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Supersonic turbulent flows at Mach 2.7 over concave surfaces for two different curvature
radii were investigated and compared with a flat plate turbulent boundary layer using
direct numerical simulations. The streamwise velocity reduces in the outer part of the
boundary layer due to the compression while it increases near the wall due to curvature,
with a higher shape factor for the concave cases. The near wall spanwise streak spacing
reduces compared to the flat plate, with large scale streaks and turbulence amplification
also observed. Streamwise velocity iso-surfaces and streamlines show the generation
of Görtler-like vortices, consistent with significant centrifugal effects. Abundant small
vortices are shown to be associated with large baroclinic production of vorticity that
is caused by the density and pressure gradients that are associated with the concave
compression. Profiles of turbulent kinetic energy (TKE) and turbulent Mach number
exhibit a characteristic two-layer structure in the concave boundary layer cases. In the
outer layer, turbulence is greatly amplified, whereas a local balance exists in the inner
layer. Turbulent energy budget analysis shows that both production and dissipation
increase near the concave wall, whereas in the outer part of the boundary layer, the
production is increased and ultimately balanced by convection and turbulent transport.

Key words: Turbulence structures, Supersonic turbulent boundary layer, Concave
surface

1. Introduction

Supersonic boundary layers have been of great practical interest to researchers for
several decades. While the majority of the research has been focused on flat geometries,
realistic high-speed (e.g., supersonic and hypersonic) vehicles are composed of curved
surfaces and more complex geometries. Concave surface curvature can introduce sig-
nificant distortion to a compressible boundary layer flow due to multiple, potentially
coupled, effects including adverse pressure gradient (APG), bulk flow compression, and
possible centrifugal instabilities (see White 2007; Saric 1994; Smits & Dussauge 2006,
for examples). Improved understanding of the physical processes driving these high-
speed turbulent boundary layer flows is necessary to design more efficient supersonic
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and hypersonic vehicles, which may be able to utilize the physical mechanisms to their
advantage.

Several experimental and theoretical studies have been performed to gain insight into
these processes, as reviewed in Spina et al. (1994), showing that APGs and concave wall
curvature destabilize the boundary layer and enhance turbulent mixing, explained by
Green (1970) in terms of the conservation of angular momentum. The destabilization
physically manifests itself as an increase in turbulent fluctuations due to the streamline
curvature, APGs and bulk compression. This is in contrast to the stabilizing effects of
favourable pressure gradients on a boundary layer and the weakening of the coherent
structures (Spalart & Watmuff (1993); Tichenor et al. (2013); Sun et al. (2017)), which
leads to a turbulence reduction in the outer region of the boundary layer.

Experiments by Donovan et al. (1994) in a Mach 2.9 turbulent flow showed how the
wall shear stress increases over a concave wall. Fernando & Smits (1990) investigated
a flat plate with an imposed pressure gradient equal to that over a curved ramp and
an augmentation in the wall friction was reported, highlighting the importance of the
curvature. Smith & Smits (1994, 1995) did experiments to compare the Reynolds stresses
of the curved flow with a flat plate flow which has an equal adverse pressure gradient.
Flaherty & Austin (2013a) also demonstrated that heat transfer was also significantly
enhanced on concave surfaces.

Spina et al. (1994) used two parameters to characterize the dilatation/compression
and the streamline curvature. The bulk dilatation or compression impulse parameter is
defined as Ip = γ−1 ln (p2/p1) , where γ is the specific heat ratio with p1 and p2 the static
pressure before and after the pressure gradient, respectively. The parameter Iϕ = ∆ϕ
represents the change in the wall angle in radians. For a Mach 2.7 case with Ip = 0.35
and Iϕ = 0.1, Luker et al. (1998) observed a 70–100% increase in the turbulent stress
levels. Smith & Smits (1994, 1995) found higher levels of turbulent stresses when the
pressure gradient was applied over smaller distances. They noted the peak Reynolds
shear stress was doubled for Ip = 0.46 and Iϕ = 0.14 over a distance of 7 times boundary
layer thickness. Recently Neel et al. (2016) studied the effects of a streamline curvature-
induced APG on a Mach 4.9 turbulent boundary layer with parameters Ip = 0.47 and
Iϕ = 0.13, which revealed a large amplification of the shear stresses in the boundary
layer over the APG region, where schlieren images and averaged velocities from planar
PIV revealed a thinning of the boundary layer.

Over concave surfaces, it is possible to excite an instability mode due to centrifugal
effects. This instability manifests itself as streamwise-oriented counter-rotating vortices
known as Görtler vortices (Görtler 1954). A relevant non-dimensional parameter is the
local Görtler number defined as Gθ = Reθ

√
θ/R , where θ is the boundary layer mo-

mentum thickness, Reθ is the Reynolds number based on the displacement thickness and
freestream velocity. R is the surface radius of curvature. In general, as the Görtler number
increases, Görtler vortices become more pronounced. Görtler vortices can form even in
fully-developed turbulent flows. For supersonic curved boundary layers, as proposed by
Bradshaw (1974), the destabilizing process is caused by the combined effects of the
streamline curvature (∂V/∂x), the normal (∂p/∂y) and streamwise (∂p/∂x) pressure

gradients, and the bulk dilatation (∇·
−→
V ), making it extremely complicated. Theoretical

work has also been conducted to analyze the instability mode and the stability limit
leading to the Görtler vortices, as summarized in the review by Spina et al. (1994).
Recently, Ren & Fu (2015b) and Li et al. (2010) ran simulations for laminar flow
to characterize the formation of Görtler vortices and deduced that secondary mode

Page 2 of 39



3

instabilities result in sinusoidal oscillations in the Görtler vortices, and eventually lead
to vortex breakdown and transition to turbulence.

It has been suggested that the increase in large-scale activity leads to an overall increase
of the turbulent intensity(Harun et al. 2013). Several experiments have tried to visualize
the flow structures of Görtler vortices, including Luca et al. (1993) for a Mach 7 flow,
Ciolkosz & Spina (2006) at low supersonic Mach numbers varying from 1.06 to 2.87
and Flaherty (2013) at Mach 5.12. Recently, Wang & Wang (2016) studied the response
of turbulent structures in a Ma = 2.95 supersonic boundary layer to concave curvature
experimentally and found that the large scale vortices formed in the flat plate region
break down into smaller ones immediately after being convected into the concave region.
Since only a 2D longitudinal slice was obtained, it was difficult to speculate about the
3D vortex structures on the concave walls.

Experiments are limited in terms of what can be actually measured. Additionally,
there are limited publications (Tong et al. 2017) on numerical simulations of supersonic
flow over curved surface that could give more insight. In this paper, we present direct
numerical simulation (DNS) studies of supersonic Mach 2.7 flows over concave surfaces
with different curvature radius R = 308 mm, 908 mm and a flat plate. The parameters
defined by Spina et al. (1994) are Ip = 0.293 and Iϕ = 0.055 for R = 908 mm, while
Ip = 0.822 and Iϕ = 0.165 for R = 308 mm, for which significant curvature effects are
expected. The detailed turbulence structures and flow statistics will be analyzed. The
paper is organized as follows. In Section 2 the numerical method and the simulation
parameters are introduced. Section 3 discusses turbulence statistics such as mean pro-
files, boundary layer thickness, shape factors and pressure fluctuations, while Section 4
discusses three dimensional turbulent structures in concave flows. Statistical quantities
such as turbulence fluctuations, turbulent kinetic energy (TKE) and budget are compared
with the flat plate case in Section 5. Finally, conclusions are given in Section 6.

2. Computational setup

2.1. Numerical simulation and turbulent inflow generation

All simulations in this paper solve the three-dimensional unsteady compressible Navier-
Stokes equations directly without any modeling, using an in-house DNS code. The code
has been previously used for studies of instability, transition and turbulent high-speed
flows (Sandham 2016; Sandham et al. 2014). Here we provide only a brief recap of the
main features of the code. Details of the governing equations and algorithm can be found
in Touber & Sandham (2009) and the references cited therein.

The governing equations are solved in non-dimensionalized conservative forms of the
continuity, momentum, and energy equations in curvilinear coordinates (ξ, η, ζ) which are
transformed from Cartesian coordinates (x, y, z). The equations are non-dimensionalized
by the inflow parameters.

∂U

∂t
+
∂F

∂ξ
+
∂G

∂η
+
∂H

∂ζ
= 0 (2.1)

The conservative variables and the flux terms are given by

U = J


ρ
ρu
ρv
ρw
ρe

 and F = Fc+Fv = Jrξ


ρu∗

ρuu∗ + psx
ρvu∗ + psy
ρwu∗ + psz
(ρe+ p)u∗

−Jrξ


0
σxxsx + σxysy + σxzsz
σyxsx + σyysy + σyzsz
σzxsx + σzysy + σzzsz
τxsx + τysy + τzsz


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where

sx = ξx/rξ

u∗ = usx + vsy + wsz, rξ =
√
ξ2
x + ξ2

y + ξ2
z

τx = σxxu+ σxyv + σxzw − qx
τy = σyxu+ σyyv + σyzw − qy
τz = σzxu+ σzyv + σzzw − qz

Here, Fc and Fv denotes the convective and viscous term, respectively. The flux terms
G and H have similar forms as F . The viscous stress and heat flux terms are obtained
from Newtonian and Fourier models, given by

σij =
2µ

Re

[
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
− 1

3

∂uk
∂xk

δij

]
(2.2)

and

qj = − µ

(γ − 1) Re PrM2
∞

∂T

∂xj
(2.3)

The viscosity µ is calculated from the Sutherlands law, and the relationship between the
thermodynamic variables is given by the ideal gas state equation, i.e.

µ (T ) = T
3
2

1 + Ts/T∞
T + Ts/T∞

(2.4)

and

p =
ρT

γM2
∞

(2.5)

where Ts = 110.4 is the Sutherland constant for air. For all the numerical simulations
carried out in this work Pr = 0.72 and γ = 1.4 have been used.

The code solves the compressible Navier-Stokes equations using an entropy-splitting
approach for the Euler terms and fourth-order accurate finite differences. A third order
Runge-Kutta scheme is used for matching in time. The digital filter approach of Xie &
Castro (2008) is employed at the inflow, which promotes the development of the flow to
fully turbulent conditions. A detailed description of the optimized digital filter used in
this paper can be found in Touber (2010). This method is robust to the choice of length
scales, as long as the prescribed length scales are at least as large as the integral length
scale of the flow and adequate distance is provided downstream to allow the turbulence
to develop (Wang et al. 2015). In the present study, the streamwise characteristic length
scales for the three velocity components u, v and w are set to 0.65δi, 0.35δi and 0.35δi (δi
denotes the 99% boundary-layer thickness at the inflow), respectively. Mean and root-
mean-square (RMS) profiles are prescribed beforehand for the wall boundary layers. The
mean inflow profile is generated using the same approach as Touber & Sandham (2009).
The inflow RMS values are taken from the DNS results of Schlatter & Örlü (2010) for a
similar Reynolds number.

The inflow parameters (given in Table 1) are set in accordance with the Mach 2.7
experiments of Sun et al. (2013) and the recent simulations of Sun & Hu (2018a,b,c).
The bottom wall 99% boundary-layer thickness, which is the same for all simulations,
is estimated to be δi=5.7mm, which gives the compressible (including density varia-
tions) boundary-layer displacement thickness δi

∗=1.96mm and momentum thicknesses
θ=0.41mm, respectively, and corresponding Reynolds numbers Reδ∗=17,213, Reθ=3,600.
A full list of the cases conducted in the present study is given in Table 2.
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Mach number Stagnation Stagnation BL 99% Momentum Reynolds

temperature pressure thickness thickness number
Ma T0 P0 δi θ Reθ
2.7 300K 100kPa 5.7mm 0.41mm 3600

Table 1. Flow conditions for the simulations, including the dimensional boundary-layer (BL)
thicknesses and Reynolds number at the inflow.

(a) sketch of the flat and concave domain (b) sketch of the concave curvature radii

Figure 1. Sketch of the domain used for the simulations

2.2. Domain and grid distribution

Although the use of a digital filter to generate the inflow boundary condition sig-
nificantly reduces the length required for boundary-layer development, there should
nevertheless be enough distance to allow the boundary layers to adjust to an equilibrium
state before the turning point (Xie & Castro 2008). It was found by Touber (2010)
that a distance of 12 times the inflow boundary-layer thickness is enough to obtain
realistic turbulent mean and RMS profiles from the digital filter inflow generator used,
whereas Bradshaw (1974) suggested that the recovery length is usually ten times of the
incoming boundary layer thickness. Here we choose Li = 15 and δi ≈85mm for a fully
developed turbulence generation. The boundary layer thickness at the point of the corner
is denoted as δ0. An evaluation of the boundary layer thickness shows δ0 ≈ 6.19mm. The
concave length Le is set to Le > 10δ0. In this study, we consider two concave curvature
radii, 908mm and 308mm, and we take Le = 16δ0 ≈100mm and the total length of the
computational domain is Lx = 185mm. For brevity, the two concave cases are denoted as
CurvR908mm and CurvR308mm for curvature radii of 908mm and 308mm, respectively.
A sketch of the computational domain is shown in figure 1. A fixed coordinate system
(x, y, z ) is used, denoting the streamwise, bottom wall-normal and spanwise directions,
respectively, for the straight wall segment. The origin is set at the turning point, which
is 85mm downstream of the inlet. Thus the inlet plane is located at x = −85mm. The
curvilinear coordinates (ξ, η, ζ) in the concave region are transformed from the cartesian

coordinate system (x, y, z) with ξ = R arctan
(

x
R−y

)
,η = R − r = R −

√
(R− y)

2
+ x2

and ζ = z. Thus the coordinate transformation coefficients (rξ, rη and rζ ) are known
for all cases.

A stretched grid is used near the wall in the y direction, changing gradually to a
uniform grid outside the boundary layer with a prescribed spacing. Grid smoothness
is very important, especially when high-order schemes are used. Two grid stretching
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Case Domain size Grid number Grid control Grid spacing

Lx × Ly × Lzmm Nx ×Ny ×Nz νb(mm),Nb, β ∆+
x∆

+
y ∆

+
z

All cases 185× 25× 15 2305× 241× 289 1.85,81,1.80 6.5 0.8-9.8 4.1

Table 2. Grid numbers and stretching control parameters for different cases

functions with at least second-order continuity at the interface are combined to give
coordinates yi in the direction normal to the bottom wall as

yi =

{
yb

sinh(βηj)
sinh(β) , ηj = j−1

Nb−1 , j 6 Nb
a · j5 + b · j3 + c · j + ymid, j > Nb

(2.6)

where ymid is the middle of the domain, while the parameters a, b and c are fixed by
continuity considerations up to second order. A predefined distance from the wall, yb, is
used to specify the region for grid stretching, with Nb the number of grid points inside
this region. A fifth-order polynomial enables the grid to change quickly from a stretched
grid near the wall to an almost uniform grid away from the wall.

In the y direction, the grid spacing is y+
1 = 0.8 for the first point off the wall

and ∆y+
max=9.8 in the centre of the domain (all wall units are calculated based on

the inflow friction velocity). The streamwise direction has a uniform grid distribution,
with ∆x+=6.5. In the spanwise direction, the grid spacing is also uniform and fixed at
∆z+=4.1. The grid suitability for the present simulations was also verified by changing
the grid resolution in all directions. A sensitive feature was found to be the peak skin
friction in the vicinity of the outlet on concave surface which varied by less than 5.0%,
for a grid that was coarsened by 50% in all directions. A variant of the standard total
variation diminishing scheme is employed for strong discontinuity capturing (Yee et al.
1999), which is turned off within boundary layers by incorporating the Ducros sensor
(Ducros et al. 1999). Comparison of mean profiles of flat plate with DNS results of
Schlatter & Örlü (2010) were made and found to be consistent (Sun et al. 2017). The
boundary layer thickness at x=0mm is estimated as δ0 ≈ 6.19mm and the compressible
boundary-layer displacement and momentum thicknesses are δ0

∗ = 2.37mm and θ0 =
0.48mm, respectively.

No-slip boundary conditions were enforced on the bottom wall (shown in figure 1).
The wall temperature is fixed at a value equal to the stagnation temperature of the
inflow. Integrated characteristic boundary conditions (Thompson 1990) are used at the
outflow and the top boundary. Periodic boundary conditions are applied in the spanwise
direction.

2.3. Grid and numerical validity

Statistical data are based on averaging flowfields over 360 non-dimensional time units
(δ0/U∞) after running the simulations for 240 non-dimensional units to let the flow
develop. To check the spanwise domain size, two-point spanwise correlations of velocity
perturbations at different wall normal locations are given in figure 2 (a,b). The correlation
definition is the same as in Pirozzoli et al. (2004). As shown, the correlation coefficients
decay rapidly to zero with the increase in the spanwise separation. It is clear that
the correlation coefficients reduce to zero well within the domain, suggesting that the
simulation domain is sufficiently wide to resolve the turbulence dynamics. The adequacy
of the spatial resolution is also confirmed by examining the one-dimensional energy
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(a) two-point correlation at y/δ0 = 0.0587 (b) two-point correlations at y/δ0 = 0.2908

(c) energy spectra at y/δ0 = 0.0587 (d) energy spectra at y/δ0 = 0.2908

Figure 2. Two-point correlation and energy spectra of the velocity components at different
wall normal locations x/δ0 = 11.5

spectra (Pirozzoli et al. 2004), as shown in figure 2(c,d), where Euaua is the energy
spectrum for the velocity component. It can be seen that all spectra exhibit a drop off of
at least four order of magnitudes. Compared to the DNS result of similar flows (Guarini
et al. 2000), these spectra suggest the resolution is adequate.

Turbulent boundary-layer mean velocity profiles and distributions of RMS values at
x = 0 mm on the flat plate (at the concave turning point) are evaluated. The mean
inflow profile is generated using the same approach as Touber & Sandham (2009). The
inflow RMS values are taken from the DNS results of Schlatter & Örlü (2010) for a
similar Reynolds number. A compressible scaling, as suggested by Morkovin (1962) and
validated by Duan & Beekman (2011) for high Mach numbers, is used to transform the
incompressible RMS values. The calculated compressible boundary-layer displacement
and momentum thicknesses at x = 0 mm are δ0

∗ = 2.37 mm, θ0 = 0.48 mm, respectively.
It should be noted that the Reynolds number based on the freestream flow properties
and the momentum thickness, i.e. Reθ = ρeUeθ/µw , is 4,215. The corresponding
Reynolds number under the van Driest scaling, i.e. Reθ,vd = ρwU

vd
e θvd

/
µw , is 1,078.

The subscripts e and w above denote the main flow and wall parameters, respectively,
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(a) Mean velocity distribution (b) RMS velocity distribution

Figure 3. Mean (a) and RMS (b) velocity distributions obtained at x=0mm on the flat plate,

compared with the incompressible flow data of Schlatter & Örlü (2010) and supersonic flow data
of Duan & Beekman (2011). The van Driest transformation was applied to the mean velocity

and a Morkovin scaling ξ =
√
ρ/ρw to the RMS curves.

while the superscript vd represents the value under the van Driest transform. Figure 3
shows that the mean and RMS values agree very well with the DNS results of Schlatter
& Örlü (2010), as found in a recent study on turbulent flow over an expansion corner
(Sun et al. 2017). DNS data of supersonic boundary layer from Duan & Beekman (2011)
are also compared in figure 3 and it is found that the current calculation agrees well with
the compressible velocity profile and the Reynolds-stress data.

3. Mean flow and turbulent statistics on concave surfaces

3.1. Mean flowfield

The time averaged density fields together with sonic lines are given in figure 4 for the
whole domain on the left and in an enlarged view on the right. It can be seen that the
density on the concave surface increases in the main stream and in the boundary layer
downstream of the turning point and the compression waves become more evident as the
curvature radius decreases. The results correspond to the analysis of Spina et al. (1994),
which indicates that the boundary layer on concave walls becomes thinner. The local sonic
line is superposed on the contours. Near the outlet, the sonic lines are smooth, with no
sign of any artificial disturbances generated near the outflow boundary. An interesting
part is that the subsonic region increases as the curvature radius decreases.

Profiles of the time-averaged skin friction, Cf = 2τw
/(
ρ∞U

2
∞
)

, along the wall for the
flat plate and the two concave cases are shown in figure 5. The skin friction starts to follow
the expected results (Sun et al. 2017) of a turbulent boundary layer by x/δ0 = −5, which
indicates that the artificial inflow condition recovers to turbulent boundary layer flow
roughly 5 inflow boundary layer thicknesses before the turning point x/δ0 = 0. The skin
friction coefficient decreases slightly in the vicinity of the turning point, and increases
further downstream, while the pressure increases consistently downstream of the turning
point. Experimental data for the wall pressure distribution in a Mach 2.95 supersonic
boundary layer (Wang et al. 2016b) are superposed, showing a reasonable agreement.
The deviation cannot be discussed further since the uncertainty is not known from the

Page 8 of 39



9

(a) Flat plate

(b) CurvR908mm

(c) CurvR308mm

Figure 4. Contours of time averaged density of the flat plate and the concave cases, normalized
by the inflow freestream density. The local sonic line is superposed on the contour. a) Flat plate,
b) CurvR908mm, c) CurvR308mm.

experiments. Figure 5(c) shows the pressure gradient distribution along the wall surface,
where it is seen that the pressure gradient has an abrupt increase at x/δ0 = 0.0 for the
concave cases and an approximately linear increase for x/δ0 > 3. The flow on concave
walls experiences a continuously increasing pressure all the way to the outflow.

Figure 6 shows velocity profiles both upstream and downstream of the turning point.
It can be seen that for concave cases, the velocity on the concave surface is lower than
that on the flat plate over most of the boundary layer. Thus, the downstream velocity
profiles become less full as the curvature radius increases. In figure 7, the velocity profiles
are re-plotted again in wall coordinates using the van Driest transformation, which takes
into account the variation of density in compressible boundary layers. Compared to the
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(a) skin friction coefficient (b) wall pressure normalized by the freestream
pressure

(c) non-dimensional wall pressure gradient

Figure 5. Mean flow parameters along the flat and concave surfaces

velocity profiles of the flat plate case, the velocity profiles on concave surfaces deviate
slightly from the log-law around the turning point, and the difference becomes more
significant further downstream. In the region near the boundary layer outer edge, the
wake layer of the CurvR308mm case deviates significantly from the flat plate case.

The velocity changes differently in the inner part of the boundary layer of concave cases
compared to the flat plate case, as shown in figure 8, where the same velocity profiles as
given in figure 7(d) are re-plotted using the outer length scale δ0. Under this scaling the
velocity near the wall increases, which is opposite to the behaviour in the outer region.

From the turbulent boundary layer velocity profiles, it is possible to analyze the
boundary layer displacement thickness δ∗ and the momentum thickness θ, which are

defined as δ∗ =
∫ h

0

(
1− ρ

ρe
u
Ue

)
dy and θ =

∫ h
0

ρ
ρe

u
Ue

(
1− u

Ue

)
dy , respectively. Here we

integrate up to h = 1.5δ0 to reduce the effects of variation in the freestream properties
ρe and Ue. Figure 9(a, b) shows the calculated results for different cases. Over the flat
plate, both the displacement thickness and momentum thickness grow. Over the concave
surfaces, δ∗ experiences a drop after the turning point, followed by a rise downstream
of x/δ0 ≈ 4.0 and eventually a reduction. The changes in the higher curvature case are
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(a) (b)

(c) (d)

Figure 6. Mean velocity profile predictions at different locations,
(a)x/δ0 = −2.42,(b)x/δ0 = 0.81,(c)x/δ0 = 5.65,(d)x/δ0 = 10.50, normalized by inflow

freestream velocity

more significant. The momentum thickness θ first rises above the flat plate values after
the turning point, then starts to decrease at x/δ0 ≈ 4.0, with both curved wall cases
eventually having lower than the flat plate case.

Figure 9(c) shows the shape factor (H = δ∗/θ) as a function of the streamwise location
of both concave cases. As discussed in previous work (Sun et al. 2017), a higher shape
factor represents a velocity profile with less fullness. It is clearly seen that the shape factor
increases significantly further downstream of the turning point on the concave surfaces
and then reduces. It is found that H=8.07 for CurvR308mm case at x/δ0 = 15.5, and
H=5.47 for CurvR908mm case, compared to H=4.83 for the flat plate case.

Pressure fluctuations were recorded on the wall surface at different positions for 360
non-dimensional time units with 240 samples. The response of the flow to the curvature
is examined by comparing the frequency weighted power spectral density(WPSD), which
was calculated using a 50% segmental averaging method as in Hu et al. (2006). As the
flow is homogeneous in the spanwise direction, the WPSD are averaged over the span.
The WPSD given in figure 10 show the pressure fluctuations at various locations for
different cases. At x/δ0=-2.42 and 0.81, the pressure fluctuations are almost unchanged
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(a) (b)

(c) (d)

Figure 7. Mean velocity profile predictions at different locations, van Driest transformation is
applied to the mean velocity, (a)x/δ0 = −2.42,(b)x/δ0 = 0.81,(c)x/δ0 = 5.65,(d)x/δ0 = 10.50

compared to the flat plate case. At x/δ0=5.65, low frequency peaks in the spectra appear
for concave cases, while at x/δ0=10.50 the amplitudes are significantly higher throughout
the energy-containing range. Thus the magnitude of the turbulent fluctuations increases
with the curvature ratio and, in particular, low frequency (presumed to be of large scale)
structures appear to be generated on concave walls.

Figure 11 plots RMS values of pressure, temperature and density fluctuation normal-
ized by local averaged < p >, < T > and < ρ >. It is seen that the local magnitude
of density fluctuations on the concave wall is always larger than on the flat plate. For
pressure and temperature fluctuations, the magnitude of the fluctuations increases most
obviously in the outer region in the CurvR308mm boundary layer compared to the
flat plate. In the inner layer, RMS values of pressure and temperature fluctuations
of the CurvR308mm case are lower than the flat plate. Figure 12 shows the plots of
RMS values of velocity fluctuation. It is seen that for velocity fluctuations, the three
components of the velocity fluctuations are all increased. These quantitative results
exhibit the turbulence amplification from different aspects. The velocity and density
fluctuations increase over the entire boundary layer but in the inner layer the pressure
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(a) (b)

Figure 8. Distribution of velocity as a function of wall-normal distance at x/δ0 = 10.50
normalized by inflow freestream velocity U∞ (a) and local freestream velocity Ue over the
boundary layer (b)

and temperature fluctuations are not enhanced, which might be related to the obvious
augmentation of the averaged pressure and temperature due to the concave compression.
Recalling figure 2, the comparison of one-dimensional power spectra between the flat
plate case and the concave case at x/δ0 = 11.5 shows that Euαuα of CurvR308mm at
y/δ0 = 0.0587 is larger in the high wave number region compared to the flat plate. At low
wave numbers, Euαuα of the CurvR308mm case is comparable to the flat plate, which
means that the large scale turbulence is not obviously enhanced in the inner region of
the CurvR308mm boundary layer. At y/δ0 = 0.2908, Euαuα of CurvR308mm is larger
than the flat plate over the whole wave number range. This means that both the small
and large scales of turbulence are enhanced.

3.2. Thermal effects

The recovery temperature at the wall Tr = 281.2K is calculated according to Tr =

T∞ + r
u2
∞

2Cp
, with r = (Pr)

1/3
. The recovery temperature has little variation along the

curved section. To illustrate the concave wall heat transfer compared to the flat plate,
figure 13 gives the Stanton number

St =
qw

ρ∞ρ∞Cp (Tw − Tr)
(3.1)

along the wall, where qw = −k dT̄dy
∣∣∣
w

.

As seen from figure 13, the Stanton number increases on the concave walls compared
to the flat plate, and becomes higher as the curvature increases. The temperature profiles
shown in figure 14 show that temperature is higher in the outer region of the concave
boundary layer compared to the flat plate. The wall-normal temperature gradient for the
concave cases decreases in the outer region but increases in the inner region, leading to
the observed increase of the Stanton number on the concave wall. For the CurvR308mm
case, the temperature decreases more quickly than in the CurvR908mm case and the flat
plate. This tendency is similar to the velocity profile along the wall (analyzed in section
3.1), which reflects the different character between the inner layer and the outer layer.
The phenomenon is related to the amplification of the turbulence on the concave wall,

Page 13 of 39



14

(a) (b)

(c)

Figure 9. The displacement thickness δ∗ (a) and the momentum thickness θ (b) and the
shape factor H (c) as a function of the streamwise location for the flat and concave cases

and will be analysed in the following sections. A test of the strong Reynolds analogy
(SRA) is given in figure 15. Morkovins SRA is well known for compressible turbulent
boundary layer flows. The SRA is tested by testing the Morkovin approximate relation
(Morkovin 1962)

(T ′′2)
1/2
/
T̃

(γ − 1)M2
a (u′′2)

1/2
/
ũ
≈ 1 (3.2)

as well as considering the correlation of streamwise velocity and temperature, according
to

Ru′′T ′′ =
−u′′T ′′

(u′′2)
1/2

(T ′′2)
1/2

(3.3)

where a tilde denotes Favre average. Figure 15 shows the results at different streamwise
locations. Note that the reference boundary layer thickness δ0 = 6.19 is measured at
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(a) x/δ0=-2.42 (b) x/δ0=0.81

(c) x/δ0=5.65 (d) x/δ0=10.5

Figure 10. Weighted power spectra density (WPSD) of pressure on the flat plate and concave
walls, normalized by square of freestream dynamic pressure

Figure 11. p′rms/ < p >,ρ′rms/ < ρ > and T ′rms/ < T > versus y/δ0 (left) and y unit (right)
for different cases at x/δ0=11.5
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Figure 12. Turbulence intensities of the fluctuating velocity components versus y/δ0 (left)
and y unit (right) for different cases at x/δ0 = 11.5

Figure 13. Stanton Number along the wall in the streamwise direction

the turning point x/δ0 = 0.0, and the boundary layer on the concave wall is thinner
than on the flat plate.That is why figure 15(b) seems slightly different at the edge of
the boundary layer.The results show that the SRA relations are satisfied and Ru′′T ′′ is
almost independent of wall temperature except close to the wall.Through most of the
boundary layer, Ru′′T ′′ is approximately 0.6, similar to the results reported by Guarini
et al. (2000), Maeder et al. (1998), Pirozzoli et al. (2004) and Duan & Beekman (2011).
On the concave wall, the SRA relations tend to be satisfied slightly better than along
the flat plate.
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(a) Mean temperature (b) wall-normal temperature gradient

Figure 14. Mean temperature and wall-normal gradient profiles at x/δ0 = 10.50

(a) x/δ0 = 0.81 (b) x/δ0 = 10.50

Figure 15. SRA profiles at (a)x/δ0 = 0.81 and (b)x/δ0 = 10.50

4. Instantaneous turbulent structures in the concave flowfield

4.1. Turbulence flow structures

Contours in a 2D slice through instantaneous density fields are given in figure 16. It
can be seen that the density on the concave surface increases in the main stream and in
the boundary layer downstream of the turning point, and also that compression waves
become evident as curvature radius decreases. As measured in previous studies(Fernando
& Smits (2006), Donovan et al. (1994), Spina et al. (1994), Flaherty & Austin (2013a),
Wang et al. (2016b)), the boundary layer thickness decreases on a concave wall and on a
flat plate with adverse pressure gradient in a supersonic flow. In contrast to this, recent by
nano-particle planar laser scattering visualizations of the instantaneous two-dimensional
flow Wang & Wang (2016) observed that the concave boundary layer becomes thicker.
From the velocity profiles in the previous section we see that in the present study the
boundary layer is on average thinner on concave walls, as seen also in the instantaneous
slice shown on figure 16c. However, another slice at a different spanwise location (figure
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Figure 16. Contours of density flowfields of the flat plate and the concave cases at z/δ0 = 1.2,
a) flat plate, b) CurvR908mm, c) CurvR308mm, normalized by the inflow freestream density

17) shows large structures that might be identified as an instantaneous increase of the
boundary layer thickness, which might explain the results of Wang & Wang (2016). This
will be discussed further in section 4.3 and we attribute the variability in thickness to
the formation of destabilizing structures with strong instantaneous spanwise variability.

In order to investigate vortex structures before and after the turning point, figure 18
shows an iso-surface of λ2, which is the second eigenvalue of the 3×3 matrix comprising
the velocity gradient components Jeong & Hussain (1995). A small negative value
(λ2 = −0.3) is selected to visualize the turbulence structures. Compared with the flat
plate, supersonic flow past concave surfaces shows an augmentation of λ2 vortices. The
turbulence is rapidly amplified in the CurvR308mm case, as shown in figure 18(c).
Recalling figure 16(c) and figure 17, a careful observation of the turbulent structures
on the concave wall demonstrates that many smaller fluctuations are superimposed on
the large scale structures. Moreover it is found that new large scale structures form in
the downstream boundary layer on the curved surface.
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Figure 17. Contours of density flowfields of CurvR308mm case at z/δ0 = 1.8, normalized by
the inflow freestream density

Figure 18. Iso-surface of λ2 coloured by the instantaneous temperature of different cases, a)
flat plate, b) CurvR908mm, c) CurvR308mm

4.2. Comparison of near-wall streaks and spanwise two-point correlations

The near-wall streaks in the turbulent flowfield of CurvR308mm case are analyzed in
this section. For the benefit of comparisons between concave cases and the flat plate,
the concave wall is plotted in a body-fitted coordinate system (ξ, η), transforming the
computational domain to a rectangular box. The transformed velocity components are
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(a) at y/δ0 = 0.0068 for the flat plate (top) and the CurvR308mm (bottom) cases

(b) at y/δ0 = 0.255 for the flat plate (top) and the CurvR308mm (bottom) cases

Figure 19. Streamwise velocity contours at (a) y/δ0 = 0.0068 and (b) y/δ0 = 0.255 slices of
the flat plate (top) and the CurvR308mm (bottom) cases

given by ut = u cosβ− v sinβ and vt = u sinβ+ v cosβ respectively, where β is the local
wall turning angle (see Figure 1).

The streamwise velocity fields in the transformed coordinates at the same wall-normal
distance (y/δ0=0.0068) are shown in figure 19(a) from a top view. Alternating low
and high speed streaks can be clearly identified. The classic near-wall streaks occur
in the upstream undisturbed boundary layer in both cases. In the inner layer further
downstream, however, the quasi-streamwise structures break down into smaller vortices
and an abundance of small structures are generated along the concave wall. The distance
between neighbouring low-speed streaks decreases on the concave wall compared to
the flat plate case, which will be quantified in the next paragraph with the two-point
correlation results. At y/δ0=0.255, shown on figure 19(b), the minimum streamwise
velocity of the concave case is lower than the flat plate case at the same location, as
discussed earlier. Large scale streaks with enlarged streak spacing are seen on the concave
wall, and are found to remain coherent over a long streamwise distance.

To quantify the distance between two neighboring low-speed streaks, two-point span-
wise correlations of velocity perturbations are compared between the flat plate and the

Page 20 of 39



21

(a) y/δ0 = 0.0068 (b) y/δ0 = 0.255

Figure 20. Two-point spanwise correlations for velocity perturbations at x/δ0 = 15.5. The
spanwise coordinates are normalized by the boundary layer thickness δ0.

CurvR308mm cases at x/δ0=15.5 for different wall-normal distance, as given in figure
20. At y/δ0=0.0068 (figure 20a) in the flat plate case, the minimum of the wall-normal
velocity correlation is found at z/δ0=0.045, which is the typical streak spacing in a
zero-pressure gradient boundary layer. For the CurvR308mm case, the streak width is
significantly reduced, consistent with the increasing skin friction. This is in contrast to
the behaviour away from the wall, where at y/δ0 = 0.255 (figure 19), an increase in
the streak spacing compared to the flat plate case can be identified. This indicates that
streaks might be organized into new patterns, corresponding to the large velocity streaks
seen in figure 19.

4.3. Iso-surfaces and slices of instantaneous velocity in three-dimensional flowfield

To understand the changes in coherent structures, iso-surfaces of the streamwise
velocity, together with streamlines coloured by the wall-normal distance are illustrated
and compared in figure 21-22. All the results are based on the domain transformation
introduced in Section 4.2.

From figure 21, it is clear that smaller concave curvature radius (CurvR308mm), which
means higher curvature ratio, tends to destabilize structures in the boundary layer.
For the flat plate case shown in figure 21(a), we can clearly see the classic elongated
streamwise structures in the iso-surface of ut=0.4. For the CurvR908mm case, the streaks
are preserved, but the streaks appear more corrugated and lifted away from the concave
wall. Upstream and for a short distance downstream (x/δ0 < 5) of the turning point,
the structures are very similar to the flat plate case. However, further downstream the
structures start to produce smaller streaks. Most of the structures remain stay close to
the wall as in the flat plate case. For CurvR308mm case the streaks on the concave
wall develop into a new pattern and large scale organized structures are lifted away
from the wall into the outer layer. The orientation of these structures suggests that they
are likely to be the Görtler-like structures previously shown in numerical simulations of
hypersonic flow(Ren & Fu 2015a). From a comparison of figures 21(a)-(c), we can see
that the concave effects strengthen the liftup process of velocity streaks in the boundary
layer, with the Görtler-like vortices pumping fluid packets from the inner layer outwards.
Recalling the pressure fluctuation discussed in Section 3.2, since Görtler instabilities
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Figure 21. Turbulence coherent structures visualized with the iso-surface of ut/U∞ = 0.4
coloured by the wall-normal distance, (a) Flat plate, (b) CurvR908mm, (c) CurvR308mm

lead to coherent large scale structures in the concave boundary layer, the reason for the
low frequency pressure fluctuations becomes apparent. Observation on the iso-surface
of ut=0.4 at different time points reveals that the Görtler-like structures drift in the
spanwise direction as time changes. Since they are not fixed in space, these structures
cannot be investigated from an averaged view.

Figure 22 shows representative instantaneous streamlines, originating in the
y/δ0=0.0266 plane and x/δ0 = −6.0 upstream of the turning point. These streamlines,
coloured by the wall-normal distance, illustrate the motion of the fluid. It is seen that
the initially planar streamlines are lifted and tilted downstream of the turning point. For
the flat plate case, the streamlines concentrate into streaky structures and are convected
downstream. For the concave cases, the streamlines form into lifted streaks, consistent
with the generation of Görtler-like vortices, and illustrate how the streamlines transport
fluid from the upstream inner boundary layer to the outer layer downstream.

Figure 23(a) shows contours of the local velocity contour superimposed with the local
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Figure 22. Oblique view of three-dimensional streamlines originating from inflow wall parallel
plane y/δ0 = 0.0266 and x/δ0 = −6.0, colored by the wall-normal distance in y/δ0 unit, a) Flat
plate, b) CurvR908mm, c) CurvR308mm

in-plane streamlines for the instantaneous flow at x/δ0 = 11.5. The predominant wall-
normal flow on concave surface outside boundary layer is due to surface curvature
centrifugal effect. The region shown in the dashed-line window is an example of a
mushroom structure, which is likely to be the typical consequence of a Görtler vortex, as
in concave laminar flow (Ren & Fu 2015a). It is seen that the low-momentum fluid in the
inner boundary layer is pumped into the outer layer by the Görtler-like structures.Figure
23(b) shows that small scale vortices are more abundant on the concave wall. Combined
with the λ2 vortex structures in figure 18(c) and the streaks in the inner boundary layer
in figure 19, we can tell that small-scale turbulence is enhanced in the concave boundary
layer. The vorticity transport equation can be written as,

Dω

Dt
= (ω · ∇) u− ω (∇ · u)− ∇p×∇ρ

ρ2
+∇×

(
∇ · τ
ρ

)
(4.1)

The third term, ∇p×∇ρρ2 describes vorticity production via the baroclinic mechanism,
which occurs when the density and pressure gradients are misaligned. Pressure enters the
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vorticity equation only through this baroclinic term. It is important to note that vorticity
can be generated by baroclinic torque in the concave flow, whereas the other terms in the
vorticity equation describe the amplification, stretching, bending or diffusion of existing
vorticity. The baroclinic production term is given by

Bp =
(∇p×∇ρ)

ρ2
=

1

ρ2

(
∂ρ

∂y

∂P

∂z
− ∂ρ

∂z

∂P

∂y

)
~i+

1

ρ2

(
∂ρ

∂z

∂P

∂x
− ∂ρ

∂x

∂P

∂z

)
~j

+
1

ρ2

(
∂ρ

∂x

∂P

∂y
− ∂ρ

∂y

∂P

∂x

)
~k

(4.2)

or

(∇p×∇ρ)

ρ2
=

1

ρ2
rηrζ

(
∂ρ

∂η

∂P

∂ζ
− ∂ρ

∂ζ

∂P

∂η

)
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+
1
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∂ξ
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∂η

∂P

∂ξ

)
~k

(4.3)

which indicates the rate at which the vorticity is generated.
Figure 23(c) shows the distribution of the baroclinic production term on a slice at

x/δ0 = 11.5. The baroclinic production term in the outer region of the concave boundary
layer has a higher magnitude than on the flat plate and arises near the interface of the high
speed flow with the low speed flow, corresponding to the Görtler-like structures shown
in figure 23(a). In Equation (4.2), the normal pressure gradient ∂P/∂y (from centrifugal
effects) can interact with spanwise density gradient ∂ρ/∂z, leading to streamwise vorticity
induced by these interactions. Therefore it is concluded that the Görtler-like vortices
occurred in the outer region of the concave boundary layer can easily twist the original
density and pressure gradients. Prominent pressure gradients interact with the density
gradients and induce significant vorticity in the concave boundary layer. This corresponds
to the generation of the abundant small vortices shown in figure 23(b). In the inner region,
pressure gradients interact with the local density gradients and cause more vortices than
the flat plate with zero pressure gradient while the influence of the Görtler instability on
density gradients appears smaller.

The evolution of turbulent flow structures can be quantified using the anisotropy
invariant map (Lumley 1978). This map comprises the second and third invariants of
the Reynolds stress anisotropy tensor (bij), which are defined as,

bij =

〈
ρu

′′
i u

′′
j

〉
〈ρu′′

k u
′′
k 〉
− 1

3δij

IIb = bijbji
IIIb = bijbjkbki

(4.4)

Figure 24(a) shows the anisotropy invariant map at x/δ0=11.5, with an expanded
view of the part near the outer edge of the boundary layer in figure 24(b). It can be seen
that there are significant changes over the concave surface. The near-wall region still
approaches the two-component limit, but does so further from the one-component point,
consistent with less well organised near-wall velocity streaks. The maximum anisotropy
occurred in the CurvR308mm case at y/δ0=0.0084, which falls approximately in the
buffer layer. At the outer edge of the boundary layer the convex wall cases become
closer to isotropic and the turbulence state spends more time close to axisymmetric
compression. These characteristics are also observed in the DNS conducted by Grilli et al.
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(a) Streamwise velocity (ut/U∞) contours, superimposed with in-plane streamlines

(b) Streamwise vorticity (ωx/(U∞/δ0)) distribution

(c) Baroclinic production (|Bp|/(U2
∞)/δ20 )

Figure 23. Streamwise velocity, vorticity and baroclinic production contours for the flat plate
(left) and the CurvR308mm (right) case at x/δ0=11.5
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Figure 24. Anisotropy invariant maps based on (IIIb, IIb) and (Ψ, ϕ) respectively at
x/δ0=11.5 for different cases (a) overall and (b) enlarged view

(2013) and Tong et al. (2017). Based on the comparison with Fig. 11-12, the anisotropy
results are in accordance with the two-layer structure of the concave boundary layer.

It is difficult to extract Görtler-like vortices from the chaotic background shown in
figure 23 (a)-(b), and this is probably the reason why no experiments have found Görtler-
like vortices under turbulent conditions. Ren & Fu (2015b) used instability analysis to
show the nonlinear development of Görtler vortices and the formation of low and high
speed streaks in a laminar supersonic boundary layer at Mach 3.0. Their results showed
that a mushroom structure is developed in the flowfield. As mentioned above, there is
no regular Görtler structure in the current turbulent flow where small vortices stir and
break down the large scales. However, the structures showed up clearly in the streamline
plots of Figure 22. It is believed that the Görtler vortices feed the generation of large
numbers of small vortices and significantly promote the exchange of the inner layer with
the outer layer. On the concave wall, the inner region is mainly affected by the adverse
pressure gradient and the local turbulence amplification can be explained by previous
research (Lee & J.Sung 2009; Franko & Lele 2014) on flat plate supersonic boundary
layers. As previously noted, the adverse pressure gradient interacts with the density
gradients formed around streaks in the inner layer, and the resulting baroclinic effects
lead to the formation of many small vortices, as seen in figure 19.

Figure 25 summarizes the role of Görtler instabilities in the turbulent supersonic
concave boundary layer. A schematic view on the Görtler vortices is shown in figure
25(a), which shows a typical mushroom shape and the associated modulation of the
inner boundary layer. The important result is that Görtler vortices twist and distort
the local density gradient. Figure 25(b) shows the inner region flow interaction with
adverse pressure gradient, which also represents the boundary layer interaction with the
adverse pressure gradient without centrifugal effects. As given in the previous studies
(Fernando & Smits 1990; Donovan et al. 1994; Flaherty & Austin 2013b; Wang et al.
2016a), the boundary layer thickness on the flat plate decreases when subject to adverse
pressure gradient. Comparing figure 25(a)-(b), the prominent difference is that the
Görtler vortices induce stretching, twisting and distortion of the density gradient surfaces
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(a) Görtler instabilities in the outer portion of the boundary layer twist local
gradient

(b) Baroclinic effects on the boundary layer experiencing an adverse pressure
gradient

(c) Görtler vortices promote exchange process in the outer boundary layer

Figure 25. Schematic of Görtler instabilities in a supersonic concave boundary layer and the
small vortices formed by the large baroclinic production induced by the density gradient from
Görtler-like vortices and the pressure gradient from the concave compression
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to intersect with compression wave sheet, which generate larger baroclinic effect to
induce more vorticities than on the flat plate. Figure 25(c) shows that the compression
waves interact with the Görtler vortices and induce abundant small vortices. It might
be argued that incompressible flow on concave walls would also contain Görtler vortices
and a turbulence augmentation through vortex breakdown. However, a favorable pressure
gradient and a uniform density for incompressible flow on concave walls would slow down
the turbulence production and even lead to relaminarization(Fernholz & Warnack 1998).
For the supersonic boundary layer, favourable pressure gradients similarly weaken the
coherent structures (Spalart & Watmuff 1993; Tichenor et al. 2013; Sun et al. 2017)
and lead to a turbulence suppression in the outer region of the boundary layer. For
the supersonic concave boundary layer, as found by Kim et al. (2001), the turbulence
amplification was closely related to the linear increase in the mean density during the
supersonic compression. It could be inferred that baroclinic effects are important and
seem to be fundamental for the formation of small vortices and the corresponding
turbulence augmentation. In the next section we will give more quantitative results based
on TKE budgets.

5. Turbulence intensity and TKE analysis

5.1. TKE distribution

Figure 26 compares the RMS values of all three velocity components and the Reynolds
stress (< −u′v′ >) on the flat plate and in the CurvR308mm case at different streamwise
locations. On the concave wall, velocity fluctuations for all components are amplified.
Just downstream of the turning point, the turbulence level increases slightly. Whereas
the inner layer peaks are almost unchanged, in the outer layer turbulence is significantly
augmented along the concave wall, and the magnitudes of all velocity fluctuations are
larger than those of the flat plate case.

The TKE is defined as k̃ = ρu
′′
i u

′′
i

/
2ρ̄, where the superscript refers to fluctuations

from the Favre averages. TKE profiles at different streamwise locations of various cases
are shown in figure 27. As expected, significant amplification of the TKE occurs on the
concave surface. Turbulence in the inner layer of the boundary layer (i.e. the inner peak
at y+=12) increases downstream of the turning point compared to the same location on
the flat plate, but then decreases along the concave wall. By contrast, the outer layer
of the boundary layer experiences strong turbulence amplification and an outer peak
emerges. A smaller curvature radius (CurvR308mm) results in a larger amplification
across the boundary layer, shown in figure 27(c). Therefore, a strong two-layer structure
of turbulence can be identified in the concave region. The structure is attributed to the
turbulence shear stress amplification in the boundary layer on the concave wall, presumed
to be due to the large-scale Görtler structures, while the inner boundary layer remains in
local equilibrium. The phenomenon of the outer peak formation is similar to the second
outer peak occurring in high Reynolds number wall flow. Vallikivi et al. (2015a,b) showed
that for the low Reynolds numbers there is no TKE peak in the outer layer of zero
pressure gradient boundary layer, while for very high Reynolds number, a peak emerges
in the outer layers. Smits et al. (2011) summarized researches on high Reynolds number
(46, 700 6 Reθ 6 235, 000) wall turbulence and indicated that very-large-scale motions
(VLSM) make a significant contribution to the turbulent kinetic energy and Reynolds
stress production in the logarithmic and outer layer. This is relevant here since Görtler
vortices play an important role in turbulence amplification for concave flows, whereas
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(a) (b)

(c) (d)

Figure 26. RMS velocity distributions at different streamwise locations, normalized by
freestream velocity. Solid black lines represent the CurvR308mm case, Dash-dotted red lines
represent the flat plate case, RMS velocity of the streamwise (•), wall-normal (H), spanwise (N),
of velocity fluctuations, together with Reynolds shear stress (�), (a) x/δ0=-2.42, (b) x/δ0=0.81,
(c) x/δ0=5.65, (d) x/δ0=10.50

for high Reynolds number wall turbulence, the origin of the VLSMs is still a challenging
problem (Smits et al. 2011).

5.2. TKE budgets

The evaluation of budgets of the TKE mainly focuses on the following terms. The
explicit forms of the different terms are given in Guarini et al. (2000); Sun et al. (2017)
and briefly listed below,

∂

∂t

(
ρ̄k̄
)

+ ũj
∂

∂xj

(
ρ̄k̄
)

= P + T + II +D − φ+ Vc (5.1)

where

P = −ρu′′
i u

′′
j

∂ũi
∂xj

(5.2)
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(a) Comparison of flat plate and CurvR908mm
case

(b) comparison of flat plate and CurvR308mm
case

(c) comparison of flat plate, CurvR908mm case
and CurvR308mm case

Figure 27. Turbulence kinetic energy profile comparison of various cases at different streamwise
locations, (a) comparison between flat plate and CurvR908mm case at x/δ0=0.81(symbol H),
x/δ0=5.65 (symbol N), and x/δ0=10.50 (symbol �), (b) comparison between flat plate and
CurvR308mm case at x/δ0=0.81(symbol H), x/δ0=5.65 (symbol N), and x/δ0=10.50 (symbol
�), (c) comparison between flat plate, CurvR908mm case and CurvR308mm case at x/δ0=15.35
(symbol �). Dash-dotted line represents flat plate case, Dashed line represents CurvR908mm
case, Solid line represents CurvR308mm case

T = −1

2

∂

∂xj
ρu

′′
i u

′′
i u

′′
j (5.3)

II = IIt + IId = − ∂

∂xj
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′′
i δij + p′
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D = − ∂
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i

Re
τij ′ (5.5)
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1
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∂u
′′
i

∂xj
τij ′ (5.6)
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Figure 28. TKE budget at x/δ0 = 0 at the current flat plate case. Dashdotted line represents

results of the incompressible results of Schlatter & Örlü (2010) at Reynolds number of
Reθ = 1, 000, solid line represents the current flat plate case.

Vc = −u′′
j

∂p̄

∂xj
+
u

′′
i

Re

∂τil
∂xl
− ρ̄k̄ ∂ũj

∂xj
(5.7)

C = −ũj
∂

∂xj

(
ρ̄k̄
)

(5.8)

Here, P is the production term, showing the rate of generation of TKE by mean velocity
gradients, T is the turbulent transport, II is the pressure diffusion and dilatation, D
is the viscous diffusion, φ is the viscous dissipation and C is the convective term. Vc
includes the terms that arise when the density is not constant. Compared to other terms
Vc is small, therefore has not been included on the plot for clarity. Its maximum value is
a factor of 28 and 26 smaller than that of the production term in the present calculation
in the flat plate case and CurvR308mm case respectively.

We firstly compare the TKE budgets at x/δ0=0 of the flat plate case, where the
corresponding Reynolds number, based on the boundary-layer momentum thicknesses
θ0=0.48mm, under the van Driest scaling is approximately Reθ0=1078. All terms are
normalised by the wall quantity ρwu

4
τ

/
νw. All terms balance each other, and their sum

is no more than 10−3. Figure 28 compares the distributions of these terms with the
incompressible results of Schlatter & Örlü (2010) at Reynolds number Reθ of 1000, with
the results consistent with the incompressible simulations. The simulation data is also
similar to results of Guarini et al. (2000). As Guarini et al. (2000) and Pirozzoli et al.
(2004) pointed out, the agreement between the supersonic flow on flat plate and the
incompressible flow demonstrates the validity of Morkovins hypothesis (Morkovin 1962),
which means the compressibility terms are negligible throughout a spatially evolving
supersonic turbulent boundary layer on the flat plate. Lagha et al. (2011) and Duan &
Beekman (2011) studied Mach number effects on a hypersonic boundary layer at zero
pressure gradient and showed that the weak compressibility hypothesis remains valid for
a large range of free-stream Mach numbers.

To further assess the boundary layer on the concave walls, TKE budgets are compared
to the flat plate results at different streamwise locations, as shown in figure 29. At
the location x/δ0=-2.42 upstream of the corner, there is no difference between the flat
plate and the concave cases. TKE budgets all show behaviour typical of a boundary
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(a) x/δ0=-2.42 (b) x/δ0=0.81

(c) x/δ0=5.65 (d) x/δ0=10.50

Figure 29. Turbulent kinetic energy budget profiles of the flat plate case and concave cases
at different streamwise locations. Dashdotted line represents the flat plate case, - Dashed line
represents CurvR908mm case, solid line represents CurvR308mm case

layer at zero-pressure gradient in which production is balanced by dissipation over most
of the boundary layer, as also described by Guarini et al. (2000) and Pirozzoli et al.
(2004).Viscous diffusion is only important in the near wall region. In the viscous sub-
layer, production becomes negligible and diffusion is balanced by dissipation.

At x/δ0=0.81 in the turning region, compared to the flat plate case, all terms in the
concave cases increase in magnitude in the inner layer. TKE production increases slightly
in the outer layer (y+ ∈ [60, 500]). The pressure diffusion and dilatation II terms in the
TKE equation become apparent due to the APG caused by the concave compression.
The convection term C at the boundary layer edge falls to a larger negative values,
which means the convection from the boundary layer to the mainstream is augmented.
TKE becomes higher from the interaction of the boundary layer with the mainstream at
x/δ0=0.81.

At x/δ0=5.65, all terms in the TKE budget equation are amplified for the concave
cases, while the TKE budget terms in the inner layer increase in magnitude with curvature
rate. In the outer layer where y+ ∈ [100, 600] , the dissipation increases with curvature
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Figure 30. Comparison of pressure terms of flat plate case and CurvR308mm case at
x/δ0=10.50

rate while TKE production and TKE convection term are amplified significantly. The
production augmentation is basically balanced by a negative increment in convection,
which means the turbulence produced in the outer layer is mainly convected away.

At x/δ0=10.50 the production term of the CurvR308mm case becomes larger than
that of the CurvR908mm case, especially in the outer layer y+ ∈ [100, 1000] . This also
corresponds to the generation of the outer peak in the TKE profile for CurvR308mm case.
The TKE pressure diffusion (IIt) and dilatation (IId) term II becomes more significant
due to the adverse pressure gradient caused by the concave wall. Here we consider the
contribution of the pressure terms, IIt and IId. Figure 30 shows the comparison of
pressure terms at x/δ0=10.50 between the CurvR308mm case and the flat plate case.
The pressure diffusion term is larger than pressure dilatation term, which indicates that
pressure diffusion effect plays a dominant role, instead of the explicit compressibility
effect. The magnitude of the convection term increases significantly in the outer layer
of the boundary layer while the dissipation is amplified slightly, which means local
convection of turbulent energy is amplified for CurvR308mm case. The transport term
is also amplified at x/δ0=10.50 and participates in balancing the production.

6. Compressibility effects

6.1. Dilatation

To further assess the compressibility and curvature effects, the probability distribution
function (PDF) of the dilatation term, Θ = ∂xu + ∂yv + ∂zw , is computed. Figure 31
shows the PDF, which is computed by averaging over the range y/δ0 ∈ (0.1, 0.5) and
x/δ0 ∈ (0.81, 10.50). For the flat plate case the PDF is sharp and peaks at zero dilatation.
However, on the concave walls, the PDF is wider and the peak shifts to negative values
of dilatation. The latter effect can be explained from the continuity equation,

∂ρ

∂t
+
∂ρui
∂xi

=
∂ρ

∂t
+∇ρ · u +Θρ = 0 (6.1)

Since ∇ρ · u is always positive on the concave wall, for small fluctuations we expect the
average Θ to be negative. With increasing curvature the dilatation PDF of dilatation
becomes more skewed, with more extreme events of large negative dilation, which for
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Figure 31. The pdf of the dilatation is computed statistically in (x, y)-planes corresponding to
different wall-normal locations y/δ0 ∈ (0.1, 0.5) and x/δ0 ∈ (0.81, 10.50) without scaling and
with density scaling.

higher Mach numbers or stronger curvatures may lead to the formation of eddy shocklets.
A scaling of pdf ρ̄Θ using the mean density ρ̄ has previously been used to collapse different
PDF curves, as discussed by Lagha et al. (2011). Figure 31 includes the density scaling
PDF, however the distribution is similar to the non-scaled data for all the concave cases.

6.2. Turbulent Mach number

Turbulent Mach number Mt =
√
u′ju
′
j/c̄ profiles are shown in figure 32 (a)-(b) at

different streamwise locations for x/δ0=0.81, 5.65 and 10.50. In addition to the turbulent
Mach number, we also examine the RMS values of the local Mach number, the fluctuating

Mach number M′ (=
(
M2 −M2

)1/2

), which is different in compressible flows. The

fluctuating Mach number profiles are shown in figure 32(c)-(d). For the flat plate case,
the turbulent Mach number is no more than 0.3 and its maximum peak is located near
to the wall. For the concave cases, turbulent Mach number starts to build a second peak
which moves away from the wall, as seen in figure 32(a)-(b). The profiles of Mt and M ′

exhibit a similar character with the outer peak shown in figure 27. In figure 32(c)-(d), the
maximum of the second peak of the fluctuating Mach number exceeds 0.3 which suggests
that the compressibility is approaching the borderline of the Morkovin (1962).

6.3. Effective Mach number

An effective Mach number has also been proposed (Sandham 2016) to evaluate the
compressibility effects of a turbulent boundary layer with adverse pressure gradient
variation from zero to separation, given by

Mc,bl =
∆U+

V D

U+
e

M∞
(1 + aw/a∞)

=
∆U+

V D

U+
e

M∞(
1 +

√
Tw/T∞

) (6.2)

where a means the local sound speed. ∆U+
V D refers to the van Driest-transformed velocity

increment in the wake region compared to log law using the van Driest profile at y = δ,
i.e.
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(a) (b)

(c) (d)

Figure 32. Profiles of the turbulent Mach number Mt and the fluctuating Mach number M ′

of the flat plate and concave cases at different streamwise locations. (a) x/δ0=0.81(symbol H),
x/δ0=5.65 (symbol N), and x/δ0=10.50 (symbol �), Dash-dotted line represents the flat plate
case, Dashed line represents CurvR908mm case, Solid line represents CurvR308mm case.

∆U+
V D = U+

e,δ −
(

1

κ
ln δ+ + b

)
(6.3)

where U+
e,δ means the van Driest-transformed velocity at y = δ. The calculated results

are shown in figure 33. The level of 0.3 is usually taken as the threshold above which
compressibility effects are expected to be significant. We see that this is not reached
for the CurvR308mm case and the compressibility effect increases as curvature ratio in-
creases. Recalling the analysis of the dilatations, turbulent Mach number and fluctuating
Mach number, it is inferred that the compressibility for current concave cases does not
exceed the threshold; however, for larger curvature ratios than those in this paper, the
compressibility effects probably need be considered in turbulence modeling, which needs
further investigations.
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Figure 33. Effective Mach number Mc,bl over flat plate and concave walls

7. Conclusions

Direct numerical simulations have been carried out to investigate a Mach 2.7 supersonic
turbulent boundary layer over concave surfaces with curvature radius of 308mm and
908mm, respectively. A flat plate case is also simulated for comparison.

The response of the skin friction, wall pressure and velocity profiles due to concave
surface curvature is examined. Analysis of boundary layer velocity profiles shows a
streamwise velocity reduction in the outer part of the boundary layer, due to compression,
while an increase occurs near the wall. The simulated data suggest that compressibility
effects are not negligible on concave surfaces with large curvature rate. A higher shape
factor is found in the concave cases, which indicates that the fullness of the velocity profile
on concave walls is reduced. Prominent low frequency fluctuations on concave walls reflect
the generation of large scale structures. The streaks shown in the wall-parallel slices and
the two-point correlation function demonstrate that concave effects reduce the near-wall
spanwise streak spacing while producing large scale streaks in the outer layer. λ2 vortex
structures indicate turbulence amplification on the concave wall.

The streamwise velocity iso-surface, streamlines and contour slices show that higher
speed or smaller concave curvature radius tends to destabilize local turbulent structures
in the boundary layer. Görtler-like vortices generated by the centrifugal effects occur
in the outer region of the concave boundary layer. The Görtler-like structures twist
local density gradient and the baroclinic production from the interaction of the density
gradients with the concave compression leads to the generation of abundant small scale
vortices on the concave walls, which represent the amplification of local turbulence on
the concave walls. The inner region of the concave boundary layer appears to be little
affected by the Görtler instability and acquires a relatively slow turbulence amplification
by the baroclinic effects from the adverse pressure gradient.

Profiles of TKE and turbulent Mach number along the streamwise direction exhibit
a characteristic two-layer structure in the boundary layer of concave cases. In the outer
layer, the turbulence is greatly amplified and the Görtler vortices lead to a rapid exchange
between the inner and outer layers. Turbulent energy budget analysis shows that both
production and dissipation increase near the wall in the concave region, but in the outer
part of the boundary layer, the production is significantly amplified and balanced by
convection and transport.

Page 36 of 39



37

In the future, it would be interesting to explore further the sensitivity of these results to
the key parameters, including higher Reynolds number, higher Mach number and larger
curvature ratios as well as range of wall thermal conditions.
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