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1 Introduction

The analytic behaviour of scattering amplitudes has been a subject of great interest for

decades [1]. Recent developments in the theory of amplitudes have led to the application

of an array of mathematical ideas to their calculation. The study of poles in tree-level

amplitudes led to the BCFW recursion relations [2], that of cuts of integrals to the uni-

tarity approach [3]. The combination of these ideas has fed into new constructions of loop

integrands for many amplitudes [4, 5]. The study of polylogarithmic iterated integrals [6–9]

has led to a much greater understanding of loop integrals and motivated a greater push to

classify and understand more general functions of elliptic type and beyond [10–15]. These
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developments have inspired recent advances [16] in the well-studied subject of differential

equations for loop integrals [17–20] which have been applied to processes of interest for

QCD or gauge theories in general. It is clear that the greater understanding we have of the

role of singularities in field theory amplitudes the greater our ability is to calculate them

and the deeper our understanding of field theory becomes.

Here we will focus on the study of poles and branch cuts in perturbative amplitudes and

the algebraic and geometrical structures which govern their appearance. A very helpful

toy model in this regard is the planar limit of N = 4 super Yang-Mills theory where

many approaches can be taken to calculate amplitudes. In perturbation theory an analytic

bootstrap programme has been employed for certain amplitudes, allowing the construction

of explicit data for many loop orders [21–29]. A different technique relying on the relation of

the planar amplitudes with light-like Wilson loops [30–35] is based on multiple expansions

in a near-collinear OPE limit [36–40], much like correlation functions of local operators in

conformal field theories. The interplay of these techniques has revealed surprising structures

at the heart of scattering amplitudes.

An important observation about the perturbative amplitudes came with the work

of [41] where a link was made between the locations of branch point singularities in scat-

tering amplitudes and certain coordinates (‘A-coordinates’) of cluster algebras [42, 43].

In [44] we extended this connection to the interplay of such singularities with each other.

Specifically we noticed that the cluster algebras also control the possible sequences of such

branch cut singularities; a non-trivial analytic continuation around a given singularity may

only be followed by certain others. The set of which singularities are visible on any given

Riemann sheet is dictated by the clusters themselves. We refer to this property of ampli-

tudes as ‘cluster adjacency’. The adjacency relations we find encompass the Steinmann

relations [45, 46] which place constraints on consecutive discontinuities of amplitudes [47].

Such relations can be made manifest on appropriately defined infrared finite quantities and

then become a powerful constraint in the analytic bootstrap programme [28].

We will develop the connection between singularities and cluster algebras further. We

emphasise that, although the connection to cluster algebras is phrased in algebraic terms,

there is also a very geometric picture to the structure of relations between branch point

singularities. The geometry in question is that of cluster polytopes and in particular the

intricate structure of their boundaries, which captures the possible nested sequences of

cluster subalgebras. The picture which emerges is different from, but shares many features

with, the positive geometry arising in the description of integrands in [4, 5].

Since the monodromies of analytic functions in general and amplitudes in particular

are typically non-abelian in nature, the cluster adjacency controlling their appearance has a

non-abelian character; the order in which A-coordinates appear in the symbol is important.

Here we also develop an abelian version of adjacency which controls the poles of individual

terms in tree-level amplitudes. We find that precisely the same notion of adjacency holds

for individual BCFW terms for NMHV amplitudes and beyond. Since poles multiply in a

commutative fashion the adjacency constraints apply to all poles in a given term.

When considering NMHV loop amplitudes we have expressions which simultaneously

exhibit non-trivial poles and branch cuts. We find that the cluster structure also imposes
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relations between the two. Specifically we find that the derivatives of individual terms in

NMHV loop amplitudes are constrained in such a way that they are compatible with the

poles of the multiplying rational function. The cluster adjacency we find actually comprises

a subset of the constraints which follow from dual superconformal symmetry [48]. At loop

level these constraints are expressed through the Q̄ equation of [49, 50]. So the cluster adja-

cency structure simultaneously implies both branch cut relations, e.g. the Steinmann rela-

tions, and derivative relations such as those following from dual superconformal symmetry.

2 Amplitudes in planar N = 4 super Yang-Mills theory

Here we recall a few basic properties of scattering amplitudes which are necessary for the

discussion of singularities and the link to cluster algebras.

2.1 Kinematics and symmetries

The N = 4 super Yang-Mills on-shell multiplet may be organised into an on-shell super-

field Φ, a function of an on-shell momentum pαα̇ = λαλ̃α̇ and a Grassmann variable ηA

transforming in the su(4) fundamental representation,

Φ = G+ + ηAΓA +
1

2!
ηAηBSAB +

1

3!
ηAηBηCεABCDΓ̄D +

1

4!
ηAηBηCηDεABCDG

− . (2.1)

The colour-ordered partial amplitudes in planar N = 4 super Yang-Mills exhibit dual

superconformal symmetry [48] which motivates the introduction of dual variables as follows,

pαα̇i = λαi λ̃
α̇
i = xαα̇i+1 − xαα̇i , qαAi = λαi η

A
i = θαAi+1 − θαAi . (2.2)

The dual symmetries act as superconformal transformations in the (x, θ) space. The fact

that the momenta are null means that the geometry in the dual space is associated with

null lines, for which Penrose’s (super)twistor variables are most appropriate [51],

Zi = (Zi |χi) , Zα,α̇i = (λαi , x
βα̇
i λiβ) , χAi = θαAi λiα . (2.3)

Here the Zi variables correspond to points in P3.

When considering amplitudes we should take care of the structure of infrared diver-

gences and the associated dual conformal anomaly [33, 52]. For our considerations here the

appropriate way to do this will be to extract from the amplitude the so-called ‘BDS-like’

form of the MHV superamplitude (denoted Ãn),

An = ÃnEn . (2.4)

The precise form of Ãn can be found in [53] and is not of great relevance here. The impor-

tant point is that the remaining factor En is dual conformally invariant and comprises all of

the non-trivial information about the scattering amplitudes, once the dual conformal Ward

identity of [33, 52] is taken into account. The function En can be written purely in terms

of the supertwistors Zi and has an expansion in Grassmann degree which encompasses the

decomposition of different amplitudes into MHV, NMHV and so on,

En = En,MHV + En,NMHV + . . . . (2.5)
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The MHV term in (2.5) is of degree zero in the Grassmann χi variables and hence is

just a function of the Zi. Dual conformal symmetry implies it is a function of the four-

brackets 〈ijkl〉. It is homogeneous of degree zero in each Zi and so is a function on the

space Confn(P3) (the configuration space of n points in P3).

The NMHV term in (2.5) is of Grassmann degree four and can be written in terms of

the Yangian invariants (called R-invariants),

[ijklm] =
〈〈ijklm〉〉

〈ijkl〉〈jklm〉〈klmi〉〈lmij〉〈mijk〉
, (2.6)

multiplied by dual conformally invariant functions Eijklm on Confn(P3),

En,NMHV =
∑

[ijklm]Eijklm(Z1, . . . , Zn) , (2.7)

where 〈〈ijklm〉〉 = (χi〈jklm〉+cyclic)4. In what follows the functions En,MHV and En,NMHV

(and hence the functions Eijklm) admit perturbative expansions of the form

F =

∞∑
L=0

g2LF (L) . (2.8)

For the hexagon and heptagon amplitudes that we focus on here we need only consider

MHV and NMHV terms in the expansion (2.5) since other amplitudes are obtained by

parity conjugation of these ones.

We would like to emphasise that the expansion of NMHV amplitudes (2.7) is not unique

due to the linear identities satisfied by the R-invariants [ijklm]. Moreover for n > 7, the

existence of a basis that respects the cyclic symmetry of the amplitude is not obvious.

Nevertheless, this inconvenience does not affect our statements of cluster adjacency for

NMHV amplitudes because, as we elaborate at the end of section 6, cluster adjacency of

the R-invariants and the final entries of polylogarithms becomes manifest only once the

amplitude is written out employing all R-invariants.

2.2 Analytic structure in perturbation theory

In perturbation theory the functions appearing in hexagon and heptagon amplitudes are

(according to all current evidence) polylogarithms of degree 2L where L is the loop order.

Polylogarithms are a class of iterated integrals over logarithmic singularities. Here we will

define them in a recursive fashion. We declare that polylogarithms come with a grading

and that a polylogarithm f (k) of degree (or weight) k obeys

df (k) =
∑
a∈A

f
(k−1)
[a] d log a , (2.9)

where the a are some rational (or algebraic) functions of some number of variables (called

letters) and the sum runs over a finite set A of such functions (an alphabet). The space

of functions of degree one is spanned by the set of logarithms of the letters a themselves.

The choice of the set A then determines a class of polylogarithmic functions recursively

in the degree. For example, in the case of functions of a single variable x, the choice
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A = {x, 1 − x} yields the class of harmonic polylogarithms [7] with indices 0 or 1. In

particular this example includes the classical polylogarithms Lin(x).

The formula (2.9) encodes the (k−1, 1) part of the coproduct of the function f (k). We

write this as

f (k−1,1) =
∑
a∈A

[f
(k−1)
[a] ⊗ a] , (2.10)

where by convention we just record the argument of the d log in the second argument of

the tensor product. The arguments of the (k − 1, 1) coproduct must obey the integrabil-

ity relation ∑
a∈A

df
(k−1)
[a] ∧ d log a = 0 , (2.11)

which follows from d2f (k) = 0.

If we continue applying the definition of the (n, 1) coproduct iteratively to each of the

functions f
(k−1)
[a] all the way down to weight zero we obtain the symbol, an element of the

k-fold tensor product of the space of one-forms spanned by the d log a for a ∈ A (or more

compactly a word in the alphabet A),

S[f (k)] = f (1,...,1) =
∑

(a1,...,ak)

ca1,...,ak [a1 ⊗ a2 ⊗ . . .⊗ ak] , ca1,...,ak ∈ Q , ai ∈ A . (2.12)

Note that by common convention we write the letters a rather than d log a in the arguments

of the tensor product. This leads to the property that symbols with products of functions

in their arguments decompose as follows,

[a⊗ b b′ ⊗ c] = [a⊗ b⊗ c] + [a⊗ b′ ⊗ c] , (2.13)

and similarly that symbols with powers of functions in their arguments obey

[a⊗ b p ⊗ c] = p [a⊗ b⊗ c] p ∈ Q . (2.14)

In the following we will discuss examples where the alphabet A is given by the set of

A-coordinates associated to a cluster algebra.

The symbol S[f (k)] displays both the branch cut structure and the differential struc-

ture of the function f (k). From the definition of the symbol (2.12) and the behaviour of

polylogarithms under derivative action, (2.9) we see derivatives act on the symbol by action

on the rightmost element of the tensor product,

d [a1 ⊗ . . .⊗ ak] = [a1 ⊗ . . .⊗ ak−1] d log ak . (2.15)

The symbol (2.12) obeys integrability relations,∑
~a

c~a [a1⊗ . . .⊗ ai−1⊗ ai+2⊗ . . .⊗ ak] (d log ai ∧ d log ai+1) = 0 , i = 1, . . . , k− 1 (2.16)

which follow from the fact that d2f = 0 for all the functions of all weights and encode the

commutativity of partial derivatives.
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Similarly a logarithmic branch cut discontinuity around a singularity at a = 0 is

obtained from terms beginning with the letters a, assuming the alphabet is chosen so that

no other letter vanishes at a = 0,

disca=0[a1 ⊗ a2 ⊗ . . .⊗ ak] = (2πi)[a2 ⊗ . . .⊗ ak] . (2.17)

The symbol is an efficient tool for simplifying polylogarithmic expressions, as demon-

strated in the derivation of the simple formula of [54] for the two-loop MHV hexagon am-

plitude [55]. A first step in the bootstrap calculations of [21–29] is to build integrable words

in a given alphabet. We quickly review here the method described in [29] for performing

this task. The construction of integrable words can be done iteratively in the weight. We

suppose that we have a basis {f (k)
i } of integrable words up to weight k. This means that

we know how to decompose integrable words of weight k into their (k − 1, 1) coproducts

f
(k)
i =

∑
a,j

M
(k)
ija [f

(k−1)
j ⊗ a] . (2.18)

Now we would like to construct integrable words of weight (k+1). We build an ansatz

for the (k, 1) coproduct with constants cai,

f (k,1) =
∑
a,i

cai[f
(k)
i ⊗ a] . (2.19)

The constraints we have to solve come from the integrability condition (2.11),∑
a,i

caidf
(k) ∧ d log a =

∑
a,i

cai
∑
b,j

M
(k)
ijb f

(k−1)
j d log b ∧ d log a = 0 , (2.20)

where the first equality expresses df (k) using (2.9).

The two-forms d log a ∧ d log b are not generally all linearly independent. They satisfy

linear relations known as Arnold relations which essentially come from partial fraction

identities. We suppose that {ω(2)
m } form a basis for the space of independent two forms.

Then there exists a tensor Y which expresses each two-form d log a∧ d log b in terms of the

independent basis

d log a ∧ d log b =
∑
m

Yab,m ω
(2)
m . (2.21)

It follows that the condition (2.20) becomes∑
a,i

cai
∑
b,j

M
(k)
ijb f

(k−1)
j Yab,m ω

(2)
m = 0 . (2.22)

Since the ω
(2)
m form a basis for the independent two-forms and the f

(k−1)
j form a basis for

the integrable words of weight (k − 1) the condition becomes∑
a,i

cai
∑
b

M
(k)
ijb Yab,m = 0 . (2.23)
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In other words we need to compute the kernel of the matrix

MAB =
∑
b

M
(k)
ijb Yab,m , A = (jm) , B = (ai) , (2.24)

where we grouped indices into multi-indices A,B.

To obtain a solution to (2.24) is a linear algebra problem that can be helpfully ad-

dressed with available packages. The package SpaSM [56] for sparse modular linear alge-

bra operations is particularly helpful as the matrices involved are typically sparse and all

quantities involved can be chosen to be integer-valued. However it is solved, one obtains

a basis for the kernel of M, i.e. a set of linearly independent null vectors {vA,l} where

l = 1, . . . , dim(kerM). Expanding the multi-index A = (ai) we obtain the desired basis of

weight (k + 1) words,

f
(k+1)
l =

∑
a,i

M
(k+1)
lia [f

(k)
i ⊗ a] , M

(k+1)
lia = vai,l . (2.25)

The above procedure has been used extensively in several works as a first step in the

analytic bootstrap programme for amplitudes.

3 Cluster algebras and Grassmannians

In [41] the important observation was made that the symbols of the two-loop MHV re-

mainder functions constructed in [57] were written in terms of alphabets that exclusively

contained A-coordinates of cluster algebras associated to Grassmannians Gr(4, n), or more

precisely, the (3n − 15)-dimensional spaces Confn(P3) = Gr(4, n)/(C∗)n−1. Beyond two

loops, great progress has been made in understanding the hexagon (n = 6) and heptagon

(n = 7) amplitudes via the analytic bootstrap programme. All current evidence is compat-

ible with the hypothesis that the hexagon and heptagon amplitudes are polylogarithmic at

all orders in perturbation theory and moreover that their symbol alphabets are given by the

set of A-coordinates for the cases Conf6(P3) and Conf7(P3) respectively. The associated

cluster algebras are isomorphic to the ones based on A3 and E6 respectively. Here we will

review some of the important aspects of cluster algebras. Many of the points we recall

here are covered already in [41] but we review them as we will need many of the ideas to

explain the notion of adjacency for the cluster polylogarithms appearing in the expressions

for scattering amplitudes.

Cluster algebras are commutative associative algebras with generators referred to as

cluster coordinates which arise in families called clusters. They can be specified by giving

an initial cluster with a set of A-coordinates together with a mutation rule which allows the

generation of further clusters and cluster coordinates. To each cluster can be associated a

quiver diagram with A-coordinates associated to the nodes. Such a quiver is described by

the adjacency matrix bij defined via

bij = (no. of arrows i→ j)− (no. of arrows j → i) . (3.1)
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〈1 2 3 4〉

〈1 2 3 5〉

〈1 2 4 5〉

〈1 3 4 5〉

〈2 3 4 5〉

〈1 2 3 6〉

〈1 2 5 6〉

〈1 4 5 6〉

〈3 4 5 6〉

〈1 2 3n−1〉

〈1 2n−2n−1〉

〈1n−3n−2n−1〉

〈n−4n−3n−2n−1〉

〈1 2 3n〉

〈1 2n−1n〉

〈1n−2n−1n〉

〈n−3n−2n−1n〉

. . .

. . .

. . .

. . .

Figure 1. The initial cluster of the Grassmannian series Gr(4, n).

The adjacency matrix specifies how the cluster changes under a mutation. If one performs

a mutation on a node labelled by A-coordinate ak then the adjacency matrix of the new

cluster is given by

b′ij =


−bij k ∈ {i, j} ,
bij bikbkj ≤ 0 ,

bij + bikbkj bik, bkj > 0 ,

bij − bikbkj bik, bkj < 0 .

(3.2)

and the A-coordinate ak associated to that node is replaced by

a′k =
1

ak

[ ∏
i|bik>0

abiki +
∏

i|bik<0

a−biki

]
. (3.3)

For the set of cluster algebras associated to Confn(P3) we take the initial cluster

depicted in figure 1. The boxed nodes are referred to as frozen nodes and the remainder

are unfrozen. Other clusters (and hence other A-coordinates) are obtained by mutating on

the unfrozen nodes according to the above rules. In the cases of n = 6, 7 the number of

distinct clusters obtained is finite. For n = 6 all A-coordinates are Plücker coordinates of

the form 〈ijkl〉 while n = 7 some A-coordinates are quadratic in Plückers.

If we pick a particular A-coordinate a and look at all clusters containing a we obtain a

cluster subalgebra. Such clusters may be generated by starting in one cluster containing a

and performing all possible combinations of mutations on the other nodes. In this way, to

each A-coordinate we associate a codimension-one subalgebra. Similarly we may pick a pair

of coordinates {a, b} and, as long as there is at least one cluster where they both appear,

associate to them a codimension-two subalgebra by performing all possible mutations on

the other nodes. If there is no cluster where a and b appear together then there is no such

subalgebra. The fact that some pairs can be found together (we call them ‘admissible’

or ‘adjacent’) while other pairs cannot is at the heart of the cluster adjacency property

describing the behaviour of singularities of scattering amplitudes. Note that frozen nodes

are present in every cluster and hence are always admissible with any other A-coordinate.
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We can continue further and associate codimension-three subalgebras with admissible

triplets {a, b, c} where a, b and c can all be found together in some cluster and so on.

Finally when we have fixed an admissible set of (3n − 15) A-coordinates we uniquely

specify a cluster which we could alternatively describe as a dimension-zero subalgebra.

Note that while A-coordinates are called ‘coordinates’ they are not strictly coordinates

on Confn(P3) because they are not homogeneous under rescalings of the twistors. A natural

set of homogeneous coordinates for Confn(P3) are the cluster X -coordinates. They are

defined with respect to a given cluster for each unfrozen node j and are related to the

A-coordinates and the adjacency matrix of the cluster via

xj =
∏
i

a
bij
i , (3.4)

where the product runs over all nodes (frozen and unfrozen) labelled by i. Under mutation

on an unfrozen node k the X -coordinates change according to

x′i =

{
1/xi k = i ,

xi
(
1 + x

sgn(bik)
k

)bik k 6= i .
(3.5)

Note that if node i is not connected to node k then bik = 0 and x′i = xi.

The adjacency matrix bij actually defines a Poisson structure on the space Confn(P)

via the formula

{xi, xj} = bijxixj . (3.6)

The choice of cluster is irrelevant since the formula (3.6) is preserved under mutation. Note

that only the restriction of the adjacency matrix to the unfrozen nodes actually appears

in (3.6). We recall that a Poisson structure can be described in terms of a bivector b

such that b(df, dg) = {f, g}. The adjacency matrix of a cluster then gives the components

of the Poisson bivector in the coordinate system given by the (logarithms of the) cluster

X -coordinates for that cluster.

If we restrict attention to the real case then the condition that all X -coordinates obey

0 < x < ∞ defines a region inside Confn(RP3). The region should be visualised as a

polytope with a boundary that is made of facets corresponding to codimension-one sub-

algebras of the original cluster algebra (which, as we described before are associated to

individual A-coordinates). Each facet has boundaries corresponding to codimension-two

subalgebras (associated to admissible pairs of A-coordinates) and so on. If we continue

all the way down we arrive at dimension-zero subalgebras given by the clusters themselves

and corresponding to corners of the polytope in the sense that the corner is the origin in

the associated set of X -coordinates.

The cluster X -coordinates are edge coordinates in that they can be associated to the

one-dimensional edges (axes) which meet at the vertex corresponding to the cluster. On

each edge the associated X -coordinate runs over 0 < x < ∞, in correspondence with the

fact that the X -coordinate associated to a given edge inverts under the mutation along

that edge.
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〈1234〉

〈1235〉 〈1236〉

〈1245〉 〈1256〉

〈1345〉 〈1456〉

〈2345〉 〈3456〉

Figure 2. The quiver diagram for the initial cluster for the algebra associated to Conf6(P3).

3.1 Hexagons and the A3 associahedron

For Conf6(P3), the initial cluster is represented by the quiver diagram given in figure 2 with

Plücker coordinates at each of the nodes. The unfrozen A-coordinates of this cluster are

a1 = 〈1235〉 , a2 = 〈1245〉 , a3 = 〈1345〉 . (3.7)

By repeated mutation of the above data according to (3.2) and (3.3) one obtains 14 dis-

tinct clusters arranged in the topology of the Stasheff polytope or associahedron illustrated

in figure 3. In total nine distinct unfrozen A-coordinates are obtained, corresponding to the

nine faces of the polytope, in addition to the six frozen ones present in every cluster. Three

are square faces and six are pentagonal. Each cluster corresponds to a vertex, with the un-

frozen A-coordinates of the cluster corresponding to the faces of the polytope which meet

at the vertex. The frozen A-coordinates 〈i i+ 1 i+ 2 i+ 3〉, being present in every cluster,

are not shown in figure 3. The initial cluster drawn in figure 2 corresponds to the cluster

in the top left of figure 3. The edges between clusters correspond to mutation operations.

Figure 3 also makes manifest the discrete symmetries of the Conf6(P3) cluster algebra.

A cyclic rotation of the initial cluster can be generated by a threefold sequence of mutations,

as indicated by the arrows. This corresponds to mutating on the three unfrozen nodes in

figure 2 in turn, starting at the bottom and moving to the top. A threefold cyclic rotation

corresponds to a reflection in the equatorial plane of figure 3 and also corresponds to the

parity transformation Zi 7→ Zi−1 ∧ Zi ∧ Zi+1 when applied to homogeneous quantities.

Finally, the reflection Zi 7→ Z7−i corresponds to a left-right reflection of figure 3 together

with a reflection in the equatorial plane.

The space Conf6(P3) can be identified with the space Conf6(P1) ∼= M0,6, that is the

moduli space of six points on the Riemann sphere modulo sl2 transformations. At the

level of Plücker coordinates this can be achieved by identifying an ordered four-bracket

〈ijkl〉 (such that i < j < k < l) with an ordered two-bracket (mn) (with m < n) made

of the absent labels from the set {1, . . . , 6}. In other words we make the identifications

〈1345〉 = (26), 〈1245〉 = (36), 〈1235〉 = (46) and so on. In this way the nodes of each quiver
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〈1345〉 〈1356〉

〈2346〉〈1246〉

〈1245〉 〈2356〉

〈1235〉〈1235〉

〈2456〉

〈1346〉

Figure 3. The A3 Stasheff polytope with six pentagonal faces and three square faces, each labelled

with the corresponding A-coordinate. The initial cluster corresponds to the vertex at the top left

corner at the intersection of the faces labelled by 〈1235〉, 〈1245〉, 〈1345〉. The three-step path leads

from the initial cluster to one obtained by a cyclic rotation by one unit.

1

2

3 4

5

6

Figure 4. The two-brackets (ij) can be identified with chords on a hexagon between the vertices i

and j. A triangulation of the hexagon then corresponds to a cluster of the A3 or Conf6(P3) polytope.

Above is shown the triangulation corresponding to the initial cluster of figure 2 comprised of the

chords (26) = 〈1345〉, (36) = 〈1245〉 and (46) = 〈1235〉 together with the six edges which correspond

to the frozen nodes.

diagram can be identified with chords of a hexagon. The edges of the hexagon correspond

to adjacent two-brackets, e.g. (12) = 〈3456〉. Such an identification is described in figure 4.

With the triangulation labelling of clusters to hand we may illustrate all triangulations on

the Stasheff polytope, as shown in figure 5.

It is important to stress again that figure 3 is not just a pictorial representation of

a set of topological relations between clusters. If we restrict attention to the case of real

twistors then Conf6(RP3) ∼= M0,6(R) is a three-dimensional space. The interior of the

polytope in figure 3 is precisely the region inside Conf6(RP3) where all the cluster X -

coordinates obey 0 < x <∞. Each corner is the origin in the set of X -coordinates defined

by the corresponding cluster. As an example, the X -coordinates of the initial cluster for

the Conf6(P3) polytope are

x1 =
〈1234〉〈1256〉
〈1236〉〈1245〉

=
(56)(34)

(45)(36)
,
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Figure 5. The Stasheff polytope for Conf6(P3) ∼=M0,6 with the clusters labelled by the different

triangulations of a hexagon.

x2 =
〈1235〉〈1456〉
〈1256〉〈1345〉

=
(46)(23)

(34)(26)
,

x3 =
〈1245〉〈3456〉
〈2345〉〈1456〉

=
(36)(12)

(16)(23)
. (3.8)

The vertex corresponding to the initial cluster is the origin x1 = x2 = x3 = 0 in this coor-

dinate system. The cluster coordinates run from 0 to ∞ along the three one-dimensional

edges which meet at the vertex. This is in accord with the fact that under a muta-

tion (which corresponds to moving along an edge to an adjacent vertex) the associated

X -coordinate inverts.

The adjacency matrix for the unfrozen nodes of the initial cluster is

b =

 0 1 0

-1 0 1

0 -1 0

 . (3.9)

We recall that the X -coordinates are (log) canonical coordinates for the Poisson bracket.

The adjacency matrix b in (3.9) is singular and has rank two. This means that there is a

coordinate ∆ which Poisson commutes with every function {∆, f} = 0. It is the product

of two of the xi above,

∆ = x1x3 =
(12)(34)(56)

(16)(23)(45)
=
〈1234〉〈1256〉〈3456〉
〈1236〉〈1456〉〈2345〉

. (3.10)

Equivalently, there is a canonical (up to a constant rescaling) one-form d log ∆ which is

null under the action of the Poisson bivector,

b(d log ∆, ·) = 0 . (3.11)

Note that ∆ is built purely from frozen A-coordinates.
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Another natural set of coordinates are dihedral coordinates [9] which can be defined

(here with respect to the trivial ordering {1, . . . , n}) for all the moduli spacesM0,n (or An−3

cluster algebras) via

uij =
(i j + 1)(i+ 1 j)

(i j)(i+ 1 j + 1)
. (3.12)

We require that the labels i and j are separated by at least two (as for unfrozen two-

brackets). For the case n = 6 this implies that there are nine such dihedral coordinates,

each labelled by the chords of the hexagon.

The interior of the Stasheff polytope is the region where all nine uij obey 0 < uij < 1.

A face of the polytope is the locus defined by uij = 0 where (ij) is the chord associated to

that face. When a particular uij = 0 then all the ukl such that the chord (kl) intersects

the chord (ij) take the value 1. The vertices of the polytope are then the origin in the

coordinate system defined by taking the dihedral coordinates associated to the triangulation

of the corresponding cluster. For example, the initial cluster is associated to the origin in

the coordinates {u26, u36, u46} and the equations u26 = 0, u36 = 0 and u46 = 0 define the

faces labelled by 〈1345〉 = (26), 〈1245〉 = (36) and 〈1235〉 = (46) respectively in figure 3.

These dihedral coordinates are related to the X -coordinates above via

u26 =
x3

1 + x3
, u36 =

x2(1 + x3)

1 + x2 + x2x3
, u46 =

x1(1 + x2 + x2x3)

1 + x1 + x1x2 + x1x2x3
. (3.13)

From the above relations it is clear that the three faces meeting at the vertex are equiv-

alently defined either by vanishing of dihedral coordinates or by vanishing of cluster

X -coordinates.

The dihedral coordinates form a complete set of nine multiplicatively independent ho-

mogeneous combinations of the A-coordinates. They can therefore be taken as an alphabet

for the construction of polylogarithms on Conf6(P3) =M0,6. They are related to the nine

letters taken in e.g. [22] for the construction of hexagon functions as follows,

u = u26u35u25u36 , 1− u = u14 , yu =
u35

u26
,

v = u13u46u36u14 , 1− v = u25 , yv =
u13

u46
,

w = u24u15u14u25 , 1− w = u36 , yw =
u15

u24
. (3.14)

The null Poisson coordinate ∆ is given by

∆ =
u24u26u46

u13u15u35
=

1

yuyvyw
. (3.15)

There are two distinct types of codimension-one subalgebras in the A3 polytope. Each

pentagonal face of figure 3 corresponds to an A2 subalgebra. For example, freezing the node

labelled by 〈1235〉 = (46) in the initial cluster, and mutating the other nodes generates

the pentagon of clusters around the edge of the corresponding face of the polytope. The

condition u46 = 0 corresponds to restricting to the pentagonal boundary. Physically, taking

the limit u46 → 0 corresponds to taking the double scaling limit where v → 0 on the branch
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u36 u14

u46

u13

Figure 6. The A3 polytope with four faces labelled by their dihedral coordinates. The double

scaling limits u46 → 0 and its parity conjugate version u13 → 0 are are the highlighted red pentagons.

The soft limits u36 → 0 and u14 → 0 are the blue squares. The line joining the two squares

corresponds to the collinear limit u13 = u46 = 0.

where yv →∞. Its parity conjugate version is the limit u13 → 0 which corresponds to v → 0

on the branch where yv → 0. These double-scaling limits are highlighted in red in figure 6.

The other type of codimension-one subalgebra is A1 × A1, corresponding to a square

face, as can be obtained from freezing the node 〈1245〉 = (36) in the initial cluster and

mutating the others. The condition u36 = 0 defines this face and taking the limit u36 →
0 corresponds to taking the soft limit where u → 0, v → 0, w → 1. Note that this

limit is a limit to a codimension one (i.e. dimension two) subspace. This is important

because, although the soft limit itself (of the remainder function) is independent of the

location approached on the face, after analytic continuation the same limit corresponds to

a Regge limit which is not independent of where on the face is being approached. The

remaining transverse kinematic dependence of the amplitude in the Regge limit is precisely

parametrised by the two-dimensional square face. The limit u36 → 0 and a cyclically

rotated one u14 → 0 are highlighted as blue squares in figure 6.

Admissible pairs of unfrozen nodes are pairs of faces which intersect on the boundary,

e.g. the pair {〈1235〉, 〈2456〉} = {(46), (13)} is admissible and intersects in a codimension-

two (i.e. dimension-one) A1 subalgebra corresponding to the shared edge of those two faces.

The edge in question is defined by u46 = u13 = 0 and corresponds to taking the collinear

limit of the hexagon amplitudes. Note that the collinear limit indeed interpolates between

two soft limits corresponding to the square faces labelled by (36) and (14).

The pair {〈1245〉, 〈2356〉} = {(36), (14)} on the other hand is not admissible as the

corresponding faces do not intersect on the boundary of figure 3. The absence of such

an intersection is directly related to the Steinmann relations obeyed by scattering ampli-

tudes, or even more basically, to the absence of overlapping factorisation poles in tree-level

amplitudes. In general we can describe admissible pairs as non-intersecting chords (ij)

of the polygon while intersecting chords give non-admissible pairs. Frozen A-coordinates

correspond to the edges of the polygon and therefore do not intersect any chord and hence

are admissible with every other A-coordinate.
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〈1234〉

〈1235〉 〈1236〉

〈1245〉 〈1256〉

〈1345〉 〈1456〉

〈1237〉

〈1267〉

〈1567〉

〈2345〉 〈3456〉 〈4567〉

Figure 7. The initial cluster of the Conf7(P3) cluster algebra, relevant for heptagon amplitudes.

Finally, admissible triples correspond to corners of figure 3, i.e. to clusters themselves.

They are codimension-three or dimension-zero subalgebras and as an example we could

take the triplet {〈1235〉, 〈1245〉, 〈1345〉} which defines the initial cluster.

The full space Conf6(RP3) ∼= M0,6(R) is tiled by 60 regions identical to the Stash-

eff polytope of figure 3. In general [9], the moduli spaces M0,n(R) are tiled by n!/(2n)

regions which are (n − 3)-dimensional polytopes, each corresponding to a choice of dihe-

dral structure (i.e. an ordering modulo cyclic transformations and reflections) on the n

points in RP1.

Each vertex of the polytope provides a natural base point for the contour of integration

over which a symbol made of homogeneous combinations of the A-coordinates can be

iteratively integrated to produce a polylogarithmic function [9].

3.2 Heptagons and the E6 polytope

For Gr(4, 7), the initial cluster is represented by the quiver diagram of figure 7. Each cluster

contains six unfrozen nodes as well as the seven frozen ones labelled by the adjacent four-

brackets 〈i i + 1 i + 2 i + 3〉. Repeated mutation generates a total of 833 distinct clusters

containing a total of 42 distinct unfrozen A-coordinates in addition to the 7 frozen ones.

A useful feature of cases of Gr(k, n) where the pair (k, n) is coprime (such as the

heptagon case) is that one may use the frozen A-coordinates to render the unfrozen ones

homogeneous [26]. In this way one can make a natural set of 42 homogeneous letters

labelled in one-to-one correspondence with the 42 unfrozen A-coordinates. They are given

by the following six quantities together with their cyclic rotations,

a11 =
〈1234〉〈1567〉〈2367〉
〈1237〉〈1267〉〈3456〉

a31 =
〈1567〉〈2347〉
〈1237〉〈4567〉

a51 =
〈1(23)(45)(67)〉
〈1234〉〈1567〉

a21 =
〈1234〉〈2567〉
〈1267〉〈2345〉

a41 =
〈2457〉〈3456〉
〈2345〉〈4567〉

a61 =
〈1(34)(56)(72)〉
〈1234〉〈1567〉

, (3.16)
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a24 a37

a13 a17

a32 a27 .

Figure 8. The initial cluster for Conf7(P3) labelled by homogenised A-coordinates.

a51a24 a62 a41 a33

a13

Figure 9. The initial cluster of Conf7(P3) does not have the topology of an E6 Dynkin diagram

but it is possible to mutate it to one which does. This cluster contains homogenised A-coordinates

of all six types given in (3.16).

Here we use the notation

〈1(23)(45)(67)〉 = 〈1234〉〈5671〉 − 〈1235〉〈4671〉 . (3.17)

By labelling the nodes of the quiver diagram with the homogenised A-coordinates, the

initial cluster can be illustrated as in figure 8.

Just as in the hexagon case we should try to visualise the 833 clusters being connected

together in a polytope (the E6 polytope). The polytope is a six-dimensional space with

42 codimension one (i.e dimension five) boundary faces, corresponding to the 42 unfrozen

A-coordinates. Considering the dimension and the number of vertices it is not as visually

instructive to plot the full polytope as a graph. Nevertheless similar general features are

present as in the hexagon case.

To illustrate the structure of possible subalgebras it is helpful to bring the initial

cluster to a cluster with the topology of an E6 Dynkin diagram by a sequence of mutations

as shown in figure 9. A helpful feature of the E6-shaped cluster is that its homogenised

A-coordinates contain one representative of each of the six cyclically related classes given

in eq. (3.16). The codimension-one subalgebras obtained by freezing any given letter are

then obvious. Freezing a13 and mutating on the other nodes generates an A5 subalgebra.

Freezing a25 or a33 will generate a D5 subalgebra. Freezing a41 or a51 generates an A4×A1

subalgebra. Finally freezing a62 generates an A2 × A2 × A1 subalgebra. The E6-shaped

cluster is special in this regard. For example, the initial cluster contains only a1i, a2i and a3i

types of coordinates and therefore is at the intersection only of D5 and A5 type subalgebras.

Admissible pairs in the E6 case correspond to codimension two subalgebras, i.e. di-

mension four subalgebras. For example the admissible pair {a13, a62} corresponds to an

A2 × A2 subalgebra while the pair {a51, a41} corresponds to an A2 × A1 × A1 subalgebra.

Admissible triplets correspond to dimension three subalgebras and so on.

Each cluster (or dimension zero subalgbera) corresponds to a vertex on the boundary

of the E6 polytope and the six associated cluster X -coordinates define a local coordinate
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x5x2 x6 x4 x3

x1

a24
a62

1
a51

a41a51
a13

a33
a62

1
a41

a62

=

Figure 10. The E6-shaped cluster with X -coordinates shown at each of the nodes.

system such that the vertex is the origin. Once again the X -coordinates can be associated

to the one-dimensional edges of the polytope and the interior of the polytope is the region

where all X -coordinates obey 0 < x <∞. The six X -coordinates for the E6-shaped cluster

are shown in figure 10. The five-dimensional face corresponding to the A5 subalgebra is

the boundary component defined by x6 = 0 with all other xi obeying 0 < xi < ∞. The

condition x4 = 0 defines a face corresponding to an A4 ×A1 subalgebra and so on.

As in the A3 case we may define another set of coordinates uij such that the uij = 0

defines the codimension one face labelled by aij . In terms of the cluster X -coordinates of

the E6 shaped cluster we have the following six face coordinates,1

u13 =
x1

1 + x1
u62 =

x6(1 + x1)

1 + x6 + x1x6
(3.18)

u51 =
x5(1 + x6 + x1x6)

1 + x5 + x5x6 + x1x5x6
u41 =

x4(1 + x6 + x1x6)

1 + x4 + x4x6 + x1x4x6

u24 =
x2(1 + x5 + x5x6 + x1x5x6)

1 + x2 + x2x5 + x2x5x6 + x1x2x5x6
u33 =

x3(1 + x4 + x4x6 + x1x4x6)

1 + x3 + x3x4 + x3x4x6 + x1x3x4x6
.

Again the origin in the cluster X -coordinates coincides with the origin in the face coordi-

nates. In terms of the homogenised A-coordinates we have

u13 =
a62

a11a13
u62 =

a11a41a51

a62a67

u51 =
a24a67

a46a51
u41 =

a33a67

a41a56

u24 =
a46

a24a31
u33 =

a56

a22a33
. (3.19)

Again we clearly have 0 < uij < 1 in the interior of the polytope from (3.18). From

the equations (3.19) and cyclically related equations one can define a complete set of 42

homogeneous coordinates uij which makes an alternative multiplicatively independent set

to the aij . The variables uij have the property that uij = 0 implies ukl = 1 if the face

labelled by akl is not adjacent to the face labelled by aij . In other words, setting one uij
to zero for a given face means that all the ukl corresponding to non-adjacent faces go to 1.

Just as in the A3 case there are specific sequences of mutations which generate a cyclic

transformation of the A-coordinates in a given cluster. Rather than describe it here for E6

we give a general discussion for Confn(Pk−1) in the next section.

1Such variables have already been derived by Arkani-Hamed and collaborators [58] for finite cluster

algebras from a different perspective. Here we obtain them from the cluster X -coordinates. We would like

to thank Nima Arkani-Hamed for discussions of this point.
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Figure 11. A series of mutations which result in a rotation of the Gr(4, 8) initial cluster by one

unit. The dots represent unfrozen nodes (arrows have been removed for clarity) and the squares

represent the mutated nodes. Note there are no gaps between mutated nodes and we always mutate

from the bottom up and from left to right.

〈123〉

〈124〉 〈125〉 〈126〉 〈127〉

〈134〉 〈145〉 〈156〉 〈167〉

〈234〉 〈345〉 〈456〉 〈567〉

〈234〉 〈123〉

〈235〉 〈236〉 〈126〉 〈127〉

〈245〉 〈256〉 〈156〉 〈167〉

〈345〉 〈456〉 〈567〉

〈235〉 〈236〉 〈126〉 〈127〉

〈245〉 〈256〉 〈156〉

Figure 12. The Conf7(P2) initial cluster (left) and the cluster resulting from a cyclic mutation

of a Conf6(P2) subalgebra, highlighted in green (right). Conf7(P2) ∼ Conf7(P3) but we have given

this example to demonstrate this procedure is valid for Confn(Pk−1) ∀ k, n.

3.3 General cyclic mutations for n > 7

For n > 7, the Confn(P3) cluster algebra is infinite. We can still define a positive re-

gion where all X -coordinates are positive but the structure of its boundary is much

less clear. We can still, however, understand certain finite aspects of these infinite al-

gebras. For instance we can mutate from the initial cluster in figure 1 to another one

in which all the A-coordinate labels have been rotated by one unit. We do this by

mutating in a manner that mirrors building Young tableaux, instead building from the

bottom-left to the top-right (as opposed from top-left to bottom-right) as demonstrated

in figure 11.

We can use this method to rotate initial-type sub-algebras within a cluster in order to

search for clusters with specific Plückers. In fact we will use this method later to prove

that all R-invariants are cluster adjacent. An example is given in figure 12. As we can see,

the Conf6(P2) sub-topology remains unchanged but the labels have all been rotated by one

unit. The other nodes have rearranged themselves such that the frozen nodes connected to

the sub-algebra have shifted round the cluster. Mutating on 〈156〉 followed by 〈126〉 will

result in the same topology as the left cluster but with each label rotated by one unit. We

can repeat this process any number of times to achieve the desired number of rotations.
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4 Cluster adjacent polylogarithms

In [44] the notion of cluster adjacency for symbols and polylogarithms was introduced. It

extends the role of cluster algebras in describing the analytic structure of the scattering

amplitudes, at least in the hexagon and heptagon cases for planar N = 4 super Yang-Mills

theory. The structure of the cluster algebra restricts the way given A-coordinates may

appear next to each other in the symbol of appropriately defined IR finite quantities. In

particular, for two A-coordinates to appear next to each other in the symbol they must

appear together in some cluster. In other words they must either be a repeat of the same

A-coordinate or be an admissible pair.

The property of cluster adjacency is closely related to the Steinmann relations whose

role in constraining the analytic structure of scattering amplitudes was stressed in [47].

In [28] it was realised that the Steinmann relations were employed to greatly increase

the power of the hexagon bootstrap programme and in [29] the same conditions were ex-

tended to the heptagon case. In fact the Steinmann conditions can be extended to hold

on all adjacent pairs in the symbol [59, 60], not only in the first two entries. The cluster

adjacency property outlined above implies the Steinmann conditions, including the ex-

tended ones. In the hexagon (or A3) case this is simply the statement that the square

faces of the associahedron in figure 3 are not adjacent to each other. In the heptagon

(E6) case it follows from the fact that the face labelled by a11 only intersects those la-

belled by a14 and a15 but not those labelled by the other a1i. What is less obvious but

nevertheless appears to hold for the hexagon and heptagon symbols is that the extended

Steinmann relations together with the physical initial entry conditions actually imply clus-

ter adjacency.

Note that the property of cluster adjacency is described in terms of the inhomogeneous

A-coordinates. The polylogarithms describing the known dual conformal invariant ampli-

tudes are functions on the space Confn(P3) and their symbols are normally described in

terms of homogeneous multiplicative combinations of A-coordinates. Such combinations

can be expanded out into non-manifestly homogeneous combinations by the identities (2.13)

and (2.14). The resulting expressions are the ones which obey the adjacency criterion.

In the heptagon case we may take the homogenised A-coordinates (3.16) as our symbol

alphabet and the statement of adjacency becomes very direct. In the hexagon case this is

not possible, essentially due to the existence of the purely frozen homogeneous combination

∆ defined eq. (3.10).

In general, beyond the hexagon and heptagon amplitudes we discuss here, we expect a

number of new features whose interplay with cluster adjacency is not yet clear. Firstly there

will exist algebraic symbol letters with square roots which are not immediately related to

A-coordinates which are all polynomials in the Plücker coordinates. These already appear

in the N2MHV octagon at one loop in the four-mass box contributions. Moreover at

high enough multiplicity and loop order there will appear non-polylogarithmic functions,

e.g. in the ten-point N3MHV amplitude at two loops [11]. Nevertheless we believe that

some suitably extended notion of cluster adjacency will also hold beyond the hexagon and

heptagon amplitudes.
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〈1234〉

〈1235〉 〈1236〉

〈1245〉 〈1256〉

〈1345〉 〈1456〉

〈2345〉 〈3456〉

〈1234〉

〈1235〉 〈1236〉

〈1245〉 〈1256〉

〈1345〉 〈1456〉

〈2345〉 〈3456〉

〈1234〉

〈1235〉 〈1236〉

〈1245〉 〈1256〉

〈1345〉 〈1456〉

〈2345〉 〈3456〉

〈1234〉

〈1235〉 〈1236〉

〈1245〉 〈1256〉

〈1345〉 〈1456〉

〈2345〉 〈3456〉

Figure 13. The initial cluster of Conf6(P3) has the topology of an A3 Dynkin diagram. Freezing

〈1235〉 = (46) results in a A2 subalgebra whereas freezing 〈1245〉 = (36) results in a A1 × A1

subalgebra. These subalgebras generate the letters in ns[〈1235〉] and ns[〈1245〉], respectively.

4.1 Neighbour sets

We define the neighbour set ns[a] of a given A-coordinate a as the set of A-coordinates

b such that {a, b} form an admissible pair together with a itself. This set automatically

includes all the frozen A-coordinates. In terms of the polytope the unfrozen nodes in the

neighbour set correspond to all faces that share a codimension-two boundary with the face

labelled by a (i.e. are adjacent to a) together with the face labelled by a itself. One way of

systematically constructing neighbour sets is to go to a convenient cluster and freeze the

A-coordinate whose neighbour set is being considered. The neighbour set then consists

of all unfrozen A-coordinates generated in this codimension-one subalgebra, the frozen

coordinates and the coordinate a itself. This is demonstrated in figure 13. Note that the

notion of a neighbour set depends on the cluster algebra in question, as well as the choice

of A-coordinate a.

Through this procedure we find the following neighbour sets for the unfrozen hexagon

A-coordinates:

ns[〈1235〉] = {〈1235〉, 〈2456〉, 〈2356〉, 〈1356〉, 〈1345〉, 〈1245〉, & frozen coordinates.}
ns[〈1245〉] = {〈1245〉, 〈2456〉, 〈1345〉, 〈1246〉, 〈1235〉, & frozen coordinates.} .

(4.1)

As stated above, apart from a itself, the unfrozen elements of the neighbour set of a are

associated with the faces of the Stasheff polytope which neighbour the face associated with

a. The edges where these faces intersect correspond to the remaining A1 algebra in a

cluster containing the two letters associated with the two faces, cf. figure 3.

An equivalent way to state the neighbouring principle for the A3 case (and more

generally for the An case) is that A-coordinates corresponding to chords on the hexagon

which cross are non-neighbouring, i.e. are forbidden to appear next to each other in the

symbol. Examples are shown in figure 14.

There are 12 coordinates in the neighbour set of the A-coordinate 〈2456〉 = (13) in-

cluding itself and the 6 frozen coordinates. When writing down homogeneous functions,
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Figure 14. Forbidden pairs correspond to crossing chords of the hexagon.

it convenient to work with a homogeneous alphabet and there are 6 homogeneous combi-

nations that can be constructed using the allowed neighbours of 〈1235〉 = (46). Such a

homogeneous neighbour set can be chosen as the five X -coordinates associated to the edges

of the pentagonal face labelled by (46) together with ∆ from eq. (3.10) as follows:

hns[(46)] =

{
(13)(46)

(16)(34)
,
(24)(16)

(12)(46)
,
(36)(12)

(23)(16)
,

(14)(23)

(12)(34)
,

(26)(34)

(23)(46)
,

(12)(34)(56)

(23)(45)(16)

}
. (4.2)

Similarly, there are five homogeneous combinations that are made out of the 11 allowed

neighbours of 〈1245〉 = (36). They may be taken as the two X -coordinates associated to

the square (opposite edges on a square have the same X -coordinate) as well as any three of

the four X -coordinates which are associated to the edges which lead away from the square

face. A choice is as follows:

hns[(36)] =

{
(14)(23)

(12)(34)
,
(14)(56)

(16)(45)
,

(13)(24)

(12)(34)
,

(15)(46)

(16)(45)
,
(13)(45)

(34)(15)

}
. (4.3)

For the cases of the cluster algebras associated to Confn(Pk−1) with (k, n) coprime,

one has the advantage of using frozen coordinates to homogenise all remaining letters to

construct a homogeneous alphabet. Since frozen coordinates appear in every cluster by

definition, they cannot spoil cluster adjacency. Hence for (k, n) coprime, it is possible to

talk about the cluster adjacency directly in terms of homogeneous letters such as those in

equation (3.16) for seven-particle scattering and ignore the frozen coordinates altogether.

The heptagon alphabet (3.16) consists of 42 letters aij grouped into six types. The

neighbour sets of these letters can be worked out in the same way as in the hexagon

case, for example starting with the E6-shaped cluster in figure 9, freezing the letter one is

interested in and performing all possible mutations on the others. One finds the following

homogeneous neighbour sets for the letters a11, a21, a41 and a61:

hns[a11] = {a11, a14, a15, a21, a22, a24, a25, a26, a31, a33, a34, a35, a37, a41, a43, a46, a51,

a53, a56, a62, a67}
hns[a21] = {a11, a13, a14, a15, a17, a21, a23, a24, a25, a26, a31, a33, a34, a36, a37, a41, a43,

a45, a46, a52, a53, a55, a57, a62, a64, a66}
hns[a41] = {a11, a13, a16, a21, a23, a24, a26, a31, a33, a35, a36, a41, a43, a46, a51, a62, a67}
hns[a61] = {a12, a17, a23, a25, a27, a32, a34, a36, a42, a47, a52, a57, a61} .

(4.4)

All other homogeneous neighbour sets for Conf7(P3) can be obtained as cyclic rotations,

reflections or parity conjugates of these.
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4.2 Definition of cluster adjacent polylogarithms

We recall a polylogarithm of weight k obeys

df (k) =
∑
a∈A

f
(k−1)
[a] d log a , (4.5)

where for us A is the set of all A-coordinates of our cluster algebra. A cluster adjacent

polylogarithm is one where the f
(k−1)
[a] above additionally obey

df
(k−1)
[a] =

∑
b∈ns[a]

f
(k−2)
[b],a d log b , (4.6)

where the sum is only over b in the neighbour set of a. We also insist that the f
(k−1)
[a] are

themselves cluster adjacent polylogarithms in the same sense, i.e.

df
(k−2)
[b],a =

∑
c∈ns[b]

f
(k−3)
[c],ba d log c , (4.7)

and so on all the way down to weight zero. It follows from the above that all adjacent pairs

in the symbol of a cluster adjacent polylogarithm [. . .⊗ a⊗ b⊗ . . .] are such that a ∈ ns[b]

or equivalently b ∈ ns[a].

Note that the above discussion is phrased in terms of the inhomogeneous A-coordinates,

even though we are always interested in homogeneous functions f (k). This simply means

that all the df (k) above can be rewritten purely in terms of homogeneous combinations

of A-coordinates and the sum in (4.6) could be taken over the homogeneous neighbour

set of a. In general, not all the cluster adjacency properties will be manifest in such a

homogeneous representation, as happens in the hexagon case. In particular if we choose to

write take sum in (4.6) over the homogeneous neighbour set of a, then each homogeneous

b should be expanded in terms of the inhomogeneous A-coordinates in order to then reveal

the cluster adjacent nature of the expression (4.7).

In the heptagon case one can phrase the whole discussion in terms of the homogenised

unfrozen coordinates and the sum in (4.6) can be taken over the homogeneous neighbour

sets given in (4.4). Since the frozen factors play no role in cluster adjacency this property

can be made manifest at the same time as homogeneity.

4.3 Neighbour-set functions

When constructing integrable cluster-adjacent functions, it is natural to introduce the

concept of neighbour-set functions. They are defined as polylogarithms which satisfy

df (k) =
∑
b∈ns[a]

f
(k−1)
[b] d log b (4.8)

for a given choice of A-coordinate a. The final entries of the symbols of such functions are

selected only from the neighbour set of a given A-coordinate. As can be seen from (4.6)

above, any cluster adjacent weight-k function only requires neighbour set functions in its
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Weight 2 3 4 5 6 7 8 9 10 11 12 13 14

hns[(13)] 3 6 11 21 39 73 132 237 415 717 1216 2036 3358

hns[(14)] 3 5 10 19 36 66 120 213 374 644 1096 1835 3041

Full A3 6 13 26 51 98 184 340 613 1085 1887 3224 5431 9014

Table 1. Dimensions of the spaces of integrable words in the hexagon alphabet with hexagon

initial entries {u, v, w} only and final entries drawn from the neighbour sets hns[(13)], hns[(14)] or

from the full nine-letter A3 alphabet.

(k − 1, 1) coproduct. Hence, when constructing cluster adjacent functions of weight k one

can use a reduced ansatz for the (k − 1, 1) coproduct

f (k−1,1) =
∑
a∈A

d
(k−1)
[a]∑
i=1

cai
[
f

(k−1)
[a],i ⊗ a

]
, (4.9)

where f
(k−1)
[a],i are elements of a basis for the space of homogeneous weight-(k− 1) functions

whose final entries are in the neighbour-set of a and d
(k−1)
[a] is the dimension of this space. If

the A-coordinates a in (4.9) above cannot be chosen as unfrozen ones homogenised purely

in terms of frozen ones, then the coefficients cai are assumed to be constrained to ensure

homogeneity of the resulting expression. Eliminating any cluster-adjacency violation in the

ansatz reduces the size of the resulting linear algebra problem. The notion of a neighbour

set function is compatible with any possible choices of constraints in the initial entries, for

example when constructing hexagon symbols to describe six-point amplitudes in planar

N = 4 super Yang-Mills theory.

We now illustrate neighbour set functions for Conf6(P3). In this case, there are two

types of unfrozen A-coordinates with neighbour set functions: (13) & cyclic and (14) &

cyclic. The neighbour-set functions for the hexagon are then defined as homogeneous,

cluster-adjacent functions that obey the initial entry condition, i.e. begin with the three-

cross ratios of the hexagon (u, v or w from eq. (3.14)), and end with aforementioned

homogeneous combinations that are cluster-adjacent to (13) or (14). The dimensions of

such spaces for a few weights are compared to the full space of cluster-adjacent hexagon

symbols is given in table 1.

We have also computed the neighbour-set functions of the heptagon letters up to

weight seven. The dimensions of the neighbour-set function spaces depend on the letter

and they are summarised in table 2. For weights 2–7 we find the span of all a2i and

a3i neighbour-set function spaces covers the entire cluster-adjacent function space of the

corresponding weight.

4.4 Integrability

It is interesting to investigate in low weights the spaces of cluster adjacent functions without

any initial entry condition. At weight two we may split the space of integrable words

into those which are symmetric in the two entries of the symbol and those which are
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Weight 2 3 4 5 6 7

hns[a1i] 10 29 83 229 612 1577

hns[a2i] 15 43 117 311 804 2025

hns[a4i] 6 14 34 87 224 570

hns[a6i] 4 11 29 76 193 476

Full E6 28 97 308 911 2555 6826

Table 2. Dimensions of the neighbour-set function spaces of the heptagon alphabet with initial

entries a1i and the dimensions of the full cluster-adjacent heptagon functions.

antisymmetric. The symmetric ones are trivially integrable: any word of the form [a ⊗
b] + [b⊗ a] is the symbol of log a log b. Adjacency however constrains the possible choices

of a and b - they must come from a common cluster, i.e. they must not correspond to

distant faces on the polytope. The antisymmetric words on the other hand are not trivially

integrable. However, they do automatically obey the adjacency condition, in the sense that

all antisymmetric integrable weight two words are cluster adjacent, even if that condition

was not imposed in constructing them. Actually they obey a stronger condition, namely

that the A-coordinates appearing in the two slots can be found in some cluster together

where they are connected by an arrow.

When we investigate weight three words we find that the associated triplets of A-

coordinates are of two possible types. Each term [a ⊗ b ⊗ c] is either of the form where

a, b and c can all be found together in the same cluster or we have c = a′ where a′ is the

result of mutating on a in some cluster. In fact there is an even stronger condition in this

latter case: if we find triplets of the form [a⊗ b⊗ a′] then they can always be combined so

that the intermediate letter becomes the X -coordinate associated with the mutation pair

(a, a′). Recall that X -coordinates are associated to one-dimensional edges of the polytope

which are also associated to mutations. Moreover if there is more than one edge between

the two faces labelled by a and a′ those edges are associated to the same X -coordinate.

In other words X -coordinates are associated to mutation pairs of A-coordinates, hence we

may denote them by x(a, a′). So we have triplets of the form [a⊗ x(a, a′)⊗ a′] or triplets

[a⊗ b⊗ c] where all three letters can be found together in some cluster.

4.5 Cluster adjacency in hexagon and heptagon loop amplitudes

We have confirmed that all the currently available results for hexagon and heptagon func-

tions appearing in the loop expansion of MHV and NMHV amplitudes are cluster adjacent

polylogarithms. That is, the functions EMHV,(L) and E
(L)
ijklm are weight 2L polylogarithms

whose symbols obey the cluster adjacency conditions and whose initial entries are con-

strained to be compatible with the physical branch cut conditions. In the hexagon case

this means the initial entries are drawn from the set {u, v, w} from (3.14) and in the hep-

tagon case that they are of the form a1i from the heptagon alphabet given in (3.16).

In the MHV case the (2L − 1, 1) coproduct of the polylogarithmic functions which

appear is constrained in the the final entries are drawn only from A-coordinates of the
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form 〈i j− 1 j j+ 1〉. This behaviour follows from an analysis of the Q̄-equation of [49, 50].

This has the consequence that the (n − 1, 1) coproduct of the MHV amplitudes is heav-

ily constrained,

E(2L−1,1) =
∑
i,j

[Eij ⊗ 〈i j − 1 j j + 1〉] , (4.10)

where Eij is a neighbour set function of the A-coordinate 〈i j − 1 j j + 1〉, i.e. it is a weight

(2L − 1) polylogarithm whose symbol’s final entries are drawn from the neighbour set of

〈i j − 1 j j + 1〉.
In the NMHV case there is an interplay between the R-invariants and the final entries

of the symbols of the polylogarithms which appear. We will address this point in greater

detail in section 6.

5 Cluster adjacency of tree-level BCFW recursion

It is clear from the above discussion that cluster adjacency of polylogarithms or symbols

has a non-abelian character. Two A-coordinates a and a′ which cannot appear next to

each other are allowed to appear in the same word if they are appropriately separated by

intermediate A-coordinates. For example, if they are separated by one step only the X -

coordinate associated to the relevant mutation appears between them, as discussed above.

This non-abelian behaviour is due to the fact that the symbol comes with an ordering

which ultimately reflects the fact that monodromies of the associated iterated integrals do

not commute with each other.

However we now discuss a setting where an abelian form of cluster adjacency holds.

It is in the context of the poles of rational functions contributing to tree-level amplitudes.

Here we will restrict our discussion to the cluster adjacency properties of BCFW tree-

amplitudes for NMHV and N2MHV helicity configurations. The superconformal and dual

superconformal symmetries are known to combine into a Yangian structure [61]. BCFW

expansions for tree amplitudes are solved in terms of Yangian invariants. These quantities

can be found as residues in the Grassmannian integral of [62, 63].

The pattern we find can be stated as follows: every Yangian invariant in the BCFW

expansion of tree amplitudes has poles given by A-coordinates which can be found together

in a common cluster.

Expressions for BCFW expansions may be generated directly in momentum twistor

variables using the bcfw.m package provided in [64]. We give explicit examples showing all

BCFW terms obey the cluster adjacency property up to eight points. As well as providing

another example in which the cluster algebra structure plays a role in controlling the

singularities of amplitudes, the discussion of R-invariants will be relevant later when we

consider NMHV loop amplitudes.

5.1 NMHV

The BCFW expansion of the n-point NMHV tree amplitude of N = 4 SYM (divided by

the MHV tree) is given by

Atree
n,1 =

∑
1<i<j<n

[1ii+ 1jj + 1] (5.1)
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〈1234〉 〈1235〉 〈1245〉 〈1345〉 〈2345〉

Figure 15. The single Conf5(P3) ∼ A0 cluster. All nodes are frozen.

where we remind that the R-invariant [ijklm] is given by

[ijklm] =
〈〈ijklm〉〉

〈ijkl〉〈jklm〉〈klmi〉〈lmij〉〈mijk〉
. (5.2)

Here the denominator is a product of Plücker coordinates which are examples of A-

coordinates of the cluster algebra associated to Confn(P3). The numerator is a polynomial

in momentum twistors and the Grassmann parameters χi encoding the supermultiplet

structure, 〈〈ijklm〉〉 = (χi〈jklm〉+ cyclic)4.

The R-invariants are not all independent; there are
(
n−1

4

)
linearly independent ones

due to identities of the form

[abcde]− [bcdef ] + [cdefa]− [defab] + [efabc]− [fabcd] = 0 . (5.3)

We will now show that the A-coordinates which describe the poles of R-invariants obey

an abelian form of cluster adjacency: it is always possible to find a cluster where all the

poles of an R-invariant appear together. Since the poles multiply in a commutative fashion

there is no ordering to them and it is natural therefore that adjacency simply requires them

all to appear together in some cluster.

Five points

Five-points is a trivial example as there is just one R-invariant and hence the amplitude is

simply

A5,1 = [12345], (5.4)

also Conf5(P3) contains just one cluster containing all frozen nodes. The nodes in figure 15

are coloured blue to indicate that they are present as poles in the R-invariant [12345]. The

basic R-invariant (5.4) and its associated cluster will be the starting point for analysing all

other NMHV R-invariants.

Six points

At six-points there is only one type of R-invariant, [12345] and its cyclic rotations, which

make up the six-point, NMHV, tree given as

A6,1 = [12345] + [12356] + [13456] = [12346] + [12456] + [23456]. (5.5)

Since every R-invariant at six points is a rotation of (5.4) in Conf6(P3) we can identify each

one with a single cluster in the polytope, one of which is One would obtain the other five

R-invariants and their associated clusters through cyclic rotations of this cluster. This can

be achieved by applying the sequence of mutations illustrated in figure 3 which generates

a cyclic rotation. The clusters associated to the R-invariants are the six associated to the

top and bottom corners of the square faces in figure 3.
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〈1234〉

〈1235〉 〈1236〉

〈1245〉 〈1256〉

〈1345〉 〈1456〉

〈2345〉 〈3456〉

Figure 16. The cluster containing the poles of [12345] in Conf6(P3).

Note that while the full tree amplitude (5.5) only contains physical poles of the form

〈1245〉 ∼ 1/x2
25 = 1/(p2 + p3 + p4)2 and rotations, the adjacency property holds term by

term in the BCFW expansion. Hence it also constrains the way in which the spurious

poles at 〈1235〉 = 0 and its cyclic rotations may appear. A consequence of the adjacency

property is the well-known fact that the tree amplitude cannot have simultaneous poles in

two different factorisation channels. For example, there is no term with both 〈1245〉 and

〈2356〉 in the denominator. This statement is the analogue of the fact that the Steinmann

relations follow from cluster adjacency in the loop amplitudes.

Seven points and beyond

At seven points there are three types of R-invariant,

[12345] & cyclic, [12346] & cyclic, [12356] & cyclic. (5.6)

The tree amplitude takes the form

A7,1 = [12345] + [12356] + [12367] + [13456] + [13467] + [14567] . (5.7)

As with (5.5), the BCFW representation of this amplitude is not unique due to the identity

among the R-invariants (5.3). At seven points multiple clusters contain the poles of a given

R-invariant and hence R-invariants are associated to sub-algebras in the full Conf7(P3)

cluster algebra. For example, the initial cluster in figure 7 contains all the poles of [12345].

It also contains three more unfrozen nodes in the second column. Performing all possible

mutations in the second column generates an entire A3 subalgebra, all of whose clusters

contain the poles of [12345]. This is illustrated in figure 17. The other two types of

R-invariants in (5.6) appear respectively in A2 and A1 subalgebras.

One form of the eight-point NMHV tree amplitude is given by

A8,1 =[12345] + [12356] + [12367] + [12378] + [13456]

+[13467] + [13478] + [14567] + [14578] + [15678].
(5.8)

As we can see, more types of R-invariants begin to appear at eight points so we have pre-

sented their subalgebras in table 3 below along with their subalgebras at lower points. The

notation A0 in table 3 indicates that a single cluster is associated to that R-invariant. The

last R-invariant [12357] does not appear in the BCFW expansion of any tree in formula (5.1)

amplitude but we can nevertheless associate a sub-algebra to this Yangian invariant object.
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〈1234〉

〈1235〉 〈1236〉

〈1245〉 〈1256〉

〈1345〉 〈1456〉

〈2345〉 〈3456〉

〈1237〉

〈1267〉

〈1567〉

〈4567〉

〈1234〉

〈1235〉 〈1236〉

〈1245〉 〈1256〉

〈1345〉 〈1456〉

〈2345〉 〈3456〉

〈1237〉

〈1267〉

〈1567〉

〈4567〉

Figure 17. A cluster containing the poles of [12345] in Conf7(P3). The unfrozen nodes highlighted

in red generate an A3 subalgebra by repeated mutation.

n 5 6 7 8

[12345] A0 A0 A3 E6

[12356] − A0 A1 A4

[12346] − A0 A2 A5

[13467] − − A1 A2 ×A1 ×A1

[12357] − − A2 A4

Table 3. Various R-invariants and their subalgebras in Confn(P3) at different multiplicities n.

As described in section 3.3 above, one can rotate the nodes in an initial-type cluster

by mutating up all consecutive columns. Using this we can show that one can obtain any

R-invariant by starting with the initial cluster, which we associate to [12345], and mutating

in different Confn(P3) sub-algebras. We illustrate this procedure with the following eight-

point example: we will find a cluster in Conf8(P3) which contains the poles of [13467].

Starting from [12345], the sequence of rotations to get [13467] is

[12345]
+4−−→ [12356]

+5−−→ [13467] (5.9)

where the rotations are in Conf6(P3) and Conf7(P3) respectively. To find a cluster in

Conf8(P3) with all the A-coordinates we need we start from the initial cluster (shown in

figure 18) and mutate in the Conf7(P3) subalgebra (the first two columns) such that its

nodes rotate by five to arrive at the cluster shown in figure 19. Then we mutate in the

Conf6(P3) subalgebra (the first column only) such that its nodes rotate by four. Beginning

with the Conf8(P3) initial cluster we employ our mutation prescription by mutating up

the first column, followed by the second column, repeating this another four times which

results in the cluster shown in figure 19 where the unchanged topology of the Conf7(P3)

subalgebra is given in green. We now mutate up the first column in the green section four

times, resulting in the final cluster shown in figure 20 where the poles of [13467] are in blue

and the A2×A1×A1 subalgebra is in red in agreement with table 3. Using this procedure

one can locate a cluster which contains the poles of any R-invariant for an arbitrary number

of points.
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〈1234〉

〈1235〉 〈1236〉

〈1245〉 〈1256〉

〈1345〉 〈1456〉

〈2345〉 〈3456〉

〈1237〉

〈1267〉

〈1567〉

〈1238〉

〈1278〉

〈1678〉

〈5678〉〈4567〉

Figure 18. A cluster containing the poles of [12345] in Conf8(P3).

〈1236〉

〈2367〉

〈1367〉

〈2346〉

〈3467〉

〈1467〉

〈1678〉 〈1567〉

〈1267〉

〈1237〉

〈1234〉 〈2345〉

〈1278〉

〈1238〉

〈3456〉

〈4567〉

〈5678〉

〈1236〉

〈2367〉

〈1367〉

〈2346〉

〈3467〉

〈1467〉

〈1678〉 〈1567〉

〈1267〉

〈1237〉

〈1234〉 〈2345〉

〈1278〉

〈1238〉

〈3456〉

〈4567〉

〈5678〉

Figure 19. The cluster obtained after five cyclic mutations of figure 18 in the first two columns.

〈1346〉

〈1347〉

〈1367〉

〈2346〉

〈3467〉

〈1467〉

〈1678〉 〈1567〉

〈1267〉

〈1237〉

〈1234〉 〈2345〉

〈1278〉

〈1238〉

〈3456〉

〈4567〉

〈5678〉

〈1346〉

〈1347〉

〈1367〉

〈2346〉

〈3467〉

〈1467〉

〈1678〉 〈1567〉

〈1267〉

〈1237〉

〈1234〉 〈2345〉

〈1278〉

〈1238〉

〈3456〉

〈4567〉

〈5678〉

Figure 20. A cluster containing the poles of the R-invariant [13467].

5.2 Beyond NMHV

Beyond NMHV, terms in BCFW tree amplitudes are more complicated than simple R-

invariants so it is less obvious that one could associate subalgebras of Confn(P3) cluster

algebras to individual terms. We show, up to eight points, that one can do this in much

the same way as for NMHV.

Six points

At six points the N2MHV amplitude is equivalent to the MHV amplitude. It is given by

A6,2 =
〈〈123456〉〉

〈1234〉〈1236〉〈1256〉〈1456〉〈2345〉〈3456〉
(5.10)
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〈1234〉

〈1235〉 〈1236〉

〈1245〉 〈1256〉

〈1345〉 〈1456〉

〈2345〉 〈3456〉

〈1234〉

〈1235〉 〈1236〉

〈1245〉 〈1256〉

〈1345〉 〈1456〉

〈2345〉 〈3456〉

Figure 21. A cluster in A3 corresponding to the six-point N2MHV amplitude.

where

〈〈ijklmn〉〉 =
〈〈ijkmn〉〉〈〈jklmn〉〉

〈jkmn〉4
(5.11)

is cyclically invariant and polynomial although not manifestly so in this form.

Identifying a cluster with (5.10) is trivial since every pole is an adjacent bracket and

hence appears in every cluster in Conf6(P3) i.e. one can associate this amplitude with the

entire A3 cluster algebra. The blue nodes correspond to poles in the amplitude and the

nodes highlighted in red correspond to the full A3 algebra in which the amplitude lives.

Seven points

The seven-point, N2MHV, tree-amplitude is equivalent to the NMHV amplitude

A7,2 = A6,2

+
〈〈134567〉〉

〈1345〉〈1347〉〈1367〉〈1567〉〈3456〉〈4567〉

+
〈〈123467〉〉

〈1234〉〈1237〉〈1267〉〈1467〉〈2346〉〈3467〉

+
〈〈12345〉〉〈〈14567〉〉

〈1234〉〈1245〉〈1345〉〈1456〉〈1457〉〈1567〉〈2345〉〈4567〉〈1(23)(45)(67)〉

+
〈〈12367〉〉〈〈23456〉〉

〈1236〉〈1237〉〈1267〉〈2345〉〈2346〉〈2356〉〈2367〉〈3456〉〈6(23)(45)(17)〉

+
〈〈12367〉〉〈〈14567〉〉

〈1237〉〈1267〉〈1367〉〈1467〉〈1567〉〈4567〉〈1(23)(45)(67)〉〈6(23)(45)(17)〉
.

(5.12)

The first term is equal to the expression (5.10) for the six-point amplitude. It is now

in Conf7(P3) ∼ E6 therefore some of the poles are now unfrozen and the A3 algebra is

now a subalgebra of the full E6 algebra, as shown in figure 22. As before, the blue nodes

correspond to poles in the term while the nodes highlighted in red correspond to an A3

subalgebra inside the full E6 algebra in which all the poles of (5.10) can be found. The

second and third terms of (5.12) can be obtained by rotating the momentum twistors

in (5.10) by two and five units respectively and hence one can obtain clusters containing

their poles by rotating figure 22 by the same amounts. We can associate the fourth term
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〈1234〉

〈1235〉 〈1236〉

〈1245〉 〈1256〉

〈1345〉 〈1456〉

〈2345〉 〈3456〉

〈1237〉

〈1267〉

〈1567〉

〈4567〉

〈1234〉

〈1235〉 〈1236〉

〈1245〉 〈1256〉

〈1345〉 〈1456〉

〈2345〉 〈3456〉

〈1237〉

〈1267〉

〈1567〉

〈4567〉

Figure 22. A cluster containing the poles of A6,2 in Conf7(P3).

〈3456〉〈4567〉 〈2345〉

〈1456〉 〈1345〉

〈1457〉 〈1245〉

〈1237〉 〈1267〉〈1(23)(45)(67)〉

〈1467〉〈1234〉 〈1567〉

Figure 23. A cluster corresponding to the 4th term in A7,2.

〈2367〉〈1237〉 〈4567〉

〈7(23)(45)(16)〉〈1567〉 〈1267〉

〈1467〉 〈1(23)(45)(67)〉 〈6(23)(45)(17)〉 〈1367〉

〈1234〉 〈2345〉 〈3456〉

Figure 24. A cluster corresponding to the 6th term in A7,2.

of (5.12) with an A1 subalgebra as shown in figure 23. One can obtain the fifth term

by rotating the fourth term by five units hence it also lives in an A1 subalgebra found

by rotating figure 23 by five units. Finally, the sixth term can be associated to an A2

subalgebra as illustrated in figure 24.
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Term Sub-Algebra Term Sub-Algebra Term Sub-Algebra Term Sub-Algebra

1 A3 ×A3 6 A2 11 A3 ×A1 16 A1 ×A1

2 A3 ×A2 7 A3 ×A3 12 A1 ×A1 17 A2 ×A1

3 A3 ×A1 8 A3 13 A1 ×A1 18 A3 ×A2

4 A2 ×A1 9 A3 ×A3 14 A2 ×A1 19 A2 ×A1

5 A1 ×A1 10 A3 15 A1 ×A1 20 A2

Table 4. Subalgebras associated to terms in A8,2.

Eight points

The eight-point N2MHV amplitude is the first true N2MHV amplitude in that it is not

equivalent to the parity conjugate of another Nk<2MHV amplitude. Explicitly it is given by

A8,2 =A7,2+
〈〈123478〉〉

〈1234〉〈1238〉〈1278〉〈1478〉〈2347〉〈3478〉

+
〈〈134578〉〉

〈1345〉〈1348〉〈1378〉〈1578〉〈3457〉〈4578〉

+
〈〈145678〉〉

〈1456〉〈1458〉〈1478〉〈1678〉〈4567〉〈5678〉

+
〈〈12345〉〉〈〈15678〉〉

〈1234〉〈1235〉〈1245〉〈1345〉〈1567〉〈1568〉〈1578〉〈1678〉〈2345〉〈5678〉

− 〈〈12378〉〉〈〈23456〉〉
〈1237〉〈1238〉〈1278〉〈2345〉〈2346〉〈2356〉〈2378〉〈3456〉〈235̄∩8̄〉

+
〈〈12345〉〉〈〈14578〉〉

〈1234〉〈1245〉〈1345〉〈1457〉〈1458〉〈1578〉〈2345〉〈4578〉〈1(23)(45)(78)〉

+
〈〈12356〉〉〈〈15678〉〉

〈1235〉〈1256〉〈1356〉〈1567〉〈1568〉〈1678〉〈2356〉〈5678〉〈1(23)(56)(78)〉

+
〈〈13456〉〉〈〈15678〉〉

〈1345〉〈1356〉〈1456〉〈1567〉〈1568〉〈1678〉〈3456〉〈5678〉〈1(34)(56)(78)〉

+
〈〈12378〉〉〈〈23467〉〉

〈1237〉〈1238〉〈1278〉〈2346〉〈2347〉〈2367〉〈2378〉〈3467〉〈7(23)(46)(18)〉

+
〈〈13478〉〉〈〈34567〉〉

〈1347〉〈1348〉〈1378〉〈3456〉〈3457〉〈3467〉〈3478〉〈4567〉〈7(34)(56)(18)〉

+
〈〈12378〉〉〈〈14578〉〉

〈1238〉〈1278〉〈1378〉〈1478〉〈1578〉〈4578〉〈1(23)(45)(78)〉〈7(23)(45)(18)〉

+
〈〈12378〉〉〈〈15678〉〉

〈1238〉〈1278〉〈1378〉〈1578〉〈1678〉〈5678〉〈1(23)(56)(78)〉〈7(23)(56)(18)〉

+
〈〈13478〉〉〈〈15678〉〉

〈1348〉〈1378〉〈1478〉〈1578〉〈1678〉〈5678〉〈1(34)(56)(78)〉〈7(34)(56)(18)〉

+
〈〈12378〉〉∆

〈1237〉〈1238〉〈1378〉〈2378〉〈4567〉〈235̄∩8̄〉〈7(23)(45)(18)〉〈7(23)(46)(18)〉〈7(23)(56)(18)〉 (5.13)

where in the last term we have the quantity ∆0|4 = δ0|4(χ2〈1378〉〈4567〉−χ3〈1278〉〈4567〉−
χ4〈7(23)(56)(18)〉+ χ5〈7(23)(46)(18)〉 − χ6〈7(23)(45)(18)〉 − χ7〈235̄ ∩ 8̄〉).

At eight points, Conf8(P3) is an infinite cluster algebra, however we can still associate

finite subalgebras to each of the 20 terms in the amplitude. These subalgebras are displayed

in table 4 where terms 1-6 are those in (5.12). Although the subalgebras shown in table 4

are all finite, at higher points they may become infinite. For example, the subalgebra
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〈1234〉 〈1238〉 〈1278〉 〈1678〉

〈1235〉 〈1258〉

〈1245〉 〈1256〉

〈1345〉 〈1456〉

〈2345〉 〈3456〉

〈1578〉

〈1568〉

〈1567〉

〈4567〉 〈5678〉

〈1234〉 〈1238〉 〈1278〉 〈1678〉

〈1235〉 〈1258〉

〈1245〉 〈1256〉

〈1345〉 〈1456〉

〈2345〉 〈3456〉

〈1578〉

〈1568〉

〈1567〉

〈4567〉 〈5678〉

Figure 25. A cluster containing the poles of [12345][56781] in Conf8(P3).

associated to (5.10) at ten points will be A3 × Conf8(P3) which is infinite as Conf8(P3)

is infinite.

The tenth term is a new type of term of the form

[12345][56781] , (5.14)

to which we can associate an A3 subalgebra, a cluster belonging to which takes the form

shown in figure 25 below. The left and right columns of blue nodes in figure 25 correspond

to the poles of [12345] and [56781] respectively while the red column signifies the A3

subalgebra to which we associate this term.

5.3 Discussion

We have shown that all NMHV R-invariants obey the cluster adjacency property in that

their poles can all be found together in some cluster. We have also shown that the BCFW

terms in the expansion of N2MHV trees also obey cluster adjacency for six, seven, and eight

points. To each term is associated some subalgebra in the full polytope where every cluster

contains all of the poles. Similar structures have emerged in the study of the Grassmannian

integrals of [62, 63] and on-shell diagrams [4]. The difference here is that the properties we

observe between poles (both physical and spurious) are phrased in the same language that

we have found relates the branch cuts (symbol entries) of the integrated amplitudes.

The results for tree-level NMHV and N2MHV are highly suggestive that there should

exist a general relation between the singularities of the Yangian invariant leading singu-

larities and the cluster algebras associated to Confn(P3). A natural question is whether

an extension of the notion of cluster adjacency holds for all Yangian invariants. This

would lead us to consider quantities which go beyond A-coordinates for Confn(P3) such as

the four-mass box leading singularity which exhibits square root branch cuts in momentum

twistor variables. Studying such quantities should lead to insight on what cluster adjacency

has to say beyond rational A-coordinates and should have implications for understanding

the boundary structure of higher polytopes and the type of transcendental functions which

appear beyond seven-point amplitudes.

Certain operations can also be performed on Yangian invariants [65], e.g. the ‘fusing’ of

two Yangian invariants is also a Yangian invariant. Could one find a cluster interpretation
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of such an operation? The cluster shown in figure 25 contains the poles of the product

of two Yangian invariants and could also be indicative of the amalgamation procedure [4]

whereby two clusters can be joined together to produce a cluster in a larger algebra.

6 NMHV loop amplitudes

Now we are in a position to relate the cluster adjacency properties described in the two

previous sections. The first amplitudes which exhibit both poles and cuts non-trivially are

the NMHV loop amplitudes.

6.1 Hexagons

The BDS-like subtracted NMHV hexagon is often written in terms of a parity even function

E(u, v, w) = E(Z1, . . . , Z6) and a parity odd function2 Ẽ(yu, yv, yw) = Ẽ(Z1, . . . , Z6),

where we have drawn attention to their dependence on the twistor variables. Here we will

adopt a shorthand notation which makes reference to the which of the cyclically ordered

twistors Zi sits in the first argument,

E1 = E(u, v, w) , E2 = E(v, w, u) , E3 = E(w, u, v) ,

Ẽ1 = E(yu, yv, yw) , Ẽ2 = −Ẽ(yv, yw, yu) , Ẽ3 = E(yw, yu, yv) .
(6.1)

The parity properties of E and Ẽ imply

E4 = E1 , Ẽ4 = −Ẽ1 . (6.2)

With this notation the hexagon NMHV amplitude takes the form

E6,NMHV = E1[(1) + (4)] + E2[(2) + (5)] + E3[(3) + (6)]

+ Ẽ1[(1)− (4)] + Ẽ2[(2)− (5)] + Ẽ3[(3)− (6)] . (6.3)

Here we have adopted a common shorthand notation for the R-invariants: we write (1) =

[23456] and cyclically related formulae. The function Ẽ is taken to obey

Ẽ1 − Ẽ2 + Ẽ3 = 0 . (6.4)

We may equivalently write ENMHV
6 as follows,

E6,NMHV = (1)F1 + cyc. F1 = E1 + Ẽ1 . (6.5)

In (6.5) the notation ‘cyc’ refers to all cyclic rotations of the momentum twistors. At L

loops the functions E and Ẽ are weight 2L polylogarithms.

To discuss the cluster adjacency properties of the hexagon NMHV amplitudes we

should consider the (2L− 1, 1) coproduct of E6,NMHV,

E(2L−1,1)
6,NMHV = (1)

∑
i<j<k<l

[F
〈ijkl〉
1 ⊗ 〈ijkl〉] + cyc. (6.6)

2Sometimes Ẽ(yu, yv, yw) denoted simply as Ẽ(u, v, w), in which case one should in addition take care

to remember its odd parity.
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Cluster adjacency manifest itself in two ways in the above expression. Firstly the F 〈ijkl〉

are neighbour set functions for 〈ijkl〉. This is the statement that F and hence E and Ẽ

cluster adjacent polylogarithms in the sense described in section 4.2. Secondly we find

that the different functions F
〈ijkl〉
1 appearing in (6.6) are constrained by the fact that F1

appears with the R-invariant (1) in (6.5).

In order to reveal the additional constraints that cluster adjacency places on the form

of F we exploit the fact that the R-invariants obey the identity

(1)− (2) + (3)− (4) + (5)− (6) = 0 . (6.7)

This allows us to modify the presentation of E(2L−1,1)
6,NMHV by adding to it a vanishing term of

the form

[(1)− (2) + (3)− (4) + (5)− (6)]Z1 , (6.8)

where Z is given by

Z1 =
∑

i<j<k<l

[Z
〈ijkl〉
1 ⊗ 〈ijkl〉] . (6.9)

Here (by cyclically symmetrising (6.8) if necessary) we can require that Z is anti-cyclic,

Z2 = −Z1 . (6.10)

This means that the presentation of E(2L−1,1)
6,NMHV is still manifestly cyclic,

E(2L−1,1)
6,NMHV = (1)

∑
i<j<k<l

[(F
〈ijkl〉
1 + Z

〈ijkl〉
1 )⊗ 〈ijkl〉] + cyc. (6.11)

We find the following additional cluster adjacency property of all hexagon NMHV loop

amplitudes: there exists a Z such that the only A-coordinates 〈ijkl〉 appearing in (6.11)

are in the neighbour set of every A-coordinate in the denominator of the R-invariant (1).

As we have discussed in section 5.1, the R-invariant (1) = [23456] is associated to a

single cluster in Conf6(P3) (in fact it is the one whose triangulation involves all the chords

of the form (1i)). It follows that the only unfrozen A-coordinates allowed in the final entries

are the ones of that cluster, namely 〈2346〉 = (15), 〈2356〉 = (14) and 〈2456〉 = (13). The

following unfrozen A-coordinates,

{〈1235〉, 〈1245〉, 〈1246〉, 〈1345〉, 〈1346〉, 〈1356〉} , (6.12)

are therefore forbidden in the sum in (6.11) above.

Note that since Z is multiplied by zero in (6.8) we do not need to require that it

is integrable, nor even that it is homogeneous. Nevertheless, the fact that it exists and
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obeys (6.10) has the following implications for the final entries (or (n − 1, 1) coproduct)

of F ,

F
〈1235〉
1 = −Z〈1235〉

1 ,

F
〈1246〉
1 = −Z〈1246〉

1 ,

F
〈1345〉
1 = −Z〈1345〉

1 ,

F
〈1356〉
1 = −Z〈1356〉

1 ,

F
〈1245〉
1 = −Z〈1245〉

1 ,

F
〈1346〉
1 = −Z〈1346〉

1 . (6.13)

The anti-cyclicity of Z implies3

Z
〈1246〉
1 = −Z〈1235〉

6 ,

Z
〈1345〉
1 = +Z

〈1235〉
3 ,

Z
〈1356〉
1 = +Z

〈1235〉
5 ,

Z
〈1346〉
1 = +Z

〈1245〉
3 . (6.14)

Combining the above two sets of relations we deduce that adjacency implies the following

relations among the coproducts of F ,

F
〈1246〉
1 = −F 〈1235〉

6 ,

F
〈1345〉
1 = +F

〈1235〉
3 ,

F
〈1356〉
1 = +F

〈1235〉
5 ,

F
〈1346〉
1 = +F

〈1245〉
3 . (6.15)

The equations (6.15) are the consequences of cluster adjacency between the final entries of

the coproduct of F = E + Ẽ and the R-invariants.

As discussed in [27], similar coproduct relations follow from the Q̄-equation of [49, 50].

We may ask how the Q̄ conditions are related to the adjacency ones. To do this it is

simplest to count how many homogeneous (final entry)⊗(R-invariant) combinations are

allowed by cluster adjacency. To do this one may choose five independent R-invariants,

say (1), (2), (3), (4), (5), and nine d log’s of multiplicatively independent homogeneous let-

ters and make an arbitrary linear combination of all 45 possible products. We expand

the resulting expression into the d log〈ijkl〉 and eliminate all pairs (m) d log〈ijkl〉 which

obey adjacency (taking care to remember that some A-coordinates are compatible with

the R-invariant (6) = (1) − (2) + (3) − (4) + (5)) and require the resulting combination

to vanish. This yields 27 conditions, leaving 18 linearly independent homogeneous (final

entry)⊗(R-invariant) combinations. This is exactly the same number of linearly indepen-

dent combinations which are compatible with the Q̄ final entry conditions described in [27].

3We remind the reader that the subscripts refer to the arguments of functions. For example, Z
〈1235〉
6

means Z
〈1235〉
1 |Zi→Zi−1 and not the 〈1235〉 coproduct element of Z6.
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We conclude that for the NMHV hexagon, the cluster adjacency property is equivalent

to the Q̄ final entry conditions. One should nevertheless stress that the Q̄ equation itself is

stronger than just the final entry conditions as it expresses the (2L−1, 1) coproduct entries

in terms of and integral over a limit of certain heptagon amplitudes. We find it remark-

able that cluster adjacency property in its various forms encompasses both the (extended)

Steinmann conditions as well as some of the implications of dual superconformal symmetry.

6.2 Heptagons

In the case of heptagons it is possible to write down 21 R-invariants,

[34567] = (12), [24567] = (13), [23567] = (14) & cyclic . (6.16)

They satisfy seven six-term identities of the form

(12)− (13) + (14)− (15) + (16)− (17) = 0 & cyclic . (6.17)

Only six of these identities are linearly independent and the number of independent

R-invariants is therefore 15. In a canonical basis (as used in [29, 49]) which comprises

the tree amplitude and 14 other R-invariants, the BDS-like-normalised amplitude is ex-

pressed as follows:

E7,NHMV = A7,1E0 +
[
(12)E12 + cyclic + (14)E14 + cyclic

]
, (6.18)

where A7,1 is equal to the NMHV tree amplitude, given in (5.7).

The property of cluster adjacency again manifests itself in the heptagon NMHV am-

plitudes. It is possible to find a representation of the (2L− 1, 1) coproduct of the form

E(2L−1,1)
7,NMHV =

∑
a∈A

[
[(12)ea12 + (13)ea13 + (14)ea14]⊗ a

]
+ cyc. (6.19)

Here the sum is over the heptagon alphabet (3.16). As in the hexagon case, adjacency

manifests itself in two ways in (6.19). Firstly each of the eaij is a weight (2L− 1) heptagon

neighbour set function for the letter a. This implies that the functions E0 and Eij in (6.18)

are cluster adjacent polylogarithms. Secondly, only some of the eaij are non-zero: the ones

where the letter a is cluster adjacent to all of the poles of the R-invariant (ij). For example,

the R-invariant (12) contains three poles that are non-frozen cluster A coordinates, namely

〈3567〉 ∼ a34, 〈3467〉 ∼ a15, and 〈3457〉 ∼ a26:

(12) =

(
〈3456〉χ7 + cyclic

)4
〈4567〉〈3567〉〈3467〉〈3457〉〈3456〉

. (6.20)

The intersection of the homogeneous neighbour sets of these coordinates defines the neigh-

bour set of the R-invariant (12), and similarly for the other R-invariants:

hns[(12)] = hns[a34] ∩ hns[a15] ∩ hns[a26]

= {a11, a12, a15, a21, a22, a26, a31, a32, a34, a53, a55, a57} ,
hns[(13)] = hns[a21] ∩ hns[a33] ∩ hns[a41] ∩ hns[a43]

= {a11, a13, a21, a23, a31, a33, a41, a43, a62} ,
hns[(14)] = hns[a11] ∩ hns[a14] ∩ hns[a21] ∩ hns[a34] ∩ hns[a46]

= {a11, a14, a21, a24, a31, a34, a46} .

(6.21)
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Only the (final entry)⊗(R-invariant) combinations compatible with the above and their

cyclic rotations are allowed by cluster adjacency.

Note that the representation (6.19) employs the full redundant set of R-invariants.

Upon elimination of the redundant R-invariants, the coproducts of the functions E0 and

Eij in (6.18) above are seen to be related to the quantities eij via

Ea0 =
∑
i

eai,i+2 , Ea12 = ea12 − ea16 − ea24 − ea46 , Ea14 = ea14 − ea16 − ea46 . (6.22)

As in the hexagon case, we do not require that the combinations
∑

a[e
a
ij⊗a] are integrable;

only
∑

a[E
a
0 ⊗a] and

∑
a[E

a
ij ⊗a] are integrable. Nevertheless, just as in the hexagon case,

the existence and adjacency properties of the eaij imply relations on the coproducts of the

functions E0 and Eij .

Out of the 7 × (7 + 9 + 12) = 196 cluster adjacent (final entry)⊗(R-invariant) com-

binations allowed by (6.21). The following linear combinations of cluster adjacent (final

entry)⊗(R-invariant) products vanish due to identities,

[(12)− (13) + (14)− (15) + (16)− (17)]⊗ {a11, a21, a31} (6.23)

as do their cyclic rotations. This allows us to eliminate 21 such combinations leaving 175

independent cluster adjacent combinations.

The 175 combinations form a larger set than the more restricted set of 147 NMHV

(final entry)⊗(R-invariant) combinations derived by Caron-Huot which are compatible with

the Q̄ equation. These 147 combinations are listed in [29]. Using the identities (6.17),

these NMHV final entries can be rewritten in the following manifestly cluster-adjacent way

in which the final entries of the function multiplying the R-invariant (ij) are in the set

hnsQ̄[(ij)] where:

hnsQ̄[(12)] = {a15, a21, a26, a32, a34, a53, a57} ⊂ hns[(12)]

hnsQ̄[(13)] = {a21, a23, a31, a33, a41, a43, a62} ⊂ hns[(13)]

hnsQ̄[(14)] = {a11, a14, a21, a24, a31, a34, a46} ⊂ hns[(14)] & cyclic . (6.24)

The above set of 7 × 3 × 7 = 147 (final entry)⊗(R-invariant) pairs are equivalent up to

using identities to the set presented in [29]. In contrast to the form presented in [29], the

Q̄-compatible final entries are monomials in the letters, which makes it trivial to verify

cluster adjacency properties. Note that the list of (final entry)⊗(R-invariant) pairs (6.2) is

not unique since it is possible to trade some combinations with others using the six-term

identities (6.17).

In [66] we will make use of the above cluster adjacent form for the NMHV heptagon am-

plitude to allow for an efficient implementation of the bootstrap programme at four loops.

7 Conclusions

We have explored and extended the role of cluster algebras and their relation to the ap-

pearance of singularities in scattering amplitudes in N = 4 super Yang-Mills theory. The
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picture which emerges is very geometric in nature, the boundary structure of the cluster

polytope controls the way in which both poles and branch cuts appear. Codimension-one

faces of the cluster polytope correspond to unfrozen A-coordinates which appear in the

symbol alphabet. The branch cuts exhibit a non-abelian structure, with sequential cuts

corresponding to faces which do not touch being forbidden. Poles in BCFW terms for tree

amplitudes (and more conjecturally Yangian invariants) exhibit an abelianised version of

adjacency; they all correspond to A-coordinates from the same cluster. The same adja-

cency structure also relates the poles of R-invariants and the final entries (i.e. derivatives)

of the polylogarithms which appear in the NMHV amplitudes.

The structures we have uncovered naturally lead to many further questions.

• Can we use adjacency to construct integrable words without having to apply the

bootstrap techniques? This question is even of interest if we do not insist on the

physical initial entry conditions and indeed one can ask it for all finite cluster alge-

bras, not just the cases of physical interest described here. A hint that this might

be possible comes from the observation that mutation pairs {a, a′} appearing in a

triple always appear in the form [a⊗ x(a, a′)⊗ a′] where x(a, a′) is the X -coordinate

associated to any mutation which takes a to a′.

• Can we extend our results to general NkMHV BCFW terms or more generally Yan-

gian invariants? Going beyond BCFW terms will lead to expressions which involve

quantities more complicated that A-coordinates. Perhaps we will learn something

about how such singularities interact with the known ones and how they relate to

adjacency.

• When considering loop amplitudes, to what extent does the structure seen here extend

to the octagon and beyond? There are several issues at stake here. Firstly, we would

ideally like to define a Steinmann IR finite quantity for all n, while the BDS-like

subtraction only exists for n 6= 0 mod 4. We also know that at eight points and

beyond we will have to deal with letters which involve square roots and are not just

rational functions of Plücker coordinates. It is important to understand what role

adjacency plays when these are included - it will necessarily go beyond the definition

of adjacency in terms of A-coordinates we have used here. This question is connected

to the question of whether we can understand the boundary structure of the cluster

polytope for Confn(P3) for n ≥ 8. Further, there will be the question of whether

adjacency can be extended beyond the polylogarithmic case to include the elliptic

functions appearing in e.g. the ten-point two-loop N3MHV amplitude.

• To what extent do adjacency constraints arise beyond planar N = 4 amplitudes? For

sufficiently many external legs there will always be Steinmann constraints on scat-

tering amplitudes. A natural question is whether these extend to further constraints

between pairs of singularities which are not both simple unitarity cuts of amplitudes.

The geometrical picture of the relations between singularities described here suggests

that it is important to understand the relevant geometry and its boundary structure
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in the more general setting. This geometry is necessarily more complicated in the

general case of massless scattering where dual conformal symmetry is broken.

It will be fascinating to explore the above questions. Ultimately we might hope to be

able to give a simple geometric or algebraic construction of physical scattering amplitudes.
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