UNIVERSITY OF SOUTHAMPTON

FACULTY OF SOCIAL, HUMAN AND MATHEMATICAL SCIENCES

Operational Research

Majorization-Projection Methods for Multidimensional Scaling via

Euclidean Distance Matrix Optimization

by

Shenglong Zhou

Thesis submitted for the degree of Doctor of Philosophy

December 2018

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF SOCIAL, HUMAN AND MATHEMATICAL SCIENCES

Operational Research

Doctor of Philosophy

MAJORIZATION-PROJECTION METHODS FOR MULTIDIMENSIONAL
SCALING VIA EUCLIDEAN DISTANCE MATRIX OPTIMIZATION

by Shenglong Zhou

This thesis aims to propose an efficient numerical method for a historically popular prob-
lem, multi-dimensional scaling (MDS), through the Euclidean distance matrix (EDM)
optimization. The problem tries to locate a number of points in a low dimensional
real space based on some inter-vector dissimilarities (i.e., noise contaminated Euclidean

distances), which has been notoriously known to be non-smooth and non-convex.

When it comes to solving the problem, four classes of stress based minimizations have
been investigated. They are stress minimization, squared stress minimization, robust
MDS and robust Euclidean embedding, yielding numerous methods that can be summa-
rized into three representative groups: coordinates descent minimization, semi-definite
programming (SDP) relaxation and EDM optimization. Each of these methods was cast
based on only one or two minimizations and difficult to process the rest. Especially, no
efficient methods have been proposed to address the robust Euclidean embedding to the

best of our knowledge.

In this thesis, we manage to formulate the problem into a general EDM optimization
model with ability to possess four objective functions that respectively correspond to
above mentioned four minimizations. Instead of concentrating on the primary model, we
take its penalization into consideration but also reveal their relation later on. The ap-
pealing feature of the penalization allows its four objective functions to be economically

majorized by convex functions provided that the penalty parameter is above certain

iv

threshold. Then the projection of the unique solution of the convex majorization onto a
box set enjoys a closed form, leading to an extraordinarily efficient algorithm dubbed as
MPEDM, an abbreviation for Majorization-Projection via EDM optimization. We prove
that MPEDM involving four objective functions converges to a stationary point of the pe-
nalization and also an e-KKT point of the primary problem. Therefore, we succeed in

achieving a viable method that is able to solve all four stress based minimizations.

Finally, we conduct extensive numerical experiments to see the performance of MPEDM
by carrying out self-comparison under four objective functions. What is more, when
it is against with several state-of-the-art methods on a large number of test problems
including wireless sensor network localization and molecular conformation, the superiorly
fast computational speed and very desirable accuracy highlight that it will become a very

competitive embedding method in high dimensional data setting.

Contents

Declaration of Authorship

Acknowledgements

Nomenclature

1 Introduction

1.1
1.2

1.3

1.4

Multidimensional Scaling (MDS),
Motivations
1.2.1 Sensor Network Localization (SNL).
1.2.2 Molecular Conformation (MC)
1.2.3 Embedding on a Sphere (ES)
1.2.4 Dimensionality Reduction (DR)
Preliminaries
1.3.1 Imner Product. o
1.3.2 Principal Components Analysis
1.3.3 Projections
1.3.4 Subdifferential oo
1.3.5 Majorization of functions
1.3.6 Roots of Depressed Cubic Equation
1.3.7 Proximal Alternating Direction Methods of Multipliers
Euclidean Distance Embeddingo
1.4.1 Euclidean Distance Matrix (EDM)
1.4.2 Characterizations of EDM00
1.4.3 Euclidean Embedding with Procrustes Analysis

2 Literature Review

2.1
2.2

2.3

Classical MDS o o e
Stress-based Minimizations
2.2.1 Stress Minimization,
2.2.2 Squared Stress Minimization
2.2.3 Robust MDS
2.2.4 Robust Euclidean Embedding
Existing Methods Lo Lo
2.3.1 Alternating Coordinates Descent Approach
2.3.2 SDP Approach
2.3.3 EDM Approach

xiii

XV

xvii

vi CONTENTS

3 Theory of EDM Optimization 29
3.1 EDM Optimization e 29
3.1.1 Objective Functions 30
3.1.2 Relations among f,, and Stress-based Minimizations 32
3.1.3 Generality of Constraints 32

3.2 Penalization and Majorization Lo 32
3.2.1 Penalization — Main Model 33
3.2.2 Majorization 37

3.3 Derivation of Closed Form Solutions 37
3.3.1 Solution under foo e 38
3.3.2 Solution under fo1 38
3.3.3 Solution under fio 39
3.3.4 Solution under fi11 e 43

4 Majorization-Projection Method 53
4.1 Majorization-Projection Method oL L. 53
4.1.1 Algorithmic Framework 54
4.1.2 Solving Subproblemso Lo oo 55

4.2 Convergence Analysis 56
4.3 Assumptions Verificationo 60
4.3.1 Conditions under fooo 61
4.3.2 Conditions under fo1 61
4.3.3 Conditions under fio 62
4.3.4 Conditions under fi1 64

5 Applications via EDM Optimization 69
5.1 Wireless Sensor Network Localization 69
5.1.1 Problematic Interpretation 70
5.1.2 Data Generation 72
5.1.3 Impact Factors L o 74

5.2 Molecular Conformation, 74
5.2.1 Problematic Interpretation 0L 74
5.2.2 Data Generation oo 76
5.2.3 Impact Factors 78

5.3 Embedding on A Sphere L 78
5.3.1 Problematic Interpretation, 78
5.3.2 Data Generation 79

5.4 Dimensionality Reduction 0. 81
5.4.1 Problematic Interpretation 81
5.4.2 Data Generation e 82

6 Numerical Experiments 85
6.1 Implementation L L 85
6.1.1 Stopping Criteria 85
6.1.2 Initialization 87
6.1.3 Measurements and Procedures 88

6.2 Numerical Comparison among fpq 92

CONTENTS vii
6.2.1 Teston SNL 92

6.2.2 Teston MC e 97

6.23 Teston ES 102

6.24 Teston DR 107

6.3 Numerical Comparison with Existing Methods 110
6.3.1 Benchmark methods L. 111

6.3.2 Comparison on SNL 112

6.3.3 Comparison on MC o 121

6.3.4 A Summary of Benchmark Methods 126

7 Two Extensions 129
7.1 More General Model 129
7.1.1 Algorithmic Framework 130

7.1.2 One Application e 131

7.2 Solving the Original Problem 132
7.2.1 pADMM 132

7.2.2 Current Convergence Results of Nonconvex pADMM 133

7.2.3 Numerical Experiments 136

7.2.4 Future Proposal 139

8 Conclusion 141
References 143
Bibliography 143

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6

3.1

5.1

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27

Sensor network localization of eighty nodes. 3
Molecular conformation of protein data. 4
Circle fitting of six points. oo 4
Dimensionality reduction of ‘teapot’ Data. 5
Dimensionality reduction of Face698 Data. 6
Procrustes analysis. L L L oo 18
Optimal solutions of (3.61) under different cases. 47
Ground truth EDM network with 500 nodes. 73
Example 5.1 with n =200,m =4,nf =0.1. 92
Example 5.1 withn =2000m =4, R=03.. 92
Example 5.2 with n =200,m =4,nf =0.1. 94
Example 5.2 withn =2000m=4,R=03.. 94
Example 5.3 withn =2000m =4, R=02.. 94
Example 5.3 with n =200,m =10, R=0.3. 95
Example 5.4 with n =200,m=10,R=0.3. 96
Example 5.4 with n =500,m =10, R=0.3. 96
Example 5.5 under Rule 1 with s =6,nf =0.1. 98
Example 5.5 under Rule 1 withs=6,R=3. 98
Example 5.5 under Rule 2 with s =6,nf =0.1. 99
Example 5.5 under Rule 2 with s =6,0=36. 100
Example 5.7: embedding 30 cities on earth for data HA30. 103
Example 5.8: fitting 6 points on a circle. oL 104
Example 5.8: fitting 6 points on a circle by circlefit. 104
Example 5.9: circle fitting with nf= 0.1 by MPEDMy;. 105
Example 5.9 withnf =0.1. o oo 106
Example 5.9: circle fitting with n = 200 by MPEDM;7. 106
Example 5.9 with n=200.. L oo 107
Example 5.10: dimensionality reduction by MPEDM. 108
Example 5.11: dimensionality reduction by MPEDM. 109
Example 5.12: dimensionality reduction by MPEDM. 110
Average results for Example 5.1 with n =200, m =4, nf=0.1. 112
Average results for Example 5.2 with n =200, R =0.2, nf=0.1. 116
Localization for Example 5.4 with n =500, R = 0.1, nf=0.1. 116
Average results for Example 5.4 with n =200,m =10,R=0.3. 119
Localization for Example 5.2 with n =200,m=4,R=03. 120

ix

LIST OF FIGURES

6.28 Average results for Example 5.5 with s =6,nf =0.1. 122
6.29 Average results for Example 5.5 with s = 6,0 =s%. 122
6.30 Average results for Example 5.5 with n = 5,0 = s, nf =0.1. 123
6.31 Molecular conformation. From top to bottom, the method is PC, SFSDP,
PPAS, EVEDM, MPEDM. From left to right, the data is 1GM2, 1AU6, 1LFB. . . . 124

7.1 ADMM on solving Example 5.4 with n =500,0m =10,R=03.. 137

List of Tables

1.1

2.1

3.1

4.1
4.2

5.1
5.2
5.3
5.4
5.5

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21

7.1
7.2

The framework of pADMM, 13
The procedure of cMDS. Lo 19
Properties of four objective functionso 0L 30
Framework of Majorization-Projection method. 54
Conditions assumed under each objective function 67
Parameter generation of SNL. o000 oL 73
Parameter generation of MC problem with artifical data. 77
Parameter generation of MC problem with PDB data. 77
Parameter generation of ES problem. 80
Parameter generation of DR problem. 83
MPEDM for SNL problems 89
MPEDM for MC problems oL o 89
MPEDM for ES problems 90
MPEDM for DR problemso o 91
Example 5.1 withm=4,R=02,nf=0.1. 93
Example 5.4 with m =10, R=0.1,nf =0.1. 97
Example 5.5 under Rule 1 with R=3,nf =0.1.. 99
Example 5.5 under Rule 2 with 0 = s, nf =0.1. 100
Self-comparisons of MPEDM for Example 5.6. 101
Results of MPEDM,, on Example 5.10. 108
Results of MPEDM,,, on Example 5.11. 109
Results of MPEDM,; on Example 5.12. 110
Comparison for Example 5.1 with m =4, R =+/2,nf =0.1. 113
Comparison for Example 5.1 with m =4, R=02,nf =0.1. 113
Comparisons for Example 5.4 with m = 10, R = v/1.25,nf =0.1. 114
Comparisons for Example 5.4 with m =10, R =0.1,nf =0.1. 115
Comparisons for Example 5.2 with m =10, R =0.2,nf =0.1. 117
Comparisons for Example 5.2 with m =50, R =0.2,nf =0.1. 118
Comparisons for Example 5.1 with m =4, R=0.3,nf =0.1. 119
Comparisons for Example 5.1 with m =4, R =0.3,nf =0.7. 121
Comparisons of five methods for Example 5.6. 125
Framework of Majorization-Projection method. 130
Framework of pADMM for (7.8) 133

xi

xii

LIST OF TABLES

7.3 ADMM on solving Example 5.1 withm =4, R=02,nf =0.1. 137
7.4 ADMM on solving Example 5.6.o 138

Declaration of Authorship

I, Shenglong Zhou , declare that the thesis entitled Majorization-Projection Methods
for Multidimensional Scaling via Fuclidean Distance Matriz Optimization and the work
presented in the thesis are both my own, and have been generated by me as the result

of my own original research. I confirm that:

this work was done wholly or mainly while in candidature for a research degree at

this University;

e where any part of this thesis has previously been submitted for a degree or any
other qualification at this University or any other institution, this has been clearly

stated;

e where I have consulted the published work of others, this is always clearly at-

tributed;

e where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work;
e I have acknowledged all main sources of help;

e where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself;

e none of this work has been published before submission

xiii

Acknowledgements

My deepest gratitude goes first and foremost to my supervisor, Professor Hou-Duo Qi,
for his meticulous guidance and constant encouragement throughout all stages of my
postgraduate study. His excellent mathematical knowledge and illuminating instructions

contributed enormously to the accomplishment of this thesis.

I would also like to express my heartfelt gratitude to Professor Naihua Xiu from Beijing
Jiaotong University for his generous support and invaluable advice. Without his help,
it would not be such of comfort and convenience in my postgraduate life. The research
group led by him offered me lots of help and care. Especially, I am greatly indebted to
Professor Lingchen Kong and Professor Ziyan Luo who provided me thoughtful arrange-

ments and shared with me various interesting research topics.

My thanks would also go to my examiners, Dr. Parpas Panos from Imperial College

London and Dr. Stefano Coniglio, for their careful reading and valuable comments.

Finally, I would like to express my heartfelt gratitude to my beloved parents and brothers
for their endless love and support all through my life. I also place my sense of gratitude

to my friends and my fellow colleagues for their help and company over these years.

XV

Nomenclature

R" The n dimensional Euclidean real space. Particularly, R := R!.

R7 The n dimensional Euclidean real space with all non-negative vectors.
R™*™ The linear space of real m x n matrices.

X A vector with the i-th element x;, similar to y, z etc.

e A vector with all elements being 1.

X A matrix with the j-th column x; and the 7j-th element X;;.

I, The n x n order identity matrix I,. Simply write as I if no ambiguity of

its order in the context.
tr(A) The trace of A, i.e., tr(4) =, a;
(A,B) The Frobenius inner product of A, B € R™*" i.., (A, B) = tr(AB").

S The space of n X n symmetric matrices, equipped with the inner product.
Sy The hollow space in S”, i.e., {A€S": A; =0}.
St The cone of positive semi-definite matrices in S”, i.e. {A€S": A > 0}.

St (r) Low rank matrices in S, i.e., {A € S} : rank(A4) <r}.

A A linear mapping, similar to B, P, Q etc.

A* The adjoint linear mapping of A, i.e., (Ax,y) = (x, A*y). Particularly, AT
is the transpose of matrix A. A self-adjoint linear mapping means A = A*.

Il - |l The induced Frobenius norm for matrices and Euclidean norm for vectors.

Ai(A) The i-th largest eigenvalue of A.

J The centring matrix with order n, i.e., I, — ee' /n.

I5(X) The set of all projections of X onto a closed set (2, i.e., argminy ¢ ||Y — X||.

Io(X) The orthogonal projection of X onto a closed set €, i.e., o(X) € 5 (X).
When (2 is convex, IIo(X) is unique.

X oY The Hadamard product between X and Y, i.e., (X oY);; = X;;Y;.

X (X P, = X}, where p > 0, such as (X@);; = X7 and (X2, = /X5

xvii

Chapter 1

Introduction

Throughout this thesis, for the sake of clearness, definitions of some basic notation can

be referred in Nomenclature on Page xvii if there is no extra explanations.

In this chapter, we first introduce the problem of interest of this thesis, Multidimensional
scaling (MDS), which covers extensive applications in various research communities in-
cluding Psychology, Statistics and Computer Science. Motivations of this topic are then
presented through several specific applications, such as wireless sensor network localiza-

tion, molecular conformation, fitting points on a sphere and dimensionality reduction.

1.1 Multidimensional Scaling (MDS)

Multidimensional scaling (MDS) as a data analysis technique aims at searching an em-
bedding in a new (possibly low dimensional) vector space from some points/objects with
hidden structures. Here for a given set of objects in R?, embedding them or searching an
embedding in a new space R" (r < d) means finding their new coordinates in such space
R". Some inter-point distances of this embedding (i.e., new coordinates) are expected
to approach a small portion of given pairwise dissimilarities as closely as possible. It
is well known that MDS was originated from the field in psychology (Torgerson, 1952;
Shepard, 1962; Kruskal, 1964) and covers extensively applications in various communi-
ties including both social and engineering sciences (e.g., visualization (Buja et al., 2008)
and dimensionality reduction Tenenbaum et al. (2000)), which were well documented in

the books (Cox and Cox, 2000) and (Borg and Groenen, 2005). Recently, it has been

1

2 Chapter 1 Introduction

successfully applied into molecular conformation (Glunt et al., 1993; Zhou et al., 2018a)
and wireless sensor network localization (SNL) in high dimensional data settings (see
Biswas and Ye, 2004; Shang and Ruml, 2004; Biswas et al., 2006; Zhen, 2007; Costa
et al., 2006; Karbasi and Oh, 2013; Bai and Qi, 2016). The problem can be briefly

described as follows.

Suppose there are n points/objects {x1, -+ ,x,} in R", and (Euclidean) dissimilarities

among some of the points can be observed:

0ij = ||l@ — xj|| + €5, for some pairs (x; x;), (1.1)
where || - || is Euclidean norm, the €;; are noises/outliers and d;; are observed dissim-
ilarities. The main task is to recover the n points {1, -+ ,x,} in R" purely based on

those available dissimilarities.

It is wroth mentioning that if the dissimilarity of one pair is not available, it is generally
taken as 0. Therefore, a dissimilarity matrix A € S} can be acquired by, for ¢ < j,
d;j, for some pairs (x; x;),

Ay = (1.2)
0, otherwise.

1.2 Motivations

The motivations for us to consider MDS are various important applications ranging
from constrained multidimensional scaling in Psychology, spatial data representation
in Statistics, machine learning and pattern recognition in Computer Science. Since
the wide range is beyond our scope, we only introduce four specific examples: sensor
network localization (SNL), molecular conformation (MC), embedding on a sphere (ES)

and dimensionality reduction (DR).

1.2.1 Sensor Network Localization (SNL)

Wireless sensor network localization (SNL) plays an important role in real world such
as health surveillance, battle field surveillance, environmental/earth or industrial moni-

toring, coverage, routing, location service, target tracking, rescue and so forth, in which

Chapter 1 Introduction 3

an accurate realization of sensor positions with respect to a global coordinate system is

highly desirable for the data gathered to be geographically meaningful.

The problem is to locate a number of points (known as sensors) based on some observed
dissimilarities. See Figure 1.1 for example, there are five red squares, the given points
(known as anchors), and seventy five sensors (blue circles) in R2. The difference between
a sensor and a anchor is that the latter has fixed /known position. Actually, a sensor can
be an anchor if its position is given before to locate other unknown sensors. The pink
and green lines link two neighbour points, which indicates the dissimilarities between
them can be observed in advance. The task is to find locations of all sensors in R? based

on those known dissimilarities. More details can be referred to Section 5.1.

Figure 1.1: Sensor network localization of eighty nodes.

1.2.2 Molecular Conformation (MC)

Molecular conformation (MC) problem can be briefly described as follows. For a molecule
with some atoms, the problem tries to determine the positions of these atoms in R3, given
estimated some inter-atomic dissimilarities which could be derived from covalent bond

lengths or measured by nuclear magnetic resonance (NMR) experiments.

4 Chapter 1 Introduction

As demonstrated by Figure 1.2, two molecules ‘1LFB’ (containing 641 atoms) and
‘5BNA’ (having 486 atoms) from Protein Data Bank were plotted. Since the max-
imal distance between two atoms that the NMR experiment can measure is nearly
6A(1A = 10~8cm), for each molecule, if the distance between two atoms is less than
this threshold, then their dissimilarities is able to be gotten; otherwise no information
about the pair is known. Therefore, the primary information is a set of dissimilarities

and the task is to locate each atom in R?. Please refer to Section 5.2 for more details.

(a) 1AU6:n = 506 (b) 1LFB:n = 641

Figure 1.2: Molecular conformation of protein data.

10 o i

Figure 1.3: Circle fitting of six points.

Chapter 1 Introduction 5

1.2.3 Embedding on a Sphere (ES)

The goal of this problem is to place some points on a sphere in R" in a best way,
where r = 2 or 3. Particularly, when r = 2, the problem is known as circle fitting.
The primary information utilized is inter-point distance between each two points. For
example, as demonstrated in Figure 1.3, six ground truth points (marked by blue pluses)
were given first. Then circle fitting managed to position their corresponding estimated
points (marked by pink dots) that were used to find a proper circle, and the circle was

able to fit these ground truth points well. Please see more details in Section 5.3.

1.2.4 Dimensionality Reduction (DR)

Dimensionality reduction (DR) problem is from the domain of manifold learning, at-
tempting to reveal several major features from a lot of hidden features of a group of
given objects. Let see a particular application in image sciences. The pixel data of a
image can be regarded as a point/vector. Some dissimilarities between two images are
obtained under a certain rule to form the primary information. The purpose is to find
the major features (usually 2 or 3 features) of those images, and then visualize those

features through presenting them on a graph.

Figure 1.4: Dimensionality reduction of ‘teapot’ Data.

6 Chapter 1 Introduction

For example, a camera is rotated 360 degree to take 400 images of a placed teapot.
Each of ‘teapot’ images has 76 x 101 pixels, with 3 byte color depth, giving rise to
inputs of 23028 dimensions. As described by Weinberger and Saul (2006), though very
high dimensional, these images are effectively parametrized by one degree of freedom: the
angle of rotation, and two dimensional embedding is able to represent the rotating object
as a circle. As presented in Figure 1.4, 400 small red circles form a big circle and each
small red circle represents the location of one ‘teapot’ image in this two dimensional
space. We pick 8 small red circles whose corresponding images are presented in the
graph. One can see that the handle of the teapot is rotated 360 degree, which coincides

with the rotation of the camera. More examples can be seen in Section 5.4.

40 T T

30

10

Up—down pose

Left-right pose
Figure 1.5: Dimensionality reduction of Face698 Data.

Another example is the Face698 dataset, which comprises 698 images (64 x 64 pixel) of
faces with the different (up-down and left-right) face poses and different light directions.
Each image is regarded as an input point/vector with high (642) dimension. For the
purpose of highlighting the major features of those images: two face poses and light
direction, it is natural to expect they lie in a low three dimensional space dominated by
these three features. We presented two face poses features in Figure 1.5, from the left to
the right side, the direction that the face in each image points to is gradually from the
left to the right side as well. Then from the up and the down side, the direction that

the face in each image points to is gradually from the up to the down side as well.

Chapter 1 Introduction 7

1.3 Preliminaries

Before the main part of this thesis ahead of us, we would like to introduce some elemen-

tary knowledge that will ease the reading of following contents.

1.3.1 Inner Product

Some useful properties of the Frobenius inner product are summarized below.

1) For A, B € R™*™ it holds

(A,B) =tr(AB") = iiaijbij;

=1 1=1

Particularly, (A, A) = HAH2 sz i

2) (A1) = tr(A) =)2 ai = 225 Xi(A);

3) For A € R B € R™™ and Z € R"*™ it holds
(Z"AZ,B) = (A, ZBZ") (1.3)

(since tr(ZT(AZBT)) =tr((AZB")ZT)).

1.3.2 Principal Components Analysis

Suppose A € S" has the following Eigenvalue Decomposition:

A=Mpip{ +X2pspy + -+ AuPpPy (1.4)
where \; > Ao > ... >)\, are the eigenvalues of A in non-increasing order, and p,,
i = 1,...,n are the corresponding orthonormal eigenvectors. We define a PCA-style

matrix truncated at r (r < n):
PCAT(A) := > max{0,\;}p,p; - (1.5)

One can verify that PCA(A) € argminy egn (- y 1Y — Al

Chapter 1 Introduction

1.3.3 Projections

We say IIg(x) a projection of x onto a closed set €2 if it satisfies

IIo(x) € argmin ||z — x|| . (1.6)
z€€)

It is well known that when Q is a convex set, then IIo(x) is unique. But when € is non-

convex, generally speaking, there are multiple solutions of (1.6). When such scenario

happens, we denote Hg(x) its all solutions. Several projections onto particular closed

sets interested in this thesis are presented here.

Projection onto a non-negative set:
Ign (x) = max{x, 0}; (1.7)

Hereafter, we write max{x,a} to denote a vector with ith entry max{z;, a;}

Let J=1— %ee—r be the so-called centring matrix. Projection onto a box set:

[y p)(x) = min{max{x,a}, b}; (1.8)
Projection onto a subspace Q := {x € R" : e x = 0}:

IIo(x) = Jx, (1.9)

Projection onto a positive semi-definite cone:
Isn (A) = PCA; (A); (1.10)

where PCAF(A) is given by (1.5).

Projection onto a positive semi-definite cone with rank-cut 7:
1,) (4) = {PCAS (A)} = {ITsy) (4)): (1.11)

Hgn () (A) = PCA; (A) is not unique since ST () is just a special choice of ITZ, r) (4),
*
see (1.5) or (Qi and Yuan, 2014, Lemma 2.2) or (Gao, 2010, Lemma 2.9).

Chapter 1 Introduction 9

1.3.4 Subdifferential

An extended-real-valued function f : R™ — R := (—o0, 00] is called proper if it is finite
somewhere and never equals —oo. The domain of f is denoted by dom f and is defined
as domf = {x € R" | f(x) < +o00}. A function f is said to be coercive if f(x) — +o0
when [|x]| — co. A function f is lower semicontinuous at the point x if

liminf f(z) > f(x).

Z—X

If f is lower semicontinuous at every point of its domain, then it is called a lower semi-

continuous function. Such a function is called closed if it is lower semicontinuous.

Given a proper function f: R" — R := (—o0, 00|, we use the symbol z 4y x to indicate
z — x and f(z) — f(x). Our basic subdifferential of f at x € domf (also known as the

limiting subdifferential) is defined by

of(x) = {u er" [3xt L x,u’ — u such that, for each , (1.12)
N
liminf f(z) = 1<) Eu 2% >0 }
it PEEY]

where {x‘} is the sequence with ¢ = 1,2, This is refereed as (Rockafellar and Wets,
2009, Definition 8.3) It follows immediately from the above definition that this subdif-

ferential has the following robustness property:

{uGR"

3x xuf = uut eaf(xf)} C 9f(x). (1.13)

For a convex function f the subdifferential (1.12) reduces to the classical subdifferential

in convex analysis, see, for example, (Rockafellar and Wets, 2009, Proposition 8.12):

af(x) = {u cR"

f(2) = () + (w2 =) }. (1.14)

Moreover, for a continuously differentiable function f, the subdifferential (1.12) reduces
to the derivative of f denoted by sy f. For a function f with more than one group of
variables, we use Ox f (resp., Vxf) to denote the subdifferential (resp., derivative) of f
with respect to the variable x. A critical point or stationary point of f is a point X in
the domain of f satisfying

0 € 0f(x).

10 Chapter 1 Introduction

Finally, a function f is Lipschitz continuous with a Lipschitz constant L; > 0 if

[f(x) = f(¥)| < Lylx =y

A function is gradient Lipschitz continuous with a Lipschitz constant L; > 0 if

IVf(x) = VI < Lelx =yl

1.3.5 Majorization of functions

Let f : Q — R be a proper function. We say fjs is a majorization of f on) if it satisfies

fx) < fuxz) and f(x) = fur(x%) (1.15)

for any x,z € €. For example, if f is a concave function (namely, -f is convex), then by

(1.14), for any u € Jf(z), its majorization can be

fM(X;Z) = f(Z) + <u7X— Z>7

Another example is the gradient Lipschitz continuous function f, and its majorization

is able to be
fau(x;2) := f(2) + (Vf(2),x — z) + (Ls/2)|x — 2|,

where Ly > 0 is the Lipschitz constant, see (Nesterov, 1998, Theorem 2.1.5).

The third example is the distance function, i.e., f = ||x — IIo(x)||, where Q is a closed

set, and its majorization allows to be

fau(x;2) = |[x = lo(2)]].

1.3.6 Roots of Depressed Cubic Equation

In our algorithm, we will encounter the positive root of a depressed cubic equation

(Burton, 2011, Chp. 7), which arises from the optimality condition of the problem

1;12151 s(z) := (1/2)(x — w)* + 2vV/z, (1.16)

Chapter 1 Introduction 11

where v # 0 and w € R are given. A positive stationary point z must satisfy the

optimality condition
0=s@)=0r—-w+v/Vz. (1.17)
Let z := /x. The optimality condition above becomes
2 —wr+v=0. (1.18)

This is the classical form of the so-called depressed cubic equation (Burton, 2011,
Chp. 7). Its roots (complex or real) and their computational formulae have a long history
with fascinating and entertaining stories. A comprehensive revisit of this subject can be
found in (Xing, 2003) and a successful application when v > 0 to the compressed sensing
can be found in (Xu et al., 2012; Peng et al., 2017). The following lemma says that,
under certain conditions, the equation (1.17) when v > 0 has two distinctive positive

roots and its proof is a specialization of (Chen et al., 2014, Lem. 2.1(iii)) when p = 1/2.

Lemma 1.1. (Chen et al., 2014, Lemma 2.1(iii)) For (1.16) with v > 0, let

T = (v/2)%3 and

&l
I

w
Kl

When w > @, s(z) has two different positive stationary point x5 and x% satisfying

s(z)=0 and x] < T < x5

Next we focus on roots of (1.18) under several cases of interest in this thesis. Based on
Candano’ formula in (Burton, 2011, Chp. 7) and results in (Xing, 2003, Tables 3 and

4), we summarize associated properties as follows.

Lemma 1.2. Consider the depressed cubic equation (1.18) with v # 0 and w € R. Let
7i=1%/4 —w3/27.

(i) If T > 0, then (1.18) has two conjugate complex roots and one real root. And the

real root can be computed by

2= [—v/2+ V7P + [—v/2 = V7] 2. (1.19)

12 Chapter 1 Introduction

For clarity, the real value of a'/? is calculated by

al/3, if a>0,
a'/3 = 0, if a=0,
—(—=a)'/3, if a<0.

(ii) If T <0, then (1.18) has three distinct real roots which can be computed by

w 0 w 0+ 4w w 0+ 27
z1 =24/=cos|=|, zo=24/—=cos , 23 =24/—=cos ,
3 3 3 3 3 3

where cos(f) = %(%)_3/2 and 8 € (0,7/2) U (n/2,7). Moreover,

21 > maX{ZQ,O} > min{ZQ, 0} > z3.

(i1i) If T =0, then (1.18) has three real roots which can be computed by

3v
-

Moreover, z1 = 20 > 0,23 <0 if v >0 and z1 = 29 < 0,23 >0 if v <O.

1.3.7 Proximal Alternating Direction Methods of Multipliers
Let us consider the following model

min fi1(x) + f2(y)
st. Ax+ By = b, (1.20)

xekX, ye),

where fi : X 2 Rand fo: Y - R; A: X — Z and B:) — Z are two linear operators,
b € Z; and X,) and Z are real finite dimensional Euclidean spaces with inner product

(-,) and its induced norm || - ||. The augmented Lagrange function of (1.20) is
L(x,y,2) = fi(x) + f2(y) — (2, Ax + By) + (0/2)| Ax + By|]*, (1.21)

for any x € X',y € Y and any given ¢ > 0, where z is the so-called Lagrange Multiplier.

When (1.20) is a convex model, namely, f; : X — R and f2 :) — R are proper convex

Chapter 1 Introduction 13

function on x € X,y € Y respectively, the Proximal Alternating Direction Methods of
Multipliers (pADMM), is extensively used to tackle it. The algorithmic framework is
described in Table 1.1.

Table 1.1: The framework of pADMM

Step 0 Let 0,7 > 0 and P, Q be given self-adjoint and positive semi-definite linear
operators. Choose (x°,y%,z%). Set k := 0.

Step 1 Perform the (k + 1)-th iteration as follows

x"1 = argmin L(X,yk, Zk) +(1/2)]]x — Xk||121>, (1.22)
xeX

yE = argmin £(x",y, 2) + (1/2)[ly — ykué, (1.23)
yey

1 = ro(axtt + Byt) (1249

Step 2 Set k:=k + 1 and go to Step 1 until convergence.

Here |x||2 := (x,Px). The purpose of adding the proximal terms ||x—x*||2 and Hy—kaé
basically is to enable the first two subproblems to be well defined (i.e., to have unique
solution) on one side, and to be easily calculated on the other side. Notice that when
P =0 and Q = 0, pADMM reduces to the standard ADMM. For convex problem (1.20),
its convergence property has been well established, seen (Fazel et al., 2013, Theorem

B.1), which can be stated as follows.

Theorem 1.3. Assume that the intersection of the relative interior of (dom f1x dom f2)
and the constraint set of (1.20) is non-empty. Let the sequence {x*,y*, 2} be generated
by pADMM in Table 1.1. Choose P,Q such that P+ cA*A and Q + ocB*B are positive
definite and 7 € (0,(v/5 — 1)/2), then the sequence {x*,y*} converges to an optimal
solution to (1.20) and { 2"} converges to an optimal solution to the dual problem of (1.20).

1.4 Euclidean Distance Embedding

Euclidean Distance Embedding (EDE) turns out to be relevant to three elements: The
definition of Euclidean Distance Matrix (EDM), characterizations of EDM and Euclidean

Embedding associated with Procrustes analysis (Cox and Cox, 2000, Chap. 5).

14 Chapter 1 Introduction

1.4.1 Euclidean Distance Matrix (EDM)

A matrix D € S" is an EDM if there exist points {x1,--- ,Xp} in R” such that

Here R" is often referred to as the embedding space, r is the embedding dimension when
it is the smallest such r. The above equations mean that each element D;; of D equals
to the squared pairwise distance between two points x; and x;, and because of this, D is
symmetric obviously. For example, we give three points x; = (0,0)7,x = (1,0) T, x3 =

(0,2)" in R2. Direct calculation derives an EDM D = [0 14;1 0 5;4 5 0].

1.4.2 Characterizations of EDM
It is well-known that a matrix D € S” is an EDM if and only if
DeSy, J(-D)J=O0. (1.25)

The origin of this result can be traced back to (Schoenberg, 1935) and an independent
work by (Young and Householder, 1938). See also (Gower, 1985) for a nice derivation

of (1.25). Moreover, the corresponding embedding dimension is
r = rank(JDJ).

From (1.9), the centring matrix J =1 — %eeT satisfies e Jz = 0 for any z € R™. This

combining with J(—D)J =0 < z'J(—D)Jz > 0 suffices to following equivalence :
Desy, J(-D)J=0 <+ DecS;, -DekKjl, (1.26)
where K’} is known as conditional positive semi-definite cone, defined by

K? = {AeS": x'"Ax>0, Ve x =0} (1.27)

= {AeS": JAJ =0}

A nice property of the cone K is that the projection of any A € S™ onto it can be

derived through the orthogonal projection onto the positive semi-definite cone S'f, seen

Chapter 1 Introduction 15

(Gaftke and Mathar, 1989) for more details,
gn (A) = A+ Hsn (=JAJ). (1.28)
Define a conditional positive semi-definite cone with rank cut r by
Kh(r) = K}N{AeS": rank(JAJ) <r}. (1.29)
Overall, an EDM D with embedding dimension r is equivalent to
—D e Sy nKY(r), (1.30)

Regarding to K’ (r), the following proposition holds from (Qi and Yuan, 2014).

Proposition 1.4. For given A € S"™ and an integer r < n. The following results hold.
(i) (Qi and Yuan, 2014, Eq. (26), Prop. 3.3) We have
<HK1(7~) (4), A- HKi(r) (A)) = 0.
(ii) (Qi and Yuan, 2014, Prop. 3.4) The function

h(A) = (1/2) |y () (A)]?

is well defined and is convex. Moreover, denoting conv(S) the convex hall of set

S, we have

Mg, (1) (A) € Oh(A) = conv (Hgi . (A)) :

(iii) (Qi and Yuan, 2014, Eq. (22), Prop. 3.3) One particular projection HKg(r)(A) can
be computed through

Ik () (A) = PCAT(JAJ) + (A — JAJ) (1.31)

The benefit of having Proposition 1.4 is that the feasibility of a matrix to be a low-rank

EDM can be represented by a well-behaved function as we see below:

—AeKi(r) <= A+Ign;(-A4)=0

16 Chapter 1 Introduction

This is equivalent to require g(A) = 0, where

9(4) = (1/2)]| A+ T) (~)] (1.32)

Proposition 1.4 allows us to represent g(A) in terms of h(A). This relationship is so

important that we include it in the proposition below.

Proposition 1.5. For any A € S, we have following results.

(i) g(A) = ||A||?/2 — h(—A). Hence, g(A) is a difference of two convex functions;

(ii) g(A) < (1/2)| A + I () (=B =: g (A; B) for any B € S"; That is ga(A; B)

can be a majorization of g(A) based on (1.15);

(iit) [Tk () (A)]] < 2[|A]l.
Proof (i) It follows from Proposition 1.4(i) that

(=A, Tgn () (—A)) = [T () (= A4)]1*.
Substituting this into the first equation below to get

9(4) = (1/2)AIP + (1/2)|Hxr () (= A) > + (A, Hicr (1 (—A))

)
1/2)[|AlI? + (1/2) Mg () (AP = [Tk () (— A
1/2)IAI* = (1/2) Mgy () (—A) 1

1/2)[|Al]* — h(=A).

(
(
(
(
(ii) This is clear because of g () (B) € K% (r) and for any Y € K’ (r)

Mg () (A) — Al| = miny egn () |V — Al < ||V — A
(ili) Since 0 € K% (), by the definition of HKﬁ(r)('), we have

Mg () (A = [[AIl < ([T () (A) — Al < |0 = A]l = [|A]],

which yields the last claim. O

Chapter 1 Introduction 17

1.4.3 Euclidean Embedding with Procrustes Analysis

If D is an EDM with embedding dimension 7, then J(—D)J = 0 by (1.30), and J(—D)J

can be decomposed from Table 2.1 as
—JDJ/2=X"X, (1.33)

where X := [x1 -+ x,] € R"™". It is known that {x,--- ,x,} are the embedding points
of D in R” such that D;; = ||x; — x;||*>. We also note that any rotation and shifting
of {x1, -+ ,x,} would give same D. In other words, there are infinitely many sets
of embedding points. To find a desired set of embedding points that match positions
of certain existing points, one needs to conduct the Procrustes analysis, which is a
computational scheme and often has a closed-form formula, see (Cox and Cox, 2000,

Chp. 5). The procedure is as follows.

Centralizing: Let X = [x; --- x,] and Z = [z; --- 2z,] be the estimated and the
ground truth embedding respectively. We first move X (resp. Z) along x. =
LS % = 1Xe (resp. z. = Y1 2; = 2Ze) to X, (resp. Z.) where the

center of X, and Z, is the origin, namely,
X,=X—xee', Z.,=Z—zce'. (1.34)

One can check the center of X, is origin due to X.e = Xe — x.e' e = Z?:l X; —

nx. = 0 and same as Z. due to Z.e = 0.
Rotating The best rotational (including rotations and flips) embedding on X, and Z,.
can be done through solving the orthogonal Procrustes problem:

P* = argminpcgrxr ||PXe— Ze||, st. PTP=1. (1.35)

The matrix P enables the columns of X, in a best way to match the corresponding
columns of Z. after the rotation. Problem (1.35) has a closed form solution P* =
UV, where U and V are from the singular-value-decomposition of Z. X, = UAVT

with the standard meaning of U, A and V. Then the points matching Z. are

Zp:=P'X,=UV'X..

18 Chapter 1 Introduction

Matching: We finally move Zp to Z,ew that matches Z by

Znew = Zp + zc€ . (1.36)

Consider one example to illustrate this. Let

29 29 29 V2 9 32 1 2
Z: s X:
V29 29 _M2_9 _¥2_9 2 32 1

It is easy to calculate x. = z. = [2 2]". The singular-value-decomposition of ZCX(;'— =

UAV'T yields that

V=

SSEEN
—
(]

01

Then it is easy to verify that Zp = P*X,. =UV "X, = Z, and Zyew = Zp + 2.’ = Z.
Actually, this procedure can be illustrated by Figure 1.6. It is worth mentioning that
Zp and Z. are not exactly same in general after rotating, that is Zp ~ Z. which thus

indicates Zpew = Zp + zc€' ~ Z.

2 - -
z (1) Centralizing
‘ (2) Rotating
o ¥l § (3) Matching
-3 1 1 1 1 1
-3 -2 -1 0 1 2 3

Figure 1.6: Procrustes analysis.

Chapter 2

Literature Review

A great deal of effort has been made to seek the best approximation for problem (1.1).
This chapter starts with introducing a very traditional and powerful approach, the classi-
cal MDS (cMDS), followed then by summarizing four advanced alternatives to overcome
the shortages of cMDS, and ends up with reviewing three groups of approaches that

have been used to solve the four models.

2.1 Classical MDS

The scheme of the classical MDS method can be described in Table 2.1

Table 2.1: The procedure of cMDS.

Step 0 Give A € S} by (1.2) and 7.

Step 1 Spectral decomposition:
1
—5APT = pp(+ Aapops + 0+ APy (2.1)

where A1 > Ao > .-+ >), are the eigenvalues of —JA(z)J/Q and py,- -, P,
are the corresponding orthonormal eigenvectors.

Step 2 Embedding points from the columns of X := [x1 - --x,] € R™*" where

-
Xi = {\/Eph- \/Epzi \/)‘T"pm'] , 1=1,...,n.

19

20 Chapter 2 Literature Review

Actually, cMDS solves the following optimization problem:
Y™ € argminy sy () [|Y — (—JAP) J/2)]. (2.2)
The solution is Y* = X T X, where X € R™*" is given as in Table 2.1, namely,

X = [\/711)1 VAapy \/Eprr-

The popularity of cMDS benefits from three main aspects:

e Simplicity of implementations. This is because of the simple scheme of cMDS;

e Low complexity of computations. The main computational step is the spectral
decomposition of JA®)J, whose complexity is O(n?®). And thus the complexity of

whole procedure is also O(n?);

e Desirable accuracy of embedding. When the given pairwise dissimilarities 5% are
close enough to the true inter-vector distances ||x; — x;|| of objects, it is capable

of rendering an embedding with acceptable accuracy indeed.

However, ¢cMDS takes advantage of the double-centring matrix JA®J, which limits
its implementations to scenarios where large numbers of elements are available and the
noises are quite small, i.e., small ¢;; in (1.2). However, under circumstances that some of
elements (or even one single element) of A are contaminated by slightly large noise/out-
liers, not to mention when large number of elements of A are missing, it performs poorly
because the double centring procedure J(-)J spreads out the error stemmed from the
noise to the entire matrix JA®.J. More detailed explanations can be found in (Spence

and Lewandowsky, 1989; Cayton and Dasgupta, 2006).

From (1.9), the centring matrix J = I, — ee' /n =: J,, moves the center of every x to

the origin (i.e., e" Jx = 0). For a matrix X = [x; --- x,] € R™™"_ it holds
1 1 T e Xe +
JXJ=X—-—ee X ——-Xee ———ee =:[y; - y,|
n n n
Then one can calculate that e JX.J = JX Je = 0, which means JX.J moves [x1 --- X,]
to [y, -+ ¥,] with their center being origin. This is why J is called centring matrix.

Moreover, J is also plays an important role in statistics. For example, consider a sample

Chapter 2 Literature Review 21

matrix A € R™*". J,A and AJ, respectively remove the means from each of the n

columns and m rows. Therefore double-centring J,, AJ, places the mean to be zero.

2.2 Stress-based Minimizations

To overcome the above mentioned drawbacks of cMDS, four advanced alternatives have
been investigated for several decades. They are stress minimization, squared stress

minimization, robust MDS and robust Euclidean embedding.

2.2.1 Stress Minimization

When the least-squares criterion and the dissimilarities were applied to (1.1), we have

the popular model known as the Kruskal’s stress (Kruskal, 1964) minimization:

n
2
min 3 Wiy llxi = x| — 6] (2.3)
i,7=1
where W;; > 0 if 6;; > 0 and W;; > 0 otherwise (W;; can be treated as a weight for
the importance of §;;), and X := [xy,...,X,] with each x; being a column vector. To
address this problem, a famous representative solver SMACOF (Scaling by Majorizing a

Complicated Function) has been created (De et al., 1977; De Leeuw and Mair, 2011).

2.2.2 Squared Stress Minimization

When the least-squares criterion and the squared dissimilarities were applied to (1.1),
we get the so-called squared stress minimization (Glunt et al., 1991; Kearsley et al.,

1995; Borg and Groenen, 2005):

n
2
. 2 <2
min 37 Wiyl x> = 57 (2.4)
2,j=1
As stated by Kearsley et al. (1995), squared stress would make the computation more
manageable than stress criterion because it is everywhere smooth. In addition, Borg
and Groenen (2005) emphasized that this cost function tends to prefer large distances

over the local distances.

22 Chapter 2 Literature Review

2.2.3 Robust MDS

Another robust criterion, often known as Robust MDS, is defined by

n

min ;1 Wi | llxi — %)% = 655 |- (2.5)
The preceding problem is robust because of the robustness of the 1 norm used to
quantify the errors (Mandanas and Kotropoulos, 2017, Sect. IV). This problem can be
solved through SDP relaxation methods, such as (Biswas et al., 2006; Wang et al., 2008;
Pong, 2012; Kim et al., 2012) in which the last one contributes to a comprehensive and

famous Matlab package SFSDP.

2.2.4 Robust Euclidean Embedding

The most robust criterion to quantify the best approximation to (1.1) is the Robust

Euclidean Embedding (REE) defined by

min > Wi | lxi = x4l — 645 |- (2.6)

,j=1

In contrast to all other three problems mentioned above, there lacks efficient methods
for the REE problem (2.6). One of the earliest computational papers that discussed
this problem was Heiser (1988), which was followed up by Korkmaz and van der Veen
(2009), where the Huber smoothing function was used to approximate the /1 norm near
zero with a majorization technique. It was emphasized by Korkmaz and van der Veen
(2009) that “the function is not differentiable at its minimum and is hard to majorize,
leading to a degemeracy that makes the problem numerically unstable”. The difficulty
in solving (2.6) is well illustrated by a sophisticated Semi-definite Programming (SDP)
approach in (Oguz-Ekim et al., 2011, Sect. IV) below.

2.3 Existing Methods

One can find a thorough review on all of the four problems by France and Carroll

(2011), mainly from the perspective of applications, where the ¢; norm and the ¢ norm

Chapter 2 Literature Review 23

are respectively referred to as Li-metric and Lo-metric. In particular, there contains
a detailed and well-referenced discussion on the properties and use of the L and Lo
metrics. One can also find valuable discussion on some of those problems in Introduction
by An and Tao (2003). So the starting point of our review is that those problems
have their own reasons to be studied and we are more concerned how they can be
efficiently solved. Most of existing algorithms can be put in three groups: alternating
coordinates descent methods, Semi-Definite Programming (SDP) and Fuclidean Distance

Matriz optimization (EDM). Below a more detailed review is given.

2.3.1 Alternating Coordinates Descent Approach

Those methods have main variables x;, i = 1,...,n. A famous representative in this
group is the method of SMACOF (Scaling by Majorizing a Complicated Function) for the
stress minimization (2.3) (De et al., 1977; De Leeuw and Mair, 2011). The key idea is
to alternatively minimize the objective function with respect to each x;, while keeping
other points x; (j # i) unchanged, and each minimization problem is relatively easier

to solve by employing the technique of majorization.

SMACOF is essentially a gradient based method, which has been proved that the sequence
constructed by the majorization function is monotone decreasing and converges (to a
local optimum), but also suffers from the typical slow convergence associated with first
order optimization methods. To supplement on this, a single iteration of SMACOF requires
the computation of the Euclidean pairwise distances between all points participating in
the optimization at their current configuration, a time consuming task on its own, which
limits its application to small size data. SMACOF has been widely used and the interested
reader can refer to (Borg and Groenen, 2005) for more references and to (Zhang et al.,
2010) for some critical comments on SMACOF when it is applied to the sensor network

localization problem.

To overcome those drawbacks, authors in (Groenen, 1993; Trejos et al., 2000) constructed
‘tunnels’ in the SMACOF’s majorization function, aiming to find the global minima (but
not guaranteeing to find it in practice). In (Rosman et al., 2008), vector extrapolation

was utilized to accelerate the convergence rate of SMACOF.

24 Chapter 2 Literature Review

Very recently, subspace methods have drawn much attention, including user-assisted
method (Lawrence et al., 2011) in image processing and spectral SMACOF (Boyarski
et al., 2017). Its crucial idea is to restrict the solution to lie within a carefully cho-
sen subspace, making such kind of approaches feasible for large data sets. For example,
Boyarski et al. (2017) built spectral SMACOF to restrict the embedding to lie within a
low-dimensional subspace to reduce the dependence of SMACOF on the number of objects,

which accelerated stress majorization by a significant amount.

Notice that all above methods were proposed to deal with stress minimization (2.3).

2.3.2 SDP Approach

We note that each of the four objective functions either involves the Euclidean distance
dij == ||x; — x;]| or its squared Dj; = dj;. A crucial observation is that constraints on

them often have SDP relaxations. For example, as X = [x1,--- ,Xy], it is easy to obtain
Dij=diy = xi = x> = lIxill® + lIx;1* — 2xi%; = Y + Vj; — 235, (2.7)

where Y := XTX > 0. Hence, the squared distance d?j is a linear function of the
positive semi-definite matrix Y. Consequently, D being an EDM (i.e., —D € S} N K"
from (1.26)) can be presented via linear transformations (2.7) of positive semi-definite
matrices. One can further relax Y = X7 X to Y = X7 X. By the Schur-complement,
vy X7 -
Z = =0 hasrankr <« Y =X"X. (2.8)
X I
By dropping the rank constraint, the robust MDS problem (2.5) can be relaxed to a
SDP, which was initiated by Biswas and Ye (2004).

For the Euclidean distance d;;, we introduce a new variable T;; = d;;. One may relax

this constraint to T;; < d;j, which has a SDP representation:

T < di; =Dy <+ > 0. (2.9)

Combination of (2.7), (2.8) and (2.9) leads to a large number of SDP relaxations.

Chapter 2 Literature Review 25

e For the stress problem (2.3), a typical SDP relaxation can be found in (Oguz-Ekim
et al., 2011, Problem (8)).

e For the squared stress (2.4), one may refer to (Jiang et al., 2014; Drusvyatskiy
et al., 2017).

e For the robust MDS (2.5), there are the SDP relaxation method (Biswas et al.,
2006) and the edge-based SDP relaxation method (Wang et al., 2008; Pong, 2012)
and (Kim et al., 2012) which leads to a comprehensive Matlab package SFSDP.

However, unlike the problems (2.3), (2.4) and (2.5), the REE problem (2.6) does not
have a straightforward SDP relaxation. We use an attempt made by Oguz-Ekim et al.
(2011) to illustrate this point below.

Firstly, it follows from D;; = ||x; — x;||? and (1.26) that problem (2.6) can be written
in terms of EDM:

min 37 Wijly/Dij — 0y

DeSn
st. —DeSyNKL(r).

(2.10)

The term |\/D;; — d;5] is convex of ;5 > /D;; and is concave otherwise. A major

obstacle is how to efficiently deal with the concavity in the objective.

Secondly, by dropping the rank constraint (namely, replacing K’} () by K) and through
certain linear approximation to the concave term, a SDP problem is proposed for (2.6)

(see Eq. (20) in (Oguz-Ekim et al., 2011)):

min (W, T)
D, TeSn
s.t. (51J — Ej)2 < Dy, (i,j) €€

(2.11)
a;jDij + bij < Tjj, (4,7) € €

—D e SpNK,

where the quantities a;; and b;; can be computed from 6;;, and £ is the set of the pairs
(4,7), whose dissimilarities d;; > 0 are known. We note that each quadratic constraint in
(2.11) is equivalent to a positive semi-definite constraint on S% and —D € S} NK' is a
semi-definite constraint on S} by (1.26). Therefore, the total number of the semi-definite

constraints is |€] + 1, resulting in a very challenging SDP even for small n.

26 Chapter 2 Literature Review

Finally, the optimal solution of (2.11) is then refined through a second-stage algorithm,
see (Oguz-Ekim et al., 2011, Sect. IV(B)). Both stages of the algorithmic scheme above
would need sophisticated implementation skills and its efficiency is yet to be confirmed

for many problems tested in this thesis.

2.3.3 EDM Approach

A distinguishing feature from the EDM approach is that this approach treats D as the
main variable, without having to rely on its SDP representations. This approach works
because of the characterization (1.26) and that the orthogonal projection onto K has
a closed-form formula (Glunt et al., 1990; Gaffke and Mathar, 1989). Several methods

are based on this formula. The basic model for this approach is
min IVIWo (D —-A®)2 st —DeSFnK(r), (2.12)
E n

which is the convex relaxation of (2.4) if replacing K’} (r) by K'}. Here the elements of
the matrices A and W are defined by Ag) = 5% and (\/W)ij = Wilj/ 2 respectively.
This model is NP-hard because of the usage of rank constraint. When the special choice
Wi = 1 is used, model (2.12) is the so-called nearest EDM problem. The relaxation is
obtained by replacing K’ (r) by K’}.. Since the constraints of the nearest EDM problem
are the intersection of a subspace and a convex cone, the method of alternation projection
was proposed in (Glunt et al., 1990; Gaffke and Mathar, 1989) with applications to the
molecule conformation (Glunt et al., 1993). A Newton’s method for (2.12) was developed
by Qi (2013). Extensions of Newton’s method for the model (2.12) with more constraints
including general weights Wj;, the rank constraint rank(JD.J) < r or the box constraints
in (3.1) can be found in (Qi and Yuan, 2014; Ding and Qi, 2017; Bai and Qi, 2016). A
recent application of the model (2.12) with a regularization term to Statistics was Zhang
et al. (2016), where the problem was solved by an SDP, similar to that proposed by Toh
(2008). It is worth to mentioning that Ding and Qi (2017) considered the problem as

D* = argminpegnngn V[VW o (D — A@)|? — Z Xi(D) + Z Xi(D),
i=1 i=r+1

where v > 0 and A(D) > --- > A\,(D) are eigenvalues of D. The usage of term

— > (D) + 375,41 Ai(D) aims at pursuing a low-rank solution. They studied its

Chapter 2 Literature Review 27

statistical properties and proved that under some assumptions such model could guar-

antee the recovered solution D* satisfying

n2 m

|D* — DJ? _0 [rnlog(Qn)}

with high probability, where D is the true EDM, m is the number of known elements of
A. This indicates that EDM approaches work for MDS problems with high potential.

There are two common features in this class of methods. One is that they require the
objective function to be convex, which is true for the problems (2.3), (2.4) and (2.5)
when formulated in EDM. The second feature is that the nonconexity is only caused
by the rank constraint. However, the REE problem (2.6) in terms of EDM has a non-
convex objective coupled with the distance d;; (not squared distances) being used, that
is v D will be involved when formulated in EDM, see (2.10). This has caused all existing
EDM-based methods mentioned above invalid to solve (2.6).

Some latest researches by Zhou et al. (2018a) and Zhou et al. (2018b) managed to extend
the EDM approaches to the stress minimization problem (2.3) and REE problem (2.6)
respectively. Once again, we emphasize that the key difference between the problems
(2.6) and (2.3) is non-convex objective vs convex objective and non-differentiability vs
differentiability. Hence, the problem (2.6) is significantly more difficult to solve than
(2.3). Nevertheless, we will show that both can be efficiently solved by the proposed
EDM optimization.

Chapter 3

Theory of EDM Optimization

This chapter first throws a general EDM model of interest in this thesis whose objective
function possesses the form being capable of covering four different variants. We then
establish the relationship of the model and its penalization. The latter as our main
model is able to be majorized efficiently by convex functions provided that the penalty
parameter is large enough. Finally, derivation of the closed form solution of majorization

problem under each objective function ends up this chapter.

3.1 EDM Optimization

In this thesis, we focus on the original constrained EDM optimization,

minpesn f(D)

s.t. g(D)=0, L<D<U, (3.1)

where L,U € S" N R’} are the given lower and upper bound matrices respectively and
f() : S — R is the proper, closed and continuous function and g : S” — R is defined
as (1.32), namely,

9(D) = (1/2)|D + Ty (o (D). (3.2)

Clearly, g(D) measures the violation of the feasibility of a matrix D being to an EDM
with embedding dimension r. Hereafter, we write D > L to stand for D being no less

than L elementwisely, that is D;; > L;; for all 4, j.

29

30 Chapter 3 Theory of EDM Optimization

3.1.1 Objective Functions

Here f can be regarded as the loss function that measures the gap between the given
dissimilarity matrix A and the estimated distance matrix D. We particularly interest

in the following form,

f(D) == fpq(D) := HW 1/q) (D(p/Q) — A@))HZ’ (3.3)

where W € S" NRY is the given weighted matrix, p,q = 1,2, || X||g = 3, [Xi;|9. For

notational convenience, we hereafter write

I = fn ::fp,q<D)’
VW= w2 w=wO), (3.4)

12 =003 0=
and similar rules are applied into D and A. Based on those notation, we have

fo = [VWo(D-A®)|? = ZWH i —)%, (3.5)

fa = [We(D-A®)], ZWZAD@J o3| (3.6)

fiz = [VWo (VD - AP = ZWU (v/Dij = bij)? (3.7)

fm = [We(VD=A)h =ZWU|¢T]-—6M| (3.8)
i

We now summarize the properties possessed by those f,, in the following table, in which
continuous, differentiable, gradient and Lipschtiz are abbreviated to cont., diff., grad.

and Lip. respectively.

Table 3.1: Properties of four objective functions

Irq Convexity Differentiability Gradient Lipschtiz
foo Convex Twice cont. diff. Lip. & grad. Lip.
fo1 Convex Cont. non-diff. Lip. & non-grad. Lip.
fi2 Convex Cont. non-diff. Non-Lip. & non-grad. Lip.

f11 Nonconvex Cont. non-diff. Non-Lip. & non-grad. Lip.

Chapter 3 Theory of EDM Optimization 31

Remark 3.1. Let us briefly explain some parts in above table.

o foo is Lipschtiz continuous if U is bounded. In fact,

[fo2(X) = f2 (V)] = |[VWo (X = AD)|P — [VIW o (v — A®))2
VW o (X =Y)|l- VW o (X +Y —2A®)]
2max Wi (U]l + [A®P])|X — Y.

IN

A

It is gradient Lipschtiz continuous because of

|V forX) = Vfu(Y) = |2Wo(X — A(2)) —2Wo (Y — A(z))H

IN

2max Wi;|| X -Y|.

o fo1 is non-differentiable at D = A® | but Lipschtiz continuous due to

1f21(X) — f1 (V)| = [[Wo (X —AD)|y — [Wo (Y —A®)|;
[Wo (X —A®) —Wo (Y —A@)|,

IN

= ||WO (X — Y)Hl § n max W’LJHX - Y”Q

o fi1o is non-differentiable at D = 0 but convexr on D > 0 due to
frz = (W, D) = 2(W 0 A, VD) + [VIW o A%,

It is mon-Lipschtiz and non-gradient Lipschtiz continuous because of vV D.

e fi1 is non-convexr since |\/D;;j — §;j| is concave when D;; > (52-2]- and convex if
0< D;; < 6123 It is also non-differentiable at D = A®) agnd D = 0, and non-

Lipschtiz and non-gradient Lipschtiz continuous because of v/ D.

Qverall, one can discern those four objective functions from foo to fi1 make the problem
(3.1) more and more of difficulty. The most challenging one stems from fi11. According
to the below stated relations among fpq and stress-based minimizations in Section 2.2, the
difficulty somewhat explains that why most existing viable methods have been proposed
to deal with problems under the first three objective functions fao, fo1 ans fio, and why

few efficient methods were succeeded in processing REE problem.

32 Chapter 3 Theory of EDM Optimization

3.1.2 Relations among f,, and Stress-based Minimizations

Since D;;j = ||x; — x;||?, fpq corresponds to stress-based minimizations in Section 2.2.
f22 coincides with (2.4), (3.9)
fo1 coincides with (2.3), (3.10)
fi2 coincides with (2.5), (3.11)
fi1 coincides with (2.6). (3.12)

3.1.3 Generality of Constraints

Now we briefly explain that the constraints of proposed model (3.1) enable us to deal

with a wide range of scenarios. In fact, it is obvious that

g(D) = (1/2)|ID + gy (~D)[I> =0

e —DeK(). (3.13)

Moreover, the box region L < D < U is capable of covering several cases: D € S} or

other linear equalities and inequalities. In fact, for any L,U € S™, we always set
Li=U;=0,i=1,....n = DEeSy. (3.14)
If we set L;; = Uj; for some (i,j) € N, then linear equalities constraints can be assured,
L<D<U = D;=Ly, (i,j) € N.

More constraints can be found in Chapter 5.

3.2 Penalization and Majorization

Let us take a close look at the constraints in model (3.1). The constraint L < D < U
is as simple as we can wish for. The difficult part is the nonlinear equation defined by

g(D), which measures the violation of the feasibility of a matrix D belonging to —K'} (7).

Chapter 3 Theory of EDM Optimization 33

Previous studies tend to force D to be at least Euclidean (i.e, —D € S} NK' by (1.26)),
which often incurs heavy computational cost. On the other hand, it has long been known
that cMDS works very well as long as the dissimilarity matrix is close to be FEuclidean.
This means that small violation of being Euclidean would not cause a major concern for
the final embedding. To address difficulties stemmed from g(D), we first shift it to the
objective function as a penalized term. Then in order to let its computation tractable,

we construct a majorization to approximate the penalty function.

3.2.1 Penalization — Main Model

We propose to penalize the function g(D) to get the following optimization problem:

st. L<D<U, (3.15)

where p > 0 is a penalty parameter. We will carry out our research based on model

(3.15) in this thesis.

We note that the classical results on penalty methods (Nocedal and Wright, 2006) for
the differentiable case (i.e., all functions involved are differentiable) are not applicable
for some fp,4 and g here. Our investigation on the penalty problem (3.15) is concerned on
the quality of its optimal solution when the penalty parameter is large enough. Denote
D* and D, the optimal solutions of (3.1) and (3.15) respectively. We first introduce the

concept of e-optimality.

Definition 3.2. (e-optimal solution) For a given error tolerance € > 0, a point D, is

called an e-optimal solution of (3.1) if it satisfies

L<D.<U, g(D¢)<e and f[f(D.) < f(D).

Obviously, if € = 0, D, would be an optimal solution of (3.1). We will show that the
optimal solution of (3.15) is e-optimal provided that p is large enough. The following
theorem is to establish the relation between (3.1) and (3.15), and also illustrate how

changing of p would effect the solution of (3.15).

34 Chapter 3 Theory of EDM Optimization

Theorem 3.3. Let A\; > Ao > --- >)\, be the eigenvalues of (—=JD,J) and

A= max

max |Ai] = max{[Ay, [Al)

For any given € > 0 if choose

then following results hold:

o T2
A <2, f(Dy) < [1— ;] f(D7), g(Dy) <mln{f(lp))";} <e
Proof Firstly, it is easy to see that
9(Dp) (1/2)1 Dy + Hin (1) (= D) |12
U2V (1/2)1JD,J + PCAF (—JD,J)|?
= (1/2)> (\ — max{);,0})% + (1/2) Z A2
i=1 i=r+1
€ [(1/2)?, (n/2)ﬂ . (3.16)

where the last inequality is because of)\2 < 3 for any ¢ =

r—+1,...,n and the fact that
Ai > A1, Vi=1,..

., r suffices to
(A — max{);,0})? < A2, <X,

In fact, if \; > 0, (A\; — max{\;,0})* =0 < A2 IE A4 < X <0, then (A — max{\;,0})?

= A? < A2,,. Moreover, D* being the optimal solution of (3.15) yields L < D* < U and
(D*) = 0. Overall, we have two conclusions:

pg(Dp) < f(Dy) + pg(Dy) < f(D*) + pg(D*) = f(D%), (3.17)

where the second inequality is due to D, and D* being the optimal and feasible solutions
of (3.15) respectively, and

(3.16)
pg(D,) > pA'/2 >N f(D*)/(2e). (3.18)

If f(D*) =0, then (3.17) results in A = f(D,)

9(D,) = 0 and thus conclusions hold

Chapter 3 Theory of EDM Optimization 35

immediately. Now consider f(D*) > 0. Clearly, Y < 2¢ is a direct result of (3.18) and
(3.17). Finally,

(3.17) (3.18) 2
f(Dp> < f(D¥) _Pg(Dp) < 1_2e] f(D*)
o <2
9(D,) (3.16<;3‘17) min { f(f)771;\} < min{e, ne} =e.

where the last inequality is due to p > f(D*)/e and b < 2e¢. The proof is finished. O

Remark 3.4. Regarding to Theorem 3.3, we have some comments.

e From Definition 3.2, the optimal solution D, of (3.15) is an e-optimal solution of
the original problem (3.1) if we choose p > f(D*)/e.

o If f(D*) =0 then f(D,) =g(D,) =0= f(D*), which means D, solves (3.1) and
D* solves (3.15). Such case happens, for example, when no noise contaminates A,

namely, 0;; = ||a; — x;|| in (1.1);

e If X = 0 being equivalent to g(D,) = 0 by (5.16), then f(D,) < f(D*). This
together with f(D*) < f(D) for any D such that g(D) = 0,L < D < U yields
f(D,) = f(D*), which indicates D, solves (3.1) and D* solves (3.15); An extreme

condition for such case is to set p = 400 and let ¢ = 0.

o Clearly, g(D,) < € means D, is very close to K’} (r) when € is sufficiently small
(i.e., p is chosen sufficiently large). In other words, Theorem 3.3 enables us to

control how far of D, is from K} (r).

e Since f(D*) is unknown and f(D) > f(D*) holds for any feasible solution D of
problem (3.1), we could choose p > f(D)/e to meet the condition of Theorem 3.5.

For example, if L =0, we can simply choose D = 0, namely p > f(0)/e.

Theorem 3.3 states that a global solution of the penalized problem is also an e-optimal
one of the original problem provided that p is large enough. Theoretically, any sufficiently
large p is fine, which means there is no upper bound for such p. However, when it come
to the numerical computation, too large p would degrade the performance of proposed
method since the heavy penalization on g might lead to large f, which is clearly not

promising for preserving the local distances (namely, making f(D) small).

36 Chapter 3 Theory of EDM Optimization

The local version of this result is related to the so-called e-approximate KKT point.
Before introducing its definition, we need the Lagrangian function of (3.1) which is
given by,

L(D, p) == f(D)+Bg(D), VDEeS"

where § € R is the Lagrangian multiplier. Then a first order optimality condition of
(3.1) is that there is D € S*, 3 € R and Z € dpL(D, B) such that

B3>0, g(D)=0, (£, D-D)>0,VL<D<U. (3.19)
This condition is similar to the KKT system of (3.1), based on which we define an
e-approximate KKT point as below.

Definition 3.5. (e-approzimate KKT point) For a given € > 0, we say D € S" is an
e-approzvimate KKT point of (3.1) if there exists f € R and = € dpL(D, B) such that

>0, g(D)<e, (£, D—-D)>0,VL<D<U. (3.20)

Two crucial difficulties. ‘ Now let us take a look at two crucial difficulties that we are

confronted with regarding to the penalization model (3.15):

e Nonconvexity of g(D) = (1/2)|| D + Ik» () (—D)|?, resulting the non-convexity of
the objective function in (3.15), despite the computation of HKi (r)(=D) is efficient
owing to (1.31) if D is provided; However, when treating D as unknown variable,

g(D) is very hard to process to the best of our knowledge.

e Some obstructions of the computation stemmed from f due to such as non-
differentiability of f12 or non-differentiability and non-convexity of fi1. Especially,
when f = fi1, the usage of ¢; norm and the square root (i.e., [\/D;; — 6;;|) leads

to a complicated theoretical analysis and challenging computation.

To eliminate the above mentioned difficulties, we will take advantage of the majorization
scheme (seen Subsection 1.3.5) to get rid of the non-convexity of g(D). In order to
unravel the obstructions from f, we will make use of the famous roots of depressed cubic
equations (seen Subsection 1.3.7). The following contents in this chapter are ready to

achieve these targets.

Chapter 3 Theory of EDM Optimization 37

3.2.2 Majorization
For a given Z € S™, Proposition 1.5 (ii) suffices to

Fu(D,Z) = f(D)+pgu(D, Z)
(D) + (p/2)|D + Hier () (~ Z) |
> f(D)+ (p/2)| D + ey () (= D) |
(D)

= f(D)+ pg(D).

= f(D

This means Fy (D, Z) is a majorization of f(D) + pg(D) according to (1.15). Now for

a given Z € S™ and denoting Zx := _HKi () (—=2), let us consider the following model

min Fy(D,Z) = f(D)+ (p/2)IID - Zk |,

st. L<D<U, (3.21)

Thanks to perfect separable property of Fy/(D, Z), the above optimization can be re-

duced to a number of one dimensional problems:

. q 2
D;‘j = argminp, cg Wi, — Afj + g [Dij — (ZK)Z-]} ,
s.t. Lij < Di]’ < Uzy (322)

Clearly, if W;; = 0, its optimal solution is
D;fj = H[Lij7Uij} ((ZK)ij)> (3.23)

and the complicated cases are some (i, j) such that W;; > 0. Fortunately, (3.22) has a
closed form solution when W;; > 0 for any f,,, which will be studied in the next section.

And this actually eliminates the second mentioned difficulty.

3.3 Derivation of Closed Form Solutions

In this section, we propose to solve (3.22) for each pair of p,q corresponding to four

objective functions: foo, fo1, fi2 and fi1. Let start with concentrating on the following

38 Chapter 3 Theory of EDM Optimization

general one dimensional program,

min (p/2)(z — 2)? + w|zP/? — 67|,

s.t. a< x <b. (3.24)

where p,g =1,2,0>a >0, p>0,0 >0,w > 0and z € R. If p =0, one can verify
the optimal solution of above program is I, (62), a trivial case. That is one of reasons
for us only to focus on p > 0. Now we are ready to solve the model for each pair of
p,q one by one. And you will see that all derivations of closed form solutions are quite

straightforward, but with different degree of complication.

3.3.1 Solution under fy

When p = ¢ = 2, (3.24) is specified as

T = argmin (p/2)(z — 2)? + w(z — §%)?
a<x<b
2
, pz + 2wé? pz + 2ws?
_ i RS A i 3.25
argmin |z = 225 | o |22 (3.25)
3.3.2 Solution under f5;
When p = 2,q =1, (3.24) is specified as
T = argmin (p/2)(x — 2)? + wlx — 6| (3.26)
a<z<b
Let y = x — 6%2. The above problem is equivalent to
g = argmin (p/2)(y + 6% — 2)* + w|z| (3.27)
a—62<y<b—42
= H[a_527b_52}(sign(z — 6%) max{|z — 6%| — w/p,0}), (3.28)
where sign(z) is the sign of x defined by
=1, if >0,
sign(z) ¢ € [-1,1], if =0, (3.29)

= -1, if x<0.

Chapter 3 Theory of EDM Optimization 39

Minimizing the objective function of problem (3.27) without box constraints is actually

the so-called soft thresholding mapping (Donoho, 1995) which has a closed form, i.e.,
sign(7) max{|7| — \,0} = argmin, (1/2)(t — 1) + \t.
Then the convexity of the objective function yields solution (3.28). Overall,

T=7+06> = 52 5—62] (sign(z — 62) max{}z — 52’ —w/p,0}) + 62

H[a,b](62 + sign(z — 62) max{}z - 52‘ —w/p,0}) (3.30)

3.3.3 Solution under fi,
When p = 1,9 =2, (3.24) is specified as

Z = argmin (p/2)(z — 2)® + w(vz — 6)?

a<x<b
= argmin (p/2)(z —z+w/p)® — 2wi\/x
a<z<b
= dernpgy [z —w/p, 2w6/p], (3.31)

where dcrn is to solve the following one-dimensional optimization problem

dernpg g [w, af = aﬁ;riibn q(z) == (1/2)(z — w)? — a/z. (3.32)

with 0 < a < b, a > 0 and w € R. Before addressing the above problem, we define

u = a4, v:i=w/3, (3.33)
o= u? =3 (3.34)
Yoo = (W Vw?+2a)?/4, (3.35)

for given a > 0 and w € R. Clearly, v, o is increasing on w € R since

8'%1,04_ (W+ vw2+20z)2 -0

Ow 2Vw? + 2

which means if there exists ¢ > —oo such that w > ¢, then

Yoo = Ve,o > 0. (336)

40 Chapter 3 Theory of EDM Optimization

First, let us consider a simple version of (3.32) with non-negative constraint, namely

setting a = 0 and b = +o0.

Proposition 3.6. Let a > 0 and w € R be given. Let

Ty = ar§>ngin q(z) = (1/2)(z — w)* — /. (3.37)

Then the solution x, , > 0 is unique with following closed form,

2
(VA4 =y 720,
Ty o = (3.38)
4v cos? {%arccos(uv_gﬂ)}, T <0.
Proof For notational convenience, we denote z~ := xz,,. For x > 0, the objective

function ¢(z) in (3.37) is differentiable and the first and second derivatives are

«

2Vx

d(x)=2—w-— and ¢"(z) =1+ %x73/2.

It follows that ¢’(x) < 0 when x > 0 is close to 0 and ¢”(z) > 1 for all z > 0. Hence,
q(z) is decreasing near 0 and it is strongly convex on the half line (0, +00). Therefore,

the problem (3.37) has a unique solution and =~ > 0. Moreover,

dla)=2" —w-— s="0 (3.39)

Introducing y := V&, we get
Y —wy —a/2=0, (3.40)

which is known as the depressed cubic equation and has three roots (in the complex
planes). However, we need to find the positive real root. Recall Lemma 1.2 in which set

v = —a/2 = —2u. we have following results.

If 7 > 0 coinciding with Lemma 1.2 (i), then the positive root of (3.40) is given by

y = (ut V)Pt (u—) (3.41)

and hence z~ = y? gives the solution in Case (i).

Chapter 3 Theory of EDM Optimization 41

If 7 = 0 coinciding with Lemma 1.2 (iii), then v = —2u < 0 implies the positive root of
(3.40) is given by y = —3v/w = 2u/v (the other two are negative). It is easy to verify

that y = 2u/v is same as (3.41) when 7 = 0, which also gives the solution in Case (i).

If 7 < 0 coinciding with Lemma 1.2 (ii), then v > u? which yields v > 0 (hence w > 0).

The three real roots are

0 4 2
y1 = 24/v cos [3], Y2 = 21/v cos [W;ﬂ and y3:2ﬁc0s[7r+0],

where cos(f) = uv=3/2 > 0. Since Lemma 1.2 (ii) and cos(6) > 0 implying 0 < 8 < /2,
it is easy to see that y; > 0 > y2 > y3. Hence, y; is the only positive solution and

=~ = y? gives the result in Case (ii). O

The above result shows that x,, , > 0 whenever o > 0. The next result states that it

can be bounded away from 0 by a constant when w satisfies certain bound.

Proposition 3.7. Let « > 0 and w € R be given with |w| < ¢, where ¢ is a given

constant. Then there exists v > 0 such that

Proof Suppose the result is not true. Then there exists a sequence {wy}r>1 with
|wi| < ¢ such that

lim z, . =0.
k—oo Wk,

By the proof in Proposition 3.6 (see (3.39)), z, , > 0 must be the solution of the

WE,&

following equation:

o
—wp— ———— = 0.

2 ~/ ':U(;lma
Multiplying 1/, o on the both sides of the equation above and taking limits yield

; — 3/2 —) a o

The contradiction establishes the result claimed. O

xwk,cx

Proposition 3.6 can be readily extended to the case where the constraint is an interval

rather than being non-negative.

42 Chapter 3 Theory of EDM Optimization

Proposition 3.8. Let 0 <a <b, a >0 and w € R be given. Let

derny y[w, o] == a;g;riibn q(z) = (1/2)(z — w)? — av/z. (3.42)

Then dernqp)w, o] is the unique solution with form

a, w<a-— ﬁ
dernyg plw, o] =My (260) = § 250, 0= 3% <w <b-3% (3.43)
b, w>b— 2%/5
where x, ., is given by (3.37). Moreover it holds
dernpg g [w, @ > min {b, 1,740} - (3.44)

Proof For convenience, we write dcrn := dern [w,a] and K := z, ,. The first equality
in (3.43) holds because k = argmin,>o ¢(z) and g(x) is convex due to Proposition 3.6.
Now we prove the second equality in (3.43). Two cases are considered: Case 1) a > 0

and Case 2) a =0,

Case 1) b > a > 0. It follows that ¢/(z) = v —w— ﬁ, which is increasing on a < z < b
and thus ¢'(a) < ¢'(z) < ¢(b). Tw<a— 307> then

’ > S o >0
(@) 2 () =a—w— 372>
which indicates ¢(z) is increasing on [a, b] and thus dcrn = a. Similarly, we have dern = b
ifw>b— 2%/5. If a — ﬁ <w <b— 3%, then ¢ (a) < ¢'(z) < ¢ (b) with ¢'(a) < 0 and
¢’ (b) > 0. This implies there is a unique z* € (a,b) such that

@) =a* —w— — =0
q(z%) W

By Propositions 3.6, it proved that is the unique point in (0, +00) such that ¢'(k) = 0,

which indicates * = k. Overall dern the unique optimal solution of (3.42).

Case 2) b > a = 0. Two scenarios: b = a = 0 and b > a = 0 are taken into
consideration. i) b = a = 0. Clearly, the unique optimal solution of (3.42) is 0, which

coincides dcrn = 0 = b since the condition w > b — 2%/5 = —oo in (3.43) always holds.

Chapter 3 Theory of EDM Optimization 43

ii) If b > a = 0, we conclude the optimal solution of (3.42) is

T, 00— 7= <w<b—-2%
dernyg y[w, o] = o 2Va 2;{5 (3.45)
b, w2b-37
which exactly is (3.43) since w > a — 2%‘}& = —oo. In fact, if a — ﬁ <w<b-— 2%/5, as
proved above x = argmingec (g () and ¢'(k) = K —w — ﬁ =0, then

q(k) —q(0) = (1/2)x* —wk —avk
= —(1/2)8* + rd (8) = (a/2)V/K
= —(1/2)k? = (/2)vk < 0.
Therefore, k = argmingeop ¢(z) = argmingejop q(z). If w > b — #, then for
any = € (0,b) it holds 0 > ¢/(b) > ¢'(x), which indicates g(x) is strictly decreasing
on (0,b]. Notice that g(z) is continuous on [0, b], we must have g(b) < ¢(0) and thus

b = argmingejop ¢(x). Overall, dcrn is the unique optimal solution of (3.42).

Finally, ¢’(x) = 0 implies that m—w—ﬁ =0. If kK < 1 then \/E—w—ﬁ > /ﬁ—w—ﬁ =
0 which suffices to /& > (Yw.a)"/? > 0. Thus we must have x > min{1,7,,}. This

together with dcrn = I, 3)(x) = min{b, max{a, x}} > min{b, x} finishes the proof. =~ [J

Remark 3.9. Regarding to Proposition 3.8, we name the solution of (3.42) dcrn since
it is related to the root of the so-called depressed cubic equation (3.40) with negative part
—a. By (8.43), solution dcrnj,y)[w, o is positive and away from zero if b is positive and

w 18 bounded from below.

3.3.4 Solution under fi;
When p = ¢ =1, (3.24) is specified as

F = argmin (p/2)(x —2)? +w|Vz — 8] = derjey [z, w/p, 5], (3.46)

a<z<b

where dcr is to solve the following one-dimensional optimization problem:

derpg g [w, @, 0] := argmin p(z) := (1/2)(x — w)? + alvzr -4 (3.47)

a<z<b

44 Chapter 3 Theory of EDM Optimization

with 0 < a < b, w € R,§ > 0 and 45% > a > 0. Before solving above problem, related to
the sign of (y/x — d), we denote

pi(r) == (1/2)(z — w)* + a/z — ad. (3.48)
p_(x) := (1/2)(z — w)? — av/z + ad. (3.49)
We first solve the problem when p(x) is replaced by p4(z) in (3.47).

Proposition 3.10. Let 0 < a <b, 0 < o < 4V a? and

derppgp[w, o := argmin py (x) = (1/2)(z — w)? + o/ — ad. (3.50)

a<z<b

Then we have following results:

(i) py(x) is strictly convex on x > (a/4)*/3.

(i) derplg lw,] is the unique optimal solution with form

dcrp[a,b] [w,a] = 953,&’ a—+ \f <w<b+ 2\[(3.51)
where x) , is given by
xh o =4v cos? arccos(—uv*%)/S . (3.52)

+
Furthermore, a < x]; , < b when a + f<w<b+2\/

Proof (i) For x > 0, py4(x) is differentiable and the first and second derivatives are

(0}

' (z :x7w+i and p"(z)=1—- —.

NG

It is easy to verify that for any = > u2/3, P (x) > p’fr(u2/3) = 0. Namely, pi(z) is

strictly convex on (u?/3, +00). For simplicity, we write dcrp; = derpjg p)lw, al.

(ii) Since 0 < a < 4Va3, it holds a > 4?3 and [a,b] C (u*/3,+00). Then strict
convexity indicates the optimal solution of (3.50) is unique. For any x > u2/3, p(x) >0

means that p/, (z) is increasing on a < x < b and thus p/, (a) < p/ (z) < p/ (b). If

Chapter 3 Theory of EDM Optimization 45

w<a+ ﬁ, then p/, (z) > p/, (a) > 0 which indicates p4(x) is increasing on [a,b] and

thus dcrp = a. Similarly, we have derp=bif w > b+ 2%/5. If a+ ﬁ <w< b+ ﬁ, then

P (a) < pl(x) < p/ (D) with p/ (a) < 0 and p/ (b) > 0. This implies there is a unique

z" € (a,b) such that p/, () = 0, namely

et —w+a/(2Vat) = 0 < 2t = argmin (1/2)(z — w)? + av/z. (3.53)

a<x<b

By introducing y = vz 1, we obtain the depressed cubic equation
y? —wy+a/2 =0. (3.54)

Recall Lemma 1.2 in which set v = a/2 = 2u. We have 7 = u? — v® < 0 due to

(07 «

“:§>;[“+236] ::13{“436+4% - [“mm

1/3 ,
] —u3, (3.55)

which coincides with Lemma 1.2 (ii) that depressed cubic equation has three real roots

4+ 0

Yy = Q\ﬁcos [g} , Yo = Qﬁcos [

:| y Y3 :2\/5(:08 |:27T+0:|)

where cos(0) = —uv=3/2 € (—1,0) since v3/2 > u > 0 implying 7/2 < § < 7. This and

Lemma 1.2 (ii) derive y; > y2 > 0 > y3.

Finally, we need to decide which positive solution is what we want. From Lemma 1.1 in
which take 7 = u*? and @ = 3u?/3, we have when w > @ (due to (3.55)), problem (3.53)

under the constraint x > 0 has tow positive stationary points] and z3 such that
xf<§7:u2/3<m;

And one can check when 7/2 < 6 < 7 that

(

3.55)
Y2 =dwcos?(0/3) > v > u?/3,
But one also need exclude y2, namely need show y2 < u?/3. By cos() = —up~3/2
implying v = u?/3/ cos?(6), we rewrite
J2 = 4cos?(4m/3 + 0/3)u?/? —: t(0)u?/3
2 cos2(0) ’ '

46 Chapter 3 Theory of EDM Optimization

Let v := cos(2m/3 4+ 20/3) € (—1,—1/2) due to 7/2 < § < 7, we have

cos®(4w /3 +60/3) _cos(8m/3+20/3)+1
o) cos?(0) = 4 cos(26) +1
cos(2m/3+20/3) +1 v+1
cos(2mr +20) +1 43 —3y+1
v+1 1
R CEETE R TR Vo

where the second and fourth equalities are respectively from facts cos(26) = 2 cos?(0) —1

and cos(36) = 4 cos®(A) — 3 cos(#). This proves y3 < u?/3. Therefore, we conclude that

+ .2 + 2
oy =y; and x] =y

and thus the only solution of (3.53) is 2 = 32, deriving (3.52). O

Remark 3.11. Regarding to Proposition 3.10, we name the solution of (3.50) dcrp since
it is related to the root of the depressed cubic equation (3.54) with a positive constant c.

Moreover, the unique solution is away from zero provided that a > u?/3 > 0.

Proposition 3.12. Let 0 < a < 6% < b,0 < o < 46%,w € R, and z, ,, 3}, be defined

by (3.38) and (3.52) respectively. Then the unique optimal solution of (3.47) is

a, w<a— 59,
a
:L‘(;ou a ﬁ <w < 62 %,
derbylw, 6] = ¢ 62, 62— & <w< P+ L, (3.56)
Th o 62+%<w<b+2%/5,
(0%
L b, w>b+ N

Proof We consider two cases: 1) z € [a,6%] and 2) = € [§2,b]. For case 1), it follows

dernjg soy(w, o] = argmingcp, 521p(7) (3.57)

(929 argming e, 52— () (3.58)

(3.32) ,
= argmlnxe[a,éz]Q(‘r)

(3.59)

Chapter 3 Theory of EDM Optimization

47
where the last equality is from Proposition 3.8. For case 2), it follows that
. (3.48) .
dCFP[a?,b] [w,a] = argmlnxe[aab]p(ﬂf) = argmlﬂxe[52,b]p+($)
52, w<6+ %
= xia, 52+ +g5 <w<b+ 2\[(3.60)
b, w > b— W

where the last equality is from Proposition 3.10. Now we only show the first two scenarios

n (3.56) because the rest are similar. If w < a — 2\[(< 6% 4+ &), we have

a = argmin p(z), 6% = arg min p(z),
z€[a,d?] z€[52,b]

which means p(a) < p(x) for any z € [a, %] and p(a) < p(62) < p(x) for any = € [62,b]

Thus derby, 4 [w, @, 6] = a. If a — 5va <w< 6% — &(< 0% + &), we have

x, , = argmin p(x), 62 = argmin p(z),
’ z€[a,6?] x€[62,b]
which means p(z;,) < p(z) for any z € [a,6%] and p(

:c;’a) < p(6%) < p(x) for any
x € [6%,b]. Thus derby, p[w, a, 8] =z, ,

O
w=-2.0 w=1.5 w=2.0
: 3 : 2
15 p,(x) ; p,(X) p,(x)
2 .
= X =1
= p.(X)_~x=8 i p.(x g P_(x)
0 \. ,,,,,,,,,,,,,,
> x = 82 0 .
1 2 3 4 1 2 3 4 1 2 3 4
X X X
o=35 o= 6.0
3 .
p_(X) 10 |0_(><)E
5 :
2 < x = 8
sy b0 | = 6
.. X:82 “““““ _+4/ p+(X)
0 ,,,,,,,,,,,,,,,,,,,,,,,,,
2 i
1 2 3 4 1 2 3 4
X

Figure 3.1: Optimal solutions of (3.61) under different cases.

48 Chapter 3 Theory of EDM Optimization

Comment: The optimal solution dcrby, y)[w, @, d] is unique, whose location is depended
on the magnitudes of the parameters (w, @ and §) involved. Let see one simple example

. - . 2 .
1211:1241)(3:) =0.5(z —w)” + [vVz — 1.5]. (3.61)

with fixing o = 1,6 = 1.5. Its optimal solution (plotted by green dot) is illustrated
in Figure 3.1, which matches (3.56) under different w. For example, when w = —2 <
a — «a/(2y/a) = 0.5, it equals to a = 1. When w = 1.5 € (0.5,1.917), it occurs on p_(x)
within [1,2.25] whilst when w = 3.5 € (2.58,4.25), it occurs on p, (z) within [2.25,4] .

Recall sign(x) is the sign of x defined by (3.29). Then |/ — J| is non-smooth on
x = 62 (which can be illustrated by Figure 3.1) and smooth for any 0 < x # §2. Its

subdifferential can be calculated by

oWz —d]) = {sngn(;/\/;—é)} for x> 0. (3.62)

Proposition 3.13. Let § > 0 be given and ¢(x) := |\/x — 4|, then for any z,y > 0,

(v ¢ € 06(a). (3.63)

o(z) — o(y) < ¢z —y) + YR

Proof We prove it by considering three cases. Case 1: 0 < z < §2; Case 2: = > 6% and
Case 3: x = 62. Let n := sign(y/z — §) and ¢ := n/(2y/x), then ¢ € d¢(x).

Case 1: 0 < x < §2. For this case, n = —1. We note that ¢(x) = § — /7 is convex and
differentiable at 0 < < 2. Thus,

P(y) > o(x) — % for any 0 < y < 62

For y > 62, we have the following chain of inequalities

y—=z 5 —x N
o) - Y2 < S-VE- :5_[+]

1/2
Y Pl L
VY —0=0(y).

IN

Henceforth, we proved the conclusion for this case.

Chapter 3 Theory of EDM Optimization 49
Case 2: z > 62. For this case, n = 1. By defining
o(u,v) = u(u? — v?)? — 46%(u + v)? + 16us?
with u > § and 0 < v < §, we have
(94,0((92,1}) =2(u+v)(2uv(v — u) — 463) <0,
which indicates ¢(u,v) non-increasing with respect v and thus
o(u,v) > o(u,8) = u(u?—62)% — 463 (u+ 6)? + 165%u
= (u+0)*(u(u—8)* —46%) + 166*u
> (§+0)%(6(0 — 6)* — 46%) +160°
= 0. (3.64)
For 0 < y < 62, we have
o) —dly) = Vr+y-20
_ 2
_oemy VEEVIT o
2z 2\/x
e O) R N) S T VA P
2\/x 843 843 2\/x
oy, @—y? e(VE)
2z 843 853\/x
3.64 _ _)2
(p) x—vy n (x —y)
2z 843
For y > 62, we have the following chain of inequalities
B _ ey (V)
_ Ty (z —y)?
NN WESE
_ a2

20z | 20(0 1 0)2

-y (@ —y)?
NG 863

Hence, we proved the claim for this case.

50 Chapter 3 Theory of EDM Optimization

Case 3: 2 = 62. For this case, —1 <7 < 1. Then for 0 < y < 62, we have

o(@) —(y) = 0—Va—(6—y)

_ z r—y _nlz-y)
_\f\ff+f< 2\/5§2\/5'

where the first and last inequalities hold due to y < 62 = x and |n| < 1. For y > 2,
similar to obtaining (3.65), it holds

r—y)? T — r—y)?
o(2) — o) = Vi — /5 < ° 2\/ (853)§77(2\/5y)+(853y)’

where the last inequality is due to || < 1 and z —y < 0, which concludes the claim of

Case 3 and hence finishes the whole proof. O

Now we are ready to solve (3.47) based on propositions above.

Proposition 3.14. Let 0 < a <b, w € R and 0 < a < 46>. Let

derjgplw, , 0] := arg min p(z) := (1/2)(x — w)? + a|y/z — 4. (3.66)

a<z<b

Then we have following results.

(i) p(x) is strictly convex on x > 0.

(i1) dergplw, o, 8] is the unique optimal solution with

dcrp[a,b] [U.), a]7 &2 <a
derpop[w, . 0] = derby, ylw, o, 6], a < 6% <b (3.67)
dernpg) [w, @, 62 >b

where decrn, derp and derb are defined by (3.43), (3.51) and (3.56) respectively.

(111) Let v, o be defined as (3.34), then
dcr[a,b} [w,a,d] > min{62, b, 1, Yw.0lt;

Furthermore if b > 0 and w is bounded from below, then min{62,b, 1, Yow,a} > 0 and

there exists ¢ € Op(dcryy) [w, v, 6]) such that

C(x —dcrigpw, @, 8]) >0 for any x € B.

Chapter 3 Theory of EDM Optimization 51

Proof (i) For any x,y > 0, it holds

p)—pl@) = e~ - +allyg -8l - [V -)
= @-w)y o)+l y)P +allvg - o Ve -)
(3.63) e
ER R R WP S g I
3 _a
= [r—w+al,] (y—x)—|—45863(a:—y)2,

for any (, € 0¢(x). Similarly, it holds

p@) =ply) = [-wta@)@—y)+—m— (= -y

for any ¢, € 0¢(y). Adding above two equalities yields that

46% — « 9
(@ -wtaG)~(-wrag)@—y) > @y
Since (z —w+ a(;) € Ip(z) and (y —w + aly) € Ip(y), we conclude that p(x) is strictly
convex on = > 0 by 46% > o > 0 and (Rockafellar and Wets, 2009, Theorem 12.17).

(ii) For convenience, denote dcr := derjg j[w, o, 6]. If 62 < a, then 0 < a < 46° < 4Va3
and p(z) = p4(z) for any a < x < b, which combining Proposition 3.10 derives dcr =
derppg gy [w, . If 6% > b, then Proposition 3.8 derives der = dernp,) [w, a]. If a < 6% < b,

it follows from Proposition 3.12 that dcr = derby, 4w, a, d].

(iii) If 62 < a, dcr = derpplw, o] > a > 82 from Proposition 3.10 (ii); If 6% > b,
der = dernpgyfw,] > min{b, 1,7,4} by Proposition 3.8 (iii); If a < 6° < b, from
the proof of Proposition 3.12 and (3.57 - 3.60), we have dcr = dcrby, ylw, o, 0] >
(, 621 [w, a] > min{62,1, 7,4} by Proposition 3.8 (iii). Overall, dcr > min{62,b,1,v,.a}-
If w is bounded from below, then ~, o > 0 through (3.36). Further assume b > 0, then
der > min{6%,b,1,7u0} > 0 due to 0 < a < 463, which means dp(dcr) is well defined.

Finally, the optimality condition of a strictly convex function yields the last claim. [

Chapter 4

Majorization-Projection Method

This chapter centres on the algorithm to solve the proposed penalty model (3.15). We
have already eliminated two major difficulties mentioned in Subsection 3.2.1 by using
the ideas of majorization of g and closed form solution under each f,,, seen Subsection
3.2.2 and Section 3.3. This naturally leads to the well known majorization minimization
method which along with projection onto a box constraint results in our interested
Majorization-Projection method dubbed as MPEMD, an abbreviation for Majorization-

Projection method via EDM optimization.

The organization of this chapter is as follows. We first present the algorithmic frame-
work of MPEMD and describe how to calculate each minimization sub-step by using the
closed form solutions in Section 3.3. Then we prove the convergence property that the
generated sequence converges to a stationary point in a general way under some reason-
able assumptions. Finally, when convergence results are specified into MPEMD under each

fpq» relatively simpler assumptions/conditions are demanded.

4.1 Majorization-Projection Method

Recall the main proposed penalty model (3.15), namely,

st. L<D<U, (4.1)

53

54 Chapter 4 Majorization-Projection Method

where

) (4.2)

(D) = qu:HW(l/q)o(D(p/Z)—A(p))‘q

1 2
g(D) = S||D+ Ty (-D)|| - (4.3)

4.1.1 Algorithmic Framework

Based on the majorization minimization (3.21) of (4.1), if we start with a computed

point DF, then could update next iteration by

DM = argmin (D) + (o/2)|D — Dk (4.4
L<D<U
= argmin f(D) + pga(D, D*)
L<D<U
where D .= —HKi(T)(—Dk) and g7 is defined as Proposition 1.5 (ii). Below is the

table summarizing the framework of MPEMD.

Table 4.1: Framework of Majorization-Projection method.

Algorithm 4.1: Majorization-Projection method via EDM

Step 1 (Input data) Dissimilarity matrix A, weight matrix W, lower- and upper-
bound matrices L, U, penalty parameter p > 0, and initial D°. Set k := 0.

Step 2 (Update) Compute D := —HKﬁ(r)(—Dk) and

D*t! = argmin f(D) + (p/2)||D — D ||
L<D<U

Step 3 (Convergence check) Set k := k + 1 and go to Step 2 until convergence.

Remark 4.1. One may notice that Step 2, namely (4.4), has a closed form solution
whose form will be provided in next subsection. Therefore, the computation for each
iteration is dominated by HKi(T)(—Dk) in the construction of the majorization function

in (4.4). The calculation of HKQ(T)(—Dk) is revealed by (1.31), that is
Mgy () (—D*) = PCAT (=JD"J) + (JD*J — D),

which will solve PCA(—JDFJ) eventually. Advantage of solving PCA is that there is

Chapter 4 Majorization-Projection Method 55

a MATLAB’s built-in function eigs.m whose complexity of computing this is about
O(rn?). Hence, our method MPEMD has a low computational complexity and is very fast
due to a small number of iterations required to meet the stopping criteria. Its efficiency

will be convincingly demonstrated in numerical experiments, see Chapter 6.

4.1.2 Solving Subproblems

For each fp,, we compute subproblem (4.4) in Algorithm 4.1 respectively based on closed

form solutions in Subsection 3.3.

By (4.4), we have

2 2
DY = argmin H\/Wo (D - A(Z))H +2 HD - D’;(H . (4.5)
L<D<U 2
According to (3.25), it follows
D1 p(D)ij + 2Wi;07; 6
ij = L Usl p+ 2Wi; : (4.6)
This also covers the case of W;; = 0 in (3.23).
By (4.4), we have
2
DM = argmin HWO (D—A(2)>H +BHD—D';<H . (4.7)
L<D<U 12
According to (3.30), it follows
DE =TIy, [52] + sign(DF) max {|15’f| — Wi /p, oH (4.8)

where DF := (DE)ij — 5% This formula is also able to cover the case of W;; = 0 in

(3.23) because of

sign(D*) max{|D*| — W;;/p,0} = sign(D*)|D*| = D*.

By (4.4), we have

2 2
DM — argmin H\/W0<\/5—A>H +gHD—D§(H . (4.9)
L<D<U

56 Chapter 4 Majorization-Projection Method

According to (3.31), it follows
D =demyz, v, [(D]%)ij — Wij/p, 2Wis6i5/p| (4.10)

where dcrn is defined by (3.43), which is able to cover the case of W;; = 0 in (3.23).
In fact, one can verify that z_,, = w according to (3.38). Then (3.43) implies that
dernjqpfw, 0] = Mg 4 (7, o) = Higp(w). Overall, when W;; =0, it has

derniz,; u,,] [(D’%)z‘j? 0] =Tz, 0,1 (DR i),

coinciding with (3.23).

By (4.4), we have

2
e LS| R LR Pt

L<D<U
According to (3.46), if p > po where pg is defined as (4.25), it follows
dcr[Lij7Uij] [(D];()U, Wij/p, (5@} , W, >0 (4.12&)
k+1 __
Dz‘j =

H[Liijij] [(D]IC{)ZJ] > Wij =0 (4.12b)

where dcr is defined by (3.67).

4.2 Convergence Analysis

A major obstacle in analysing the convergence for Algorithm 4.1 is the existence of sub-
gradients of objective function f, since some of them involve v/D. Therefore, we assume

the following conditions, before which we denote

8, f(Z) = %}Z) L (4.13)

Assumption 4.2. 0f(DF) is well deafened for any k > 1, namely, there is a constant
0 < ¢y < +o0 such that
IEF| <o, ¥ EFeaf(D").

Chapter 4 Majorization-Projection Method 57

Assumption 4.2 is to avoid the cases of ij = 0 which result in non-differentiability of

the sub-differential of /DF

1> since

1
& 2 = oo
D740 D510 9 ij
where ij J 0 means Df“'j > 0 and limg_, o ij = 0. Luckily, in our following analysis,

all functions f,, enable us to get rid of such cases.

Assumption 4.3. For subproblem (4.4), there exists ZFt1 € 9 f(D**1) such that,

<Ek+1 + pDk+1 +pHK1(r)(*Dk)a D— D’f+1> >0, VL<D<U. (4.14)

It is easy to see that this assumption is the first order optimality condition of subproblem
(4.4). It can be verified when f is convex for example when f = fa2, fi2 and f = fo;.
When f = fi1, (4.14) has to be proved carefully. The need for such assumption is to

guarantee that the sub-problem (4.4) at least admits a global solution.

Assumption 4.4. There exists a p, > 0 such that for any EF+1 € 9f(DFF1)

f(Dk) > f(DkJrl) + <Ek+1, Dk o Dk+1> _ %”Dk+1 . DkHQ (415)

This assumption holds for any p, > 0 when f is convex, e.g. f = foas, fo1 or fi2. When
f = fi1, we prove it through choosing p properly. Such assumption somehow establishes

the relation between the f(D*) — f(D**1) and D¥ — D¥*!

Assumption 4.5. The constrained box is bounded, i.e., U is bounded from above.

Assumption 4.5 can be easily satisfied (e.g., setting the upper bound to be twice the
largest 63]) The reason to require this assumption is that it constrains the generated
sequence in a bounded area which thus makes the sequence bounded, Otherwise, the
sequence might be unbounded since the f is not strongly convex, which leaves a hard

issue in terms of doing convergence analysis.

Notice that all these assumptions will be verified in the next subsection. And we will
see assumptions are actually very weak. Hereafter, let {Dk} be the sequence generated
by Algorithm 4.1. Based on above assumptions, we are ready to give a general proof of

the convergence property.

58 Chapter 4 Majorization-Projection Method

Theorem 4.6. Suppose Assumptions 4.2-4.5 hold and p > p,.
(i) Let F,(D) be defined in (4.1), then
F (DM — F,(DF) < —%HD’““ — D*|2 for any k> 1. (4.16)

Consequently, || D! — D*|| — 0.

(ii) Let D be an accumulation point of {D*}. Then there exists Z € 8f(D) such that

~

<§ —i—pﬁ +pHK1(T)(_ﬁ)v D — D) > 0. (4'17)

holds for any L < D < U. That is, Disa stationary point of the problem (4.1).

(iii) If D is an isolated accumulation point of the sequence {DF}, then the whole se-

quence {D*} converges to D.

Proof (i) We are going to use the following facts that are stated on D**! and D¥. The

first fact is the identity:
| DR = | DF|2 = 2(DF1 — D, DY) DM DRI (4.18)
The second fact is due to the convexity of h(D) (see Proposition 1.4 (ii)):
h(=D"1) = h(=D*) > (TIgn (y (= D*), =D*1 + D*). (4.19)
The third fact is from Proposition 1.5 (i):
g(DFFY) — g(D*) = | DFFY? — |[D¥||* — [A(~D*) — h(~D")] (4.20)

The last fact is that there is a Z¥+1 € 9f (D) such that (4.14). Those facts yield the

following chain of inequalities:

F,(D*) — F,(D)
= f(D"Y) = F(D*) + pg(D*) — pg(D")
Zktl pktl _ Dk> + (po/2)|D**! — D¥|* + pg(D*) — pg(D*)

=FL DEFL - D) 4 (p/2)| DM — D2

Chapter 4 Majorization-Projection Method 59

+ (p/2) (ID"Y2 = |DM?) = p [h(=DF*1) = h(~D¥)]

(W1 (Zh1 4 DR, DI DF) (52— pof2) D DF?
— p[p(=D") — h(-D")]
(4.19) —k+1 k41 k k+1 k P~ Po k+1 k2
< <: + pD —l—pHKi(T)(—D), D -D >_ THD — D"l
(4.14)

P _QpOHDk—i-l _ Dk”Q

This proves that the sequence {F,(D¥)} is non-increasing and it is also bounded below

by 0. Taking the limits on both sides yields |[D¥*! — D¥|| — 0.

(ii) The sequence {D*} is bounded because L < D¥ < U and U is bounded by As-
sumption 4.5. Suppose D is the limit of a subsequence {Dk‘-’}, ¢ =1,...,. Since we
have established in (i) that (D*+1 — D*¢) — 0, the sequence {DF*1} also converges to
D. Furthermore, there exists a sequence of ¥t € §f(D*e1) such that (4.14) holds.
Assumption 4.2 ensures that there is a contact ¢ > 0 such that ||E¥+1|| < ¢ for all
ky. Hence, there exists a subsequence of {k;} (we still denote the subsequence by {k/}
for simplicity) such that ZF*! converges to some Eeco f (IA)) Now taking the limits on

both sides of (4.14) on {k¢}, we reach the desired inequality (4.17).

(iii) We note that we have proved in (i) that (D**! — D¥) — 0. The convergence of the

whole sequence to D follows from (Kanzow and Qi, 1999, Prop. 7). O

Theorem 4.7. If D' € —K'(r), L < DY < U and p > max{p,, f(D")/e}, then any

accumulation point D of {D*} is also an e-approzimate KKT point of (3.1), that is

~ ~ ~

p>0, g(D)<e, (£,D-D)>0,VL<D<U. (4.21)

(1

Proof Similar to the proof of Theorem 4.6 (i), we have 2 € df(D), i.e., E + pD +

pllgn () (=D) € L(D, p),

~

(E+pD+ pHKi(r)(_ﬁ)a D —D) >0. (4.22)

which is the condition (3.19) with 3 = p. We only need to show g(ﬁ) < €. Since
DY e —K%(r) and L < D° < U, we have

FD%) = f(D%)+ pg(D°) (because g(D°) = 0)

60 Chapter 4 Majorization-Projection Method

= f(D%)+ pgn(D°, D)
(4.4)
> f(D")+ pgu(D', D) (because L < D° < U)
> f(DY) 4 pg(DY) > --- (because of Propositionl.5 (ii))
(4.16) N i
> (D) + pg(D")

Taking the limit on the right-hand side yields

~

F(D°) > f(D) + pg(D) > pg(D),

where we used f(D) > 0. Therefore, it has

g(D) < f(D°)/p <e.

We proved that D is an e-approximate KKT point of (3.1). O

4.3 Assumptions Verification

In this section, we verify whether Assumptions 4.2-4.4 are easy to be satisfied when f

are specified as fp,q, before which we assume the following conditions:

Assumption 4.8. It holds U;; > 0 if 6;; > 0.

Assumption 4.8 manifests that if §;; > 0 then we want the upper bound U;; > 0;

2

otherwise, 0 = U;; > L;; > 0, the corresponding D;; = 0 is forced to be away from 5lj,

a very poor approximation to positive d;;.

Assumption 4.9. It holds W;; = 0 if §;; = 0.

Assumption 4.9 means that if §;; = 0 (e.g., value missing), the corresponding weight W;;
is suggested to be zero. This is a common practice in applications. One may discern that
if there is a certain J;; = 0 that means the true distance between object i and j actually
being zero rather than being missing, then corresponding W;; is supposed to be nonzero
(e.g., a small positive constant) to guarantee the estimated D;; to be zero. However,
such case of d;; = 0 is able to be put into the constraints by setting L;; = U;; = 0. Then
we still set W;; = 0.

Chapter 4 Majorization-Projection Method 61

4.3.1 Conditions under fy

When f = fa9, namely, foo = |[VW o (D — A®)||2, we have

e From Table 3.1, foo is twice continuous differentiable and thus V fas is well defined,

i.e., for any D € S™, it has V fay = 2W o (D — A®)) and
IV f22ll < 2| mae Wi | U] + AP =2 e < 40,

where ¢y < 400 if Assumption 4.5 holds. Hence Assumption 4.2 holds.

e From Table 3.1, fos is convex and thus subproblem (4.4) (i.e.,(4.5)) is also convex.

Hence Assumption 4.3 holds.

e The convexity of foy yields that foo(D¥) > foo(D*+1) 4 (EFF1 DF — DFF1) | where
=kl = 2 o (DFF! — A(2)), which means Assumption 4.4 holds for any p, > 0,

particularly, we take p, = 0.

Overall, we are able to weaken the assumptions Theorem 4.6 as

Theorem 4.10. Let {D*} be the sequence generated by Algorithm 4.1 under fao and
p > 0. Suppose Assumption 4.5. Then (i), (ii) and (iii) in Theorem 4.6 hold.

4.3.2 Conditions under fy;

When f = for, namely, fo1 = |[W o (D — A®)]|, we have

e From Table 3.1, fo1 is non-differentiable but continuous, and its subdifferential

(see (1.13)) is well defined as 0 fy; = W osign(D — A®)). Then for any D € S”,
HEH < nmax Wij =: ¢ < +00, V= e 6f21.
ij

Hence Assumption 4.2 holds.

e From Table 3.1, fo; is convex and thus subproblem (4.4) (i.e.,(4.7)) is also convex.

Hence Assumption 4.3 holds.

62 Chapter 4 Majorization-Projection Method

e The convexity of fo; yields that foy (DF) > for (D*+1) 4 (ZF+1 Dk — DF1) for any
=FHl = W o sign(D — A®), which means Assumption 4.4 holds for any p, > 0,
particularly, we take p, = 0.

Overall, we are able to weaken the assumptions Theorem 4.6 as

Theorem 4.11. Let {DF} be the sequence generated by Algorithm 4.1 under fo; and
p > 0. Suppose Assumption 4.5. Then (i), (ii) and (iii) in Theorem 4.6 hold.

4.3.3 Conditions under fi,

When f = fi, namely, fi2 = ||vVW o (VD — A)]|?, to establish the existence of 0 fi2, we
need following lemmas.

Lemma 4.12. Suppose Assumptions 4.5 and 4.8 hold. Let {D*} be the sequence gen-

erated by Algorithm 4.1 under fi2 with p > 0. Then we have

(i) For any (i,7) satisfying W;; > 0, there exists ¢ > 0 such that
Dy >ec1, k=1.2,....

And hence fia is continuously differentiable at D* for any k > 1;

(ii) For any =F € 0f12(D%), {EF} and its any accumulated points are bounded. And

hence fi2 is continuously differentiable at any of limits of the sequence {D*}.

Proof (i) We write fi2 in terms of D;;:
fro=> WijDij =23 Wijbij\/Dij + > Wi
ij i,J i,J

We will prove for any given pair (i, 5), 0f(D)/0D;; exists and is continuous at any point
DF. We consider two cases. Case 1: W;j0i; = 0. This implies f(D) is a linear function

of D;j and 0f(D)/0D;; = 2Wj; is constant and hence is continuous.
Case 2: W;j6;; > 0 which implies W;; > 0. It follows from (4.10) that

_ Wy 2Wis0i

; p (4.23)

ijﬂ = dernpg,; v,)] (D5

Chapter 4 Majorization-Projection Method 63

where Dl}:{ = —HKi(T)(—Dk). Let wf’j = (D];()ij — p_ll/V,-j and «;j 1= 2p_1Wij5ij > 0.

One can verify that

&
o
Y

—|(Df)i| — p~ Wiy = —||D || = p~ ' W5

AV

—2||DF|| — p~'Wy; > =2||U| —p! max Wy

c> —o0,

where the third inequality results from Proposition 1.5 (iii) and the last inequality is due

to boundedness of U by Assumption 4.5. By (3.36), it suffices to 7, ay = Yeai; > 0.
i

Finally (3.44) in Proposition 3.8 (iii) yields that

k+1
Dk

v

min {U’Lja 17 ’wajvaij} > min {UZ]7 17 VC,aij}

> i Ui 1, e} =2 1 > 0, 4.24
> (i,j)rfﬁff}o{ i LYo, b =1 €1 (4.24)

where the last inequality benefits from Ye,ai; > 0 and U;; > 0 implied by 6;; > 0 via

Assumption 4.8. Since fol > c1 > 0 for any k > 1, we have

Vijfia(DFY) = W [1 — 8ij /A /ij“] :

which is continuous. This proved (i).

(ii) It follows from the above two formulas that
Vi fra(DMH] < Wi [L+ 655/ /el
which suffices to
IV f12(DF)|| < [H%Lx W,-j] [1 + H;?X (51-]'/\/5} = ¢g < +00,

Since U is bounded (Assumption 4.5) and L < D* < U, the sequence {D*} is bounded.
Let D be one of its limits. Without loss of any generality, let us assume D* — D. The
proof below is the continuation in (i). For a given pair (4, j), if W;;0;; = 0, we have seen
in (i) that df12/0D;; is a constant (independent of D¥). We only need to consider the
case W;;é;; > 0, which implies d;; > 0 and U;; > 0 by Assumption 4.8. Taking limit
on the left-hand side of (4.24), we get ﬁi]- > ¢ > 0. Hence, 0f12/0D;; exists and is

continuous at ﬁw This proved (ii) and complete the whole proof. O

64 Chapter 4 Majorization-Projection Method

Based above lemma, we have
e Assumptions 4.5 and 4.8 ensure fio is continuously differentiable at D* which
thus makes Assumption 4.2 hold.

e From Table 3.1, fi5 is convex and thus subproblem (4.4) (i.e.,(4.9)) is also convex.

This together with Lemma 4.12 (i) derives Assumption 4.3.

e The convexity of fi5 yields that fio(D*) > fio(D*1) 4 (Zk+1 DF — DE+1) where
(E2FFY) = Wij(1=6;5/ /ijﬂ), which means Assumption 4.4 holds for any p, > 0,

particularly, we take p, = 0.

Overall, we are able to weaken the assumptions in Theorem 4.6 as

Theorem 4.13. Let {D*} be the sequence generated by Algorithm 4.1 under fio with
p > 0. Suppose Assumptions 4.5 and 4.8. Then (i), (ii) and (iii) in Theorem 4.6 hold.

4.3.4 Conditions under fi;

When f = f11, namely, fi1 = |W o (VD — A)||1, we first define a constant

Po ‘= po(VVa A) ‘= Inax Wij .

4.25
(i,4):Wi; >0 46% (4.25)

This constant is well defined under Assumption 4.9, since W;; > 0 implies d;; > 0. To

establish the existence of 0f11, we need following properties.

Lemma 4.14. Let {D*} be the sequence generated by Algorithm 4.1 under fi1 and
p > po with p, being defined by (4.25). Suppose Assumptions 4.5, 4.8 and 4.9. Then

(i) For any (i,7) satisfying W;; > 0, there exists ¢ > 0 such that
Dy >ec1, k=12,....
(ii) For any ZF € 0f11(D¥), {EF} and its any accumulated points are bounded.

Proof (i) We write fi1 in terms of D;;:

fi1= ZWU‘VDU — 45
,J

Chapter 4 Majorization-Projection Method 65

We will prove for any given pair (i, 5), 0f(D)/0D;; exists and is continuous at any point
D¥. We consider two cases. Case 1: W;; = 0. This implies fi1 is a constant function of

D;j and 0f(D)/0D;; = 0 is constant and hence is continuous.
Case 2: W;; > 0 which implies d;; > 0 (Assumption 4.9). It follows from (4.12) that

Wi
forl — dC"[Lij,Uij} [(Dl;()z], TJ, 5¢j:| .

where D% := —HKi(r)(—Dk). Let wfj ;= (D%);; and ayj := W;;/p > 0. One can verify
wij > =|(Di)ijl = =Dkl = =2/ D¥|| > =2(|U]| =: ¢ > —oo,

where the third inequality results from Proposition 1.5 (iii) and the last inequality is

due to boundedness of U by Assumption 4.5. In addition,

= > 3\ e 1 I \
P> Po= (i,jr)rzll/?}jj>0 WZ]/(45ij) indicates 0 < a;; = W;j/p < 463,

By (3.36), it suffices to 7y ay; = Yeay; > 0. Those enable Proposition 3.14 (iii) to yield
% Rt

DY > min {6%, Uij, 1,%5’%} > min {6}, Uij, 1, Ve, } =1 €1 > 0, (4.26)

where the last inequality benefits from 7. q4,; > 0 and U;; > 0 implied by d;; > 0 via

Assumption 4.8.

(i) Clearly, we have

Bij f11 (DY) = {WijSign< Djj - 5’) / (2\/3@}

which combining (i) suffices to
€8 < Wij/Vier, Y & € 0y fu (D).

In other words, 9;;f11(DF) is bounded by W;;/+/4cy, which is independent of the index
k. It follows directly from the definition of subdifferential (Rockafellar and Wets, 2009,
Chp. 8.3) that

0f11(D") € @) 93 /11 (DY)

66 Chapter 4 Majorization-Projection Method

in the sense that for any Z*F € 9f11(D¥), there exist ff’j € &-jfll(Dk) such that
=k =¢f, i,j=1,...,n.
Consequently, we have for all k =1,2,...,

IE1 < nmax|gf| < nmax Wi/ (2/er) = co > 0.

Since L < D* < U which is a bounded region by Assumption 4.5, it has a convergent
subsequence. Let D be one of its accumulated points. Without loss of any generality,

let us assume D* — D. The proof below is the continuation of (i).

For a given pair (4, j), if W;; = 0, we have seen in (i) that 0f11/0D;; = 0 is a constant
(independent of D¥). We only need to consider the case W;; > 0. Similar reasons allow
us to prove that ij > ¢1 > 0. Taking limit on the left-hand side, we get ﬁij >c1 > 0.

Hence, for any Z € 8f,1(D),we have |Z| < ¢o. This completes the whole proof. O

Lemma 4.15. Suppose assumptions of Lemma 4.14 hold. Then (4.11) is convex, and

thus there exists =F*1 € 0f11(D*Y) such that

<Ek+1 + pDML 4 plligy) (~D¥), D — Dk“> >0, (4.27)
hols for any L < D <U.
Proof Since (4.11) is separable, it can be written as

DZ+1 = arg min Wij|\/Dij — 523| + (p/Q)(DU — (DI;()U)Q (428)
Lij<D;;<Us;

When p > p, = max(; j).w,;>0 Wij/(4(5§'j), it has 0 < v := Wy /p < 4(5%. By Proposition
3.14 (i), above problem (4.28) is strictly convex. In addition, Lemma 4.14 (i) proved
Of11(D¥1) is well-defined. Those allow us to claim (4.27) immediately. O

Lemma 4.16. Suppose assumptions of Lemma 4.14 hold. Then
fu(D) = (fu (DM + (EM41, D — DR — B2 Db+ — D2 (4.29)

holds for any EF*1 € 0 f1(DFH)

Chapter 4 Majorization-Projection Method 67

Proof Direct calculation yields the following chain of inequalities

(D) = (D) = S W1y Dl = byl — [y/DE = 3,1
j

S Wy [cfj“(pfj“ — D) — (D}, - Dkt /(853)}
ij

Y

P k
> 3 [Wiich ol - b) - 50k - DY
ij
= <Ek?+1’ Dk _ Dk+1> _ %||Dk+1 _ Dk“2

where ijH € 0] ijﬂ —6;j]) and (2L, = VVUijH, the first and the last inequalities

are due to Proposition 3.13 and p, = max(; j).w,;>0 Wij/(45§’j) respectively. O

Based above lemmas, we have conditions of Lemma 4.14 enable us to prove Lemmas
4.14, 4.15 and 4.16, which implies Assumptions 4.2, 4.3 and 4.4 respectively. Overall we

are able to alter the assumptions in Theorem 4.6 as

Theorem 4.17. Let {D*} be the sequence generated by Algorithm 4.1 under fi1 and
p > po with p, being defined by (4.25). Suppose Assumptions 4.5, 4.8 and 4.9. Then
(i), (i) and (iii) in Theorem 4.6 hold.

Table 4.2: Conditions assumed under each objective function

D, q Assumptions Parameter p > p,
foo = |[WVW o (D — A@)||? Ass. 4.5 p>0
for = ||[Wo (D —A®)|, Ass. 4.5 p>0
fi2 = VW o (VD — A)||? Ass. 4.5, 4.8 p>0
fii=|Wo (VD =A)| Ass. 4.5,4.8,4.9 p> max i

3
(4,5):Wi;>0 45ij

To end this section, we summarize conditions to derive the convergence properties under
each f,q in Table 4.2. It is worth to mentioning that all conditions are assumed on the
known data (i.e., U, W, p) and as we mentioned above, all assumptions are reasonable
and very easy to be satisfied. For example, for Assumption 4.9, if §;; = 0 we actually
hope W;; = 0. This is because in many applications, §;; = 0(i # j) means the the
ground truth value d;; > 0 is missing rather than d;; being zero. If we set W;; > 0 then
VI@(@— dij) = VI@(@— 0) may result in D;; = 0 which might be away from d;;,

hence leading a poor estimation.

Chapter 5

Applications via EDM

Optimization

In this chapter, we focus on the four previously mentioned applications in Section 1.2.
For each application, mathematical formula will be cast by using EDM theory in Sec-
tion 1.4. One may discern that in this way it is capable of dealing with various of
constraints, such as linear equations or bounded constraints. When it comes to the

numerical implementations, their data generations will be explained.

5.1 Wireless Sensor Network Localization

Wireless Sensor Networks (WSNs) can be applied in many applications, such as natural
resources investigation, targets tracking, unapproachable places monitoring and so forth.
In these applications, the information is collected and transferred by the sensor nodes.

Various applications request these sensor nodes location information.

The Global Positioning System (GPS) is the most promising and accurate positioning
technologies. Although it is widely accessible, the limitation of high cost and energy
consuming of GPS system makes it impractical to install in every sensor node where the
lifetime of a sensor node is very crucial. In order to reduce the energy consumption and
cost, only a few number of nodes called anchors contain the GPS modules. The other

nodes could obtain their position information through localization method. Wireless

69

70 Chapter 5 Applications via EDM Optimization

sensor network is composed of a large number of inexpensive nodes that are densely

deployed in a region of interests to measure certain phenomenon.

Therefore, localization algorithms become one of the most important issues in WSNs
researches, and have been intensively studied in recent years, with most of these studies
relying on the condition that only a small proportion of sensor nodes (anchors) know
exact positions through GPS devices or manual configuration. Other sensor nodes only
collect their distances to the neighbour nodes and calculate positions by localizing tech-

niques later on.

5.1.1 Problematic Interpretation

The general setting of wireless SNL is as follows. Assume a sensor network in R" (r = 2
or 3) has n nodes in total, with m known anchor nodes and s(:= n —m) sensor nodes to
be located. Let x; = a;,7 = 1,...,m denote the location of ith anchor node, and x;,j =
m+1,...,n denote the location of jth sensor node. The maximum communication range
is R, which determines two index sets N, and N,, that indicates the connectivity states
of nodes. For any (j,k) € Ny, the Euclidean distance between sensor nodes x; and xy,
is not greater than R. Hence, the two sensor nodes are able to transmit signal between
each other. Similarly, for any (i,j) € Ngg, the Euclidean distance between an anchor x;

and a sensor X; is smaller 7, making them able to communicate. Denote

Nea = {(ij): i<j=1,...,m},

Noz = {(,7): |Ixi—%x| <R, i=1,...,m, j=m+1,...,n},

Npw = {Uk): |xj—x%| <R, j<k=m+1,...,n}, (5.1)
Now = {(,5): |xi—x5]| >R, i=1,....,m, j=m+1,--- ,n},

Nyw = {(k): ||xj—xk| >R, j<k=m+1,...,n}.

where N4, and N, indicate a pair of nodes that are too far away to communicate. If two
nodes can transmit signal, then their distance can be measured, namely, for any nodes
x; and xj, where (j, k) € Ngg U Ny, a range measurement but with being contaminated

by noise due to the reality environment (i.e., the dissimilarity) can be obtained,

5jk - HXj - Xk” + €k, (J? k) € Naz U Nyg, (5'2)

Chapter 5 Applications via EDM Optimization 71

where €;;s are noises. We always assume that the distance estimations are symmetric,
i.e., 0j5 = Op;. Overall, the range based sensor network localization problem can be

described as to recover {X;,+1,...,X,} in R" such that

1% = x|l = &k, Y (j,k) € Nua, (5.3)
Ix; —xxl| > R, V (j. k) € Ne, (5.4)
|xi —ajl| ~ &j V(i,§) € Naas (5.5)
Ixi —ajll > R, V(ij) € Nag, (5.6)

Constraints (5.3) and (5.5) come from the incomplete distance information, and (5.4)
and (5.6) come from the connectivity information due to the limitation of radio range.
That is, if there is no distance information measured between two nodes, then their
Fuclidean distance is greater than R. Many existing localization schemes neglect all
the inequality constraints (5.4) and (5.6). However, as some of the existing research
demonstrated, those bound constraints can actually improve the robustness and accuracy
of localization. In particular, Biswas and Ye (2004) suggest to select some of these lower

bound constraints based on an iterative active-constraint generation technique.

From the point of view of EDM theory in Section 1.4, it allows us to derive a given

matrix A € S” in advance, for ¢ < j,

0, (i,7) € Naa,
Aij = 5ija (17]) € Naw U NIZ) (57)

0, otherwise.

In a nutshell, SNL problem is to find an EDM D with embedding dimension r that is
nearest to A®) and satisfies constraints (5.3-5.6). By these constraints and (1.30), in

other words, it aims at approximating A® by D such that

D e SPNK(2) (5.8)
Dij = lai—ajl* (i,) € Naa, (5.9)
Dij < R, (i,j) € Noz U Naa, (5.10)
Dij > R, (i,j) € NuwUNgg. (5.11)

Here, we put anchors information (5.9) into constraints since we treat the whole D as

72 Chapter 5 Applications via EDM Optimization

a variable, which explains no information in A when (4, j) € Ny, are provided in (5.7).

To derive the box constraints L < D < U in (3.1) and L,U € S™, for any i < j, we set

(0, i=j (5.12a)

Lij= q lai—a;|% (i,4) € Naa (5.12b)
R, (i,7) € Nuz U Nog (5.12¢)

(0, i=j (5.13a)

Uj= 9 lai—a;|%, (i,5) € Naa (5.13b)
R, (i,7) € Naz U Nag (5.13¢)

5.1.2 Data Generation

This subsection describes data generation of SNL examples. Some of them are either
direct versions or slightly modified versions of those in existing literature, such as (Bai

and Qi, 2016; Biswas et al., 2006; Qi and Yuan, 2014; Tseng, 2007).

Example 5.1. (Biswas et al., 2006; Qi and Yuan, 2014; Tseng, 2007) This example
is widely tested since it was detailed studied by Biswas et al. (2006). First, m = 4
anchors are placed at four inner corners (£0.2,£0.2). Then (n—m) points are randomly

generated in the unit square [—0.5,0.5] x [—0.5,0.5] via the MATLAB command:

X = —0.5+rand(2,n —m).

Example 5.2. (Biswas et al., 2006; Qi and Yuan, 2014; Tseng, 2007) First, m = 4
anchors are placed at four outer corners (£0.45,+£0.45). Then the generation of rest

(n —m) points are similar to Example 5.1.

Example 5.3. (Tseng, 2007) The n points are randomly generated in the square [—0.5,0.5]
x[—0.5,0.5] via the MATLAB command: X = —0.5 + rand(2,n). Then, the first m

columns of X are chosen to be anchors and the rest n — m columns are sensors.

Example 5.4. (EDM word network, Bai and Qi (2016)) This problem has a non-regular
topology and is first used in Bai and Qi (2016) to challenge existing localization methods.
In this example, n points are randomly generated in a region whose shape is similar to
the letters “E”, “D” and “M”. The ground truth network is depicted in Figure 5.1. We

choose the first m points to be the anchors and the rest n — m columns are sensors.

Chapter 5 Applications via EDM Optimization 73

| o 22 o0 ‘el ®, § '. °® e° , o o
047 $Pm i W18 ag oo e P U R i
. ° (] ®onne? @ % @ & &
0.3f o, s ° :‘,:.' o Ju° .‘.“ H
_ &..; -...‘“(, P ¢ ”.:-'.-° N .:0\.:-
0.2 % . ‘ o O ’. @) '.. ‘.‘o.: 0\’..
L 1)] ..\.. LR °
0.1+t ° 0008 o ® ee ® o “°
% ..'.o 0% oe o° ceed 4 s L o
ol %e® “’oo: °ge_ oo °°e ° ..l.
0 02 04 06 08 1

Figure 5.1: Ground truth EDM network with 500 nodes.

Let [x1---x,] =: X, namely ground truth point x; is the ith column of X. Based
on Subsection 5.1.1, we are next to generate N,; and N, through (5.1) decided by
the maximum communication range R (e.g., R = 0.2). Then similar to (5.2) noise

contaminated distances will be observed, that is

5ij = HXZ - Xj”) |1 + €ij - nf|7 (Z7]) € Nz U Ny, (5'14)

where nf is the noise factor (e.g., nf = 0.1 corresponds 10% of noise level); and e;;
are independent standard normal random variables. This type of perturbation in ¢;; is
known to be multiplicative and follows the unit-ball rule in defining N, and N, (see

(Bai and Qi, 2016, Sect. 3.1) for more detail).

The last issue confronting us is to set those parameters: W, A, L, U € S™ which are
generated as Table 5.1, where A is taken from (5.7); L,U are set relied on (5.12) and
(5.13); W is given to satisfy the Assumption 4.9; Moreover, to meet Assumption 4.5, M

is a positive bounded constant, e.g., M := nmax;; A;;.

Table 5.1: Parameter generation of SNL.

(4,7) Wij Ajj Lij Usj
=] 0 0 0 0
5) € Nao 0 0 la—al Jai-ayl?
(,5) € Noz U Nag 1 5i; 0 R
(i,5) € Naz U Nag 0 0 R2 2

74 Chapter 5 Applications via EDM Optimization

5.1.3 Impact Factors

For SNL problems, for each fixed n, a network will be affected by three factors: radio
range R, anchors number m, and noise factor nf. Clearly, the radio range R
decides the amount of missing dissimilarities among all elements of A. The smaller R
is, the more numbers of d;; are unavailable, yielding problems more challenging to be
solved. As what we expect, more anchors given means more information provided, and
because of this, more easier the problems would be. Finally, when a noise with large
factor nf contaminates the distance, then the dissimilarity will get far away from the
truth distance, which apparently leads to a tough network to be localized. Therefore,
we will test our method to see its sensitivity to these three factors through fixing two

factors and altering the third one from a proper range.

For each example, since it is generated randomly, we will test 20 times for each instance
(n,m, R,nf), and record average results over 20 times. For example, if we aim to see
the performance along with the changing of R, we will fix n = 200, m = 4,nf = 0.1
and alter R € {0.2,0.4,...,1.4} for Example 5.1. Then for each instance (n, m, R, nf)
= (200,4, R,0.1), we run our method 20 times and 20 x 7 = 140 times in total.

5.2 Molecular Conformation

An important area of research in computational biochemistry is the design of molecules
for specific applications. Examples of these types of applications occur in the develop-
ment of enzymes for the removal of toxic wastes, the development of new catalysts for
material processing and the design of new anti-cancer agents. The design of these drugs
depends on the accurate determination of the structure of biological macro-molecules.
This problem is known as the molecular conformation problem, and has long been an

important application of EDM optimization (Glunt et al., 1993; Moré and Wu, 1997).

5.2.1 Problematic Interpretation

The setting of MC problem is as follows. For a given molecule with n atoms {xi,...x,}
in R3, if the Euclidean distance between two atoms is less than R (where R is the maximal

distance that some equipments can measure), then the distance is chosen; otherwise no

Chapter 5 Applications via EDM Optimization 75

distance information about this pair is known. For example, R = 64 (1A = 10~8cm)
is nearly the maximal distance that the nuclear magnetic resonance(NMR) experiment
can measure between two atoms. For realistic molecular conformation problems, not all
the distances below R are known from NMR experiments, so one may obtain ¢% (e.g.,
¢ = 30%) of all the distances below R. Similar to (5.1), denote N, a set formed by
indices of those measured distances. Moreover, the exact distances in N, actually can
not be measured and only the noisy contaminated lower bounds a;; and upper bounds

b;; on distances are provided, that is for (,j) € Ny,
aij = 1% = x5 +eig bij = lIxi = x5 45 (5.15)
where ¢€;; and ¢;; are noises. A typical noise rule used by Jiang et al. (2013) is
aij = max {1, (1 = feg)lxi =%}, bij = (14 [eiz])[Ixi — x;]. (5.16)

where ¢;; and ¢;; are independent normal or uniform random variables. Therefore the

task of MC problem is to find {xy,...x,} in R? such that
aij < |Ix; —x5[| < bjj forany (4,j) € Nao (5.17)

From definition of EDM in Subsection 1.4.1,, an information matrix A € S" can be

derived first, for ¢ < 7,

al+bl 27 i) ' ewa7
a,f e))

0, otherwise.

Overall, MC problem is to find an EDM D with embedding dimension 3 that is nearest
to A®) and satisfies (5.17) and (1.30), namely,

—D e S} NK?(3) (5.19)

az; < Dij < b, (i,) € Nua (5.20)
To derive the box constraints L < D < U in (3.1) and L,U € S", for any i < j, we set

0, 1=y, 0, i1=17,
Lij = Uij = (5.21)

(4,7) € Naa, b, (i,) € Nag.

76 Chapter 5 Applications via EDM Optimization

5.2.2 Data Generation

Two MC examples with artificial data and real data from Protein Data Bank (PDB)
Berman et al. (2002) respectively will be studied in this part. For the former, we adopt
the rule of generating data from (Moré and Wu, 1997; An and Tao, 2003). For the
latter, we collected real data of 12 molecules derived from 12 structures of proteins from
PDB. They are 1GM2, 304D, 1PBM, 2MSJ, 1AU6, 1LFB, 104D, 1PHT, 1P0A, 1AX8,
1RGS, 2CLJ. They provide a good set of test problems in terms of the size n, which
ranges from a few hundreds to a few thousands (the smallest n = 166 for 1GM and the
largest n = 4189 for 2CLJ). The distance information was obtained in a realistic way as

done by Jiang et al. (2013).

Example 5.5. (Moré and Wu, 1997; An and Tao, 2003) The artificial molecule has

n = s> atoms {x,--- , T, } located in the three-dimensional lattice
{(il,ig,ig) : il,ig,ig = 0, 1, ey S — 1}
for some integer s > 1, i.e., & = (iy,12,i3)

Since for MC problem no atoms are known in advance, it follows m = 0, i.e., Ny, = 0.
Similar to (Moré and Wu, 1997; An and Tao, 2003), we adapt two rules to define N,

which determines the index set on which d;; are available as:

Rule 1: Nyw = {(4,7) : ||xi —x4|| < R} (5.22)

Rule 2: New = {(5,7) : [x(x:) — x(x5)] < o}, (5.23)
where R > 1,0 > 0 and
x(x;) =1+ (1,s, sg)xi =144y + siy + s2is.

Clearly Rule 1 is same as (5.1). As indicated by Moré and Wu (1997), a difference
between these definitions of Ny, is that (5.23) includes all nearby atoms, while (5.22)

includes some of nearby atoms and some relatively distant atoms.

Then similar to (5.14), noise contaminated distances will be observed, that is

dij = Ilxi = x| - [1 + €5 - nf|, (i,5) € Naa, (5.24)

Chapter 5 Applications via EDM Optimization 77

where nf is the noise factor and ¢;; are independent standard normal random variables.
Finally, the generation of W, A, L, U € S™ are taken as in Table 5.2 where M is a

positive bounded constant to meet Assumption 4.5 , e.g., M := nmax;; A;; for Rule 1

and M := /3(s — 1) for Rule 2.

Table 5.2: Parameter generation of MC problem with artifical data.

Rule 1 Rule 2
(t,7) i=3j (i,J) € Ny otherwise i=7 (i,7) € Nys otherwise
Wi, 0 1 0 0 1 0
Ay 0 5ij 0 0 5ij 0
Li; 0 1 R? 0 1 1
Uij 0 R? M? 0 (z’,?)lg])\%m"xi — x;? M?

Example 5.6. (Real PDB data) We collect 12 molecules derived from 12 structures of

proteins from PDB. Each molecule comprises n atoms {x, ... z,} in R3.

Table 5.3: Parameter generation of MC problem with PDB data.

(4,7) Wij A Li; Uij
1=7 0 0 0 0
(4,4) € Nux 1 (aij + bij) /2 az; b},
(,7) € Nug 0 0 0 M2

As described in Subsection 5.2.1, we first generate N,,, and then the noise contaminated

lower and upper bounds of distances on N,,, namely (5.16) where we take the noise from

the normal distribution as,
€ijyEi5 ™~ N(O,nf2 X 71'/2).

Finally, parameters W, A, L, U € S™ are given as in Table 5.3, where A is from (5.18),
L,U are decided by (5.21) and M := nmax;; A;;.

78 Chapter 5 Applications via EDM Optimization

5.2.3 Impact Factors

For MC problem, for each fixed n, a molecular will be affected by two factors: range R
or o, and noise factor nf. Similar to the test on SNL problems, for each example, we
test 20 times for each instance (s, R,nf) or (s, o,nf), and record average results over 20
times. For example, if we aim to see the performance along with the changing of R, we
will fix s = 6(n = s3),nf = 0.1 and alter R € {2,3,...,8} for Example 5.5 under Rule
1. Then for each instance (s, R,nf) = (6, R,0.1), we run our method 20 times, which

means for such example MPEDM will be run 20 x 7 = 140 times in total.

5.3 Embedding on A Sphere

Embedding given objects on a sphere to be estimated arises from various disciplines such
as Statistics (spatial data representation), Psychology (constrained multidimensional

scaling), and Computer Science (machine learning and pattern recognition).

5.3.1 Problematic Interpretation

The purpose of this problem is to find a sphere in R” fits a group of given points
{x1,...xp—1} iIn R" (r = 2 or 3) in a best way. Generally, the center and radius of
sphere are unknown. If we introduce an extra unknown point x,, to denote the center
and an unknown variable R to denote the radius, then the problem is able to be describe

as finding x, and R such that
Ixi —xn||= R, i=1,...,n— 1. (5.25)

For more details, one can refer to (Bai et al., 2015; Beck and Pan, 2012). From definition
of EDM in Subsection 1.4.1, a dissimilarity matrix A € S™ can be derived first, namely,

for i < j,

X —Xill, t7=1,...,n—1,
Ay = % il J (5.26)

where R, can be estimated straightforwardly such as R, := max;; ||x; — x,||/2.

Chapter 5 Applications via EDM Optimization 79

Overall, this problem is to find an EDM D with embedding dimension r that is nearest
to A®@. By (1.30), in other words, it aims at approximating A® by D such that

-D e SynKY(r) (5.27)
To derive the box constraints L < D < U in (3.1) and L,U € S", for any i < j, we set

0, i=y, 0, =y,
Lij = g Uy = g (5.28)
0, i<j, M?, i<j.

where M > 0 is a large constance.

5.3.2 Data Generation

Three examples are introduced in this subsection, comprising data in R" with r = 2 or
3. When r = 2, the problem is the so-called circle fitting problem that has recently been
studied by Beck and Pan (2012) where more references on the topic can be found. Two
circle fitting problems including the one considered by Beck and Pan (2012) and one

with randomly generated data will be tested.

Example 5.7. (HA30, Bai et al. (2015)) This dataset comprises spherical distances
among n = 30 global cities {x1,...,x,}, measured in hundreds of miles and selected
by Hartigan (1975) from the World Almanac, 1966. It also provides XYZ coordinates
of those cities, implying r = 3. Fuclidean dissimilarities among those cities can be

calculated through the formula:
0ij = 2Rasin(sij/(2Ra)), (5.29)

where s;; is the spherical distance between city i and city j, Rq = 39.59 (hundreds miles)
is the Earth radius. We need emphasize here, the spherical distance s;; is actually
contaminated by noise, that is d;; ~ ||x; — x||. To make such test example reasonable,
we use the spherical distance s;; to derive d;; (5.29) rather than using XYZ coordinates

since the latter are accurate.

Example 5.8. (Circle fitting, Beck and Pan (2012)) Let points {1, ..., 2,1} € R? be

given. The problem is to find a circle with center x, € R? and radius R such that the

80 Chapter 5 Applications via EDM Optimization

points stay as close to the circle as possible. One criterion was considered by Beck and

Pan (2012):

n—1
. L _ 2
min Zwm x| — R)2. (5.30)

Beck gave a specific example (Beck and Pan, 2012, Example 5.8) with:

Then we just let 0;; = ||x; — ;]|

Example 5.9. (Circle fitting with random data) We generate n—1 points {x1, ..., Tn_1}

on a circle with radius 1 and center in origin by:
T 2
x; = | sin(6;) cos(ﬂi)} €R

with 0;,1 =1,...,n—1 is generated from a uniform distribution on [0,2r]|. Then we add

noise on the distance between each two points to make the problem more difficult:
where nf is the noise factor and €;; are independent standard normal random variables.

Bases on Subsection 5.3.1, parameters W, A, L, U € S™ are given as in Table 5.4, where
A is from (5.26), L, U are decided by (5.28) and M is a positive bounded constant, e.g.,
M := nmax;; A;; and R, is the estimated radius, e.g., R, := max;j ||x; — x,||/2 for

Examples 5.7 and 5.9, and R, := max;; |x; — X, || for Example 5.8.

Table 5.4: Parameter generation of ES problem.

(4, 7) Wi A Li; Uij
i=j 0 0 0 0
i,j=1,...,n—1 1 8ij 0 M?

Chapter 5 Applications via EDM Optimization 81

5.4 Dimensionality Reduction

Nowadays, there are more and more large volumes of high-dimensional data including
global climate patterns, stellar spectra, or human gene distributions regularly confronted
us. To find meaningful low-dimensional structures hidden in their high-dimensional ob-
servations, known as dimensionality reduction (DR), becomes much more of importance,

for the sake of easy visual perception or understanding.

5.4.1 Problematic Interpretation

Suppose there is a group of n images each of which has an m; x mo =: d pixel matrix.
Denote z; € R, i = 1,...,n the vector formed by all columns of each pixel matrix.
Clearly those vectors are in a space with a high dimension d, which seems to be impossible
to visualize them by a graph. Fortunately, since these images are taken from one group,
they potentially possess several common features or they are dominated by a few common
features. One can refer to (Tenenbaum et al., 2000; Weinberger and Saul, 2006) for more
details. Recall Face698 data (see Subsection 1.2.4) where images of faces are categorized
by three features: the different (up-down and left-right) face poses and different light
directions, seen Subsection 1.2.4. In order to capture r features (r = 2 or 3) and thus

to visualize images, a proper way is to find {x1,...,x,} € R" such that
i — x50l ~ 12 — 7, i=1,....n, (5.32)

These aim at preserving the local information among objects. For example, there are
three images z;,z; and z; in which the first two are quite similar and the last two differ
with each other a lot. This means ||z; —z;|| is very small while ||z; —zy|| is relatively large.
Then x;,x; and x, such that (5.32), ||x; — x| = ||z; — ;|| and ||x; — x| = ||z; — 2],

are able to preserve the local information among these three images.

However in practice, not all pairwise distances ||z; — z;|| are used. A common way to
obtain pairwise distances is the k-Nearest Neighbour rule (k-NNR). More detailed,
for each node z;, only k smallest distances among {||z; — z;||,j # i} are kept. Denote
Ny, a set formed by (i,) if ||z; — z;|| are kept by k-NNR. In order to guarantee the

graph whose nodes are {z1, ..., z,} and edges are (i, j) € N, being connected, k should

82 Chapter 5 Applications via EDM Optimization

be chosen carefully (not able to be too small). Then constraints (5.32) is altered as
Ixi = x4l = llzi = 2zjll, (2,5) € Naa- (5.33)

From definition of EDM in Subsection 1.4.1, an information matrix A € S™ can be
derived first, for ¢ < 7,

Z; — Zn||, iv . ENmﬂCv
ay [Tl G -

0, otherwise.

Overall, such problem is to find an EDM matrix D with embedding dimension r that is
nearest to A®) and satisfies (5.33). By these constraints and (1.30), in other words, it

aims at approximating A by D such that
—-D e S;nK(r) (5.35)
To derive the box constraints L < D < U in (3.1) and L,U € S™, for any i < j, we set

0, 1=/, 0, =y,
Lij = Uij = (5.36)
0, i<j, M?, i<j.

where M > 0 is a large constance.

5.4.2 Data Generation

Three real datasets which have been widely used in manifold learning (Tenenbaum et al.,

2000; Weinberger and Saul, 2006) will be considered here.

Example 5.10. (Teapot) This dataset comprises n = 400 images of a teapot taken from
different angles by rotating the teapot 360 degrees. Fach image has 76 x 101 pizels with
3 byte color depth i.e., d = 76 x 101 x 3. Two dimensional (r = 2) embedding will be

considered in such example.

Example 5.11. (Face698) This dataset comprises n = 698 images (64 x 64 pizels)
of faces with the different poses (up-down and left-right) and different light directions.
Therefore, the embedding is naturally expected to lie in the two or three dimensional

(r =2 or 3) space parameterized by these major features.

Chapter 5 Applications via EDM Optimization 83

Example 5.12. (Digit1) This dataset comprises n = 1135 images (28 x 28 pizxels, i.e.,
d = 282) of digits “1” with the two important features: the slant and the line thickness.
Therefore, the embedding is naturally expected to lie in the two dimensional (r = 2)

space parameterized by these major features.

Based on Subsection 5.4.1, let z; € RP,¢ = 1,...,n be the vector generated from the
pixel matrix of each image. Then by using k-NNR, we acquire N,,. To make problems

more of difficulty, we add some noise on the distances as

0ij = |12i — znl| - [1 + €5 -nf|, (4,)) € Naa,

where nf is the noise factor and ¢;; are independent standard normal random variables.
Finally, parameters W, A, L,U € S™ are given as in Table 5.5, where L,U are decided

by (5.36) and M is a positive bounded constant, e.g., M := nmax;; A;.

Table 5.5: Parameter generation of DR problem.

(i,7) Wij A L Uij
i=3j 0 0 0 0
(i,7) € Nag 1 8ij 0 M?
(i,7) € Nas 0 0 0 M?

Chapter 6

Numerical Experiments

In this chapter, we illustrate how to implement Algorithm 4.1 proposed in Table 4.1. To
emphasize ideas of majorization-Projection and EDM optimization, we name it MPEDM.
We first design its stopping criteria and initialization. When it is introduced to pro-
cess each application described in Chapter 5, the specific procedure is then summa-
rized. Finally, we do self-comparison of MPEDM under each fp, to see the effectiveness
of each objective function, and compare MPEDM under fi; with other existing state-of-
the-art methods to highlight its exceptional performance. All numerical experiments
of our algorithm MPEDM is conducted by MATLAB (R2014a) on a desktop of 8GB
memory and Inter(R) Core(TM) i5-4570 3.2Ghz CPU. Part of Matlab packages can
be downloaded at https://www.researchgate.net/profile/Shenglong_Zhou/publications or
https://github.com/ShenglongZhou.

6.1 Implementation

We first design the stopping criteria and initialization of MPEDM. Then performance
measurement of method on testing examples from Chapter 5 is introduced, and finally

the whole procedure to implement the algorithm on each example is summarized.

6.1.1 Stopping Criteria

We now consider the stopping criteria used in Step 3 to terminate Algorithm 4.1.

85

86 Chapter 6 Numerical Experiments

The MPEDM is easy to implement. We monitor two quantities. One is on how close of the
current iterate D* is to be Euclidean (belonging to —K (r)). This can be computed by
using (1.31) as follows.

29(D*) | DF + HKi(r)(_Dk)W
|JDET|> |JDk.J |12
|PCA(—JDkJ) + (JD*J)|)?

|7 D][>
>oizt [— (A — max{);, 0})*]
<1
M+ 4+ A2 -

Kprog, :=

= 1—

)

where A\; > Xo > ... >), are the eigenvalues of (—.JDF.J). The smaller Kprog;, is,
the closer —D* is to K" (r). The benefit of using Kprog over g(D) is that the former is

independent of any scaling of D.

The other quantity is to measure the progress in the functional values F}, by the current
iterate D*. In theory (see Thm. 4.6), we should require p > p,, which can be found in
Table 4.2 and is potentially large if one d;; is very small and f = fi1. As with the most
penalty methods (Nocedal and Wright, 2006, Chp. 17), starting with a very large penalty
parameter may degrade the performance of the method (e.g., causing air-conditionness).
Therefore, for all f,,, we uniformly adopt a dynamic updating rule for p. Let x counts

3/2

the number of non-zero elements of A. We choose pg = kn~>/“ max d;; and update it as

1.25py, if Kprog, > Ktol,Fprog; < 0.2Ftol,
Pk+1 = 0.75p, if Fprog, > Ftol,Kprog, < 0.2Ktol, (6.1)

o otherwise,

where

Fpk—l(Dk_l) - Fpk—l(Dk)
1+ pg—1+ Fﬂk—1 (Dk_l)

Fprog, := (6.2)

and Ftol and Ktol are chosen as

1072 if n > 100,
Ftol =In(k) x 1074, Ktol = N (6.3)
10~* if n < 100.

The rule for updating p; seems to be complicated but works well for numerical experi-

ments. Let us simply explain why we choose to update py as (6.1). We know the role of

Chapter 6 Numerical Experiments 87

p is to balance the f(D) and g(D). Therefore, if in a step f(D*) decreases sufficiently
such as Fprog;, < 0.2Ftol while g(DF) is still not to be Euclidean, then p is suggested to
be increase for next iteration. Or in a step g(DF) is to be almost Euclidean sufficiently
such as Kprog, < 0.2Ktol while f(DF) still violates the stopping criterion, then p is

suggested to be reduced for next iteration. For other cases, there is no need to vary p.

Taking two quantities into consideration, we terminate MPEDM when

(Fprog;, < Ftol and Kprog; < Ktol) or k& > 2000.

6.1.2 Initialization

Since the main problem (4.1) is non-convex, a good starting point D° would benefit for
Algorithm 4.1. As mentioned in Chapter 5, each application renders an information ma-
trix A with either some elements being unapproachable or all elements being obtained.
A potential starting point one can utilize is D° := A®)| because certain elements in A
keep some useful information that we want to use. However, numerical experiments have
demonstrated that when large amounts (e.g., over 80%) of elements of A are unavailable
(and this phenomenon is quite common in practice), such choice of starting point would
lead to a very poor performance of MPEDM. A possible reason is that when large amounts
of elements of A are unavailable, A is far from a EDM which leads to Il (T)(A(Q)) a

very bad initial point that approximates the true EDM.

An alternative is to keep using these known elements in A but replacing those missing
dissimilarities by its shortest path distances. Namely, consider a graph with each vertex
being each point/object and an edge being the known dissimilarity between two points.
Since some of dissimilarities are missing, the graph has many edges unknown. Then
we take advantage of the shortest path method to complete all missing edges by using
shortest path distances. A MATLAB build-in function graphallshortestpaths to
calculate the shortest path distances can be called to complete those missing distances.
More detailed, the pseudo-Matlab code to initialize DV is as follows

(graphallshortestpaths(sparse(A))), k/n? <80%, (6.4a)

D’ =
AP, otherwise, (6.4b)

where sparse(A) is the sparse version of A.

88 Chapter 6 Numerical Experiments

6.1.3 Measurements and Procedures

SNL problems. ‘ This problem contains four examples: Examples 5.1-5.4. To see accu-

racy of embedding results of MPEDM, we adopt a widely used measure RMSD (Root of the
Mean Squared Deviation) defined by

n 1/2

1 -
RUSD = | > %l
i=m-+1

where x;’s are the true positions of the sensors or atoms in our test problems and X;’s

are their corresponding estimates. The X;’s were obtained by applying the classical MDS
(see Table 2.1) method to the final output of the distance matrix, followed by aligning
them to the existing anchors through the well-known Procrustes procedure (see Zhang
et al. (2010), (Borg and Groenen, 2005, Chp. 20) or (Qi et al., 2013, Prop. 4.1) for more
details). Furthermore, upon obtaining X;’s, a heuristic gradient method can be applied
to improve their accuracy to further get ﬁlr-Ef’s and it is called the refinement step in
Biswas et al. (2006). We report rRMSD to highlight its contribution’
RMSD i— | SR -
T “\nm i:%l %57 — x|

As we will see, if the ground truth x;s are known, our method benefits from this step for
the most of problems because it could improve the finally embedding accuracy but may
occur computational expense especially when n is very large. In addition, we record
rTime (the time of refinement step) and the total cup time Time (including rTime)
consumed by our proposed method to demonstrate its computational speed. Hereafter,
the unit of all recorded time is second. Thus four indicators will be reported for this
example, that is,

(RMSD, rRMSD, Time, rTime).

The whole procedure for MPEDM to solve SNL problems is summarized in Table 6.1. More
detailed about step three: Sensors Recovery, we only apply the Procrustes analysis on
the known anchors [a; - - - a,,] =: Z and the recovered anchors [X; - --X,,] =: X. Recall

Subsection 1.4.3, we can derive z., X, and P* which further get

~

Kimt1s " s Xn] = P X1 — X+ X, — Xe| + Ze.

Chapter 6 Numerical Experiments 89

Table 6.1: MPEDM for SNL problems

Initialization Set the dissimilarities matrix A, initialize D° by (6.4);
EDM Reconstruction Solve MPEDM in Algorithm 4.1 to get a closed EDM D.

Sensors Recovery Apply c¢cMDS in Table 2.1 on D to get embedding points
X := [X;---X,] in R2. Then apply Procrustes analysis on

the embedding points [X;,+1 - - - Xp] by only using the known
anchors [aj - - - a,,] to get new sensors [Xp,41, -+ ,Xn).

Refinement Apply the gradient descent method on [X;,41,- -+ ,Xy] to

further get refined sensors [ﬁfﬁib e gref]'

Table 6.2: MPEDM for MC problems

Initialization Set the dissimilarities matrix A, initialize D° by (6.4);
EDM Reconstruction Solve MPEDM in Algorithm 4.1 to get a closed EDM D.

Atoms Recovery Apply ¢cMDS in Table 2.1 on D to get embedding points
X := [X1---X,] in R3. Then apply Procrustes analysis on

[X1 - -+ Xp] by using the ground truth atoms [x; - - - X,] to get

new atoms [Xi,- - ,Xp|.
Refinement Apply the gradient descent method on [Xi,--- ,X,] to fur-
ther get refined atoms [R5, - -+ | %]

MC problems. | This problem contains two examples: Examples 5.5 and 5.6, in which no

atoms are given in advance. We still utilize four indicators (RMSD, rRMSD, Time, rTime)
to highlight the performance of MPEDM. The whole procedure for MPEDM to solve MC

problems is summarized in Table 6.2.

More detailed about step three: Atoms Recovery, since no atoms are given, we apply
the Procrustes analysis on the ground truth atoms [x;---x,] =: Z and the recovered

anchors [X;---X,| =: X. Recall Subsection 1.4.3, we can derive z.,x. and P* which

90 Chapter 6 Numerical Experiments

further get

~

[le"' 7Xn]:P*[il_xc"'in_xc]‘i‘zc-

ES problems. | This problem contains three examples: Examples 5.7-5.9. To highlight

the goodness of a found sphere fitting the given points, we define the fitness of embedding

to a sphere (FES) as

n—1

FES := > ([x; — x| — Rest)?,
i=1

where Rest and x. are the estimated radius and center of the found sphere. The smaller
FES is, the better the estimated sphere fits the given points. This is actually the optimal
objective function value of (5.30). Therefore, we would like to report (RMSD, FES, Rest)

to demonstrate the performance of MPEDM.

Table 6.3: MPEDM for ES problems

Initialization Set the dissimilarities matrix A, initialize D° by (6.4);
EDM Reconstruction Solve MPEDM in Algorithm 4.1 to get a closed EDM D.

Points Recovery Apply ¢cMDS in Table 2.1 on D to get embedding points
X = [X1---Xy,) in R". Then apply Procrustes analysis on
[X1---Xp—1] by using the ground truth points [x - --X,_1]

to get new points [X; - -+ Xp—1].

Sphere fitting Find center x. and radius Reg of a fitted sphere for points

[®1 - Rno1).

The whole procedure for MPEDM to solve ES problems is summarized in Table 6.3, in
which in the last step Sphere fitting, there are two methods to find a sphere, which are
stated as below. We will take advantage of first way to find the sphere since it would

render us more accurate results.

e Use MATLAB solver sphereFit! to find a sphere by pseudo MATLAB code:

[Xc, Rest| = sphereFit ([il .- -)?n_l]).

! sphereFit is available at: https://uk.mathworks.com/matlabcentral/fileexchange/34129-sphere-fit—
least-squared-

Chapter 6 Numerical Experiments 91

and circfit? to find a circle by pseudo MATLAB code:
Xely X2, Rest:| = circfit <[§11 cXpo1], X2 'ﬁn—lz]),

where x. = [Xc1 Xe2] ', X = X1 o] T,i=1,...,n— 1.

e Compute x. := X,, and

DR problems. | This problem contains three examples: Examples 5.10-5.12. The whole

procedure for MPEDM to solve such problems is summarized in Table 6.4.

Table 6.4: MPEDM for DR problems

Initialization Set the dissimilarities matrix A, initialize D° by (6.4);
EDM Reconstruction Solve MPEDM in Algorithm 4.1 to get a closed EDM D.

Points Recovery Apply ¢cMDS in Table 2.1 on D to get embedding points

X :=[X1 X, in R".

To emphasize the quality of reduction of dimensionality, we will compute EigScore(r)

associated with the eigenvalues A\; > --- > A, of (—JE(2)J/2) as

Mt A
Al 4+ Al

EigScore(r) :

Clearly, 0 < EigScore(r) < 1. The closer to 1 EigScore(r) is, the better the dimen-
sionality is reduced to r. We also calculate the relative error that is able to measure the

preservation of local distance (PRE) as

=Y 2
> (ij)eNan (Dij — llzi — 24
2 (5.5)eNs, 128 — 251

PRE :=

% circfit is available at: https://uk.mathworks.com/matlabcentral /fileexchange/5557-circle-fit

92 Chapter 6 Numerical Experiments

6.2 Numerical Comparison among f,,
In this section, we will conduct extensive numerical simulations of our proposed method

MPEDM which is associated with four objective functions. For simplicity, we write MPEDM,,

(p, ¢ = 1,2) to denote MPEDM under each fp,.

6.2.1 Test on SNL

’Test on Example 5.1.‘ We first demonstrate the performance of MPEDM under each f

to the radio range R by fixing n = 200,m = 4, nf= 0.1 and altering R among
{0.2,0.4,---,1.4}. Average results were demonstrated in Figure 6.1 in which there

was no big difference of rRMSD. Clearly, MPEDMys got the worst RMSD in most cases.

103
10
0.022 1.2
. 95
? 2 e
= 0.018 z F 08
9 fzz
f21
0.014 85 - 04
: f
Ty
02 04 06 08 1 12 14 02 04 06 08 1 12 14 02 04 06 08 1 12 14
R R R
Figure 6.1: Example 5.1 with n = 200, m = 4,nf = 0.1.
015 01 5
0.08 4
[a]
§ 0.1 g g
2 z 0.06 E3
f22
¢ 0.04 f 2
0.05
——f, 1
0.02 ;
11 P
01 02 03 04 05 06 07 01 02 03 04 05 06 07 01 02 03 04 05 06 07
nf nf nf

Figure 6.2: Example 5.1 with n = 200,m =4, R =0.3.

We then demonstrate the performance of MPEDM,, to the noise factor nf by fixing n =
200,m = 4,R = 0.3, and altering nf among {0.1,0.2,---,0.7}. Average results were
presented in Figure 6.2. Clearly, MPEDM;; got the best RMSD, followed by MPEDMyg, which

means they two were more robust to the noise factor due to the use of ¢; norm. By

Chapter 6 Numerical Experiments 93

contrast, MPEDMgo rendered the worst RMSD but ran the fastest. Interestingly, one may
notice that RMSD generated by MPEDM;; was bigger than rRMSD when nf> 0.5, indicating

the refinement step made the localization accuracy of MPEDM;; worse.

Table 6.5: Example 5.1 with m =4, R = 0.2,nf = 0.1.

n 1000 2000 3000 4000 5000
MPEDMa9 1.23e-2 1.06e-2 1.01e-2 9.61e-3 9.73e-3
MPEDMg; 1.22e-2 1.07e-2 1.02e-2 9.72e-3 9.82e-3
RMSD

MPEDM; o 1.23e-2 1.06e-2 1.01e-2 9.59¢-3 9.71e-3
MPEDM; 1.23e-2 1.07e-2 1.04e-2 9.87e-3 9.93e-3
MPEDMa9 3.39e-3 3.57e-3 4.71e-3 4.21e-3 2.99e-3
MPEDMg; 3.40e-3 3.58e-3 4.79e-3 4.29¢-3 3.02e-3

rRMSD MPEDM, 3.40e-3 3.52e-3 4.51e-3 4223 2.99¢-3
MPEDM, | 3.39c-3 3.57e-3 4.7le-3 4.21e-3 2.99¢-3
MPEDMy, 4.93 17.46 52.42 10461 211.16
_ MPEDMy; 5.20 17.06 51.55 103.05 215.97
Time MPEDM, 5.78 18.77 59.38 111.46 227.30
MPEDM, | 4.91 17.93 50.91 104.34 212.65
MPEDMy, 3.12 3.74 11.22 8.78 47.14
MPEDMy; 5.65 2.88 10.49 13.09 43.53

rTime
MPEDM 5 5.86 3.77 11.58 8.39 44.68
MPEDM, 3.20 3.27 10.58 8.52 43.68

Finally, we test this example with much larger sizes n € {1000, 2000, ...,5000} and
fixing m = 4, R = 0.2,nf = 0.1. Average results were recorded in Table 6.5. It can be
clearly observed that four objective functions made MPEDM,, generated similar results,
which was probably because the small noise factor nf = 0.1 added. In addition, along
with ascending of n, RMSD tended to be better. The reason of such phenomenon was
that the network became much denser when n increasing since all points were generated

in a unit region.

’Test on Example 5.2.‘ We first demonstrate the performance of MPEDM under each f

to the radio range R by fixing n = 200,m = 4, nf= 0.1 and altering R among
{0.2,0.4,---,1.4}. Average results were demonstrated in Figure 6.3. It can be seen
that there was no big different of rRMSD. Obviously, MPEDMs, still got the worse RMSD but

ran the fastest in most cases.

94 Chapter 6 Numerical Experiments

15
0.011
0.05
o 0.04 L1
7 £
= 0.01 E
@)/
0.03 ar
f
21
05
0.02 ——f, >
: 0.009 ——fy
02 04 06 08 2 1 02 04 06 08 1 12 14 02 04 06 08 1 12 14
R R R

Figure 6.3: Example 5.2 with n = 200, m = 4,nf = 0.1.

We then demonstrate the performance of our method under each f to the noise factor nf
by fixing n = 200,m = 4, R = 0.3, and altering nf among {0.1,0.2,---,0.7}. Average
results were demonstrated in Figure 6.4. Clearly, MPEDM;; got the best RMSD, followed
by MPEDMs1, again indicating £1 norm were more robust to the noise factor. By contrast,
MPEDM»ss rendered the worst RMSD. After refinement, all of them produced similar rRMSD.
In terms of computational speed, MPEDMy, ran the fastest indeed, followed by MPEDMs;

and MPEDM;», and MPEDM;; came the last.

0.07
0.16 4
0.14 0.06
0.05 3
5 0.12 . o .
Z o1 2004 E
N f22 2
0.08 0.03 ‘
21
0.06 0.02 —-=f, 1
0.04 0.01 '
01 02 03 04 05 06 01 02 03 04 05 06 07 01 02 03 04 05 06 07
nf nf nf
Figure 6.4: Example 5.2 with n = 200,m =4, R = 0.3.
5 %107 p
0.065 5 1.2
f22
5.6 ;
0.06 21 11
, 5.4 —o—f X
12 1
) 0.055 052 fu
7] 2 € 0o
2 005 g 5 = >
0.8
0.045 484
4.6) 0.7
0.04
< 4.4 0.6
10 20 30 40 10 20 30 40 10 20 30 40
m m m

Figure 6.5: Example 5.3 with n = 200,m =4, R = 0.2.

Chapter 6 Numerical Experiments 95

Test on Example 5.3.| This example has randomly size anchors, thus we demonstrate

the performance of MPEDM under each f to the anchors number m by fixing n = 200, R =
0.2, nf= 0.1 and altering m among {5, 10, - -- ,40}. Average results were shown in Figure
6.5. It can be seen that MPEDM;; and MPEDMy; out performed the other two both in terms

of RMSD and Time. But after refinement, there was no big difference of rRMSD.

We then plot the embedding of MPEDM,, associated with the noise factor by choosing
nf from {0.3,0.5,0.7,0.9} and fixing n = 200,m = 10, R = 0.3 in Figure 6.6, where
10 anchors were plotted in green squares and ﬂef in pink points were jointed to its
ground truth locations (blue circles). No big difference when nf< 0.5. However, when
nf got bigger, MPEDM;; and MPEDMy; achieved the best rRMSD, followed by MPEDM;5. And

apparently MPEDMys failed to locate when nf= 0.9.

rRMSD = 5.79e-02 rRMSD = 1.56e-01

D

Figure 6.6: Example 5.3 with n = 200,m = 10, R = 0.3.

96 Chapter 6 Numerical Experiments

Test on Example 5.4.| We first demonstrate the performance of MPEDM,, to the noise

factor nf by fixing n = 200, m = 10, R = 0.3, and altering nf among {0.1,0.2,---,0.7}.
Average results were demonstrated in Figure 6.7. Clearly, MPEDM;; got the best RMSD,
followed by MPEDMs;. By contrast, MPEDMos rendered the worst RMSD but ran the fastest.
Moreover, MPEDM;, and MPEDMy; benefited a lot from the refinement since they two
rendered the best rRMSD. And MPEDM;; benefited less from the refinement along with nf
increasing. Interestingly, when nf got bigger, RMSD was smaller. For example, MPEDM;

yielded better RMSD when nf> 0.5 than those when 0.2 < nf < 0.5.

¥
0.2 0.06 |~ fo 8
0.05 f21
Ol—1, 6
——f
9) 0.15 % 0.04 11 g
o % 0.03 4
0.1 0.02 m
2
0.01 :
é
01 02 03 04 05 06 0.7 01 02 03 04 05 06 0.7 01 02 03 04 05 06 07
nf nf nf
Figure 6.7: Example 5.4 with n = 200, m = 10, R = 0.3.
rRMSD = 5.48¢-02 rRMSD = 6.85e-02 rRMSD = 6.30e-02 rRMSD = 7.92e-02
N 04 0.4
= 0.4
2 o2 0.2 0.2
o (J
= 0 0 ® 0 °
0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1
rRMSD = 9.08e-03 rRMSD = 1.60e-02 rRMSD = 2.36e-02 rRMSD = 4.40e-02
] 0.4
s 0.4 0.4
2 o2 0.2 0.2
o
2 0 0 el 0 °
0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1
rRMSD = 9.16e-03 rRMSD = 1.61e-02 rRMSD = 2.37e-02 rRMSD = 4.40e-02
S04
g 0.4
2 02 0.2
[a
= 0 0 .
0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1
rRMSD = 9.08e-03 rRMSD = 1.60e-02 rRMSD = 2.37e-02 rRMSD = 4.37e-02
= 04 0.4
s 0.4 0.4
@ 0.2 0.2 0.2 0.2
= 0 b 0 - 0 D
0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1
nf=0.3 nf=0.5 nf=0.7 nf=0.9

Figure 6.8: Example 5.4 with n = 500, m = 10, R = 0.3.

Chapter 6 Numerical Experiments 97

We then plot the embedding of MPEDM,, with fixing n = 500,m = 10,R = 0.3 but
varying nf from {0.3,0.5,0.7,0.9} in Figure 6.8. Clearly, all methods except for MPEDMao
were capable of capturing the shape of three letters. By contrast, the shape of letter ‘M’

obtained by MPEDMyy, was deformed more heavily as the rising of nf.

Finally, we test this example with much larger sizes n € {1000, 2000, ...,5000} and
fixing m = 10, R = 0.1,nf = 0.1. Average results were recoded in Table 6.6. Obviously,
four objective functions made MPEDM generated similar results. One may notice that the
refinement almost took over half of the total Time, which implies it is of computational

inefficiency for such example.

Table 6.6: Example 5.4 with m = 10, R = 0.1,nf = 0.1.

n 1000 2000 3000 4000 5000
MPEDMa» 5.01e-2 5.65e-2 8.00e-2 6.44e-2 8.50e-2
MPEDMy; 5.01e-2 5.63e-2 8.00e-2 6.45e-2 8.48e-2

RMSD
MPEDM 9 5.01e-2 5.64e-2 8.00e-2 6.45e-2 8.48e-2
MPEDM; 1 4.99e-2 5.61e-2 8.00e-2 6.45e-2 8.48e-2
MPEDMso 2.43e-3 5.02e-3 1.72e-2 6.31e-3 1.32e-2
MPEDMaq 2.44e-3 4.87e-3 1.54e-2 6.28e-3 1.12e-2
rRMSD
MPEDM9 2.50e-3 5.81e-3 1.55e-2 5.96e-3 1.53e-2
MPEDM 2.43e-3 5.02e-3 1.72e-2 6.31e-3 1.32e-2
MPEDMao 5.30 32.31 89.22 177.64 278.38
MPEDMaq 5.27 32.17 91.31 171.68 277.09
Time
MPEDM9 5.53 32.99 95.27 181.76 266.44
MPEDM; 1 5.24 29.48 90.25 174.19 279.84
MPEDMso 3.67 20.89 53.19 98.57 129.62
MPEDMoy 3.63 21.25 57.67 98.47 139.78
rTime
MPEDM9 3.57 20.28 57.56 101.41 117.78
MPEDM 3.69 18.55 56.77 100.94 142.37

6.2.2 Test on MC

Test on Example 5.5. | This example has two rules (5.22) and (5.23) to define N,,. We

will demonstrate the performance of MPEDM,, to them respectively.

98 Chapter 6 Numerical Experiments

Under Rule 1 To see the effect of range R, we fix s = 6, nf= 0.1 and alter R among
{2,3,...,8}. Average results were shown in Figure 6.9 in which there was no big differ-
ence of rRMSD. Basically, MPEDM1; got the best RMSD, followed by MPEDM;5 , MPEDMy; and

MPEDMo>. What is more, MPEDMyy and MPEDMs; ran faster than the rest two.

14
0.085 f
0.1 fo 1.2
| 008 —e-f,
[a) [a) f11 !
0.09
2 . 2 0.075 £os
x x =
0.08 0.07 0.6
0.4 '
0.07 0.065 | s
0.2
2 4 6 8 2 4 6 8 2 4 6 8
R R R
Figure 6.9: Example 5.5 under Rule 1 with s = 6,nf = 0.1.
To see the effect of noise factor nf, we fix s = 6, R = 3 and alter nf among €

{0.1,0.2,...,0.5}. Results were demonstrated in Figure 6.10 in which there was no
big difference of rRMSD. Apparently, MPEDM;o got the best RMSD, followed by MPEDM;; ,

MPEDMs; and MPEDMso. Obviously, MPEDMgo and MPEDMg; ran faster than the rest two.

6
0.4 0.3
" 5 f
0.25
003 ? o 0!
] g £
E z 0.2 £ 3
f
22
0.2 0.15 f 2
21
——f
0.1 12 1
0.1 ——f,
0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
nf nf nf

Figure 6.10: Example 5.5 under Rule 1 with s =6, R = 3.

To see the effect of larger size problems, we fix R = 3,nf = 0.1 and change s from
{10,12,...,18} corresponding to n € {1000,1728,...,5832}. Clearly, as reported in
Table 6.7, results under each f were not big of difference. Most importantly, our proposed
method MPEDM ran very fast even for large relatively large size problem, e.g., consuming
about 100 seconds when n = 183 = 5832. What is more, RMSD and rRMSD got bigger
along with the ascending of s, this was because more and more dissimilarities in A were

unavailable since R = 3 fixed, yielding such example more of difficulty.

Chapter 6 Numerical Experiments 99
Table 6.7: Example 5.5 under Rule 1 with R = 3,nf = 0.1.
S 10 12 14 16 18
MPEDMs9 1.22e-1 1.33e-1 1.45e-1 1.54e-1 1.62¢-1
S MPEDMy 1.25e-1 1.36e-1 1.48e-1 1.56e-1 1.64e-1
RHMSD MPEDM; 5 1.23e-1 1.35e-1 1.48e-1 1.56e-1 1.64e-1
MPEDM; 1.25e-1 1.36e-1 1.48e-1 1.56e-1 1.64e-1
MPEDMa9 6.06e-2 5.88e-2 5.82e-2 5.67e-2 5.61e-2
RMSD MPEDM» 6.06e-2 5.88e-2 5.81e-2 5.67e-2 5.62e-2
t MPEDM;2 6.06e-2 5.88e-2 5.81e-2 5.67e-2 5.62¢-2
MPEDM1 6.06e-2 5.88e-2 5.82e-2 5.67e-2 5.61e-2
MPEDMa9 2.30 7.22 18.49 40.40 119.81
- MPEDMs; 2.03 6.54 16.72 37.05 96.50
e MPEDM, 9.42 7.39 17.67 39.37 103.33
MPEDM; 2.13 6.70 16.85 37.92 97.42
MPEDMs9 0.34 1.12 1.88 4.27 14.59
MPEDMy; 0.32 0.96 2.10 4.25 6.24
rTime
MPEDM; 5 0.33 0.97 2.11 4.22 6.32
MPEDM1 0.34 0.97 2.07 4.24 6.68
0.115 o
0.4 f22 25
0.11 = D
0.35 —o—f)
0.105 +f11 2
¥ .25 € o1 15
02 0.095
1
0.15 0.09
36 38 40 42 44 46 48 36 38 40 42 44 46 48 36 38 40 42 44 46 48

Figure 6.11: Example 5.5 under Rule 2 with s = 6,nf = 0.1.

o

g

Under Rule 2 To see the effect of o, we fix s = 6, nf= 0.1 and vary ¢ among

{36, 38, --- ,48}, similar observations to Rule 1 can be seen in Figure 6.11. Namely,

MPEDM;; and MPEDM;5 got the best RMSD, followed by MPEDMs; and MPEDMss. In terms of

computational speed, MPEDMgo and MPEDMs; ran faster than the rest two. Notice that the

percentage of available dissimilarities over all elements of A ascended from 32.47% to

39.87% along with increasing o from 36 to 48, making problems more and more ‘easier’.

This would explain the generated RMSD became smaller as ¢ increased.

100

Chapter 6 Numerical Experiments

To see the effect of noise factor nf, we fix s = 6, 0 = 36 and choose nf € {0.1,0.2,--- ,0.5}.

Average results were presented in Figure 6.12. Apparently, MPEDM1; got the best RMSD,

followed by MPEDM;5 and MPEDMs;. Again, MPEDMss rendered the worst RMSD. For compu-

tational time, MPEDMss ran the fastest whilst MPEDM;; came the last.

0.5

18 o £ 45
16 2 15 f 4
1.4 j:lz 35

[a) a = o
0.8 05 2
0.6 1.5
0.1 O‘.yZ 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 Oa.l 0.2 0.3 0.4
nf nf nf
Figure 6.12: Example 5.5 under Rule 2 with s = 6,0 = 36.
Table 6.8: Example 5.5 under Rule 2 with o = s2,nf = 0.1.

s 10 12 14 16 18

MPEDMy» 7.7le-l1 9.24e-1 1.07e+0 1.21e+0 1.35e+0

MPEDMs; 7.65e-1 9.2le-l 1.07e+0 1.21e+0 1.34e+0

RMSD MPEDM, 7.69e-1 9.25e-1 1.07e+0 1.22¢+0 1.35¢+0

MPEDM, ; 7.70e-1 9.23e-1 1.07e+0 1.21e+0 1.34e+0

MPEDMq, 2.90e-1 3.90e-1 4.78e-1 5.4dlel 6.23e-1

MPEDMy; 2.77e-1 4.00e-1 4.75e-1 5.53e-1 6.08e-1

TRMSD MPEDM, 3.38¢-1 3.56e-1 4.87e-1 5.57e-1 6.67e-1

MPEDM, ; 92.90e-1 3.90e-1 4.78e-1 54lel 6.23e-1

MPEDMy, 9.48 37.06 92.96 284.15 527.80

. MPEDMy; 8.79 34.64 90.96 265.07 504.29

Time MPEDM, 10.17 52.49 104.39 299.92 563.25

MPEDM, ; 10.47 42.54 96.82 285.88 534.52

MPEDMy, 4.64 20.38 3730 13476 13745

. MPEDMy, 4.36 18.75 38.64 12317 150.21

rTime MPEDM, 2.79 29.81 36.40 12478 134.18

MPEDM, ; 5.37 24.77 39.60 13457 152.16

Finally, we test this example with much larger sizes s € {10,12,...,18}. By fixing

o = s%,nf = 0.1, we recoded average results in Table 6.8. Still, four objective functions

made MPEDM,,, generated similar results. What is more, RMSD and rRMSD got bigger along

Chapter 6 Numerical Experiments 101

with the ascending of s, this was because the percentage of available dissimilarities over
all elements of A declined from 8% to 2% when o was increased from 10 to 18, yielding

such example more challenging.

Test on Example 5.6. | In this test, we fixed R = 6, ¢ = 50% and nf = 0.1. The complete

numerical results for the 12 problems were reported in Table 6.9. It can be clearly seen
that results of MPEDM under four objective functions have no big difference. For each
data, MPEDM benefited from the refinement step but with different degree. One may
notice for data 304D, MPEDM basically failed to conform the molecule. Most importantly,
for a very large size problem 2CLJ with n = 4189, our proposed method run very fast,

for instance MPEDM1; only consumed less than 50 seconds.

Table 6.9: Self-comparisons of MPEDM for Example 5.6.

MPEDMy, MPEDMy; MPEDM, MPEDM ;
RMSD 0.887 0.886 0.886 0.886
1GM2 rRMSD 0.238 0.238 0.238 0.238
n = 166 rTime 0.159 0.153 0.154 0.153
Time 0.276 0.237 0.248 0.262
RMSD 3.497 3.497 3.497 3.497
304D rRMSD 2.601 2.601 2.601 2.601
n =237 rTime 0.147 0.149 0.147 0.147
Time 0.244 0.252 0.256 0.266
RMSD 1.040 1.040 1.040 1.040
1PBM rRMSD 0.223 0.222 0.224 0.223
n = 388 rTime 0.370 0.339 0.385 0.339
Time 0.773 0.763 0.831 0.768
RMSD 0.918 0.918 0.918 0.918
2MSJ rRMSD 0.255 0.255 0.255 0.255
n = 480 rTime 0.324 0.319 0.324 0.321
Time 0.779 0.795 0.823 0.797
RMSD 0.687 0.687 0.687 0.687
1AU6 rRMSD 0.173 0.172 0.172 0.173
n = 506 rTime 0.261 0.321 0.320 0.332
Time 0.941 1.046 1.099 1.061
RMSD 1.516 1.516 1.516 1.516
1LFB rRMSD 0.545 0.545 0.545 0.545
n =641 rTime 0.420 0.404 0.413 0.402

Time 1.246 1.267 1.294 1.267

102 Chapter 6 Numerical Experiments

RMSD 3.087 3.086 3.086 3.086
104D rRMSD 1.226 1.226 1.226 1.226
n = 766 rTime 0.665 0.658 0.679 0.652
Time 2.281 2.342 2.398 2.348
RMSD 1.596 1.596 1.596 1.596
1PHT rRMSD 1.032 1.032 1.032 1.032
n = 814 rTime 0.554 0.558 0.565 0.569
Time 2.163 2.216 2.278 2.219
RMSD 1.505 1.505 1.505 1.505
1P0OA rRMSD 0.404 0.404 0.404 0.404
n =914 rTime 0.536 0.542 0.532 0.538
Time 2.550 2.614 2.672 2.585
RMSD 1.292 1.292 1.292 1.292
1AX8 rRMSD 0.607 0.607 0.607 0.607
n = 1003 rTime 0.240 0.241 0.246 0.244
Time 2.411 2.468 2.526 2.439
RMSD 1.975 1.975 1.975 1.975
1RGS rRMSD 0.555 0.555 0.555 0.555
n = 2015 rTime 1.190 1.183 1.176 1.201
Time 10.25 10.50 10.51 10.24
RMSD 1.561 1.561 1.561 1.561
2CLJ rRMSD 0.626 0.626 0.626 0.626
n = 4189 rTime 2.889 2.907 2.879 2.912
Time 44.30 45.03 45.80 44.40

6.2.3 Test on ES

Test on Example 5.7.| As described in Example 5.7, the initial dissimilarities matrix A

can be obtained by A;; = 2R, sin(s;;/(2R,)). Tt is observed that the matrix (JA®).J)

has 15 positive eigenvalues and 14 negative eigenvalues and 1 zero eigenvalue. Therefore,
the original spherical distances are not accurate and contain large errors. Therefore, we
apply MPEDM to correct those errors. We plotted the resulting coordinates of the 30
cities in Figure 6.13, where the true coordinates x; and estimated coordinates X; of 30
cities were presented as blue circles and pink dots respectively. One of the remarkable
features was that MPEDM waws able to recover the Earth radius with high accuracy
Rest =~ 39.59 = R,. It seemed that MPEDM;s slightly outperformed others due to the

smallest FES and closest Rqst to Ry.

Chapter 6 Numerical Experiments

103

f,: FES=173e-03, R =39.592 [, FES=271e.03, R 39,593
5"3—*'1.»‘&&, =

AT

f,, FES=3.04e-03, R =39.593

ast

Figure 6.13: Example 5.7: embedding 30 cities on earth for data HA30.

Test on Example 5.8.| We apply MPEDM to first relocate [x; - -Xg] to derive [Xj - -

. §6]

and then find a circle by circlefit base on new points. The new results were depicted

in Figure 6.14, where the coordinates x; and estimated coordinates X; of 6 points were

presented as blue circles and pink dots respectively. Apparently, the new found circles

fitted much better than the circle in Figure 6.15. It is worth mentioning that four FES

achieved by MPEDM,, were smaller than 3.6789 reported by Bai and Qi (2016) and close

to 3.1724 reported by Beck and Pan (2012). One may ask if circlefit is able to find

the circle of the 6 original points [x; - - - xg] directly. We now plotted its found circle in

Figure 6.15. Clearly, the found circle was not fitted the original points well, which also

indicates our proposed method MPEDM making sense to relocate [X; - - - Xg| first and then

find the circle.

104 Chapter 6 Numerical Experiments

f22: FES=3.3454, Rest: 8.884 f211 FES=3.3404, Rest: 9.147
8
6
5,
4
2
0 Oy
-2
-4 5l
-6
-8
-10 i =10t
-5 0 5 10 -5 0 5 10
f . FES=3.3864, R__=8.409 f . FES=3.3804, R _=8.526
12 est 11 est
8 8
6 6
4 4
2 2
0 0
2 -2
-4 -4
-6 -6t
-8 -8
-10 -10
-5 0 5 10 -5 0 5 10

Figure 6.14: Example 5.8: fitting 6 points on a circle.

FES=7.4180, R__=3.306
est

10}
(o)
8t o
o O o
6t
(o)
4t
2t
0 2 4 6 8

Figure 6.15: Example 5.8: fitting 6 points on a circle by circlefit.

Chapter 6 Numerical Experiments 105

Test on Example 5.9.| We first demonstrate the performance of MPEDM under each f to

n by fixing nf= 0.1 and altering n among {10, 20,---,100}. Clearly, as increasing of n,
more information will be obtained, leading to problems being easier. This phenomenon
can be explained by Figure 6.16, in which we plotted results by MPEDM;;. The coordinates
x; and estimated coordinates X; were presented as blue circles and pink dots respectively.
It can be clearly seen that FES declined and Res got closer to 1 when n got bigger,

namely, more and more information were provided.

n=10: FES=8.24e-03, Rest: 1.012 n=30: FES=2.76e-04, Rest: 1.000

Figure 6.16: Example 5.9: circle fitting with nf= 0.1 by MPEDM;.

Average results were plotted in Figure 6.17 in which MPEDM;; got the best FES and RMSD
in most cases, followed by MPEDM1o, MPEDMs; and MPEDMss. In terms of cup time, MPEDM;9

ran the fastest and MPEDM;; came last.

106 Chapter 6 Numerical Experiments

%107
4 0.08
0.07 025
4
[}
£
0.05 F 0.15
0.04 0.1
0.03 L 005
20 40 60 80 100 20 40 60 80 100
n n

Figure 6.17: Example 5.9 with nf = 0.1.

nf=0.0: FES=5.30e-29, Rest: 1.000 nf=0.2: FES=2.63e-03, Rest: 1.000

Figure 6.18: Example 5.9: circle fitting with n = 200 by MPEDM;;.

We then demonstrate the performance of MPEDM,, to the noise factor nf by fixing n =

200, and altering nf among {0.1,0.2,--- ,0.7}. Similarly, we presented results by MPEDM;;

Chapter 6 Numerical Experiments 107

in Figure 6.18. Apparently, FES became bigger and Res; got more far away from 1 when
nf increased. However, even with very large noise (e.g., nf = 0.7) being contaminated,
MPEDM was still able to find a circle that fitted the estimated data slightly bad but fitted

the original data very well.

Average results were demonstrated in Figure 6.19. Clearly, MPEDM;; got the best FES
and RMSD, followed by MPEDM;o, and MPEDMs;. MPEDMss came last. In terms of cup time,
MPEDMsy and MPEDMs; ran faster than the other two. Moreover, all FES, RMSD and Time
were ascending with nf rising. However, since all FES were quite small (in order of 10~2),

MPEDM was capable of find a proper circle to well fit original data.

0.025 f 035
0.12 f22 ’
0.02 = 03
0.1|—8—1y, 4 '
——f
11 0.25
U)O'015 9)0-08 GE')

i P F 02
4 .

0.01 0.06
0.15

0.005 0.04
0.1

0.02 :
01 02 03 04 05 06 07 01 02 03 04 05 06 07 01 02 03 04 05 06 0.7
nf nf nf

Figure 6.19: Example 5.9 with n = 200.

6.2.4 Test on DR

For simplicity, 5-NNR (i.e., k = 5) is used to generate N,, and nf = 0.1. To reduce the
dimensionality sufficiently, we set Ktol= 10~° in (6.3). Since below numerical results
have shown that each MPEDM,, has similar results for DR problems, we only visualize

results of MPEDM;; on graphs.

’Test on Example 5.10.| The ‘teapot’ images have 76 x 101 pixels, with 3 byte color

depth, giving rise to inputs of 23028 dimensions. As described by Weinberger and
Saul (2006), though very high dimensional, the images in this data set are effectively
parameterized by one degree of freedom: the angle of rotation, and two dimensional
(r = 2) embedding is able to represent the rotating object as a circle. As presented in
Figure 6.20, MPEDM;; generated embedding which formed a proper circle as expected, and
obtained two large eigenvalues of (—Jﬁ@)J /2). It is worth mentioning that ISOMAP
(Tenenbaum et al., 2000) returned more than two nonzero eigenvalues, which leaded to

the artificial wave in the third dimension, seen comments by Ding and Qi (2017).

108 Chapter 6 Numerical Experiments

(a) Visualization (b) Eigenvalues

Figure 6.20: Example 5.10: dimensionality reduction by MPEDM.

The whole results were recorded in Table 6.10, where EigScore(2) was very close to 1,
indicating MPEDM was capable of capturing the two main features of ‘teapot’ images
data. Moreover, our method also preserved the local distances well since PRE was quite

small, and apparently, ran very fast.

Table 6.10: Results of MPEDM,, on Example 5.10.

MPEDMao MPEDM2 MPEDM; 9 MPEDM1,
EigScore(2) 0.9848 0.9848 0.9848 0.9848
PRE 0.0764 0.0704 0.0704 0.0704
Time 0.4085 0.2409 0.2614 0.3057

Test on Example 5.11. | The ‘face698’ images have three features, naturally leading to 3

dimensional embedding. As demonstrated in Figure 6.21, MPEDM;; generated embedding
well capturing the three features. More detailed, in subfigure 6.21(b), from the horizontal
axis, faces in images pointed to left side and gradually to right side, then from the vertical
axis, faces in images looked down and gradually looked up. In subfigure 6.21(c), the
light shot faces from left side and gradually shot faces from right side. And it can clearly
seen that MPEDM;; rendered three large eigenvalues of (—Jﬁ(Q)J /2) in subfigure 6.21(d).

Chapter 6 Numerical Experiments 109

2 3

o a

c

s s

S)

7 =)

o |

= =}

- - - . -
Light direction Left-right pose Left-right pose
(a) 3 dimensional embedding (b) 2 dimensional embedding

)

[72}

o

<%

c

=

[S)

T

o

D

Light direction
(c) 2 dimensional embedding (d) 3 main eigenvalues

Figure 6.21: Example 5.11: dimensionality reduction by MPEDM.

The whole results were recorded in Table 6.11, where EigScore(3) was very close to 1,
indicating MPEDM was capable of capturing the three major features of ‘face698’ images
data. Moreover, our method also preserved the local distances well since PRE was quite

small, and apparently, ran very fast.

Table 6.11: Results of MPEDM,, on Example 5.11.

MPEDMoo MPEDM»q MPEDM9 MPEDM14
EigScore(3) 0.9616 0.9612 0.9612 0.9612
PRE 0.0704 0.0681 0.0681 0.0681

Time 1.6568 1.5571 1.8546 1.6493

110

Chapter 6 Numerical Experiments

Test on Example 5.12.| The ‘digitl’ images have two features, naturally leading to 2

dimensional embedding. As demonstrated in Figure 6.22, two features ‘Line thickness’

and ‘Slant’ generated by MPEDM;; were properly posed in left subfigure, and thus two

expected relatively large eigenvalues were got (see in right subfigure).

Line thickness

Slant

Figure 6.22: Example 5.12: dimensionality reduction by MPEDM.

The whole results were recorded in Table 6.12, where EigScore(2) was very close to 1,

indicating MPEDM was capable of capturing the two main features of ‘digitl’ images

data. Moreover, our method also preserved the local distances well since PRE was quite

small, and apparently, ran fast.

Table 6.12: Results of MPEDM,, on Example 5.12.

MPEDMao MPEDM; 9 MPEDM1,
EigScore(2) 0.9375 0.9376 0.9376
PRE 0.0773 0.0702 0.0702
Time 13.274 15.891 14.664

6.3 Numerical Comparison with Existing Methods

In this section, we will compare our proposed method MPEDM under objective function

f11 (i-e., MPEDM, for simplicity, we still write it as MPEDM) with six representative state-

of-the-art methods: ADMMSNL (Piovesan and Erseghe, 2016), ARAP (Zhang et al., 2010),

Chapter 6 Numerical Experiments 111

EVEDM (Drusvyatskiy et al., 2017, short for EepVecEDM), PC (Agarwal et al., 2010), PPAS
(Jiang et al., 2013, short for PPA Semismooth) and SFSDP (Kim et al., 2012). In following
comparison, results of some methods will be omitted either it made our desktop ran out
of memory (such as ADMMSNL when n > 500, R = v/2 for Example 5.1) or it consumed
too much time being longer than 10* seconds (such as ARAP when n > 1000, R = /2 for

Example 5.1). We use ‘——’ to denote the omitted results.

6.3.1 Benchmark methods

The above mentioned six methods have been shown to be capable of returning satisfac-
tory localization/embedding in many applications. We will compare our method MPEDM
with ADMMSNL, ARAP, EVEDM, PC and SFSDP for SNL problems and with EVEDM, PC, PPAS
and SFSDP for MC problems since the current implementations of ADMMSNL, ARAP do not

support the embedding for r > 3.

We note that ADMMSNL is motivated by Soares et al. (2015) and aims to enhance the
package diskRelax of Soares et al. (2015) for the SNL problems (r = 2). Both methods
are based on the stress minimization (2.3). As we mentioned before that SMACOF (De
et al., 1977; De Leeuw and Mair, 2011) has been a very popular method to tackle stress
minimization (2.3) though, we are not to compare it with other methods here since its
performance demonstrated in (Zhang et al., 2010; Zhou et al., 2018a) was poorly both for
SNL and MC problems. PC was proposed to deal with the model with same objective
function of (2.6). We select SFSDP because it solves problem with objective function
(2.5). The rest of methods take advantage of “squared” distances and least square loss

function, namely, (2.4). Overall, each model will be addressed by these methods.

In our tests, we used all of their default parameters except one or two in order to achieve
the best results. In particular, for PC, we terminate it when |f(D*~1) — f(D¥)| < 107* x
f(DF) and set its initial point the embedding by cMDS on A. For SFSDP which is a high-
level MATLAB implementation of the SDP approach initiated in Wang et al. (2008),
we set pars.SDPsolver = “sedumi” because it returns the best overall performance. In
addition, as suggested when we solve problems with noise, we set pars.objSW = 1 when
m > r+ 1 and = 3 when m = 0. For ARAP, in order to speed up the termination, we

let tol = 0.05 and IterNum = 20 to compute its local neighbour patches. Numerical

112 Chapter 6 Numerical Experiments

performance demonstrated that ARAP could yield satisfactory embedding, but took long

time for examples with large n.

6.3.2 Comparison on SNL

Effect to Radio range R.| It is easy to see that the radio range R decides the amount

of missing dissimilarities among all elements of A. The smaller R is, the more numbers
of §;; are unavailable, yielding more difficult problems. Therefore, we first demonstrate
the performance of each method to the radio range R. For Example 5.1, we fix n =
200,m = 4, nf= 0.1, and alter the radio range R among {0.2,0.4,---,1.4}. Average
results were demonstrated in Figure 6.23. It can be seen that ARAP and MPEDM were
joint winners in terms of both RMSD and rRMSD. However, the time used by ARAP was
the longest. When R got bigger than 0.6, ADMMSNL, SFSDP and EVEDM produced similar
rRMSD as ARAP and MPEDM, while the time consumed by ADMMSNL was significantly larger

than that by SFSDP, EVEDM and MPEDM. By contrast, PC only worked well when R > 1.

ADMMSNL

——PC

—©— SFSDP)
ARAP 10

—>— EVEDM i

—*— MPEDM

®

02 04 06 08 1 12 14 02 04 06 08 1 12 14 02 04 06 08 1 12 14
R R R

Figure 6.23: Average results for Example 5.1 with n = 200, m = 4, nf= 0.1.

Next we test a number of instances with larger size n € {300,500,1000,2000}. For
Example 5.1, average results were recorded in Table 6.13. When R = v/2 under which
no dissimilarities were missing because Example 5.1 was generated in a unit region,
PC, ARAP and MPEDM produced the better RMSD (almost in order of 1073) but after
refinement all methods got similar rRMSD. This meant SFSDP and EVEDM benefited a lot
from refinement. For computational speed, MPEDM outperformed others, followed by PC,

EVEDM and SFSDP. By contrast, ARAP consumed too much time even when n = 500.

Chapter 6 Numerical Experiments 113

Table 6.13: Comparison for Example 5.1 with m = 4, R = v/2,nf = 0.1.

n ADMMSNL PC SFSDP ARAP EVEDM MPEDM
RMSD 2.07e-2 8.31e-3 1.21e-1 1.01e-2 5.95e-2 1.11e-2
rRMSD 7.82e-3 7.86e-3 7.89e-3 7.96e-3 7.93e-3 7.80e-3

300 rTime 3.63 0.66 3.87 0.94 3.35 1.06
Time 348.13 1.36 6.79 503.86 3.84 1.36
RMSD —— 6.11e-3 1.19e-1 7.51e-3 5.87e-2 8.46e-3
rRMSD —— 5.94e-3 5.96e-3 6.04e-3 6.70e-3 6.11e-3

500 rTime —— 1.37 14.79 3.26 13.35 3.92
Time —— 3.83 20.22 2479.8 14.44 4.41
RMSD —— 4.46e-3 1.25e-1 —— 5.81e-2 6.59e-3
rRMSD —— 4.15e-3 7.34e-3 —— 6.53e-3 4.59¢-3

1000 rTime —— 3.51 83.96 —— 68.06 9.75
Time —— 23.05 103.29 —— 71.52 10.85
RMSD —— 3.30e-3 1.20e-1 —— 5.92e-2 4.57e-3
rRMSD —— 3.10e-3 7.82e-3 —— 1.24e-2 3.37e-3

2000 rTime —— 12.74 282.88 —— 258.97 13.04
Time —— 143.41 398.87 —— 271.91 18.49

Table 6.14: Comparison for Example 5.1 with m =4, R = 0.2,nf = 0.1.

n ADMMSNL PC SFSDP ARAP EVEDM MPEDM
RMSD 3.48e-1 4.42¢e-1 1.93e-1 4.02e-2 6.81le+1 1.88e-2
rRMSD 3.33e-1 3.12¢e-1 1.73e-1 6.83e-3 1.72e-1 6.82e-3

300 rTime 0.50 0.44 0.41 0.36 0.48 0.36
Time 84.19 2.37 3.45 24.11 0.56 0.47
RMSD 3.53e-1 4.30e-1 2.02e-1 1.95e-2 1.52e-1 1.77e-2
rRMSD 3.35e-1 3.11e-1 1.80e-1 5.57e-3 5.59¢-2 5.51e-3

ou0 rTime 1.11 1.15 1.06 0.80 1.11 0.92
Time 156.76 5.50 6.90 161.04 1.30 1.23
RMSD 3.62e-1 4.54e-1 1.79¢e-1 9.96e-3 7.21e-2 1.46e-2
rRMSD 3.44e-1 3.16e-1 1.28e-1 3.57e-3 4.06e-3 3.83e-3

1000 rTime 5.58 5.58 5.25 1.69 5.16 3.76
Time 450.03 24.82 19.90 2833.5 6.00 5.86
RMSD 3.7le-1 4.35e-1 1.80e-1 —— 5.92e-2 1.37e-2
rRMSD 3.51e-1 3.63e-1 8.29e-2 —— 3.53e-3 3.29e-3

2000 rTime 40.40 40.65 37.94 —— 24.72 4.58

Time 1255.1 171.01 77.03 —— 32.31 17.51

114 Chapter 6 Numerical Experiments

When R = 0.2, average results were reported in Table 6.14. The picture was significantly
different since there were large amounts of unavailable dissimilarities in A. Basically,
ADMMSNL, PC and SFSDP failed to localize even with refinement due to undesirable RMSD
and rRMSD (both in order of 107!). Clearly, ARAP and MPEDM produced the best RMSD and
rRMSD, and EVEDM got comparable rRMSD but inaccurate RMSD. In terms of computational
speed, EVEDM and MPEDM were very fast, consuming about 30 seconds to solve problem

with n = 2000 nodes. By contrast, ARAP and ADMMSNL still were the slowest.

For Example 5.4, average results were recorded in Table 6.15. One can discern that
no and large numbers of dissimilarities were missing when R = 4/1.25 and R = 0.1
respectively because this example was generated in region [0, 1] x [0,0.5] as presented
in Fig. 5.1. When R = v/1.25, it can be clearly seen that SFSDP and EVEDM basically
failed to recover before refinement owing to large RMSD (in order of 10~!), whilst the rest
four methods succeeded in localizing. However, they all achieved similar rRMSD after
refinement except for EVEDM under the case n = 500. Still, MPEDM ran the fastest and
ARAP came the last, (5.13 vs. 2556.3 when n = 500).

Table 6.15: Comparisons for Example 5.4 with m = 10, R = +/1.25,nf = 0.1.

n ADMMSNL PC SFSDP ARAP EVEDM MPEDM
RMSD 4.02e-2 5.33e-3 1.45e-1 1.27e-2 1.62e-1 9.26e-3
rRMSD 5.12e-3 5.14e-3 5.11e-3 5.12e-3 5.09e-3 5.15e-3

300 rTime 3.28 0.66 3.71 1.69 3.94 1.44
Time 346.98 2.00 6.74 553.87 4.42 1.87
RMSD —— 4.09e-3 1.07e-1 8.50e-3 1.63e-1 7.15e-3
rRMSD —— 4.03e-3 4.04e-3 4.05e-3 1.02e-1 4.15e-3
500 rTime —— 2.68 17.28 7.07 17.39 3.12
Time —— 7.24 23.44 2556.3 18.89 5.13
RMSD —— 3.07e-3 1.12e-1 —— 1.28e-1 5.05e-3
rRMSD —— 2.98e-3 3.50e-3 —— 4.15e-3 3.15e-3
1000 rTime —— 10.35 119.79 —— 122.12 15.73
Time —— 43.69 140.66 —— 125.46 20.11
RMSD —— 2.36e-3 1.15e-1 —— 1.03e-1 3.75e-3
rRMSD —— 2.28e-3 7.34e-3 —— 7.78e-3 2.26e-3
2000 rTime —— 13.43 537.70 —— 489.30 10.59

Time —— 238.31 659.71 —— 500.72 20.25

Chapter 6 Numerical Experiments 115

Now take a look at the results of R = 0.1 in Table 6.16. MPEDM generated the most
accurate RMSD and rRMSD (in order of 1073) whilst results of rest methods were only
in order of 10~2. Obviously, ADMMSNL, PC and EVEDM failed to localize. Compared with
other four methods, EVEDM and MPEDM were joint winners in terms of computational
speed, only with 30 seconds to address problems with n = 2000, a large scale network.

But we should mention here EVEDM failed to localize.

Table 6.16: Comparisons for Example 5.4 with m = 10, R = 0.1,nf = 0.1.

n ADMMSNL PC SFSDP ARAP EVEDM MPEDM
RMSD 1.81e-1 3.77e-1 8.64e-2 8.19e-2 4.06e-1 3.97e-2
rRMSD 1.43e-1 1.24e-1 6.69e-2 5.38e-2 1.17e-1 8.21e-3

300 rTime 0.27 0.22 0.21 0.21 0.22 0.21
Time 76.57 1.21 3.24 7.24 3.41 0.32

RMSD 9.73e-2 3.30e-1 5.08e-2 5.77e-2 2.16e-1 3.63e-2
rRMSD 7.82e-2 1.15e-1 3.48e-2 3.08e-2 9.78e-2 3.63e-3

200 rTime 0.67 0.63 0.60 0.58 0.61 0.50
Time 148.06 3.63 6.41 50.81 2.07 1.85
RMSD 2.26e-1 3.29e-1 4.80e-2 8.75e-2 2.22e-1 5.01e-2
rRMSD 1.01e-1 1.21e-1 9.15e-3 4.55e-2 1.02e-1 2.95e-3
1000 rTime 2.74 2.66 2.67 2.58 2.61 2.60
Time 353.07 18.01 17.10 842.43 3.22 4.24
RMSD 1.66e-1 3.29e-1 8.21e-2 —— 1.02e-1 5.73e-2
rRMSD 1.22e-1 1.53e-1 7.10e-2 —— 3.64e-2 4.97e-3
2000 rTime 23.22 23.30 23.06 —— 23.12 17.99
Time 887.30 108.81 62.65 —— 26.12 29.89

’Effect to anchors’ number m. ‘ As what we expect, more anchors are given, and more

easily the problem is to be solved since more information are provided. We thus then
demonstrate how anchors’ number m would effect the performance of each method. For
Example 5.2, we fix n = 200, R = 0.2, nf= 0.1, and alter anchors’ number m among
{5,10,---,40}. As presented in Figure 6.24, it can be seen that ARAP and MPEDM were
again joint winners in terms of both RMSD and rRMSD. And rRMSD produced by the rest
methods declined along with more anchors being given. What is more, MPEDM was the

fastest, followed by EVEDM, PC and SFSDP, whilst ADMMSNL and ARAP ran quite slowly.

116

Chapter 6 Numerical Experiments

05,

ADMMSNL

ADMMSNL

10?

10

20

30
m

Figure 6.24: Average results for Example 5.2 with n = 200, R = 0.2, nf= 0.1.

o
i

o
N

o

m=30

a!‘m'd‘ ’ "$

m=50

}Hu

3.-7!‘"?'«‘- Lo

»@w

M‘%

0.5

-f@qz '&a‘f{

s

é&é

a@&?“‘*?

S86s

“%4 m“%‘ﬁ i 3’% 3

-va
Fomo S

R | Bret DR . Brang B
’3’; 'O mﬁg o E o S

Figure 6.25: Localization for Example 5.4 with n = 500, R = 0.1, nf= 0.1.

Chapter 6 Numerical Experiments 117

Next for Example 5.4 with fixed n = 500, R = 0.1, nf= 0.1, we test it under m €
{10,30,50}. As depicted in Figure 6.25, ARAP and MPEDM were always capable of cap-
turing the shape of letters ‘E’, ‘D’ and ‘M’ that was similar to Figure 5.1. By contrast,
SFSDP and EVEDM derived desirable outline of three letters only when m = 50, and
ADMMSNL and PC got better results along with increasing of m but still with deformed
shape of letter ‘M’.

Finally we test a number of instances with sizes n € {300, 500, 1000, 2000}. For Example
5.2 with m = 10, its average results were recorded in Table 6.17. ADMMSNL and PC got
undesirable RMSD and rRMSD (both in order of 10~!). SFSDP benefited greatly from the
refinement because it generated relatively inaccurate RMSD. By contrast the rest three
methods enjoyed the successful recovering except for EVEDM under the case n = 300.
Regarding to computational speed, EVEDM and MPEDM were the fastest, followed by SFSDP,
PC, ADMMSNL and ARAP.

Table 6.17: Comparisons for Example 5.2 with m = 10, R = 0.2,nf = 0.1.

n ADMMSNL PC SFSDP ARAP EVEDM MPEDM
RMSD 2.56e-1 4.59e-1 1.34e-1 2.60e-2 2.72e-1 3.99e-2
rRMSD 2.49e-1 2.43e-1 7.19e-2 6.71e-3 1.44e-1 6.69e-3

300 rTime 0.40 0.43 0.36 0.26 0.39 0.28
Time 81.62 2.02 3.18 24.92 0.47 0.40
RMSD 1.86e-1 4.41e-1 9.70e-2 2.42e-2 8.62e-2 3.29e-2
rRMSD 1.82e-1 2.07e-1 4.99e-2 5.07e-3 5.05e-3 5.02e-3
200 rTime 0.81 1.30 0.93 0.69 0.84 0.64
Time 163.55 4.70 6.67 170.82 1.04 1.02
RMSD 1.82e-1 4.39e-1 9.93e-2 2.7le-2 6.88e-2 3.95e-2
rRMSD 1.60e-1 1.96e-1 2.92e-2 3.21e-3 3.20e-3 3.63e-3
1000 rTime 4.79 2.53 4.38 3.90 4.66 3.71
Time 441.08 24.70 18.64 2861.9 0.47 5.18
RMSD 2.17e-1 4.39e-1 1.30e-1 —— 6.08¢-2 5.03e-2
rRMSD 1.87e-1 2.54e-1 6.88e-2 —— 2.64e-3 2.82e-3
2000 rTime 39.22 39.32 36.29 —— 33.85 14.43
Time 1251.07 170.55 75.29 —— 37.33 28.95

When m = 50, its average results were recorded in Table 6.18. Under such case, more

information known, results were better than before, especially for methods ADMMSNL and

118 Chapter 6 Numerical Experiments

PC. But PC still solved problems unsuccessfully before refinement. The rest five methods
basically managed to embed all problems but with different degrees. For example, MPEDM
produced the most accurate rRMSD for all cases. The comparison of computational speed

is similar to the case of m = 10.

Table 6.18: Comparisons for Example 5.2 with m = 50, R = 0.2,nf = 0.1.

n ADMMSNL PC SFSDP ARAP EVEDM MPEDM
RMSD 3.19e-2 4.49e-1 3.09e-2 5.30e-2 1.09e-1 5.07e-2
rRMSD 3.10e-2 4.39e-2 1.13e-2 1.26e-2 1.84e-2 5.78e-3

300 rTime 0.12 0.20 0.09 0.09 0.11 0.09
Time 74.71 1.44 2.41 48.83 0.22 0.25
RMSD 2.80e-2 4.60e-1 3.54e-2 4.39e-2 5.10e-2 6.09e-2
rRMSD 2.68e-2 4.93e-2 6.77e-3 4.42e-3 5.6le-3 4.42e-3
°00 rTime 0.24 0.50 0.21 0.21 0.19 0.19
Time 144.93 4.25 4.67 232.14 0.46 0.72
RMSD 1.91e-2 4.57e-1 3.21e-2 2.27e-2 5.06e-2 5.99e-2
rRMSD 1.27e-2 3.75e-2 4.76e-3 2.94e-3 2.94e-3 2.94e-3
1000 rTime 1.05 2.52 1.10 1.05 1.01 1.12
Time 406.88 20.29 12.48 3150.6 1.86 4.02
RMSD 2.17e-2 4.47e-1 3.63e-2 —— 5.16e-2 4.72e-2
rRMSD 6.13e-3 2.78e-2 3.52e-3 —— 2.06e-3 2.06e-3
2000 rTime 11.89 25.95 10.43 —— 8.80 7.71
Time 1171.22 156.45 40.45 —— 11.15 22.53

Effect to noise factor nf. ‘ To see the performance of each method to the noise factor,

we first test Example 5.4 with fixing n = 200, m = 10, R = 0.3 and varying the noise
factor nf € {0.1,0.2,--- ,0.7}. As shown in Figure 6.26, in terms of RMSD it can be
seen that ARAP got the smallest ones, whilst EVEDM and PC obtained the worst ones. The
line of ADMMSNL dropped down from 0.1 < nf < 0.3 and then ascended, by contrast
the line of MPEDM reached the peak at nf = 0.3 but declined afterwards and gradually
approached to RMSD of ARAP. However, after refinement, ARAP, SFSDP and MPEDM derived
similar rRMSD while the other three methods produced undesirable ones. Apparently,
EVEDM was indeed the fastest but basically failed to locate when nf > 0.3, followed by

PC, SFSDP and MPEDM. Again, ARAP and ADMMSNL were always the slowest.

Chapter 6 Numerical Experiments 119

0.4 0.2
L 10°
—
0.3 0.15
) 2 ADMMSNL 10 L
——PC (0]
50.2 5 0.1 A SreDP g
= ARAP g N
—>— EVEDM
N . W 10° i
é ']
0 of
01 02 03 04 05 06 0.7 01 02 03 04 05 06 0.7 01 02 03 04 05 06 0.7
nf nf nf

Figure 6.26: Average results for Example 5.4 with n = 200, m = 10, R = 0.3.

Next, we test Example 5.2 with a moderate size n = 200, m = 4 and R = 0.3 but with
altering nf € {0.1,0.3,0.5}. The actual embedding by each method was shown in Figure
6.27, where the four anchors were plotted in green square and X; in pink points were
jointed to its ground truth location (blue circle). It can be clearly seen that ARAP and
MPEDM were quite robust to the noise factor since their localization matched the ground
truth well. EVEDM failed to locate when nf = 0.5. By contrast, SFSDP generated worse

results when nf got bigger, and ADMMSNL and PC failed to localize for all cases.

Table 6.19: Comparisons for Example 5.1 with m =4, R = 0.3,nf = 0.1.

n ADMMSNL PC SFSDP ARAP EVEDM MPEDM
RMSD 3.16e-1 4.46e-1 1.74e-1 1.03e-2 6.58e-2 1.64e-2
rRMSD 2.84e-1 3.10e-1 9.63e-2 6.62e-3 6.55e-3 6.57e-3

300 rTime 0.75 0.71 0.62 0.31 0.43 0.34
Time 101.07 3.09 4.39 117.33 0.55 0.57
RMSD 2.96e-1 4.02e-1 1.59e-1 6.73e-3 5.25e-2 1.25e-2
rRMSD 2.14e-1 2.81e-1 6.05e-2 4.59e-3 4.64e-3 4.73e-3
200 rTime 1.68 1.74 1.50 0.50 1.03 0.81
Time 182.09 9.10 6.16 769.39 1.32 1.48
RMSD 3.47e-1 4.77e-1 1.83e-1 5.35e-3 5.57e-2 1.13e-2
rRMSD 2.7le-1 2.52e-1 5.52e-2 3.63e-3 3.65e-3 3.49e-3
1000 rTime 14.89 15.11 12.00 1.97 10.32 5.22
Time 601.92 56.65 2449 15686.4 11.63 10.03
RMSD —— 4.47e-1 1.81e-1 —— 5.53e-2 1.16e-2
rRMSD —— 4.25e-1 2.21e-2 —— 3.32e-3 3.12e-3
2000 rTime —— 82.17 82.35 —— 45.12 5.85

Time —— 470.32 122.45 —— 49.18 34.68

120 Chapter 6 Numerical Experiments

rRMSD = 2.37e-01 rRMSD = 2.25e-01 rRMSD = 2.27e-0

- S

1{
WSS
O

ADMMSNL

€ D

/,%-wg
o B0
(3.

rRMSD = 1

-0.4 0 0.4 -0.4 0 0.4 -0.4 0 0.

Figure 6.27: Localization for Example 5.2 with n = 200,m =4, R = 0.3.

Finally, we test Example 5.1 with larger sizes n € {300,500, 1000, 2000} and fixed m =
4, R = 0.3. Its average results were recorded in Table 6.19. When nf = 0.1, ADMMSNL

Chapter 6 Numerical Experiments 121

and PC failed to render accurate embedding. Compared with ARAP, EVEDM and MPEDM,
SFSDP generated lager RMSD and rRMSD. Again, EVEDM and MPEDM ran far faster than
ARAP. When nf = 0.7, results recorded in Table 6.20 were different. ARAP and MPEDM
still were able to produce accurate RMSD and rRMSD, while the former took extremely
long time (16617 vs. 83 seconds). By contrast, ADMMSNL and PC again failed to solve
problems. In addition, EVEDM got large RMSD but comparable rRMSD when n < 1000, and
failed when n = 2000.

Table 6.20: Comparisons for Example 5.1 with m =4, R = 0.3,nf = 0.7.

n ADMMSNL PC SFSDP ARAP EVEDM MPEDM
RMSD 2.80e-1 4.36e-1 3.27e-1 6.70e-2 2.08e-1 5.04e-2
rRMSD 2.31e-1 3.60e-1 2.47e-1 0.48e-2 6.10e-2 4.92e-2

300 rTime 0.75 0.83 0.83 0.29 0.47 0.38
Time 107.48 1.74 83.73 123.18 0.59 7.49
RMSD 2.64e-1 4.53e-1 —— 4.24e-2 1.76e-1 3.73e-2
rRMSD 1.94e-1 3.59%-1 —— 3.52e-2 3.47e-2 3.23e-2
500 rTime 1.66 1.88 —— 0.47 0.87 0.67
Time 177.24 5.13 —— 844.74 1.31 20.15
RMSD 2.21e-1 4.52e-1 —— 2.84e-2 1.45e-1 2.79e-2
rRMSD 9.69e-2 3.26e-1 —— 2.47e-2 2.93e-2 2.40e-2
1000 rTime 9.83 15.69 —— 1.41 7.78 2.54
Time 599.30 41.55 —— 16617.1 9.16 83.64
RMSD —— 4.51e-1 —— —— 2.26e-1 2.13e-2
rRMSD —— 3.35e-1 —— —— 1.23e-1 1.52e-2
2000 rTime —— 92.45 —— —— 58.25 3.79
Time —— 274.90 —— —— 62.52 303.43

6.3.3 Comparison on MC

As we mentioned before, the current implementations of ADMMSNL and ARAP do not sup-
port the embedding for r > 3 and thus are removed in the following comparison where

another method PPAS will be added.

’Test on Example 5.5 under Rule 2.‘ To see the performance of each method to this

problem, we first test it with fixing s = 6 (i.e., n = 63 = 216), nf = 0.1 but altering

o € {36,38,---,48}. Notice that the percentage of available dissimilarities over all

122 Chapter 6 Numerical Experiments

elements of A ascends from 32.47% to 39.87% along with increasing o from 36 to 48,

making problems more and more ‘easier’.

M:‘N d i

= 8 %

36 38 40 42 44 46 48 36 38 40 42 44 46 48 36 38 40 42 44 46 48
o o o

Figure 6.28: Average results for Example 5.5 with s = 6,nf = 0.1.

Average results were recoded in Figure 6.28. Clearly, MPEDM and PPAS outperformed the
other three methods in terms of RMSD and rRMSD. The former generated the best RMSD
when o > 42 while the latter got the best RMSD when o < 42, but they both obtained
similar rRMSD. As for computational speed, MPEDM ran far faster than PPAS. By contrast,
the other three methods failed to produce accurate embeddings due to worse RMSD and
rRMSD obtained. Notice that refinement would not always make final results better, for

example, TRMSD yielded by SFSDP was bigger than RMSD for each s.

3 D i
3)
'mwb 3 g

0.1 0.2 0.3 04 0.5 0.1 0.2 0.3 0.4 05 0.1 0.2 0.3 0.4 0.5
nf nf nf

Figure 6.29: Average results for Example 5.5 with s = 6,0 = s2.

We then test it with fixing s = 6(n = 63),0 = s and varying the noise factor nf €
{0.1,0.2,---,0.5}. As illustrated in Figure 6.29, in terms of RMSD and rRMSD, it can be
clearly seen that MPEDM and PPAS were the joint winners. More detailed, our method
rendered the best RMSD when nf > 0.2 and also ran much faster than PPAS. Obviously,

the other three methods again failed to obtain desirable RMSD and rRMSD no matter

Chapter 6 Numerical Experiments 123

how fast or slow they were. What is more, when nf > 0.4, most of methods somewhat
suffered from the refinement. For example, refinement made rRMSD of MPEDM worse than

RMSD when nf > 0.4.

Finally, for larger size problems with n = s and s € {7,8,..., 13}, average results were
presented in Figure 6.30, where we omitted results of PPAS when s > 10 since it cost
too much time. It is worth mentioning that the rate of available dissimilarities over all
elements of A declines from 26.78% to 14.83% when increasing s from 7 to 13, making
problems more and more of ‘difficulty’. Clearly PC, SFSDP and EVEDM failed to locate all
atoms in R3. PPAS rendered the most accurate RMSD when s < 10 whilst MPEDM achieved
the most accurate RMSD when s > 10 and the most accurate rRMSD for all cases. Most
importantly, PPAS ran relatively slowly, consuming over 2000 seconds when s > 10. By

contrast, MPEDM spent less than 50 seconds for all cases.

6 ——PC
—6— SFSDP > 108
r 8 PPAS
5 ——EVEDM D
—*— MPEDM
4 6
[a) 8 o, 2 [
) £ 10
S 33 = =
x T 49 i
2
2
lW* 10t
e ———%—F]
0 0
7 8 9 10 11 12 13 7 8 9 10 11 12 13 7 8 9 10 11 12 13
s s s

Figure 6.30: Average results for Example 5.5 with n = s3, 0 = s%,nf = 0.1.

Test on Example 5.6.| In this test, we fixed R = 6,¢ = 50% and nf = 0.1. The

generated embeddings by five methods for the three molecules 1GM2, 1AU6 and 1LFB
were shown in Figure 6.31, where the true and estimated positions of the atoms were
plotted by blue circles and pink stars respectively. Each pink star was linked to its
corresponding blue circle by a pink line. For these three data, MPEDM and PPAS almost
conformed the shape of the original data. Clearly, the other three methods failed to
conform. The complete numerical results for the 12 problems were reported in Table
6.21. It can be clearly seen that MPEDM and PPAS performed significantly better regarding
to RMSD and rRMSD. But importantly, the time used by MPEDM was just a small fraction
of PPAS who spent relatively long time. For example, MPEDM only used 32.64 seconds for
2CLJ, which is a very large data set with n = 4189.

124 Chapter 6 Numerical Experiments

Figure 6.31: Molecular conformation. From top to bottom, the method is PC,
SFSDP, PPAS, EVEDM, MPEDM. From left to right, the data is 1GM2, 1AUS, 1LFB.

Chapter 6 Numerical Experiments 125
Table 6.21: Comparisons of five methods for Example 5.6.

PC SFSDP PPAS EVEDM MPEDM

RMSD 6.60 6.65 0.41 6.51 0.91

1GM2 rRMSD 7.07 6.92 0.27 7.41 0.35
n = 166 rTime 0.17 0.18 0.22 0.18 0.16
Time 0.98 4.84 15.43 0.98 0.27

RMSD 10.30 10.30 2.89 10.20 3.61

304D rRMSD 10.70 10.80 1.43 10.80 2.50
n = 237 rTime 0.16 0.16 0.55 0.16 0.15
Time 1.07 7.76 36.44 1.36 0.23

RMSD 8.45 8.47 0.53 8.35 1.23

1PBM rRMSD 9.13 8.91 0.20 9.28 0.21
n = 388 rTime 0.51 0.49 0.53 0.49 0.32
Time 2.84 28.64 112.82 1.45 0.54

RMSD 10.60 10.60 0.54 10.50 0.92

2MSJ rRMSD 11.20 11.10 0.30 11.00 0.33
n = 480 rTime 0.40 0.39 0.54 0.39 0.32
Time 2.32 118.60 196.12 1.47 0.59

RMSD 9.30 9.31 0.40 9.20 0.67

1AU6 rRMSD 9.99 9.83 0.17 9.69 0.16
n = 506 rTime 0.70 0.68 0.30 0.69 0.35
Time 4.12 47.68 262.28 1.47 0.70

RMSD 13.40 13.40 1.56 13.30 1.55

1LFB rRMSD 13.90 13.50 0.54 13.70 0.74
n = 641 rTime 0.49 0.49 1.63 0.48 0.37
Time 2.93 132.96 956.44 1.64 0.79

RMSD 12.30 12.30 4.30 12.20 3.27

104D rRMSD 12.70 12.70 2.02 12.60 1.26
n = 766 rTime 0.89 0.86 3.40 0.87 0.61
Time 5.04 72.16 2024.51 1.47 1.40

RMSD 12.30 12.30 1.70 12.30 1.58

1PHT rRMSD 12.90 12.60 0.92 12.60 0.99
n = 814 rTime 0.74 0.74 2.57 0.74 0.48
Time 4.86 411.14 4726.96 1.71 1.25

RMSD 14.20 14.20 1.39 14.10 1.48

1POA rRMSD 14.50 14.60 0.33 14.60 0.45
n =914 rTime 0.58 0.55 1.34 0.55 0.52
Time 5.03 587.14 1623.43 1.99 1.45

126 Chapter 6 Numerical Experiments

RMSD 14.30 14.30 —— 14.30 1.23
1AX8 rRMSD 14.70 14.50 —— 14.40 0.50
n =1003 rTime 0.62 0.58 —— 0.59 0.34
Time 5.78 1404.53 —— 1.54 1.49
RMSD 20.20 —— —— 20.20 1.99
1RGS rRMSD 20.50 - —— 20.60 0.68
n = 2015 rTime 1.33 - —— 1.25 0.94
Time 16.08 - —— 3.69 5.71
RMSD 22.70 —— —— 22.70 1.54
2CLJ rRMSD 23.00 —— —— 22.90 0.65
n=4189 rTime 4.46 —— —— 3.82 2.35
Time 43.10 —— —— 378.35 32.64

6.3.4 A Summary of Benchmark Methods

To end this section, we would like to summarize the performance of each method: MPEDM,
ADMMSNL, PC, SFSDP, ARAP and EVEDM. The first summary is given to MPEDM under different
fpq- Clearly, MPEDM;; is most robust to the noise but runs the lowest for most examples.
By contrast, MPEDMssy runs the fastest but with providing worst accuracy. MPEDM under
fi12 and fo; renders mediate performance. For the benchmark methods, we summarize

their advantages and disadvantages as follows.

ADMMSNL works well when the network A has large numbers of known dissimilarities (i.e.
R is large) but rans very slow when n is large (e.g. n > 1000). In addition, it
performs poorly when R is small (e.g., R < 0.3). Notice that its current package

version can not process three dimensional embedding like MC problems.

PC only works well when the network A has large numbers of known dissimilarities and
rans very fast such as the sceneries R > 1. However, its performance is degraded
significantly with more and more dissimilarities are missing in A. Moreover, it is
not robust to the noise. For three dimensional embedding such as MC problems,

it behaves very poorly.

SFSDP could achieve accurate embedding when R is large and anchors’ number m is
large. Its computational speed is heavily relied on the range R. When R is small,

it could solve the problem with acceptable CPU time when n is not too large (e.g.

Chapter 6 Numerical Experiments 127

n < 2000) but with undesirable accuracy. When R is large, the CPU time its costs
shoot up dramatically with the increasing of n. For three dimensional embedding,

it performs very unappealing.

ARAP has ability to achieve embedding with desirable accuracy no matter how small the
R is and also very robust to the noise. But it runs extremely slow particularly when
n > 1000. Also its current package version can not processes the 3 dimensional

embedding like MC problems.

EVEDM performs better when n is being larger. Its computational speed tends to be
slower along with the ascending of R, and it is also very sensitive to the noise.
What is more, it is not suitable for three dimensional embedding such as MC

problems.

PPAS is designed for three dimensional embedding such as MC problems, with ability
to render accurate embedding. However, it runs relatively slow and is difficult to

process problems with n > 1000 objects.

Chapter 7

Two Extensions

This chapter introduces two extensions of the topic in this thesis. The first one is to take
more general constraints of model (3.1) into consideration based on some applications.
The second one is to solve the original problem (3.1) instead of its penalty model (3.15)
through a popular approach, Proximal Alternating Direction Methods of Multipliers
(pPADMM) described in Subsection 1.3.7.

7.1 More General Model

The main EDM optimization of interest is (3.1), which brought us the penalized model
(3.15) with only box constraints L < D < U. Now by adding an extra constraint in

(3.1), we investigate a more general EDM optimization,

min f(D)
st. g(D)=0, (7.1)

DeQ:={DeS"|L<D<UAD) =0}

where A : S* — R? is a liner mapping. Hereafter, we always assume that Q # (). The

above problem naturally leads to the following penalized model,

min f(D)+ pg(D) (7.2)

st. DeQ:={DeS"|L<D<UA(D)=0}

129

130 Chapter 7 Two Extensions

7.1.1 Algorithmic Framework

Similar to Algorithm 4.1 in Table 4.1, we have the following algorithmic framework,

Table 7.1: Framework of Majorization-Projection method.

Algorithm 7.1: Majorization-Projection method via EDM

Step 1 (Input data) Dissimilarity matrix A, weight matrix W, lower- and upper-
bound matrix L, U, penalty parameter p > 0, and initial DY. Set k := 0.

Step 2 (Update) Compute D¥ := —HKi(r)(—Dk) and update

D = argmin £(D) +(/2)| D ~ D (7.3)
S

Step 3 (Convergence check) Set k := k + 1 and go to Step 2 until convergence.

Remark 7.1. We have some comments regarding to Algorithm 7.1.

e One may notice that subproblem (7.3) is the major obstruction for the method. In
Section 3.3, we know that if p is chosen properly (seen Table 4.2), the objective
function of (7.3) is able to be convex for each f,q where p,q = 1,2. Then the

linearity of A indicates Q is convex and hence (7.3) has a unique solution,
DR — 11, (ﬁk+1> 7 (7.4)
where D**! can be calculated explicitly (seen Section 3.3) by

Dt = axgmin £(D) + (/2)| D~ D
ETL

o All convergence results in Section 4.2 still hold under same assumptions since

subproblem (7.3) is convex if o is chosen properly;

Therefore, we need an assumption on A as below.

Assumption 7.2. A has the ability to make Ilq () easily computed.

Chapter 7 Two Extensions 131

7.1.2 Omne Application

Recall the problem of ES in Subsection 5.3.1. The problem is to find a matrix D that is

nearest to A®) and satisfies
—-D e S; K (r)

Clearly, such constraints did not take the radius and center into account, which might
render an less accurate embedding. Since all distances between each point {x1,...x,-1}

and the center x, should be equal, a natural constraint for this problem is
Diyy=D1y, i=1,....,n—1, (7.5)
which can be covered if A is defined by
A(D) = (Dan — Din, -+, Dp_1n — D1n)". (7.6)

In order to calculate Il (+), a proposition below is required.

Proposition 7.3. Let € € R"™ and a < b. Assume that
[a,b]N{zeR": 21 =---=2z,} #0.
Denote a, := maxa;, b, := minb;, then

Mo () = [T, 4 (2" e/n)] . (7.7)

Proof Denote I':={z € R": z; =--- = z,}. It obviously has
lace,boe] NT = [a,b]NT # 0.
Then we have

H[a,b]ﬂF (X> = H[aoe,boe]ﬂf‘ (X) = argminze[aoe,boe}ﬂf‘nz - X||2

— [argmin,, i, s 1210 = XI2] € = [T, 1,1 e/m)] e,

which finishes the proof immediately. g

132 Chapter 7 Two Extensions

7.2 Solving the Original Problem

This section aims to solve the original model (7.1) instead of its penalty relaxation (7.2).

By introducing an auxiliary variable Z = — D, since
(3.13) " n
9g(D) =0+ —D eKl(r) <= Z c Kl (r),
we equivalently rewrite (7.1) as

min f(D)

st. D+Z=0, DeQ, ZeK(r). (7.8)

7.2.1 pADMM
Recall Subsection 1.3.7, the augmented Lagrange function of model (7.8) is
L(D,Z,W):=f(D)— (W,D+Z)+ (¢/2)|D+ Z|*, DeQ, ZcK(r). (7.9

Then based on the procedure in Table 1.1, for already computed (D’“,Z’“,W'k)7 we

update next iteration as

DKL = argmin £(D, Z*, Wk,
DeQ
= argmin f(D)+ (0/2)|D — (W*/o — ZF)|? (7.10)
Deq)
ZFL = argmin £(DFYY Z, WF)
ZeK? (r)
= argmin ||Z — (WF/o — DFFL)|
ZEKi(r)
= Hgn y(W"/o — DM (7.11)
WL — Wk —7o(DM 4 ZEH (7.12)

Clearly, how to solve subproblem (7.10) is now an issue confronted us.

e Q:={DeS"|L<D<U}. Similar to Subsection 4.1.2, we have closed form
solutions for each f = f,,. Denote D¥ := W* /o — ZF, then its solution under
each f = fpq can be calculated by replacing D];(by DE and replacing p by o in
(4.6-4.12) respectively.

Chapter 7 Two Extensions 133

e O:={DeS"|L<D<UA(D)=0}. In Section 3.3, we know that if ¢ is chosen
properly (being larger than a threshold o > pg where pg = Max{(; j):W;; >0} %{ if
f = fi1 and pg = 0 otherwise), the objective function of (7.10) is able to be Conz/ex
for each f,q where p,q = 1,2. Then the linearity of A indicates €2 is convex and

hence (7.10) has a unique solution as well,

—k+1

DML =TIq (D", (7.13)

where D"*! can be calculated explicitly (seen Section 3.3) by

D" .= argmin f(D) + (¢/2)||D — D¥|2.
DeSn
Overall, similar to Table 1.1, the framework of pADMM solving model (7.8) can be

summarized in Table 7.2.

Table 7.2: Framework of pADMM for (7.8)

Algorithm 7.2: pADMM via EDM

Step 1 (Input data) Let 0,7 > 0. Choose (Z°, W9). Set k < 0.

Step 2 (Update) Compute (DF1, Zk+1 Jk+1) by

D = argmin £(D) + (/21D — (WHfo — 29|
S
ZE = Mgy () (WHfo = DM,

Wk+1 — Wk _ TO'(Dk+1 + Zk+1),

Step 3 (Convergence check) Set k := k + 1 and go to Step 2 until convergence.

7.2.2 Current Convergence Results of Nonconvex pADMM

We have stated the global convergence results, namely, Theorem 1.3, of pADMM solving
the convex model (1.20) in Subsection 1.3.7. However, our proposed model (7.8) is
obviously non-convex due to the non-convex set K (r) or the non-convex objective
function fi1. And thus Theorem 1.3 can not applied to derive the convergence results

of pADMM solving model (7.8).

134 Chapter 7 Two Extensions

In order to ease reading, we recall the model (1.20) again

min fi(x) + f2(¥)
st. Ax+ By =b, (7.14)

xeX, ye),

To achieve the convergence results that the cluster point of the sequence generated by
pADMM is the stationary point of above model in non-convex scenarios, a large number
of scholars have proposed sorts of conditions in recent decade. Here we list some of them

which are not relied on the iterates themselves.

’ Li and Pong (2015) ‘ proposed proximal ADMM and established the convergence prop-

erty under following scenarios:

f1 is not necessarily convex, but twice continuously differentiable with a bounded

Hessian matrix.

e f5 is proper, closed, and not necessary convex.

A has full row rank, B is the identity matrix.

Either A is invertible and fs is coercive, or fi is coercive and fs is lower bounded.

Wang et al. (2015a) ‘proposed the so-called Bregman ADMM and includes the standard

ADMM as a special case. By setting all the auxiliary functions in their algorithm to

zero, their assumptions for the standard ADMM reduce to the following scenarios:

fo is strongly convex.

f1 is not necessarily convex, but is gradient Lipschitz differentiable and lower

|2 is lower bounded.

bounded. Moreover, There exists ¢ > 0 such that f; —¢| </ f1

A is full row rank.

|2 is coercive.

Either A is square (which means it is invertible), or f1 — ¢|| 7 f1

Hong et al. (2016)‘ studied ADMM for non-convex consensus and sharing problem.

Their assumptions for the sharing problem are

Chapter 7 Two Extensions 135

f1 is gradient Lipschitz continuous, either smooth non-convex or convex (possibly

non-smooth).

f2 is gradient Lipschitz continuous.

f1 + fo is lower bounded over X.

A has full column rank, B is the identity matrix.

e x € () with © being a closed convex set.

’Wang et al. (2015b) ‘ considered following non-convex case

e f1 is proper and continuous, possibly non-smooth and not necessarily convex, but

either is the so-called restricted prox-regular or continuous and piecewise linear.
e f5 is proper and not necessarily convex, but is gradient Lipschitz continuous.

e f1 + f2 is coercive over the feasible set Q := {(x,y) | Ax + By = b}, that is,
f1(x) + fa(y) = oo when ||(x,y)|| = o0 and (x,y) € Q.

e Im(A) C Im(B) where Im(A) is the image of A.

’Yang et al. (2017) ‘ tried to solve the non-convex problem under following settings

e f1(x) := ¢(x1) + ¥(x2) with x = [x] x5]7 and ¢ is proper closed nonnegative
functions and convex.) is proper closed nonnegative functions, but possibly non-

convex, non-smooth, and non-Lipschitz.
e f5 is a quadratic function.

o A = [AjAy] with A; and Ay being injective, i.e. AjA; > 0 and A5Ay > O.

Moreover B is the identity matrix.

Remark 7.4. Wang et al. (2015b) claimed that their proposed conditions are weaker
than those of (Hong et al., 2016; Wang et al., 2015a; Li and Pong, 2015), which means
they got the best results for convergence property of ADMM when it is applied in non-

convex scenarios. Let rewrite the model (7.8) as

min f(D)+ Io(D) + Ixn () (Z)
—_—

——
=f1 =fo

s.t. D+7Z=0,

136 Chapter 7 Two Extensions

where 1o (D) is the indicator function, defined by Ig(D) = 0 if D € Q, Ig(D) = +o0
otherwise. Then, the the above model we consider does not meet all requirements of

Wang et al. (2015b). Clearly, fo = IKﬁ(r)(Z) s mot gradient Lipschitz continuous.

In addition, above model does not meet all requirements of Wang et al. (2015b) since

fo= IKK(,")(Z) is not quadratic and f(D) (corresponding ¢) is not convex when f = fi1.

7.2.3 Numerical Experiments

a) Implementation. The starting points for D is same as that in Subsection 6.1.2, and
then let Z° = —D® and W9 = 0. Similar to Subsection 6.3, we monitor two quantities:
|ID* + Z*|

K = . 1
progv(?) = o DR+ 127 (7.15)

where o is the parameter in(7.9), and

k—1y _ k
Fprog,. (o) := f;(f_)g _|_)fg(f;k(Dl)) (7.16)

Next we would like to explain how to choose the parameter o, similar to update pg41
as (6.1), we initial og = (1 + max d;;)e”log(n), where x counts the number of non-zero

elements of A, and update it as

1.50y, if Kprogy(ox—1) > Ktol,Fprog; (ox—1) < Ftol,
Ok+1 =4 0.504, if Fprog,(ox—1) > Ftol,Kprog;(ox—1) < 0.2Ktol,

Ok, otherwise,
where Ftol and Ktol are chosen as

1072 if n > 100,

Ftol =In(k) x 1074, Ktol =
10~* if n < 100.

Taking two quantities into consideration, we terminate pADMM when
(Fprog,(0x) < Ftol and Kprog,(ox) <Ktol) or & > 2000.

b) Self-Comparisons. To see the performance of Algorithm 7.2, we apply it under

four objective functions f,, into solving Examples 5.1, 5.4 and 5.6. As shown in Table

Chapter 7 Two Extensions

137

7.3, it was slightly slower and less accurate than MPEDM (see Table 6.5). Moreover, results

under different f,, varied a lot, while MPEDM produce more stable ones.

Table 7.3: ADMM on solving Example 5.1 with m =4, R = 0.2,nf = 0.1.

" 1000 2000 3000 4000 5000
Fo 8232 98662 6232 61262 5.18¢-2
for 7.88¢-2 3.97e-2 4.33¢2 48002 4.33¢-2

RHMSD i 7.88¢-2 94002 856e-2 7.09¢-2 5.4le-2
fin 5.05e-2 52le-2 45002 3.91e2 3.43e-2
o 10763 7923 6.67e3 57763 5.1de3
o 431e-3 6.59e-3 457e-3 5983 4.03-3
rRIMSD 1 371e-3 9.65¢-3 5.26e-3 5493 5.39-3
i 3.07e-3 7.92e-3 6.67e-3 5.77e-3 3.21e-3
oo 8.13 25.55 7647 162.83 285.13
. o 7.62 92.17 64.14 131.66 239.51
Time fi2 8.49 35.29 92.57 168.46 278.72
i 8.40 38.38 99.26 187.58 340.13
oo 3.23 4.67 17.80 17.72 26.64
. for 3.42 5.20 13.76 14.39 95.78
rTime 1 3.36 6.83 18.46 17.23 99.62
i 2.31 6.81 13.94 16.34 24.71
rRMSD = 9.75e-03 rRMSD = 1.52e-02 rRMSD = 2.30e-02 rRMSD = 4.22e-02
0.4 H 0.4
M BN
0 e e 0 A

f21

f12

fll

0

0.5 1

rRMSD = 9.74e-03

0 0.5 1
rRMSD = 1.51e-02

0.4 o
02
0 Eta) .
0 05 1

rRMSD = 2.33e-02

0.4 0.4 04 o
0.2 0.2 0.2
CJ
0 e 8 t 0 A 0 e ?
0 0.5 1 0 0.5 1 0 0.5 1
rRMSD = 9.75e-03 rRMSD = 1.60e-02 rRMSD = 2.33e-02
0.4 0.4
0.2 0.2
0 Ao

0

0.5

rRMSD = 9.76e-03

0 0.5 1
rRMSD = 1.53e-02

04

0.2
0 s ‘
0 0.5 1

. 0 0.5 1
rRMSD = 2.29e-02

0.4 H 0.4 0.4 J
0.2 0.2 0.2
®
0 e ¥ 0 A 0 s ?
0 05 1 0 05 1 0 05 1
nf=0.3 nf=0.5 nf=0.7

Figure 7.1: ADMM on solving Example 5.4 with n = 500, m = 10, R = 0.3.

138 Chapter 7 Two Extensions

We then see how noise ratio nf would affect on the performance of ADMM under each f,.
Results were presented Figure 7.1, it can be clearly seen that their performance had no
big difference. Compared with MPEDM solving such example (see Figure 6.8), it seemed

that ADMM got the better results when nf> 0.3.

Finally, we solve Example 5.6 by using ADMM under each f,,. As demonstrated in Table
7.4, fo1 enabled ADMM to produced the most accurate results for most data, while foo

made ADMM run the fastest. There was no big difference of rRMSD after refinement.

Table 7.4: ADMM on solving Example 5.6.

fo2 fa1 f12 fi1

RMSD 0.882 0.734 0.881 0.745

1GM2 rRMSD 0.238 0.238 0.238 0.238
n = 166 rTime 0.116 0.100 0.100 0.099
Time 0.343 0.234 0.158 0.299

RMSD 3.477 3.354 3.476 3.468

304D rRMSD 2.522 2.522 2.522 2.522
n = 237 rTime 0.092 0.091 0.091 0.091
Time 0.152 0.206 0.152 0.157

RMSD 1.024 1.018 1.023 0.930

1PBM rRMSD 0.223 0.223 0.223 0.223
n = 388 rTime 0.256 0.245 0.253 0.252
Time 0.450 0.433 0.458 0.739

RMSD 0.897 0.766 0.897 1.166

2MSJ rRMSD 0.255 0.255 0.255 0.255
n = 480 rTime 0.216 0.240 0.241 0.241
Time 0.469 0.800 0.532 1.511

RMSD 0.678 0.569 0.666 0.830

1AU6 rRMSD 0.172 0.173 0.172 0.172
n = 506 rTime 0.206 0.160 0.197 0.171
Time 0.531 0.680 0.595 1.249

RMSD 1.468 1.425 1.468 1.465

1LFB rRMSD 0.531 0.523 0.531 0.531
n = 641 rTime 0.277 0.277 0.276 0.278
Time 0.732 0.958 0.771 0.753

RMSD 2.959 2.909 2.956 2.861

104D rRMSD 1.172 1.172 1.173 1.172
n = 766 rTime 0.499 0.505 0.495 0.501

Time 1.225 2.195 1.291 2.751

Chapter 7 Two Extensions 139

RMSD 1.588 1.517 1.587 1.568
1PHT rRMSD 1.001 1.042 1.002 1.001
n = 814 rTime 0.427 0.436 0.429 0.425
Time 1.201 2.699 1.276 1.404
RMSD 1.459 1.402 1.458 1.394
1POA rRMSD 0.401 0.391 0.401 0.401
n =914 rTime 0.407 0.411 0.410 0.409
Time 1.362 2.189 1.443 2.425
RMSD 1.288 1.290 1.288 1.286
1AX8 rRMSD 0.728 0.488 0.468 0.728
n = 1003 rTime 0.094 0.370 0.404 0.375
Time 1.279 1.671 1.717 2.171
RMSD 1.892 1.683 1.891 1.790
1RGS rRMSD 0.604 0.493 0.604 0.604
n = 2015 rTime 0.897 0.984 0.648 0.781
Time 5.951 20.40 5.994 7.700
RMSD 1.552 1.479 1.552 1.550
2CLJ rRMSD 0.724 0.579 0.724 0.724
n = 4189 rTime 1.830 3.099 1.730 2.624
Time 24.25 89.64 25.28 35.51

7.2.4 Future Proposal

According to above literature review, there are two main difficulties are confronted us.

e When it comes to establishing the convergence results, one is supposed to inves-
tigate the optimality condition of subproblem (7.11). Namely, for a given Z,
consider the problem minzexy ()[|Z — Zo||?>. The difficulty arises from the rank

constraint rank(JZ.J) < in K7} (r).

e How to establish the convergence property of ADMM described in Algorithm 7.27

Apparently, one of difficulties also stems from the constraints Z € K ().

Chapter 8

Conclusion

This thesis cast a general model (3.1) containing four objective functions from the do-
main of EDM optimization, with ability to cover four kinds of existing topics in MDS
researches: stress minimization, squared stress minimization, robust MDS and robust
Fuclidean embedding described in Section 2.2. The model has been notoriously known to
be non-smooth, non-convex and one of its objective functions is also non-Lipschtiz con-
tinuous. Its extra difficulty arose from the constraints that the variable being an EDM
with low rank embedding dimension, but could be eliminated when such constraints
were penalized. The relationship between the general model and its penalization (3.15)

was then established, yielding our first contribution of this thesis, seen Theorem 3.3.

The main contents of this thesis were designing an efficient numerical method dubbed
as MPEDM to tackle the penalty model whose four objective functions were able to be
majorized by strictly convex functions provided that the penalty parameter was above a
certain threshold. Then every step of MPEDM projected a unique solution of each convex
majorized function onto a box set, which brought us the second contribution of this
thesis that all projections turned out to enjoy closed forms (seen Section 3.3), despite
some of the majorized functions seemed to be very complicated. Finally, traditional
convergence analysis of majorization minimization can not be applied into MPEDM due to
unappealing properties of the penalty model. However, we proved that the generated
sequence converged to a stationary point in a general way (seen Section 4.2), and all
involved assumptions were very easy to be satisfied when each objective function was

specified (seen Section 4.3). This was the third contribution.

141

142 Chapter 8 Conclusion

A large number of numerical experiments were then implemented to demonstrate the
performance of MPEDM. Through comparing it among itself under four objective func-
tions, general speaking, squared stress allowed MPEDM to run the fastest but with lowest
accuracy, whilst robust Euclidean embedding enabled MPEDM to render the most accurate
embedding but consume the longest time. When MPEDM under objective function in the
sense of robust Euclidean embedding was against with other state-of-the-art methods,
the desirable accuracy and fast computational speed manifested that it was very com-
petitive, especially in big data settings. For example, it only consumed 42 seconds to

conform a molecule with 4189 atoms in Table 6.21, a very large size.

Finally, the proposed model (3.1) was relatively easy to be extended to process more
complicated problems, such as ones with extra constraints, as long as the projection
onto those constraints were computable, seen Section 7.1. Upon the derivation of closed
form solution under each objective function, we could solve the original model (3.1)
straightforwardly by taking advantage of ADMM rather than dealing with its penaliza-
tion. However, the less-than-ideal properties of the original model highlight the difficulty

of proving the algorithmic convergence, which could leave as promising future research.

References

Agarwal, A., Phillips, J. M., and Venkatasubramanian, S. (2010). Universal multi-
dimensional scaling. In Proceedings of the 16th ACM SIGKDD international confer-
ence on Knowledge discovery and data mining, pages 1149-1158. ACM.

An, L. T. H. and Tao, P. D. (2003). Large-scale molecular optimization from distance
matrices by a dc optimization approach. SIAM Journal on Optimization, 14(1):77—
114.

Bai, S. and Qi, H. (2016). Tackling the flip ambiguity in wireless sensor network local-
ization and beyond. Digital Signal Processing, 55:85-97.

Bai, S., Qi, H.-D., and Xiu, N. (2015). Constrained best euclidean distance embedding on
a sphere: a matrix optimization approach. SIAM Journal on Optimization, 25(1):439—
467.

Beck, A. and Pan, D. (2012). On the solution of the gps localization and circle fitting
problems. SIAM Journal on Optimization, 22(1):108-134.

Berman, H. M., Battistuz, T., Bhat, T. N., Bluhm, W. F., Bourne, P. E., Burkhardt,
K., Feng, Z., Gilliland, G. L., Iype, L., Jain, S., et al. (2002). The protein data bank.
Acta Crystallographica Section D: Biological Crystallography, 58(6):899-907.

Biswas, P., Liang, T.-C., Toh, K.-C., Ye, Y., and Wang, T.-C. (2006). Semidefinite
programming approaches for sensor network localization with noisy distance mea-

surements. IEEE transactions on automation science and engineering, 3(4):360-371.

Biswas, P. and Ye, Y. (2004). Semidefinite programming for ad hoc wireless sensor net-
work localization. In Proceedings of the 3rd international symposium on Information

processing in sensor networks, pages 46-54. ACM.

143

144 REFERENCES

Borg, I. and Groenen, P. J. (2005). Modern multidimensional scaling: Theory and

applications. Springer Science & Business Media.

Boyarski, A., Bronstein, A. M., and Bronstein, M. M. (2017). Subspace least squares
multidimensional scaling. In International Conference on Scale Space and Variational

Methods in Computer Vision, pages 681-693. Springer.

Buja, A., Swayne, D. F., Littman, M. L., Dean, N., Hofmann, H., and Chen, L. (2008).
Data visualization with multidimensional scaling. Journal of Computational and

Graphical Statistics, 17(2):444-472.

Burton, D. (2011). The history of mathematics: An introduction. McGraw-Hill Compa-

nies.

Cayton, L. and Dasgupta, S. (2006). Robust euclidean embedding. In Proceedings of

the 23rd international conference on machine learning, pages 169-176. ACM.

Chen, Y., Xiu, N., and Peng, D. (2014). Global solutions of non-lipschitz sy — s,
minimization over the positive semidefinite cone. Optimization Letters, 8(7):2053—

2064.

Costa, J. A., Patwari, N., and Hero III, A. O. (2006). Distributed weighted-
multidimensional scaling for node localization in sensor networks. ACM Transactions

on Sensor Networks (TOSN), 2(1):39-64.
Cox, T. F. and Cox, M. A. (2000). Multidimensional scaling. CRC press.

De, L. J., Barra, J. R., Brodeau, F., Romier, G., and Van, C. B. (1977). Applications

of convex analysis to multidimensional scaling. Recent Developments in Statistics.

De Leeuw, J. and Mair, P. (2011). Multidimensional scaling using majorization: Smacof

nr.

Ding, C. and Qi, H.-D. (2017). Convex optimization learning of faithful euclidean dis-
tance representations in nonlinear dimensionality reduction. Mathematical Program-

ming, 164(1-2):341-381.

Donoho, D. L. (1995). De-noising by soft-thresholding. IEEFE transactions on informa-
tion theory, 41(3):613-627.

REFERENCES 145

Drusvyatskiy, D., Krislock, N., Voronin, Y.-L., and Wolkowicz, H. (2017). Noisy eu-
clidean distance realization: robust facial reduction and the pareto frontier. SIAM

Journal on Optimization, 27(4):2301-2331.

Fazel, M., Pong, T. K., Sun, D., and Tseng, P. (2013). Hankel matrix rank minimization
with applications to system identification and realization. SIAM Journal on Matriz

Analysis and Applications, 34(3):946-977.

France, S. L. and Carroll, J. D. (2011). Two-way multidimensional scaling: A review.
IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and
Reviews), 41(5):644-661.

Gaffke, N. and Mathar, R. (1989). A cyclic projection algorithm via duality. Metrika,
36(1):29-54.

Gao, Y. (2010). Structured low rank matriz optimization problems: a penalty approach.

PhD thesis.

Glunt, W., Hayden, T., and Liu, W.-M. (1991). The embedding problem for predistance
matrices. Bulletin of Mathematical Biology, 53(5):769-796.

Glunt, W., Hayden, T. L., Hong, S., and Wells, J. (1990). An alternating projection
algorithm for computing the nearest euclidean distance matrix. SIAM Journal on

Matriz Analysis and Applications, 11(4):589-600.

Glunt, W., Hayden, T. L., and Raydan, M. (1993). Molecular conformations from

distance matrices. Journal of Computational Chemistry, 14(1):114-120.

Gower, J. C. (1985). Properties of euclidean and non-euclidean distance matrices. Linear

Algebra and its Applications, 67:81-97.

Groenen, P. (1993). A comparison of two methods for global optimization in multidi-

mensional scaling. pages 145-155.
Hartigan, J. A. (1975). Clustering algorithms. Wiley.

Heiser, W. J. (1988). Multidimensional scaling with least absolute residuals. Classifica-

tion and related methods of data analysis, pages 455—462.

146 REFERENCES

Hong, M., Luo, Z.-Q., and Razaviyayn, M. (2016). Convergence analysis of alternating
direction method of multipliers for a family of nonconvex problems. SIAM Journal

on Optimization, 26(1):337-364.

Jiang, K., Sun, D., and Toh, K.-C. (2013). Solving nuclear norm regularized and semidef-
inite matrix least squares problems with linear equality constraints. In Discrete Ge-

ometry and Optimization, pages 133—162. Springer.

Jiang, K., Sun, D., and Toh, K.-C. (2014). A partial proximal point algorithm for
nuclear norm regularized matrix least squares problems. Mathematical Programming

Computation, 6(3):281-325.

Kanzow, C. and Qi, H.-D. (1999). A gp-free constrained newton-type method for vari-
ational inequality problems. Mathematical Programming, 85(1):81-106.

Karbasi, A. and Oh, S. (2013). Robust localization from incomplete local information.

IEEE/ACM Transactions on Networking, 21(4):1131-1144.

Kearsley, A. J., Tapia, R. A., and Trosset, M. W. (1995). The solution of the metric stress
and sstress problems in multidimensional scaling using newton’s method. Technical
report, RICE UNIV HOUSTON TX DEPT OF COMPUTATIONAL AND APPLIED
MATHEMATICS.

Kim, S., Kojima, M., Waki, H., and Yamashita, M. (2012). Algorithm 920: Sfsdp: a
sparse version of full semidefinite programming relaxation for sensor network localiza-

tion problems. ACM Transactions on Mathematical Software (TOMS), 38(4):27.

Korkmaz, S. and van der Veen, A.-J. (2009). Robust localization in sensor networkswith
iterative majorization techniques. In Acoustics, Speech and Signal Processing, 2009.

ICASSP 2009. IEEE International Conference on, pages 2049-2052. IEEE.

Kruskal, J. B. (1964). Nonmetric multidimensional scaling: a numerical method. Psy-

chometrika, 29(2):115-129.

Lawrence, J., Arietta, S., Kazhdan, M., Lepage, D., and O’Hagan, C. (2011). A user-
assisted approach to visualizing multidimensional images. IEEFE transactions on vi-

sualization and computer graphics, 17(10):1487-1498.

Li, G. and Pong, T. K. (2015). Global convergence of splitting methods for nonconvex
composite optimization. STAM Journal on Optimization, 25(4):2434-2460.

REFERENCES 147

Mandanas, F. D. and Kotropoulos, C. L. (2017). Robust multidimensional scaling using a
maximum correntropy criterion. IEEE Transactions on Signal Processing, 65(4):919—

932.

Moré, J. J. and Wu, Z. (1997). Global continuation for distance geometry problems.
SIAM Journal on Optimization, 7(3):814-836.

Nesterov, Y. (1998). Introductory lectures on convex programming volume i: Basic

course. Lecture notes.
Nocedal, J. and Wright, S. J. (2006). Sequential quadratic programming. Springer.

Oguz-Ekim, P., Gomes, J. P., Xavier, J., and Oliveira, P. (2011). Robust localization of
nodes and time-recursive tracking in sensor networks using noisy range measurements.

IEEE Transactions on Signal Processing, 59(8):3930-3942.

Peng, D., Xiu, N., and Yu, J. (2017). s;/5 regularization methods and fixed point
algorithms for affine rank minimization problems. Computational Optimization and

Applications, 67(3):543-569.

Piovesan, N. and Erseghe, T. (2016). Cooperative localization in wsns: a hybrid
convex/non-convex solution. IEEE Transactions on Signal and Information Process-

ing over Networks.

Pong, T. K. (2012). Edge-based semidefinite programming relaxation of sensor network
localization with lower bound constraints. Computational Optimization and Applica-

tions, 53(1):23-44.

Qi, H. and Yuan, X. (2014). Computing the nearest euclidean distance matrix with low

embedding dimensions. Mathematical programming, 147(1-2):351-389.

Qi, H.-D. (2013). A semismooth newton method for the nearest euclidean distance

matrix problem. SIAM Journal on Matriz Analysis and Applications, 34(1):67-93.

Qi, H.-D., Xiu, N., and Yuan, X. (2013). A lagrangian dual approach to the single-source
localization problem. IEEE Transactions on Signal Processing, 61(15):3815-3826.

Rockafellar, R. T. and Wets, R. J.-B. (2009). Variational analysis, volume 317. Springer

Science & Business Media.

148 REFERENCES

Rosman, G., Bronstein, A. M., Bronstein, M. M., Sidi, A., and Kimmel, R. (2008). Fast

multidimensional scaling using vector extrapolation. SIAM J. Sci. Comput, 2.

Schoenberg, I. J. (1935). Remarks to maurice frechet’s article“sur la definition axioma-
tique d’une classe d’espace distances vectoriellement applicable sur ’espace de hilbert.

Annals of Mathematics, pages 724-732.

Shang, Y. and Ruml, W. (2004). Improved mds-based localization. In INFOCOM 2004.
Twenty-third AnnualJoint Conference of the IEEE Computer and Communications
Societies, volume 4, pages 2640-2651. IEEE.

Shepard, R. N. (1962). The analysis of proximities: multidimensional scaling with an

unknown distance function. i. Psychometrika, 27(2):125-140.

Soares, C., Xavier, J., and Gomes, J. (2015). Simple and fast convex relaxation method
for cooperative localization in sensor networks using range measurements. I[IEEE

Transactions on Signal Processing, 63(17):4532-4543.

Spence, I. and Lewandowsky, S. (1989). Robust multidimensional scaling. Psychome-
trika, 54(3):501-513.

Tenenbaum, J. B., De Silva, V., and Langford, J. C. (2000). A global geometric frame-

work for nonlinear dimensionality reduction. science, 290(5500):2319-2323.

Toh, K.-C. (2008). An inexact primal-dual path following algorithm for convex quadratic
sdp. Mathematical programming, 112(1):221-254.

Torgerson, W. S. (1952). Multidimensional scaling: I. theory and method. Psychome-
trika, 17(4):401-419.

Trejos, J., Castillo, W., Gonzélez, J., and Villalobos, M. (2000). Application of simulated
annealing in some multidimensional scaling problems. In Data Analysis, Classification,

and Related Methods, pages 297-302. Springer.

Tseng, P. (2007). Second-order cone programming relaxation of sensor network local-

ization. SIAM Journal on Optimization, 18(1):156-185.

Wang, F., Cao, W., and Xu, Z. (2015a). Convergence of multi-block bregman admm for

nonconvex composite problems. arXiv preprint arXiv:1505.03063.

REFERENCES 149

Wang, Y., Yin, W., and Zeng, J. (2015b). Global convergence of admm in nonconvex
nonsmooth optimization. arXiv preprint arXiv:1511.06324.

Wang, Z., Zheng, S., Ye, Y., and Boyd, S. (2008). Further relaxations of the semidefinite
programming approach to sensor network localization. SIAM Journal on Optimiza-

tion, 19(2):655-673.

Weinberger, K. Q. and Saul, L. K. (2006). Unsupervised learning of image manifolds by

semidefinite programming. International journal of computer vision, 70(1):77-90.

Xing, F. (2003). Investigation on solutions of cubic equations with one unknown. J.

Central Univ. Nat.(Natural Sci. Ed.), 12(3):207-218.

Xu, Z., Chang, X., Xu, F., and Zhang, H. (2012). s;/, regularization: A thresholding
representation theory and a fast solver. IFEE Transactions on neural networks and

learning systems, 23(7):1013-1027.

Yang, L., Pong, T. K., and Chen, X. (2017). Alternating direction method of multipliers
for a class of nonconvex and nonsmooth problems with applications to background/-

foreground extraction. SIAM Journal on Imaging Sciences, 10(1):74-110.

Young, G. and Householder, A. S. (1938). Discussion of a set of points in terms of their
mutual distances. Psychometrika, 3(1):19-22.

Zhang, L., Liu, L., Gotsman, C., and Gortler, S. J. (2010). An as-rigid-as-possible
approach to sensor network localization. ACM Transactions on Sensor Networks

(TOSN), 6(4):35.

Zhang, L., Wahba, G., and Yuan, M. (2016). Distance shrinkage and euclidean embed-
ding via regularized kernel estimation. Journal of the Royal Statistical Society: Series

B (Statistical Methodology), 78(4):849-867.

Zhen, W. (2007). Large scale sensor network localization. Department of Statistics,

Stanford University.

Zhou, S., Xiu, N., and Qi, H.-D. (2018a). A fast matrix majorization-projection method
for penalized stress minimization with box constraints. IEEE Transactions on Signal

Processing, 66(16):4331— 4346.

Zhou, S., Xiu, N., and Qi, H.-D. (2018b). Robust euclidean embedding via edm opti-
mization. https://www.researchgate.net/publication/323945500.

	Declaration of Authorship
	Acknowledgements
	Nomenclature
	1 Introduction
	1.1 Multidimensional Scaling (MDS)
	1.2 Motivations
	1.2.1 Sensor Network Localization (SNL)
	1.2.2 Molecular Conformation (MC)
	1.2.3 Embedding on a Sphere (ES)
	1.2.4 Dimensionality Reduction (DR)

	1.3 Preliminaries
	1.3.1 Inner Product
	1.3.2 Principal Components Analysis
	1.3.3 Projections
	1.3.4 Subdifferential
	1.3.5 Majorization of functions
	1.3.6 Roots of Depressed Cubic Equation
	1.3.7 Proximal Alternating Direction Methods of Multipliers

	1.4 Euclidean Distance Embedding
	1.4.1 Euclidean Distance Matrix (EDM)
	1.4.2 Characterizations of EDM
	1.4.3 Euclidean Embedding with Procrustes Analysis

	2 Literature Review
	2.1 Classical MDS
	2.2 Stress-based Minimizations
	2.2.1 Stress Minimization
	2.2.2 Squared Stress Minimization
	2.2.3 Robust MDS
	2.2.4 Robust Euclidean Embedding

	2.3 Existing Methods
	2.3.1 Alternating Coordinates Descent Approach
	2.3.2 SDP Approach
	2.3.3 EDM Approach

	3 Theory of EDM Optimization
	3.1 EDM Optimization
	3.1.1 Objective Functions
	3.1.2 Relations among fpq and Stress-based Minimizations
	3.1.3 Generality of Constraints

	3.2 Penalization and Majorization
	3.2.1 Penalization — Main Model
	3.2.2 Majorization

	3.3 Derivation of Closed Form Solutions
	3.3.1 Solution under f22
	3.3.2 Solution under f21
	3.3.3 Solution under f12
	3.3.4 Solution under f11

	4 Majorization-Projection Method
	4.1 Majorization-Projection Method
	4.1.1 Algorithmic Framework
	4.1.2 Solving Subproblems

	4.2 Convergence Analysis
	4.3 Assumptions Verification
	4.3.1 Conditions under f22
	4.3.2 Conditions under f21
	4.3.3 Conditions under f12
	4.3.4 Conditions under f11

	5 Applications via EDM Optimization
	5.1 Wireless Sensor Network Localization
	5.1.1 Problematic Interpretation
	5.1.2 Data Generation
	5.1.3 Impact Factors

	5.2 Molecular Conformation
	5.2.1 Problematic Interpretation
	5.2.2 Data Generation
	5.2.3 Impact Factors

	5.3 Embedding on A Sphere
	5.3.1 Problematic Interpretation
	5.3.2 Data Generation

	5.4 Dimensionality Reduction
	5.4.1 Problematic Interpretation
	5.4.2 Data Generation

	6 Numerical Experiments
	6.1 Implementation
	6.1.1 Stopping Criteria
	6.1.2 Initialization
	6.1.3 Measurements and Procedures

	6.2 Numerical Comparison among fpq
	6.2.1 Test on SNL
	6.2.2 Test on MC
	6.2.3 Test on ES
	6.2.4 Test on DR

	6.3 Numerical Comparison with Existing Methods
	6.3.1 Benchmark methods
	6.3.2 Comparison on SNL
	6.3.3 Comparison on MC
	6.3.4 A Summary of Benchmark Methods

	7 Two Extensions
	7.1 More General Model
	7.1.1 Algorithmic Framework
	7.1.2 One Application

	7.2 Solving the Original Problem
	7.2.1 pADMM
	7.2.2 Current Convergence Results of Nonconvex pADMM
	7.2.3 Numerical Experiments
	7.2.4 Future Proposal

	8 Conclusion
	References
	Bibliography

