of these methods.

8.1 Numerical Setup

The test case used for these studies is the Joubert-hull (“BB2”) model-scale submarine
[97], operating at a Reynolds number of approximately 5.2 x 106. This test case is used as
a common benchmark for assessing the capabilities of CFD in submarine hydrodynamics
(see, for example, the Submarine Hydrodynamics Working Group [86]). The length L
of the vessel is 3.8260m and the flow velocity V' is 1.6309m/s. A yaw angle of 20° is
applied by modifying the inflow vector, creating a flow which mimics a sharp left-hand
turn. The grid is a multi-block structured mesh, as illustrated in figure 8.1. The forward
and port-side boundaries are configured as inflow boundaries; with outflow boundaries
opposite. The upper and lower boundaries are constrained by a pressure boundary
condition. All hull surfaces are non-slip walls with fully-resolved boundary layers (no
wall functions). The domain extends 2.5L forward of the hull, and 3.7L aft. The
total height and width of the domain is 6L. The origin, for the purpose of calculating
moments on the hull, is at the aft of the vessel.

To begin, the simulation is deliberately set up as a ‘worst case’ in terms of nu-
merical convergence, in order to amplify any possible issues arising from the use of
non-deterministic, chaotic solvers. It is anticipated that with strict convergence, any
problems would disappear (and this will be shown in section 8.5).

The inner-loop convergence tolerance (ILCT), for all equations, is set to 0.1. Large
(implicit) timesteps are used (0.02 seconds, or 100 x L/V'), and only 5 outer-loop
(SIMPLE iterations) are performed per timestep. The average Courant number is 60,

reaching 6000 in some boundary-layer elements.
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Figure 8.1: A view of the multi-block structured grid and domain for the BB2 test case,
with N = 14.4m.

QUICK with limiters [44] is used for convective flux discretization of the momentum
equation, whilst a first-order upwind method is used for turbulence. Turbulence is
modelled with a two-equation k-w shear-stress transport model [63]. Relaxation is
applied to the outer-loop: iy = 0.9 and aeyp = 0.15 for momentum and turbulence;
Qegp = 0.15 for the pressure equation.

The total length of the simulation is 60 seconds, or 3000 timesteps. For the first
2000 timesteps Flexible GMRES is used with a Block Jacobi preconditioner — for all
equations. The solution is then restarted with alternative pressure-equation solvers for
the remaining 1000 timesteps. The turbulence and momentum equations are not altered®.
96 cores are used throughout — this is largely irrelevant, but does affect the partitioning
of the multigrid algorithm/aggregation and the amount of asynchronicity occurring
across MPI boundaries. For V-cycle and chaotic-cycle multigrid, re-aggregation occurs
once per timestep; thus re-aggregation occurs 20x more frequently than in the previous
chapter. This is done for safety, allowing re-aggregation to occur whenever the matrix
coefficients change significantly, but is absolutely not necessary — further work would be

required to find an optimum re-aggregation frequency?.

!Previous results using chaotic methods for momentum and turbulence were troublesome, due to
the ability of the chaotic methods to significantly over-converge (by 1-2 orders of magnitude) these
equations between residual updates. This had a large (positive) effect on the overall flow residuals, but
interfered with the most significant results regarding the expensive, elliptic pressure equation. The
pressure equation is not noticeably over-converged by chaotic methods, simply because the time taken
to reach convergence is much larger.

2 A poor aggregation will never prevent convergence completely, since the multigrid method can never
perform worse than the equivalent one-level solver. However, re-aggregating frequently ensures the full
advantage of the multigrid method is maintained. As the solution converges, and matrix coefficients
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In the following sections, the numerical results of these simulations are examined in
order to determine the suitability of chaotic methods for CFD. Firstly, the convergence
characteristics are examined. Following this, various aspects of the flow solution itself
are observed — including quantitative results of friction/pressure distributions, and

qualitative visualizations of the flow.

8.2 Convergence

Figure 8.2 shows the Lo-norm of the residual of the three momentum equations, two
turbulence equations and pressure equation — on all three grids. Note that this is the
residual of the SIMPLE, outer-loops — although it is closely related to the residual
of the linear system. These residuals are computed by taking the absolute residual
of each linear equation-system in each outer-loop, normalized by the diagonal of A.
In general, the residuals are quite unremarkable; but there is some variation between
the linear-solver configurations. It is worth noting that the solutions (x) provided
by the linear solvers are allowed to be different, so long as the relative inner-loop
convergence tolerance (ILCT) of the residual (|r|2) is reached (this was discussed earlier,
in section 6.5). Perhaps this would be an argument for using a different check for
inner-loop convergence, such as an absolute residual or an co-norm. However, when
these residuals are visualized, by plotting regions of the flow which are poorly converged,
there is no noticeable difference between the solvers — figure 8.4 shows this visualization.

Figure 8.3 shows the Loo-norm of the same residuals. The differences between the
solvers are greater (than when comparing Lo-norms), and also become larger as N
increases, which is to be expected — the relative contributions (to the La-norm) of a few
stagnated /under-converged equations becomes smaller as N increases, thus allowing a
higher L., and noisier results. It is interesting that the choice of linear solver for the
solution of the linearized pressure equation affects the other transport equations more
than the pressure equation itself, with particularly poor convergence of the momentum
equations when using the FGMRES pressure-solver. It would be presumptive to draw
any conclusions from this result, but it does appear that the non-Krylov solvers are
more robust in this poor-convergence scenario. It is suspected that the multigrid and
chaotic methods provide a smoother solution vector (due to superior high-frequency error
smoothing), thus minimizing anomalous under-converged cells. Another argument could
be made for checking ILCT (linear-system convergence) using an oo-norm — reducing

this problem and also removing dependence on N.

8.3 Transient Forces and Moments

The differences in the overall flow residual, when using various linear solvers, are quite
large. This also translates to small differences in the physical properties of the flow.

Figure 8.5 shows the non-dimensional total force on the hull; figure 8.6 shows total

stop changing significantly, there is likely to be a performance benefit to reducing the re-aggregation
frequency.

98



10° : . . .
=  FGMRES + BJACOBI
1 === Chaotic-Cycle
107 = V-Cycle E
=== Chaotic (Solver)
-2 | i
= 10
S
h=d
0
]
o
[3\}
Q
Timestep
10t - - - -
= FGMRES + BJACOBI
=== Chaotic-Cycle
10.2 i = \/-Cycle i
=== Chaotic (Solver)
©
>
S
%]
]
-4
™
S
10® ! ! ! !
2000 2200 2400 2600 2800 3000
Timestep
10" . : . .
= FGMRES + BJACOBI
=== Chaotic-Cycle
102+ == V-Cycle i
=== Chaotic (Solver)
T .3
s 107
%]
&
~ 107
S
10”
10® ! ! ! !
2000 2200 2400 2600 2800 3000

Timestep

Figure 8.2: Ly-norm of the flow solution residuals, on three grids: 2.78m (top), 6.96m
(middle) and 14.4m (bottom). The pressure equation is denoted with a thick solid
line; momentum equations are shown with x = B, y = A and z = V¥; and turbulence
equations are denoted with £ = ¢ and w = e. The momentum and turbulence equations

are translucent to improve clarity.
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Figure 8.3: Loo-norm of the flow solution residual, on three grids: 2.78m (top), 6.96m
(middle) and 14.4m (bottom). The pressure equation is denoted with a thick solid line;
momentum equations are shown with z = B, y = A and z = ¥; and turbulence equations
are denoted with k = ¢ and w = e. The momentum and turbulence equations are
translucent to improve clarity. Notice the under-convergence of the z- and z-momentum
equations (M, V) when using FGMRES (black) on the finest grid. This is the only
significant difference between the residuals achieved by each linear solver configuration.
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Figure 8.4: Control volumes in which the root-mean square of momentum-equation

residuals (y/L2 4+ L2 + L2) is greater than 103, showing poor convergence in the sail-
wake region. Identical results were obtained for all linear solver configurations. FGMRES
(top) and Chaotic-Cycle multigrid (bottom) are shown at the final timestep.

101



moments. Forces are non-dimensionalized with % pV? L%, moments with % pV?2L3. Only
the finest grid is shown (N = 14.4m) — the coarser grids provided an almost steady-state
result for X, Y, Z, K, M and N with no perceptible difference between the various
linear solvers.

It is not clear whether the variation of the forces and moments is from an attempt
to capture the unsteadiness in the flow, or is an artifact of the poor convergence. To
an extent, it appears that each solver provides a similar solution path, but with some
amount of ‘lag’ — this is particularly visible in the heave force (Y). This suggests that
some aspects of physical flow oscillation are captured, but is completely dominated by
the poor numerics of the simulation. These plots will be revisited in section 8.5, where
stricter convergence is used.

It is difficult to draw conclusions on which solver provides the most numerically-
correct solution, but it is encouraging to see that the chaotic-cycle multigrid performs
similarly to the V-cycle multigrid solver. This implies that the non-deterministic, chaotic

nature is not having any negative impact on the flow solution.

8.4 Instantaneous Flow Solutions

More insight into the quality of the solution of each linear solver may be gained by
observing local flow features at a single timestep. The solution of the finest grid is
compared by measuring coefficients of friction and pressure at various slices along the
hull; and, qualitatively, by taking slices of the fluid flow at interesting locations. As
shown in the previous section, the transient behaviour of the flow and the numerical
‘lag’ leaves the simulation in a slightly different state, so for each solver the data has
been extracted at a different timestep. The timestep was chosen by taking the last
peak in Y force — this was both the largest and most periodic force experienced by the
submarine, but any signal could be used with similar results. Thus the timesteps used
were FGMRES at ¢ = 2950, Chaotic-cycle at ¢ = 2905, V-cycle at t = 2890 and Chaotic
(solver) at t = 2840 (the penultimate peak, since it lags the least).

The coefficients of friction and pressure are shown in figures 8.7 and 8.8 respectively.
Four slices are taken, at /L = 0.2,0.4,0.6,0.8 (from aft to bow). /L = 0.6 includes
the sail/conning tower, just aft of the two forward fins. —180° corresponds to the
port-most point of the vessel, whilst —90° points directly upwards (0° starboard, 90°
downwards). The flow is generally equal, except in the lee/wake of the sail — this is the
area in which convergence was worst, as shown in the previous section, figure 8.4.

Using the same timesteps, one can observe qualitative differences between the flow
solution in other areas, when comparing the different solver configurations. Figure 8.9
shows surface limiting friction lines and coefficient of pressure on the hull surface,
figure 8.10 shows velocity magnitude in the x-direction at a transverse slice (z/L = 0.6),
and figure 8.11 shows the same at y = 0. The slices are relatively uninteresting, with no
significant differences between the solvers observed. However, the surface friction lines
show much more variation, particularly in the sail-wake area. It appears that most of

the differences between the solvers are occuring in the highly-unsteady boundary layer
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Figure 8.5: Non-dimensional total forces on the submarine hull in the z-, y- and
z-dimension. Showing only the finest grid (N = 14.4m).
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Figure 8.6: Non-dimensional total moments on the submarine hull around the z- y- and
z-axis (P, @ and R respectively). Showing only the finest grid (N = 14.4m).
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in this region — where courant number and residuals are highest.

Figure 8.9: A visualization of the surface flow, showing limiting friction lines on the
hull surface. The hull is also coloured with coefficient of pressure. The four solver
configurations are shown: FGMRES + BJACOBI (top left), Chaotic-Cycle Multigrid
(top right), V-Cycle Multigrid (bottom left) and plain chaotic solver (bottom right).

8.5 Stricter Convergence

The next logical to step is to determine whether the different pressure-solvers converge
on exactly the same solution when overall convergence is improved and timestep fidelity
is increased. To perform these tests, the solution is restarted after 1000 timesteps (20
seconds) of the original simulation. The timestep for the next 20 seconds is halved,
to 0.01 (2000 timesteps). Finally, the last 20 seconds are covered using a timestep of
0.002 (10,000 timesteps). At the first restart, ILCT is also reduced to 0.01 (previously
0.1) and the number of SIMPLE iterations per timestep is increased to 15 (previously
5). It was not possible to run all solvers due to time constraints, but FGMRES and
the chaotic-cycle multigrid were compared in this configuration — switching solver
configuration at the first restart (20 seconds). The average Courant number dropped, as
expected, to an average of approximately 0.6 — with a maximum of 69 in the boundary
layer.

Overall, the Ly and Ly, residuals dropped by approximately an order of magnitude,
compared to section 8.2, and the discrepancies between the two solvers are less apparent
— see figure 8.12.

Figures 8.13 and 8.14 show the transient forces and moments respectively, for the

last 20 seconds of the simulation. The two solvers show virtually identical results. This
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Figure 8.10: A slice of the simulation domain at /L = 0.6, showing the magnitude
of velocity in the x-direction. The four solver configurations are shown: FGMRES +
BJACOBI (top left), Chaotic-Cycle Multigrid (top right), V-Cycle Multigrid (bottom
left) and plain chaotic solver (bottom right).

Figure 8.11: A slice of the simulation domain at y = 0.6, showing the magnitude of
velocity in the x-direction. The four solver configurations are shown: FGMRES +
BJACOBI (top left), Chaotic-Cycle Multigrid (top right), V-Cycle Multigrid (bottom
left) and plain chaotic solver (bottom right).
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is encouraging in terms of verifying the chaotic methods, but the numerical properties
of the flow are still very poor. Proper periodicity or statistical convergence it not
achieved, and would probably require a larger grid. Indeed, this type of flow can only be
performed properly using a scale-resolving simulation (such as LES) — but it is beyond
the scope of this thesis to investigate further, and not the purpose of this chapter.
Finally, figure 8.15 shows the limiting friction lines and coefficient of pressure, when
comparing the two linear solvers. To all intents, the flow solutions are now equal,
suggesting that there is no negative affect on the flow solution when using chaotic
methods — assuming that overall convergence is good. This addresses the first concern

raised at the beginning of this chapter.
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Figure 8.12: Ly-norm (top) and Lo,-norm (bottom) of the flow solution residuals, on the
largest grid (14.4m cells), using stricter convergence criteria. The pressure equation is
denoted with a thick solid line; momentum equations are shown with x =B, y = A and
z = ¥; and turbulence equations are denoted with £ = ¢ and w = e. The momentum
and turbulence equations are translucent to improve clarity. The last 10,000 timesteps
are shown, corresponding to the last 20 seconds.

8.6 Performance and Scalability of Chaotic Methods

Next, the scalability of each solver is measured — as in chapter 7. These scalability
experiments are performed on each grid, over the first 100 iterations (20 timesteps) of
the simulation. The performance is not expected to be significantly different to the

KVLCC?2 test case used in chapter 7; but the unsteady terms in the governing equations
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Figure 8.13: Non-dimensional total forces on the submarine hull in the z-, y- and
z-dimension. Showing only the finest grid (N = 14.4m), with stricter convergence
criteria.

110



2.0 T T T
— FGMRES + BJACOBI
— Chaotic-Cycle
1.5f 1
o
o
S
— 1.0p 1
x
o /\/\_/\/\/\/_\/—,W
0.5F 1
0 % ! ! !
3000 3500 4000 4500 5000
Timestep
2.0 T T T
— FGMRES + BJACOBI
— Chaotic-Cycle
1.5} 1
o
o
o
— 10_ 4
x
o W/\/\
0.5f 1
0 % ! ! !
3000 3500 4000 4500 5000
Timestep
6.0 T T T
— FGMRES + BJACOBI
— Chaotic-Cycle
5.8F 1
S5.6F A
o
—~
X
x 5.4 1
5.2f 1
5 % 1 1 1
3000 3500 4000 4500 5000
Timestep

Figure 8.14: Non-dimensional total moments on the submarine hull around the z- y-
and z-axis (P, @ and R respectively). Showing only the finest grid (N = 14.4m), with
stricter convergence criteria.
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Figure 8.15: A visualization of the surface flow, showing limiting friction lines on the
hull surface when using stricter convergence criteria. The hull is also coloured with
coefficient of pressure. Two solver configurations are shown: FGMRES + BJACOBI
(top) and Chaotic-Cycle Multigrid (bottom).
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may assist the linear solver. The results are shown in figure 8.16 for ILCT of 0.1 and
0.01. It was, unfortunately, not possible to run these experiments on 1024/2048-cores?,
so care should be taken when comparing to figure 7.5. Only the time spent in the linear
equation-system solver for the pressure equation is shown.

Scalability of the N = 2.78m case is similar to results seen earlier for the KVLCC2.
No significant effects are observed due to the unsteadiness of the simulation, although
scalability of V-cycle and chaotic-cycle multigrid is improved due to extra time spent
in the (very parallel-efficient) aggregation routines. This addresses the second concern
raised at the beginning of this chapter.

As N increases, the cells-per-core ratio also increases, and the scalability bottlenecks
of all solvers are reduced. Encouragingly, the performance of the multigrid methods (V-
cycle and chaotic-cycle) remains competitive with FGMRES as N increases, suggesting
that there are no issues applying these solvers to ‘real-world’ applications. However,
within the realms of good scalability, FGMRES still outperforms these multigrid methods.
If it were possible to increase the number of cores further, one would expect to see
scalability issues, even on the largest grids, which would make the chaotic-cycle multigrid
the fastest solver. Furthermore, reducing the relative amount of time spent in re-
aggregation — by increasing the re-aggregation interval — would provide a significant
benefit to both multigrid methods. On the largest grid, with C' = 512, aggregation
accounted for 13% of the total solution time of the chaotic-cycle multigrid.

Table 8.1 shows numeric results from these experiments, which helps to quantify
the O(N)-scaling of the various solvers. None of the solvers achieve O(V) performance
according to this data but the differences between the various solvers are interesting.
Both the chaotic-cycle and V-cycle perform similarly on a low number of cores (approxi-
mately O(3N)), with scalability differences making the comparisons on a larger number
of cores more difficult. Since the chaotic-cycle scales better, and capitalizes on this
when the cells-per-core ratio is lower, it’s scaling with N appears worse. The N-scaling
of the plain chaotic solver is worse, as expected, but is far from O(N?), due to the large
amount of high-frequency errors which can be smoothed quickly (not spectral-radius
limited).

Combining these results with the earlier verification of the chaotic-cycle multigrid
(section 7.4), using a controlled Laplacian equation, this study addresses the third and

final concern identified at the start of this chapter.

Table 8.1: Absolute core-hours spent solving the linearized pressure equation over 100
non-linear iterations on a variety of grid sizes with ILCT= 0.01. The final row shows
the ratio difference between the finest and coarsest grid.

Grid Size Chaotic (solver) Chaotic-Cycle V-Cycle FGMRES
C=8 128 512 8 128 512 8 128 512 8 128 512
2.78m 120.8 95.6 103.3 | 9.6 9.9 11.2 99 116 193 | 5.1 89 12.1
6.96m 4753 475.2 375.1 | 30.0 38.1 33.8| 325 56.5 54.3 |18.7 28.9 36.6
14.4m |1482.4 1482.4 1319.5]139.1 114.6 98.1|110.2 168.9 123.8|50.7 87.3 87.5
x5.18 12.3 15.5 12.8 | 145 11.5 88 | 11.1 146 6.67 | 9.9 98 7.2

3These large jobs were only available during a rare, scheduled maintenance of Iridsi4
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Figure 8.16: Scalability of the linear equation-system solver for the BB2 test case
with N = 2.78m (top), N = 6.96m (middle) and N = 14.4m (bottom) test cases, at
ILCT= 0.1 (left) and 0.01 (right).

8.7 Conclusion

This chapter has answered some of the remaining uncertainties regarding the chaotic
methods developed during this thesis. In particular, it has been shown that chaotic
methods can be used safely in practical CFD simulations. Care should be taken when
the overall flow solution is under-converged, however, because the solution will have
a strong dependence on the linear solver that is used — but this occurs even when
comparing classical solvers such as FGMRES and V-cycle multigrid, suggesting that
this is unrelated to non-determinism.

This chapter has also shown that the performance of chaotic-cycle multigrid is

maintained as NV increases and the unsteadiness of the flow has no significant impact on
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the performance of the linear solvers.

The scalability of the chaotic-cycle multigrid is also good on the BB2 test case, even
when N is large — as expected — but could not outperform FGMRES on the largest
grids. As the number of cores increases to levels beyond which can be tested on Iridis4,

the chaotic-cycle multigrid is expected to outperform these KSP methods.
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Chapter 9

Conclusion

Exascale computing architectures and increasing dependence on unsteady simulations

provided the motivation for the research question of this thesis:

“What limits the strong scalability of CFD and its ability to handle many-
core architectures? What can be done to improve the CFD algorithms in this

respect?”

To answer in short: the limit to the strong scalability of CFD is the unscalable
solve routines, used to solve the linear equation-system arising in the semi-implicit
CFD algorithm — occupying up to 95% of total wall-time on 2048 cores. One means
of removing this bottleneck is to use the theory of ‘Chaotic Relaxation’ to create
synchronization-avoiding linear solvers which are highly scalable. A novel ‘Chaotic-
Cycle’ multigrid method has been developed in this thesis — offering superior scalability,
and speed-ups up to 13.3x compared to classical solvers (on 2048 cores). In principle,
this would accelerate the CFD algorithm by a factor of 8.2x on 2048 cores (via Amdahl’s
Law [1]), marking a significant improvement to the strong scalability of CFD. The solver
has been implemented, verified, tested and released as part of an open-source library
(Chaos') — for transparency and to facilitate further work.

The process of defining the research question began with a thorough investigation into
the key technologies associated with high-performance computing and next-generation
CFD (chapter 3). Concerning HPC, the trend towards many-core exascale machines
highlighted key problems for scalability, especially related to communication bottlenecks,
heterogeneity and memory bandwidth. For CFD, there are clear trends towards higher-
fidelity modelling which create additional scalability problems, since time-stepping
must occur sequentially and spatial dimensions must be more finely partitioned. These
issues were the primary motivation for the research question. A number of other
key technologies were identified at this stage, such as parallelization and acceleration
schemes, multi-disciplinary coupling techniques, higher-order methods and automatic

meshing — some of which had to be borne in mind when answering the research question.

"https://bitbucket.org/jamesnhawkes/chaos
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An initial study was performed in order to identify the current bottlenecks to
strong scalability (chapter 4), using ReFRESCO — a state-of-the-art semi-implicit CFD
code. For the most part, common simulation parameters such as discretization scheme,
mesh structure, and choice of turbulence models had no significant effect on scalability.
However, there was a large dependence on the ‘inner-loop convergence tolerance’ (ILCT) —
the tolerance to which linear sub-systems are solved — and the choice of linear sub-system
solver. For the industry-standard, wind-tunnel KVLCC2 test case with an ILCT of 0.1,
on 2048 cores, 85% of the solution time was spent in the linear solver, rising as ILCT
decreased. Most of this was spent solving the elliptic pressure equation. Profiling showed
that the parallel efficiency of the linear solvers was poor due to memory bandwidth
contention on a single node; and expensive global communications as the number of
cores increased. Other routines, such as matrix assembly and gradient calculations,

scaled to 2048 cores with only minor issues.

Investigation into alternative linear solvers and preconditioners was conducted in
chapter 5. These experiments were performed up to 512 cores, where the parallel effi-
ciency of the de facto linear solver (Flexible GMRES with a Block Jacobi preconditioner)
was between 13.6% and 25.1%. Good scalability was noted from stationary solvers, such
as successive over-relaxation (SOR) — up to 64% parallel efficiency; but their absolute
performance was weak, requiring up to an order of magnitude more wall-time. A hybrid
method of FGMRES with 10 iterations of SOR as a preconditioner worked well, with
57% parallel efficiency; however, the absolute wall-time on 512 cores was barely better
than with a Block Jacobi preconditioner when an ILCT of 0.01 was required — due
to spectral-radius-limited convergence rates. A multigrid preconditioner was tested in
these investigations, but it showed much worse scalability. This appeared to be because
of synchronization costs in the smoothing routines, although it was difficult to profile in
detail.

Following these unsatisfactory results, development began on linear solvers which
would provide optimum scalability without sacrificing absolute performance (chapter 6).
The starting point for this was the theory of ‘chaotic relaxation’, which provides a
means of desynchronizing iterations in SOR-like solvers. A novel ‘chaotic solver’ was
implemented, using a hybrid (MPI + OpenMP) paralellization scheme. Within each
MPI process several ‘computation’ threads iterate through SOR-like relaxations, whilst
a ‘communication’ thread is used solely for inter-process MPI communications. The
threads operate completely out-of-synch, exploiting deliberate data-races to increase

scalability and numerical performance.

The correctness of the chaotic solver was verified by examining the residual vector
of the solution. Scalability tests were then performed. On 512 cores scalability was
super-linear, due to effective use of the cache — beating the scalability of all solvers tested
in the previous chapter. On 2048 cores, scalability worsened slightly, but overall parallel
efficiency was still good; and reducing the interval at which residuals are computed
would improve the scalability further. Absolute performance was up to x37.8 faster

than plain SOR; and often out-performed FGMRES (almost x10 faster in some cases).
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However, there are concerns relating to how chaotic or SOR-like solvers scale with the
number of unknowns, IN; because the stiffest error frequencies in the system cannot be
solved faster than O(N3).

Following this, a method for combining the strong scalability of chaotic methods
with the good numerical performance of multigrid methods was explored (chapter 7). A
classical multigrid solver framework was created, utilizing unsmoothed aggregation and
employing normal V-, W- and F-cycles. Extending this, a novel ‘chaotic-cycle’ multigrid
method was created, using aspects of the chaotic solver and a classical sawtooth-cycle to
remove implicit synchronization in the multigrid method. Verification of (close to) O(N)
performance was shown using a pragmatic Laplacian test case, and scalability tests were
performed. The parallel efficiency of the chaotic-cycle multigrid was approximately 38%
(on 2048 cores), compared to just 6% for FGMRES and 3% for V-cycle multigrid. The
reasons for this less-then-ideal scalability have been identified: poor implementation of
coarse-grid communications; and too-frequent residual checks. Correcting these issues
should bring the chaotic-cycle multigrid method close to ideal or super-linear scalability.
Importantly, in absolute terms, the chaotic-cycle multigrid is already up to 7.7x faster
than Flexible-GMRES and 13.3x faster than classical V-cycle multigrid on 2048 cores.

The final content chapter of this thesis has taken the opportunity to test the
suitability of the chaotic methods to realistic CFD simulations (chapter 8). Although
care must be taken when the overall CFD solution is not properly converged, the results
verified that the non-deterministic methods can be used safely for practical CFD and
that they are entirely suitable to replace existing solvers. Furthermore, the experiments
demonstrated (again) that the performance of the chaotic-cycle is maintained as N is
increased, and showed that the unsteady terms in the CFD algorithm had no significant
impact on linear solver performance.

Based on the scalability, performance and suitability of this chaotic-cycle multigrid
solver, it is safe to conclude that this novel solver makes considerable steps towards
improving the strong scalability of CFD. The chaotic-cycle solver could already accelerate
ReFRESCO by a factor of 5.8 x compared to KSP methods, or 8.2x compared to classical
V-Cycle; and these gains are likely to increase as new hardware worsens the scalability
bottlenecks of existing methods.

Moreover, there are no foreseeable issues associated with applying chaotic-cycle
multigrid methods to other elliptic and non-elliptic, sparse, linear equation-systems,
arising in other numerical sciences. To this end, all of the methods developed during this
PhD, including the plain chaotic solver, classical multigrid and chaotic-cycle multigrid,
have been implemented as an open-source C++ library, Chaos. This library should
allow further developments of the chaotic methods and facilitate testing with other CFD
codes, disciplines and numerical fields.

A vision for the future of Chaos is laid out in the following chapter, discussing the
scope for further work — including improvements to the algorithm and implementation;
better integration with MPI-only codes such as ReFRESCO; and variations on the

chaotic methods already tested.
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Chapter 10

Further Research

There are a myriad of variations and alternative implementations which could stem
from the research into chaotic methods conducted in this thesis. However, the first
objective should be to remove the scalability bottlenecks which have already been
identified: the poor implementation of coarse-grid communications and too-frequent
residual computations. In tandem with these improvements, investigations into one-sided
MPI communications, allowing desynchronization of communication threads, could be
fruitful.

To interface correctly with the hybrid Chaos library, ReFRESCO should adopt a
hybrid paralellization scheme. This was the original intention and part of the reason
for investigating hybrid solvers, but unfortunately this could not be achieved during
this PhD. Perhaps a more versatile solution would be to adapt Chaos so that it can
interface with MPI-only codes — not just ReFRESCO. A completely flexible interface is
envisioned, where shared-memory multi-threading is used internally (keeping the concept
of communication and computation threads) but MPI-only codes could interface using
shared-memory windows. There are many recent developments in the MPI standard
which may enhance this research [66]. This would also allow Chaos to be included in

other established linear-solver packages such as PETSc.

With these improvements in place, much research can be performed on variations to
the chaotic-cycle. For example, there may be benefits to re-introducing pre-smoothing
(a la V-cycle), or varying the ‘boundedness’ of the chaotic smoother (by relaxing the
constraints on the ‘k’ iteration counter). There may also be significant benefits to
improving the aggregation process. Although the benefits of better aggregation would
not be unique to chaotic-cycle multigrid, adaptation of the chaotic-cycle multigrid to
smoothed aggregation operators may pose some unique challenges and opportunities.
Additionally, some further research should be performed regarding re-aggregation
frequencies — particularly for unsteady CFD simulations.

As mentioned, the numerical theory and practical implementation of the chaotic
methods are closely coupled — and this is part of the reason for releasing Chaos as an
open-source library. However, the underlying chaotic principles and novel algorithms

should be quite hardware-agnostic. Indeed, chaotic methods should be well suited to

121



heterogeneous hardware, including accelerated or mixed-core processors, because they
mask the complexities of variable compute power, variable communication latency and
load-balancing. In section 7.7, the possibility of running the chaotic methods on the
Xeon Phi was demonstrated, but specializations of the code are probably needed in
order to get the best results, and this will require further work.

Linking to the wider CFD context, there have been recent developments towards
coupling of momentum and pressure equations in the SIMPLE loop [53]. The resultant
linear equation system is a multi-block linear system, which could potentially be
solved with chaotic methods. There have also been developments into higher-order
discretization methods, such as discontinuous Galerkin methods [69], which do cause
some unique problems for linear solvers and multigrid methods in general [72]. These
are both areas which should be explored as the technology matures.

Due to the issues of interfacing Chaos and ReFRESCO, the original scalability
studies could not be reproduced fairly (since the remainder of ReFRESCO is using %th
of the available hardware), but it was possible to predict the effects of chaotic methods
in the context of the entire CFD algorithm (approximately a x5.8 to x8.2 speed-up
on 2048 cores). Unfortunately, predicting scalability to higher core-counts is almost
impossible. In the SIMPLE algorithm itself, there are parts of the code which scale
with cells-per-core ratio; parts which scale exclusively with the number of processors;
and parts which scale unintuitively with local communications, memory bandwidth and
cache use. With overlapping of communications and computations these interactions
become more complex, and it becomes very difficult to predict scalability bottlenecks.
Chaotic methods make this even more difficult. The only way to thoroughly assess the
scalability of chaotic methods on many-core, exascale architectures will be to test them
on these architectures.

For CFD as a whole, there are still many challenges which must be addressed in
order to guarantee effective use of exascale supercomputers. Scalability issues relating
to file I/O, adaptive meshing, overset meshing, effective pre- & post-processing and
multi-disciplinary coupling are important areas to address. These areas are wide-ranging
and will affect different codes and applications to varying degrees, whereas this thesis has
tried to tackle the universal core of the CFD algorithm. It is hoped that the scalability
studies and novel research presented in this thesis will pave the way to truly scalable
CFD.
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As modern supercomputers edge towards exascale, their architectures are becoming more parallel. In order for computational fluid
dynamics (CFD) simulations to operate efficiently on newer machines, a complete harmony between hardware, software and
numerical algorithms is required. In the work presented here, a typical CFD code is instrumented, and a strong-scalability study
performed to identify areas of the execution which require improvement, using the well-known KVLCC?2 test case. The effects of
changing discretization schemes, mesh structure, turbulence models and linear solvers are all tested. The results show that data-
exchange among cores and the inner-loop pre-conditioners both have a large impact on performance in a massively-parallel
environment, and should be the focus of future developments.

1. Introduction

The history of the "Top500" supercomputers [1] in figure 1 shows the exponential growth of computing power
available to CFD since 1993. The maximum performance, based on a linear algebra tool (LINPACK), has doubled
approximately every 14 months, allowing maritime simulations of up to 32-billion cells to be performed [2]. The
way in which this growth is achieved varies over time, and programming paradigms for CFD must change as
necessary to ensure efficient scaling.

Pre-2004, floating-point operation (FLOP) rates grew exponentially as transistor size decreased. In 2004,
predictions on the power consumption of central-processing units (CPUs or simply “chips”) broke down, and since
this point the growth of computational performance has been limited by power requirements [3]. CPUs with chip-
level multiprocessing (CMP) have become the norm, packaging multiple cores on one chip to improve efficiency.
Figure 2 shows this shift in growth mechanism.

Figure 1: Performance of the Top500 [1] supercomputers.
Showing the #1, #500 and sum LINPACK max performance
over 20 years, with exponential trend lines.
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Figure 2: Changes in FLOPs/core, total FLOPs and number
of cores, normalized to 1993 values. Values are an average of
the Top500 data [1].
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CFD has benefited from good "weak scalability” for the last 20 years. As the number of cores has increased
CFD problem-sizes have increased too, such that the efficient ratio of cells-per-core has remained roughly constant
(anywhere from 20k-100k cells per core, depending on the code, supercomputer and the problem complexity). By
current trends, parallelization will be around 14-times greater in 6 years, and one could expect CFD simulations
to also be 14-times larger, but there are great challenges in reaching this level.

In 2008, a group of over 20 experts in the supercomputing field were commissioned by DARPA (Defense
Advanced Research Projects Agency) to assess the challenges associated with creating the first exascale machine
(capable of 1 ExaFLOPs) [4] which should be viable in 2020 according to current growth. Their predictions, which
have remained valid over the last 6 years, explain that as power efficiency continues to improve (in terms of pico-
Joules per FLOP) the power required to run inter-nodal communication becomes dominant.

Since 2011, there has been a large push towards many-core nodes, which feature O(100) low-power cores to
increase efficiency and total FLOP rates using many-core co-processor or graphics-card accelerators [3]. The inter-
nodal power bottleneck is likely to drive this trend further and increase intra-node concurrency to O(1k) or O(10k)
cores per node [4,5]. With decreasing core clock rates of these many-core nodes, total concurrency on an exascale
machine is likely to be 300-times that of the current #1 Top500 machine - Tianhe 2.

Comparing this growth in cores (300x) to the expected growth in CFD complexity (14x), it is clear that there
is a need to improve the "strong scalability" of CFD codes. By 2020, it will be necessary to reduce the efficient
cells-per-core ratio to approximately 5% of its current value, if predictions hold true.

This paper aims to break down the scalability of a CFD code into its fundamental parts — using the well-
known KVLCC2 test case. Profiling tools will be used to extract information on the run-time of the code whilst
various user-settings are changed, in an attempt to demystify their effects on scalability. Assessments will be made
to determine the areas of the program which exhibit poor strong scalability, as part of ongoing research which
aims to develop new techniques to improve the minimum cells-per-core ratio.

2. Experimental Setup

In this section, an overview of the CFD code (ReFRESCO), the supercomputer (IRIDI1S4) and the profiling tool
(Score-P) is given. The test-case setup is also detailed, and the key scalability studies performed in this paper are
explained.

2.1. ReFRESCO

ReFRESCO is a viscous-flow CFD code that solves multiphase (unsteady) incompressible flows with the
Reynolds-averaged Navier-Stokes (RANS) equations, complemented with turbulence models, cavitation models
and volume-fraction transport equations for different phases [6]. The equations are discretized in strong-
conservation form using a finite-volume approach with cell-centered collocated variables. The SIMPLE algorithm
is used to ensure mass conservation, with pressure-weighted-interpolation (PWI) to tackle the pressure-velocity
decoupling issue arising from the collocated arrangement [7].

Time integration is performed implicitly with first or second-order backward schemes. At each implicit time
step, the non-linear system for velocity and pressure is linearized with Picard’s method - and a segregated or
coupled method applied. A segregated approach is adopted for the solution of all other transport equations. All
non-linearity is tackled by means of an iterative process so-called the outer loop. For each outer-loop iteration,
and for each transport equation, an algebraic system of linear equations is solved iteratively until a prescribed
residual decay is achieved - this iterative process is the inner loop. In order to increase the robustness of the
iterative process, implicit (directly on the left-hand-side matrix diagonal) and explicit (directly on the new solution
for each variable) relaxation schemes are used.

All numerical schemes used to discretize the transport equations (convection schemes, diffusion, gradients,
non-orthogonality corrections, eccentricity corrections) apply their low-order contributions implicitly, to the left-
hand side of the equation system; and their higher-order contributions explicitly, to the right-hand side of the
system, using values from the previous outer loop.

The implementation is face-based, which permits grids with elements consisting of an arbitrary number of
faces and hanging nodes. This also means that all grids, being them structured or unstructured, are treated in the
same way inside ReFRESCO, even if usually for unstructured grids more outer-loop iterations are needed to take
into account the lower quality metric characteristics.

The code is parallelized using MPI (Message Passing Interface) and sub-domain decomposition. The grids
are partitioned in sub-domains, each one having a layer of common cells so-called ghost-cells. Each of these sub-
domains is calculated in its own MPI process. The ghost-cells are treated as normal cells, as far as the numerical
algorithms are concerned, and are therefore handled implicitly.
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In many ways, ReFRESCO represents a general-purpose CFD commercial code, with state-of-the-art features
such as moving, sliding and deforming grids and automatic grid refinement - but it has been verified, validated
and optimized for numerous maritime industry problems.

ReFRESCO is currently being developed at MARIN (Netherlands) [8] in collaboration with IST (Portugal)
[9], USP-TPN (University of Sao Paulo, Brazil) [10], TUDelft (Technical University of Delft, the Netherlands)
[7], RuG (University of Groningen, the Netherlands) [11] and recently at UoS (University of Southampton, UK).

2.2. IRIDISA

ReFRESCO will be run on the University of Southampton's latest supercomputer, IRIDIS4, which was ranked
#179 on the Top500 list of November 2013 [1]. IRIDIS4 has 750 compute nodes, consisting of two Intel Xeon
E5-2670 Sandybridge processors (8 cores, 2.6 Ghz), for a total of 12,200 cores and a maximum performance of
227 TFLOPs. Each node is diskless, but is connected to a parallel file system, and has 64GB of memory. The
nodes run Red Hat Enterprise Linux (RHEL) version 6.3. Nodes are grouped into sets of ~30, which communicate
via 14 Gbit/s Infiniband. Each of these groups is connected to a leaf switch, and inter-switch communication is
then via four 10 Gbit/s Infiniband connections to each of the core switches. Management functions are controlled
with a GigE network.

2.3. Profiling Tools

ReFRESCO will be instrumented with Score-P [12], a profiling tool developed by VI-HPS (Virtual Institute —
High Performance Supercomputing). The tool provides compile-time wrappers for ReFRESCO and run-time
configuration options which provide useful information on program execution. The results show total call-counts
and total time spent within certain functions, and also give insight into MPI communications and load-balancing.

All forms of executable instrumentation are intrusive, since the measuring and buffering of various timers
introduces some overhead. Care must be taken to filter the profiling tool, such that only useful information is
produced and the overhead is minimized. Profiling tools also disable some compiler optimization (most notably
function in-lining), which may have some repercussions.

The total run-time of a profiled ReFRESCO compared to a non-profiled ReFRESCO differs by approximately
2%, and it is assumed that this does not affect the results of the scalability studies.

2.4, Test Case

The test case for this investigation will be the KVLCC2 double-body wind tunnel model [13]. The model is
simulated at a Reynolds number of 4.6x108. The domain and boundary conditions are shown in figures 3 and 4.

Inflow Non-Slip Wall
— Symmetry

Pressure

Figure 4: An example of the structured mesh (2.67m cells),

Figure 3: The KVLCC2 domain, not to scale. from below the waterline.

The following parameters have been used as a baseline for scalability studies, although some variables are
tested independently in following studies:

All tests use a segregated solver.
Unless specified, a grid of 2.67m cells is used, which covers the current efficient cells-per-core ratio range
(20k on ~133 cores, 100k on ~27 cores) with high resolution, and also shows the trends when moving to lower
cells-per-core ratio.
A k-, two-equation shear-stress transport turbulence model (SST-2003) is used [14].

e The x-, y- and z-momentum equations, and the turbulence equations, are solved with a Block Jacobi pre-
conditioner and a generalized minimal residual (GMRES) solver from the PETSc suite [15]. The inner loop
relative £2-norm convergence tolerance (henceforth ILCT) is provisionally set to 1% (0.01). An explicit outer-

3
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loop relaxation factor of 0.15 is used, as well as an implicit relaxation factor which begins at 0.8 and ramps up
to 0.85 over the first 100 iterations.

e The pressure equation is solved with a multi-grid pre-conditioner (ML) and a GMRES solver, using an explicit
relaxation factor of 0.1. The ILCT is also chosen as 1%.

e The default convection discretization scheme for the momentum equations is QUICK (Quadratic Upstream
Interpolation for Convective Kinematics) with a flux limiter [16], and first-order upwind for the turbulence
equations. For all equations, the diffusion terms are discretized using a 2nd-order central scheme. The gradients
of any variable (velocity, pressure, turbulence quantities) are discretized using a 2nd-order Gauss-theorem
scheme.

2.5. Scalability Studies

Initially, a scalability study will be performed using the default settings to provide a benchmark and basic
understanding. Following this, various parameters will be changed which represent common user settings, in an
attempt to determine their effect, or lack thereof, on strong scalability. The effect of momentum convective flux
discretization scheme will be observed, as well as the effects of using different turbulence models, different grids
(structured vs. unstructured) and finally, different pre-conditioners and solvers.

3. Scalability Study: A Breakdown of ReFRESCO

In this section, a basic scalability study inheriting all the default settings from section 2.5 is performed over 1000
iterations. Profiling tools are used to break down the execution into distinct sets of subroutines:

e Assemble — the assembly of each inner-loop equation system, including construction of the right-hand side
vector, for each transport equation.

Solve — the pre-conditioner and solver used to iterate the systems of linear equations.

Gradients — the calculation of gradient values following the iterative solution to each transport equation.
Exchange — data exchange between ghost cells, including transported values, gradients, and other computed
values such as eddy viscosity.

Other — the remainder of the above, including initialization routines.
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Figure 5: Scalability breakdown of a typical CFD simulation Figure 6: Proportion of total wall-time spent in different

subroutines.

Figure 5 shows a typical scalability plot, where the “speedup” is defined as the relative decrease in wall-time
with N cores compared to the serial runtime. This speedup can be compared to a linear (“ideal”) speedup. Figure
6 shows the proportions of the total wall-time occupied by different sets of subroutines as the number of cores
increases.

Figure 5 shows that the assemble, gradients and other parts of the code scale reasonably well, with other
dropping off at higher core counts due to a number of parallel broadcasts and higher MP1 initialization cost. At
higher core-counts these parts of the code become a very small proportion of the total run-time due to their efficient
scaling, as shown in figure 6. The exchange portion of the execution scales inversely with number of cores, which
causes a serious bottleneck on strong-scalability. The solve routines occupy 48% of the total wall-time in serial
operation, and also scale poorly. These are both areas requiring improvement.
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4. Scalability Study: Convective Discretization Scheme

The previous scalability study was performed with a QUICK momentum convective discretization scheme with a
flux limiter. In the following study, this discretization scheme was varied to ensure that the scalability was
independent of the chosen scheme. A first order upwind (UD1), a 50%-central-50%-upwind blend (CD5-UD5), a
90%-central-10%-upwind blend (CD9-UD1), QUICK with limiter and QUICK without limiter (QUICK-NL) were
used on a range of structured grids from 317k to 23.4m cells. The solution was allowed to reach an outer loop
¢"-norm convergence of 107

The computed form factor [17] is compared to wind-tunnel experimental results [13] in figure 7. The results
are presented against the grid coarsening factor, which is the ratio of cells compared to the finest grid.
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Figure 7: Grid convergence study using various momentum Figure 8: Total speedup for various momentum convection
convection discretization schemes, showing form-factor error discretization schemes.

percentage when compared to experimental results [19].

As expected, the higher-order schemes provide much higher levels of accuracy, with QUICK matching CD9-
UD1 using far fewer cells (1.11m vs. 10.0m). The amount of wall-time required to reach convergence grew
exponentially with number of cells, as the number of iterations and the time-per-iteration both increased, but on
similar grids all the schemes took similar computational time.

More importantly, the discretization schemes were also compared in a scalability study. The simulations ran
for 1000 iterations on a grid of 2.67m cells. The results are shown in figure 8 — no significant changes in scalability
were noticed, suggesting that there will be no issues with higher-order schemes in a massively-parallel
environment.

Note that ReFRESCO implements a 2nd-order accurate QUICK scheme, since internally the mesh is treated
as unstructured — and neighbors-of-neighbors information is not readily available.

5. Scalability Study: Turbulence Models

In this study, the default turbulence model (k-& SST 2003 [14]) will be compared to a square-root-kL (SKL) model
[18] and a Spalart-Allmaras (SA) model [19]. Differences are expected due to different amounts of data being
computed and exchanged. The simulations are run for 1000 iterations and the speed-up is shown in figure 9.

The SA model required 71% of the total serial run-time of the two-equation models (which were virtually
identical in run-time). The SA model has only one transport equation to solve, but also does not incur the overhead
of eddy-viscosity and strain-rate computations which, combined, accounts for this wall-time reduction.

Normalized to the serial run-time of each turbulence model respectively, the SA model yields much better
scalability. The removal of the second transport equation, eddy viscosity and strain rate computations reduces the
amount of data exchange required per outer loop: 2 exchanges versus 8 for the two-equation models (the remaining
momentum and pressure equations require a total of 8 exchanges).

6. Scalability Study: Structured vs. Unstructured Grids

Structured grids are often not feasible for practical applications, where the cost of creating the grid is too high. In
this study, the scalability of a structured grid simulation is compared to an unstructured one. Unfortunately, it was
not possible to create two grids of exactly the same number of cells. An unstructured grid of 12.5m cells was used,
and the scalability of two structured grids (10.0m and 15.8m) was linearly interpolated to obtain comparisons.
This method is not the most accurate, but any obvious changes in scalability should be clearly visible.

Once again, the simulation was performed to 1000 iterations, but with a more relaxed outer-loop of 0.25
explicit and 0.7 implicit. The results are shown in figure 10.

5
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Figure 9: Total speedup for various turbulence models. Figure 10: Total speedup with different grids structures.

It is clear that the difference between an unstructured and structured grid is small in terms of scalability. In
terms of absolute wall-time, the differences between the two are all less than 5%. This is expected, since
ReFRESCO treats the two identically, and the minor differences (in scalability and absolute time) are probably
due to the errors associated with linearly interpolating the results.

7. Scalability Study: Pre-conditioners and Solvers

In section 3, the solve subroutines were shown to scale poorly, but there are many combinations of pre-conditioner
and solver which may perform better. In this scalability study, a number of these combinations will be tested.

The solve routines are responsible for iterating the set of linear equations created for each transport equation.
The equations are iterated until the solution vector reaches an £2-norm residual that is a proportion of its initial
value. This proportion is the inner loop convergence tolerance (ILCT) — and changing this value greatly affects
the load on the solver. It was important to find a reasonable and efficient value for the ILCT before the pre-
conditioners and solvers could be tested fairly.

In these tests, starting from a restarted solution of 100 iterations with the default settings, the ILCT is varied
between 0.5 (50%) and 10 (0.0001%). Two outer loop relaxation schemes are tested: implicit 0.9 with explicit
0.1 (tight), and implicit 0.8 with explicit 0.2 (relaxed). In this way, the computational effort associated with
linearity and non-linearity of the transport equations can be changed by shifting the focus to the inner loop or outer
loop respectively. The total time to reach 105 ¢™®-norm outer loop convergence was observed.

Figure 11 shows the results of this study. In general, reducing the inner loop convergence tolerance provides
no benefit to overall convergence and serves only to increase the time-per-iteration — except in the case where the
linear set of equations is not solved well enough to allow the non-linear iterations to converge. It seems that an
ILCT of 0.01 (1%) is a suitable value for numerical stability and efficiency for the outer loop relaxation chosen in
section 2.4.

Using this result, the pre-conditioners and solvers can be tested, employing methods from the PETSc suite
[15]. For momentum and turbulence, a Block Jacobi, a parallel multi-grid method (BoomerAMG), a parallel
additive Schwarz method (ASM), and a parallel ILU pre-conditioner (EUCLID) are tested. For the elliptic pressure
equation the same methods are used, but the multi-grid method is replaced with the ML pre-conditioner, which
should be faster for elliptic equations.

Two solvers are tested with these combinations: a generalized minimal residual method (GMRES) and a
stabilized bi-conjugate gradient squared method (BiCGSTAB).

The scalability results are shown in figure 12, where the key indicates the momentum-turbulence pre-
conditioner, the pressure pre-conditioner and the solver for both, respectively. With all pre-conditioners, GMRES
and BiCGSTAB perform similarly, so the BCGS results have been removed from figure 12 for clarity. Only the
speed-up of the solve subroutines are plotted in this graph, having been extracted with the profiling tools. The
speed-ups are calculated relative to the serial run-time of BJAC-BJAC-GMRES, in order to make quantitative
assessments between total wall-times — the large differences between the pre-conditioners is clearly visible.

Even on low numbers of cores, the Block Jacobi pre-conditioner outperformed all other pre-conditioners, and
manages to maintain good speedup to 256 cores. Block Jacobi is a naive pre-conditioner compared to the others,
but the simplicity works in its favour, leading to an overall speedup. EUCLID and BoomerAMG both offered poor
scalability, while the additive Schwarz and ML methods offered mediocre scalability. Some of the poorer methods
could not complete on a low number of cores, as they exceeded wall-time limitations.
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From these studies, it is clear that a Block Jacobi pre-conditioner for all equations is the best starting point for
highly scalable CFD. The results of the initial breakdown of ReFRESCO (section 3) are repeated here using these
pre-conditioners and the GMRES solver. Figure 13 shows that the solve routines have become less of a bottleneck;
but in figure 14 it is clear that these routines still take a large part of the execution time. Ignoring the exchange
routines, which must be improved, solve occupies 56% of the remaining execution time on 256 cores.
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Figure 13: A scalability breakdown of ReFRESCO using Figure 14_: Proportions of total WaII—t!me spent in different_
more-scalable pre-conditioners (Block Jacobi). routines using more-scalable pre-conditioners (Block Jacobi)
Often, this speed-up is plotted relative to the number of nodes only, such that rather than normalizing to serial
run-time, the results are normalized to the run-time on one node (see Figure 13 — “Total (Node)”). This hides the
intra-node inefficiency and shows that inter-node scaling is relatively good up to ~42k cells per core (64 cores).
For next-generation computing the pressure is on intra-node concurrency, so this view is not the most helpful;
however it is important to note that this inter-node scaling compares well with other codes. STAR-CCM+ [20]
and ANSYS CFX/FLUENT [21] both show linear speed-up with number of nodes similar to ReFRESCO, but do
not present data beyond the efficient range. The ANSY'S results also show similar intra-node efficiency (10-12x
speedup on 16 cores) compared to ReFRESCO (~10x speedup on 16 cores) — but it is hard to assess fairly without
identical hardware and case setup.

8. Conclusions

The breakdown of a typical CFD code was performed in section 3, showing the scalability of the code and the cost
of various routines at higher core-counts. It was noted that the exchange routines responsible for updating ghost-
cell values between cores were costly and non-scalable. There will be a need to explore alternative communication
paradigms for massively-parallel CFD — perhaps taking more advantage of shared (intra-node) memory.

The choice of mesh structure and discretization scheme was shown to have very little effect on strong
scalability, which is promising for next-generation higher-order CFD simulations. Turbulence models which
required more communication caused decreased overall scalability, but improvements in the exchange routines
may negate this.

Finally, the choice of pre-conditioner had a large effect on the scalability of the code. The more complex pre-
conditioners, such as the multi-grid methods, scaled poorly compared to the straight-forward Block Jacobi method.
The solver itself seems to have little effect, although only GMRES and BICGStab were tested.

7
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Even the best pre-conditioners caused the solve routines to scale poorly compared to the assembly and
gradients routines, and the solve routines also take the largest proportion of wall-time. This should be an area for
development — especially considering the large differences between the existing pre-conditioners.

Although attempts have been made to generalize the results obtained in these studies, it is important to note
that the complex interaction between parts of the code make it difficult to do so. Moreover, only a simple KVLCC2
case has been tested here, and it is assumptive to extrapolate these results to more complex cases — especially
where extra features are added, such as cavitation models, free-surfaces or moving interfaces. In addition, some
significant parameters have not been tested — such as the use of a coupled solver.

Despite this, there are certain parts of the code such as the solve routines and ghost-cell exchange routines
that can be identified as areas for improvement. These should be tackled in order to allow CFD simulations to
continue to benefit from next-generation supercomputing facilities.

Acknowledgments

The authors acknowledge the use of the IRIDIS HPC Facility, and associated support services at the University of
Southampton. Approximately 150k core-hours were used for this work over ~700 jobs.

References

1.  Top500, top500.0org (accessed Feb. 2014).

2. T. Nishikawa, Y. Yamade, M. Sakuma, C. Kato, Fully resolved large eddy simulation as an alternative to
towing tank tests — 32 billion cells computation on K computer, Numerical Towing Tank Symposium
(NUTTS), Miilheim, Germany, September 2"-4t" (2013).

3. H. Simon, Why we need exascale and why we won 't get there by 2020, Optical Interconnects Conference,
Santa Fe, New Mexico, August 27" (2013).

4. P.M. Kogge (editor), Exascale computing study: technology challenges in achieving exascale systems,
Univ. of Notre Dame, CSE Dept. Tech. Report TR-2008-13 (2008).

5. J. Shalf, The evolution of programming models in response to energy efficiency constraints, Oklahoma
Supercomputing Symposium, Oklahoma, USA, October 2™ (2013).

6. G. Vaz, F. Jaouen and M. Hoekstra, Free-surface viscous flow computations. Validation of URANS code
FRESCO, In Proceedings of OMAE, Hawaii, USA, May 31%-June 5" (2009).

7. C.M. Klaij and C. Vuik, Simple-type preconditioners for cell-centered, collocated, finite volume
discretization of incompressible Reynolds-averaged Navier-Stokes equations, International Journal for
Numerical Methods in Fluids, 71(7), pp. 830-849 (2013).

8. L. Ecaand M. Hoekstra, Verification and validation for marine applications of CFD, 29th Symposium on
Naval Hydrodynamics (ONR), Gothenburg, Sweden, August 26"-31% (2012).

9. F.Pereira, L. Eca and G. Vaz, On the order of grid convergence of the hybrid convection scheme for RANS
codes. CMNI, pp. 1-21, Bilbao, Spain, June 25%-28" (2013).

10. G.F. Rosetti, G. Vaz, and A.L.C. Fujarra, URANS calculations for smooth circular cylinder flow in a wide
range of Reynolds numbers: solution verification and validation, Journal of Fluids Engineering, ASME, July,
p. 549 (2012).

11. H.Bandringa, R. Verstappen, F. Wubbs, C. Klaij and A.v.d. Ploeg, On novel simulation methods for complex
flows in maritime applications, NUTTS, Cortona, Italy, October 7t-9%" (2012).

12. VI-HPS, Score-P, vi-hps.org/projects/score-p, version 1.2.3, (accessed Nov. 2013).

13. S. Lee, H. Kim, W. Kim and S. Van, Wind tunnel tests on flow characteristics of the KRISO 3,600 TEU
containership and 300K VLCC double-deck ship models, Journal of Ship Research, 47(1), pp. 24-38 (2003).

14. F.R. Menter, M.Kuntz, and R. Langtry, Ten years of industrial experience with the SST turbulence model,
Turbulence, Heat and Mass Transfer 4, Antalya, Turkey, October 12-17% (2003).

15. S. Balay et al., PETSc user manual, mcs.anl. gov/petsc, Argonne National Labatory, ANL-95/11 — Rev. 3.4
(2013).

16. M. Hoekstra, Numerical simulation of ship stern flows with a space-marching Navier-Stokes method, PhD
Thesis, Delft University of Technology (1999).

17. A.F. Molland, S.R. Turnock and D.A. Hudson, Ship resistance and propulsion: practical estimation of ship
propulsive power, Cambridge, GB, Cambridge University Press, p.70 (2013)

18. F.R. Menter, Y. Egorov and D. Rusch, Steady and unsteady flow modelling using the k—kL model,
Turbulence, Heat and Mass Transfer 5, Dubrovnik, Croatia, September 25-29t" (2006).

19. P.R. Spalart and S.R. Allmaras, A one-equation turbulence model for aerodynamic flows, AIAA Paper 92-
0439 (1992).

20. STAR-CCM+, Performance benchmark and profiling, HPC Advisory Council (Best Practices), July (2010).

21. D. Mize, Scalability of ANSYS applications on multi-core and floating point accelerator processor systems
from Hewlett-Packard, Hewlett-Packard, February 71 (2012).

8
Copyright © 2014 by ICHD



Potential of Chaotic Iterative Solvers for CFD

J. Hawkes®°*, G. Vaz’, S. R. Turnock®, S. J. Cox ¢, A. B. Phillips®
“MARIN Academy; *Research and Development Department; MARIN, Wageningen, NL.

Fluid Structure Interactions (FSI); “Computational Engineering and Design (CED);

. University of Southampton, UK.
1 Introduction

Computational Fluid Dynamics (CFD) has enjoyed the speed-up available from supercomputer technology
advancements for many years. In the coming decade, however, the architecture of supercomputers will change,
and CFD codes must adapt to remain current.

Based on the predictions of next-generation supercomputer architectures it is expected that the first com-
puter capable of 108 floating-point-operations-per-second (1 ExaFLOPS) will arrive in around 2020. Its ar-
chitecture will be governed by electrical power limitations, whereas previously the main limitation was pure
hardware speed. This has two significant repercussions [14, 17, 25]. Firstly, due to physical power limitations
of modern chips, core clock rates will decrease in favour of increasing concurrency. This trend can already been
seen with the growth of accelerated “many-core” systems, which use graphics processing units (GPUs) or co-
processors. Secondly, inter-nodal networks, typically using copper-wire or optical interconnect, must be reduced
due to their proportionally large power consumption. This places more focus on shared-memory communica-
tions, with distributed-memory communication (predominantly MPI - “Message Passing Interface”) becoming
less important.

The current most powerful computer, Tianhe-2 [26], capable of 33 PFlops, consists of 3,120,000 cores. The
first exascale machine, which will be 30 times more powerful, is likely to be 300-times more parallel — which is
a massive acceleration in parallelization compared to the last 50 years. This concurrency will come primarily
from intra-node parallelization. Whereas Tianhe-2 features an already-large O(100) cores per node, an exascale
machine must consist of O(1k-10k) cores per node.

CFD has benefited from weak scalability (the ability to retain performance with a constant elements-per-core
ratio) for many years; its strong scalability (the ability to reduce the elements-per-core ratio) has been poor and
mostly irrelevant. With the shift to massive parallelism in the next few years, the strong scalability of CFD
codes must be investigated and improved.

In this paper, a brief summary of earlier results [12] is given, which identified the linear-equation system
solver as one of the least-scalable parts of the code. Based on these results, a chaotic iterative solver, which is
a totally-asynchronous, non-stationary, linear solver for high-scalability, is proposed. This paper focuses on the
suitability of such a solver, by investigating the linear equation systems produced by typical CFD problems. If
the results are optimistic, future work will be carried out to implement and test chaotic iterative solvers.

2 ReFRESCO

The work presented in this paper focuses on the development of ReFRESCO — a typical viscous-flow CFD
code. ReFRESCO solves multiphase, unsteady, incompressible flows with the Reynolds-Averaged Navier Stokes
(RANS) equations, complemented with turbulence models, cavitation models and volume-fraction transport
equations for different fluid phases [27]. ReFRESCO represents a general-purpose CFD code, with state-of-the-
art features such as moving, sliding and deforming grids and automatic grid refinement — but has been verified,
validated and optimized for numerous maritime industry problems.

The RANS equations are discretized in strong conservation form using a finite-volume approach with cell-
centred collocated variables. The SIMPLE algorithm is used to ensure mass conservation, with pressure-weighted
interpolation (PWI) to tackle pressure-velocity decoupling issue arising from the collocated arrangement [16].

Time integration is performed implicitly with first or second-order backward schemes. At each time step,
the non-linear system for velocity and pressure is linearized with Picard’s method — and a segregated method
applied. All non-linearity is tackled by means of an iterative process so-called the outer loop. For each outer-
loop iteration, and for each transport equation, an algebraic system of linear equations is solved iteratively until
a prescribed residual decay is achieved.

All numerical schemes used to discretize the transport equations (convection schemes, diffusion, gradients,
non-orthogonality corrections, eccentricity corrections) apply their low-order contributions implicitly, to the
left-hand side of the equation system; and their higher-order contributions explicitly, to the right-hand side of
the system, using values from the previous outer loop.

The code is parallelized using MPI and sub-domain decomposition. The grids are partitioned in sub-domains,
each one having a layer of common cells so-called ghost-cells. Each of these sub-domains is calculated in its
own MPI process. The ghost-cells are treated as normal cells, as far as the numerical algorithms are concerned,
and are therefore handled implicitly.

ReFRESCO is currently being developed at MARIN (Netherlands) [8] in collaboration with IST (Portugal)
[22], the University of Sao Paulo (Brazil) [24], the Technical University of Delft (the Netherlands) [16], the
University of Groningen (the Netherlands) [4] and recently at the University of Southampton (UK) [12].

*corresponding author’s e-mail: J.Hawkes@soton.ac.uk



3 Strong Scalability Investigation

In previous work [12], ReFRESCO was profiled using Score-P [28] to extract timings from the code and its
relevant functions. In a CFD code, these functions can be grouped together into the following categories, giving
a breakdown of the code (see figure 1.a for illustration):

e Assembly — the assembly of each inner-loop linear equation system, including discretization, linearization

and face-value interpolation for each transport equation.

Solve — the iterative solving of the linear equation system for each transport equation, in each outer loop.
— the calculation of gradient values at cell centres, using Gauss theorem.

Exchange — MPI data exchange of cell-centred variables and gradients across ghost cells.

Other — the remainder of the above, including initialization routines.

The results of a typical breakdown, using the well-known KVLCC2 case?, are shown in figure 1, where the
“speedup” is defined as the relative decrease in wall-time with N cores compared to the serial or single-node
(16 cores) runtime. The results of the nodal speedup (1.b) show relatively good scalability (up to ~40k cells-
per-core), but hide the intra-node inefficiencies which are important for next-generation machines (with high
intra-node parallelization). Graphs which show the speed-up relative to the single-core run-time (1.c) are thus
more useful.
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Figure 1: (a) An illustration of the SIMPLE algorithm, with colour-coding relating the various profiled functions of the code. (b)
Total scalability of ReFRESCO normalized to single-node runtime, with two different grid sizes. (c) Scalability breakdown of a
typical simulation showing the profiled functions individually and (d) the proportions of execution time spent in those routines [12].

The scalability graph (1.c) shows that assembly and gradient computations scale well, and the relative
proportions graph (1.d) shows that these routines account for a very small proportion of run-time. The other
routines do not scale so well, but are a small contribution to total run-time, so are of little concern.

The solve routines are an area for improvement. They exhibit poor scalability and take considerable amounts
of total runtime, with particularly poor performance at the shared-memory level due to memory bandwidth or
latency. Similarly, the ezchange routines, which exhibit inverse scalability, are also a concern at the distributed-
memory level. The data exchange is performed using MPI functions, and possibilities to improve this include
switching to a hierarchical parallelization scheme (i.e. MPI + OpenMP) — as in [9, 10].

Up to =24k cells-per-core the iterative solver is the main limitation to scalability and should form the focus
of future work, particularly as shared-memory parallelization grows. However, the data exchange issues are also
an interesting area for further research and should not be neglected.

2KRISO Very Large Crude Carrier 2: half-body; two-equation x-w shear-stress transport (SST) turbulence model [21]; single-
phase; based on wind-tunnel experiments [18]; 1000 outer loops; 2.67m structured grid.



4 Background to Iterative Solvers

The results shown in figure 1 used a Krylov subspace solver (GMRES - Generalized Minimal Residual method)
with a Block Jacobi pre-conditioner [3]. Other Krylov methods such as BiCGStab (Bi-Conjugate Gradient
Squared Stabilized) were tested with similar results. Other pre-conditioners were also tested, but Block Jacobi
was (by far) the most scalable [12].

The Krylov solvers are powerful, but create a bottleneck due to the computation of inner products, which
require global communication and synchronization in the form of MPI reductions. Efforts have been made to
reduce the synchronization penalty of the Krylov solvers (down from two synchronized reductions to one, per
iteration), with considerable improvements, but the bottleneck remains [20, 29].

By returning to simple, so-called stationary methods, it may be possible to obtain better performance in the
limits of strong scalability. The task of a stationary solver (or, indeed, any iterative solver), for each transport
equation in each outer loop, is to solve Ax = b, where x is the unknown solution vector, A is an n-by-n sparse
coefficient matrix, b is the constant right-hand-side (RHS) vector, and n is the number of elements.

Beginning with an initial guess for x, the system can be solved iteratively:

x"=-D YL+ U)x*"'+D'b (1)

where D is the diagonal of A, and L/U are the lower- and upper-triangles respectively. The notation k represents
the iteration number. This is the Jacobi method, and the matrix D~!(L + U) is the iteration matrix, M. Each
equation (from 1 to n) can be solved (a.k.a. relaxed) independently as follows:

n
j=1
J#i
where a, x and b are the individual components of A, x and b respectively. At the end of each iteration the

new values of x must be globally communicated before the next iteration can begin.
See Barrett et al. [5] for more information on a variety of iterative solvers — Krylov, stationary and otherwise.

5 Chaotic Iterative Solver

In 1969, Chazan & Miranker [7] proposed the concept of Chaotic Relaxation whereby several processes (distributed-
memory processes or shared-memory threads) never synchronize. Instead, the processes freely pull values of
off-diagonal x from memory whenever they are required, and push new values for the diagonal x; whenever they
have been relaxed. In this way, each relaxation uses the values of x from the latest iteration that is available —

this could be several iterations behind the current relaxation iteration (s = 1,...,n), or even ahead of it (s < 0):
n

xf: (—Zaijmfs—&—bi)/aii, $ < Smaz, t=1,...,n. (3)
j=1
i

The order in which the n equations are relaxed is completely arbitrary. With this scheme, processes never need to
walit for each other. Although communication must still occur, it can be entirely asynchronous, thereby making
efficient use of memory bandwidth and computational resources. Processes may even iterate multiple times on
the same data if memory bandwidth is completely saturated, making the best use of the available hardware.
Whilst this method is based on the stationary Jacobi method, s can vary between iterations implying that
chaotic methods are actually non-stationary.

Chazan & Miranker proved that this iterative scheme will converge for any real iteration matrix if p(|M|) < 1
so long as Syay is bounded. p(-) denotes the spectral radius (the absolute value of the maximum eigenvalue)
and | - | represents a matrix where all the components have been replaced with their absolute values. The
implications of $,,4, being bounded is simply that if two relaxations take different amounts of time (either due
to imbalanced hardware or relaxation complexity), they cannot be left completely independent indefinitely, such
that s could potentially become infinite. Baudet [6] went on to prove that p(|M]) < 1 is a necessary condition
for convergence for any $,,.. < k. Baudet denoted the relaxation method where s = 0, ..., k as an asynchronous
method but the terms “chaotic” and “asynchronous” are often used interchangeably. Bahi [2] further showed
that p(|]M]) = 1 is also valid, if M is singular and $,4, is bounded.

Preconditioning of A usually serves to reduce the condition number and spectral radius of the equation
system; however, preconditioning is rarely applied to simpler solvers, since almost all preconditioners are more
complex than the solver itself.

At their conception, chaotic methods were considerably ahead of their time. Although created specifically
for parallel computing, the concurrency of state-of-the-art supercomputers in 1969 was too small to utilize the
methods efficiently. With new architectures, the true potential of chaotic methods may be realized. Anzt et al.
[1] begins to show the use of chaotic or asynchronous methods on a modern architecture, using the GPU to
perform block-relaxations. Despite the intrinsic loss in global convergence rates, Anzt et al. showed that chaotic
iterative methods provided a boost in real-time convergence rates compared to standard stationary methods



(i.e. Jacobi) — although comparisons to the more advanced Krylov methods were not performed, and the chosen
matrices were not derived from CFD applications.

Chaotic methods provide a means to exploit massive parallelism due to the absence of synchronization
points. They are also implicitly heterogeneous, allowing seamless cooperation between CPUs, GPUs or co-
processors running at different speeds — allowing all computational resources to be used to maximum capacity
with little concern for load-balancing. The convergence criteria, p(|]M]|) < 1, is stricter than that of standard
stationary methods which only require p(M) < 1, and stricter still than the oft-used Krylov methods (which
have no such requirements). The following section aims to determine if a range of standard CFD test cases
will produce matrices that satisfy the criteria — the results of which will determine whether chaotic solvers are
worth implementing and investigating.

6 Suitability of CFD Equation Systems

In this section, un-preconditioned matrices are extracted from a number of test cases. The matrices are analyzed
to obtain key statistics and determine their suitability to chaotic methods.

For each matrix, it is possible to plot the connectivity graph, following the methods of Hu [15] — this gives
a qualitative, visual insight into the sparse matrices by graphically connecting the elements of the matrix. The
largest eigenvalues of [M| can be found using ARPACK [19] routines, and plotted in an Argand diagram — for
p(IM]) < 1 all eigenvalues must lie within a unit circle. The sparsity pattern of the matrix A may also be
plotted directly to give qualitative clues on the matrix structure.

Assuming a satisfactory spectral radius, the condition number (the ratio of the largest to smallest eigenvalue)
of the original matrix A can be used to assess the difficulty of convergence (x number of iterations required).
The condition number is computed using a 1-norm condition estimator [11].

As explained in section 2, all higher-order influences on the linear equation system are shifted to the RHS
(the b vector) — which strongly decouples many common user settings (such as discretization scheme) from the
format of the iteration matrix M.

Changes in element-count and geometry may have a more profound effect on the matrices, and special
equations (such as volume-fraction and cavitation equations) should also be examined. Thus the following test
cases are chosen for increasing geometric complexity and their additional equations.

e Lid-Driven Cavity Flow (LDCF) on a number of 2D structured grids (225, 14.4k, 1m elements); no
turbulence model; see [16].

e NACAO0015 hydrofoil (15° angle-of-attack) on a two-dimensional multi-block structured grid (28k ele-
ments) with a two-eqn. x-w SST turbulence model [21]; see [23].

e KVLCC2 (half-body, no free surface, single-phase) on a three-dimensional multi-block structured grid
(317k elements) and a hexahedral unstructured grid (U) with hanging nodes (167k elements); k-w SST
turbulence; see [12].

e NACAO0015(C), as before, but with a Sauer-modified cavitation model; k-w SST turbulence; see [13].

e Dambreak, a homogeneous two-phase, three-dimensional problem with a simple structured grid (16k
cells) with a volume-fraction equation; no turbulence; see [27].

e Cylinder, low Reynold’s number, unsteady (10 timesteps) on a structured grid (4.3k elements); no
turbulence; poor initial flow estimation; see [24].

The matrices were extracted at outer loops 1, 5, 10, 50 and 100. The momentum equations (in x, y and
z) are identical, due to the way in which they are assembled. The differences between p(|M|) and p(M) were
negligible, implying that M is mostly positive.

Figure 2 shows the qualitative view of the simple 2D LDCF, the more complex 2D hydrofoil, and the 3D
KVLCC2 case at the 5" outer loop. The connectivity graphs show resemblance to the underlying geometry
and mesh structure — for example, the NACA0015 connectivity resembles the O-grid from which it arose.

The sparsity patterns are interesting from a computational perspective, since they highlight communication
patterns when the matrix is split into parallel blocks. Where off-diagonal components of an equation are spread
out, more cross-communication between processes is required — since the variables will be stored in parts of
memory not directly accessible. The sparsity is closely related to the structure of the grid and the cell-numbering
— the more complex KVLCC2 case is highly complex compared to the cartesian, structured LDCF grid.

Table 1 shows the quantitative results from all the test cases, taking the maximum values of all the extracted
outer loops. The condition number appeared to be higher for more complex cases, such as the 3D KVLCC2
case, although there was little correlation with flow features or mesh structure. In all cases, p(|]M]) < 1, meeting
the requirements for chaotic solvers.

The pressure equation, which takes a Poisson-equation format, was singular for the LDCF and Dambreak
case, where only Neumann boundary conditions are applied. In all the other cases, a Dirichlet condition on
the outflow reduced the spectral radius, although it was still close to one. In the LDCF-225 case and the first
timestep of the unsteady cylinder, the spectral radius was also very high — these cases both feature complex
flows with simple initial-flow estimations and coarse meshes; this large discrepancy and poor resolution could
be the reason for the the near-singular matrices (however, the condition number was still low).
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Figure 2: Connectivity, 100 largest eigenvalues, sparsity and statistics for the momentum equation (outer loop 5). [Top] LDCF-225,
[Middle] NACA0015-28k and [Bottom] KVLCC2-317k.

Additional matrices for the KVLCC2 case (up to 2.67m elements) and a 21.7m-element INSEAN E779A
propeller (with sliding interface) were tested, but could not be fully post-processed due to memory requirements
— nonetheless, the original matrices (A) were diagonally dominant: a sufficient condition for p(|M]) < 1.

Table 1: Quantitative results for a range of test matrices, showing condition number and spectral radius for momentum-, pressure-,
turbulence- and free-surface-/cavitation-equations.

Mom. Pres. Turb. 1 Turb. 2 V.F./Cav.
cond(A) p(IM]) | cond(A) p(IM]) | cond(A) p(IM]) | cond(A) p(IM]) | cond(A) p(/M])
LDCF-225 210 0.955 |9.4-el7 1.000
LDCF-14.4k 7 0.500 |2.1-el8 1.000
LDCF-1m 4 0.500 |2.9-e19 1.000
NACAO0015 9.0-e3 0.884 |6.53-e6 0.999 | 4.5-e3 0.849 | 4.8-e3 0.851
NACA0015(C) 6.3-e3 0.734 | 4.67-e6 0.999 | 5.1-e3 0.688 | 5.2-e3 0.690 | 2.3-e8 0.240
KVLCC2 2.6-e6 0.845 |2.63-e8 19999 | 1.2-e7 0.588 | 1.2-e7 0.594
KVLCC2 (unst.) 5.2-e6 0.810 | 5.4-e7 .9999 | 8.3-e6 0.726 | 7.7-e6 0.728
Dambreak 105 0.048 | 5.6-e18 1.000 7 0.048
Cylinder (t=1) 111 19999 | 1.1-e6 .9999
Cylinder (t=2-10) 4.4-e2 0.520 | 1.1-e6 .9999

7 Conclusion

Chaotic iterative solvers have been proposed as a means to improve the scalability of a typical CFD code, in
preparation for a paradigm-shift towards massive parallelization in supercomputing architectures. The removal
of synchronization points from one of the major bottlenecks in the code (the solve routines) could lead to a vast
improvement in scalability, although the loss in convergence rate which compromises the speed-up is difficult to
predict. The matrices which the chaotic solver would be required to solve have been extracted and evaluated,
and it has been determined that necessary and sufficient conditions for convergence have been satisfied.

Future work will focus on implementing a chaotic solver in a hierarchical parallel environment (MPI &
OpenMP & GPU/coprocessor). At the shared-memory (OpenMP) level, issues associated with double-precision
atomic operations and intra-core cache-coherency will be encountered; and methods must be investigated to hide
any cache latency that may occur. Maintaining true asynchronicity across memory-boundaries (for example,
across nodes, using MPT) will also be a unique challenge — since most MPI communications require at least two
nodes to synchronize. One-sided MPI operations may be investigated to allow direct access to non-shared mem-
ory. Similarly, true asynchronicity between host processes and attached GPUs/coprocessors must be achieved
— perhaps by assigning processes on the host processor purely for these communications.

From a numerical perspective, it is best if each equation in the system is iterated the same number of



times/at the same speed (i.e. the equations do not become too out-of-synch). Regulating this, by moving
equations to different processes dynamically, may be beneficial for overall performance and may be necessary
for convergence when the pressure equation is singular.

Above all, however, is the intrinsic difficulty of debugging a chaotic scheme. As soon as instrumentation
points are added, the chaotic order of the process changes — indeed, every time the process is run, different
numerical results and convergence rates may be obtained.

Chaotic methods introduce a number of unique challenges, but could create a significant speed-up for CFD on
current and next-generation supercomputers. Whilst it has been shown that the chaotic methods will converge
for the relevant equations, it remains to predict their real-world performance for CFD applications; and to
implement and test them successfully.
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Abstract. A Chaotic Iterative Method, which is a form of totally asynchronous linear
equation-system solver, is implemented within an open-source framework. The solver is
similar to simple Jacobi or Gauss-Seidel methods, but is highly optimized for massively-
parallel computations. Processes or threads are free to run computations regardless of the
current state of other processes, iterating individual equations with no limitations on the
state of the variables which they use. Each individual iteration may pull variables from
the same iteration, the previous iteration, or indeed any iteration. This effectively removes
all synchronization from the Jacobi or Gauss-Seidel algorithm, allowing computations to
run efficiently with high concurrency.

The trade-off is that the numerical convergence rate of these simple algorithms is slower
compared to the classical Krylov Subspace methods, which are popular today. However,
unique features of the computational fluid dynamics algorithm work in favour of Chaotic
methods, allowing the fluid dynamics field to exploit these algorithms when other’s cannot.

The results of the Chaotic solver are presented, verifying the numerical results and
benchmarking performance against the Generalized Minimal Residual (GMRES) solver
and a Pipelined GMRES solver. The results show that, under certain circumstances,
Chaotic methods could be used as a standalone solver due to their superior scalability.
The potential to use Chaotic methods as a pre-conditioner or hybrid solver is also revealed.
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1 INTRODUCTION

One of the major objectives in high performance computing for computational fluid
dynamics is to enable complex unsteady simulations. Whilst these computations benefit
from concurrency in three spatial dimensions, time-stepping is strictly serial; and unsteady
computations become bottle-necked by the amount of parallelism that can be utilized in
the spatial dimensions. Combined with this, the architecture of modern supercomputers
is changing rapidly, causing scientific applications to adapt to a many-core era.

Figure 1.a shows the history of the Top 500 supercomputers over the last 20 years.
At current rates, it is expected that the first computer capable of 10! floating-point-
operations-per-second (1 ExaFLOPS) could be built in 2020. Its capability will be limited
by electrical power consumption, rather than pure hardware speed, and this will lead to
two significant architecture changes [9, 11, 14]. Firstly, core clock rates must decrease
to save power, and total computing power must be improved by dramatically increasing
the total number of cores. Secondly, inter-nodal networks must be reduced due to their
relatively large power consumption. Overall, this means a huge growth in concurrency
within nodes. This trend can already be seen in modern ‘many-core’ systems featuring
GPUs or co-processors.

The current most powerful computer, Tianhe-2 [15], capable of 33 PFlops, consists of
3,120,000 cores. By contrast, the first exascale machine will be 30-times more powerful
and 300-times more parallel. Whilst Tianhe-2 already consists of nodes with O(100) cores,
using co-processors; an exascale machine is likely to feature O(1k-10k) cores per node.

In earlier work [6] the strong scalability of a typical CFD code (ReFRESCO) was
assessed, to discover which parts of the algorithm required improvement for this paradigm-
shift in architecture. Figure 1.b shows the breakdown of the code, which is based on the
SIMPLE algorithm, into its key parts. Figure 1.c shows that the assembly (discretization,
orthogonality & eccentricity corrections, and final assembly of the matrix structure) and
gradient computations scale well, and figure 1.d shows that these routines account for
a small proportion of the overall run-time. The solve routines, responsible for solving
the linear-equation systems that have been assembled, exhibit poor scalability and take
considerable amounts of total runtime. Similarly, the exzchange routines (responsible for
sharing of cell-values and gradient values across ghost cells) are a cause for concern,
dominating total run-time when inter-nodal communication becomes large.

Considerable work is being performed to improve the exzchange routines, primarily by
overlapping communication with computation more efficiently or reducing global com-
munications; and by utilizing a hybrid parallelization scheme. Cooperatively, the solve
routines must be improved with the same goals.

In this paper, a ‘Chaotic’ iterative solver is proposed as a solution to the strong scala-
bility problem of the solve routines. In the following sections, a brief background is given,
followed by the theory and implementation of a Chaotic solver. Finally, the Chaotic solver
is verified and benchmarked against existing solvers.
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Figure 1: (a) Total floating-point operation (FLOP) rate of the Top500 supercomputers, showing the
#1 machine, the #500, and the sum of the top 500. (b) An illustration of the SIMPLE algorithm, with
colour-coding relating the various sections of the code. (c) Scalability breakdown of a typical simulation
showing the parallel speed-up of the code compared to its serial operation and (d) the proportions of
execution time spent in the various routines [6].

2 BACKGROUND TO LINEAR EQUATION-SYSTEM SOLVERS

The task of the linear equation-system solver, for each transport equation in each non-
linear loop, is to solve Ax = b, where x is the unknown solution vector, A is an n-by-n
sparse coefficient matrix created by the assembly routines, b is the constant right-hand-
side (RHS) vector, and n is the number of elements.

It is possible to solve this system directly, but for large matrices this is expensive. For
CFD, the equation systems can be solved iteratively:

x'=-D YL+ U)x"'+D"'b (1)

where D is the diagonal of A, and L/U are the lower- and upper-triangles respectively.
k is the iteration number. This is the Jacobi method, and the matrix D~(L + U) is the
iteration matrix, M.

Numerically, the Jacobi method, or its derivatives such as Gauss-Seidel or Successive
Over-Relaxation methods, are weak. Their convergence rate is limited by the spectral
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radius of the iteration matrix, p(M), which is dependent on the matrix size and stiffness.
For CFD, this means the pressure equation is hardest to solve, as it is close to singular
[7] and the spectral radius is close to unity.

It is possible to add a form of ‘memory’ to these solvers, where some information about
the solution path is stored in a vector subspace, known as the Krylov Subspace (KSP).
For example, in the popular (Bi-)Conjugate Gradient Squared (BCGS) algorithm, the
solver remembers the previous gradients that it followed, to prevent it from going back on
itself. In the GMRES (Generalized Minimal Residual Method) the subspace is based on
the Arnoldi iteration, and is used to find an approximate solution based on the minimal
residual of these vectors. See Barrett et al. [2] for more information on a variety of iterative
solvers.

There is an initial grace period where high frequency errors can be reduced more
quickly than the spectral radius would normally allow, using the simpler methods, but
KSP solvers typically over-power the simpler solvers when lower frequencies must also
converge.

Though numerically powerful, the KSP methods are computationally inefficient on
a larger number of cores due to certain communication patterns. Figure 2 shows an
illustration of a GMRES iteration. Two significant communication patterns are required,
with very different scaling characteristics. Firstly, the sparse-matrix-vector-multiplication
(SpMV) requires neighbour-to-neighbour communication to obtain boundary data from
other processors. This communication pattern is highly scalable, as different neighbours
can communicate in parallel.

The second communication pattern is a global reduction (and associated broadcast).
Many small messages are sent down a hierarchical tree in a non-concurrent manner. The
time for a reduction increases as the number of cores increases, whereas every other
routine receives a speed-up from increasing the number of cores.

In the GMRES or BCGS algorithm there are two global reductions per iteration. As
the number of cores rises and the scalable routines reduce to a small proportion of overall
time, these reductions dominate wall-time and prevent the KSP solvers from scaling.
Improvements have been made to GMRES, in the form of ‘pipelined’ GMRES (P-GMRES)
which attempt to overlap the first reduction with serial computations [5] — results show
better scalability than GMRES, especially when the so-called ‘latency-factor’ is large, but
as the cells-per-core ratio decreases global reduction latency will once again dominate.

Compared to other applications, where solving linear equation systems to machine
accuracy is important (for example, solving Markov chains for risk analysis), CED is not so
strict. As the ‘real’ problem is a non-linear one, much of the work done in the linear loops
is discarded as under-relaxation is applied to the non-linear iteration. In fact, for many
cases, it is possible to reach non-linear convergence with a relative convergence factor of
the linear system as high as 60%), although this is not usually beneficial. It highly depends
on the problem and the type of non-linear iterative process; and is only worthwhile if the
non-linear iterative process is efficient, as many more non-linear iterations are required.

With this in mind, it may be possible to take advantage of the initial ‘grace period’
of the simpler solvers such as Jacobi or Gauss-Seidel; however, to compete with a well-

4
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Figure 2: Illustrative parallel trace of a GMRES iteration, showing the computation and communication
patterns when utilizing 8 cores. Note that as the serial computations and SpMV become small, the
reduction dominates the total wall-time. Not to scale.

preconditioned GMRES solver there must be a significant computational benefit.

3 THEORY AND IMPLEMENTATION OF A CHAOTIC SOLVER

The Jacobi solver is particularly poor numerically, using old values of the solution vector
in each iteration rather than using newly-computed variables from the current iteration.
By contrast, Gauss-Seidel is stronger numerically as it uses newly-computed variables;
but is impossible to parallelize. Forms of Block Gauss-Seidel exist, which are a good
compromise; but both Jacobi and Block Gauss-Seidel can be improved computationally.

The Jacobi or Block Gauss-Seidel methods have no reduction routines, using purely an
SpMV to perform the iterations. This is a huge benefit to scalability, and should allow
these solvers to scale far higher than KSP methods. However, the Jacobi/Block G-S
routine still has room for improvement. In these methods, the k + 1%* iteration cannot
start until the k" iteration is complete. This means that the whole solution can only
proceed as fast as the slowest core. A core may be slow due to background operating-
system load, poor load-balancing, heterogeneity in the hardware, irregular communication
times or Non-Uniform Memory Access (NUMA). These irregularities are likely to be more
of a concern in the many-core era, and will significantly slow down computations when
trying to utilize thousands of cores.

In 1969, Chazan & Miranker [3] proposed the concept of Chaotic Relaxation whereby
several processes never synchronize. Instead, the processes freely pull values of off-diagonal
x from memory whenever they are required, and push new values for the diagonal z;
whenever they have been relaxed. By exploiting data races in this way, each relaxation
uses the values of x from the latest iteration that is available — this could be several
iterations behind (s = 1, ..., k), or even ahead of it (s < 0):

x"=-D ' L+UXx"*+D"'b (2)

In the average case, this scheme should produce numerical convergence similar to that of
Gauss-Seidel.
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In previous work [7] it was shown that the strict convergence criteria for Chaotic
methods are met by all CFD equations, which prompts the implementation and testing
of a Chaotic solver, as follows.

The solver is written in a hybrid MPI + OpenMP (Open Multi-Processing — a multi-
threading standard) environment, using PETSc (Portable, Extensible Toolkit for Scientific
Computation) [1] as a platform. The MPI processes and OpenMP threads are split in a
NUMA-friendly manner, with one MPI process per socket and one thread per core within
each socket. The test machine is Iridis 4, the University of Southampton’s latest super-
computer, which consists of 750 compute nodes - each with 2 Intel Xeon E5-2670 Sandy-
bridge processors (8 cores, 2.6 Ghz). Within each MPI process one thread is dedicated
to halo-data communication and the remaining seven perform the chaotic matrix-vector
multiplications.

In the following sections, the results of the Chaotic solver will be verified by comparing
the solutions produced by them against KSP methods, and the performance (in terms of
scalability and absolute wall-time) will be assessed.

4 VERIFICATION

The solution produced by the Chaotic solver was compared against the solution pro-
duced by GMRES (with a restart of 3, 30 and 100), P-GMRES and BCGS. Pre-conditioners
were not used and there was no attempt to compare performance, these tests were per-
formed purely to compare the absolute solution and verify the implementation. The
solvers were required to iterate until a desired absolute residual in the /2-norm.

Three analytical matrices from the matrix marketplace [4] were tested (pde225, pde900
and orsirr_1), along with a pressure equation matrix extracted from a 14.4k-cell lid-driven
cavity flow simulation (LDCF'). The results for the smallest case (pde225) are shown in
figure 3. The results were similar for all cases and a range of convergence tolerances from
107! to 1077 (not shown).

There are no concerns for any of the solvers, although there are some differences in
the solution vector. There is a tendency for the Chaotic solver to produce a much lower
[*-norm, presumably as the stiffer equations in the system require many iterations to
solve, the easier equations can progress much more quickly, whereas the KSP methods
have more inter-dependency between the equations.

Due to the squared-weighting of the [?>-norm this has little effect on the reliability of
the solution, and differences in the overall flow field are likely to be negligible.

5 PERFORMANCE TESTING

The aim of Chaotic solvers is to improve scalability, and it is expected that at lower
core-counts that KSP solvers will out-perform the Chaotic methods. In order to predict
how these solvers will perform on many-core machines, scalability tests are the main focus
of the following tests. It should be possible to predict the break-even point of Chaotic
methods, where their worse numerical performance overtakes the KSP solvers based on
improved scalability.
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Figure 3: Full verification results from the pde225 case, with a requested absolute [?>-norm of 1076.
[Top] A plot of the raw residual vector (r = Ax — b). [Bottom-Left] Statistical Distribution of the
residual vector, showing the mean, upper/lower quartiles, and minimum/maximum values. [Bottom-
Right] Spectral analysis of the residual vector, with peaks corresponding to frequencies of error in the
converged system. The dotted lines in the results mark the mean value of the residual required in order to
satisfy the 12-norm. This line divides the elements of the residual that positively or negatively contribute
to the [2-norm.

A number of benchmark cases are used in order to capture a range of problem sizes:

KVLCC2 Tanker (half-body, single-phase) on three-dimensional, multi-block struc-
tured grids (317k, 1.11m, 2.67m, 5.99m, 10.0m & 15.8m elements), using a two-
equation k-w SST turbulence [12]. See [6].

Lid-Driven Cavity Flow (LDCF) on 2D structured grids (14.4k & 1m elements).
No turbulence model. See [10].

NACAO0015C hydrofoil (15° angle-of-attack) on a two-dimensional multi-block
structured grid (28k elements), using a x-w SST turbulence model, and a Sauer-
modified cavitation model. See [8].

Dambreak, a homogeneous two-phase, three-dimensional problem with a simple
structured grid (16k cells) and a volume-fraction equation. No turbulence model.
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See [16].

e Cylinder at a low Reynold’s number. An unsteady simulation (10 non-linear it-
erations per timestep) on a structured grid (4.3k elements) with a poor initial flow
estimation. No turbulence model. See [13].

A large number of core-counts are tested, beginning from 32 cores, to which the scala-
bility graphs are normalized:

Time(32-cores)

Scalability = (3)

Time(n-cores)

The linear system convergence tolerance is set to 60% and 50 non-linear iterations are
performed. Chaotic solvers were compared against GMRES and P-GMRES, both with
a restart of 30. The respective solver was applied to every equation (i.e. momentum,
pressure, turbulence, volume-fraction and cavitation), and their average taken for each
case.

It was necessary to use pre-conditioning on the GMRES solvers in order to realize
their true potential. Unfortunately these solvers then base their convergence on the pre-
conditioned residual P~!(Ax — b) which is not proportional to the true residual. If the
pre-conditioner is not smooth, and the matrix is close to singular (as in the pressure
equation) a 10% relative convergence tolerance in the preconditioned residual may be
equivalent to a 50% or higher convergence tolerance in the true residual. To test fairly,
the pre-conditioner was limited to a simple diagonal scaling (Jacobi) and the equivalent
residual was computed in the Chaotic solver. This is not the best-case scenario for the
KSP solver, as pre-conditioning can drastically change their performance. However, there
is some overhead in the Chaotic solver in computing the diagonally-scaled residual, so it
seems the best compromise. Regardless, the effects of pre-conditioning should not have
a huge impact on the scalability results, especially given that Jacobi pre-conditioning is
highly scalable compared to more complex pre-conditioners.

Figure 4 shows the performance results for each solver. Firstly, the tabular results
show the absolute wall-time comparison on 32-cores and 256-cores. The Chaotic solvers
are expectedly slower on all reasonably-sized test cases and up to 6.88 times slower than
GMRES in the largest test case. The differences between GMRES and Chaotic solvers
in terms of absolute time mostly depend on the convergence tolerance (tolerances of 40%
and 20% were partially tested — not shown), however, scalability is mostly unchanged.
P-GMRES performs approximately 50% slower where strong scalability is not a concern.

The scaling graphs require more careful analysis. There are three factors at play: (1)
the cells-per-core ratio, which governs how much serial work and scalable ghost-cell ex-
change each process/thread performs; (2) the absolute number of processes, which governs
how much time is spent performing reductions; and (3) cache effects. The combination of
all three, and their relativity to each other, determines scalability.

The cells-per-core ratio is dominant in terms of scalability, since it changes most dra-
matically with the number of cores (doubling the number of cores halves the time due
to factor (1)); whereas doubling the number of cores has little change on factor (2), as
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the reduction time increases at a rate of log,(cores). Cache effects (3) occur when the
main parts of an algorithm fit into a high-speed memory buffer, located on the CPU.
The cache is responsible for the super-linear scalability demonstrated by each solver. Its
effect is more qualitative, as one could do extensive cache-optimization for each solver
and each CPU to obtain the best results. No such optimization was performed for these
solvers, and one can make the argument that the Chaotic solver more naively exploits the
cache, leading to performance benefits at the intra-node level, where memory contention
is a bottleneck. For the Chaotic solver, it is possible to see the point where the working
memory fits into cache (~20k-30k cells-per-core).

The scalability of GMRES and P-GMRES collapses when a certain cells-per-core ratio
is reached - typically around 10k cells-per-core. Chaotic solvers continue to scale beyond
this point. For example, with the KVLCC2-1.11m case on 512 cores, the scalability of
the Chaotic solver is a factor of 601 compared to GMRES at 104. In absolute terms, the
Chaotic solver is approximately twice as fast at ~2.2k cells-per-core.

This scalability does not continue indefinitely, as demonstrated by the very small test
cases. This is due to the expense of setting up the 8 OpenMP threads each time the
solver is called, as well as a few other serial bottlenecks in the initialization, finalization
and interface with PETSc’s data structures; there is also some ‘lag’ involved with the
residual computations which can cause over-convergence of very small equations. The
reduction required to compute the residual also blocks the SpMV MPI communications,
which is not ideal.

Some scalability is also lost due to the MPI communications themselves, which, al-
though asynchronous with the computations, ultimately proceed in lock-step with each
other. This means two MPI processes cannot benefit from faster communication between
themselves.

The scalability of P-GMRES is lacklustre for this application. It is suspected that the
very lax convergence tolerance prevents P-GMRES from showing its true benefit (since
the number of total iterations is very small and more time is spent in setting up the
solver), and very naive pre-conditioning is used. It is also known that the scalability can
be improved by increasing the [-factor of the solver, and this could be further investigated
[5].

It is important to note that the results show the average of all the equation systems,
although the pressure equation dominates the others in terms of total wall-time. Splitting
the analysis between each equation individually is important, but the relative comparison
between solvers is virtually unchanged in these cases.

6 CONCLUSION

The results show that the Chaotic solver provides a correct solution and that the
scalability is better than a typical Krylov solver. The comparison of absolute wall-time is
subjective - utilizing such high convergence tolerance of the linear equation system may
not be viable, depending on the non-linear iterative process, the particular test case, and
the efficiency of the non-linear iteration. Furthermore, more effective pre-conditioning
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Figure 4: Performance results for the three solvers (GMRES, PGMRES and Chaotic). Scalability graphs
show speed-up relative to 32 cores. The tabular results show absolute wall-time and how this benchmarks
against GMRES (lower factor implies faster than GMRES). Results are based on average solve times for
all equations (momentum, pressure and additional transport equations over 50 non-linear iterations).
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of the KSP methods may make them more favourable — assuming scalability can be
maintained.

For other applications, where the convergence of the linear system is important, Chaotic
solvers could be used in conjunction with more complex methods — either as a pre-
conditioner or a hybrid solver. It is very simple to detect when the Chaotic methods
begin to stagnate (corresponding to the point where high-frequency errors have been
smoothed); and the solver could dynamically switch at this point. For CFD, this could
also be viable, and further analysis will be performed along with improvements to the
Chaotic solver itself.

The performance of the Chaotic solver could be improved further by modifying the
stopping criteria evaluation, in order to prevent over-convergence of very small cases,
and also to remove the blocking reduction used to compute the residual. One concept is
to attach the local component of the residual to the SpMV communication, and have a
delayed residual computed for free as these messages are passed through all the processes.
Another option is to use non-blocking collectives from the MPI-3.0 standard to allow
other communications to continue (however, early attempts at this were slow). Perhaps
the best solution would be a hybrid, whereby the former option is used, but an early-stop
routine could be built which forces an immediate residual-check when the local portion
of the solution is well below the required convergence.

Ensuring the OpenMP threads stay ‘alive’ between the individual calls to the solver
should be simple, and will reduce serial bottlenecks further.

Improving MPI communication routines for higher asynchronicity is likely to be a
good area for improvement. The best way to achieve this would be through one-sided
communication and hardware-level RDMA (Remote Direct Memory Access). This would
be particularly hard to implement, especially without invoking high initialization costs -
and requires significant changes to PETSc and ReFRESCO.

The implementation of the Chaotic solver, using a hybrid MPI + OpenMP paralleliza-
tion scheme, is well-suited to acceleration using Graphics Processings Units (GPUs) or
co-processors, and is also an area for investigation.
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Abstract Since 2004, supercomputer growth has been
constrained by energy efficiency rather than raw hardware
speeds. To maintain exponential growth of overall com-
puting power, a massive growth in parallelization is under
way. To keep up with these changes, computational fluid
dynamics (CFD) must improve its strong scalability—its
ability to handle lower cells-per-core ratios and achieve
finer-grain parallelization. A maritime-focused, unstruc-
tured, finite-volume code (ReFRESCO) is used to investi-
gate the scalability problems for incompressible, viscous
CFD using two classical test-cases. Existing research sug-
gests that the linear equation-system solver is the main
bottleneck to incompressible codes, due to the stiff Poisson
pressure equation. Here, these results are expanded by
analysing the reasons for this poor scalability. In particular,
a number of alternative linear solvers and preconditioners
are tested to determine if the scalability problem can be
circumvented, including GMRES, Pipelined-GMRES,
Flexible-GMRES and BCGS. Conventional block-wise
preconditioners are tested, along with multi-grid precon-
ditioners and smoothers in various configurations. Mem-
ory-bandwidth constraints and global communication
patterns are found to be the main bottleneck, and no state-
of-the-art solution techniques which solve the strong-scal-
ability problem satisfactorily could be found. There is
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significant incentive for more research and development in
this area.

Keywords High-performance computing - Strong
scalability - Software profiling - Linear solvers

1 Introduction

A recent report by Slotnick et al. [28] attempted to create a
“vision” of CFD in 2030, identifying some of the areas
which must be improved to allow more widespread and
successful use of CFD. Among these were improved tur-
bulence and separation modelling; better automatic mesh
generation and adaptivity; more capable multi-disciplinary
simulations (for example, coupled CFD and structural
simulations); improved post-processing, particularly of
large simulations; greater accuracy through higher-order
methods; and more practical design optimization. All of
these goals require improvements to the underlying CFD
algorithms—making them more efficient and more scal-
able—particularly considering the major changes in
supercomputer architecture expected in the same era.
Indeed, more scalable numerical methods are one of the
areas highlighted by [28], stating that development has
been stagnant for too long. The particular numerical
methods that require improvement are not clear, and
depend upon the type of CFD code and application.

Here, the strong scalability of CFD is reviewed in detail,
using ReFRESCO. ReFRESCO is an incompressible-flow,
unstructured, finite-volume, SIMPLE-based, segregated
solver specialized for maritime applications; similar in
formulation to many open-source and commercial codes. A
general scalability study of the whole code has been per-
formed (Sect. 4), which shows that the linear equation-
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system solver is the bottleneck in incompressible flow
simulations. This study details the reason for their poor
scalability, and shows that there are new problems facing
scalable CFD since earlier literature [11], due to increasing
memory bandwidth issues. Two test cases are used: lid-
driven cavity flow (LDCF) and the KRISO Very Large
Crude Carrier (KVLCC2) [20], each with around 2.67-
million cells—chosen to show the full range of intra-nodal
and inter-nodal scalability bottlenecks on the University of
Southampton supercomputer (Iridis4).

Following this, a variety of other linear solvers and
preconditioners are tested to determine whether the scala-
bility problems can be circumvented (Sect. 5) and provide
a comprehensive overview of the current ‘best’ solvers for
strong scalability. These studies will aid CFD practioners
in choosing suitable solvers and guide developers to find
more scalable solutions. Widely-used solvers such as
GMRES, Flexible-GMRES, BCGS and SOR are tested,
along with state-of-the-art solvers such as Pipelined
GMRES [10] which is designed to improve scalability.
Similarly, multi-grid preconditioners such as Sandia’s ML
[9] could bring a significant improvement when compared
to block-wise preconditioners (such as Block Jacobi) or
simple smoothers (such as SOR).

2 The strong scalability problem

Over the last few decades, growth in supercomputing
power has been exponential, with floating-point-operation
(FLOP) rates doubling approximately every 14 months
[29]. Whilst this growth is relatively constant, the under-
lying architectures which achieve such growth are not.
Until 2004, the speed and electricity consumption of
transistors was governed by Dennard’s Scaling: as tran-
sistors shrank in size, their speed increased linearly and
their electricity consumption dropped quadratically [7].
Unfortunately, the transistors used in modern processors
are so small that electrons are able to ‘leak’ across the
dielectric gates, and voltages must be increased to maintain
stability. This limitation, known as the ‘power wall’, makes
it more efficient for manufacturer’s to provide multiple,
slower cores in place of fewer, faster cores. Figure 1 shows
the exponential growth rate of computing power and Fig. 2
shows how this computing power is provided—in terms of
FLOP-rate-per-core and number of cores. The critical point
in 2004 is clearly visible, where the shift towards a multi-
core (‘Chip-Level Multiprocessing’) architecture occurred.
This trend is relentless, and has lead to supercomputers
with almost 200 cores-per-node. By 2020, it is expected
that the cores-per-node ratio could be as high as 10-thou-
sand; with the fastest supercomputers containing a total of
10- to 100-billion cores. Meanwhile, memory capacity is
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Fig. 2 The FLOP rate, FLOP/core ratio and number of cores (average
of the Top500 [29]) over time, normalized to a snapshot in November
1993. Since the advent of chip-level-multiprocessing (CMP) in 2004,
FLOP/core ratio has grown by only a factor of approx. 4, whereas
number of cores has grown by a factor of approx. 64

growing at an ever-slower rate, limiting the absolute size of
simulations; and memory bandwidth (per core) is
decreasing, creating new issues for CFD algorithms
[16, 19, 27].

It is often regarded that the CFD algorithm benefits from
good ‘weak scalability’ (the ability to maintain computa-
tional efficiency with a fixed cells-per-core ratio), thus
realizing the benefits of supercomputing advances when
the growth in core-count was moderate [3]. Although dif-
ficult to quantify, it can be assumed that the capabilities of
CFD have grown more-or-less in proportion with super-
computing power because of this trait; especially given that
the maximum problem size (limited by total memory) has
more-or-less grown with the number of nodes.
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The ‘strong scalability’ of CFD—the ability to decrease
the cells-per-core ratio efficiently—is more important in a
massively-parallel era; and is generally poor [3, 6]. By
2020, supercomputers are expected to contain approxi-
mately 3000-times more cores, but the size of CFD simu-
lations can only increase by a factor of =11, thus the
efficient cells-per-core ratio of CFD must drop by a factor
of at least 250." Furthermore, in the maritime industry the
majority of state-of-the-art simulations are unsteady com-
putations. Since it is difficult to parallelize the time
domain, greater spatial domain-decomposition is required
to improve CFD capabilities, requiring further improve-
ments to strong scalability.

Whilst both forms of scalability have been investigated
for incompressible CFD, the results are often subjective to
the particular code and hardware, and difficult to general-
ize. In [3] the linear-equation system solver, particularly
for the Poisson pressure equation, is the main bottleneck to
scalability. Culpo [6] reinforces this by considering the
main elements of the linear-equation system solver and
how they could be improved. However, neither paper
investigates the reason for their poor scalability in detail,
and neither considers alternative solver algorithms. Grop-
pet al. [11] provides a good grounding in both these areas,
but is now 15 years old—and the conclusions drawn could
be somewhat outdated due to changes in hardware.

3 Experimental setup using ReFRESCO

In order to conduct scalability experiments, a sample CFD
code (ReFRESCO) is used on two classical test cases. In
order to get information on the run-time of ReFRESCO, the
code is profiled by injecting timers into the code in key
places. The test cases are run across a range of core-counts,
from 1 to 512, on the University of Southampton super-
computer: Iridis4. The various aspects of the experimental
setup are discussed below.

3.1 ReFRESCO

ReFRESCO? is a viscous-flow CFD code that solves
multiphase, unsteady, incompressible flows for unstruc-
tured meshes [30]. It is complemented by various turbu-
lence, cavitation and volume-fraction models. In many
ways, ReFRESCO represents a general-purpose CFD code,

' Based on Tianhe-2, the current (January 2016) #1 supercomputer
and conservative estimates of an exascale machine expected in 2020.
Maximum capabilities of CFD are based on trends of total compu-
tational power, doubling every 13.85 months. Realistically, maximum
CFD capabilities are limited by memory capacity which grows even
more slowly [19], thus amplifying the problem.

2 See http://www.refresco.org.

with state-of-the-art features such as moving, sliding and
deforming grids and automatic grid refinement—but it has
been verified, validated and optimized for numerous mar-
itime industry problems. ReFRESCO is currently being
developed at MARIN (Netherlands) and a number of uni-
versities around the world [2, 8, 18, 24, 26] including the
University of Southampton [12—-14].

In ReFRESCO, the governing equations are discretized
in strong-conservation form using a finite-volume approach
with cell-centred collocated variables. Simulations are
parallelized with MPI (Message Passing Interface) and
partitioned using METIS [17]. ReFRESCO is based on the
SIMPLE (Semi-Implicit Method for Pressure-Linked
Equations) solver with pressure-weighted interpolation
(PWI) [18].

The SIMPLE algorithm is shown in Fig. 3. The coarsest
loop in the SIMPLE algorithm is responsible for unsteady
time-stepping. Time integration is performed implicitly
with first- or second-order backward schemes. All non-
linearity is tackled in the ‘outer loop’, which is performed
several times per time-step (until satisfactory
convergence).

In each outer loop, a Picard-linearized version of each
transport equation is assembled into a system of linear
equations, based on the discretization of all the equation
terms (time-derivatives, convection, diffusion, source
terms) in the associated mesh. This process creates a sparse
matrix of implicit terms (A) and a vector of explicit terms
(b); which can be solved to find new values for the flow
field (x): Ax = b. Iterative solvers are used to solve for x to
a given convergence tolerance (based on the £>-norm of the
residual) in an ‘inner loop’, with typical tolerances between
0.1 and 0.001. ReFRESCO uses PETSc (Portable Extensi-
ble Toolkit for Scientific Computing) [1] for its large range
of linear solvers and preconditioners.

Since each MPI process has its own memory space
and its own portion of the mesh, the updated values for
x along partition boundaries must be shared via MPI
data exchange. The gradient of the flow-field variable
can then be computed using Gauss theorem, and the
updated gradients exchanged across domain boundaries
once again.

These four routines {assembly, solve, exchange and
gradients}, which can be seen in Fig. 3, are the heart of the
SIMPLE algorithm and are the most expensive part of the
solution process. They are also the linchpin of other
SIMPLE-derived algorithms and common alternatives such
as SIMPLEC, SIMPLER and PISO.

In order to observe how these key routines scale,
ReFRESCO has been profiled using Score-P [VI-HPS Acc.
2013]. Score-P is a compile-time wrapper which auto-
matically logs various run-time events, such as function
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Fig. 3 An overview of the SIMPLE algorithm. Time discretization is
handled by the time-step loop at the coarsest level. Within each time-
step a number of outer loops are performed in order to solve non-
linearity and couple the governing equations. Within each outer loop,

calls and durations. It has been carefully filtered such that
only critical functions are measured, and the effect on total
run-time is less than 2%. Score-P can be linked to PAPI
(Performance Application Programming Interface) [4]
which gathers additional information from physical hard-
ware-counters.

Two hardware counters are enabled for these tests. The
first measures floating point operations per second, which
helps to determine whether the processing units are sat-
urated. For an unstructured CFD code this is an unlikely
situation, as the indirect memory access bottlenecks the
processor. Structured-mesh codes are more likely to reach
these limits due to better memory layout and
vectorization.

Hardware counters for pure memory bandwidth are not
available, but level one (L1) cache misses give a good
indication of memory-fetching issues (since a cache miss
must result in a memory or next-level cache transaction).
However, there are two issues. Firstly, the compiler will
often prefetch memory into the cache, resulting in memory
bandwidth usage which is not detected by this hardware
counter. Secondly, an L1 cache-miss will be registered
even when the data resides in L2 or shared cache (which is
still very fast compared to off-chip memory). Despite these
imperfections, it is possible to see certain bottlenecks due
to memory bandwidth, particularly when combined with
other hardware counters or profiling.

Other hardware counters are available (such as L2 cache
misses), but they cannot be enabled at the same time due to
register sizes or competing circuitry.
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the solutions to the governing equations (momentum, pressure, etc.)
are computed in their uncoupled, linearized, discretized form. The
solution of each equation follows the same five steps as illustrated on
the right

3.2 Iridis4

ReFRESCO is run on the University of Southampton’s
latest supercomputer. Iridis4 has 750 nodes, consisting of
two Intel Xeon E5-2670 Sandybridge processors (8 cores,
2.6 Ghz), for a total of 12,200 cores. Each 16-core node is
diskless, but is connected to a parallel file system, and has
64GB of memory. The nodes run Red Hat Enterprise Linux
version 6.3. Nodes are grouped into sets of 30, which
communicate via 14 Gbit/s Infiniband. Each of these
groups is connected to a leaf switch, and inter-switch
communication is then via four 10 Gbit/s Infiniband con-
nections to each of the core switches. Management func-
tions are controlled via an ethernet network.

Iridis4 ranked #179 on the Top500 list of November
2013 with a peak performance of 227 TFLOPS [29]. Iridis4
cannot be classified as a next-generation, many-core
machine, with only 16 cores per node. Indeed, it is several
years behind the state-of-the-art. Nonetheless, it should be
able to give sensible insight into the limitations of the CFD
algorithm.

3.3 LDCF and KVLCC2

Two test cases are used in the experiments. The first is a
laminar-flow, canonical, unit-length, three-dimensional lid-
driven cavity flow (LDCF). A uniform structured mesh of
2.68-million cells (139%) is used, and only momentum and
pressure equations are solved. The simulation mimics an
infinite domain, with two cyclic boundary conditions. The



J Mar Sci Technol

remaining four boundaries are constrained with Dirichlet
boundary conditions, one of which specifies a tangential,
non-dimensional velocity of 1.

The second test case is the KRISO Very Large Crude
Carrier (KVLCC2) double-body wind-tunnel model [20].
The mesh is a three-dimensional multi-block structured
mesh consisting of 2.67-million cells. A k-w, two-equation
shear stress transport turbulence model is used [22]. The
domain and mesh are shown in Figs. 4 and 5 respectively.

The two test-cases are designed to have a similar
number of cells. The size of the mesh has been chosen to
show the full range of scalability issues. On 512 cores, the
cells-per-core ratio reaches approximiately 5200 which
helps demonstrate the parallel bottlenecks on a large
number of cores; yet the problem is substantial enough to
show memory bandwidth issues on a single node (with
approximately 167k cells-per-core).

In both cases, 400 outer-loops are performed with no
time-stepping, with an inner-loop (linear) relative

Inflow Non-Slip Wall

Symmetry

Pressure

Slip Wall

Fig. 4 The domain used for the KVLCC2 double-body wind-tunnel
simulation. Symmetry boundary conditions are applied at the
waterplane, but port- and starboard-sides of the centre-line are both
simulated

Fig. 5 The KVLCC2 mesh is a multi-block structured mesh
consisting of 2.67-million cells

convergence tolerance of 0.1 (0.01 and 0.001 later).
Relaxation is applied to all outer-loops to stabilize the non-
linear iterative process. QUICK (Quadratic Upstream
Interpolation for Convective Kinematics) and first-order
upwind schemes are used to discretize the convective terms
of the momentum and turbulence equations respectively.
A GMRES (Generalized Minimal Residual method) solver
is used with a Block Jacobi preconditioner, as in [11].

4 General scalability study

The scalability of the SIMPLE algorithm has been exam-
ined by measuring the run-time of the two test cases as
successively more cores are added to the simulation. A
scalability factor S can be defined as S = T} /T¢ where T¢
is the wall-time using C cores. Ideal scalability is when
S = C, although this is rarely achieved. This scalability
factor can be found for various subroutines in the SIMPLE
algorithm in order to identify potential bottlenecks. Here,
the scalability factor is normalized to serial operation
(C = 1), and is often called a parallel ‘speed-up’ factor for
this reason.

Figure 6a, b show the scalability of the code as the
number of cores increases. The embedded bar charts show
absolute core-hours (C x T¢, which would ideally remain
constant) in serial operation (C = 1), single-node operation
(C = 16) and highly-parallel operation (C = 512). Total
core-hours is shown with black bars; the composite parts
are coloured and keyed with respect to the enclosing
scalability plot. This shows the denormalized costs of
various routines; and also highlights where the scalability
bottlenecks occur—at the intra-nodal or inter-nodal level.
The results from the hardware counters are shown in Fig. 7,
for the LDCEF test case.

Total scalability is poor overall, suffering significantly
on just 16 cores due to intra-nodal bottlenecks and
worsening to the point at which almost no speed-up is
gained from adding additional nodes. On 512 cores the
parallel speed-up is just 128 (KVLCC2) and 100 (LDCF).
This scalability is similar to other codes, such as Open-
FOAM [6, 25], STAR-CCM+ [5] or Ansys Fluent [15]
although some published results are normalized to nodal
performance (i.e. C = 16, which hides intra-nodal ineffi-
ciency and gives overly-optimistic results) or are trun-
cated (hiding inter-nodal bottlenecks). Exact comparisons
between various codes on identical hardware were not
feasible, but only minor differences are expected since all
of these packages are based off the same algorithm and
share similar implementations. Major differences should
only be observed if coupled solvers or inferior partition-
ing schemes are used.
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The routines outlined earlier assembly, solve, exchange
and gradients, for each equation in each outer loop, account
for the large majority of overall run-time. The remaining
time ( other) is spent (mostly) in one-off functions such as
file IO or MPI initialization, thus is subjective to the length
of the simulation and amount of IO required. These other
routines may also increase significantly if additional fea-
tures such as moving, deforming and adapative grids are
used—again, this is highly subjective.

The assembly and gradients routines scale favourably,
reaching almost 90% parallel efficiency. The high, and
increasing, cache-miss rate of the gradients routines is
curious, as it does not seem to affect performance (FLOP
rate is maintained). It is likely that the data required resides
in L2 or shared-cache, rather than off-chip memory, so the
impact of these L1 cache misses is much lower.

The data exchange routines are not visible in the scal-
ability plots, because normalizing against (7} ~ 0) gives
negative scalability (no communications are required in
serial operation). In reality, these routines scale reason-
ably—as the number of cores increases the size of the
messages become smaller, and these messages can be sent
concurrently. With inadequate load-balancing these data
exchanges can become costly, due to the implicit syn-
chronization of MPI processes. However, the results show
that these communications account for a small proportion
of overall run-time.

As consistent with literature, the solve routines have
poor scaling and are a major contributor to total run-time,
thus are the main concern for scalability. The hardware
performance counters show a high cache-miss rate between
16 and 128 cores, corresponding to saturated memory
bandwidth at the intra-nodal level.

Memory-bandwidth-per-node has been growing at
approximately half the rate of processing-power-per-node
leading to today’s problems with memory bandwidth [27].
In [11], conducted in 2000 on single-core processors,
memory-bandwidth problems were apparent but not as
concerning—changes in architecture over the last decade
have made memory bandwidth issues more critical.

Beyond 128 cores, cache misses in the solve routines
become less frequent but FLOP rate continues to decrease and
scalability worsens. This is due to the oft-observed global
communication bottleneck. An illustration of a single
GMRES iteration is shown in Fig. 8. This pattern is compu-
tationally similar to most Krylov Subspace (KSP) solvers,
including conjugate gradient methods—although some dif-
ferences will be mentioned in Sect. 5. In particular, two dis-
tinct communication routines are required by KSP solvers.

Firstly, sparse-matrix-vector-multiplication (SpMYV)
requires concurrent neighbour-to-neighbour communica-
tion as in the data exchange routines—scaling reasonably
well.

SpMV

local dot reduct/bcast axpy reduct/bcast scale

Fig. 8 An illustrative trace of a GMRES iteration on 8 cores (not to
scale). Note the local neighbour-to-neighbour communications per-
formed asynchronously in the SpMV routine, and the two reduction-
broadcast patterns. There are many variations of the reduction-
broadcast algorithm which cannot be illustrated clearly. The most
common is the ‘butterfly’ algorithm which completes in log, (C)-time,
combining the reduction and broadcast into a single hierarchy of
latency-bound messages. As the number of cores increases, this
reduction-broadcast takes longer, whilst other routines take less time

Secondly, two global reduction-broadcast routines are
required for orthogonalization and normalization of the
Krylov vectors. These require a hierarchical global com-
munication pattern which scales poorly, usually with
Tcx log,(C) (where the proportionality factor depends

primarily on network latency). These communication pat-
terns are blocking, and cannot easily be overlapped or
hidden by other useful work. On a large number of cores
spread over an inter-nodal network with relatively high
latency, these global communications become a bottleneck
to scalability of the linear solvers. Whilst most routines
reduce in wall-time as more cores are added (with less-
than-ideal efficiency), wall-time for global communica-
tions increases, as each time the number of cores doubles,
an extra set of messages must be sent (incurring the latency
cost of the network).

These global communications create a scalability bot-
tleneck when a high number of nodes are used, and has
been well-documented in the literature [6]. The memory-
bandwidth problems previously noted are often over-
looked, but are an important bottleneck to overcome for
next-generation supercomputing.

Figure 6¢, d shows the breakdown of time spent in the
various equations (pressure, momentum, turbulence). In
both cases, the single pressure equation took considerable
time to compute—similar to all three momentum equations
combined. In incompressible-flow simulations the pressure
equation is much harder to solve than other transport
equations, due to its elliptic Poisson form.

This can be illustrated by considering the spectral radius
(maximum eigenvalue) of the Jacobi iteration matrix:
,o(D’1 (L 4+ U)), where D, L and U are the diagonal, lower
and upper triangles of A respectively. The rate of conver-
gence of the Jacobi method is proportional to the spectral
radius, and must be less than unity for convergence. Using

@ Springer



J Mar Sci Technol

-V

‘ 160
Core-hrs 4| 140 ¥ Assemble
512 ¢ — Solve |
a~—a Exchange
> Gradients
= Other
a Total
©
©
|9}
()
256
128
64
O A A A
0 64 128 256 Cores 512
C ‘ ‘ 160’
Core-hrs 140 & Momentum x3
e—e Pressure
512¢ o 120 »— Turbulence x2 7
> § 100 — Total
= § N 80
Qo N\ 460
< /§ 20
n N
. 0
256 7
cores = 512
?‘\/
128} o
64t 7
0 Il Il Il
0 64 128 256 Cores 512

Fig. 9 Scalability of the code with an inner-loop convergence
tolerance of a, ¢ 0.01 and b, d 0.001 for the KVLCC?2 test case as in
Fig. 6, showing scalability of a, b the various routines and ¢, d) the
various equations, using GMRES with a Block Jacobi preconditioner.

a smaller version of the KVLCC2 mesh (317k cells), the
spectral radius of the KVLCC2 pressure equation was
>0.9999, compared to 0.8450 for the momentum equation
and 0.5888 for the turbulence equation.” Thus it would take
at least 1700-times more iterations of the pressure equation
to reach the same convergence as in the momentum
equation, if using a naive Jacobi solver. The pressure
equation also gets stiffer as the mesh gets larger, ampli-
fying the problem. KSP methods, particularly with good
preconditioning, close this gap considerably, but there is
still a large difference between the pressure equation and
other transport Eq. (14).

3 The spectral radii were found by extracting the matrices from the
fifth outer loop in a separate batch of simulations. The maximum
eigenvalue, and thus spectral radius, of the corresponding Jacobi
iteration matrix could be found using ARPACK routines [21] based
on Arnoldi iterative methods. The size of the matrix that could be
tested was limited by memory capacity.
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The results show poor scaling of the solve routines, which particularly
influences the cost of the pressure equation. Similar results were
obtained for the LDCF test case

The above results were performed using an inner-loop
(linear) relative convergence tolerance of 0.1 for all
equations. The results were repeated using a tolerance of
0.01 and 0.001 (see Fig. 9). Note the significant increase in
wall-time, entirely due to the solve routines for the pressure
equation.

These results were also re-run using alternative con-
vective discretization schemes [12], which had no signifi-
cant effect on scalability. Higher order methods, such as
QUICK, apply their high-order terms explicitly (into the b
vector); with only the low-order terms affecting the matrix
(A). It is suggested that higher-order discretization will be
a prominent development in the next decade [28], so this is
a promising result. However, there are difficulties when
going to even higher-order methods, and this remains an
area of active linear-solver development [23].

A fully unstructured mesh was also tested using the
KVLCC?2 test case [12]. The unstructured mesh was much
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larger (12.5 m) and did not directly match a structured
mesh, so the scalabiliy of two structured meshes was
interpolated (10.0 and 15.8 m). The interpolated scalability
of the structured meshes was virtually identical to the
unstructured mesh. Note that ReFRESCO treats all meshes
as unstructured meshes, in terms of data structure—and
therefore does not take advantage of structured meshes and
structured memory layout.

This preliminary study concludes that in their basic
form, the linear equation-system solvers are the primary
bottleneck to strong scalability of CFD, in agreement with
recent literature. In particular, detailed profiling of
ReFRESCO has revealed that memory bandwidth con-
tention and expensive hierarchical communication patterns
are the main bottleneck. However, the scalability may be
significantly altered if different solvers and preconditioners
are used.

5 Effect of linear solvers and preconditioners
on scalability

Thus far, the results have used a basic GMRES solver with
a Block Jacobi preconditioner. More modern solvers or
preconditioners could provide very different scalability
characteristics. For example, a powerful preconditioner
could reduce the number of KSP iterations (and global
communications) required; but may be unscalable in itself
due to communication or high setup costs. CFD is unique
in that a solution to the linear system is only approximated,
since the solution to the linear system is a small part of a
non-linear system. Compared to applications which require
machine accuracy of linear systems, CFD is very sensitive
to start-up (initialization of linear solvers, memory allo-
cation, etc.) costs which may rule out the most advanced
solvers or preconditioners. Indeed, it may be that simpler
preconditioners than Block Jacobi provide better scaling. In
this section, the scalability of the linear solvers will be
tested. Following this, a number of preconditioning tech-
niques will be investigated—including block precondi-
tioning techniques, multi-grid methods and simple
smoothers.

5.1 Solvers

A recent improvement to GMRES has been developed, so-
called Pipelined GMRES (PGMRES) [10], which removes
one of the global communications from the standard
GMRES iteration—replacing it with a correction routine,
and allowing the remaining reduction to be overlapped
with other useful work. The scalability of GMRES and
PGMRES are compared in Fig. 10. Flexible GMRES
(FGMRES) has been tested, as it allows a wider range of
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Fig. 10 Scalability of the solve routines in the pressure equation,
using the KVLCC2 test case with inner-loop convergence tolerance
set to 0.1. The results compare three Krylov Subspace solvers and a
Successive Over-Relaxation (SOR) algorithm operating as a Block
Gauss-Seidel method. Note the exponential scale of the inset core-
hours chart

preconditioning techniques to be used later. A Bi-Conju-
gate Gradient Squared (BCGS) method has also been tes-
ted. All of the KSP methods use Block Jacobi as a
preconditioner. A successive over-relaxation (SOR)
method is also shown, demonstrating the differences
between KSP and non-KSP methods.

GMRES performs as previously noted, with poor per-
formance at the intra-nodal level due to memory-band-
width contention and poor performance on a large number
of cores due to global communication patterns. FGMRES
exhibits slightly worse inter-nodal scalability than
GMRES. PGMRES scales worse in the memory-bandwidth
zone than either GMRES or FGMRES, but the gradient of
the scalability factor, dS/dC, between 256 and 512 cores is
approximately double that of GMRES—consistent with the
algorithmic improvement (half the number of global
communications). Overall, the wall-time gains from
PGMRES on 512 cores are minimal.

BCGS gives strong numerical performance in serial
operation and similar memory-limited scaling at the intra-
nodal level. BCGS requires four global communications
per iteration, thus inter-nodal scaling suffers.

As expected, SOR performs much worse than the KSP
methods, but has far superior scalability. SOR is limited by
memory bandwidth briefly, but quickly recovers this as the
simulation fits into cache. The SOR algorithm still uses one
global communication pattern to compute a residual at the
end of each iteration; thus its final gradient is similar to that
of PGMRES. Residuals could be calculated less frequently
to improve scalability of SOR considerably.

ReFRESCO also has access to a large range of pre-
conditioners through its use of PETSc, many of which have
been tested as follows.
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5.2 Block preconditioners

The Block Jacobi algorithm used thus far implements a
block-wise Incomplete LU (ILU) factorization with zero-
level fill, and sets a high benchmark for other precondi-
tioners. ILU(0) is performed on each MPI process’s local
portion of the matrix, leading to an interesting problem:
convergence deteriorates as the number of cores increases,
as the local portion becomes less significant to the global
solution.* An Additive Schwarz Method (ASM) was tested,
with the same block-wise ILU(0) solver. ASM is similar to
Block Jacobi, but allows communication between neigh-
bouring blocks to augment the process. The results are
shown in Fig. 11. The differences between Block Jacobi
and ASM were small, with ASM fairing worse overall due
to additional communications. ILU(0), ILU(1) and ILU(2)
were also tested as preconditioners in their own right, with
poor results in all regards (not shown).

5.3 Multi-grid preconditioners

For elliptic equations (such as the pressure equation) multi-
grid methods such as ML [9] should be very powerful.
Multi-grid methods cover a broad category, with multiple
formulations and many opportunities for fine-tuning. They
are all based on the principle that multiple scales of the
problem can be solved efficiently by solving coarse-grid
approximations to the actual (fine) grid. The coarsest grid
will have a much lower spectral radius than the finest,
allowing low-frequency errors to be reduced quickly.
Meanwhile, the fine grid solves high-frequency errors, and
the results are combined. Since each grid is much easier to
solve, ‘smoothers’ are used instead of complete solvers at
each level. A typical smoother may just be one iteration of
SOR or an ILU factorization, for example, although the
coarsest grid is often solved directly. There are many
variations of multigrid methods: different methods for
coarse-grid construction; different methods for coarse-grid
interpolation; various methods of communicating (or not)
on coarse grids; and so on. All of these variations will have
a large effect on scalability.

ML is a state-of-the-art smoothed-aggregation algebraic
multi-grid method from Sandia’s National Labaratories,
and is one of the most commonly-used multigrid packages
[9]. ML automatically creates coarse grids until a minimum
size is reached using a smoothed aggregation process. For
the KVLCC2 test case, ML automatically decided to create

4 Indeed, this made it difficult to distinguish between convergence-
loss-problems and global-communication-problems in the previous
section. Profiling of an unpreconditioned GMRES reveals that globals
communications are the leading problem. However, the number of
iterations required with Block Jacobi increased when a tolerance of
0.001 was requested.
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Fig. 11 Scalability of the solve routines in the pressure equation,
using the KVLCC2 test case with inner-loop convergence tolerance
set to a 0.1, b 0.01 and ¢ 0.001. The results compare different
preconditioners including Block Jacobi, Additive Schwarz (ASM),
SOR smoothing (SORx10) and a multi-grid method (ML). FGMRES
is used as the solver to allow more flexible preconditioning. Note the
exponential scale of the inset core-hours chart

six grids when running on one core, and four grids on 512
cores. FGMRES was necessary to accommodate the multi-
grid preconditioner, because the preconditioning matrix
could change between iterations.

The results shown in Fig. 11 show that ML is highly
capable at the intra-nodal level. It exhibits strong serial
performance and moderate scaling to 16 cores—better than
Block Jacobi. Unfortunately it rapidly breaks down beyond
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64 cores where global communications dominate. It was
suspected that this was due to the direct solver used on the
coarsest grid, but replacing it with a smoother (5 iterations
of SOR) resulted in worse scalability. Another recom-
mendation is to restrict the number of levels created by
ML, thus reducing expensive start-up costs. Restricting ML
to three levels worsened the scalability; and two levels (not
shown) gave similar results. It is expected that less
sophisticated multigrid methods (such as non-smoothed
aggregation) may provide better results for CFD, since
start-up is cheaper. It is also possible to re-use the coarse-
grid mappings between non-linear iterations, which would
improve the results shown here. Furthermore, the multigrid
method could be used as a standalone solver rather than a
preconditioner, omitting FGMRES entirely. Clearly a
much deeper study of multi-grid methods is required as
they certainly cannot be used as a black-box for scalable
CFD.

5.4 Smoothing as a preconditioner

Finally, it is worth considering a much simpler precondi-
tioner than even Block Jacobi. Instead of preconditioning
in the classic sense, a smoother can be used before the main
solver (FGMRES). Ten iterations of SOR as a smoother
was optimal (compared to 1, 100 or 1000). Although it
performed worse than Block Jacobi in serial operation,
where Block Jacobi has good convergence, it was able to
utilize the super-linear scalability as noted in Sect. 4 due to
caching of memory, thus providing excellent scalability.
Since a fixed number of smoother iterations were per-
formed, residual computation in the SOR algorithm was
unnecessary, improving scalability further. This combina-
tion has minimal setup costs, since SOR requires no
additional memory or pre-computation, so could be a
viable option for scalable CFD. However, the solver is still
unavoidably limited by memory bandwidth contention, and
global reductions from the overruling KSP solver. Fur-
thermore, the numerical performance is not good, so it is
only competitive on a large number of cores.

This section has looked at various linear solver and
preconditioners. The most promising result was from a
SOR smoother instead of a classical preconditioner.
Although it was the slowest configuration for serial com-
putation, superior scaling meant that it was often the best
performer at C = 512. A multi-grid preconditioner was
tested, which performed well on a low number of cores, but
had poor scaling. A more detailed study of multi-grid
preconditioning may yield better results. A more scalable
version of GMRES was also tested (Pipelined GMRES)
with mixed results—global communication problems were
halved; but at the cost of more memory-bandwidth
problems.
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Fig. 12 Scalability of the code for the KVLCC?2 test case, and the
profiled routines within, as the number of cores increases. These
results used FGMRES with 10 iterations of SOR as a smoother, with
an inner-loop relative convergence tolerance of 0.1. Similar results
were found for the LDCF test case

Overall, the best setup required using 10 iterations of
SOR as a smoother/preconditioner. The initial study is re-
illustrated using this configuration in Fig. 12. Inter-nodal
scaling is significantly improved (compared to Fig. 6a),
which is encouraging, but parallel efficiency is still poor
and global communications are still limiting. Overall
wall-time on 512 cores has been improved by approxi-
mately 30%, but with stricter convergence tolerances
these gains are lost due to the poor numerical properties
of SOR.

6 Conclusions

The main causes of inefficiency and poor scalability of the
SIMPLE method have been analyzed by profiling the
performance of a state-of-the-art CFD code from 1 to 512
cores. The results show that the main bottleneck is the
linear equation-system solvers, particularly for the Poisson
pressure equation. The main problem with the linear
equation-system solvers is the large amount of expensive,
unscalable global communications that are performed.
Profiling with hardware counters has also revealed further
problems at the intra-nodal level due to memory-bandwidth
contention.

Experiments were performed in order to measure per-
formance differences between various state-of-the-art
linear equation-system solvers and preconditioners.
Recent developments such as a ‘pipelined’ version of
GMRES showed improved inter-nodal scalability but gave
worse absolute speed and intra-nodal scalability—overall
giving only a minor performance increase. Multigrid
methods offer some hope, but their performance is
nuanced and difficult to predict. The results showed that
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multigrid preconditioners were able to offer better abso-
lute speed, but did not scale as well as simpler precon-
ditioners such as Block Jacobi. Depending on the
convergence tolerance of the linear equation system,
simple smoothers often gave the best performance.
Replacing the classical Block Jacobi preconditioner with
ten iterations of Successive Overrelaxtion improved
overall wall-time on 512 cores by 30%.

By 2020, supercomputers are expected to be 3000-times
more parallel [19], with total power (and practical simu-
lation size) growing by a factor of just ~11. Based on these
hardware predictions, the cells-per-core ratio must drop by
a factor of at least 250 in order to maintain a practical
simulation time. Today, a practical simulation of 50-mil-
lion elements, using 512 cores of Iridis4, would achieve a
cells-per-core ratio of approximately 100-thousand.
Dividing this by 250 gives a predicted cells-per-core ratio
of just 391. The results have shown that scalability at 5200
cells-per-core is already poor, with a maximum parallel
efficiency of 25-50%. Beyond 512 cores, negative scala-
bility is likely, with simulation time increasing as more
cores are added. With the current state of the CFD algo-
rithm, extrapolating to less than 500 cells-per-core is
almost inconceivable.

There are currently developments to improve on the
presented SOR results using ‘chaotic’ iterative methods,
which provide even better scalability by removing the
implicit synchronization in the sparse-matrix-vector
communications; improving cache-use at the intra-nodal
level; and slightly improving convergence rates. These
chaotic methods could also be used to accelerate multi-
grid methods [13, 14]. Regardless of the specific methods,
more research is needed to carry incompressible CFD
codes into the next era of supercomputing, where many-
core machines (including GPU or co-processor architec-
tures) will be commonplace. Minor improvements can be
expected from alternative software models (such as hybrid
parallelization), but significant changes are required at the
algorithmic level to keep up with rapidly-evolving
hardware.
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Abstract

Supercomputer power has been doubling approximately every 14 months for several decades, increasing
the capabilties of scientific modelling at a similar rate. To utilize these machines effectively for CFD,
improvements to strong scalability are required. The largest bottleneck to strong scalability is the parallel
solution of linear Poisson equations. State of the art linear solvers such as Krylov Subspace or multigrid
methods provide excellent numerical performance but do not scale efficiently, due to frequent synchronization
between processes. Complete desynchronization is possible for simpler, Jacobi-like solvers using the theory
of ‘chaotic relaxations’. These non-deterministic, chaotic solvers scale superbly, as demonstrated herein, but
lack the numerical performance to contribute seriously to exascale CFD — despite relatively lax convergence
requirements. However, these chaotic princples can be translated to multigrid solvers. In this paper,
a ‘chaotic-cycle’ algebraic multigrid method is described and implemented as an open-source library, and
tested within the context of an industrial CED code. The chaotic-cycle shows good scalability and numerical
performance compared to classical V-, W- and F-cycle multigrid cycles. On 2048 cores the chaotic-cycle
multigrid solver performs up to 7.7x faster than Flexible-GMRES and 13.3x faster than classical V-cycle
multigrid; with room for improvement relating to coarse-grid communications and desynchronized residual
computations.

Keywords: Exascale, Strong Scalability, Chaotic Methods, Multigrid, Chaotic Cycle, Chaos, CFD,
ReFRESCO

1. Introduction

Up until approximately 2004, the speed and energy efficiency of supercomputers increased as transistors
became smaller. However, below a critical transistor size, electrons begin ‘leaking’ across the dielectric
gates, and voltages have to be increased to maintain stability. Manufacturers have resorted to packaging
multiple cores onto a single chip to keep up with exponential growth expectations, and core clock-speeds
have stagnated or decreased. By 2020, the first exascale computer, capable of 1 ExaFLOP (10'® floating-
point operations per second), is expected. In order to achieve reasonable energy efficiency at such scale, the
number of cores-per-node must continue increasing exponentially [1, 2, 3].

There are many proposed architectures for a many-core exascale machine, including accelerated ma-
chines (utilizing GPUs or Xeon Phi co-processors) or many-core CPU-based designs. The most powerful
supercomputer according to the Top500 list [4] is Sunway TaihuLight, using 256-core CPUs to achieve a
peak performance of 93 PFLOPS. In second place is Tianhe-2, which achieves 34 PFLOPS using Xeon
Phi accelerators (192 cores-per-node). The current third ranked supercomputer uses NVidia k20 GPUs to
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achieve 17.6 PFLOPS (2496 CUDA cores-per-node). An exascale machine would be 11-times more powerful
than Sunway TaihuLight, but is estimated to be up to two orders-of-magnitude more parallel, with most of
this parallelization coming at the intra-nodal (many-core) level.

In order for computational fluid dynamics (CFD) to keep up with this paradigm-shift, it is important to
consider strong scalability — the ability to maintain parallel efficiency as the cells-per-core ratio decreases.
Over the last decades, a modest increase in parallelization has not required significant changes to the
fundamental algorithms driving CFD.

This paper concerns itself with semi-implicit methods for solving the incompressible Navier-Stokes equa-
tions on unstructured grids. Such CFD solvers are often based on the SIMPLE (Semi-Implicit Method for
Pressure Linked Equations) algorithm or derivatives such as SIMPLEC, SIMPLER or PISO. These methods
linearize the governing equations for momentum, pressure, and other modelled quantities and iterate to find
a solution to the non-linear problem, whilst coupling the equations at each iteration. In each SIMPLE itera-
tion, a linear equation-system for each governing equation is assembled and must be solved to an acceptable
tolerance, using a linear iterative solver.

It has been shown that repeatedly finding a solution to the linearized pressure equation is a severe
bottleneck to the strong scalability of CFD [5]. The pressure equation is a stiff, elliptic, Poisson equation
which contains many low-frequency error components [6]. Krylov Subspace (KSP) methods (such as residual
minimization or conjugate gradient methods) are often employed to solve the pressure equation because
they are numerically powerful and robustly converge low-freqency errors. Unfortunately, these methods
require global communication patterns which scale very poorly. Efforts to hide or reduce the number of
global communications (such as the ‘pipelined’ version of GMRES, P-GMRES [7], or improved bi-conjugate
gradient methods such as IBCGS [8]) provide only minor improvements for CFD. The other equations, such
as for momentum, are not elliptic and do not usually contain low-freqency errors. The high-frequency errors
can be smoothed quickly using simple smoothers such as Jacobi or Gauss-Seidel methods which do not
require global communications — only local neighbour-to-neighbour communications.

Although subjective to the details of the CFD solver and test case, the error in the linear equation-
systems usually only needs to be reduced by one or two orders of magnitude — a lax relative convergence
tolerance of 0.1 or 0.01. This is because the linear system is only an approximation of a larger non-linear
system, and the repeated solution of the governing equations ensures overall convergence. It may be possible
to use less powerful solvers on the pressure equation in order to achieve higher scalability. At any rate, it is
unusual to require machine-accuracy of the linear solver, as is the case in other numerical fields — and this
could be exploited.

Multigrid methods, such as ML [9], are gaining popularity due to their flexibility. By tuning the number
of multigrid levels, the cycle type and number of pre- and post-smoothing steps it is possible to customize
a solver which has a good compromise of numerical power (and therefore, absolute speed) and scalability.
The main bottleneck to scalability of multigrid methods is the amount of implicit global synchronization,
mostly triggered by the Jacobi or Gauss-Seidel smoothing steps.

This synchronization occurs because of neighbour-to-neighbour communications, required to communi-
cate ghost cells (or halo data) across processor boundaries. Although there is no explicit global communi-
cation, and the communication pattern itself is scalable, it is impossible for two processors to become more
than one iteration out-of-sync. Consequently, if there is any imbalance between processors, caused by poor
load balancing, variable clock frequencies, background tasks, or, most commonly, variability in communica-
tion times — then the entire solver is bottlenecked. This is of particular concern as the cells-per-core ratio
decreases, and the ratio of communications to computations increases. Likewise, on the coarsest grids of a
multigrid solver, this implicit synchronization limits scalability.

In order to remove this implicit synchronization from Jacobi-like solvers or smoothers, one can use the
concept of ‘Chaotic Relaxations’ [10] — a method in which individual rows of the equation-system can be
iterated in any chaotic order with guaranteed convergence. This theory has been used to create highly-
asynchronous Jacobi-like solvers, such as in Anzt et al. [11]; but this theory can be leveraged further. Here,
a completely non-deterministic, chaotic solver is developed in which independent threads are used to overlap
computational and communicational work — completely desynchronizing parallel processes and removing a
significant scalabililty bottleneck.



In section 2 the theory of chaotic relaxation is introduced and the implementation of this chaotic solver
are presented. The solver is tested within the context of a SIMPLE-based CFD solver (ReFRESCO). The
chaotic solver is not expected to outperform state of the art solvers, but the benefits and drawbacks compared
to the Jacobi method will be evaluated. In section 3 these chaotic methods are applied to a multigrid solver.
The objective is to replace Jacobi smoothers with a chaotic smoother, but in order to remove implicit
synchronization between levels a novel ‘chaotic-cycle’ is required to replace normal V-, W- or F-cycling.

The chaotic methods discussed in this paper have been written as a standalone library, Chaos'. The
Chaos library is available under an open-source MIT license, in the hope that the results herein can be
reproduced, developed and applied to other scientific codes and disciplines. The library is written in C++
and can be bound to Fortran and C easily. Bindings are also created for Python and Ruby automatically,
using SWIG[12]. Chaos is a hybrid-parallel library, using MPI and OpenMP, and has been tested under
multiple compilers and multiple operating systems. The interface is similar to other linear-solver toolkits,
such as PETSc [13] and Trilinos [14].

2. Chaotic Relaxation

The task of the linear solver is to solve Ax = b, where x is the unknown solution vector, A is an N-by-N
sparse coefficient matrix, b is the constant right-hand-side (RHS) vector, and N is the number of elements.
Beginning with an initial guess for x, the system can be solved iteratively:

x*=-DHL+UXx*"1+D b (1)

where D is the diagonal of A, and L/U are the lower- and upper-triangles respectively. The notation &
represents the iteration number. This is the Jacobi method, and the matrix D=}(L + U) is the Jacobi
iteration matrix, M. Each equation (from 1 to N) can be solved (a.k.a. relaxed) independently as follows:

N
xf(Za”x;‘_lerl)/a”, Z:L,N (2)
j=1
J#i
where a, z and b are the individual components of A, x and b respectively. At the end of each iteration
the new values of x must be globally communicated before the next iteration can begin. Numerically,
improvements to this scheme can be made by using values from the current iteration (k) as they are available.
This is the Gauss-Seidel method, and is rarely used due its strictly sequential operation (since the equations
must be performed in order) [15]. It is possible to prove the convergence of a parallel block Gauss-Seidel
methods, where Gauss-Seidel is performed on local processes and remote updates are iterated in a Jacobi-
like fashion — thus an arbitrary selection of variables from iterations k and k& — 1 are used. All of these
methods are stationary methods, so-called because their formulation does not change between iterations.
Additionally, they all have an implicit synchronization point, because no two processes can become more
than a single iteration out of sync.

In 1969, Chazan and Miranker [10] proposed the concept of Chaotic Relazation which proves convergence
when relaxations are performed out of sync. Each relaxation uses the values of x from the latest iteration
that is available — this could be several iterations behind the current relaxation iteration (s = 1,...,n), or
even ahead of it (s < 0):

N
xf(Zaijx;?_Seri)/aii, $ < Smazs, t=1,...,N. (3)
j=1

J#i

The order in which the N equations are relaxed is completely arbitrary. With this scheme, processes never
need to wait for each other at the end of an iteration. Although communication must still occur, it can be
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entirely desynchronized, thereby making efficient use of memory bandwidth and computational resources.
Processes may even iterate multiple times on the same data if communications are completely saturated,
making the best use of the available hardware. Whilst this method is based on the stationary Jacobi method,
s can vary between iterations implying that chaotic methods are actually non-stationary.

Chazan and Miranker proved that this iterative scheme will converge for any real Jacobi iteration matrix
if p(J]M|) < 1 so long as Sma. is bounded. p(-) denotes the spectral radius (the absolute value of the
maximum eigenvalue) and | - | represents a matrix where all the components have been replaced with their
absolute values. The implications of s,,4, being bounded is simply that if two relaxations take different
amounts of time (either due to imbalanced hardware or relaxation complexity), they cannot be left completely
independent indefinitely, such that s could potentially become infinite. Baudet [16] went on to prove that
p(IM|) < 1 is a necessary condition for convergence for any spe, < k. Bahi [17] further showed that
p(IM]) =1 is also valid, if M is singular and $;,4, is bounded.

For the pressure Poisson equation it can be shown that p(|]M]) < 1 [6], but it is often sufficient to show
that the matrix |A| is diagonally dominant.

At their conception, chaotic methods were considerably ahead of their time. Although created specifically
for parallel computing, the concurrency of state-of-the-art supercomputers in 1969 was too small to utilize
the methods efficiently. With new architectures, the true potential of chaotic methods may be realized.

The extent to which chaotic relaxation is exploited varies significantly in the literature, and most com-
monly the exact implementation is not discussed. In Anzt et al. [11] the theory is used to create a ‘block-
asynchronous’ Jacobi solver for GPUs, where a fixed number of local iterations are performed between
communications. These solvers are often referred to as asynchronous methods, such that async(5) refers
to a Jacobi method with communications every 5" iteration. This reduces implicit synchronization and
shows good results compared to stationary methods, demonstrating that relaxations on ‘old’ data are not
wasted. However, this method could also needlessly throttle communications, thus reducing convergence
rates if communication hardware is not saturated. Anzt et al. focuses on GPU architectures, where this may
not be such a problem.

In this paper, chaotic relaxation theory is leveraged further. By separating communications and compu-
tations into shared-memory threads, the fixed asynchronicity can be removed and the respective hardware
can be saturated, leading to increased efficiency and numerical performance. In this truly chaotic method,
computation threads never need to wait for communications to be complete and communication hardware is
never wasted waiting for computations. Furthermore, a multi-threaded model can exploit access to shared
memory, inserting updated values (from communications) directly into the active relaxations, which should
give numerical advantages. The targeted architecture for this ‘chaotic solver’ is a hybrid-parallel (MPI +
OpenMP) CPU environment; but it would be possible to extend these chaotic methods to heterogenous
environments with relative ease. The main disadvantage of this chaotic solver is that it is non-deterministic,
which prevents perfect reproducibility of the solution process — this should not affect the flow solution. The
following sections describe the implementation and testing of a chaotic solver.

2.1. Implementation

Consider the matrix A, partitioned contiguously across multiple MPI domains, such that each process
owns a block of n rows of length N. It also owns the corresponding portion of the vectors x and b. To
perform a chaotic relaxation on this block, as in equation 3, the off-diagonal elements of the matrix are
multiplied by the solution vector. Where these off-diagonal elements correspond to the local portions of
x this is trivial. For non-local elements, the value of x; must be obtained from another process via MPI
communications.

For the purposes of implementation it is helpful to store the partitioned matrix as two compressed-row-
storage (CRS) matrices, A and Ap, as shown in figure 1. A is an n-by-n square matrix (containing the
diagonal) which can be directly multiplied by xa, the local portion of x. Ap contains all the remaining
off-diagonal elements, which must be multiplied by off-process elements xg. The structure of Ag and xp
are re-arranged so that xg becomes a local, sparse representation of the parallel vector.



The process of updating this buffer is known as vector-scattering. Each process must pack (only) the
required local values of xa into an a buffer, which is sent to an neighbouring process via an MPI message,
and inserted directly into xg.

MPI
Process

0

X

6 J
Figure 1: An illustration of the MPI parallel partitioning scheme for the matrix A, and vectors x and b. Note that the column
indices of Apg are altered to point to the correct location in xy,, the vector-scatter buffer.

In a classical Jacobi solver, it is common to perform part of the relaxation with A and xa whilst
the scatter is being performed, and complete the iteration using Ag and xg when the communication is
complete. In asynchronous methods, vector-scattering can be overlapped over a fixed number of iterations
and old values of xg are used in the meantime.

Here, we consider a truly chaotic solver in which scattering and relaxing occurs simultaneously on inde-
pendent threads, and the relaxation uses the most up-to-date values of xg that are available. To achieve
this, a hybrid-parallel scheme is used. The matrix is still partitioned into MPI subdomains, but within each
MPI process several shared-memory OpenMP threads operate. It is commonly recommended to run such
a system with each MPI process occupying a single socket (or NUMA-node) of the supercomputer so that
all threads are using the same memory channels (avoiding ‘Non-Uniform Memory Access’ problems). Each
OpenMP thread is then given one physical core. For example, a problem previously using 64 MPI processes
may be replaced by 8 MPI processes, each running 8 threads.

On each MPI process, one thread is designated as the communications thread and the remainder are
assigned to computation.

The computation threads have shared-memory access to all of Aa, Ag, xao and xg and continuously
perform relaxations on this data. Each thread takes a contiguous portion of the n rows and relaxes them
in order, and repeats until the stop criteria are reached. It is not necessary to synchronize the computation
threads, so each thread may perform a different number of iterations. Values of xa are pushed and pulled
from local memory without synchronization or mutexing. Values of xg are pulled from local memory too,
whilst the communication thread updates them.

The role of the communication thread is to continuously perform vector-scatter operations between
MPI processes. It is responsible for collecting local values x4 and packaging them into MPI messages —
once again, no synchronization or mutexing is required and these values are pulled directly from the active
memory of the computation threads. On receiving a message, the incoming data is pushed directly into xpg,
immediately making it available for relaxations. In this implementation, a vector-scatter must be completed
by all processes before the next can begin. As such, every MPI process will perform the same number of
communication iterations and will experience implicit synchronization of communication threads. A more
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chaotic scheme could be implemented, allowing pairs of processes to communicate faster than other pairs if
the hardware allowed it. One-sided MPI communications would be the ideal method to pursue this.

This chaotic solver deliberately exploits race conditions to achieve a high level of asynchronicity. Although
no two threads write to the same location in memory simultaneously, it is quite possible that threads will
try to read and write the same value at the same time. As long as the data type is atomic, this causes
no issues. It is not transparent how the compiler or memory controller deals with cache-coherency when
encountering these data races, but this also caused no discernible problems; no explicit cache flushing of the
X vector was required.

At the end of a typical solution process, the communication thread on each MPI process has performed
O(1k-10k) communication iterations and each computation thread has performed a varying number of
computation iterations (often O(100-1k) out of sync). All of this occurs in the time it takes to run just a
handful of iterations of a Krylov Subspace solver such as GMRES.

One of the conditions for convergence of chaotic methods is that s (the difference in iteration-number
between relaxations), in equation 3, is bounded. There is no explicit checking of the value of s, because
a residual check is performed every 100 communication iterations — providing a sufficient condition for
convergence. Once convergence criteria are reached, the communication thread sets a flag signalling all
threads to cease. There is no guarantee on the number of iterations that have been performed by each
thread.

2.2. Numerical Setup for Performance Experiments

The chaotic solver described above has been implemented in Chaos, which has been linked to ReFRESCO,
a state-of-the-art semi-implicit CFD code. Two test cases have been used to conduct performance experi-
ments: a canonical lid-driven cavity flow (LDCF) and a practical, maritime flow simulation around a ship
(KVLCC2). The University of Southampton supercomputer, Iridis4, has been used to run these experiments
from 8 through to 2048 cores. ReFRESCO, Iridis4 and the two test cases are discussed below.

ReFRESCO is a finite-volume, SIMPLE-based, Picard-linearizing, viscous-flow CFD solver, which solves
multiphase, unsteady, incompressible flows with a variety of turbulence, cavitation and volume-fraction
models. ReFRESCO is a general-purpose CED code, with state of the art features such as moving, sliding and
deforming grids and automatic grid refinement — but has been verified, validated and optimized specifically
for maritime-industry problems. ReFRESCO is similar in formulation to other well-known CFD solvers
such as OpenFOAM [18], Star-CCM+ [19] or Ansys Fluent [20]. ReFRESCO uses PETSc [13], which
provides Krylov Subspace solvers and an interface to ML [9] (via the Trilinos project [14]). Both PETSc
and ReFRESCO are MPI-only, which makes interfacing to Chaos difficult, but this is inconsequential for the
purposes of the following investigation. ReFRESCO is profiled with Score-P [21], providing run-time metrics
on various portions of the code. The results herein show only the time spent in the linear equation-system
solver for the pressure equation.

ReFRESCO is run on the University of Southampton’s latest supercomputer. Iridis4 has 750 nodes,
consisting of two Intel Xeon E5-2670 Sandybridge processors (8 cores, 2.6 Ghz), for a total of 12,200 cores
(8 cores per NUMA-node). Each 16-core node is diskless, but is connected to a parallel file system, and has
64GB of memory. The nodes run Red Hat Enterprise Linux version 6.3. Nodes are grouped into sets of
30, which communicate via 14 Gbit/s Infiniband. Each of these groups is connected to a leaf switch, and
inter-switch communication is then via four 10 Gbit/s Infiniband connections to each of the core switches.
Management functions are controlled via an ethernet network.

Iridis4 ranked #179 on the Top500 list of November 2013 with a peak performance of 227 TFLOPS
[22]. Iridis4 cannot be classified as a many-core machine, with only 16 cores per node. Nonetheless, it
should be able to give sensible insight into the limitations of the CFD algorithm with an appropriately-sized
problem. A one-time opportunity to perform experiments up to 2048 cores was provided for this study, but
all development was done on up to 512 cores.

Two test cases are used throughout. The first is a laminar-flow, canonical, unit-length, three-dimensional
lid-driven cavity flow (LDCF) with a Reynolds number of 1000. A uniform mesh of N = 2.68-million cells
(1393) is used. The simulation mimics an infinite domain with two cyclic boundary conditions. The remain-
ing four boundaries are constrained with Dirichlet boundary conditions, one of which specifies a tangential,
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non-dimensional velocity of 1. The second test case is an industrial model ship case, the KRISO Very Large
Crude Carrier (KVLCC2) double-body wind-tunnel (water phase only) model [23] with a Reynolds number
of 4.6 x 10%. The mesh is a three-dimensional multi-block mesh consisting of N = 2.67-million cells. A k-w,
two-equation shear stress transport turbulence model is used. Inflow and outflow boundaries are specified
appropriately. The free-surface is represented as a Neumann boundary condition, and the remaining bound-
aries have Dirichlet conditions. The mesh sizes have been chosen deliberately to show scalability issues on
the available cores: the cells-per-core ratio is approximately 1300 on 2048 cores for both test cases.

2.8. Performance Ezxperiments

The chaotic solver is compared to a simple MPI-only SOR method from PETSc, with residual calculations
every 100 iterations and w = 1 (equivalent to block Gauss-Seidel); and a Flexible-GMRES solver with right-
side Block Jacobi preconditioning, also from PETSc. A scalability factor S can be defined as S = 8Ts/T¢
where T¢ is the wall-time using C' core. Figure 2 shows the results of this scalability study, showing scalability
(S) versus the number of cores (C'). Ideal scalability is when S = C, illustrated in the figure. Due to the
normalization of T against Tg, it is not possible to observe absolute performance differences between solvers
using scalability plots. The embedded bar charts rectify this, by showing absolute core-hours (C' x T, which
would ideally remain constant) at C = 8, C' = 128 and C = 2048, coloured and keyed with respect to the
enclosing scalability plot — note the exponential scale. 100 non-linear loops of the SIMPLE algorithm are
performed and the total time spent solving the pressure equation is recorded.
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Figure 2: Scalability of the linear equation-system solver for the KVLCC2 (left) and LDCF (right) test cases, at 0.1 (top) and
0.01 (bottom) convergence tolerance.



The LDCF test case appears much easier to solve than the KVLCC2 test case, for all solvers and
convergence tolerances. The chaotic solver is faster than SOR in all cases, with the gap widening as the
equations become easier to solve. Scalability of the chaotic solver is better than the SOR method, and is
sometimes super-linear due to increasing use of the cache as the cells-per-core ratio decreases. Above 512
cores, particularly on the easier equation-systems, the scalability of the chaotic solver begins to deteriorate.
Obtaining computing time to thoroughly debug this was not possible, but it is suspected that the residual-
check interval needs to be increased at this point. This is partly due to the decreasing cells-per-core ratio;
and partly due to the increasing cost of global communications?. Although the computation threads continue
to iterate whilst waiting for the residual check, the communication thread (and vector-scatter updates) are
stalled, reducing convergence rates.

Nonetheless, on all but the hardest equation-system (KVLCC2 at 0.01 convergence tolerance), the chaotic
solver is able to out-perform preconditioned FGMRES on 2048 cores, due to the poor scaling of the Krylov
Subspace method. On stiffer equation systems, the gains are smaller because more low-frequency errors
must be reduced — the numerical performance of SOR and the chaotic solver is not competitive. The
two test cases used here are small, designed to show scalability limits on a machine that does not have a
many-core architecture. Practical simulations may be tens or hundreds of times larger than these tests,
and the inability of SOR or the chaotic solver to reduce low-frequency errors will become much more
problematic. The work required by Jacobi-like solvers increases with O(N?3) [24, §2.2]3. However, the
ability to reduce high-frequency errors quickly is very desirable for smoothers in multigrid methods. In the
following section, a chaotic-cycle multigrid is developed which allows Jacobi-like smoothers to be replaced
with chaotic smoothers.

3. Chaotic-Cycle Multigrid

The principle of algebraic multigrid methods is that low-frequency errors can be solved quickly by
translating the problem onto a coarser grid, where low-frequency errors become high-frequency errors. This
coarsening can be applied recursively over many levels. Jacobi-like smoothers can be used to quickly smooth
high-frequency errors on the coarse grids. Often, only a single iteration of the smoother is required. It can be
shown that the number of multigrid iterative cycles required to converge a perfect multigrid method remains
constant as N increases, which makes them competitive against Krylov Subspace methods and relevant for
real-world applications. In theory, the work done in each multigrid iteration scales with N, since all of
the relevant routines (such as smoothing) are O(N). Thus, a multigrid solution should take O(N)-time,
although this does not include the time taken to construct the coarse grid operators [24, §2.4].

There are certain traits of the chaotic solver which make it difficult to substitute as a smoother in
a multigrid method: it is difficult to impose stopping criterion; and guarantee the boundedness of the
asynchronicity s. In the chaotic solver, a sufficient condition for convergence was provided by checking the
residual — which was necessary anyway. For a multigrid method it is not necessary to compute a residual on
the coarse grids, and it would be inefficient to do so, so an alternative method for bounding s is required.

Another issue is that smoothers only need to run for a small number of iterations, which does not
suit chaotic methods well, especially when the equation-systems are small and easy to solve (as on the
coarse grids). Chaotic solvers have a tendency to over-converge these systems considerably, because the
computation threads achieve so much smoothing before a single communication can even occur. Although
they can never be slower than existing smoothers because of this, much of this free convergence is wasted if
it not required. Since there are other sources of synchronization in the multigrid cycle, it would be beneficial
to trade off some of these synchronizations for additional smoothing, which can be obtained for free.

2The cost of a global reduction, required for a residual-norm computation, usually scales with log,(C) — increasing each
time the number of cores is doubled. However, this assumes the latency of communications is constant. When performing
global reductions on 2048 cores, one encounters higher latencies as the cores become physically further apart.

3Note that the rate of convergence increases with O(N?2), but the work-done-per-iteration also increases with O(N), leading
to overall required work of O(N3).



A generic multigrid algorithm has been developed below, employing an unsmoothed-aggregation tech-
nique and the classical V-, W- and F-cycles. Following this, the extension to a ‘chaotic-cycle’ multigrid is
explained, where the boundedness of s and the removal of other synchronization points is explored. Verifi-
cation of O(N) performance is shown on a generic Laplace equation. Scalability and performance of all the
multgrid cycles are tested against the standard chaotic solver, FGMRES and a state-of-the-art multigrid
method (ML) from Trilinos [9, 14].

3.1. Implementation

There are two stages to a multigrid algorithm. The first stage is concerned with constructing coarse
grids and interpolation operators. The second stage is the multigrid ‘cycle’ which is the iterative process
used to solve the equation system. In the coarsening stage, coarse grids are recursively created from a fine
grid, such that:

Am = RmAmflea 1<m < mmaz

where A, is matrix A on the m‘" level (level zero being the finest, original matrix); P,, is the prolongation
matrix, a sparse rectangular matrix which describes the interpolation between A,, and A,,_1; and R,, is
the restriction matrix, a sparse rectangular matrix describing the contraction from A,,_; to A,,. R,, is
usually the transpose of P,,.

Here, an aggregation-type coarsening is used, loosely based on Notay [25]. In aggregation schemes, a
coarse grid is constructed by grouping fine-grid elements into single coarse-grid elements (or ‘aggregates’),
such that the aggregates form a disjoint subset of the fine-grid elements. In unsmoothed aggregation, R,,
and P, are simply boolean matrices which never need to be explicitly stored. In smoothed aggregation, the
prolongation and restriction matrices are smoothed such that coarse-grid elements may contribute to more
than one fine-grid element. The simpler unsmoothed-aggregation is used here.

When constructing the coarse grids, it is important that aggregates are created in the direction of the
‘smoothest error’; they must be constructed such that the maximum eigenvalue is successfully reduced on the
coarser grid [26]. Notay [25] proposes a pairwise-aggregation scheme which attempts this. The algorithm
couples pairs of elements which are ‘strongly-coupled’, which means they have large negative values in
the off-diagonals that connect them. For each fine-grid element a list of ¢ strongly-coupled elements is
created. The element with the smallest ¢ is treated first, by grouping it with its most-strongly-coupled
pair. For asymmetric matrices a check can be added to ensure that the coupling is reciprocated, but this
may be skipped. Constantly sorting to find the minimum ¢ can be expensive, and a pairwise scheme can
only coarsen by a factor of two — meaning that repeated application is necessary to achieve 4- or 8-times
coarsening.

A cheaper, but less rigorous approach has been adapted from this scheme. A maximum aggregation size
Gmaz 18 specified (for example, 8). For each element e; in the fine grid (iterated in order), the off-diagonal
values of the matrix (A;,—1)sj,j2 provides a set of coupled elements e; that can form aggregates. For each
coupled element, the strength of the coupling is recorded as v; = —(A,;,—1);;. If the coupled element already
belongs to an aggregate, the number of elements already in that aggregate is recorded as a;, else a; = 1.
An aggregate is formed by selecting e; with a minimal a;, and then a maximal v;. The aggregation of the
two elements is abandoned if both elements already belong to aggregates, or if either element belongs to an
aggregate which already has a,,,, elements. The algorithm achieves close to a4, coarsening in a single
step, very cheaply.

At the end of the aggregation process, a set of aggregates G;,i = 1, ..., n,, exist, each with approximately
QUmaz indices which map to A,,_;. This mapping is equivalent to R,,, and the tranpose mapping is created
for P,,. From this point, A,, can be computed recursively as:

(Am)ij = Z Z (Am—l)kl (1 S 7:7].7 S nm)

keG; IGGJ'

The process is repeated recursively, with m = m + 1, until the coarsest grid reaches a specified size. Fig-
ure 3 shows an example of this coarsening on a two-dimensional lid-driven cavity flow domain. Investigating
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Figure 3: A view of the aggregation process, showing four multigrid levels with amqez = 8 on a two-dimensional lid-driven
cavity flow domain. The fine matrix begins with 128 x 128 = 16384 degrees of freedom; and the coarsest matrix has just 7.

the quality of the aggregation is beyond the scope of this study, but the presented method appears to be
robust enough for the purposes of these experiments.

The aggregation is done per MPI domain, such that each process has its own set of hierarchical grids (as
in [25]). Aggregation is not performed across process boundaries, thus A,, in the above discussion is replaced
by (A4)m for each MPI domain. Ap is never considered when aggregating. Also, when constructing the
coarse grids, (A ), is not explicitly constructed because it would require re-mapping the buffered storage
of the parallel vectors, (xB).,. Vector-scattering on coarse grids occurs by mapping into the buffer of the
finest grid, resulting in excess, inefficient MPI communication. A more rigorous aggregation scheme which
performs coarsening across MPI domains may be more performant; especially since this aggregation can be
reused between non-linear iterations of the overall CFD simulation.

The second stage of the multigrid algorithm is the linear solution process, in which various different
cycles can be used to visit the coarse grids. On each coarse grid, a ‘correction’ to the fine-grid solution is
computed using the additive correction scheme [27]. There are three simple routines which allow a variety
of cycles to be created.

e On each level, smoothing is applied to the linear system A,,X,, = b,,. On the coarsest level a direct
solver is often used, but a smoother will suffice too.
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e Restriction is used to move from a fine grid (m — 1) to a coarse grid (m): from the linear system
A, _1Xm_1 = by_1, anew system is created A,,x,, = b;,. A,, has been generated by the aggregation
process, X, is set to zero, and b,, is set to to the residual vector multiplied by the restriction matrix:
Rm(bm—l - Am—lxm—1)~

e In the other direction, prolongation is used to apply the coarse-grid correction to the fine grid. The
prolongation matrix, P,,_; is used to expand x,, into X,,_1. The vector P,,x,, is summed with x,,,_1,
to provide a correction to the fine grid. Post-smoothing is performed after prolongation.

These three routines, combined with different values of a4, different minimum grid sizes, and different
numbers of smoothing steps, can produce a wide variety of multigrid cycles. A four-level V-cycle, F-cycle,
W-cycle and sawtooth-cycle are illustrated in figure 4.

V-Cycle W-Cycle - Sawtooth-Cycle

Figure 4: A view of the solution process, showing a single iteration of a four-level multigrid method using the classical recursive
V-cycle, W-cycle, F-Cycle and Sawtooth-Cycle. Restriction, Prolongation and Smoothing are colour-coded.

3.2. Applying Chaotic Principles to Multigrid Methods

Consider the classical V-cycle as illustrated. In each pre-smoothing step there is an implicit global
synchronization during each iteration, since MPI communications are required to scatter the x,, vector on
each level. For restriction, a vector-scatter is necessary to compute b,, = Ry, (by—1 — Ayu_1Xm—1), causing
another global implicit synchronization.

Replacement of the smoother with a chaotic smoother solves the implicit synchronization in the pre-
smoothing steps, but since the smoother only needs to run for a handful of iterations, the synchronization
required for restriction will still have a large effect. In order to minimize this, consider a sawtooth cycle,
which is simply a V-cycle with no pre-smoothing — the right-hand sides (b,,) of the all the coarse matrices
must still be initialized. In the 4-level example shown in figure 4, communication of xq is required as usual to
create by, requiring a vector-scatter. x; is reset to zero. The next restriction follows immediately to create
bo; except now it is known that x; = 0 there is no need to scatter x;, and by = Ra(b; — A1x1) = Roby.
It follows that the entire sawtooth restriction requires only one implicit synchronization. The downside of
using a sawtooth method is that more post-smoothing iterations may be required. For the chaotic smoothers
this may not be a disadvantage, because much of this smoothing can be obtained for free.

Returning from the coarse grid to the fine grid, post-smoothing with a chaotic smoother does not require
any implicit synchronization. Prolongation does not require any synchronization either; because x,,_1 +=
P..x,, does not require off-process values of x,,. Smoothing on level m — 1 can begin before other processes
have performed their own prolongation, because the off-process values of x,,, that are not updated are still
zero. Updated values will be provided by communications in the chaotic smoother when they are ready, but
chaotic relaxations can begin without that information.

Next, the boundedness of s in the chaotic smoother must be guaranteed. Consider the situation in
which p post-smoothing iterations are requested, and this is expected to provide enough convergence on
the coarse grids to guarantee overall convergence of the multigrid method. Note that a certain amount of
post-smoothing must be performed in order to compensate for unsmooth prolongation [24]. For the chaotic
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smoother, specifying a number of iterations is meaningless because one process could complete its iterations
before receiving updates from any other process or thread.

The chaotic-cycle, like the chaotic solver, is designed to be run in a hybrid MPI+OpenMP environment.
The same concept of computation and communication threads is used, and the communication threads
remain in sync across MPI processes. Within each MPI process, each thread stores an iteration counter
k in an array, initialized to k = 0 at the start of each smoothing phase. After each computation thread
completes a chaotic relaxation on its portion of the equation system, it attempts to increment k — however,
it is only allowed to increment k if the values in the counter array are all > k. If any value is less than
k, it suggests that the relaxations may have used old values and therefore it did not ‘count’ as a requested
iteration. This bounds s between computation threads. The communication thread also participates in
the same counter array, attempting to increment k£ every time it scatters x,, between MPI processes; thus
bounding s between all processes. To avoid an MPI deadlock, additional checks are required to make sure
communication threads perform the same number of iterations on all processes (regardless of k); this is done
using non-blocking MPI barriers (MPI_Ibarrier).

It is unlikely that any thread will complete exactly p iterations; but it is the absolute lower bound.
Most threads will complete many more than p iterations, so choosing a value for p is not as intuitive when
compared to classical multigrid cycles.

Combining this bounded chaotic smoother with the sawtooth cycle and barrierless prolongation: a
chaotic-cycle multigrid is created. The entire cycle has only one implicit global synchronization, required
to restrict the finest level. Instead of explicitly scattering x¢ the latest values communicated during the
pre-smoothing step are used, further hiding this implicit synchronization behind useful relaxations. One
explicit thread-barrier (local) is also required at the end of the restriction simply to signal that all of the
coarse grids have been initialized, but this is cheap. It is important that x,,, has been reset to zero on every
level before prolongation begins. During each multigrid cycle, a lagged, non-blocking residual is computed
to determine an overall stoping criteria.

Chaotic-Cycle

m=0- - -

Figure 5: A view of the chaotic-cycle solution process, showing a single iteration of a four-level multigrid method. Restriction,
Prolongation and Smoothing are colour-coded. Multiple parallel lines are shown during the prolongation stage to depict the
non-deterministic way in which multiple threads (including communication and computation threads, across multiple processes)
may participate in the chaotic-cycle.

Figure 5 shows an illustration of the chaotic-cycle, although it is difficult to capture the chaotic nature
in a simple diagram.

3.3. Verification

In order to ascertain that the chaotic-cycle conforms to the convergence expectations of a multigrid
method, verification is performed using a 3-dimensional (4, j, k) Laplace equation with Dirichlet boundaries.
A 3D, unit-length, cubic domain of N elements is created (element spacing h = 1/N ﬁ) A pre-determined
solution x; is created for the linear system, by combining 20 sinusoidal frequencies: Z?OZO sin(2/7.i.5.k.h3).
b is created from this solution and x is set to zero. The source is included as an example in Chaos.

The number of iterations to convergence (relative tolerance 10~°) and time-per-iteration is measured for
the chaotic-cycle and V-cycle as N increases from 512 (8%) to 1.73-million (120%). With perfect coarsening,
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the number of iterations to convergence should be constant, with the time-per-iteration increasing linearly
with N. However, this ideal situation cannot be achieved with piecewise-constant unsmoothed aggregation
[26]. Figure 6 shows the results of this verification. The solution is performed on 64 cores (8 MPI processes
with 8 threads each). The aggregation factor, amaz, is set to 8, and the number of pre- and post-smoothing
iterations is set to p = 3.

The number of iterations required to reach convergence is not quite constant, but appears to approach
an asymptotic maximumum, for both cycles. This suggests small imperfections in the aggregation process,
which is expected. The time-per-iteration is O(N) as desired, although both the V- and chaotic-cycle show
occasional deviations or noise. This is probably connected to the aggregation factor, and the number of
levels being created as N increases.

Overall, the two cycles perform similarly; but these tests are not designed to give performance results.
The important result here is that the chaotic-cycle is at least as good as the V-cycle from the perspective of
multigrid correctness. The following section properly assesses the performance and scalability of the various
cycling techniques.
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Figure 6: Number of iterations (a) and time-per-iteration (b) to converge the discrete Laplace equation, of size N, to a relative
convergence tolerance of 1076.

3.4. Performance Experiments

The performance experiments from section 2.3 are repeated here, this time comparing the chaotic-, V-,
W- and F-cycle with preconditioned FGMRES, the standard chaotic solver, and a state-of-the-art multigrid
package (ML [9, 14]). Once again the solution of the pressure equation is summed over 100 outer-loops
of the CFD solver. For all multigrid methods, including ML, aggregation is only performed once in this
time, and then re-used. This is possible because the non-zero structure of the matrix A does not change
between outer loops, thus the restriction and prolongation matrices do not need recomputing. A,, must
still be refilled on the coarser grids using equation 3.1. Aggregation and re-filling time is included in the
results. Occasional re-aggregation is probably required for practical simulations, because the coupling of
various elements may change as the overall CFD solution converges, and the coarser grids will no longer
follow the smoothest errors.

Preliminary studies showed that p (the number of pre- and post-smoothing iterations) had little effect
on the results within a range of 1 to 12. Increasing p resulted in fewer cycles being required overall (and
vice versa), but with almost no effect on scalability and absolute speed. p = 3 was selected for all of the
Chaos multigrid methods; and p = 1 was used for ML. ML uses a complex smoothed-aggregation coarsening
strategy which crosses process boundaries, thus less smoothing is required. An additive-correction V-cycle
was used in ML, with a direct solver on the coarsest grid.
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Figure 7: Scalability of the linear equation-system solver for the KVLCC2 (left) and LDCF (right) test cases, at 0.1 (top) and

0.01 (bottom) convergence tolerance.

The results are shown in figure 7 and table 1. Overall, the scalability of the V-, W- and F-cycle multigrid
is poor, and somewhat similar to the Krylov Subpsace method (FGMRES). The V-, F- and W-cycle all
perform similarly on C' = 2048 cores. On a smaller number of cores, the size of A4 in each domain becomes
larger, thus the total number of levels increases and the algorithmic differences between the three cycles
become larger. As the number of levels increases, the W- and F- cycles spend exponentially more time
visiting coarse grids, and perform worse than the V-cycle. If only two grids existed, all three cycles would
be identical. This effect makes it difficult to differentiate between numerical effects and scalability of the
computational methods.

The chaotic-cycle exhibits slightly worse absolute performance on C' = 8 than the V-cycle and FGMRES,
but offers much greater scalability. In all cases the chaotic-cycle is the fastest solver on C' = 128 cores. On
the most difficult test case (KVLCC2 at 0.01 convergence tolerance), the chaotic-cycle is over 6.7x faster

Table 1: Absolute core-hours spent solving the linearized pressure equation over 100 non-linear iterations.
Case (ILCT) FGMRES V-Cycle Chaotic-Cycle | Chaotic (solver)
C=8 128 2048 | 8 128 2048 | 8 128 2048| 8 128 2048
LDCF (0.1) 1.8 25 544 (23 27 946 |23 25 71| 3.6 3.4 5.6
LDCF (0.01) 34 53 56.8 |43 6.8 124.1| 4.0 4.7 106 | 20.7 16.9 24.5
KVLCC2 (0.1) 38 71 601 (41 6.1 117.2| 5.1 5.3 13.6| 272 208 36.6
KVLCC2 (0.01)| 7.8 17.4 144.0|9.2 13.9 258.9|12.4 16.3 38.5|139.9 111.6 169.6
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than the classical V-cycle on C' = 2048 cores, and 3.7x faster than preconditioned FGMRES. This gap
widens on easier equations, reaching a 13.3x and 7.7x speed-up over V-cycle and FGMRES, respectively,
on LDCF at 0.1 convergence tolerance.

The scalability of ML was poor in all cases. It was suspected that the rigorous aggregation process is a
bottleneck to scalability when such a lax convergence tolerance is specified; however, re-use of the aggregation
had little effect on scalability. Other efforts to experiment with ML were unsuccessful in improving scalability
—including adjusting the number of multigrid levels, the amount of smoothing, and replacement of the direct
solver with a smoother on the coarsest grid.

Despite its good performance, the chaotic-cycle multigrid falls short of ideal scalability. Indeed, in one
case the simple chaotic solver is faster than chaotic-cycle multigrid due to its superior scaling.

3.5. Discussion

Both the classical- (V,W,F) and chaotic-cycle should achieve better scalability if the vector-scattering
on coarse-grids is improved. Currently, the MPI buffers and indexing of (xp)o and (Ap)o are recycled
on the coarse grids, which is inefficient. Recomputing buffers for each coarse-grid would certainly improve
scalability. It is likely that the chaotic-cycle hides some of these losses (since extra relaxation can occur
whilst waiting for these communications), so the differences between the two solvers may become smaller.

Perhaps a bigger concern is (once again) the residual computations which currently occur asynchronously
during each multigrid iteration. On 2048 cores the aggregation process only creates four levels, and withp = 3
a chaotic-cycle will perform a minumum of 18 vector-scatters in this time. As noticed in the chaotic solver,
with a residual computed every 100 iterations this was already the main limitation to overall scalability.
It is suspected that this is the main cause of poor scalability and is also the only sensible reason that the
standard chaotic solver could out-perform the chaotic-cycle multigrid (since the chaotic-solver generalizes
to a one-level chaotic-cycle multigrid method). For both the chaotic-cycle multigrid and chaotic solver,
the ideal solution would be to apply a threaded residual computation check, such that residuals are only
computed at the speed at which they can be communicated. In this way the residual computation could
never stall the communication thread, but it would also never lag unnecessarily. In some ways this could be
considered a ‘chaotic’ residual.

The problem with such a scheme is that it is difficult to stop MPI processes safely without some form of
explicit, predictable barrier or residual — because if any process issues MPI Isend/MPI Irecv commands be-
fore receiving the ‘stop’ notification, these unmatched communications will cause a deadlock. As mentioned
earlier, some form of one-sided communication would be ideal to allow communication threads to operate
chaotically. This would also allow chaotic residual computations to be implemented easily.

Profiling the chaotic-cycle multigrid is somewhat difficult because even though it can be seen that coarse-
grid communications or residual checks are slow, it is not clear whether this is the main source of performance
losses. Indeed, the whole purpose of chaotic methods is to make use of all available hardware, even when
some systems (such as communications) are struggling. However, it is suspected that the residual issue is far
greater, because whilst waiting for the residual to complete the communication threads are not updating the
communication buffers on the finest grid. At least on the coarse grids, xp is periodically updated, providing
fresh values for the excess relaxations to work on.

It is likely that both of the aforementioned issues affect the V-, W- and F-cycle too. Indeed, since they
do not have the benefit of performing chaotic relaxations they may be more affected. Nonetheless, the
chaotic-cycle multigrid demonstrates very good scaling compared to these classical cycles; and its ability to
weather ineffective communications should allow it to perform well in many-core environments.

4. Conclusion

The work presented has focused on applying the theory of ‘chaotic relaxations’ to simple Jacobi-like
solvers, to create a ‘chaotic solver’; and adaptation of classical multigrid cycles to allow effective use of
chaotic solvers as smoothers in a ‘chaotic-cycle’ multigrid method.

The chaotic solver provided excellent performance and scalability from 8 through to 2048 cores compared
to a standard SOR solver. The chaotic solver outperformed state-of-the-art solvers in the extremes of strong
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scalability, but could not provide enough numerical power to compete on stiffer equation systems. Since the
work done by SOR and the chaotic solver scales with O(IN?), these solvers are not a sustainable solution
and will always be beaten in practical simulations.

The chaotic-cycle multigrid outperforms all other solvers (including Krylov Subspace solvers, classical
multigrid methods, and state-of-the-art smoothed-aggregation multigrid methods) in terms of scalability and
absolute speed, from 128 cores upwards. Below this, the chaotic-cycle multigrid is still highly competitive.
On 2048 cores the chaotic-cycle multigrid is up to 7.7x faster than Flexible-GMRES and 13.3x faster than
classical V-cycle multigrid. Scalability of the chaotic-cycle multigrid can still be improved. Indeed, on the
easiest equation system the simple chaotic solver was faster (on 2048 cores) and this is indicative of an issue
with too-frequent residual checks. O(N) performance of the chaotic-cycle multigrid solver has also been
verified.

The theory of chaotic relaxations can be applied in a huge variety of ways to create chaotic solvers and
multigrid cycles. There are a number of issues with the current implementation which have been discussed,
but the potential of chaotic methods compared to synchronous methods has been clearly demonstrated. The
chaotic methods discussed here have been implemented as an open-source library, Chaos, in the hope that
alternative chaotic schemes can be explored. It is also expected that the chaotic solver and chaotic-cycle
multigrid could be applied to other disciplines and scientific fields where fast, scalable solutions to stiff linear
systems are required.
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