Effects of process conditions on properties of electroplated Ni thin films for microsystem applications
Effects of process conditions on properties of electroplated Ni thin films for microsystem applications
The properties of electroplated Ni thin films have been systematically investigated as a function of plating temperature and current density. The resistivity and its temperature coefficient remain unchanged on varying the process conditions, though the values of these properties are approximately three times and one-half of those of bulk Ni material, respectively. Optimal conditions of J = 2 mA/cm(2) and 60 degrees C were found for stress-free Ni thin films. The modulus of elasticity of the Ni films is as high as that of bulk Ni (210 GPa) when plated at high temperature and low current density, and then decreases linearly with increasing plating current density, down to 85 GPa at a plating current density of 30 mA/cm(2). It is believed that higher plating rates produced fine-grained structures of low density, leading to a high tensile stress and low modulus of elasticity, while lower plating rates produced a dense material with a modulus of elasticity close to that of bulk Ni and a compressive residual stress. A clear correlation between modulus of elasticity and the stress exists, which reveals that a material under high tensile stress may posses a low modulus of elasticity, and is not suitable for fabrication of microelectromechanical systems devices.
D155-D161
Luo, J.K.
8185819a-b66e-4f4c-bc66-62ad6b0f98e8
Pritschow, M.
155251a4-cbaa-4b04-b0f3-916609aa9f65
Flewitt, A.J.
54a7d844-ba97-4c7e-a5ad-81d2b67382fb
Spearing, S.M.
9e56a7b3-e0e8-47b1-a6b4-db676ed3c17a
Fleck, N.A.
0f3592b8-1ecf-4d56-b4cb-d8749bc253b0
Milne, W.I.
3061f67c-bf3b-48fa-a193-8ca53fec82f3
2006
Luo, J.K.
8185819a-b66e-4f4c-bc66-62ad6b0f98e8
Pritschow, M.
155251a4-cbaa-4b04-b0f3-916609aa9f65
Flewitt, A.J.
54a7d844-ba97-4c7e-a5ad-81d2b67382fb
Spearing, S.M.
9e56a7b3-e0e8-47b1-a6b4-db676ed3c17a
Fleck, N.A.
0f3592b8-1ecf-4d56-b4cb-d8749bc253b0
Milne, W.I.
3061f67c-bf3b-48fa-a193-8ca53fec82f3
Luo, J.K., Pritschow, M., Flewitt, A.J., Spearing, S.M., Fleck, N.A. and Milne, W.I.
(2006)
Effects of process conditions on properties of electroplated Ni thin films for microsystem applications.
Journal of the Electrochemical Society, 153 (10), .
(doi:10.1149/1.2223302).
Abstract
The properties of electroplated Ni thin films have been systematically investigated as a function of plating temperature and current density. The resistivity and its temperature coefficient remain unchanged on varying the process conditions, though the values of these properties are approximately three times and one-half of those of bulk Ni material, respectively. Optimal conditions of J = 2 mA/cm(2) and 60 degrees C were found for stress-free Ni thin films. The modulus of elasticity of the Ni films is as high as that of bulk Ni (210 GPa) when plated at high temperature and low current density, and then decreases linearly with increasing plating current density, down to 85 GPa at a plating current density of 30 mA/cm(2). It is believed that higher plating rates produced fine-grained structures of low density, leading to a high tensile stress and low modulus of elasticity, while lower plating rates produced a dense material with a modulus of elasticity close to that of bulk Ni and a compressive residual stress. A clear correlation between modulus of elasticity and the stress exists, which reveals that a material under high tensile stress may posses a low modulus of elasticity, and is not suitable for fabrication of microelectromechanical systems devices.
This record has no associated files available for download.
More information
Published date: 2006
Organisations:
Engineering Mats & Surface Engineerg Gp
Identifiers
Local EPrints ID: 42960
URI: http://eprints.soton.ac.uk/id/eprint/42960
ISSN: 0013-4651
PURE UUID: d1cf0c3a-e9da-4611-83e7-0e5e87e4be7c
Catalogue record
Date deposited: 08 Jan 2007
Last modified: 16 Mar 2024 03:37
Export record
Altmetrics
Contributors
Author:
J.K. Luo
Author:
M. Pritschow
Author:
A.J. Flewitt
Author:
N.A. Fleck
Author:
W.I. Milne
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics