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Abstract

We identify and characterise the ‘givers and the receivers’ of volatility in cross-

market Bitcoin prices and discuss international diversification strategies in this con-

text. Using both time and frequency domain mechanisms, we provide estimates of

outward and inward spillover effects. These have implications for (weak-form) cross-

market inefficiency. In our setting, we treat high-degree of spillover as an indicator

of weak-form inefficiency because investors can utilise information on the dynamic

spillover effects to produce a best long-run prediction of the market. Our results show

that Bitcoin prices depict strong (dynamic) spillover in volatility, especially during

episodes of high uncertainty. The Bitcoin-USD exchange rate possesses net predic-

tive power, mirrored by the tendency of the Bitcoin-EURO market as a net receiver

relative to other markets. Robustness exercise generally supports our claim. The

overall implication is that during episodes of high uncertainty, Bitcoin markets depict

greater dynamic inefficiency, instrumenting the role of asymmetric information in the

path-dependence and predictive power of Bitcoin prices in an interdependent market.
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1 Introduction

Since it was actively traded in 2013, Bitcoin – the biggest and most active cryptocurrency

with a market capitalization over $1101 billion – has struck investors’ expectations of a

quick and sizeable return, like none other. In the absence of strict monetary and financial

regulations, cryptocurrency investors seem to be fully exploiting this opportunity and are

quickly moving from a state of despondency (due to recurrent losses from their investments

in regulated financial markets) to one of hope (because, Bitcoin prices are fundamentally

driven by the ‘feeling and the memory’ of investors at a point of time.2 To investigate

the nature of such type of investment decisions and help governments design adequate

regulations for limiting cross-market movement of shocks, a remarkable growth of research

has sprung lately.

A helicopter survey3 reveals that the literature has focused on two main aspects of cryp-

tocurrency price movements. First, conceptual designs aiming to depict potential weak-

nesses of this market show how the latter can subject investors to insurmountable un-

systematic risks (see for instance, Cheah & Fry, 2015; Cheah et al., 2018; Gandal et al.,

2018). Second, a plethora of empirical research has systematically presented state-of-

the-art estimation techniques to identify, among others, informational inefficiency (viz.

Urquhart, 2016), long-range persistence behavior and cointegration (viz. Alvarez-Ramirez

et al., 2018; Caporale et al., 2018; Cheah et al., 2018), volatility spillovers and dynamic

interactions with other financial assets (viz. Corbet, Meegan, et al., 2018). Thus far, the

extant research has laregely focused on a cross-section of cryptocurrencies and sparsely on

a cross-market dynamics of a single cryptocurrency (except for the leading work of Cheah

et al., 2018). The current paper aims to contribute to this nascent literature by studying

volatility spillover across Bitcoin markets, exchanged in various currencies.

The issue of cross-market volatility has been studied in a macroeconomic context (for

instance, Diebold & Yilmaz, 2012), where it is shown that volatility spillover is more pro-

found when market interdependence is high, especially during financial crisis and episodes

of economy-wide uncertainty (Cheah et al., 2018). Information on a within-market trans-

mission of shocks possesses high policy value because viable policy interventions can limit

possible proliferation of shocks beyond certain acceptable bounds. Moreover, managing

1coinmarketcap.com (Oct 2018)
2See Cheah et al. (2018) for details.
3Theoretical and empirical research in cryptocurrencies can be broadly divided into three important inter-

dependent areas; viz., regulations and information system research, financial market and monetary theoretical
formulation of cryptocurrency demand/supply, and development (and applications) of state-of-the-art econo-
metric and/or statistical mechanics to understand (predictive patterns of) price movements. To minimize
space and repetition of a succinct literature review, interested readers are encouraged to refer to Corbet,
Lucey, et al. (2018) for an excellent survey.
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shocks within a system is relatively easier as one can exploit the system dynamic features

of shocks so as to monitor their movements and generate better predictive power for an

asset. Although Bitcoin is traded electronically, like a huge number of assets globally,

cross-economy differentials in the trading of Bitcoin reflects not only the role of macroeco-

nomic and financial market regulations, but also represent investors’ sentiment concerning

an investment in a risky asset. While former studies (such as Corbet, Meegan, et al. (2018))

shed light on spillover effects of volatility from a ‘cryptocurrency market’ to ‘other asset

markets’ (such as stock and gold), Cheah et al. (2018) demonstrated the importance of

cross-market dynamic interdependence of Bitcoin prices by estimating a system-wide long-

memory. The focus on a cross-market rather than a single market cryptocurrency market

in the latter study holds significance in our context: by modelling directional spillover

effects one creates a stock of information for investors who decide on an arbitrage value

of Bitcoin traded in various markets. The investors exploit information on the predictive

power of each market, such as the net receiver and net giver of volatility. Such a study is

helpful in shaping robust investment strategy of a single cryptocurrency traded in various

markets.

Broadly speaking, the current paper’s main aim is to improve our limited understanding

of the cross-market spillovers of volatility in Bitcoin prices and the predictive power each

market possesses relative to others. Since Gandal et al. (2018) showed that Bitcoin prices

can be seriously manipulated, a thorough understanding of volatility movements across

Bitcoin markets is important to gauge net predictive power of each market. Accordingly,

this paper contributes to the literature in two significant ways. First, differing from the

convention, we study spillover effects of return and volatility across markets for a sin-

gle cryptocurrency. Although study of spillover effects between a cryptocurrency market

and a conventional asset market offers important insights on if and whether shocks from

cryptocurrency market impact volatility in an asset market, it lacks in a directional pre-

dictive power. This is because these two markets are distinct with respect to the modes

of operandi. Moreover, to the best of our knowledge there is no available financial the-

oretic model to justify conditioning predictive power of an asset market on the volatility

in a cryptocurrency market. In this light, a major contribution of the current paper is

to quantify (dynamic) spillover effects in cross-market Bitcoin prices. By doing so, we

aim to shed light on the net receiver and prime giver of volatility across markets. As a

further contribution, we employ Parkinson’s (1980) high-low volatility measure as well as

Garman-Klass type of volatility estimates to capture dynamic movements between high

and low Bitcoin. Using these volatility measure (details of which will be presented in

Section 2), we show that the Bitcoin-USD exchange rate possesses net predictive power

and that the Bitcoin-EURO market appears to be a net receiver of volatility relative to

other markets. Eventually, such tendencies could help investors design trending strategies

to systematically beat the market.

To investigate further, the rest of the paper is planned as follows. Section 2 discusses
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data and summary statistics. section 3 discusses estimation method. Section 4 presents

empirical results and robustness analyses. Section 5 concludes and presents the main

implications of our research.

2 Data and summary statistics

Bitcoins are traded in a number of currencies in a number of exchanges across different

countries. For the purpose of our analysis, we limit our sample to 5 Bitcoin/currency

pairs with less than 26 percent missing values over the sample period . That is, the U.S.

dollar (USD), Australian dollar (AUD), Canadian dollar (CAD), euro (EUR), and British

pound (GBP). Although Bitcoins in USD, AUD, CAD, and EUR have started trading

before December 1, 2011, Bitcoins in GBP started trading from January 1, 2012. For

Bitcoin in CAD and EUR there are some missing closing prices during the early years in

the sample period. Thus, the availability of the daily closing prices varies across different

currencies.4 Moreover, to lend comparison to the empirical results of Cheah et al. (2018)

who investigate cross-market long-memory interdependency in Bitcoin prices, we limit our

observation period span to March 12th 2013 to January 31st 2018. We collect data from

the aggregation website Bitcoin Charts (www.bitcoincharts.com). Data prior to 25/2/2014

are collected from Mt.Gox. Subsequent to Mt. Gox closure the remaining observations

were collected from other exchange platforms such as Bitstamp (the largest European

Bitcoin exchange) and LocalBitcoins.5

Daily continuously compounded returns are computed by taking the first difference of log-

transformed close price series. Our chosen measure of volatility is Parkinson’s High-Low

historical volatility (HL-HV) model.6 The reasons for choosing this approach are twofold.

First, the HL-HV model deals with sensitivity to trading hours more efficiently than the

more intuitive close-to-close volatility model (Bennett & Gil, 2012). Second, this model

generates more significant information and improves the efficiency of the volatility estimate

(Parkinson, 1980). Consequently, Bennett and Gil (2012) claim that Parkinson’s volatility

measure is more efficient and productive than popular close-to-close volatility estimates.

Formally, V for each of our five Bitcoin to currency exchange rates is calculated as follows.

4Initially, we gained price data in various currencies after considering the length of observation, the fre-
quency of non-trading date as well as trading volume. The five exchange markets considered in our work still
cover more than 80% of market trading, which can fairly represent the whole market.

5At the time of undertaking estimation of the paper, we gathered data from various sources so as to allow
us to construct a continuous time series data. It’s possible that different websites report slightly different
prices. Our estimation showed no significant differences in the estimates. Results are available with the
authors.

6Following an anonymous referee’s suggestions, an alternative measure of volatility, viz., Garman-Klass
measure - has been used for robustness exercise. The results are discussed in Section 4.3.2.
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V = 100×

(
1

4 ln(2)
. ln

(
h

l

)2
)

(1)

where h and l are the highest and lowest exchange rates on a given trading day, respectively.

The estimator above computes the daily variance, hence, the corresponding estimate of

the annualised daily percent standard deviation (volatility) is computed as follows:

V ol =
√

365 ∗ V

Given their temporal dimension, all return and volatility series are checked for stationarity

with the help of Augmented Dicky Fuller (ADF) and Philips-Perron (pperron) unit root

tests (Dickey & Fuller, 1979; Phillips & Perron, 1988). Results are presented in Tables

A.1 and A.2 (for returns and volatility, respectively) in the online appendix. Both tests

suggest to systematically reject the null of the presence of a unit root with 99% confidence

for every daily returns series (Table A.1), suggesting the latter are stationary. Similarly,

the null is rejected at the 1% threshold for all tests carried out on exchange rate volatility

series (Table A.2), and we conclude that our volatility series are also stable.

Table 1 provides summary statistics of the individual daily returns series (upper panel) and

volatility (lower panel). The returns series are plotted in Figure 1. Average daily returns

are similar across individual series and range from about 0.3 (BTC/USD, BTC/EUR

and BTC/GBP) to around 0.34 (BTC/AUD). Median daily returns are systematically

lower than average ones, hinting at potentially asymmetrically distributed series. Indeed,

Bitcoin to USD (BTC/USD) and Bitcoin to GBP (BTC/GBP) exchange rates returns

exhibit a small negative skew, suggesting a slightly larger concentration of observations

to the right of their central tendency, while all other series are characterised by a positive

third statistical moment (long right tails), although it is very close to zero for BTC/AUD

and BTC/CAD returns.

Table 1 Summary statistics, exchange rate returns and volatility

Cross-market exchange rate

(a) Returns Mean St. Dev. Median Max Min Skewness Kurtosis

BTC/USD 0.307 4.929 0.225 30.83 -34.54 -0.357 11.69

BTC/AUD 0.344 12.35 0.205 116.7 -110.6 0.0326 22.75

BTC/CAD 0.321 22.31 0.276 172.5 -157.7 0.0315 14.38

BTC/EUR 0.308 5.776 0.266 77.29 -61.84 0.763 45.55

BTC/GBP 0.304 11.30 0.301 104.3 -105.4 -0.149 16.38

(b) Volatility

BTC/USD 0.709 1.008 0.455 20.68 0 9.086 139.2

BTC/AUD 6.091 4.467 4.426 30.67 0.105 1.499 5.329

BTC/CAD 7.248 4.681 6.284 30.01 0 1.054 4.330

BTC/EUR 0.740 0.899 0.472 11.29 0.0698 4.899 39.67

BTC/GBP 9.298 6.378 7.688 69.04 0 2.639 17.65

Number of observations 1786
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All returns series display unequivocally leptokurtic behaviours with sample Kurtosis above

10 (up to 45 in the case of BTC/EUR), suggesting they have long tails representing

occurrences of extreme events of highly variable magnitudes with a mass point around

the central tendency. The latter observation is confirmed by the graphs presented in

Figure 1. Overall, the BTC/USD and BTC/EUR returns series appear to be the most

stable with maximum values of 30.8 and 77.3 for minima of -34.5 and -61.8, respectively,

along with sample standard deviations at least twice as small as that of any other series

under scrutiny. The BTC/CAD exchange rate returns exhibit the most widely spread

distribution (minimum return of -157.7 for a maximum of 172.5) and are also characterised

by the largest standard deviation in the sample (over 22). Plots in Figure 1 suggest that

the instability of the BTC/CAD returns series is most notably due to the large number

of extreme events since early 2017, a feature that is noticeable in the BTC/AUD returns

too, and also on the BTC/USD market, though to a lesser extent. At a glance, graphs

in Figure 1 reveal frequent bouts of highly volatile returns which seem to be fairly evenly

distributed on either side of their long run central tendencies, with the BTC/USD and

BTC/EUR markets being the most stable.

The summary statistics of cross-market exchange rates volatility (lower panel of Table

1) comfort our previous intuitions. The average volatility of BTC/USD and BTC/EUR

settles at around 0.7 and is smaller than that of other exchange rates by one order of

magnitude (from around 6 for BTC/AUD to over 9 for BTC/GBP). Furthermore, the two

aforementioned series exhibit much larger positive skews and higher Kurtosis than their

counterparts, and such lepotkurtic and heavily right skewed distributions suggest that

these markets are less prone to unusually high levels of volatility. That is, observations

concentrate to the left of the distribution close to the central tendency (recall that volatility

is always positive).

While confirming that the BTC/USD and BTC/EUR markets are the most stable over

the period of study, Table 1 strengthens the idea that the BTC/GBP has experienced

the most extreme occurrences of high uncertainty, as witnessed by the scale of the y-axis

on the graph presented in Figure 2. Interestingly, the series plotted in Figure 2 show a

seemingly upward trend in the volatility of BTC/CAD over time which also appears in

BTC/AUD volatility from the end 2016 on. An apparent increase in average volatility also

appears on the three other markets in 2017 and early 2018, although to a lesser extent.

3 Methodology

We follow the generalized variance decomposition approach developed in Diebold and

Yilmaz (2012) in order to estimate returns and volatility spillovers across the five markets

under scrutiny. This methodology provides both static and dynamic measures of spillovers,

and several papers have used a similar empirical framework analyse the interconnectedness

6
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Figure 1 Exchange rate returns

Note: Exchange rate returns series, daily. Dates on the x-axis indicate the start of the year, and ticks are
quarterly.

of financial markets (e.g. Corbet, Meegan, et al., 2018; Fernández-Rodŕıguez et al., 2016;

Lucey et al., 2014; Yarovaya et al., 2016). However, to the best of our knowledge no

previous research has analysed cross-market returns and volatility spillovers on Bitcoin to

currency exchange rates.

The variance decomposition approach to measuring return and volatility spillovers (first

presented in Diebold and Yilmaz (2009)) exploits Cholesky factorisation methods. This

produces orthogonal innovations as is typically required for variance decompositions in

Vector Auto-Regressive (VAR) models, with the main drawback of being sensitive to vari-

able ordering (Diebold & Yilmaz, 2009). Diebold and Yilmaz (2012) propose a so-called

7
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Figure 2 Exchange rate volatility

Note: Exchange rate volatility series, daily. Dates on the x-axis indicate the start of the year, and ticks are
quarterly.

generalised variance decomposition (GVD) that allows them to alleviate the orthogonality

condition altogether and to account for correlated innovations, hence improving on their

previous effort by making their measure of spillovers invariant to the order of the variables

in the system (Diebold & Yilmaz, 2012; Koop et al., 1996; Pesaran & Shin, 1998). Con-

sidering our case of investigation - the five market Bitcoin price system - the estimates of

spillover are based on the following covariance-stationary VAR model:

yt =

p∑
i=1

µi yt−1 + εt (2)

8
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where yt = (y1t, y2t, y3t, y4t, y5t) or is a (1 × 5) random vector of endogenous vari-

ables; µ is a (5 × 5) coefficient matrix; yt−1 is the previous realisation of yt; and εt =

(ε1t, ε2t, ε3t, ε4t, ε5t) is an i.i.d. error term with εt ∼ (0,Σε).

The VAR model in Equation 2 can be re-written as a moving average process as follows:

yt =

∞∑
i=0

δiεt−i (3)

where (5× 5) coefficient matrices δi depend on the recursion δi = µ1 δi−1 + µ2 δi−2 + ...+

µp δi−p with δ0 an identity matrix and δi = 0 if i < 0.

The heart of the GVD approach is to generate the correlated shocks by using the past

distribution of errors (Diebold & Yilmaz, 2012). Therefore, the h-step-ahead forecast error

GVD matrix is given by:

τ gij(h) =

σ−ii1
h−1∑
h=0

(e′i δh Σ ej)
2

h−1∑
h=0

(e′i δh Σ δ′h ej)

(4)

where ei is the selection vector with its ith element equal to one and zeros otherwise; δh

is the coefficient matrix times the h-lagged shock vector; Σ is the variance matrix of the

error vector ε; and σii is the ith diagonal element of Σ.

The shocks generated through Equation 4 are not required to be orthogonal, so the sum of

forecast error variance contributions are not equal to one, i.e.
∑
j
τ gij(h) 6= 1. To make their

method more operational, the authors propose to normalise the above variance shares as

follows:

τ̃ gij(h) =
τ gij(h)

N∑
j=1

τ gij(h)

(5)

where g is the order of the system (such as five market system as in our case),
N∑
j=1

τ̃ gij(h) = 1

and
N∑

i,j=1
τ̃ gij(h) = N .

The quantities in equation 5 can then be used directly to estimate several measures of

interest as follows:

9
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• Total spillover:

S.Og(h) =

N∑
i,j=1
i 6=j

τ̃ gij(h)

N∑
i,j=1

τ̃ gij(h)

× 100 =

N∑
i,j=1
i 6=j

τ̃ gij(h)

N
× 100 (6)

• Directional spillover:

The following quantity measures the extent to which variable i is influenced by

volatility shocks received from all other variables:

S.Ogi .(h) =

N∑
j=1
j 6=i

τ̃ gij(h)

N∑
j=1

τ̃ gij(h)

× 100 (7)

Similarly, the amount of volatility transmitted by variable i to the other variables in

the system can be gauged as follows:

S.Og. i(h) =

N∑
j=1
j 6=i

τ̃ gji(h)

N∑
j=1

τ̃ gji(h)

× 100 (8)

• Net spillover:

Finally, subtracting volatility spillovers from other variables from the volatility spillovers

to other variables gives a measure of net spillovers:

S.Ogi (h) = S.Og. i(h)− S.Ogi .(h) (9)

In order to refine our empirical study, we also implement the methodology presented in

Baruńık and Křehĺık (2018) that builds on a spectral representation of variance decompo-

sitions to identify connectedness amongst variables at various levels of frequency. That

way, the authors extend the work of Diebold and Yilmaz (2012) by offering the pos-

sibility to explore the frequency dynamics in a system of variables and thus to estimate

spillovers of heterogenous magnitudes at different frequencies. In other terms, the strength

of cross-market connectedness can vary across the frequency domain, i.e. the influence of

idiosyncratic shocks on other variables might be limited to the short run or have a long-run

impact on connected markets.

10
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4 Results

Having discussed thus far various approaches to estimate spillover effects, in this section,

we discuss results to shed light on the predictive power of each Bitcoin market. The

basis for our estimation of spillovers are VAR models for daily returns and exchange rate

volatility. We use Akaike’s Information Criterion (AIC) to decide on the number of lags to

include, and confirm its adequacy with Lagrange multiplier autocorrelation tests after VAR

estimation. We chose a VAR order 17 and 7 for returns and volatility series, respectively.

The Generalised Variance Decomposition is then carried out for 30-day-ahead forecasts.

We comment on the results for volatility spillovers and returns spillovers in two distinct

sub-sections. Indeed, the former provide indications as to which components of the sys-

tem are closely connected to each other given their sensitivity to one another’s uncertainty.

Returns spillovers, however, reveal more precise information regarding which components

of the system are most important in predicting future price movements on other mar-

kets. Each set of results includes a full sample static analysis broken down into directional

connectedness (from applying the method of Diebold and Yilmaz (2012)) and frequency

domain connectedness (following Baruńık and Křehĺık (2018)), the latter allowing to re-

fine the former by providing a decomposition of time-frequency dynamics of returns and

volatility spillovers. However, in a full sample analysis the alternation of positive and

negative extreme events typical of financial markets – some short-lived and others more

persistent that can generate important downturns or speculative bubbles – tends to be

smoothed over time. Therefore, we complement our results by carrying out an analysis

similar to the former on a sub-sample of the data that is rolled over one day at a time

to obtain a picture of dynamic spillovers. This methodology suggested by Diebold and

Yilmaz (2012) allows to gauge how the strength of cross-market connectedness evolves over

time. We use a 150-day rolling window. Finally, various robustness checks are discussed

in the third sub-section.

4.1 Volatility spillovers

Table 2 displays results of the full sample analysis on directional, net and total spillovers

for exchange rate volatility. The markets under consideration exhibit a non-trivial de-

gree of interconnectedness with a total spillover index (TSI) of 15.78%. It appears that

volatility shocks to the BTC/EUR and BTC/USD markets are the most influential in

their contribution ‘TO other’ markets’ volatility (24.8% and 25.9%, respectively), with

BTC/AUD in third position (around 17%).

11
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Table 2 Volatility spillovers across five selected exchange rates in time domain

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP
Directional

FROM others

BTC/USD 79.16 4.15 0.45 15.32 0.92 20.84

BTC/AUD 4.26 84.40 3.87 6.67 0.79 15.60

BTC/CAD 0.30 6.63 89.99 1.82 1.26 10.01

BTC/EUR 20.74 4.75 0.88 72.17 1.47 27.83

BTC/GBP 0.63 1.39 1.62 0.98 95.37 4.63

Directional
TO others

25.93 16.92 6.82 24.79 4.45 TSI:
78.90/500 =

15.78%Net spillovers 5.09 1.32 -3.19 -3.04 -0.18

Note: Exchange rates volatility spillovers following Diebold and Yilmaz (2012). Numbers are percentages.
“TSI” stands for Total Spillover Index.

4.1.1 Directional connectedness (static spillovers): Time domain analysis

Interestingly, the BTC/EUR market is also the most sensitive to uncertainty in other

exchange rates (highest estimate in contribution ‘FROM others’), and the BTC/USD

market the second most sensitive. In contrast, the BTC/GBP is by far the least influenced

and least influential market in terms of volatility spillovers. BTC/CAD is also only loosely

connected to the system, and is a bit more sensitive to other markets’ volatility than it is

influential on others. Negative net volatility spillovers for the BTC/CAD and BTC/EUR

exchange rates show that, overall, these markets tend to be net recipients of volatility. On

the other hand, BTC/USD appears to be a net provider of volatility to the system, with

net spillovers around 5%.

A closer look at pairwise spillovers reveals that the strongest bilateral relationship is to

be found between the BTC/EUR and BTC/USD exchange rates, with volatility spillovers

of about 15% from the former to the latter and little above 20% in the other direction.

Both markets also display a non-trivial relationship with BTC/AUD – albeit of lesser

intensity – which is almost symmetric in the case of BTC/USD (spillovers little above 4%

in either direction) and slightly asymmetric in the case of BTC/EUR with its influence on

BTC/AUD (around 6.7%) exceeding its sensitivity (little below 5%). Note that BTC/AUD

is also a net provider of volatility to BTC/CAD – for which it is the main partner – and

to BTC/GBP, although pairwise spillovers involving the latter never even reach 2%.

In sum, among the five markets under consideration BTC/EUR is the “most” connected

one, with BTC/USD close second, while BTC/GBP appears to be the most isolated mar-

ket. The pair BTC/EUR - BTC/USD are the most closely interlinked exchange rates,

with about 15% to 20% of the forecast error variance in either variable’s volatility being

explained by innovations in the other. Results also suggest that BTC/AUD might work as
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an intermediary allowing volatility to circulate between the main components of the sys-

tem, i.e. BTC/USD and BTC/EUR, and the more isolated markets, namely BTC/CAD

and BTC/GBP.

4.1.2 Frequency domain analysis of static spillovers

Table 3 refines the previous empirical results by providing a decomposition of time-

frequency dynamics of volatility spillovers. The top panel considers short horizons (less

than 4 days), while the bottom panel is concerned with long horizons (4 days or more).

Table 3 Volatility spillovers across five selected exchange rates in frequency
domain

(a) Short horizon

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others

BTC/USD 35.09 0.38 0.08 3.91 0.16 4.52

BTC/AUD 0.19 23.94 0.23 0.39 0.08 0.88

BTC/CAD 0.07 0.43 42.71 0.35 0.12 0.96

BTC/EUR 2.64 0.39 0.09 22.93 0.11 3.24

BTC/GBP 0.15 0.22 0.14 0.22 58.48 0.74

TO others 3.05 1.42 0.54 4.87 0.47
TSI: 10.34/193.49 =

5.34%

(b) Long horizon

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others

BTC/USD 44.07 3.77 0.37 11.41 0.77 16.32

BTC/AUD 4.08 60.46 3.64 6.28 0.71 14.71

BTC/CAD 0.23 6.20 47.28 1.47 1.14 9.05

BTC/EUR 18.09 4.36 0.79 49.25 1.35 24.59

BTC/GBP 0.48 1.17 1.48 0.75 36.89 3.89

TO others 22.88 15.50 6.27 19.92 3.98
TSI: 68.55/306.51 =

22.37%

Note: Volatility spillovers, frequency domain analysis following Baruńık and Křehĺık (2018). Short and Long
horizons refer to ‘4 days or less’ and ‘more than 4 days’, respectively. Numbers are percentages.

The top panel of Table 3 shows that overall volatility spillovers in the system are around

5.3% when considering a short time horizon. In line with previous results, BTC/USD

and BTC/EUR are the main providers and recipients of short-lived volatility shocks in

the system, as well as each other’s most influential counterpart, although in this instance

BTC/EUR (BTC/USD) is a net provider (recipient) of volatility to BTC/USD (from

BTC/EUR) and to (from) the system as a whole.

The bottom panel of Table 3 suggests that interconnectedness in the system is much

stronger in the long run, with overall volatility spillovers above 22% for volatility. The
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earlier pattern of results is once again repeated, and BTC/EUR and BTC/USD are by far

the most influential components of the system and each other’s privileged partner, with

the former a net recipient and the latter a net provider of volatility. BTC/AUD remains

the second favorite counterpart for each of the two main markets – albeit spillovers are of a

much smaller magnitude (well below 5%) – and the most important partner of BTC/CAD.

As expected, results confirm that BTC/GBP is rather isolated from the system regarding

transmissions of either short-run or long-run volatility shocks.

4.1.3 Dynamic spillover effects: Rolling window estimates

(a) Overall spillovers

To study how volatility spillovers co-move with fluctuatins in uncertainty, we plot overall

volatility spillovers in the system in Figure 3 along with a monthly index measuring global

Economic Policy Uncertainty (EPU)7. The TSI ranges between 20% and 40% throughout

most of the sample period. We observe a sharp drop from above 50% to below 20% between

the first and third quarters of 2014, mirroring with a few months lag the sharp decline in

EPU between the summer of 2013 and the spring of 2014. The slow upward trend in TSI

from late 2014 until mid-2016 also mimics the overall rise in uncertainty over the same

period. The highest values of EPU are found around mid- and late 2016 and early 2017,

with an extremely volatile TSI between late 2016 and early 2018.

(b) Spillovers FROM and TO others

Volatility spillovers transmitted to other exchange rates, received from others, and net

spillovers for each of the five markets under scrutiny are plotted in Figures 4, 5 and

6, respectively. The top left plot of Figure 4 confirms the role of BTC/USD as a big

provider of volatility to the system over time, with spillovers to others routinely above

10%. Spillovers from BTC/EUR typically oscillate between 2% and 10% except for a

6-month period (2013Q4 and 2014Q1) where they often reach above 15%. Volatility

spillovers from BTC/AUD also range between 0 and 10% and often exceed 5%, while those

from BTC/CAD typically stay between 0% and slightly above 10%. Volatility shocks to

BTC/GBP explain around approximatly 5% or less of volatility shocks on other markets

during the sample period, except for short periods of time (in 2013Q3 and between 2016Q2

and 2016Q4) where they greatly exceed 10%.

As displayed in Figure 5, the sensitivity of the BTC/USD market to uncertainty shocks on

other markets is highly volatile between 2013Q3 and 2014Q1 (spillovers ranging from 10%

7Data gathered from http : //www.policyuncertainty.com/.
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Figure 3 Overall volatility spillovers (dynamic plot) and Economic Policy Un-
certainty Index

Note: Dynamic overall volatility spillovers computed following Diebold and Yilmaz (2012) with a 150-day
rolling window, right scale (percentages). Monthly Global Economic Policy Uncertainty (EPU) index, left
scale. The dashed line shows the median value of EPU over the sample period. Dates on the x-axis indicate
the start of the year, and ticks are quarterly.

up to 20%) and more stable afterwards, with spillovers from others slowly declining down

to 2.5% in 2014Q4 and remaining between that level and approximately 7% for most of the

sample period. The evolution over time of spillovers from others to BTC/AUD resembles

that observed for BTC/USD but is more stable, with spillovers from others to BTC/AUD

concentrating between 4% and up 6% (approximately). Spillovers to BTC/EUR, however,

remain volatile throughout the period under scrutiny and routinely exceed 10% while

seldom going below 6%, albeit stabilising between approximately 4% and 7% starting in

2017Q1 until the end of the sample period. Spillovers to BTC/GBP from other markets

oscillate between approximately 4% and 10% throughout the sample period, ranging most

often between 5% and 10%. The sensitivity of BTC/CAD to volatility shocks on other

markets features a similar profile to that of BTC/GBP albeit more unstable, with spillovers

seldom below 5% and reaching more often above 10%.

(c) Net spillovers

The previously described patterns come together in Figure 6 to give a picture of the

temporal evolution of net spillovers for each exchange rate considered in the present study.
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Figure 4 Volatility spillovers to others: Dynamic plot

Note: Dynamic volatility spillovers to others computed following Diebold and Yilmaz (2012) with a 150-day
rolling window. Y-scales in percentages. Dates on the x-axis indicate the start of the year, and ticks are
quarterly.

We see at a glance that net spillovers tend to oscillate around zero over time, for all markets.

Nonetheless, BTC/USD displays mostly positive net spillovers for the sample period, with

a long period of exclusively positive values (from 2015Q1 to mid-2016) often around and

above 15%. It tends to confirm the role of BTC/USD as a net provider of volatility to

the system. Additionally, we identify three brief bouts of extremely high positive net

spillovers for BTC/USD in early 2014Q3, early 2015Q4 and late 2016Q4. Interestingly,

all other markets feature largely negative net spillovers during these events, making them
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Figure 5 Volatility spillovers from others: Dynamic plot

Note: Dynamic volatility spillovers from others computed following Diebold and Yilmaz (2012) with a 150-
day rolling window. Y-scales in percentages. Dates on the x-axis indicate the start of the year, and ticks are
quarterly.

net receivers of volatility. This observation strengthens the idea that BTC/USD is central

in the system as the prime source of uncertainty, with volatility shocks on that market

strongly destabilising other exchange rates.

The middle right plot of Figure 6 clearly shows that BTC/EUR net spillovers are typically

negative over the sample period and closely mirror those observed for BTC/USD, espe-

cially so during the period identified earlier (from 2015Q1 to mid-2016) when BTC/USD

(BTC/EUR) net spillovers are consistently positive (negative) and large. This dynamic
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Figure 6 Net volatility spillovers: Dynamic plot

Note: Dynamic net volatility spillovers computed following Diebold and Yilmaz (2012) with a 150-day rolling
window. Y-scales in percentages. Dates on the x-axis indicate the start of the year, and ticks are quarterly.

spillovers plot ascertains the persistence over time of the role of BTC/EUR as a net recipi-

ent of volatility in the system, and also corroborates the “privileged” relationship between

BTC/EUR and BTC/USD.

Net volatility spillovers from BTC/AUD are mostly negative between 2013Q3 and 2014Q2,

but this market is typically a net provider of volatility throughout the rest of the sample

period. In contrast, net spillovers for BTC/CAD are mostly negative over time, with a

pattern mirroring that of BTC/AUD and reminding us of the close relationship between
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both markets uncovered from the full sample (static) analysis. The BTC/GBP market is

characterised by surprisingly high positive net spillovers at the start of the sample period,

for a brief amount of time, before experiencing small negative net spillovers most of the

time with the exception of the period 2016Q2 - 2016Q4 when net spillovers are again large

and positive (with one brief event of extreme negative values corresponding to a bout of

high volatility transmission from BTC/USD).

To summarise findings so far, it appears that connectedness between Bitcoin-to-currency

exchange markets reflects overall uncertainty. Trading on Bitcoin markets depends largely

on investor sentiment, and a lack of confidence eventually heightens volatility on these

markets which become more intensely interlinked as investors diversify to mitigate risks

pertaining to a particular market. In that respect, BTC/USD is likely a prime source of

volatility for the system. Indeed, volatility to BTC/USD and BTC/EUR are the most in-

fluential in predicting the volatility of other exchange rates (Figure 4), and the BTC/EUR

volatility tends to be the most sensitive to innovations on other markets (Figure 5). Ad-

ditionally, the BTC/USD exchange rate is typically a net provider of volatility, which is

mirrored by the tendency of the BTC/EUR market to be a net receiver in its connection

to other markets, while the influences to and from others for the other three exchange rate

volatility series tend to even out (Figure 6). Note that Figure 6 displays net spillovers

that get notably closer to zero over 2017 and in early 2018, especially so for BTC/USD

and BTC/EUR.

As was previously stated, we interpret volatility spillovers as being indicative of the inten-

sity of cross-market connectedness in the system. In the next section we turn to the results

pertaining to exchange rates returns spillovers that contain information on the predictive

power of price movements on a given market in influencing prices on other markets.

4.2 Returns spillovers

4.2.1 Directional connectedness (static spillovers): Time domain analysis

Table 4 presents returns spillovers obtained from the full sample analysis using the method

of Diebold and Yilmaz (2012). Returns on the markets under scrutiny feature a significant

degree of interdependence reflected by an estimated TSI of 17.4%. Results confirm the

predominance of BTC/USD and BTC/EUR in the system, with returns spillovers to other

markets of almost 23% and above 24%, respectively. Unexpected changes in returns on

the BTC/AUD and BTC/GBP markets contribute roughly the same share of explanatory

power in determining forecast error variance in other markets’ returns (14.2% and 16.2%,

respectively). In the meantime, returns to BTC/EUR are by far the most sensitive to

innovations in other markets’ returns (31% spillovers from others), while returns on the

BTC/USD, BTC/AUD and BTC/GBP markets exhibit about twice as little sensitivity
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(spillovers from others around 16%).

Table 4 Returns spillovers across five selected exchange rates

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP
Directional

FROM others

BTC/USD 83.58 2.36 1.69 9.60 2.77 16.42

BTC/AUD 3.17 83.97 2.82 5.73 4.32 16.03

BTC/CAD 1.82 1.87 92.54 2.15 1.63 7.46

BTC/EUR 14.26 6.49 2.89 68.92 7.44 31.08

BTC/GBP 3.73 3.50 2.10 6.72 83.95 16.05

Directional
TO others

22.97 14.22 9.50 24.19 16.17 TSI:
87.05/500 =

17.41%Net spillovers 6.55 -1.81 2.04 -6.89 0.12

Note: Exchange rates returns spillovers following Diebold and Yilmaz (2012). Numbers are per-
centages. “TSI” stands for Total Spillover Index.

The above observations establish BTC/USD as having the most predictive power in the

system with net spillovers above 6%, and returns to BTC/EUR as experiencing a net

influence from unexpected price movements on other markets (negative net spillovers of

almost 7%). Returns to BTC/GBP are altogether as influential as they are sensitive,

and returns to BTC/AUD are characterised by small negative net spillovers. Note that

BTC/CAD displays small positive net spillovers (around 2%) but its returns are only

loosely connected to the system (spillovers to and from others below 10%).

Pairwise returns spillovers show a pattern in line with volatility spillovers discussed earlier:

BTC/EUR is typically the most influential partner of every other exchange rate, a fact

particularly salient for the BTC/USD and BTC/GBP markets. Additionally, returns

to BTC/EUR are especially sensitive to innovations in returns to BTC/USD, the latter

therefore holding a net predictive power in that relationship. Other noticeable relationships

are BTC/EUR - BTC/GBP – spillovers around 7% in either direction with a small (below

1%) net positive spillover for the second – and BTC/EUR - BTC/AUD – spillovers around

6% in either direction, again with a small (below 1%) net positive spillover for the second.

All bilateral relationships involving BTC/CAD display pairwise spillovers below 3%.

This first glance at returns spillovers comforts the idea that the previously identified con-

nectedness (through volatility spillovers) between BTC/USD and BTC/EUR matters, in

that the former market holds a net predictive power in determining price movements on

the latter. Actually, shocks to BTC/USD returns are the most influential in the system as

a whole, and BTC/EUR returns are the most sensitive to shocks on other markets. Note

that BTC/GBP is more strongly connected to the system in terms of returns spillovers that

it is in terms of volatility. This is likely due to the range of variations in the BTC/GBP

returns series being consistent with that of other markets (Figure 1), whereas discrepancies
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are more prominent in the case for volatility series (Figure 2).

4.2.2 Frequency domain analysis of static spillovers

Table 5 provides a decomposition of time-frequency dynamics for the returns spillovers

presented in Table 4. The top panel indicates that overall returns spillovers in the system

are around 14.5% when focussing on short-term components of forecast error variances.

The pattern of results is qualitatively similar to the previous case where BTC/USD and

BTC/EUR are the most important providers of short-lived shocks to returns in the system,

with the latter the most sensitive of such shocks. They are also each other’s most influ-

ential counterpart, BTC/EUR being a net recipient of unexpected price movements from

BTC/USD and from the system as a whole. We find again the previously observed almost

symmetric relationships between BTC/EUR and BTC/GBP (spillovers around 5%) and

between BTC/EUR and BTC/AUD (spillovers between 4% and 5%).

Table 5 Returns spillovers across five selected exchange rates - Frequency do-
main analysis

(a) Short horizon

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others

BTC/USD 64.96 1.52 1.35 5.78 1.89 10.54

BTC/AUD 2.07 81.66 2.66 4.29 3.64 12.66

BTC/CAD 1.50 1.59 90.51 1.50 1.39 5.98

BTC/EUR 9.15 4.96 2.51 53.60 5.73 22.35

BTC/GBP 2.40 2.77 1.75 4.68 81.17 11.59

TO others 15.12 10.83 8.26 16.25 12.65
TSI: 63.11/435.01 =

14.51%

(b) Long horizon

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others

BTC/USD 18.62 0.84 0.34 3.82 0.88 5.89

BTC/AUD 1.10 2.31 0.16 1.43 0.68 3.38

BTC/CAD 0.32 0.28 2.03 0.65 0.24 1.48

BTC/EUR 5.11 1.53 0.38 15.32 1.71 8.73

BTC/GBP 1.33 0.74 0.35 2.04 2.78 4.46

TO others 7.86 3.39 1.24 7.94 3.51
TSI: 23.94/64.99 =

36.83%

Note: Returns spillovers, frequency domain analysis following Baruńık and Křehĺık (2018). Short and Long
horizons refer to ‘4 days or less’ and ‘more than 4 days’, respectively.

The bottom panel of Table 5 ascertains the interdependence of returns across the five

exchange rates under scrutiny by presenting an estimated TSI of close to 37% in the long

run. There again, net predictive power is held by BTC/USD with regards to BTC/EUR
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and to the whole system, with BTC/EUR the largest provider and recipient of returns

shocks to and from other markets. BTC/AUD and BTC/GBP are the other two favourite

counterparts of BTC/EUR after BTC/USD, and BTC/CAD is confirmed to be the least

influenced and least influential market in terms of returns spillovers.

4.2.3 Rolling windows analysis (dynamic spillover plots)

(a) Overall spillovers

The total spillover index for exchange rate daily returns is depicted in Figure 7 along with

the monthly EPU index. In spite of a certain degree of volatility with values ranging

from below 50% to almost 80%, it appears that the returns TSI in the system fluctuates

around 60% for most of the sample period. We observe a decline in returns connectedness

across markets between 2013Q4 and 2014Q3 (from 70% to little above 50%), before the

TSI stabilises around 60% for the period 2014Q3 to 2016Q2, except for a high variable

TSI in 2015Q3. The dramatic plunge over the second half of 2016 is compensated for in

early 2017 and the TSI again fluctuates between 55% and 65% for the remainder of the

sample period.

The plot confirms the strong interdependence of returns in the system over time (TSI

almost always above 50%), and shows that it is fairly stable for the duration the sam-

ple period with no evident pattern suggesting its link to overall uncertainty. Although

counter-intuitive, it is not incompatible with earlier results on volatility spillovers. Indeed,

the latter were found to reflect the variations of global economic uncertainty, suggesting

more strongly interconnected markets in times of high uncertainty. In spite of volatility

transmitting more or less “easily” across components of the system depending on the eco-

nomic climate, the capacity of returns shocks to help predict price movements on other

markets remains stable over time in the system overall.

(b) Spillovers FROM and TO others

In the spirit of Diebold and Yilmaz (2012) dynamic spillovers are broken down into di-

rectional spillovers to other markets, from other markets, and net spillovers depicted in

Figures 8, 9 and 10, respectively.

A quick glance at individual plots in Figure 8 reveals that the BTC/USD exchange rate ex-

erts the biggest influence on other variables of the system, and that this influence strength-

ens in 2017 and early 2018. Interestingly, the influence of BTC/EUR returns shocks on

other markets shifts downwards at the end of the sample period (from early 2017 on)

after fluctuating around 5% to 7% most of the time. Returns spillovers from BTC/AUD,
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Figure 7 Overall returns spillovers (dynamic plot) and Economic Policy Uncer-
tainty Index

Note: Dynamic overall returns spillovers computed following Diebold and Yilmaz (2012) with a 150-day rolling
window, right scale (percentages). Monthly Global Economic Policy Uncertainty (EPU) index, left scale. The
dashed line shows the median value of EPU over the sample period. Dates on the x-axis indicate the start of
the year, and ticks are quarterly.

BTC/CAD and BTC/GBP to other markets are erratic but overall range between approx-

imately 8% and 17% throughout the period under scrutiny.

Figure 9 indicates that BTC/USD returns are significantly influenced by shocks from other

markets in late 2013 and early 2014 with spillovers between almost 13% and approximately

16%, while the latter then steady and fluctuate mostly in the range 6% - 14%. Returns

spillovers received by BTC/AUD from other exchange rates range largely between 10% and

15%, as is the case for BTC/CAD and BTC/GBP. The share of forecasting error variance

of BTC/EUR returns explained by innovations in other variables is almost systematically

above 10% and routinely above 15%, and even larger than 15% between 2014Q2 and

mid-2015 and after 2017Q1.

(c) Net spillovers

Dynamic net spillovers plotted in Figure 10 confirm the former intuition stemming from

our full sample analysis. The BTC/USD exchange rate returns exhibit almost exclusively
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Figure 8 Returns spillovers to others, dynamic plot

Note: Dynamic returns spillovers to others computed following Diebold and Yilmaz (2012) with a 150-day
rolling window. Y-scales in percentages. Dates on the x-axis indicate the start of the year, and ticks are
quarterly.

positive net spillovers – reaching above 10% starting in early 2017–, representing the pre-

dictive power of shocks on the BTC/USD market in forecasting returns on other markets.

Conversely, the BTC/EUR market is strongly connected to the system as a net receiver,

i.e. mostly negative net spillovers that seem to mirror the BTC/USD ones over time with

a marked decline starting in 2017Q1. The net connectedness of BTC/GBP returns is very

erratic over time and incessantly crosses the zero line.

A similarly changeable pattern can be discerned for BTC/AUD, although its net spillovers
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Figure 9 Returns spillovers from others, dynamic plot

Note: Dynamic returns spillovers from others computed following Diebold and Yilmaz (2012) with a 150-day
rolling window. Y-scales in percentages. Dates on the x-axis indicate the start of the year, and ticks are
quarterly.

are typically negative, characterising that market as usually predictable. Net returns

spillovers from BTC/CAD slowly evolve around zero over time in a serpent-like fashion:

negative in late 2013, positive in 2014, mostly negative from 2015Q1 to 2016Q4, and mostly

positive for the remainder of the sample period. Their magnitude remains fairly small in

absolute terms (seldom greater than 25%), reflecting the little influence of said market in

predicting returns in the system.

In sum, results from our analysis of returns spillovers seem to complement nicely those
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Figure 10 Net returns spillovers, dynamic plot

Note: Dynamic net returns spillovers computed following Diebold and Yilmaz (2012) with a 150-day rolling
window. Y-scales in percentages. Dates on the x-axis indicate the start of the year, and ticks are quarterly.

commented on volatility spillovers. The BTC/USD and BTC/EUR are confirmed in their

central roles in the system. They remain the most closely interlinked markets, and the

former holds a net predictive power with regards to the system as a whole. That is,

unexpected shocks in returns to BTC/USD embed information as to probable future shocks

in prices on other markets, especially so for BTC/EUR. That relationship is the only one to

be so dramatically asymmetric, the one between BTC/EUR and BTC/GBP, for instance,

giving only a marginal advantage to the latter in terms of predictive power.
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4.3 Robustness

How sensitive are our results to the choice of forecast horizon, window size, and alternative

measure of volatility? In this section, we undertake robustness exercise in each aspect

mentioned above.

4.3.1 Sensitivity to forecast horizon and window size for static and dynamic

spillover system

We check the robustness of our full sample analysis results to the choice of the forecast

horizon and the tuning of frequency bands that identify short- and long-run components

of the forecast error GVD. Recall that our results are based on 30-days-ahead forecasts

and that the time-frequency domain analysis consider the short horizon to be 4 days and

the long horizon to be over 4 days. We performed similar estimations with 7-, 10-, and

60-days-ahead forecasts, and using 16 and 30 days to split frequency domains. The ensuing

results (reported in the online appendix) corresponding to Tables 2, 3, 4 and 5 presented

above produced very similar values for the estimated spillovers and yielded qualitatively

identical conclusions.

Next, Figures 11 and 12 (Figures 13 and 14) plot dynamic overall returns (volatility)

spillovers using 15 days and 60 days as the forecast horizon for computing the GVD,

respectively. We observe that the latter graphs are strongly consistent with Figure 7 (for

return) (and Figure 3 for volatility, respectively) not only in the estimated values of the

total spillover index, but also in the shape of the evolution that records the same extreme

events in every case.

4.3.2 Alternative measures of volatility8

Recall that our empirical analyses are based on Parkinson’s High-Low historical volatility

(HL-HV) measure. This measure provides useful information regarding the future volatil-

ity than a close-to-close estimator. Garman and Klass (GK, 1980) proposed a volatility

measure based on open (O), high (H), low (L) and close (C) prices to achieve better accu-

racy than previous estimators. Hence, as a robustness check, we use GK class of estimators

and re-estimate spillover effects. The similarity between Parkinson and GK estimators are

that both follow a geometric Brownian motion. However, drift and opening jumps are not

treated in both models (Wiggins, 1991), but both estimators are 5 and 7 times respec-

tively as powerful as the close-to-close measure (Garman & Klass, 1980; Parkinson, 1980).

Recent studies have even gone further in extending GK volatility measure (among them

8Thanks to an anonymous referee who suggested Garman-Klass family of a measure of volatility for ro-
bustness exercise.
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Figure 11 Overall returns spillovers (dynamic plot – 15-day ahead forecast) and
Economic Policy Uncertainty Index

Note: Right scale (percentages): Dynamic overall returns spillovers computed following Diebold and Yilmaz
(2012) with a 150-day rolling window, using a 15-day ahead forecast. Left scale: monthly Global Economic
Policy Uncertainty (EPU) index. The dashed line shows the median value of EPU over the sample period.
Dates on the x-axis indicate the start of the year, and ticks are quarterly.

see, for instance, Rogers-Satchell (OHLC) measure (Rogers & Satchell, 1991), GK-ABD

volatilitiy measure (Alizadeh et al., 2002) and GK-YZ volatility measure (Yang & Zhang,

2000)9. These measures are summarised below:

GK =
{

0.5× (Ht−Lt)2
}
−
{

(2Ln(2)− 1)× (Ct−Ot)2
}

(10)

Rogers−Satchell =
{

(Ht−Ct)×(Ht−Ot)
}

+
{

(Lt−Ct)×(Lt−Ot)
}

(11)

Y ang−Zhang = (Ot−Ct−1)2 + 0.511× (Ht−Li)2− (2Ln(2)− 1)× (Ct−Ot)2 (12)

9https://www.quantshare.com/itemd-197-trading-indicator-yang-zhang-extension-of or
(Bennett & Gil, 2012)
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Figure 12 Overall returns spillovers (dynamic plot – 60-day ahead forecast) and
Economic Policy Uncertainty Index

Note: Right scale (percentages): Dynamic overall returns spillovers computed following Diebold and Yilmaz
(2012) with a 150-day rolling window, using a 60-day ahead forecast. Left scale: monthly Global Economic
Policy Uncertainty (EPU) index. The dashed line shows the median value of EPU over the sample period.
Dates on the x-axis indicate the start of the year, and ticks are quarterly.

GK −ABD = 0.511× (Ht − Lt)2 − 0.019×
{

(Ct −Ot)× (Ht + Lt − 2Ot)− 2

×(Ht −Ot)× (Lt −Ot)
}
− 0.383× (Ct −Ot)2

(13)

The above measures compute the daily variance, so the corresponding estimate of the

annualised daily percent standard deviation (volatility) is V ol =
√

365 ∗ V ariance.The

summary statistics for the above measures are presented in Table 6.

We compute the static and dynamic volatility spillover based on Garman-Klass (GK)

volatility. To begin with we compare the GK volatility measure with that of Parkinson

(see Figure 15). As such, there is no significant differences in peaks and troughs and

the fluctuations appear to co-move. In Tables 7 and 8 we have presented the overall

spillover estimates from Diebold-Yilmaz and the frequency domanin approach of Barunik

and Krehlik, respectively based on this measure of volatility.10 Figures 16, 17, 18, 19, we

10We have also estimated spillover effects from other class of GK measure of volatility, such as GK-YZ, etc.
The results are available with the authors upon request.
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Figure 13 Overall volatility spillovers (dynamic plot – 15-day ahead forecast)
and Economic Policy Uncertainty Index

Note: Right scale (percentages): Dynamic overall volatility spillovers computed following Diebold and Yilmaz
(2012) with a 150-day rolling window, using a 15-day ahead forecast. Left scale: monthly Global Economic
Policy Uncertainty (EPU) index. The dashed line shows the median value of EPU over the sample period.
Dates on the x-axis indicate the start of the year, and ticks are quarterly.

have presented the dynamic volatility spillover effects (overall, from, to, and net, respec-

tively). The results are consistent with the ones derived from Parkinson’s measure. Hence,

our conclusions on the predictive power (giver and the net receiver) remain unchanged to

the use of an alternative measure of volatility.

5 Conclusions

As long as economies’ core are continually subject to frictions and are driven by incomplete

information, it is nearly impossible to not experience spillover of shocks in some form or

other. Depending on the net receiver or net dispenser of volatility, the magnitude of

spillover effects represents vulnerability of a system to external shocks. The context of

investigation in this paper, thus, has intermittent link to a broad economic and financial

theory: as long as investors’ choice of investment is governed by relative hedging value of

an asset traded in various markets, they will invariably use estimates of spillover effects

as the guiding information set to predict the next best investment strategy. Moreover,

spillover effects in a market can be used as an indicator of relative market inefficiency. A
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Figure 14 Overall volatility spillovers (dynamic plot – 60-day ahead forecast)
and Economic Policy Uncertainty Index

Note: Right scale (percentages): Dynamic overall volatility spillovers computed following Diebold and Yilmaz
(2012) with a 150-day rolling window, using a 60-day ahead forecast. Left scale: monthly Global Economic
Policy Uncertainty (EPU) index. The dashed line shows the median value of EPU over the sample period.
Dates on the x-axis indicate the start of the year, and ticks are quarterly.

weak-form cross-market inefficiency requires high-degree of spillover across markets where

there is a clear indication of net receiver and net giver of volatility. This way, an investor

can exploit arbitrage value by embedding the dynamic features of spillover in his prediction

strategy. In this paper, we have created a first-hand information set for cryptocurrency

investors by estimating spillover-effects in five markets where Bitcoin is highly traded.

A unique aspect of our research concerns estimation of volatility spillover effects (with a

better measure of volatility) across Bitcoin markets. We have investigated how spillover

effects are governed by uncertainty episodes. With an aim to capture information asymme-

try through fluctuations in uncertainty, our study sheds important insights on the dynamic

interdependence of spillover effects during high/low uncertainty episodes. By doing this,

we capture the sentimental value, researchers often attach to Bitcoin prices (in the ab-

sence of a dedicated asset pricing theory for cryptocurrency). By studying cross-market

spillover in Bitcoin prices we have also complemented to a sparse body of literature (such

as Cheah et al. (2018)) and have envisaged the importance of studying a systematic pat-

tern of shocks’ movement by capturing a ’system dynamics’. Because, as of now, price

movements in Bitcoin market possess no (theoretical) policy bound for an effective control,
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a perhaps acceptable approach is to exploit ‘system features’ to provide a net predictive

power.

Using the measure of volatility and well-established dynamic spillover methods, we have

found that Bitcoin-USD holds high predictive power and Bitcoin-Euro acts as the net

receiver. Moreover, higher uncertainty is found to accelerate spillover effects with larger

impacts across markets. The results hold implications for cross-market dynamic ineffi-

ciency and predictive power of one market for tapping in the arbitrage conditions. Our

results have implications for broad macroeconomic theory and investment decisions as en-

visaged by islands with sticky price information: investors of a risky asset like Bitcoin need

a well-defined information set which would determine - at least in part - their expected re-

turn value. In that sense, our research holds significant predictive value for cryptocurrency

investors.
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Table 6 Different Volatility measures across five selected exchange rates

(a) BTC/USD volatility

Mean St. Dev. Max Min Skewness Kurtosis

Parkinson (H-L) 0.709 1.008 20.68 0.0 9.086 139.2

GK (OC-HL) 0.773 1.140 24.33 0.010 9.389 150.5

GK-ABD 1.323 2.043 24.57 0.004 4.353 30.20

Rogers-Satchell 2.206 2.835 33.42 0.0 3.033 18.10

GK-YZ 1.011 1.294 24.61 0.02 8.209 116.5

(b) BTC/AUD volatility

Parkinson (H-L) 6.091 4.467 30.67 0.105 1.499 5.329

GK (OC-HL) 7.025 5.247 35.96 0.112 1.507 5.391

GK-ABD 5.664 3.371 21.20 0.114 1.150 4.352

Rogers-Satchell 8.023 6.541 44.12 0.0 1.607 5.747

GK-YZ 7.437 5.375 36.71 0.140 1.504 5.317

(c) BTC/CAD volatility

Parkinson (H-L) 7.248 4.681 30.01 0 1.054 4.330

GK (OC-HL) 8.176 5.449 35.18 0 1.058 4.346

GK-ABD 6.639 3.887 34.73 0 1.082 5.646

Rogers-Satchell 9.369 6.906 47.28 0 1.273 4.994

GK-YZ 9.097 5.792 40.88 0 1.149 4.838

(d) BTC/EUR volatility

Parkinson (H-L) 0.740 0.899 11.29 0.069 4.899 39.67

GK (OC-HL) 0.794 1.043 12.72 0.007 5.001 40.09

GK-ABD 0.874 1.361 26.78 0.015 8.784 126.7

Rogers-Satchell 1.126 1.515 22.60 0.007 5.525 51.66

GK-YZ 1.052 1.266 14.27 0.104 4.561 32.73

(e) BTC/GBP volatility

Parkinson (H-L) 9.298 6.378 69.04 0 2.639 17.65

GK (OC-HL) 10.88 7.507 81.25 0.745 2.649 17.70

GK-ABD 10.85 7.569 80.01 0.753 2.657 17.66

Rogers-Satchell 14.92 10.73 109.1 0.0 2.506 16.32

GK-YZ 11.26 7.52 82.14 1.054 2.683 17.97

Note: GK: Garman-Klass (1980). GK-ABD: Garman-Klass extension, Alizadeh, Brandt and Diebold (2002).
GK-YZ: Garman-Klass Yang-Zhang extinsion, Yang and Zhang, (2000). Rogers-Satchell (1991).

33

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

Figure 15 Comparison of GK and Parkinson Volatility Plots

Note: Exchange rate volatility series, daily. Dates on the x-axis indicate the start of the year, and ticks are
quarterly.
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Table 7 Volatility spillovers across five selected exchange rates: Garman-Klass
measure

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP
Directional

FROM others

BTC/USD 81.25 3.99 0.39 13.62 0.75 18.75

BTC/AUD 3.41 85.94 3.50 6.43 0.72 14.06

BTC/CAD 0.25 5.19 91.61 1.53 1.42 8.39

BTC/EUR 17.25 4.07 0.67 76.48 1.51 23.5

BTC/GBP 0.58 1.56 1.33 0.97 95.55 4.44

Directional
TO others

21.49 14.81 5.89 22.55 4.4 TSI:
69.14/500 =

13.83%Net spillovers 2.74 0.75 -2.5 -0.95 -0.04

Note: Exchange rates volatility spillovers following Diebold and Yilmaz (2012). Numbers are percentages.
“TSI” stands for Total Spillover Index.

Table 8 Volatility spillovers across five selected exchange rates - Frequency
domain analysis: Garman-Klass Measure of Volatility

(a) Short horizon

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others

BTC/USD 38.93 0.40 0.05 3.84 0.12 4.41

BTC/AUD 0.13 25.61 0.29 0.22 0.11 0.75

BTC/CAD 0.08 0.36 45.95 0.36 0.11 0.91

BTC/EUR 2.54 0.38 0.13 27.37 0.23 3.28

BTC/GBP 0.19 0.24 0.13 0.35 57.94 0.91

TO others 2.94 1.38 0.6 4.77 0.57
TSI: 10.26/206 =

4.99%

(b) Long horizon

BTC/USD BTC/AUD BTC/CAD BTC/EUR BTC/GBP FROM others

BTC/USD 42.32 3.59 0.34 9.77 0.62 14.32

BTC/AUD 3.28 60.34 3.22 6.21 0.61 13.32

BTC/CAD 0.17 4.83 45.66 1.17 1.31 7.48

BTC/EUR 14.71 3.69 0.54 49.11 1.29 20.23

BTC/GBP 0.39 1.32 1.20 0.62 37.61 3.53

TO others 18.55 13.43 5.3 17.77 3.83
TSI: 58.88/293.92 =

20.04%

Note: Volatility spillovers, frequency domain analysis following Baruńık and Křehĺık (2018). Numbers are
percentages. ‘Within’ refers to within system spillovers. Short and Long horizons refer to ‘4 days or less’ and
‘more than 4 days’, respectively.
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Figure 16 Overall volatility spillovers (dynamic plot): Garman-Klass volatility
measure

Note:The black line is the Dynamic overall based on Parkinson (1980) volatility, the red line is calculated
based on GK-YZ (2002) volatility. Dynamic overall volatility spillovers computed following Diebold and
Yilmaz (2012) with a 150-day rolling window, Y-axis in percentages. Dates on the x-axis indicate the start
of the year, and ticks are quarterly.
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Figure 17 Volatility spillovers from others, dynamic plot: Garman-Klass volatil-
ity measure

Note: Dynamic volatility spillovers from others computed following Diebold and Yilmaz (2012) with a 150-
day rolling window. Y-scales in percentages. Dates on the x-axis indicate the start of the year, and ticks are
quarterly.
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Figure 18 Volatility spillovers to others, dynamic plot: Garman-Klass volatility
measure

Note: Dynamic volatility spillovers to others computed following Diebold and Yilmaz (2012) with a 150-day
rolling window. Y-scales in percentages. Dates on the x-axis indicate the start of the year, and ticks are
quarterly.
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Figure 19 Net volatility spillovers, dynamic plot

Note: Dynamic net volatility spillovers computed following Diebold and Yilmaz (2012) with a 150-day rolling
window. Y-scales in percentages. Dates on the x-axis indicate the start of the year, and ticks are quarterly.

39

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

References

Alizadeh, S., Brandt, M. W., & Diebold, F. X. (2002). Range-based estimation of stochas-

tic volatility models. The Journal of Finance, 57 (3), 1047–1091.

Alvarez-Ramirez, J., Rodriguez, E., & Ibarra-Valdez, C. (2018). Long-range correlations

and asymmetry in the Bitcoin market. Physica A: Statistical Mechanics and its

Applications, 492 (C), 948-955.
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Highlights 

 

 We study cross-market spillover in Bitcoin prices and capture system dynamics. 

 Volatility spillovers across Bitcoin markets are greater when uncertainty rises. 

 Bitcoin-EUR is the most connected market in the system 

 Bitcoin-USD features net predictive power for volatility shocks on other Markets. 

 Bitcoin-EUR is a net receiver of volatility from other markets. 

Bitcoin-to-currency markets are inefficient and hold potential for systematic gains. 
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