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1 Introduction

The idea of constructing scattering amplitudes from their analytic structure is a very old
one. The idea developed in many directions, including the idea of the unitarity cut construc-
tion for loop amplitudes [1] and the BCFW recursion for tree-level amplitudes [2]. Related
ideas have been applied to constructing the S-matrix of massive theories directly [3, 4], in-
spired by recent developments in the numerical bootstrap for conformal field theories [5, 6].

Here we would like to develop further a theme that has seen a lot of progress in recent
years, namely the perturbative bootstrap programme applied to the massless amplitudes of
planar N = 4 super Yang-Mills theory [7–14]. In particular we will apply the recently dis-
covered property of cluster adjacency [15, 16] which exploits and develops the link between
the singularities of the amplitudes and cluster algebras of a certain type [17].

The link opened up in [17] relates the branch-cut singularities of polylogarithmic func-
tions (also known as the symbol ‘letters’) with the A-coordinates of cluster algebras asso-
ciated to the kinematical configuration space Confn(P3). Cluster adjacency then dictates
how the singularities are related to each other. In particular two symbol letters (or suc-
cessive discontinuities) can only be present if the associated A-coordinates appear together
in some cluster. Such a relation was found by studying the known hexagon and heptagon
loop amplitudes, including the four-loop MHV heptagon constructed in [18].

As an example of the power and utility of the cluster adjacency principle we show here
how it can be used to construct the four-loop NMHV heptagon amplitude from a rather

– 1 –



J
H
E
P
0
3
(
2
0
1
9
)
0
8
7

minimal and manifestly cluster adjacent ansatz. We begin here with a very brief review of
some basic aspects of scattering amplitudes in planar N = 4 super Yang-Mills theory. For
the aspects not reviewed in this paper, we refer the reader to previous papers relevant to
the cluster bootstrap programme where many aspects of amplitudes, bootstraps and cluster
algebras have been discussed in great detail.

Scattering amplitudes in planar N = 4 super Yang-Mills of n particles with mo-
menta {pi} are dual to expectation values of (super) Wilson loops on polygonal light-like
contours [19–27] with the vertices satisfying

pi = xi+1 − xi . (1.1)

This duality has very profound consequences for the scattering amplitudes. In particular,
the scattering amplitude exhibits the anomalous conformal symmetry acting on the Wilson
loop. The scattering (super)amplitude then can be decomposed into two parts

An = ABDS-like
n En , (1.2)

where ABDS-like
n is the IR divergent BDS-like MHV superamplitude [28]. It is the unique

solution to the anomalous dual-conformal Ward identity [29] dependent on only the two-
particle invariants (pi + pi+1)2 = x2

i i+2 (for n 6= 0 mod. 4). The remaining finite piece En
can be expanded into sectors,

En = En,MHV + En,NMHV + . . . (1.3)

and is invariant under the dual conformal symmetry.
The function En,MHV depends only on the cross-ratios of the Wilson loop,

uij =
x2
ij+1x

2
ji+1

x2
ijx

2
i+1,j+1

. (1.4)

For a seven-particle process, there are seven such cross-ratios satisfying a Gram determinant
constraint which makes E7,MHV a six-variable function. For NMHV amplitudes the function
En,NMHV is a sum over certain dual superconformal invariants [ijklm] with coefficients which
are functions of the dual conformal cross-ratios above. We will detail this structure further
after reviewing cluster adjacent polylogarithms in section 2. Our ansatz and computation
for the four-loop NMHV heptagon amplitude is detailed in Sect 3.

Having obtained our four-loop result we then analyse the amplitude in multi-Regge
kinematics in section 4. The multi-Regge or high-energy limit is the arena where realis-
tically occurring scattering configurations, originally studied within the analytic S-matrix
programme [30] and QCD [31–33], meet a beautiful simplification of their dynamical de-
scription in terms of effective, two-dimensional degrees of freedom. Particularly for N = 4

SYM theory, which is the focus of this article, this simplicity has allowed for the identifica-
tion of the space of functions required to describe the amplitude of an arbitrary number of
external gluons n at any loop order in the limit [34, 35], and in fact for n = 6 has even led
to the determination of the amplitude at finite coupling [36].
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In this limit amplitudes develop large logarithms in some of the kinematic vari-
ables (1.4), and so at each loop order they reduce to a polynomial of these logarithms, the
highest order of which corresponds to the leading logarithmic approximation or LLA, with
an obvious generalisation to the (next-to)k-leading logarithmic approximation or NkLLA.
The analysis of our four-loop amplitude provides a check of the consistency of our result
with the expected structure of the Fourier-Mellin representation described in [35, 37] at
LLA and NLLA. It then also provides new predictions at the next two logarithmic orders.
The four-loop results are provided in a supplementary file as are the new predictions for
the amplitudes in multi-Regge kinematics.

2 Symbol alphabet and cluster adjacency

The amplitudes we investigate here are believed to be given in terms of multiple polylog-
arithms. These are iterated integrals with a specified set of singularities or ‘letters’. In
our case the letters are described in terms of cluster A-coordinates for cluster algebras of
a particular type. Here we make use of the symbol, an algebraic object which captures the
analytic structure of a polylogarithmic function. The entries of the symbol are drawn from
the set of letters defining a given class of polylogarithms. We refer the reader to the many
available references, e.g. [16, 38–42] for background on polylogarithms and symbols.

In this section we summarise the statement of cluster adjacency and its consequences
for the symbols of amplitudes. We also review R-invariants and the way they are related to
the final entries of the symbols of NMHV amplitudes. Here we will restrict the discussion to
the facts relevant to the calculation of heptagon amplitudes but we refer the reader to [17]
for a more in-depth exposure on cluster algebras and to [15, 16] for cluster adjacency.

The kinematics of the scattering amplitudes or light-like Wilson-loops are naturally
parametrised using n momentum twistors [43] Zi ∈ CP3 with i = 1, . . . , n. Each twistor
also carries an index A which indicates the linear action of the sl4 dual conformal symmetry.
The basic sl4 invariants are the Plücker coordinates 〈ijkl〉 where

〈ijkl〉 = εABCDZ
A
i Z

B
j Z

C
k Z

D
l . (2.1)

In special cases where the four labels of the Plücker coordinate consists of two adjacent
pairs, 〈i− 1 i j − 1 j〉, they correspond to multi-particle Mandelstam invariants

〈i− 1 i j − 1 j〉
〈i− 1 iI〉〈j − 1 jI〉

= x2
ij , (2.2)

where I is the ‘infinity twistor’ which is necessary to relate twistor brackets to non con-
formally invariant quantities such as Mandelstam invariants. However, a dual-conformal
quantity such as En depends only on the homogeneous rational combinations of these brack-
ets such that the dependence on the infinity twistor cancels out.

The four-brackets 〈ijkl〉 are Plücker coordinates because the n twistors Zi can be
thought of as parameterising a Grassmannian Gr(4, n) modulo the rescaling of each of the
Zi individually. Since the global rescaling of all Zi simultaneously is already taken into
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account in the definition of the Grassmannian, the kinematical space is identified with

Confn(P3) = Gr(4, n)/(C∗)n−1 . (2.3)

The structure of the cluster algebras related to Confn(P3) dictates that the Plücker
coordinates are the only multiplicatively independent invariants for six particles, while for
seven particles one finds that the symbol of E7 contains also quadratic combinations such as

〈i(jk)(lm)(np)〉 = 〈ijkn〉〈ilmp〉 − 〈ijkp〉〈ilmn〉 . (2.4)

Starting from eight particles, besides polynomials in Plücker coordinates, also algebraic
roots show up in the symbol of the amplitude. These appear already at one loop due to
the presence of four-mass-box type cuts.

2.1 Cluster-adjacent symbols

The symbol entries encode the branch points of scattering amplitudes and their analytic
continuations across branch cuts. In an n-particle process with dual-conformal invariance,
Confn(P3) cluster algebras prescribe where in the kinematical space these branch points are.
In the case of seven-particle scattering, the Conf7(P3) cluster algebra generates 49 branch
points which appear in 42 homogeneous combinations in a scattering amplitude. These 42
can be split into six groups of seven which are closed under the Z7 cyclic symmetry [12],

a11 =
〈1234〉〈1567〉〈2367〉
〈1237〉〈1267〉〈3456〉

a31 =
〈1567〉〈2347〉
〈1237〉〈4567〉

a51 =
〈1(23)(45)(67)〉
〈1234〉〈1567〉

a21 =
〈1234〉〈2567〉
〈1267〉〈2345〉

a41 =
〈2457〉〈3456〉
〈2345〉〈4567〉

a61 =
〈1(34)(56)(72)〉
〈1234〉〈1567〉

, (2.5)

where the cyclic copies are defined as ai,j+r = aij
∣∣
Zk 7→Zk+r

. The adjacent brackets of the
form 〈i i + 1 i + 2 i + 3〉 correspond to frozen nodes that appear in every cluster and the
factors of each of the aij include only a single active node.

The aij above each correspond to a boundary component of the ‘positive’ region in
kinematical space. In the interior of this region all the aij are positive. The positive region
is also referred to as the cluster polytope (in the heptagon case it is the E6 polytope). In
the symbols of heptagon amplitudes, only the a1i may appear in the initial entries. This
corresponds to imposing physical branch cuts on the Euclidean sheet.

To see all these coordinates in the context of the Conf7(P3) cluster algebra, is it in-
structive to consider one of the clusters with the topology of an E6 Dynkin diagram, which
can be obtained after a series of mutations of the initial cluster and contains nodes of all
six types listed above. The knowledge of the symbol alphabet has been instrumental in the
computation of scattering amplitudes of six and seven particles by making it possible to
construct a finite ansatz made of all possible words in the symbol [7–14, 18].

In [15, 16] it was observed that the possible iterated discontinuities of hexagon and hep-
tagon amplitudes are governed by a geometric principle of cluster algebraic origin. Namely,
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a51a24 a62 a41 a33

a13

Figure 1. The E6 cluster.

for an amplitude to have a given pair of consecutive branch cuts, the corresponding sym-
bol letters should appear together in at least one cluster in the cluster algebra Confn(P3).
This property was referred to as cluster adjacency. In more geometric terms the principle
states that the boundary components of the cluster polytope that correspond to consecu-
tive branch points labelled by the aij are required to have a non-empty intersection. The
adjacency relations imply the Steinmann relations [14, 44, 45] on consecutive discontinuities
of amplitudes. Interestingly, when combined with the initial entry condition imposing only
physical branch cuts on the Euclidean sheet, the Steinmann relations (if imposed on every
Riemann sheet [46–48], also known as the extended Steinmann relations) conversely imply
the adjacency conditions, at least up to the weights so far investigated.

Using the E6 cluster in figure 1, it is easy to work out the letters that are allowed next to
any aij . One can freeze the node one is interested in and the remaining nodes together with
all their mutations populate its “(homogeneous) neighbour set” which we denote as hns[aij ].

hns[aij ] : homogeneous combinations of letters that are cluster adjacent to aij . (2.6)

Other neighbour sets can be obtained through cyclic rotations. For the heptagon case the
neighbour set relations are summarised in table 1.

We distinguish the two types of neighbour pairs. For some neighbour pairs, there exists
a cluster where they are connected by an arrow, whereas some are nowhere connected by
an arrow despite being allowed neighbours. We call these pairs connected and disconnected
neighbours, respectively.

Similarly, some pairs of letters, namely mutation pairs, can be obtained as mutations
of each other and never appear in the same cluster. While this is a sufficient condition for
two letters to be disallowed as neighbours, there are letters that never mutate to each other
but also never appear together in a cluster.

The concept of neighbour sets makes it natural to define the neighbour set functions,
namely the functions that end with letters that are in the neighbour set of a given letter
φ. These functions are particularly relevant for expressing any cluster-adjacency symbol of
weight w as a w − 1, 1 coproduct:

f (k) =
∑
φα∈A

∑
k

fhns[φα],k ⊗ φα , (2.7)

where the functions f (w−1)
hns[φα],k enumerated by the index k, form a basis for weight-(w − 1)

neighbour set functions. Note that the range of the index k varies depending on φα.
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a1i a2i a3i a4i a5i a6i

a11

a21

a31

a41

a51

a61

Table 1. The adjacency relations of the A coordinates of Conf7(P3). The symbols correspond to the
following possible relations between different letters, as explained in the main text. : connected
neighbours, : disconnected neighbours, : mutation pairs, : non-neighbours that never mutate
into each other.

Weight 2 3 4 5 6 7

hns[a1i] 10 29 83 229 612 1577

hns[a2i] 15 43 117 311 804 2025

hns[a4i] 6 14 34 87 224 570

hns[a6i] 4 11 29 76 193 476

Full E6 28 97 308 911 2555 6826

Table 2. Dimensions of the neighbour-set function spaces of the heptagon alphabet with initial
entries a1i and the dimensions of the full cluster-adjacent heptagon functions.

In table 2, we reproduce the dimensions of the spaces in which various types of heptagon
neighbour-set functions with physical branch cuts live. The dimensions of these spaces
depend on the letter the neighbours of which are allowed in the final entry. The neighbour-
set functions will play a central role in parameterising the four-loop NMHV amplitude.

2.2 R-invariants

Cluster adjacency manifests itself not only in the symbols of polylogarithms but also in the
poles of R-invariants introduced in [49]. R-invariants [ijklm] are the basic invariants of the
Yangian symmetry [50] of scattering amplitudes which combines both the superconformal
and dual superconformal symmetries. When written in twistor variables [51], they depend
on five twistors and are defined as

[ijklm] =
δ0|4(χIi 〈jklm〉+ cyclic)

〈ijkl〉〈jklm〉〈klmi〉〈lmij〉〈mijk〉
. (2.8)

Here the χi are Grassmann variables which complete the Zi into supertwistors. They
transform in the fundamental representation of the su(4) R-symmetry and encode all the
different possible choices of NMHV component amplitudes which may be extracted from
the NMHV super amplitude. We refer the reader to [49, 51] for details on the structure of
the supermultiplets and supertwistor variables.

The R-invariants satisfy six-term identities of the form

[ijklm]− [ijkln] + [ijkmn]− [ijlmn] + [iklmn]− [jklmn] = 0. (2.9)
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Taking into account these identities as well as the identities among the identities, the number
of independent R-invariants for an n-particle process is

(
n−1

4

)
. For the hexagon and the

heptagon, this counting gives 5 and 15 R-invariants respectively. The BCFW recursion
relations result in the following expression for NMHV tree superamplitudes in terms of the
R-invariants,

E(0)
n,NMHV =

∑
2<i<j≤n

[
1 i− 1 i j − 1 j

]
. (2.10)

It was noted in [16] that each R-invariant contains only cluster adjacent poles. This ob-
servation extends to the individual terms in BCFW representations of tree amplitudes with
higher degree of helicity violation even though the terms therein contain more complicated
Yangian invariants as well as products of R-invariants.

2.3 NMHV loop amplitudes and Q̄ final entries

The observations above extend from individual symbols and R-invariants to NMHV ampli-
tudes in a way in which poles and symbol final entries are related by cluster adjacency. We
use this to construct a simplified ansatz for the NMHV heptagon and comment in the next
section on how one can fix all its parameters using simple physical constraints at four loops.

In the case of seven-particle scattering, there are 21 R-invariants, namely

(12) = [34567] , (13) = [24567] , (14) = [23567] (2.11)

and their cyclic copies. They satisfy six independent six-term identities making the number
of independent R-invariants 15, which can be chosen as [52]

E(0)
7,NMHV = (12) + (14) + (34) + (16) + (36) + (56) ,

(12) & cyclic ,

(14) & cyclic .

(2.12)

This means that the L-loop NMHV heptagon amplitude can be written in the following form

E(L)
7,NMHV = E

(L)
0 E

(0)
7,NMHV +

(
E

(L)
12 (12) + E

(L)
14 (14) + cyclic

)
, (2.13)

where E0, E12 and E14 are all cluster adjacent polylogarithms built on the heptagon alpha-
bet (2.5). In this paper we use

g2 =
a

2
=

λ

16π2
(2.14)

as a loop-counting parameter, where λ is the usual ’t Hooft coupling.
To fully exploit the cluster adjacency in the final entries, we are required to write an

ansatz of a different form from (2.13), employing all 21 invariants. The Q equation [52]
already constrains the combinations of R-invariants times final entries that can appear
in the amplitude, and by making use of the six-term identities these can be recast in a
manifestly cluster adjacent form [16]:

hnsQ̄[(12)] = {a15, a21, a26, a32, a34, a53, a57} ⊂ hns[(12)]

hnsQ̄[(13)] = {a21, a23, a31, a33, a41, a43, a62} ⊂ hns[(13)]

hnsQ̄[(14)] = {a11, a14, a21, a24, a31, a34, a46} ⊂ hns[(14)] & cyclic , (2.15)
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where we introduced the notation hnsQ̄[(ij)] to refer to such sets henceforth. The above
sets result in 3× 7× 7 = 147 (final entry)⊗(R-invariant) pairs which are allowed.

Note that, while these letters are cluster neighbours of all of the poles of the cor-
responding R-invariant, the Q equation puts a more stringent constraint on these (final
entry)⊗(R-invariant) pairs. The poles of the R-invariants (12) and (13) would also be com-
patible with the letters {a11, a12, a22, a31, a55} and {a12, a13}, respectively leading to a total
of (12 + 9 + 7) × 7 = 196 cluster adjacent (final entry)⊗(R-invariant) pairs. Of these the
following 21,

[(12)− (13) + (14)− (15) + (16)− (17)]⊗ {a11, a21, a31} & cyclic, (2.16)

are identically zero due to identities. This leaves 175 independent cluster adjacent pairs,
which the Q constraint reduces to the 147 shown in (2.15).

As per the discussion above, we start with the following manifestly cluster adjacent
and Q satisfying ansatz for the L-loop BDS-like normalised NMHV amplitude,

E(L)
7,NMHV = e

(L)
12 (12) + e

(L)
13 (13) + e

(L)
14 (14) + cyclic. (2.17)

The eij are tensor products of the form

e
(L)
ij =

∑
φα ∈ hnsQ̄[(ij)]

∑
k

c
(ij)
k,α f

(2L−1)
hns[φα],k ⊗ φα , (2.18)

conforming to the coproduct structure of cluster-adjacent functions described in equa-
tion (2.7) and with final entries φα are chosen from the set hnsQ̄[(ij)] defined in equa-
tion (2.15).

Note that adjacency (and Q) helps in two ways in the above ansatz. It reduces the
possible final entries next to each R-invariant and it also reduces the possible next-to-final
entries for a given final entry. This means that we do not even need a full weight seven basis
of cluster adjacent functions, we only need the much smaller spaces whose final entries are
compatible with each φα in turn.

We stress that the form (2.17) is not unique due to the six-term identities that the
heptagon R-invariants satisfy and the amplitude E(L) needs to be integrable only on the
support of these identities. In order to obtain a manifestly integrable amplitude one should
express the 21 (ij) in terms of a non-redundant set of 15, e.g. those in equation (2.12). In
that basis, the integrable coefficient functions are expressed in terms of e(L)

ij as follows:

E
(L)
0 =

7∑
i=1

e
(L)
i i+2, E

(L)
14 = e

(L)
14 −e

(L)
16 −e

(L)
46 , E

(L)
12 = e

(L)
12 −e

(L)
16 −e

(L)
24 −e

(L)
46 . (2.19)

It is possible to remove some redundancies of this ansatz using the appropriate reflection
symmetries of the coproducts e(L)

ij . For example e(L)
12 is invariant under Zi 7→ Z3−i, which

relates the terms ending with a21, a26 and a53 to those ending with a32, a34 and a57,
respectively. Moreover, in e(L)

12 , a15 is preceded by a function which is invariant under the
reflections of the twistors that leave Z5 invariant.

In the following section we will focus on the technical details of the four-loop compu-
tation.
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3 The four-loop computation

We will first give an account of the free parameters in the cluster-adjacent ansatz with
dihedral symmetry (2.17) at four loops. We then describe the steps we took to find the
values of these parameters to determine the NMHV amplitude. We also explain how one
can use the supplementary files to construct the symbol of the amplitude in explicit form.

Following the dimensions listed in table 2, we can work out the dimensions of
weight-{7, 1} tensor-product spaces in which we are looking for the symbols eij . For
example, consider the neighbour-set functions associated with the seven final entries
{a15, a21, a26, a32, a34, a53, a57} of the symbol e12, as given in equation (2.15). The weight-7
neighbour set functions that come before a15 live in a 1577-dimensional space, those that
come before a21,a26 a32 and a34 live in a 2025-dimensional space and those that come be-
fore a53 and a57 live in a 570-dimensional one. This amounts to a total of 10,817 unknown
coefficients in the coproduct e(L)

12 but taking the reflection symmetry into account reduces
this number to 5426. With a similar counting, one has 4867 and 5919 unfixed coefficients
for e(4)

13 and e(4)
14 , respectively, so that the undetermined coefficients in (2.17) number 16,212

in total. Requiring that E(4)
7,NMHV is integrable, free of spurious poles and has the correct

collinear limits uniquely fixes all of these coefficients.
We have implemented these constraints in separate stages. One can start by requiring

the integrability of the symbol E14 = e14− e16− e46. This leaves 8,444 unfixed coefficients.
Then one can impose the integrability of E12 = e12 − e16 − e24 − e46 bringing this number
down to 56. Once the integrability of E12 and E14 is imposed, there are no new constraints
coming from the integrability of E0. In this 56-dimensional space, one can then look for
combinations for which the amplitude is free of spurious poles. These are poles that could
potentially appear in the limit where one of the 4-brackets in the denominator of the R-
invariants vanishes. However in physical amplitudes such poles are only allowed when the
4-bracket is of the form 〈i− 1ij − 1j〉, corresponding to an intermediate particle becoming
on shell. In all other cases, this potential pole must be cancelled by a vanishing of its
transcendental component, which, after also taking into account cyclic symmetry, implies
the following conditions:

Spurious I: E47|〈1356〉=0 = 0 , (3.1)

Spurious II: E23|〈1467〉=0 = E25|〈1467〉=0 , (3.2)

which have been worked out in [18, 53]. Imposing both conditions described in equa-
tion (3.1), one is left with only five coefficients to be determined by imposing a kinematic
limit, such as the collinear limits.

In the collinear limit, two of the neighbouring particles in a colour-ordered amplitude
become proportional to each other with an unspecified proportionality constant. We fol-
low [18] to describe the collinear limit in the momentum twistor. In a generic configuration,
the momentum twistor Z7 can be parametrised as a linear combination of four other mo-
mentum twistors as follows:

Z7 = Z1 + ε
〈1456〉
〈2346〉

Z2 + τ
〈1245〉
〈2456〉

Z6 + η
〈1256〉
〈2456〉

Z4 . (3.3)
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A collinear configuration is obtained when one sends first η → 0 followed by ε → 0. The
parameter τ then relates the momentum fraction.

Scattering amplitudes in planar N = 4 super Yang-Mills have a well-known collinear
behaviour and they can be related to the amplitude with one fewer particle. Usually the
BDS-normalised amplitude [54, 55] Bn is used to consider collinear kinematics, as opposed
to the BDS-like normalised one, because the former is finite in this limit and directly reduces
to the quantity of one fewer particle Bn−1. The two quantities are related via

Bn = exp

(
−Γcusp

4
Yn

)
En, Yn ≡ −E (1)

n,MHV . (3.4)

In other words a BDS-like normalised quantity “E”, which may be the full superampli-
tude (1.2), or a given MHV sector ENkMHV thereof (1.3), or a particular transcendental
component of the latter such as E0, Eij in (2.13), is related to the corresponding BDS-
normalised quantity “B” by an exponential factor involving the one-loop MHV amplitude
and the cusp anomalous dimension Γcusp.

Explicitly for n = 6, 7, the functions Yn are given by:

Y6 = −
3∑
i=1

[
Li2
(

1− 1

ui

)]
,

Y7 = −
7∑
i=1

[
Li2
(

1− 1

ui

)
+

1

2
log

(
ui+2ui−2

ui+3uiui−3

)
log ui

]
, (3.5)

where ui = ui,i+3 in terms of the cross-ratios defined in eq. (1.4).
For seven particle scattering, there are two types of combinations of the NMHV super-

amplitude components that produce six-point amplitudes. The “k-decreasing” combination
of BDS-normalised functions produces the six-point MHV superamplitude, whereas the
“k-preserving” ones produce the five independent components of the six-point NMHV su-
peramplitude [12].

For example, in the k-decreasing collinear limit, the MHV (ξ0) component of the six-
particle amplitude receives contribution from a number of functions multiplying different
R-invariants. More precisely, the combination

B0 +B23 +B34 = exp

(
−Γcusp

4
Y7

)(
E0 + E23 + E34

)
, (3.6)

where Γcusp is the cusp anomalous dimension, is what is expected to reproduce the BDS-
normalised six-point MHV amplitude B6,MHV.

Especially at four loops, it is cumbersome to compute the BDS-normalised functions,
which contain redundant information in that they involve a large number of known prod-
ucts. However, with the knowledge of the MHV heptagon amplitude, it is not necessary to
convert between the different normalisations of the amplitude. Instead, one can consider
the difference

E0 + E23 + E34 − E7,MHV , (3.7)

– 10 –



J
H
E
P
0
3
(
2
0
1
9
)
0
8
7

where E7,MHV is the known BDS-like normalised heptagon amplitude. Since E7,MHV and
the combination E0 + E23 + E34 both reduce to the same quantity

E0 +E23 +E34 , E7,MHV →
[
exp

(
Γcusp

4
(Y6 − Y7)

)
E6,MHV

]∣∣∣∣
L

(collinear limit) (3.8)

in the collinear limit, where E6,MHV is the six particle amplitude, one can impose the vanish-
ing of the difference (3.7) which only contains relatively simple, cluster-adjacenct quantities.

While the vanishing of (3.7) in the collinear limit is a sufficient constraint to uniquely
fix the amplitude, constraints that relate E(4)

7,NMHV to another amplitude are not strictly
necessary. One can still explicitly construct the BDS-normalised amplitude in either k-
decreasing or k-preserving collinear limit and determine E(4)

7,NMHV only by requiring the

finiteness of the limit, without prior knowledge of E(4)
7 .

Integrability and the cancellation of spurious poles are linear constraints on the space
of coproducts and finding their solution spaces can be formulated as null-space problems
for integer-valued matrices encoding these constraints (see [18] for details). We found
that an efficient way of computing these kernels is to work modulo a prime number and
feed the constraint matrices into SpaSM [56], a sparse linear solver that employs modular
arithmetic. One can then compute these null-spaces modulo p for various prime numbers p
and reconstruct the exact amplitude using the Chinese Remainder Theorem. However, it
was possible to guess the answer that satisfies all constraints exactly by only repeating the
calculation mod 43051 and mod 46153.

3.1 Explicit results

The explicit tensor products e(4)
ij are too large to be included as supplementary material to

this paper and therefore we provide them encoded as {6,1,1} coproducts. In this section
we describe how one can use the provided data to reconstruct the amplitude.

The file e74.m contains a 4-index tensor of dimensions 3×2555×42×42 in Mathematica
SparseArray format. The first index enumerates the tensors e(4)

12 , e
(4)
13 and e(4)

14 . Once the
first index is specified, the remaining array contains the coefficients ckαβij in the coproduct

representation of e(4)
ij :

e
(4)
ij =

2555∑
k=1

42∑
α=1

42∑
β=1

ckαβij f
(6)
k ⊗ φα ⊗ φβ . (3.9)

We also provide bases spanning the spaces of weight-w f
(w)
k in terms of {w − 1,1}

coproducts:

f
(w)
k =

dimw−1∑
`

42∑
α

M
(w)
k`α f

(w−1)
` ⊗ φα , (3.10)

using which one can recursively construct the symbols of functions f (w)
k in order to convert

the coproducts (3.9) to symbols. The coefficients M (w)
k`α are encoded in the files mw.m as

SparseArray objects for 2 ≤ w ≤ 6.
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Due to the cyclic symmetry of the superamplitude, the coefficients ckαβ1j for j = 2, 3, 4

are sufficient to describe the amplitude. The remaining symbols ckαβij with i 6= 1 can be

constructed by rotating the coproduct form (3.9). For example e(4)
23 can be constructed as

e
(4)
23 =

2555∑
k=1

42∑
α=1

42∑
β=1

ckαβ12 C
[
f

(6)
k

]
⊗ C

[
φα
]
⊗ C

[
φβ
]
, (3.11)

where the cyclic rotation operator C acts on the letters as

C
[
ai j
]

= ai j+1 (3.12)

while its action on the functions is a linear transformation in the corresponding func-
tion space:

C
[
f

(w)
k

]
=

dimw∑
`=1

C(w)
k` f

(w)
` . (3.13)

The matrices C(w)
k` are given as a Mathematica List in the file rotationmatrices.m for

2 ≤ w ≤ 6.
Following this procedure one obtains three 8-dimensional Mathematica SparseArray

objects encoding the symbols of e(4)
ij which enter the coefficient functions E(4)

∗ . These
then can be used to perform various analyses of our result, such as the investigation of its
behaviour in the multi-Regge kinematics.

4 Multi-Regge limit

In this section, we will consider the multi-Regge limit of our n = 7, 4-loop NMHV symbol,
with a two-fold aim: first, to check our calculation against independent results available for
the amplitude in this limit up to NLLA [35, 37]. And second, to obtain new predictions up
to N3LLA, which we hope will play an important role in further elucidating the perturbative
structure of the heptagon in the limit, and guide its finite-coupling determination, similarly
to the hexagon case. We start by briefly reviewing the kinematics and the most natural
amplitude normalisation for our purposes in subsections 4.1 and 4.2, before describing the
evaluation of the amplitude in subsection 4.3. The reader interested in the final result and
comparison may just skip directly to subsection 4.4.

4.1 Kinematics

We will focus on 2 → 5 scattering, for which multi-Regge kinematics (MRK) is defined as
the limit where the produced particles are strongly ordered in rapidity. For N = 4 SYM, the
nontrivial kinematic dependence is encoded in dual conformal cross ratios, and in [57, 58]
it was shown that in the following convenient choice of six algebraically independent cross
ratios, the limit becomes1

v1i ≡ ui+2i+5 → 1 , v2i ≡ u1i+3 → 0 , v3i ≡ u2i+4 → 0 , (4.1)
1In the notations of [35, 37], ui+1,j1 = Uij , due to different numbering of momentum twistors.
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with
v2i

1− v1i
≡ 1

|1− zi|2
,

v3i

1− v1i
≡ |zi|2

|1− zi|2
, i = 1, 2 , (4.2)

held fixed. The right hand-side defines the four real, or two complex, finite cross ratios z1,
z2 that parametrise the limit, whereas the two cross ratios that become infinitesimal may
be chosen as

τi ≡
√
v2iv3i , i = 1, 2 . (4.3)

From the above equations, we may also deduce the behaviour of all heptagon symbol
letters, eq. (2.5), in MRK, which is a necessary step before evaluating the corresponding
amplitude. Let us therefore record it here before closing this subsection,

a14→
1

a12
a15→ a11a12 a16→

1

a11
a24→

a13

a23
a27→

a17

a21

a32→
a12a13

a23
a33→

a23

a12
a36→

a21

a11
a37→

a11a17

a21
a41→

a23a26

a12

a42→
a17a34

a21
a43→ a11a23 a44→

a34

a11
a45→

a11a17a23

a21
a46→

a26

a12

a47→
a11a12a17

a21
a51→

a13a35

a23
a52→

a21a25

a11
a53→

a11a12a13

a23
a54→

a25

a11

a55→
a12a13a21

a23
a56→

a35

a12
a57→ a12a21 a61→ a12a17 a62→ a11a13

a63→
a25a34

a11
a64→ a11a12a13 a65→

1

a11a12
a66→ a11a12a17 a67→

a26a35

a12
,

(4.4)

where we see that only 12 out of the 42 letters remain multiplicatively independent in the
limit. These 12 letters may in turn be expressed in terms of the variables (4.1)–(4.3) as

a11→
τ1

z2z̄2
√
z1z̄1

a12→ τ2z1z̄1
√
z2z̄2 a13→

√
z2z̄2

τ2
1 τ2

a17→
1

τ1τ2
2

√
z1z̄1

a21→−
1

τ2z1
√
z2z̄2

a22→
τ1τ2 (z̄2−z̄1z̄2−1)√

z2z̄2

√
z1

z̄1

a23→−
z2
√
z1z̄1

τ1
a25→−

τ1 (1−z1)

z̄2
√
z1z̄1

a26→ τ2z̄1 (1−z2)

√
z̄2

z2

a31→
τ1τ2 (z2−z1z2−1)√

z2z̄2

√
z̄1

z1
a34→−

τ1 (1−z̄1)

z2
√
z1z̄1

a35→ τ2z1 (1−z̄2)

√
z2

z̄2
.

(4.5)

4.2 BDS normalisation and analytic continuation

While in the previous sections we determined the heptagon superamplitude in the BDS-like
normalisation2 ENMHV, in MRK it is most conveniently described in the BDS normalisation,
introduced in (3.4). In this paper we are exclusively dealing with symbols, and since
S(Γcusp) = 4g2, we may write each term in the weak coupling expansion of (3.4) at symbol
level as

E(L) =

L∑
k=0

B(k) (−Y )L−k

(L− k)!
. (4.6)

2In what follows, we will drop the particle multiplicity index n, since we will be focusing on n = 7.
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Given the conformal equivalence of MRK with the double soft limit for the heptagon, all
loop corrections to the corresponding BDS-normalised superamplitude will vanish in the
Euclidean region. In order to obtain a nontrivial result, we therefore need to analytically
continue the latter amplitude to different kinematic regions, and here we will chose the
region where we analytically continue the energy components of all produced particles to
opposite sign. In terms of the conformally invariant cross ratios, this amounts to

u73
C→ e−2πiu73 , (4.7)

and given the relation of the latter to the a1i letters,

a11 =
u14u51

u36u62u73
+ cyclic , (4.8)

it is evident that the amplitude in this region will differ from its value in the Euclidean
region by

∆B ≡ BC − B =− 2πiDiscu73B (4.9)

=− 2πi (−Disca11B −Disca12B + Disca13B −Disca15B + Disca17B) .

Note that the above equation also holds for each component of the superamplitude sepa-
rately, since the R-invariants (2.8) are rational functions of the kinematics, and thus they
will remain unchanged under the analytic continuation.

4.3 Evaluating the gluon amplitude in the limit

So far our discussion was at the level of the entire superamplitude, however in MRK the
natural object to consider are its gluon amplitude components, since the theoretical frame-
work for describing the limit was born out of the study of strong interactions. Focusing on
1 + 2→ 3 + . . .+ 7 scattering in all-outgoing momenta conventions, and denoting the helic-
ities of the produced gluons as h1, h2, h3, without loss of generality can define the relevant
BDS-normalised gluon amplitudes as

Rh1,h2,h3 ≡
A(−,−,+, h1, h2, h3,+)

ABDS(−,−,+, h1, h2, h3,+)

∣∣∣
MRK

, (4.10)

since the high energy of the incoming gluons implies that helicity is preserved along their
lines in the limit. Particularly for the NMHV case, which is the focus of this paper, there
exist two inequivalent helicity configurations, R−++ and R+−+, since R++− may be ob-
tained from the former by a discrete parity and target-projectile (a particular dihedral flip
that commutes with the limit) transformation.

The gluon amplitudes (4.10) can be extracted from the superamplitude, as coefficients
of particular monomials of the fermionic variables χIi entering in the R-invariants (2.8), with
the latter being polynomials in these variables due to the fermionic delta function. We defer
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the details of the calculation to a future publication [59], and just quote the final answer,3

R−++ = B̂0 + B̂67 + B̂71 +R234

(
B̂51 − B̂71

)
+R235

(
B̂56 − B̂51

)
,

R+−+ = B̂0 + B̂14 + B̂47 + B̂73 +R234

(
B̂12 − B̂14 − B̂47

)
+R345

(
B̂36 − B̂14

)
+R234R345

(
B̂14 + B̂62 − B̂12

)
, (4.11)

expressing the gluon amplitude as a linear combination of the independent, integrable com-
ponents of the BDS-normalised NMHV superamplitude B̂∗ with index ∗ equal to 0 or ij,
after we analytically continue it and take its multi-Regge limit, times the independent
rational factors coming from the R-invariants in the limit,

R234 = − z1

1− z1
, R235 =

z1z2

1− z2 + z1z2
, R345 = − z2

1− z2
, (4.12)

with the corresponding barred quantities being their complex conjugates.
In principle we now have everything laid out for extracting the symbol of the 4-loop

NMHV gluon amplitudes in MRK from the corresponding superamplitude in general kine-
matics, however in the current order the computation requires the tedious step of converting
from the BDS-like to BDS normalisation in general kinematics, eq. (4.6). Instead, we have
found it significantly more efficient to obtain the final result directly from the disconti-
nuity of E as follows: from the definition in the first line of (4.9), it is evident that the
discontinuity of a product of symbols F,G obeys the Leibniz rule,

∆(F ·G) = (F + ∆F ) · (G+ ∆G)− (F ·G) = ∆F ·G+ F ·∆G , (4.13)

since the ∆F ·∆G term has an additional factor of π, and is thus beyond the symbol. With
the help of this property, and eq. (4.6), is straightforward to relate the discontinuities of
the symbols of the BDS and BDS-like amplitudes in MRK,

∆Ê(L) =

L∑
k=1

(
B̂(k) − δk1∆Ŷ

) (−Ŷ )L−k

(L− k)!
, (4.14)

where also we also used the fact that in MRK B(k) → δk0 before analytic continuation, and
thus ∆B̂(k) = B̂(k) for k ≥ 1. In the above relation, the function Y and its discontinuity
evaluate in the limit to

Ŷ = 2(log2 τ1 + log2 τ2 + log τ1 log τ2) + log τ2 log |z1|2 − log τ1 log |z2|2

+
1

2
(log2 |z1|2 + log2 |z2|2 + log |z1|2 log |z2|2)

∆Ŷ = −2πi
[
−2 log τ1 − 2 log τ2 + log |z2|2 − log |1− z2 + z1z2|2

]
,

(4.15)

and |z|2 = zz̄ etc.
This completes our method for obtaining the BDS-normalised gluon amplitudes (4.10),

focusing on the NMHV configurations R−++ and R+−+. To summarise, starting with
3The result of this calculation was also reported in [35], but with the B̂ij components cyclically permuted

up by two compared to here, as a result of inconsistent conventions for momentum twistors.
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the symbol of E(L)
NMHV, eq. (2.17), we take the linear combinations of its transcendental

components, eq. (2.19), that appear in the right-hand side of (4.11) upon replacing B̂∗ →
E∗. For each such component, we take its discontinuity as in the second line of (4.9), and
then its multi-Regge limit as in (4.4) and (4.5), sequentially. Finally, we plug the result
on the left-hand side of (4.14), which is valid not only for the entire superamplitude, but
also for its components separately, and solve for B̂(L) recursively, starting from L = 1. For
example, at 4 loops we will have

B̂(4) = ∆Ê(4) +
1

6
Ŷ 3
(
B̂(1) −∆Ŷ

)
− Ŷ 2

2
B̂(2) + Ŷ B̂(3) . (4.16)

4.4 Comparison with BFKL approach and new predictions

In this final subsection, we will compare our findings for the 4-loop NMHV heptagon in
MRK with independent results obtained for the latter to LLA [35] and NLLA [37], based
on the Balitsky-Fadin-Kuraev-Lipatov (BFKL) approach [60–62]. We will also discuss our
new predictions for the amplitude in question up to N3LLA.

Let us start by reviewing what has been previously known for the heptagon in the
limit. Building on earlier work at LLA, in [37] an all-loop dispersion integral was presented,
yielding the 2→ 5 amplitude in MRK to arbitrary logarithmic accuracy. It reads,

Rh1h2h3e
iδ7(z1,z2) = 2πifh1h2h3 , (4.17)

where the right-hand side has the form of a Fourier-Mellin transform,

fh1h2h3 =
a

2

∞∑
n1,n2=−∞

(
z1

z̄1

)n1
2
(
z2

z̄2

)n2
2
∫
dν1dν2

(2π)2
|z1|2iν1 |z2|2iν2Φ̃(ν1, n1)Φ̃(ν2, n2)

× e−L1ω(ν1,n1)−L2ω(ν2,n2)Ih1(ν1, n1)C̃h2(ν1, n1, ν2, n2)Īh3(ν2, n2) , (4.18)

with

Li = log τi + iπ , δ7(z1, z2) =
πΓcusp

4
log

|z1z2|2

|1− z2 + z1z2|4
, (4.19)

which we see evidently depends on the variables (4.1)–(4.3) that naturally describe the limit.
Following the conventions of the relevant literature, in this section we have also switched
our coupling normalisation to

a = 2g2 . (4.20)

The remaining quantities in the integral (4.18) are associated to the effective particle
whose exchange governs the multi-Regge limit, known as the reggeised gluon or reggeon. In
the kinematic region characterised by the analytic continuation (4.7), we have in particular a
two-reggeon bound state, whose energy is the BFKL eigenvalue ω(ν, n), and whose creation
(annihilation) with a simultaneous emission a new final-state gluon of helicity h1 (h3) is
encoded in the combined quantity Φ̃Ih1 (Φ̃Īh2) known as the BFKL impact factor. These
building blocks also appear in the hexagon amplitude, and they can be determined from first
principles at weak coupling [63, 64], or even to all loops with the help of integrability [36].
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Finally, the genuinely heptagonal quantity C̃h2 , known as the central emission vertex,
describes the emission of a gluon of helicity h2 from the reggeon bound state in the middle
of the ladder.4 It was originally determined at leading order in [60], whereas its next-to-
leading order correction was extracted from the 2-loop MHV heptagon, after promoting its
known symbol [65] to a function, in [37]. Plugging this correction back to the integral (4.18)
it is then possible to compute the amplitude at higher loops to NLLA, and this was indeed
carried out for R(4)

−++. In more detail, at weak coupling the amplitude in MRK also has a
natural expansion in large logarithms in the infinitesimal τi variables, whose perturbative
coefficients may be defined as

Rh1,h2,h3 (τ1, z1, τ2, z2) eiδ7(z1,z2) = 1 + 2πi

∞∑
`=1

`−1∑
i1,i2=0

a`

(
2∏

k=1

1

ik!
logik τk

)
(4.21)

×
(
g̃

(`;i1,i2)
h1,h2,h3

(z1, z2) + 2πi h̃
(`;i1,i2)
h1,h2,h3

(z1, z2)
)
.

The maximal logarithmic order amounts to i1 + i2 = `−1, as a consequence of the fact that
all building blocks of the integrand (4.18) start at O(1), except for ω(ν, n), which starts at
O(a). These coefficients have already been determined in [35], in the notation

g̃
(`;i1,i2)
h1,h2,h3

→ g
(i1,i2)
h1,h2,h3

= LL[{i1,i2},{h1,h2,h3}] , (4.22)

where we also provided their naming in the supplementary files NMHVLL7.m and NMHVLL6.m
accompanying the paper in question. The latter file is needed because of the interesting
factorisation property

g
(i1,0)
−++ (ρ1, ρ2) = g

(i1)
−+ (ρ1) , (4.23)

reducing heptagon perturbative coefficients to hexagon ones, after one first expresses them
in so-called simplicial MRK coordinates,

ρ1 = − z1z2

1− z2
, ρ2 = (1− z1) z2 . (4.24)

Similarly, NLLA corresponds to i1+i2 = `−2, and the relevant coefficients that are visible at
the level of the symbol (imaginary part) may be found in the file gTilde.m attached to [37].
Note that since both R and δ7 are proportional to π, beyond one loop we can completely
neglect the contribution of the phase in the left-hand side of (4.21) to the symbol, so that

S
(

1
2πiR

(`)
h1,h2,h3

)
=

`−1∑
i1=0

`−1−i1∑
i2=0

(
2∏

k=1

1

ik!
logik τk

)
S
(
g̃

(`;i1,i2)
h1,h2,h3

)
, ` ≥ 2 . (4.25)

The perturbative coefficients belong to the class of single-valued multiple polylogarithms
(SVMPL) [35, 66, 67], which enjoy the important property that they can be uniquely
determined from the knowledge of their holomorphic part, defined as their z̄i → 0 limit,
also with any divergent log z̄i terms removed. Thus, in order to simplify our comparison

4In (4.18), the impact factor and central emission block have been rescaled compared to their original
definition, so as to better expose their analytic properties, but this does not alter their physical interpreta-
tion.
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even further, we may consider the holomorphic part of (4.25), which for the left-hand side
amounts to setting all z̄-dependent factors to one in the limit (4.5).

In this manner, we observe perfect agreement between the previously known results for
the NMHV heptagon, up to (N)LLA for the R(4)

+−+ (R(4)
−++) helicity configuration, and the

corresponding multi-Regge limit of our 4-loop symbol with general kinematic dependence.
We view this as strong evidence for the correctness of our result for the latter, as well as of
the all-loop dispersion integral (4.17)–(4.18).

Perhaps more importantly, from our calculation we have obtained new predictions for
the symbols of the remaining perturbative coefficients in (4.21) or (4.25), namely up to
N3LLA at 4 loops, which we include as the computer-readable file gTilde4L.m accompany-
ing the version of this paper on the arXiv. These predictions will be useful for determining
the central emission block beyond NLO, and may provide significant insight towards its
structure to all loops.

5 Conclusions

In this paper we presented the computation of the symbol of the four-loop correction to
the NMHV superamplitude of 7 particles in N = 4 super Yang-Mills as the unique com-
bination of weight-8 symbols whose letters are given by a Gr(4, 7) cluster algebra, exhibit
cluster adjacency in its iterated discontinuities and has a well-behaved collinear limit. We
then analysed the multi-Regge limit of our answer for the amplitude, confirming that it
agrees with results derived for the latter up to next-to-leading logarithmic accuracy [35, 37]
based on the BFKL approach, and also obtaining new predictions for an additional two
logarithmic orders.

The a priori knowledge of cluster adjacency was key in our computation in two ways.
Firstly it allowed us to construct an ansatz for the polylogarithmic components of the
amplitude with definite, monomial (final entry)⊗(R-invariant) pairs. Moreover, it restricts
the possible next-to-final entries for each of these pairs, drastically reducing the size of the
original ansatz.

A peculiar feature of our ansatz for the heptagon amplitude is that it requires the
inclusion of the entire set of 21 R-invariants to manifestly exhibit cluster adjacency. As a
result, integrability of the symbol is verifiable only on the 6 identities that these invariants
satisfy. This creates a trade-off between two natural ways of presenting the symbol of the
amplitude: one that manifestly corresponds to a function and one that reveals its cluster
adjacent structure.

In this paper we have only exploited the cluster adjacency of neighbouring symbol
letters. However, as noted in [16], integrability of the symbols in a sense “propagates” the
adjacency of adjacent letters to longer words. One particular example of this phenomenon
is the triplets rule which predicts the combination of letters that come between a mutation
pair separated by one site as the corresponding X coordinate. It would be interesting to
investigate by how much the a priori implementation of this rule and possible extensions
thereof facilitate the calculation of higher-loop amplitudes using the bootstrap approach.
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It would be very interesting to tackle amplitudes beyond six and seven particle scat-
tering in N = 4 super Yang-Mills where the symbol alphabet is given by a finite cluster
algebra. For instance, the applicability of cluster adjacency or extended Steinmann re-
lations to individual Feynman integrals [15, 47] strongly suggests that this is a general
feature of local quantum field theories. Furthermore, cluster adjacency has an imprint on
the amplitude also in special kinematics, such as the multi-Regge limit we studied, implying
relations even between functions of different logarithmic order. Studying more amplitudes
in the light of cluster adjacency may prove useful in developing a more general picture of
their analytic structure.
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