
Technical Note: Building Abstract Mathematical Types
in Event-B

James Snook1

ECS, University of Southampton, Southampton, U.K.
{jhs1m15

Abstract. The goal of this technical note is to demonstrate how Event-B can be
used to build mathematical libraries in a way which maximises the sharing of
theorems and proofs, therefore minimising the proof burden on the user. The ap-
proach taken is to construct abstract mathematical types such as monoids and
demonstrate how concrete mathematical types like the naturals can inherit results
from the abstract types. The result is that it is possible to build a library in this
manner, however, without language features to support these notions the user is
required to do a lot of additional manual work within the construction.

Keywords: Formal Methods; Event-B; Theorem Proving;

1 Introduction

The aim of this Technical note is to explore mathematical heritability using the Event-B
language [1], extendedwith features from the Theory Plug-in [3]. The reason for looking
into this work is due to a previous Event-B case study whichmodelled the expected flight
paths of UAVs (unmanned aerial vehicles) [2][4]. To do this the real numbers were
modelled axiomatically as a field, to create the axiomatic definition it was necessary to
create two separate operators (addition and multiplication) and state the axioms for each
of these operators separately. The axioms for each of the operators were the axioms of an
abelian group. Not only was it necessary to state the axioms twice, but proofs that could
be done on abelian groups had to be done twice once for each axiom. This technical
note therefore looks at how abstract mathematical types can be created in such a way
that they can inherit from each other. It also looks at how concrete types can inherit the
results of the abstract types, aiding the development of concrete theories.

2 Operators

To construct abstract mathematical types such as monoids and groups it is first useful to
have structures representing the building blocks of these types. This section describes
the representation of generic operators (e.g., functions of the form T × T → T ).

With the aim of later being able to construct a monoid, it is first useful to have a
representation of an associative operator. There are several ways in which an associative
operator could be defined using the Theory Plug-in, the simplest choice to do this within
the Theory Plug-inis an axiomatic definition:



2 J. Snook

AssocOp(x, y) ∶ T ;
Axioms:
x, y, z ⋅ x ∈ T ∧ y ∈ T

⇒ AssocOp(AssocOp(x, y), z) = AssocOp(x,AssocOp(y, z)) //Associative

This creates an abstract representation of an associative operator (e.g., there is no
definition of how this operator works, it is only defined that it is associative). There are,
however, problems with this representation, firstly there is no way of instantiating T to
another type, so for example if it is desired to work to reason about associative operators
on the natural numbers a new axiomatic definition needs to be given. Secondly there
is no way to reuse this definition in later definitions. For instance to create an abelian
operator (one which is both commutative and associative) there is no way of re-using
the definition of the commutative or associative operator. Third, if a concrete operator
is created (e.g., addition on the natural numbers) there is no way to relate this to the
abstract definition. As the aim is to produce reusable definitions this way of defining
operators is not helpful.

The alternative approach taken is to use the Event-B set comprehension syntax for
creating subsets, along with the Theory Plug-inoperators in the following way:

AssocOp(t ∶ ℙ(T )) =̂ {op | op ∈ (t × t) → t ∧ ∀x, y, z ⋅ x ∈ t ∧ y ∈ t ∧ z ∈ t
∧ op(x↦ op(y↦ z)) = op(op(x↦ y) ↦ z}

A generic type t is introduced, the type of t is in the powerset of an Event-B generic
type T , this allows the operator to be applied to subtypes (e.g., one may wish to reason
about the naturals which are less than 10, these are not an Event-B type as they are
a subtype of the naturals. Making t ∶ ℙ(T ) allows the operator to be applicable to
these types). The set theoretic statement says creates the set of all ops such that they
are subsets of total functions on pairs of t to t (t × t → t), and they are associative
op(x ↦ op(y ↦ z)) = op(op(x ↦ y) ↦ z. This definition solves the issues of the
axiomatic definition. We can instantiate with any type we like by passing that type to
the operator. The operator can be reused by future definitions, for instance the definition
of the set of abelian operators is:

AbelianOp(t ∶ ℙ(T )=̂AssocOp(t) ∩ CommOp(t)

(CommOp is defined extremely similarly to AssocOp except the associative statement
is replaced with one defining commutativity). There is no need to explicitly restate the
definition of associativity or commutativity here. Concrete operators are able to be as-
sociated with the abstract operator. This is seen later in 6.

When proving with the interactive prover to use the definition of associative oper-
ators within abelian operators it is required that you expand the definition of abelian
operators, and then expand the definition of associative operators. As the mathematical
hierarchy builds up the definition that you need for a proof may get further and further
away. Theories/Proof rules could be used to bring these definitions forward, however,
they would need to be declared and proved at each level that one wished to use them.



Technical Note: Building Abstract Mathematical Types in Event-B 3

3 Monoid

This section looks at how we can define the abstract monoid type. The definition of
operators were a matter of creating a subtype, e.g., the generic type for an operator
was (T × T ) × T , and this was subtyped with additional constraints. A monoid on the
other hand is a set with an associated identity and associative operator. An operator to
represent a generic monoid can be constructed in the following way:

Monoid(t ∶ ℙ(T )) =̂ {ident ↦ op | ident ∈ t
∧ op ∈ AssocOps(t)
∧ ∀x ⋅ x ∈ t⇒ op(ident ↦ x) = x ∧ op(x↦ ident) = x}

(1)
this can then be used within theorems in the following way:

∀t,ident, op, oe, x ⋅ t ∈ ℙ(T ) ∧ ident ↦ op ∈Monoid(t) ∧ oe ∈ t ∧ x ∈ t
⟹ (op(oe, x) = x⇔ oe = ident)

(2)

this theorem makes a generic monoid with the statement ident↦ op ∈Monoid(t), the
theorem then goes onto state that an element of t acting as the identity (in this case oe)
must be the identity. Several other theorems were declared about the monoid structure,
including theorems about the uniqueness of the identity, and corollaries used to prove
this.

The definition of monoids given in 1 can be further subtyped to construct new ab-
stract types. For instance, commutative monoids can be defined with the following state-
ment:

CommMonoid(t ∶ ℙ(T )=̂{CM|CM ∈Monoid(t) ∧ prj2(CM) ∈ CommOp(t)}
(3)

Here the operator part of the monoid is accessed using the prj2 function from Event-
B (This gets the second part of pair, in this case the pair). To facilitate writing theorems
it is useful to write operators to do this e.g.:

mon_op(m ∶Monoid(T )) =̂ prj2(m)

Given a monoid this operator will deconstruct it to get the operator part. A similar
operator was created to access the identity.Whilst this case is simple so working out how
to deconstruct the abstract type is also simple, as the abstract type becomes more com-
plex deconstructing them also becomes more complex, making these ‘deconstruction’
operators more useful.

An alternative approach would be to make a datatype to represent all structures with
an operator and an element. The advantage of this approach is that the construction of the
datatype would automatically create functions to get the constituent parts of the monoid
(i.e., the identity and the operator). The disadvantage is that the monoid would get a



4 J. Snook

new type which would not reflect its construction. There is also no way to add well-
definedness conditions to a datatype; they are only constructed from Event-B types. As
AssocOp is not an Event-B type we cannot form a datatype using it. Instead the datatype
would need to be formed using the supertype of AssocOps. AnOPERATOR could then
be written to create a subset of the datatype which represented monoids. The need for
these additional operators makes using datatypes a more complex solution than using
the set theoretic syntax directly.

When declaring Event-B operators a proof obligation is generated asking the user to
prove that the operator is well defined. These well-definedness proof obligations can be
onerous to prove manually. Fortunately if these operators for building and deconstruct-
ing abstract types are well defined it should be possible to prove the well definedness
obligations by simply expanding the definitions of the abstract types. Within the interac-
tive prover a tactic was created to expand these definitions, causing the well definedness
proofs to be discharged automatically.

At this point it would be convenient to define the power operator on themonoids. The
simplest implementation of the power operator is recursive: an = a ⋅ an−1 the Theories
Plugin only supports recursive function definitions with recursive types. The built in
representation of the naturals used by Event-B is not recognised by the Theory Plug-
inas a recursive type, to resolve this the next section shows how the natural numbers can
be described recursively within the Theory Plug-in.

4 Naturals

Within this section a recursive representation of the natural numbers is created. This
concrete representation serves three purposes: The first is to demonstrate that concrete
mathematical types can be represented within the Theory Plug-in. The second is to make
a recursive representation of the naturals that can be used in recursive operators and to
allow inductive proofs. An example of this was seen at the end of the last section. The
third is to create a type and operators to demonstrate how concrete types can inherit from
abstract types, this is demonstrated by showing that zero and addition form a monoid.

4.1 Naturals Definitions

The naturals here are defined as the Peano Naturals:

Nat =̂
Constructors:
zero
suc(prev ∶ Nat)

This definition says that a Nat can be constructed either with the zero keyword, or
with suc(), which requires a Natural number as an argument. Theory Plug-indatatypes
automatically inductive theorems to datatypes.



Technical Note: Building Abstract Mathematical Types in Event-B 5

From this definition several operators were created, for instance addition was defined
as follows:

nAdd(x ∶ Nat, y ∶ Nat)=̂
cases[x]
zero→ y
suc(xs) → suc(xs nAdd y)

(4)

along with operators such as: decrement, subtraction, and divmod. These operators
are all defined much as you might expect, during the construction of this theory a sound-
ness issue1 was discover which required some workarounds. The addition operator de-
fined above 4 has been prefixed with n, this is because names in Event-B are global, and
it is likely that in the future other types will want to define an addition operator (e.g., the
integer numbers), this namespacing issue can be resolved by prefixing operators.

At this point we should have should have enough concrete structures to make use
of the abstract monoid type defined in the last section. Unfortunately, within the Event-
B environment the operators we have been defining are not first class members of the
Event-B syntax, and cannot appear in expressions without their arguments. This means
that a theorem such as:

zero ↦ nAdd ∈Monoid(Nat) (5)

is not valid Event-B as nAdd is declared without its arguments. To resolve this the nAdd
operator can be wrapped within an Event-B lambda. Given it is likely that this technique
will be used multiple times, this is done within an operator:

nAdd_P =̂ �x↦ y ⋅ ⊤ | x nAdd y

When it is desirable to pass addition as a function the nAdd_P operator can be used
in the place of the nAdd operator. The result is theorem 5 can be stated as:

zero ↦ nAdd_P ∈Monoid(Nat) (6)

This is now valid Event-B, and means what one may assume 5 meant. This technique
can be used whenever an operator/function takes a function as an argument to allow an
operator to be passed instead. For each of the operators defined on theNat type a second
operator was declared to encapsulate the operator as an Event-B function.

Proving theorem 6 does not automatically bring any of the work forward from the
Monoid definition to theNat definition. For instance, theorem2 about the uniqueness of
the identity is not automatically instantiated in theNat, this theorem is only accessible
by instantiating it with zero and addition, this would then require a proof that zero and
addition form a monoid (which can be done by referencing theorem6. Rather than do
1 Within the Theories Plug-in associativity is special cased and allows the flattening of equations.
If you indicate that an infix operator is associative, and create an associativity theorem you can
use the automatic flattening of the equation to prove the theorem, and you can use the theorem
to prove the associativity of the operator. This means all operators can be proved associative,
even ones that are not.



6 J. Snook

this every time this theorem is needed the user can manually instantiate it with a new
theorem:

∀x, y ⋅ x nAdd y = y⇔ x = zero (7)

This theorem can be proved using the instantiation steps outlined above. The theorem
can then be used in later proofs without having to instantiate it from themonoid theorem.
This technique was used multiple times (whenever a theorem from an abstract type was
found to be useful in a proof on a concrete type).

5 Back to Monoids

Now that there is a recursive definition of the natural numbers it is possible to create a
recursive operator to represent the power functions on the monoid type class. This was
done with the following declaration:

Pow(ident ∶ T , op ∶ AssocOps(T ), a ∶ T , p ∶ Nat)=̂
cases[p]
zero → ident
suc(ps) → op(a↦ Pow(ident, op, a, ps))

(8)

Additional theorems can be written about this operator, e.g.:

xp ⋅ xq = xp+q (9)

Having previously demonstrated that theNat type forms a monoid it would be nice
to inherit results about this operator. This can be done by declaring a new operator:

nT imes(x ∶ Nat, y ∶ Nat)=̂Pow(zero, nAdd_P , x, y) (10)

This definition of multiplication allows theorems about the Pow operator to be easily
inherited, however, using the nT imes operator results in the user having to do extra ex-
pansions. An alternative approach is have an instantiated nT imes operator, and prove
it is the same as Pow operator (in a very similar way that was done previously on the-
orems). This has an additional overhead for the user, however, future proofs are then
easier.

There are often several ways to write a function. An example of this is that the power
operator on the monoids can be written using a method called exponentiation by squar-
ing. This technique is often usedwithin computing as it is considerably faster than simply
using continued addition, and is simple to implement when numbers are represented in
a binary manner.

There are advantages to having different implementation of the same function:

1. The second implementation may reflect the way the system that is being modelled
works. Having an implementation which is the same as that of the modelled system
means that the user does not have to justify the difference in the implementations.



Technical Note: Building Abstract Mathematical Types in Event-B 7

2. For proofs involving concrete uses of an operator, the second implementation may
finish in substantially fewer steps. This will take less time and use fewer of the
computer’s resources. Some proofs which require a lot of operator expansions may
be impossible to complete using the previous implementation of the operator.

3. Some proofs may become easier when done with the second implementation. For
example the concrete implementation of multiplication within the binary naturals
may be more similar to that of multiplication using squaring. This makes it easier
to prove equivalences.

If we implemented this operator (sqP ow), we would require the following theorem
to demonstrate its equivalence to the original Pow operator:

Pow_P = sqP ow_P

Having demonstrated these two definitions are equivalent theorems from one opera-
tor can be moved to the other. Also within concrete implementations it is possible to use
the different implementations interchangeably (i.e., to use whichever one is best suited
to the proof that is being done).

6 Binary Numbers

Having explored The Peano naturals, the case study will now look at a different imple-
mentation of the natural numbers. The purpose behind the second representation is to
demonstrate the reusability of the abstract types, and to demonstrate how results can be
shared (and work reduced) via isomorphic relationships.

This section constructs an implementation of the binary numbers, this is an interest-
ing representation of the natural numbers as it is a representation of numbers that is more
like the base ten representation that humans generally use. It is also very similar to the
the way that computers represent the natural numbers. A second advantage to this repre-
sentation is that operations such as addition and multiplication happen in considerably
fewer steps, this can simplify proofs where there are operations on large numbers.

The binary numbers are represented as lists of Boolean values, with FALSE repre-
senting a zero and TRUE representing a one.Within the Theory Plug-inlists are defined
using the following datatype declaration:

List =̂
Constructors
nil
cons(ℎead ∶ T , tail ∶ List(T ))

The representation chosen for the binary naturals has the least significant bit in the
leading position (i.e., the head of the list is the least significant bit). This makes the
definitions of operators such as addition andmultiplication simpler. However, having the
least significant bit first is counter intuitive as the decimal representation that everyone
is used to has the most significant digit first.



8 J. Snook

Having defined the datatype to represent the binary numbers several other opera-
tors were defined (including many bitwise operators, and multiplication), as an example
addition was constructed with the following definition:

bnAdd(x ∶List(BOOL), y ∶ List(BOOL))=̂
cases[x]
nil →y
cons(xB, xs) → if (xB = TRUE ∧ bnLSB(y) = TRUE)
cons(FALSE, bnIncrement(xs bnAdd tail(y)))

else
if (XB = FALSE ∧ bnLSB(y) = FALSE)
cons(FALSE, xs bnAdd bnSℎiftLeft(y)),

else
cons(TRUE, xs bnAdd bnSℎiftLeft(y))

(11)

This definition of addition uses several helper functions, bnLSB gets the least significant
bit of the list, if the list is empty it returns FALSE (zero), bnIncrement increments
the number by one, bnSℎiftLeft is almost identical to the list tail deconstructor (i.e.,
returns a list with the ℎead element removed) except when the value is nil it returns nil,
this is used to continue the addition process on the rest of the list.

Whilst this definition of addition looks complicated it is in fact how addition is often
taught, the least significant bits are added together, and the result is put in the least
significant position, then the rest of the number is added together with an additional one
if the addition of the least significant bit overflowed.

These operators gave enough of an implementation to be able to relate to the abstract
monoid type, and the previously created naturals representation.

A representation of numbers in this fashion highlighted a problem that was not seen
with the Peano naturals implementation. This is that numbers represented in this fashion
can have additional bits that do not change the value of the numbers. This is directly
analogous to us considering 00123 equal to 123. In the binary representation if the list
ends in FALSEs (i.e., there are zeros at the most significant end of the list) these do
not change the value of the number. In previous examples structural equality has been
used, this will not work for the binary numbers as 00123 is not structurally identical to
123. Two ways to resolve this issue are explored below. First, an equivalence relation
to use instead of structural equality. The second a subtype of ‘List(BOOL)’ is defined
where the subtype has to have most significant bit set to one.

6.1 Equivalence Relation

To define an equivalence relation for binary numbers we need to define an operator, and
demonstrate that it conforms to the axioms of an equivalence relation i.e. for an operator
∼:

Reflexivity ∀a ⋅ a ∼ a



Technical Note: Building Abstract Mathematical Types in Event-B 9

Symmetry ∀a, b ⋅ a ∼ b⇔ b ∼ a
Transitivity ∀a, b, c ⋅ a ∼ b ∧ b ∼ c ⇒ a ∼ c

To do this an abstract definition of an equivalence relation was created. For example,
here is the definition of an abstract reflexive relation:

Reflexivity(t ∶ ℙ(T )=̂{refl|refl ∈ ℙ(t × t) ∧ x↦ x ∈ refl} (12)

This abstract definition in Event-B does not quite represent a reflexive relation, what
it really represents is a set where x ↦ x is a member of the set for all x. The reason
for this is that in Event-B predicates are a separate syntactic category and there is no
way to create an Event-B function of the form T → Pred (note that it is possible to
create predicate operators, as mentioned earlier operators are not functions). It will be
seen later how this representation can be used to represent a relation within Event-B.
Symmetric and transitive relations were created following a similar pattern. Finally an
equivalence relation was created with the following statement:

EquivRel(t ∶ ℙ(T ))=̂ReflexRel(t) ∩ SymmetricRel(t) ∩ T ransRel(t) (13)

Several theorems about the equivalence relations were created, for instance x ∼
y∧¬(y ∼ z) ⇒ ¬(x ∼ z), expressing this in the set theory syntax results in an expression
that like this:

∀t, equ, x, y, z ⋅ t ∶ ℙ(T ) ∧ equ ∈ EquivRel(t) ∧ x ∈ t ∧ y ∈ t ∧ z ∈ t
⇒ (x↦ y ∈ equ ∧ y↦ z ∉ equ ⟹ x↦ z ∉ equ)

(14)

this theorem example shows how the ∈ operator is used to turn the set notation into
predicates for the purpose of theorems.

Along with several operators that have been presented before the definition of the
equivalence relation uses the operators bnIsZero. This operator deconstructs a list check-
ing that each value is FALSE (i.e., that the list is either nil, or all zeros). The equiva-
lence relation on the binary naturals is:

bnEq(x ∶ List(BOOL), y ∶ List(BOOL))=̂
nil → bnIsZero(y)
cons(xB, xs) → xB = bnLSB(y) ∧ xs bnEq bnSℎiftLeft(y)

(15)

To inherit the results from the abstract definition it is required that this operator has
a set syntax equivalent, this is achieved with with following statement:

bnEqSet()=̂{x↦ y|bnEq(x, y)} (16)

It can now be shown that bnEqSet is an instance of the EquivRel type this is done
with the following theorem:

bnEqSet ∈ EquivRel(List(BOOL)) (17)



10 J. Snook

Once this is proved it is possible for the bnEqSet to inherit results about theEquivRel
abstract type. As was seen before with theMonoid type manually restating these proofs
about the bnEq operator. Proving them can be made easier using theorem 17, however,
due to the lack of predicate functions this adds even more additional work.

The additional work of manually having to instantiate theorems reduces the benefit
of having the abstract types available. However, the abstract types still serve a useful
purpose of guiding the user through the proofs they need. For instance in the last ex-
ample it was desired to prove that we had an equivalence relation, this requires proving
reflexivity, symmetry and transitivity, the abstract definition encapsulated this informa-
tion.

Finally, an aim of this section was to see how another type could be associated with
the already constructed abstract types, in this case this would mean demonstrating that
with the equivalence relationship and the binary naturals could form amonoid. However,
the definition of the monoid was created based on structural equality, the result is it is not
possible to relate these structures to the previously constructed monoid type. To allow
this the monoid type would need to be redefined:

MonoidEquiv(t ∶ ℙ)=̂
{equ ↦ ident ↦ op|equ ∈ EquivRel(t) ∧ ident ∈ t ∧ op ∈ AssocOp(t, equ)

∧ op(ident ↦ x) ↦ x ∈ equ ∧ op(x↦ ident) ↦ x ∈ equ}
(18)

Reconstructing the monoids like this would include re-writing the associative oper-
ator type, and restating and proving the theorems about the monoid type.

6.2 Subtyping for Equality

Rather than constructing an equivalence relation we can look at the subclass of binary
numbers which are normal. Normal, here, is defined as having no trailing zeros. We can
use an operator to identify normal numbers:

bn_isNormal(a ∶ List(BOOL) =̂
cases[a]
nil → ⊤
cons(aB, as) → (as = nil ∧ aB = TRUE) ∨ (as ≠ nil ∧ bn_isNormal(as))

From this definition we can use an operator to create a subset ofList(BOOL)which
contains all the normal numbers:

Normal_Bin =̂ {num | bn_isNormal(num)}

Once normality is defined we can start making statements about equality rather than
equivalence. An interesting starting point is to look at how equality on the subtype relates
to the equivalence relation, in certain conditions this can allow proofs about equivalence
to be reused in the equivalent proofs about equality



Technical Note: Building Abstract Mathematical Types in Event-B 11

∀x, y ⋅ x = y⇒ x bn_Eq y (19)
∀x, y ⋅ bn_isNormal(x) ∧ bn_isNormal(y) ⇒ (x bn_Eq y⇒ x = y) (20)

An effective strategy for working with subtypes is to prove that when an operator is
applied to members of the subtype the result is a member of the subtype i.e., the operator
is closedwith respect to the subtype. An example of this would be the following theorem:

∀x, y ⋅ x ∈ NormalBin ∧ y ∈ NormalBin ⟹ x bnAdd y ∈ NormalBin (21)

This sort of theorem allows the normality of numbers to be followed through an
expression. This facilitates proofs because every number with equal value is also struc-
turally identical, value and structure become the same. Unfortunately not every operator
will produce structurally identical numbers. An example of this is subtraction, where the
most significant bits of a number can cancel out leaving a series of trailing zeros. The
solution to this problem is either to create a new operator which does not result in trail-
ing zeros, in the case of subtraction this can be done by stopping the operations when
the remains of the number are identical. However, in other cases the best approach may
be to wrap the operator in a normalisation operator. In the case of the binary numbers
an operator to remove the trailing FALSEs of a list was created for this purpose. It was
also proved that applying this operator to any binary number resulted in a normal binary
number. With this approach of subtyping it was possible to become a member of the
abstract monoid type. This was done by proving isomorphic properties with the peano
naturals, and is outlined in the isomorphisms section 7.

Both the subtyping and equivalence approaches to working with the binary numbers
worked well, and there were trade offs for both of them. In the case of subtyping there
was extra work demonstrating that operators that worked on the subtype were closed.
Allowing normality to be proved throughout theorems. With the equivalence approach
there was additional work demonstrating that the bnEq operator was an equivalence
operator. It was also harder to work with an equivalence relation than equality, this was
due to a lack of support for equivalence relations within the interactive prover.

7 Isomorphisms

In this section isomorphisms between the peano naturals and the binary naturals are
created. The aim of doing this is to simplify proofs on the binary naturals (although in
some cases it may work the other way around).

When we construct inductive proofs on numbers we assume that the next number
is the increment of the current number. This assumption is justifiable because we know
that our number system, and its operators, are isomorphic to equivalent structures on the
Peano numbers. Unless we have proved such an isomorphism between the Naturals and
our binary numbers the only form of induction that can be used is the induction suggested
by the datatype. Given a Boolean list x and an expression to prove Exp, induction takes
the form:



12 J. Snook

1. Show the Exp is true where x = nil,
2. givenExp is true for x = x_tail show thatExp is true for x = cons(x_ℎead, x_tail),

where x_ℎead can take the value of TRUE or FALSE.

This is the same as, instead of having our inductive step as an increment, having the
step as a multiplication by two, and maybe adding one. In many cases it makes proving
results on the binary naturals harder than their equivalent proof on the peano naturals.

Not only does demonstrating an isomorphism between the Binary numbers and the
Peano naturals make proving new theorems about the operator easier, it also means that
we can inherit any proofs that we have already made about the equivalent operator on
the other structure. If it is easier to prove a result on one type then it is worth writing the
theorem within that type first.

This project has not tried to create an abstract representation of isomorphisms, al-
though this would be useful work to develop.

7.1 Building the Isomorphism

To build an isomorphism the first step is to create a bijective function between the two
structures, to do this two functions are defined in the following manner:

bnT oNat(a ∶ List(BOOL)) =̂
cases[a]
nil → zero
cons(aB, as) →
if (aB = TRUE)
one nAdd (bnT oNat(as) nAdd bnT oNat(as))

else
bnT oNat(as) nAdd bnT oNat(as)

bnT oBin(a ∶ Nat) =̂
cases[a]
zero → nil ⦂ List(BOOL)
suc(xs) → bnIncrement(bnT oBin(xs))

Theorems are added to prove that these functions are the inverses of each other:

bnT oNat(bnT oBin(x) = x
bnT oBin(bnT oNat(x)) bnEq x

(22)

(The second statement is also true with equality if x is normal). In the remainder of
this work equivalence will be looked at rather than subtyping, within the study both
approaches were taken. To demonstrate that this is a bijection it was further required to
show that every element in the peano naturals had an equivalent element in the binary
naturals and vice versa.

To demonstrate that addition is isomorphic, it was useful to show that the ‘increment’
operator of the binaries was equivalent to the ‘suc’ operator of the naturals. This was
done by proving the following two theorems:



Technical Note: Building Abstract Mathematical Types in Event-B 13

∀x ⋅ bn_toNat(bn_increment(x)) = suc(bn_toNat(x)) (23)
∀x ⋅ bn_toBin(suc(x)) = bn_increment(bn_toBin(x)) (24)

Using these theorems it was then possible to demonstrate that that every element in
peano naturals had an equivalent in the binary naturals and vice versa. Demonstrating
that the functions formed a bijection. All that was then required to demonstrate an iso-
morphism for an operator was to prove that the operator had a homomorphic equivalent:

∀x, y ⋅ bn_toBin(x nAdd y) = bn_toBin(x) bnAdd bn_toBin(y) (25)

Given a bijection it is enough to prove a homomorphism in one direction. If there
had been a abstract theory about isomorphisms, this result could have been included in
that, instead the homomorphism in the other directionwas proved independently. Having
proved a bijection and a homomorphism the operators are proved to be bijective to each
other.

7.2 Using the Isomorphism

Now that it has been demonstrated that addition on the Peano and Binary numbers are
isomorphic, we can take proofs from the more complete theory (the Peano naturals) and
bring them into the other. This requires re-writing all of the proof rules/theorems that we
want to use on the type which is inheriting them, and then proving the theorems. These
proofs all follow the same pattern, which can be demonstrated by showing that addition
is commutative (here I have done it on normal numbers, the normality part of the proof
is emitted). The theorem to prove is:

∀x, y ⋅ x bn_Add y = y bn_Add x

This is proved in the following manner:

1. Expand one side using the bijection:

bn_toBin(bn_toNat(x bn_Add y)) = y bn_Add x

2. Expand the inner function of the bijection using the homomorphism theorem:

bn_toBin(bn_toNat(x) nAdd bn_toNat(y)) = y bn_Add x

3. We can now use the property from the more complete theory (in this example to do
a commutative swap around nAdd):

bn_toBin(bn_toNat(y) nAdd bn_toNat(x)) = y bn_Add x

4. Use the other homomorphism to expand the outer function of the bijection:

bn_toBin(bn_toNat(y)) bn_Add bn_toBin(bn_toNat(x)) = y bn_Add x



14 J. Snook

5. Use the bijection this time to remove the bijective functions:

y bn_Add x = y bn_Add x

This process was repeated for many of the properties of the addition operator, in-
cluding demonstrating that addition is commutative, and forms a monoid with a nil list.
Each of the proofs for these was almost identical to the proof laid out above.

8 Conclusion

In conclusion building abstract mathematical theories such that the theories in the ab-
stract types can be inherited by concrete types and future mathematical types is possible
in Event-B. However, as Event-B does not have language mechanisms to support this
sort of inheritance it required a lot of additional manual work by the user (e.g., restat-
ing, of theories, and bringing proofs forward from the abstract types). This additional
work was very mechanical, e.g., to move theorems from an abstract type to a concrete
type involved restating the theorem on the concrete type. To prove the theorem, required
reusing the theorem on the abstract type and reusing the theorem that proved the concrete
type was a member of the abstract type. Further difficulties were caused by predicates
and operators being separate syntactic types within the Event-B language, is was possi-
ble to work around both of these issues, but again required additional effort by the user
(again this was found to be very mechanical work).

References

1. Jean-Raymond Abrial. Modeling in Event-B - System and Software Engineering. Cambridge
University Press, 2010.

2. Chris Bogdiukiewicz, Michael J. Butler, Thai Son Hoang, Martin Paxton, James Snook, Xan-
thippeWaldron, and TobyWilkinson. Formal development of policing functions for intelligent
systems. In 28th IEEE International Symposium on Software Reliability Engineering, ISSRE
2017, Toulouse, France, October 23-26, 2017, pages 194–204. IEEE Computer Society, 2017.

3. Michael J. Butler and IssamMaamria. Practical theory extension in Event-B. In Zhiming Liu,
Jim Woodcock, and Huibiao Zhu, editors, Theories of Programming and Formal Methods -
Essays Dedicated to Jifeng He on the Occasion of His 70th Birthday, volume 8051 of Lecture
Notes in Computer Science, pages 67–81. Springer, 2013.

4. Toby Wilkinson, Michael Butler, Martin Paxton, and Xanthippe Waldron. A formal approach
to multi-uav route validation. 2015.


	Technical Note: Building Abstract Mathematical Types in Event-B

