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Recently, the efficient market hypothesis has faced strong challenges from various fields, and the 

purpose of this thesis is to provide empirical evidence for the challenges to the efficient market 

hypothesis from two perspectives. The first one is from the field of machine learning. While an 

increasing number of machine learning studies report the high accuracy of stock market prediction, 

this is not consistent with the efficient market hypothesis which suggests that current stock prices 

discount available information and that it is not possible to obtain systematic returns by exploiting 

any predictability of prices. As most of the machine learning studies choose relatively simple test 

settings, I suspect that the reported high accuracy might result from biased performance 

measurement. That is, the selection of methodological factors is influential on prediction 

performance in stock markets. To test my conjecture, I run the benchmark with a comprehensive 

combination of the methodological factors to collect the performance measures under various 

settings. Next, I analyze the relationship between the prediction performance and the 

methodological factors. I find the significant influence of the selection of methodological factor on 

prediction performance, which means that the reported high prediction performance might be 

biased and my results are not against the prediction of the efficient market hypothesis.  

The second challenge is that there is increasing evidence of anomalies in financial markets. This 

suggests that the underlying rationality principle of the efficient market hypothesis may be flawed. 

The manner in which individuals learn from experience also remains a matter of debate. The 

rationality assumption would be justified if individuals follow Bayesian learning, i.e., individuals 

learn from experience to appropriately adjust their probability estimates and finally make rational 

and appropriate decisions. To examine the relationship between experience and performance 

measures, I use linear mixed models to analyze spread trading data. I find that, as individuals gain 

experience, they increase their degree of risk-taking and realize higher returns. However, these 



 

 

returns are subject to greater volatility and, as a result, they achieve lower risk-adjusted returns. 

Since the individuals following Bayesian learning should be able to appropriately update 

probability estimates conditioned on new information, their decision choices and their risk-adjusted 

performance should be improved. My results show that individuals fail to follow Bayesian learning. 

On the other hand, my results can be explained by reinforcement learning, wherein individuals 

repeat behavior that was rewarding in the past. Traders may try several trading strategies with 

different levels of risk. Since higher risk generally brings both higher profits and greater losses, 

traders who undertake riskier strategies will either make higher profits or suffer greater losses. 

Those traders making a higher profit are reinforced by the riskier strategies and overlook the 

underlying risk, which leads to lower risk-adjusted performance. Hence, my results cast doubt on 

the validity of the rationality assumption.  

To further explore the degree of rationality with trading data, I propose a method to estimate the 

degree to which an individual behave like a rational agent, and other behavioral characteristics. The 

experience weighted attraction (EWA) can be used to estimate the degree of rationality in 

psychological experiments, but cannot be used with trading data. The reason is that the number of 

strategies available to decision makers was limited in psychological experiments, but in real-world 

trading environments, traders have no limits in terms of the strategies they can adopt. We propose a 

decision-based strategy mapping framework (DSM) to resolve this problem. The DSM is designed 

to artificially limit the strategy space associated with real-world trading data, by using scenarios. In 

each scenario, individuals are assumed to have only one decision to make. This allows us to 

estimate, using data associated with an individual’s real-world trading, their behavioral 

characteristics associated with EWA. Subsequently, we examine the relationship between the 

estimated behavioral characteristics of traders and their trading behavior and performance. My 

results suggest that those traders who behave like rational agents tend to trade more actively. 

However, surprisingly, those traders who are more rational do not achieve superior trading 

performance.  

In conclusion, the findings of this thesis support the efficient market hypothesis that the markets are 

efficient, at least to the extent to which excess returns cannot be earned with state of the art 

machine learning techniques. However, the results of learning behavior from individual-level 

analysis suggest that the rational agent assumption of the efficient market hypothesis is likely to 

over-simplify individual behavior in the real world. 
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1 

Chapter 1: Introduction  

Eugene F. Fama and Robert J. Shiller were awarded the Nobel prize in economics in 2013 for their 

contribution to our knowledge of asset pricing. Fama introduced the efficient market hypothesis 

(Fama, 1970) , and Shiller is one of the most prominent critics of the hypothesis. The fact that two 

economists with opposing views share the Nobel prize suggests that the debate concerning the 

EMH is still raging.  

In the center of the debate is the assumption of rationality. Evidence from both experimental and 

empirical research supports the view that individuals can learn from experience. However, the 

manner in which individuals learn and improve their decision making remains a matter of debate. 

Specifically, if individuals can learn from experience to appropriately adjust their probability 

estimates and finally make rational, correct decisions, the rationality assumption would be justified 

(Charness and Levin, 2003; Chiang et al., 2011) . Experimental results generally question the point 

of view, and empirical results are relatively few(Roth and Erev, 1995). Hence, it is important to 

develop empirical evidence concerning the learning process.  

The well-known implication of the EMH, that stock prices cannot be accurately predicted, faces 

challenges from the outside of the traditional finance field: recent machine learning studies report 

promising directional prediction accuracy. Machine learning techniques may be used to achieve 

better profit than human traders since traders are subject to irrational behavior which is the nature 

of human being and cannot be totally avoided. The adoption of machine learning techniques among 

financial institutions may change the structure of the markets, and hence the investigation of the 

impact on financial theories is needed.  

The aim of this thesis is to examine, via empirical evidence, the nature of learning by traders and 

the extent to which machine learning techniques may be used to question some of the underlying 

assumptions of the EMH. First, I run a comprehensive forecasting simulation on the major stock 

indexes around the world to examine the challenge to efficient market hypothesis posted by the 

high prediction accuracy of machine learning studies. Second, I examine the learning process of 

individual traders from a risk perspective and discuss the implication of the results on the two 

fundamental elements in neoclassical economic theories: rationality and risk aversion. Third, I will 

apply learning models, which in the past have only been tested with experimental data, on 

empirical trading data, in order to provide empirical evidence to add to the debate of whether 

individuals learn to be rational.  

1.1. Background  

The term ‘efficient market’ was introduced by Fama (1970), and Samuelson (1965) provides 

theoretical support for the randomness of stock returns. The name of the hypothesis itself caused 
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controversy, since efficiency in economics used to refer to the Pareto optimality, an optimal state of 

resource allocation. However, the EMH provides an analytical framework for asset pricing in 

financial markets, and asset pricing models are developed based on the concept.      

The first building block of the EMH is rationality. All market participants can be represented by 

rational agents who make decisions rationally based on all available information to maximize 

personal welfare. The second building block of the EMH is that all information is free and 

available to all participants immediately in the market. Thus, prices are determined by rational 

agents with all information taken into account, and all information is reflected in prices. When a 

new event happens, the new information becomes available to every rational agent immediately, 

and the new prices are determined in a very short time. Since all prices reflect all information at all 

time, the only way to beat the market and obtain excess returns is to foresee new events. 

Proponents of the EMH argue that it is impossible to systematically foresee new events, and, 

consequently, it is impossible to predict prices and to obtain excess returns.   

The most obvious criticism of the EMH is associated with the assumption of the rational agents. 

Several behavioral biases, which are departures from rational behavior, are documented, such as 

overreaction (Bondt and Thaler, 1985), loss aversion (Kahneman and Tversky, 1979; Odean, 

1998a),  over-confidence (Gervais and Odean, 2001) and disposition (Shefrin and Statman, 1985). 

The evidence suggests that individual participants in financial markets are not always rational, and 

the aggregated opinion on prices does not necessarily reflect all information as the EMH predicts. 

The other assumption of the EMH, that everyone can obtain free and timely information is 

unrealistic for many market participants. Grossman (1976) and Grossman and Stiglitz (1980) claim 

that there is no reason to gather information and trade in an efficient market, so such markets will 

eventually collapse. That is, it is impossible for perfectly efficient markets to exist.    

The major implication of the EMH is generally considered to be that prices cannot be predicted in 

an efficient market since all information should already be reflected in prices. However, several 

market anomalies, represented by patterns that can help predict prices, have been documented. 

These include  the January effect (Keim, 1983), the weekend effect (French, 1980) and the 

momentum effect (Jegadeesh and Titman, 1993). Certain characteristics of organizations, such as 

firm size, price-to-earning and price-to-book ratios, have also been found to be helpful in predicting 

stock earnings and prices (Fama, 1991). In addition, irrational market phenomena, such as the 

Internet bubble and the sub-prime financial crisis, post strong challenges to the EMH.  

Currently, most advocates of the EMH agree that not all market participants are rational and pricing 

irregularities can happen for short periods (Malkiel, 2003). It is widely accepted that a perfectly 

efficient market cannot exist. Otherwise there would be no incentive to trade (Grossman and 

Stiglitz, 1980). However, it is argued that the EMH still describes the markets quite well, that the 

surprising phenomenon described above seems to be an exception and that predictable patterns of 
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prices will not persist for a long time. That is, even if prices are partially predictable, there is no 

systematic approach to obtain excess returns from the market in the long run (Beechey et al., 2000).    

However, promising directional prediction accuracy is reported in recent machine learning studies, 

which may allow the excess return to be earned. I perform a comprehensive simulation with state 

of the art machine learning techniques in the first paper to clarify whether the high accuracy could 

be achieved easily. I then examine the rational agent assumption of the EMH in the second paper 

from a learning perspective. Specifically, I investigate the relationship between experience and 

performance measures with trading data as a rational agent should follow Bayesian learning – i.e., 

individuals learn from experience to appropriately adjust their probability estimates and finally 

make rational and appropriate decisions. In the third paper, I go one step further and propose a 

method to estimate the rationality level of an individual from trading data. There is a psychological 

learning model which can be used to estimate the rationality level from laboratory experiments, but 

this model cannot be used with trading data due to the difference between the laboratory 

environment and the real world. I propose a systematic approach to resolve this problem.  

1.2. Challenges to the EMH from Machine Learning (First Paper)  

Despite the advocates of the EMH suggesting that stock prices cannot be accurately predicted 

systematically, the challenge has been taken up in the Machine Learning literature. In particular, a 

number of machine learning techniques have been used to try to predict stock trends or prices, 

including support vector machines (SVMs) and artificial neural networks (ANNs) (George S. 

Atsalakis and Valavanis, 2009). Recent studies report promising directional prediction accuracy. 

For example, Pan et al. (2005) obtain 80% accuracy, de Oliveira et al.  (2013) report 86% accuracy, 

and Patel et al. (2015) achieve 90% accuracy in predicting the direction of the stock market. Such 

high prediction accuracy is likely to enable the creation of excess returns. Clearly, such a result 

would not be consistent with the EMH implication that no excess return can be obtained in a 

systematic manner.  

 To shed light on the reasons for the apparent contradiction between the EMH and the machine 

learning studies, I conduct a comprehensive benchmark study with all combinations of the factors, 

which allows me to investigate the influence of factors on market predictability. In this, I explore 

the influence of five factors which may affect prediction accuracy, including market maturity, 

prediction horizon, simulation methodology, the usage of technical indicators and machine learning 

techniques. In particular, I assess the influence of the factors on the predictability of different 

financial markets and the profitability of model-based trading in these markets using a dataset of 34 

financial time series, which cover most major stock markets in the world, on both a daily and 

hourly basis. To my best knowledge, this is the first study to compare machine learning prediction 

models across nearly all important stock indexes over the globe on both intraday and daily basis.   
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While most previous ML studies examine prediction accuracy in one or two financial markets on 

one prediction horizon, I examine prediction accuracy across a large number of financial markets 

around the world on both a daily and hourly basis. The large-scale and breadth of the simulation 

experiments allow me to compare the influence of five key experimental factors on market 

predictability. This, in turn, allows me to explore the real implications of the ML-based financial 

market prediction studies for the financial economists’ view of market efficiency. Specifically, a 

bridge between the ML and the financial economics is attempted.  

The results of the extensive forecasting experiments suggest that certain factors associated with 

previous ML studies are influential on the prediction accuracy, including market maturity, 

forecasting method, prediction horizon and machine learning techniques. I find that prediction 

accuracy and trading profit is higher in mature markets than that in emerging markets. Daily 

prediction accuracy is higher than hourly, and SVM generates higher accuracy than ANN. I find 

that the inclusion of technical indicators has insignificant influence on the prediction accuracy.  

My findings provide evidence for the view that stock prices are partly predictable: the prediction 

accuracy of the ML models is significantly higher than random guesses in my experiments. This is 

consistent with the previous ML studies that ML techniques, such as SVM and ANN, are useful in 

predicting financial markets. However, the level of accuracy in my experiments (most are below 60 

percent), is substantially lower than that commonly published in previous studies. A possible 

explanation is that I use naive SVM and ANN models and a basic set of covariates to preserve the 

reproducibility of my experiments. On the other hand, my results indicate the importance of 

methodological factors regarding the prediction performance.  Certain selections of factors, such as 

market maturity and prediction horizon, can be significantly influential on prediction accuracy. 

Hence, previous ML studies may have drawn conclusions from over-optimistic prediction 

performance and, consequently, may underestimate the degree of market efficiency more generally.  

I fail to find evidence inconsistent with the EMH which suggests that stock prices are partly 

predictable and there is no systematic approach to obtain excess returns. Although the simple 

trading simulations (which always follow the generated predictions) generally achieve positive 

return rates, the returns mostly turn negative after transaction cost is taken into account. This 

suggests that the high prediction accuracy does not guarantee excess returns in financial markets 

due to the cost of arbitrage (Malkiel, 2003).   

 

1.3. Is experience the mother of risk wisdom? (Second Paper) 

Empirical studies show that individuals can learn through time to improve their profitability and 

reduce their disposition effect (a behavioral bias describing the reluctance to sell stocks in loss) 

(Feng and Seasholes, 2005; Nicolosi et al., 2009; Seru et al., 2010). However, previous studies 
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have failed to account for the risk accepted by these individuals. The risk return trade-off suggests 

that higher returns are often accompanied by higher risk (Fama and MacBeth, 1973; Glosten et al., 

1993). Consequently, previous results which suggest that individuals learn to improve their 

performance through time may be misleading. It may simply be that individuals engage in riskier 

behavior through time and this pushes up their returns. Hence, I examine the extent to which 

traders learn through time/experience by examining the performance improvement of traders as 

measured by their Sharpe ratio, a widely used risk adjusted return measure in the economic and 

finance literature (Sharpe, 1998). To my best knowledge, this is the first study to investigate the 

effects of learning on investment performance with empirical trading data and individual level 

analysis, taking account of their volatility of returns and risk-adjusted performance. 

The results of this study show that traders increase their returns through experience (measured in 

terms of the time since their first participation in the market). This result is in line with the 

literature (Feng and Seasholes, 2005; Nicolosi et al., 2009; Seru et al., 2010). However, I find that 

the volatility of their returns also increases and their risk adjusted performance decreases as they 

gain more experience. The results imply that traders improve returns at the expense of taking 

higher risk and, consequently, obtain lower risk-adjusted performance. This also shows that a 

single performance measure could lead to misleading conclusions regarding performance 

improvement.  

The rationality assumption of the EMH is based on the notion of ‘Bayesian learning,' and these 

results cast doubt on Bayesian learning which suggests that through time individuals are better able 

to estimate probability conditioned on new information and control trading risk. From Chiang et al. 

(2011)’s point of view, the implication of Bayesian learning is the performance improvement 

through experience. However, I find that traders have increasing returns and decreasing risk-

adjusted performance, which is not consistent with the implication. Thus, the evidence does not 

lend support Bayesian learning.  

On the other hand, reinforcement learning seems to provide a reasonable explanation for my 

findings. Reinforcement learning suggests that individuals update the likelihood of strategy 

selection according to the rewards of the previous actions. In this case, traders may use a number of 

trading strategies with different levels of risk. The riskier strategies generally lead to higher profit 

and higher volatility. Those traders using riskier strategies are more likely to have higher returns 

and are reinforced by the riskier strategies. The finding that traders increase their risky behavior 

through experience provides further support for this explanation.     

My findings suggest that traders follow reinforcement learning rather than Bayesian learning, and 

traders tend to pursue returns while underestimating the underlying risk. The implication is that 

traders are not aware of the importance of trading risk, and lack of the sense of trading risk could 
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be harmful to both traders and markets. As a result, further intervention from financial authorities is 

needed to remind traders the potential risk.   

I find a notable change of risk-taking behavior is exhibited through experience. Traders intensify 

their risky behavior when they gain more experience, and this leads to higher volatility of returns. 

The implication of my results is that risk preference is affected by personal accumulated experience, 

in addition to total wealth (loss aversion) and prior outcomes (house money effect). Therefore, 

experience should be accounted for in considering risk preference, since even moderate changes in 

risk preference can lead to substantial volatility of asset prices compared to the level of the 

underlying consumption variability (Allen and Gale, 1994; Mehra and Sah, 2002). 

1.4. Estimating Behavioral Characteristics associated with Learning 

Models in Financial Markets (Third Paper) 

Individual decision making has been a fundamental question in economic and finance. Recently, 

emerging empirical evidence suggests that trading behavior is affected by several factors, such as 

past retunes, personal experience and sophistication (Chiang et al., 2011; Choi et al., 2009; Glaser 

and Weber, 2009; Kaustia and Knüpfer, 2008; Y.-J. Liu et al., 2010; Nicolosi et al., 2009; Seru et 

al., 2010; Thaler and Johnson, 1990). On the other hand, trading data from financial markets 

provides very limited information of individual characteristics, such as age, gender and career, in 

addition to trading information. However, certain individual behavioral characteristics that are less 

readily discernable have been shown to affect how individuals learn to adjust their behavior in 

psychology experiments, which leads to that the effect of these behavioral characteristics has been 

largely neglected in empirical studies. One of such behavioral characteristics is the extent to which 

an individual behaves like a rational agent, i.e., the level of rationality, which can be estimated with 

behavioral models in laboratory experiments. But the estimation of rationality level cannot be 

easily done with the trading data in the real world. To shed light on the effect of these behavioral 

characteristics, we develop a methodology which allows us to determine, using empirical data, 

some important behavioral characteristics of individual traders associated with learning models and 

we examine to what extent these influence the individual’s trading behavior and performance.    

We estimate the behavioral characteristics of traders used as parameters in a behavioral learning 

model (i.e., the experience weighted attraction (EWA) model). Thanks to comprehensive 

behavioral experiments conducted in the psychology field, behavioral models are proposed to 

describe how individuals make decisions after receiving feedback from their actions in the past 

(Camerer and Ho, 1999). The most important behavioral characteristic is the weight of foregone 

payoff which is used to control how unchosen strategies are reinforced. A strategy with a superior 

payoff in the past is reinforced and is more likely to be chosen in the future. The weight of 

foregone payoff is the key to determine the extent to which an individual behaves like a rational 

agent and can be regarded as the measure of rationality.  
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Nonetheless, it is problematic to apply behavioral models on real trading data: subjects 

participating experiments usually select one option among a few alternatives given all relevant 

information (i.e., strategy space of subjects is limited), while traders in financial markets face an 

unlimited strategy space  and have to make a series of decisions, including the market change 

direction, the stake size and when to open and close a position, with a number of sources of public 

market information which may or may not be relevant to the performance of the traders.  

Therefore, I propose the decision-based strategy mapping framework (DSM) to help solve this 

problem of unlimited strategy space. DSM creates the concept of ‘possible scenarios.' In each 

scenario, individuals are assumed to have only one decision to make. For example, in a ‘buy/sell’ 

scenario, the traders are assumed to believe the decision of choosing to buy or sell is the one thing 

that will affect their eventual return. In this way, DSM creates a limited strategy space, which 

allows me to apply behavioral models on the trading data in financial markets. Subsequently, I am 

able to assess to what extent a model actually fits the trading data; this also enables me to assess 

which of the scenarios best represents the factors that traders actually consider when placing their 

trades. Furthermore, with DSM, I am able to use an individual’s trading data to estimate their 

behavioral characteristics (estimated with EWA) and the manner in which they learn for their 

previous experience; such as the weight they place on foregone payoffs. I then examine the relation 

between the behavioral characteristics of individual traders and their behavior and trading 

performance.   

The results show that traders believe that their decisions on stake size are influential on their profit 

point, i.e., the percentage profit they earn. I also find that traders who put greater weight on 

foregone payoffs for unchosen strategies (i.e., opportunity costs) tend to place higher stake sizes in 

average and trade more frequently. As rational economic agents are generally considered to 

actively consider opportunity costs when making decisions, the results suggest that those traders 

who behave like rational agents tend to trade more actively. It is important to notice that those 

traders who are more rational do not achieve better trading performance. In addition, traders who 

start trading with a preference for lower stake sizes achieve overall better trading performance 

(higher total profit and lower volatility of returns).  

1.5. Contribution 

In summary, I conduct comprehensive simulation experiments with machine learning techniques in 

predicting the change direction of stock index in the first paper, and the major contribution is: 

 Providing evidence for that the methodological issues might be the source of the difference 

between the prevailing view in support of the EMH in the financial economics literature 

and the high prediction accuracy of stock prices reported in ML studies. 

 Providing empirical evidence for the prediction ability of ML techniques, such as SVM and 

ANN, to recognize the patterns of market anomalies across major financial markets. 
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In the second paper, I analyze spread trading data on an individual level to examine the change of 

both behavior and performance through experience from a risk perspective. The major contribution 

is: 

 Risk taking behavior is also affected by accumulated experience, in addition to past returns 

and total wealth. 

 Traders increase returns by taking higher risk, and this leads to lower risk adjusted 

performance. 

 A Higher level of risk taking behavior does not necessarily lead to higher volatility of 

returns. 

In the third paper, I estimate individual behavioral characteristics with empirical trading data by 

incorporating the proposed DSM framework and the EWA learning model. The major contribution 

is: 

 Proposing DSM to overcome the problem of unlimited strategy space in applying 

behavioral models to real trading data. 

 Providing evidence for the relation between trading performance and behavioral 

characteristics.  

1.6. Structure of Thesis 

This thesis is structured as follows. In Chapter 2, I present the result of comprehensive forecasting 

simulation to clarify the factors leading to the disagreement between the EMH and the machine 

learning studies. In Chapter 3, I examine the investment performance from a risk perspective when 

traders gain experience. In Chapter 4, I propose the decision-based strategy mapping framework to 

estimate unobservable individual characteristics which are shown to be influential on trading 

behavior and performance. I conclude in Chapter 5.   
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Chapter 2: Bridging the Divide in Financial Market 

Forecasting: Machine Learners vs. Financial 

Economists. 

 

Abstract― Financial time series forecasting is a popular application of machine learning methods. 

Previous studies report that advanced forecasting methods predict price changes in financial markets 

with high accuracy and that profit can be made trading on these predictions. However, financial 

economists point to the informational efficiency of financial markets, which questions price 

predictability and opportunities for profitable trading. The objective of the paper is to resolve this 

contradiction. To this end, we undertake an extensive forecasting simulation, based on data from 

thirty-four financial indices over six years. These simulations confirm that the best machine learning 

methods produce more accurate forecasts than the best econometric methods. We also examine the 

methodological factors that impact the predictive accuracy of machine learning forecasting 

experiments. The results suggest that the predictability of a financial market and the feasibility of 

profitable model-based trading are significantly influenced by the maturity of the market, the 

forecasting method employed, the horizon for which it generates predictions and the methodology 

used to assess the model and simulate model-based trading. We also find evidence against the 

informational value of indicators from the field of technical analysis. Overall, we confirm that 

advanced forecasting methods can be used to predict price changes in some financial markets and we 

discuss whether these results question the prevailing view in the financial economics literature that 

financial markets are efficient. 

Keywords:  Financial time series forecasting, market efficiency, machine learning 
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Research Highlights 

 

 We perform a comprehensive benchmark in financial time series forecasting  

 We determine if the best  machine learning methods predict financial time series more accurately 

than the best econometric methods 

 We examine the impact of forecasting methodology on the predictability of financial time series  

 We clarify the influence of market maturity, forecast horizon, model simulation methodology, 

prediction method, and technical indicators on market efficiency  
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2.1 Introduction 

Financial markets facilitate international trade, aggregate, discount and convey information concerning 

the future prospects of organizations and economies, and are enablers of economic growth. Given their 

importance, financial markets have attracted much research, including the modeling of market prices. 

Applications of such prediction models include the management of financial risks (W.-S. Chen & Du, 

2009) and the support of investment decisions (Chang et al., 2009; de Oliveira et al., 2013; Huang et 

al., 2008).  

It is common practice to demonstrate the merit of a novel machine learning (ML) model for time series 

forecasting using financial market data such as stock or commodity prices, currencies, or financial 

indices. We survey such experiments in our literature review and show that many studies report high 

levels of forecasting accuracy. Some studies also identify opportunities to trade profitably on model 

predictions (Chang et al., 2009; de Oliveira et al., 2013; Doeksen et al., 2005; Huang et al., 2008; 

Huck, 2010; Kara et al., 2011; Schumaker and Chen, 2009). However, few of these studies discuss the 

implications for market efficiency (see Table 1). 

The success of financial time series forecasting demonstrated by ML experiments is surprising given 

the theory and evidence from the financial economics literature. More specifically, the efficient market 

hypothesis (EMH) suggests that current stock prices discount available information and that it is not 

possible to obtain systematic returns by exploiting any predictability of prices (Malkiel, 2003). This 

theory is widely supported by financial economists (Fama, 1970, 1991). For example, Jensen (1978, p. 

96) claims that “there is no other proposition in economics which has more solid empirical evidence 

supporting it.”   

Our research is motivated by the need to develop an understanding of the reasons for the disagreement 

between the EMH and empirical evidence in the ML literature. Given the prominence of the EMH, for 

example in the design and regulation of financial markets, such understanding is important. In addition, 

the paper helps fill a research gap, as cross-fertilization between the ML and financial economics 

literature is limited. For example, the ML community relies on advanced, data-driven forecasting 

methods in the form of, for example, support vector machines (SVM) or artificial neural networks 

(ANN). Such methods are rarely considered by financial economists who prefer econometric, often 

linear methods (Campbell and Thompson, 2008; Fama and French, 1993, 2012). Contradictory 

findings may thus result from different modeling cultures. In addition, few ML studies discuss their 

empirical findings in the light of the EMH. The feasibility of predicting a financial market with an 

accuracy above 80 percent seems to be taken for granted in the ML literature, although such figures 

suggest significant inefficiency, with important implications for the use of financial markets as 

effective allocative mechanisms. In summary, the objectives of this study are to: (i) examine the 
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magnitude of disagreement between previous findings of the ML and financial economics literature, (ii) 

investigate the experimental factors in ML studies which may help explain this discrepancy, and (iii) 

explore the implications for studies examining financial market efficiency.  

To achieve our objectives, we compare the predictive accuracy of the most widely used ML and 

econometric methods and find that the best ML methods outperform the best econometric methods. In 

doing so, we extend previous ML studies in financial time series forecasting (de Oliveira et al., 2013; 

Kara et al., 2011) by performing an independent evaluation of ML methods (i.e., we do not propose a 

new method, which may bias an evaluation (Hand, 2006)). This enables us to examine the degree to 

which previous findings in the ML literature (i.e., high forecasting accuracy) generalize to novel 

experimental conditions. For example, unlike most previous studies, which examine forecast accuracy 

and resulting trading profitability in one financial market, either within a day or across trading days, 

we examine forecast accuracy and trading profitability across a large number of financial markets. We 

then compare the performance of forecasts of market prices within a day and across trading days, 

which allows us to make three contributions: First, we assess the degree to which factors associated 

with forecasting methodology (e.g., forecasting method and horizon, etc.) affect predictive accuracy 

and trading profitability. Second, our results enable us to provide guidance on how to organize 

benchmarking experiments in financial time series forecasting and to identify the origins of 

disagreement between the ML and the financial economics literature. Third, we examine the 

implications that result from ML-based forecasting studies should have on the financial economists’ 

prevailing view of widespread market efficiency. In particular, we attempt to build a bridge between 

the ML and the financial economics domains. This is important because advances in either domain are 

rarely reflected in the other. Thus, our study is a first step toward unlocking the potential for 

collaborative gains.  

The remainder of the paper is organized as follows: In the following section, we review related work 

in the financial and ML literature. Next, we develop six hypotheses concerning how different 

methodological factors affect predictive accuracy. We then elaborate on our experimental design, 

before presenting empirical results and discussing their implications. We conclude with a summary of 

our main findings. 

2.2 Related Work 

2.2.1 The Efficient Market Hypothesis 

It is widely believed that financial markets are efficient in aggregating diverse sources of information 

concerning an asset’s future prospects. In particular, the EMH states that asset prices reflect all 

relevant information and it is impossible to generate excessive returns through ‘more informed’ (e.g., 
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model-guided) investment decisions (Fama, 1970). Milder versions of the EMH relax the assumption 

of prices incorporating all relevant information:  semi-strong and weak form efficient markets being 

ones where prices reflect all publicly available information and historic price information, respectively.  

The EMH is based on the belief that market participants make rational decisions and that any mis-

pricing will quickly be eliminated by those seeking to gain from these anomalies. However, persistent 

evidence of irrationality has been identified, such as overreaction (Bondt and Thaler, 1985) and the 

disposition effect (Dhar and Zhu, 2006; Grinblatt and Keloharju, 2001a; Shefrin and Statman, 1985). 

Furthermore, persistent market anomalies, such as the January effect (Keim, 1983) and the weekend 

effect (French, 1980), have been observed and these are difficult to explain in terms of the EMH. In 

addition, Lo et al. (2000) show that technical analysis can be used to predict stock movements. 

Proponents of the EMH argue that market efficiency is a simplification that may not always hold true, 

but will on most occasions and for most investors. Equally, they argue that anomalies may appear, but 

will disappear when they become known to the market. In addition, the ability to predict certain 

market prices does not imply that these can be exploited to earn an excess profit (Malkiel, 2003). 

Summing up the literature, Fama (1998) indicates that although some studies appear to identify market 

inefficiency, the EMH cannot be rejected unless three elements are present: endurance - the 

inefficiency should survive in the long term; homogeneity - the inefficiency should be apparent in the 

same form across different markets; robustness - the methodology used to demonstrate the inefficiency 

should be sufficiently robust to provide confidence that the inefficiency exists. It is in this light that we 

examine the literature which employs ML for financial market prediction. 

  

2.2.2 Price Prediction in Financial Markets using Machine Learning 

Despite financial economists’ widespread belief in the veracity of the EMH, a large body of ML 

literature examines the predictability of financial market prices and the profitability of model-based 

trading (see Table 1). For example, financial market forecasting is a popular application domain to 

develop new modeling methodologies and to demonstrate their potential. The prevailing approach is to 

develop dynamic regression models, which predict future market prices on the basis of past 

movements in those prices and other price time series (e.g., stocks, indices, currencies, etc.).  

  



Chapter 2 

14 

TABLE 1: FINANCIAL MARKET FORECASTING STUDIES: DESIGN DIFFERENCES 

 

Study 
Modeling 

subject 
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Forecasting 
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Prediction 

Method 
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Subject of prediction  
Result  

discussed  

re EMH   
 

  

S
V

M
 

A
N

N
 Change 

direction 

Price 

change 

Trading 

Strategy 

Ormoneit 

and 

Neuneier 

(1996) 

Index German Hourly  X       

Steiner 

and 

Wittkemp

er (1997) 

Stock German Daily  X YES    X YES 

Kuo et al. 

(2001) 
Index Taiwan Daily  X  YES   X  

Chen et al. 

(2003) 
Index Taiwan Monthly  X  YES   X  

Mittermay

er (2004) 
Stock U.S. Hourly X      X  

Zhang et 

al. (2004) 
Index China Daily  X  YES   X  

Vanstone 

et al. 

(2005) 

Stock 
Australi

a 
Daily  X  YES   X  

Pan et al. 

(2005) 
Index  

Australi

a 
Daily  X  YES X (80%)    

Huang et 

al. (2005) 
Index Japan Weekly X    X (75%)    

Armano et 

al. (2005) 
Index U.S. Daily  X  YES   X  

Chen and 

Ho (2005) 
Index Taiwan Daily X   YES  X   

Doeksen 

et al. 

(2005) 

Stock U.S. Daily  X  YES   X  

Bodyanski

y and 

Popov 

(2006) 

Index U.S. Daily  X   X (72%) X   

Qian and 

Rasheed 

(2007) 

Index U.S. Daily  X YES YES X (65%)    
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Hassan et 

al. (2007) 
Stock 

U.S. 

stocks 
Daily  X  YES  X   

Tseng et 

al. (2008) 
Index Taiwan Daily  X  YES  X   

Huang et 

al. (2008) 
Index 

Taiwan, 

Korea 
Daily X X  YES X (80%)    

Schumake

r and Chen 

(2009) 

Index U.S. Daily X      X  

Zhang and 

Wu (2009) 
Index  U.S. Daily  X  YES  X   

Chang et 

al. (2009) 
Stock Taiwan Daily  X  YES   X  

Lee (2009) Index U.S. Daily X   YES X (87%)    

Tsai and 

Hsiao 

(2010) 

Stock Taiwan Season  X YES  X (78%)    

Hadavandi 

et al. 

(2010) 

Stock U.S. Daily  X    X   

Huck 

(2010) 
Stock U.S. Weekly  X  YES   X YES 

Bollen et 

al. (2011) 
Index U.S. Daily  X    X  YES 

Kara et al. 

(2011) 
Index 

Turkey 

index 
Daily X X  YES X (75%)    

Dai et al. 

(2012) 
Index 

Taiwan, 

Hong 

Kong, 

Japan 

Daily X   YES  X   

de 

Oliveira et 

al. (2013) 

Index 
Brazil 

index 
Monthly  X  YES X (86%)    

Ballings et 

al. (2015) 
Stock Europe Year X X  YES X (70%)    

Patel et al. 

(2015) 
Index India Daily X X  YES X (90%)    

* Ormoneit and Neuneier (1996) predict hourly volatility.  

This table lists the studies using machine learning techniques in stock markets. The modeling subject is the target 

of the models and can be the price of an individual stock or the index price of a stock market. The market is the 

region of the stock market. The dynamic simulation is marked with an ‘X’ if the sliding window method is used. 

The technical indicator is marked with an ‘X’ if the technical indicators are included.  
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A researcher faces many degrees of freedom in organizing a forecasting study. We believe that the 

specific choices made may have a sizeable effect on the observed results. Consequently, previous 

findings related to price predictability are best appraised in the context of the specific experimental 

conditions under which they were obtained. To that end, we review previous studies and their 

experimental design in Table 1. The common denominator is that all these studies employ some 

advanced prediction method to forecast price developments in some financial market. In particular, we 

concentrate on studies that consider support vector machines (SVM) and/or artificial neural networks 

(ANN). Due to their ability to recognize patterns in nonlinear, dynamic time series data (Chang et al., 

2009; Lee, 2009; Żbikowski, 2015), these methods are especially popular in financial market 

forecasting. Additional factors, other than the prediction method, considered in Table 1 are the 

financial instrument that is being forecast (individual stocks and indices), the geographic market, the 

forecasting horizon, whether the study uses a static or dynamic approach to simulate model-based 

trading, and whether it uses technical indicators among the covariates. We further motivate these 

factors when developing our hypotheses in Section 3.  

The information in Table 1 suggests that previous studies predominantly seek to forecast financial 

indices in Asian markets and the Taiwanese market in particular, although US markets also occur 

frequently. Only six out of 28 studies consider other markets (e.g., Australian, German). Overall, ANN 

is the most popular prediction method, and only four studies consider both ANN and SVM. One of the 

interesting findings is that very few studies evaluate prediction models in a dynamic fashion. Rather, 

the prevailing approach, used in 25 out of 28 previous studies, is to split a financial time series into a 

training and a hold-out test set. We refer to this approach as ‘static’ because it uses the same prediction 

model throughout the whole testing period, without updating. A dynamic approach such as sliding-

window cross-validation performs model training and evaluation multiple times using smaller chunks 

of sequentially ordered data (Lessmann et al., 2011).  

The merit of technical analysis is hotly debated in the financial economics literature (Fama, 1970; 

Lesmond et al., 2004; Lo et al., 2000). Advocates of technical analysis stress the predictive ability of 

technical indicators, whereas opponents refute their value. Nonetheless, technical indicators are widely 

used in previous ML studies, with 21 out of 28 studies using these indicators, possibly together with 

other covariates (e.g., financial news).  

Table 1 also summarizes previous studies according to whether they: (a) predict the direction of price 

movements (e.g., rise or fall); (b) predict actual price changes; (c) examine whether investing 

according to model predictions would produce a profit; (d) discuss their findings in the light of the 

EMH.  

Predicting price direction/size of changes involves forecasting a discrete target variable (i.e., 

classification)/continuous target variable (i.e., regression). In the former case, Table 1 also reports the 
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directional accuracy, which can be as high as 90 percent (Patel et al., 2015). Clearly, a model that 

forecasts the direction of price/market movements correctly in 90 out of 100 cases, say days, would 

facilitate enormous profits, contradicting the view that financial markets are efficient. The directional 

accuracies shown in Table 1, therefore, illustrate the disagreement between (several) ML forecasting 

studies and studies in the financial economics literature. If the results of the ML studies are 

reproducible across markets in the long term, the excess returns will be strong evidence against the 

EMH and most asset pricing models. However, this implication is discussed in only 3 of 28 studies 

(see Table 1). Our objective is to identify the factors that explain this disagreement. 

2.3 Hypothesis Development 

To shed light on the origin of differences in findings concerning market efficiency in the finance and 

ML literature, we develop a series of hypotheses. These examine the extent to which experimental 

factors in ML studies affect forecast accuracy and trading profit derived from forecasts and whether 

the best performing ML technique outperforms the best performing econometric modelling procedures.  

The financial economics literature suggests that informational efficiency differs between established 

and emerging financial markets (Griffin et al., 2010; Ojah and Karemera, 1999); established markets 

being more efficient and, thus, more difficult to predict. One argument to support this view is 

regulation. For example, in a highly regulated market, governmental institutions create and enforce 

detailed rules concerning the release of new information that might affect a company’s stock prices. In 

general, these rules enforce greater and wider disclosure of relevant information. Consequently, 

capitalizing on private information becomes illegal and less likely.  

The relevance of regulation for our study is that selecting a particular financial market for analysis 

might predetermine the level of predictive accuracy. Specifically, a selection bias toward easier to 

predict/less efficient markets could explain the high forecasting accuracy reported in the ML literature. 

However, this is a valid explanation only if predictability and market efficiency do indeed differ with 

market maturity. To clarify this, we test: 

H1a: Predictive accuracy is higher in emerging cf. mature markets, and  

H1b: Model-based trading gives higher profits in emerging cf. mature markets.  

Another explanation for observing high accuracy/profits in forecasting studies could be the methods 

used for model assessment. Most ML stock price forecasting studies use a static approach to evaluate 

model performance (see Table 1), where predictions are generated by a model that is trained with a 

fixed set of samples. This enables a large number of samples to be included in the training set, which 

increases the opportunity to recognize price patterns. The static approach is based on the assumption 
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that stock markets exhibit long-term memory (Lo, 1991). However, it disregards the latest price 

information, which never enters the (single) training set. Sliding-window cross-validation, on the other 

hand, evaluates a model from multiple origins of a financial time series (i.e., trading periods) and thus 

uses recent samples for model training. We compare the static approach and sliding-window cross-

validation to examine the effect of model assessment methods on model performance.     

A static model evaluation paradigm might overestimate the performance of a prediction model. For 

example, by selecting a single evaluation period (i.e., the test set), the static approach suffers the risk 

of picking a lucky sample. Consider for example the years 2008/2009. Global stock prices all over the 

world fell significantly in response to the subprime credit crises. In such a period, a naïve forecasting 

model, which simply predicts price decreases, would display high accuracy, although it does not 

embody any predictive insight. The risk of over-estimating the value of a model is far less using 

sliding-window cross-validation, since this repeats the evaluation of a prediction model multiple times. 

Consequently, we test the following hypotheses:  

H2a: Predictive accuracy is higher under a static model evaluation approach, and 

H2b: Model-based trading gives higher profits under a static model evaluation regime  

The predictive performance of any forecasting model depends largely on the degree to which the 

covariates are correlated with the target variable. Many financial market forecasting models are auto-

regressive models, where the covariates refer to past realizations of the target variable. For example, to 

predict the closing price of stock X on day t, a model might use the closing prices of X at day t-1, t-2, 

etc. Indicators from the technical analysis are another type of covariate. They apply additional 

transformations of prices with the goal of creating more informative variables. Some practitioners and 

analysts argue that certain transformations of the prices and trading volumes in the past could generate 

additional information that is helpful in predicting the prices in the future. These transformations are 

known as technical indicators. The value of technical indicators remains an open question. For 

example, Lo et al. (2000) find some indicators with practical value. Similarly, Brock et al. (1992) 

conclude that trading strategies that rely on technical indicators can produce excess returns. However, 

other studies argue that technical indicators have little predictive value and do not facilitate profitable 

trading, (e.g., Fama, 1970; Lesmond et al., 2004). 

Many ML studies employ technical indicators, but several studies do not, relying rather on raw prices 

or simple price differences (e.g., closing price – opening price) (see Table 1). Informative covariates 

play a key role in predictive modeling. The use or omission of technical indicators may, therefore, 

affect the degree of predictive accuracy considerably. More specifically, the financial economics 

literature may under-estimate the degree of inefficiency in financial markets because the predictive 

value of technical indicators in that literature has been underestimated. ML studies commonly use 
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advanced data-driven models that discern nonlinear relationships and complex variable interactions 

automatically, but these models are not common in financial economics studies. It may be that ML 

studies, therefore, extract full information value from the technical indicators. To clarify the influence 

of technical indicators on predictive accuracy and market efficiency, we test: 

H3a: Predictive accuracy is higher if a model incorporates technical indicators, and  

H3b: Model-based trading gives higher profits if a model incorporates technical indicators 

We also examine the degree to which the selection of a specific forecasting horizon affects predictive 

accuracy. In general, one expects accuracy to decrease when forecasting further ahead (Hyndman and 

Athanasopoulos, 2014). This view is supported by the EMH, which predicts that time may be needed 

for stock prices to fully reflect all available information (Fama, 1970); possibly explaining the rising 

interest in high-frequency trading (Chordia et al., 2013; Menkveld, 2013).  

The information reported in Table 1 indicates that previous ML studies in financial time series 

forecasting predominantly consider forecast horizons of one day or more; possibly because financial 

data of such granularity is freely available online, whereas high-frequency, intraday data is not 

available for free. This could indicate that previous forecasting studies, albeit evidencing market 

inefficiency, have actually underestimated the degree of inefficiency, because they do not consider 

short forecasting horizons (e.g., intraday forecasting). To examine this proposition, we test the 

following hypotheses: 

H4a: Predictive accuracy is higher for shorter forecast horizons, and  

H4b: Model-based trading gives higher profits if forecasting shorter periods into the future    

 A number of studies have suggested that SVM outperforms ANN in terms of predictive accuracy (e.g., 

W.-H. Chen, Shih, & Wu, 2006; W. Huang et al., 2005; K. Kim, 2003; Ou & Wang, 2009; Tay & Cao, 

2001). Consequently, to examine the effect of the ML forecasting model on predictive accuracy for 

financial time series and on the assessment of market efficiency, we test the following hypotheses: 

H5a: Accuracy is higher for predictions based on SVM (cf. ANN), and  

H5b: Model-based trading gives higher profits when using SVM (cf. ANN) for prediction 

The financial economics and ML literature examining forecasting accuracy largely rely on 

econometric and ML methods, respectively. To examine whether the adoption of econometric vs. ML 

methods effects predictive accuracy, we perform a comparison of the commonly employed ML 

methods (ANN and SVM) with the commonly employed econometric  models: autoregressive model 

(AR), generalized autoregressive conditional heteroscedasticity model (GARCH) and autoregressive 
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integrated moving average model (ARIMA) (Charles, Darné, & Kim, 2011). According to our 

experiments, reported in online Appendix A, AR outperforms ARIMA and GARCH. We also find that 

SVM outperforms ANN. In order to assess the effect of the forecasting model (econometric vs. ML) 

on predictive accuracy for financial time series and on assessment of market efficiency, we test the 

following hypotheses:     

H6a: Accuracy is higher for predictions based on the best performing ML cf. econometric method (i.e., 

SVM vs. AR), and  

H6b: Model-based trading gives higher profits when based on predictions from the best performing 

ML cf. econometric method (i.e., SVM vs. AR) 

The proposed set of hypotheses, enable us to examine the extent to which various factors, such as 

emerging market data, static evaluation setting, technical indicators, shorter forecasting horizon and 

selected models (e.g., SVM vs. ANN and econometric vs. ML), influence the accuracy of financial 

time series forecasting. Integrating such insight with information how ML studies are typically 

conducted (i.e., Table 1) enables us to explain apparent inconsistencies between the results of the ML 

and financial economics literature.  

2.4 Experimental Design 

We investigate the influence of five experimental factors (market maturity, model simulation 

methodology, covariate composition, forecast horizon and prediction method (SVM vs. ANN; best 

ML (SVM) vs. best econometric (AR)): see Table 2) on the predictability of price movements in 

financial markets and the profitability of model-based trading. We test hypotheses based on these 

experimental factors using a data set of 34 financial time series. Whilst this is not a large sample, it 

facilitates a reasonably inclusive study since most major markets in the world are examined. In 

addition, since most ML studies use only a single financial time series, our study is relatively large, 

and we feel, therefore, that the conclusions can be relied upon.  

There is little discussion on the influence of the methodological factors on the prediction performance. 

We survey both the financial and the machine learning literature to select these methodological factors 

which are potentially influential on prediction performance. The first factor is market maturity since 

there is strong evidence from the financial literature showing the difference in market efficiency 

between the emerging markets and the matured markets and it is difficult to predict the movement of 

an efficient market (Griffin et al., 2010; Ojah and Karemera, 1999). We examine the influence of the 

model simulation methodology (static v.s. sliding-window) because of the general belief that stock 

markets exhibit long-term memory (Lo, 1991) and that the latest price information is often disregarded 

in the training data set. Our choice of covariate composition is from the long-lasting debate on the 
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effectiveness of technical indicators (see Table 1). We include the forecast horizon factor as the 

efficient market hypothesis suggests that some time may be needed for prices to fully reflect all 

available information (Fama, 1970).The machine learning researchers have shown significant interest 

in the comparison between SVM and ANN (e.g., W.-H. Chen, Shih, & Wu, 2006; W. Huang et al., 

2005; K. Kim, 2003; Ou & Wang, 2009; Tay & Cao, 2001); hence, we contribute to the literature by 

providing the evidence from the major markets.   

More specifically, we examine all combinations of factors in a full-factorial setup. To illustrate our 

procedure, consider one experiment with specific choices for each of the experimental factors. For 

example, the experimental setup could be such that we use SVM to forecast the FTSE 100 using a 

forecasting horizon of one day, excluding technical indicators from the covariates and measuring 

forecast accuracy using a static evaluation approach. This experiment produces a set of predictions for 

all periods (i.e., days) of the test set, from which we can calculate forecast accuracy and the 

profitability of model-based trading. Having completed the first experiment, we change one factor 

(e.g., incorporate technical indicators among the covariates), and repeat the forecasting simulation. We 

continue this process for all combinations of factor levels (see Table 2) and all financial time series. 

This enables us to compare predictability across different experiments and to examine the impact of 

the experimental factors. The design is similar to that of Gerlein, McGinnity, Belatreche and 

Coleman’s (2016) study in which repeated experiments are performed to clarify the influence of 

several factors (e.g., the size of sliding window and the number of covariates), on the prediction 

performance of simple ML classifiers. In the following subsections, we discuss the factors and 

motivate our choices of individual factor levels. 

TABLE 2: SUMMARY OF THE EXPERIMENTAL SETUP 

This table lists the levels of all experimental factors and the associated hypotheses.  

Experimental factor  Factor levels                                                                       Hypotheses 

Market maturity High income level vs. middle income level                       H1a,b 

Model simulation methodology Sliding-window cross-validation vs. a static evaluation   H2a,b 

Covariate composition Simple price covariates vs. simple price covariates          

combined with technical indicators 

H3a,b 

Forecast horizon Daily vs. hourly                                                                 H4a,b 

Prediction method SVM vs ANN                                                                    

SVM vs AR                                                                       

H5a,b              

H6a,b 
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2.4.1 Data, Variables, and Forecasting Horizon 

We obtain our data from TickWrite Data Inc.1 It comprises time series of financial indices from 34 

markets for both established and emerging markets over a 6-year period (2008-14). An exception is 

the Brazilian market for which we have data for 4 years (2010-14). We included as many markets as 

possible to cover both mature and less mature markets since one of the aims of the study is to examine 

the influence of market maturity. It was important for comparability that the same period was 

employed for each market included in the study. This restricted the sample period because the 

availability of intraday data is limited and, in many markets, is only available from 2008 onwards. 

This forced us to choose the data period 2008 to 2014, where intraday data is available for most 

markets.    

Table 3 summarizes the data set. We have focused on predicting national stock indices because these 

indices are used in the majority of previous ML studies that predict direction of price changes (e.g. 

Bodyanskiy & Popov, 2006; de Oliveira, Nobre, & Zárate, 2013; C.-J. Huang, Yang, & Chuang, 2008; 

W. Huang, Nakamori, & Wang, 2005; Pan, Tilakaratne, & Yearwood, 2005; Qian & Rasheed, 2007). 

  

                                                      

1 http://www.tickdata.com/  

http://www.tickdata.com/
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TABLE 3: SUMMARY OF THE FINANCIAL MARKET DATA SET 

 

No. Economy Region Income Level Index Code Start Date End Date 

1 US America High S&P 500 SP 1/2/2008 19/2/2014 

2 Canada America High 

SP TSX 

Composite 

Index 

TS 1/2/2008 19/2/2014 

3 Japan 
Asia & 

Pacific 
High Nikkei 225 NE 1/2/2008 19/2/2014 

4 Korea 
Asia & 

Pacific 
High 

KOSPI 200 

Index 
KM 1/2/2008 19/2/2014 

5 Hong Kong 
Asia & 

Pacific 
High 

Hang Seng 

Index 
HI 1/2/2008 19/2/2014 

6 Singapore 
Asia & 

Pacific 
High 

Straits Times 

Index 
ST 1/2/2008 19/2/2014 

7 China 
Asia & 

Pacific 
Middle 

ShangHai SE 

Composite 

Index 

SH 1/2/2008 19/2/2014 

8 Malaysia 
Asia & 

Pacific 
Middle 

FTSE Bursa 

Malaysia 

KLCI Index 

KL 1/2/2008 19/2/2014 

9 Thailand 
Asia & 

Pacific 
Middle 

Thai Stock 

Exchange 

MAI 

Securities 

Index 

TH 1/2/2008 19/2/2014 

10 Indonesia 
Asia & 

Pacific 
Middle 

Jakarta 

Composite 

Index 

JC 1/2/2008 19/2/2014 

11 France Europe High CAC 40 CF 1/2/2008 19/2/2014 

12 UK Europe High FTSE 100 FT 1/2/2008 19/2/2014 

13 Italy Europe High 
FTSE MIB 

Index 
II 1/2/2008 19/2/2014 

14 Germany Europe High DAX DA 1/2/2008 19/2/2014 

15 Hungary Europe Middle BUX BU 1/2/2008 19/2/2014 

16 South Africa Africa Middle 
FTSE/JSE 

Africa Top40 
TO 1/2/2008 19/2/2014 

17 Turkey 
Middle 

East 
Middle ISE-100 TU 1/2/2008 19/2/2014 

18 Switzerland Europe High 
Swiss Market 

Index 
SW 1/2/2008 19/2/2014 
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19 Spain Europe High IBEX 35 IB 1/2/2008 19/2/2014 

20 Netherland Europe High AEX AE 1/2/2008 19/2/2014 

21 Belgium Europe High BEL20 BE 1/2/2008 19/2/2014 

22 Portugal Europe High PSI-20 PP 1/2/2008 19/2/2014 

23 Sweden Europe High 

OMX ALL-

SHARE 

Stockholm 

Index 

SM 1/2/2008 19/2/2014 

24 Norway Europe High 
OSE All 

Share Index 
OL 1/2/2008 19/2/2014 

25 Denmark Europe High 

OMX 

Copenhagen 

Index 

KA 1/2/2008 19/2/2014 

26 Finland Europe High OMXH25 HE 1/2/2008 19/2/2014 

27 Austria Europe High ATX AT 1/2/2008 19/2/2014 

28 Czech Europe High 

Prague Stock 

Exchange 

Index 

PS 1/2/2008 19/2/2014 

29 Lithuania Europe High 
OMX Vilnius 

Index 
VI 1/2/2008 19/2/2014 

30 Estonia Europe High 
OMX Tallinn 

Index 
TA 1/2/2008 19/2/2014 

31 Latvia Europe High 
OMX Riga 

Index 
RI 1/2/2008 19/2/2014 

32 US America High 

Dow Jones 

Industrial 

Average 

DJ 1/2/2008 19/2/2014 

33 US America High 
NASDAQ-

100 
ND 1/2/2008 19/2/2014 

34 Brazil America Middle 

Brazilian  

Bovespa 

Futures 

BR 06/01/2010 19/2/2014 

This table lists the stock market index used in this study. The income level is from the World Bank. The start 

date of Brazil is later than other markets due to data availability.  
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2.4.1.1 Market maturity 

To test our first hypotheses (H1a and H1b) related to market maturity, we use the World Bank income 

level2 to categorize financial markets (fourth column in Table 3): 26 markets in our sample stem from 

high income (mature) economies and 8 from middle income (less mature) economies. This approach 

to categorization is consistent with previous experiments (Choong et al., 2010a; Claessens et al., 2006). 

However, idiosyncrasies of particular classification systems may introduce bias. To test the robustness 

of our findings in relation to market maturity, we also employ market maturity classifications provided 

by the Morgan Stanley Capital Index (MSCI)  (Zunino et al., 2009) and the International Monetary 

Fund (IMF) (Kim and Shamsuddin, 2008).  

2.4.1.2  Model simulation methodology 

We examine hypotheses related to the model simulation methodology employed. In particular, we 

compare results from the most common approach adopted, namely a ‘static model evaluation’ (e.g., de 

Oliveira et al., 2013), with those from a ‘dynamic model evaluation’ (e.g., Lessmann et al., 2011). The 

full details of these approaches are provided in 4.2.2. These models are developed using a fixed 

number of data points (e.g., days or hours) or ‘sliding window size). In comparing results for the static 

and dynamic approaches, we examine the effect of alternative sliding window sizes of 25, 50 and 100. 

 

2.4.1.3 Model covariates 

To test hypotheses related to the effect of technical indicators (H3a and H3b), we consider the seven 

technical indicators that have been included in at least one study in our literature survey (these, 

together with the papers in which they appear are shown in Table 4).  We develop sixteen covariates 

by varying parameters of these technical indicators, using popular variations found in the literature 

(e.g., Bollen et al., 2011). In addition, we create a second set of covariates using the characteristic 

points of a financial time series, namely, the opening, closing, highest and lowest price and the change 

of price (from opening to closing) observed in a predefined interval (e.g., 1 day). To test H3a and H3b, 

we compare the predictive ability of forecasting models incorporating covariates based on the 

reference values (open, high, low, close and change) to models that incorporate both the reference 

values and the sixteen technical indicator-based covariates. We deliberately employ simple covariates 

as a benchmark against which to examine the predictive value of the technical indicators because some 

previous research studies question the value of their informational content (Lesmond et al., 2004). 

                                                      

2 http://data.worldbank.org/about/country-and-lending-groups 
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Clearly, these suspicions will be confirmed if technical indicators cannot improve the accuracy of 

predictions of a model based solely on a simple benchmark.   

TABLE 4: COVARIATES EMPLOYED IN THE FINANCIAL TIME SERIES FORECASTING MODELS 

 

 

Covariate Definition Papers 

where 

covariate 

employed 

P
ri

ce
-b

as
ed

 c
o

v
ar

ia
te

s 

Opening price in period t. 𝑂𝐼𝑡  

Highest price in period t 𝐻𝐼𝑡  

Lowest price in period t 𝐿𝐼𝑡  

Closing price in period t 𝐶𝐼𝑡  

In
d

ic
at

o
rs

 f
ro

m
 t

h
e 

te
ch

n
ic

al
 a

n
al

y
si

s 

Simple Moving Average (SMA)  

SMA is the average closing price 

in a fixed length moving window. 

We calculate SMA for 5, 10 and 20 

periods. 

𝑆𝑀𝐴𝑡,𝑛 =
∑ 𝐶𝐼𝑡−𝑖

𝑛−1
𝑖=0

𝑛
 

Hassan et al. 

(2007), 

Hadavandi 

et al. (2010), 

Huck 

(2010), 

Bollen et al. 

(2011) 

Moving Average Convergence / 

Divergence (MACD) 

MACD is the difference between a 

longer and a shorter exponentially 

weighted moving average (EMA). 

In general, a buy/sell signal is 

triggered when the MACD line 

crosses the zero line, which is 

usually a nine-day EMA. Our 

models use MACD and a nine-day 

EMA as covariates 

𝐸𝑀𝐴𝑡,𝑛 = 𝐸𝑀𝐴𝑡−1,𝑛 +
2(𝐶𝐼𝑡 − 𝐸𝑀𝐴𝑡−1,𝑛)

𝑛 + 1
 

𝑀𝐴𝐶𝐷𝑡,𝑛 = 𝐸𝑀𝐴𝑡,12 − 𝐸𝑀𝐴𝑡,26  

Hassan et al. 

(2007), 

Bollen et al. 

(2011) 

Relative Strength Index (RSI) 

The RSI indicates whether a 

market is overbought. We calculate 

RSI for 6, 9 and 14 periods. 

𝑅𝑆𝐼𝑡,𝑛 =
∑ (𝐶𝐼𝑡−𝑖 − 𝐶𝐼𝑡−𝑖−1) × 𝐼{𝐶𝐼𝑡−𝑖 − 𝐶𝐼𝑡−𝑖−1}

𝑛−1
𝑖=0

∑ |𝐶𝐼𝑡−𝑖 − 𝐶𝐼𝑡−𝑖−1|
𝑛−1
𝑖=0

× 100 
Huck 

(2010), 

Bollen et al. 

(2011) 
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Williams %R 

Williams %R represents the 

relative position of the current 

share value in the past n periods. 

We use n=5 and n=10 periods. 

𝑊𝑖𝑙𝑙𝑖𝑎𝑚𝑠𝑅𝑡,𝑛 =
𝐻𝐻𝐼𝑡,𝑛 − 𝐶𝐼𝑡

𝐻𝐻𝐼𝑡,𝑛 − 𝐿𝐿𝐼𝑡,𝑛
× −100, 

Hassan et al. 

(2007), 

Hadavandi 

et al. (2010), 

Bollen et al. 

(2011) 

Accumulation/Distribution 

Oscillator (ADO) 

Given some financial time series, 

the ADO measures the strength of 

an upward/downward trend. 

𝐴𝐷𝑂𝑡 =
(𝐻𝐼𝑡 − 𝑂𝐼𝑡) + (𝐶𝐼𝑡 − 𝐿𝐼𝑡)

2 × (𝐻𝐼𝑡 − 𝐿𝐼𝑡)
× 100, 

Hadavandi 

et al. (2010) 

Stochastic Oscillator (SO) 

SO compares the current share 

price to the values in the past 10 

days. We include the %K and %D 

variables in our models. 

𝑆𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐𝐾𝑡, =
𝐶𝐼𝑡 − 𝐿𝐿𝐼𝑡,10

𝐻𝐻𝐼𝑡,10 − 𝐿𝐿𝐼𝑡,10
 

𝑆𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐𝐷𝑡 =
∑ 𝑆𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐𝐾𝑡−𝑖

2
𝑖=0

3
 

Hassan et al. 

(2007), 

Hadavandi 

et al. (2010) 

Bollinger Bands (BB) 

BB consist of a middle, upper, and 

lower line. Advocates of BB 

believe that the trend is likely to 

revert when share prices approach 

the upper or lower line. To 

accommodate BB, we consider 

three covariates: mid, upper and 

lower values.  

𝐵𝑜𝑙𝑙𝑖𝑛𝑔𝑒𝑟𝑀𝑖𝑑𝑡 =  𝑆𝑀𝐴𝑡,20 

𝐵𝑜𝑙𝑙𝑖𝑛𝑔𝑒𝑟𝑈𝑝𝑡 = 𝐵𝑜𝑙𝑙𝑖𝑛𝑔𝑒𝑟𝑀𝑖𝑑𝑡 + 2 × 𝜎𝑡,20 

𝐵𝑜𝑙𝑙𝑖𝑛𝑔𝑒𝑟𝐿𝑜𝑤𝑡 =  𝐵𝑜𝑙𝑙𝑖𝑛𝑔𝑒𝑟𝑀𝑖𝑑𝑡 − 2 × 𝜎𝑡,20 

Bollen et al. 

(2011) 

* Our notation is as follows: 𝐶𝐼𝑡  is the closing price of a share/index in period t. 𝑂𝐼𝑡 , 𝐻𝐼𝑡 , and 𝐿𝐼𝑡  denote, 

respectively, the opening, highest, and lowest price in period t. We use n to denote the length of the window of a 

moving average. 𝐼{𝑥} is an indicator function, which is one if x is true and zero otherwise. 𝐻𝐻𝐼𝑡,𝑛 is the highest 

share price observed in period t – n to t. Similarly, 𝐿𝐿𝐼𝑡,𝑛 is the lowest price observed in period t-n to t. Last, 

𝜎𝑡,20 is the standard deviation of 𝐶𝐼𝑡 calculated over the period t – 20 to t. The literature column lists the studies 

which adopt the indicator. 

2.4.1.4 Forecast horizons 

To test hypotheses concerning the influence of different forecast horizons on market predictability and 

model-based trading profitability (H4a and H4b), we compare forecast horizons of one day and one 

hour. A horizon of one day is selected as it is the predominant setting in previous research (see Table 

1). We selected an alternative horizon of less than one day because a comparison of intraday 

forecasting models and models that forecast one day or more ahead has, to our best knowledge, not 

been undertaken. We select one hour for the intraday setting to gain the benefits of a short forecast 
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horizon (which increases the difference between the intraday setting and the setting where models 

predict one day into the future) whilst reducing the high computational costs associated with 

performing a large number of comparisons of computationally complex forecasting models for even 

shorter horizons. To compare experiments with forecast horizons of one day and one hour, we need to 

align the time periods of forecast model training, validation, and testing. To illustrate this, consider a 

test set of five trading days. In the daily setting, a model produces five individual predictions of price 

change direction (one for each day), which we aggregate to estimate the accuracy of the (daily) model. 

To compare this model on an equal footing to an alternative model that predicts one hour ahead (i.e., 

in the hourly settings), the latter should predict the same test set of five days. To achieve this, we let 

the hourly model produce one prediction for every hour for each of the five days in the test set. For 

example, if a stock exchange opens from 9am to 5pm (i.e., 8 hours), we create 8*5=40 predictions, 

estimate the accuracy of the hourly model on the basis of these 40 predictions, and compare this 

accuracy with that of the daily model.  

 

2.4.1.5 Forecasting methods 

A large number of ML prediction methods are available (Hastie et al., 2009). However, we focus on 

the two methods predominantly used in the ML literature on financial time series forecasting, SVM 

and ANN (Ballings et al., 2015). One of the explanations for their popularity for time series 

forecasting (cf. other advanced techniques such as bagged or boosted decision trees), is that they are 

better-suited to handle continuous covariates (Lessmann, Baesens, Seow, & Thomas, 2015), which 

frequently occur in financial time series forecasting (e.g., prices, price differences or technical 

indicators).  

The SVMs are developed for binary classification problems, and the key concept is to use hyperplanes 

to define decision boundaries which separate data points of different classes. The idea is to map the 

original data points from the input space to a high-dimensional feature space such that the 

classification problem becomes simpler in the feature space. The mapping is done by the kernel 

function which should be chosen according to the situation. In its basic form, an SVM can be 

characterized as a regularized linear classifier, which estimates the target label, y, of an observation x 

by means of a linear function. Let the vector 𝜷 and the scalar 𝛽0  denote the coefficients and the 

intercept of such a linear function. Then, to develop a SVM, one solves the following mathematical 

program:  

min
(𝛽0,𝜷)

ℒ = ‖(𝛽0, 𝜷)‖2 + 𝜆 ∑max(1 − 𝑦𝑖(𝜷 ⋅ 𝒙 + 𝛽0), 0)

𝑛

𝑖=1

, 
(1) 
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 where ℒ  is the function of beta and beta0 which is to be minimized. 

To prevent an SVM from overfitting the training data, the first term on the right-hand side of (1) 

penalizes model complexity through minimizing the magnitude of the model coefficients (Hastie et al., 

2009). The second term measures the degree to which the model fits the training data accurately and is 

called the Hinge loss (Hastie et al., 2009). The scalar  is a meta-parameter of SVM that allows the 

user to control the trade-off between high model fit and low model complexity (Smola and Schölkopf, 

2004).  

In our study, the scalar y refers to the change in direction (up or down) of a financial index in a future 

period (i.e., next day or next hour) and x represents a vector of covariates which we use to predict y 

(previous values of y, technical indicators, etc.). We estimate the vector of model parameters, β, during 

model training. We then compute predictions, �̂�, as follows: 

 �̂� = 𝑠𝑖𝑔𝑛(𝜷 ⋅ 𝒙 + 𝛽0) (2) 

SVMs are able to implicitly project the input data into a nonlinear feature space of higher dimension. 

Creating a linear model in the transformed space is equivalent to creating a nonlinear model in the 

original input space (Cristianini and Shawe-Taylor, 2000). The nonlinear transformation of the data is 

(computationally) feasible because the dual program of (1) incorporates the input data only in the form 

of scalar products. Using a kernel function, SVMs are able to compute the scalar product in the feature 

space directly (i.e., without actually transforming the data). This technique is known as the kernel trick. 

A kernel function can transform low dimensional input space to a higher dimensional space, which 

could convert a non-separable problem to a separable problem. There are many options for a kernel 

function, such as linear, polynomial and radial basis functions. The choice of a kernel function 

depends on the features of the problem. For example, the linear kernel function is preferred when the 

problem is linearly separable and the polynomial kernel function is popular in natural language 

processing. Due to the nonlinear nature of stock markets, we use the radial basis kernel function which 

is widely considered to be effective with nonlinear problems.  We use the radial-basis-kernel-function, 

which is the standard kernel in SVM applications (Keerthi and Lin, 2003).  

ANNs are another nonlinear prediction method. In general, a feed-forward neural network consists of 

input, hidden and output layers, where each layer has multiple information processing units called 

neurons. The neurons of one layer are fully-connected to the neurons of the next layer. The neurons in 

the input layer are simply the original covariates. That is, we clamp the input covariates on a distinct 

set of input units. Subsequently, the values are passed through a set of weights to produce the inputs to 

the next layer of "hidden" units (the hidden layer). These units utilize a nonlinear function, which is 

usually a sigmoid function, to process their input and to produce their outputs. As many hidden layers 

can be stacked as necessary, and a feature of deep learning neural network is a large number of hidden 
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layers. The outputs of the neural network are the outputs of the final layer. A learning algorithm is 

used to calibrate the weights between units to make the output meet some desired requirement. We 

design our ANNs such that the output has only one neuron, which is the standard setup for regression 

and binary classification problems (Hastie et al., 2009). In the former case, the output neuron models 

the value of the continuous target variable and in the latter case the posterior probability of the discrete 

target variable. The number of neurons in the hidden layer, Z, is a meta-parameter. Let 𝒂𝑧 be a vector 

of weights that connect the input neurons to the zth hidden neuron, 𝑏𝑧 a threshold attached to hidden 

neuron z, and let 𝑔ℎ be a nonlinear function. We can then write the output of the hidden layer as 

follows: 

𝐺(𝒂𝑧, 𝑏𝑧, 𝒙) =

[
 
 
 
 
 𝑔ℎ (𝑏1 + ∑ 𝑎1𝑗𝑥𝑗

𝑚

𝑗=1
)

⋮

𝑔ℎ (𝑏𝑧 + ∑ 𝑎𝑧𝑗𝑥𝑗

𝑚

𝑗=1
)
]
 
 
 
 
 

𝑍×1

. 

(3) 

In a similar way, the result of the ANN, 𝑓(𝒙, 𝜷, 𝜶𝑍, 𝑏𝑍), is:  

𝑓(𝒙, 𝜷, 𝜶𝑍, 𝑏𝑍) = 𝑔𝑜 (∑𝛽𝑧

𝑍

𝑧=1

𝐺(𝒂𝑧, 𝑏𝑧, 𝒙)), 
     

(4) 

where 𝜷  denotes the weight vector that connects the hidden and the output layer, and 𝑔𝑜  is the 

function that transforms the result of the output neuron. We follow Chang et al. (2009) and choose 

𝑔𝑜and 𝑔ℎ to be logistic functions. This allows us to interpret the output of the neural network as an 

estimate of the posterior probability of an upward/downward price change.   

To determine the parameters of the ANN (𝒂𝑧, 𝑏𝑧, and 𝜷), one minimizes a suitable loss-function using 

gradient-based methods. Specifically, we create an ANN model through solving (5) using a quasi-

Newton algorithm, where 𝜆 is once more a regularization parameter to penalize model complexity and 

prevent overfitting. 

min
𝜷

ℒ = ∑ (𝑦𝑖 − 𝑓(𝒙𝑖, 𝜷))2
𝑛

𝑖=1
+ 𝜆‖𝜷‖2. (5) 

    

ANN and SVM contain two meta-parameters. First, the regularization term appears in both models. 

The second meta-parameter for SVM is a parameter of the radial-basis kernel function, (denoted by 

For ANN, the second meta-parameter determines the number of neurons in the hidden layer. We 

employ grid-search to identify suitable values for the meta-parameters of ANN and SVM (Cherkassky 

and Ma, 2004). In particular, based on recommendations from the literature (Berry and Linoff, 1997; 
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Xu and Chen, 2008), we define candidate values for each meta-parameter and empirically assess all 

possible combinations of meta-parameter settings. We select the combination with maximal forecast 

accuracy on a separate validation sample to compute predictions for an out-of-sample test set. Table 5 

reports the candidate settings for meta-parameter values. 

TABLE 5: CANDIDATE VALUES FOR SVM AND ANN META-PARAMETERS 

 

ANN 
Hidden layer neurons 6, 18, 48 

 1, 100, 0, 0.01 

SVM 
 2-10, 2-8, 2-6, 2-4, 2-2, 1, 22, 24, 26, 28, 210 

 2-10, 2-8, 2-6, 2-4, 2-2, 1, 22, 24, 26, 28, 210 

This table lists the parameter values which are examined to find the best combination of parameters in the 

validation stage.  

 

2.4.2 Performance Measurement 

2.4.2.1 Indicators of predictive accuracy 

As indicated above, our target variable is ‘direction change’:1 if the index prices increase from one 

period to the next (e.g., from day t to day t+1), and 0 otherwise. We assess the predictive accuracy of a 

forecasting model in terms of the percentage of correctly classified observations (hit rate).  

Since the main aim of the paper is to examine the influence of methodological factors on prediction 

performance, we do not attempt to optimize accuracy. Previous ML studies generally focus on one 

specific market. However, to achieve our objective, we attempt to forecast all markets with a 

consistent, clearly documented methodology. This facilitates replicability across indices, which we 

consider an integral part of our research. Consequently, we deliberately do not try to maximize 

predictive accuracy for an individual index. 

We estimate the profitability of trading on a forecasting model’s predictions based on a simple trading 

strategy, which we call ‘follow prediction.' In particular, we assume that a trader, via futures contracts, 

buys into the market if the predicted ‘direction change’ equals 1, and sells otherwise. We calculate the 

return on investment (ROI) in period t (roit), as follows: 

𝑟𝑜𝑖𝑡 = 1 +
𝐴𝐵𝑆|𝐶𝐼𝑡 − 𝐶𝐼𝑡+1|

𝐶𝐼𝑡
 ∗ 𝑃𝐶𝑡, (6) 
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where 𝐶𝐼𝑡 is the closing price of the financial index at period t and 𝑃𝐶𝑡 is 1 if the model-predicted 

‘direction change’ in period t+1 is correct, and -1 otherwise. We employ this ROI formula as we use 

the information available in period t to predict the ‘direction change’ in period t+1. A period is either 

one day or one hour, depending on the experimental setting. Consequently, we obtain a profit/loss if 

the prediction is correct/wrong. The overall ROI over all test periods t = 1, 2, …,T is then calculated as 

follows: 

𝑅𝑂𝐼 = ∏𝑟𝑜𝑖𝑡 , 𝑡 ∈ 𝑇 (7) 

As Shleifer and Vishny (1997) indicate that transaction costs may affect the trading profit in exploiting 

the anomalies or the recognizable price patterns, we calculate the ROIs with transaction cost accounted 

in additional analysis. 

 

2.4.2.2 Model evaluation and simulation of model-based training 

To test the accuracy of forecasting models, we distinguish two approaches for out-of-sample model 

evaluation. The standard approach in the literature is to split a financial time series into three non-

overlapping sets for model training, validation, and testing (see Table 1). The training set is used to 

estimate the parameters of the forecasting model (e.g.,  in (1)). The validation set is used to tune 

meta-parameters (e.g., the regularization parameter  in by means of empirical experimentation. A 

fully-specified model with fixed meta-parameters is then developed on the union of the training and 

validation sets (to maximize data utilization) and applied to generate predictions for the observations 

in the test set. To measure forecast accuracy, the predictions are compared to the actual values of the 

target variable in the test set. This allows us to compare models in terms of their predictive accuracy 

on hold-out data. We call this approach a static evaluation because the same model is used to forecast 

all observations in the test set (de Oliveira et al., 2013; Kara et al., 2011).  

To implement the static approach, we split the data points in a financial time series chronologically: 50, 

25 and 25 percent for training, validation and testing, respectively. Our data set, which runs from 

February 2008 to February 2014, contains 1,500 trading days for each of the 34 financial time series. 

Consequently, by way of example, when developing forecasting models to predict one day ahead, we 

use the last 25% of trading days (375) for hold-out testing. The models that we eventually compare 

(e.g., SVM vs. ANN) are trained and validated on the preceding 75% (1,125) of trading days. In 

particular, we use the first 50% (750) of trading days to train the forecasting models with alternative 

meta-parameter settings (see Table 5) and assess their accuracy on the following 375 trading days (our 

validation sample).  The validation sample predictions reveal the best meta-parameter setting for a 
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given time-series. We use this setting to estimate a final model using the full 1,125 days sub-sample 

and use the resulting model to predict the hold-out test set. 

We contrast the static model evaluation approach to a dynamic sliding-window cross-validation 

(Lessmann et al., 2011). Here, we use the same data partitioning as in the static setting. For example, 

when developing forecasting models to predict one day into the future we again use the first 50% (750) 

days of a time series to estimate one forecasting model per meta-parameter setting (e.g., 12 settings for 

ANN). Every meta-parameter setting provides a candidate model. However, we use these candidate 

models to develop predictions for a single data point, namely for day 751, which is the first day in the 

validation partition. Next, we shift the training and validation window one period (day) forward. That 

is, using days 2 to 751 for model training, we estimate one forecast model per meta-parameter setting 

and let the resulting models predict day 752. We repeat the estimation of models and prediction of one 

day ahead until we have developed predictions for all days in the validation period (i.e., days 751 to 

1,125). We then calculate the accuracy of candidate forecasting models on the validation sample and 

select the meta-parameters that give maximal accuracy.  

This dynamic approach differs from the static approach in that every data point of the validation set is 

predicted with a different model. In other words, we update forecasting models to incorporate recent 

information (e.g., we train forecasting models that predict the price ‘direction change’ for trading day 

752 on a data set that includes trading day 751).   

After completing model selection in the dynamic approach, we collect predictions for the test set. To 

that end, we proceed as in the model selection step. For example, when comparing SVM and ANN 

models used to predict one day ahead, for each day of the test set, we estimate one SVM and ANN 

model. Considering, for example, the first day in the test set (day 1,126), we use the preceding days to 

train the forecasting models and let them predict trading day 1,126. We then shift the evaluation 

window one period forward and repeat. The main difference to the model selection stage is that we do 

not consider all meta-parameter settings. Instead, we estimate one SVM and one ANN model, for 

which we use the best meta-parameter values as identified in the preceding model selection step. In 

summary, each data point of the test set is predicted with a different forecasting model, but all models 

use the same settings for meta-parameters.   

If the forecast horizon is not one day but one hour, we proceed in exactly the same way as described. 

However, the size of the initial data sample is much larger because we now have one data point per 

opening hour of the stock exchange.  

Sliding-window cross-validation offers some degrees of freedom. In particular, when predicting a 

particular data point (e.g., day), one can either use all previous data points for model training or work 

with a fixed training window (Lessmann et al., 2011). We opt for the latter approach and use a 
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window size of 50. Using a fixed window size (cf. all available trading days prior to a day t) has the 

advantage that it decreases computational costs. More importantly, assuming that stock returns show 

no long-term memory (Cheung and Lai, 1995; Lo, 1991), using very old data for training a forecasting 

model might actually harm its accuracy. However, we acknowledge that the choice of the window size 

might affect the results of sliding-window cross-validation. Therefore, to secure reliability, we 

empirically analyze alternative window sizes of 25 and 100 data points. 

2.5 Empirical results 

2.5.1 Tests of the Hypotheses of Experimental Factors on Market Predictability 

The experimental design includes five main factors: market maturity, model simulation methodology, 

covariate composition, forecast horizon and prediction method (SVM vs. ANN; best ML (SVM) vs. 

best econometric (AR))(see Table 2). Each factor has two alternative settings (e.g., SVM and ANN for 

the factor prediction method) and these are compared in multiple simulations. That is, we obtain 272 

individual prediction results for SVM and ANN (34 financial markets × 2 forecast horizons × 2 

covariate compositions × 2 model simulation methodologies), enabling us to show the performance 

difference between the two prediction methods. We compare prediction results for other factors in a 

similar way. We provide an overview of the empirical results in Figure 1, which reports the 

distribution across the experimental factors for predictive accuracy and ROI.  

A number of conclusions emerge from the results presented in Figure 1. First, a model-based trading 

approach produces higher ROI in high (cf. middle) income markets. More specifically, the majority of 

prediction models produce an ROI greater than one in high income markets; suggesting that profitable 

trading on model predictions is possible and questioning market efficiency in the corresponding 

markets. In middle income markets, a larger number of prediction models do not produce a profit, 

although the median ROI is still greater than one.  

We also examine the performance of the forecasting models at the individual market level. We obtain 

a distribution of prediction performances for each market because we develop multiple models to 

examine the other experimental factors: forecast horizon, prediction model, etc. These results are 

displayed in Figures 2 and 3.  
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Figure 1: PREDICTION PERFORMANCE IN ACCURACY (LEFT) AND ROI (RIGHT) ACROSS 

EXPERIMENTAL FACTORS.   

 
Each boxplot shows the performance (accuracy or ROI) of all experiments in terms of one methodological factor. 

For example, the first boxplot in the left column represents the accuracy in terms of market maturity. The left 

box shows the accuracy in the high income markets (more mature) and the right box displays the accuracy in the 

middle income markets (less mature).  
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Figure 2: PREDICTION PERFORMANCE IN ACCURACY ACROSS FINANCIAL MARKETS 

Each boxplot shows the performance (accuracy) of all experiments in the market.  
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Figure 3: PREDICTION PERFORMANCE IN ROI ACROSS FINANCIAL MARKETS 

Each boxplot shows the performance (ROI) of all experiments in the market.  
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Figures 2 and 3 evidence substantial variation in predictability across markets. This is true for the 

comparison across high and medium income markets but also for comparisons between markets within 

these groups (e.g., the Finnish and German markets belong to the high income group but display large 

differences in their spread in predictive accuracy). Results at an individual market level also suggest 

that profitable model-based trading is feasible based on the covariates we employ (see Figure 3) since 

the median ROI is considerably greater than one for most markets. Examples of exceptions include 

markets in Austria, Denmark, Estonia, Hungary, and Germany.   

In summary, the main finding from the results displayed in Figures 2 and 3 is that the selection of the 

financial market exerts a major influence on the observed level of predictability and thus market 

efficiency. Our analysis of the literature reveals that previous ML studies predominantly rely on data 

from a single market. The wide variation that we observe in market efficiency between markets 

suggests that this focus on a single market risks over- or under-estimating the potential for prediction 

across all financial markets.  

The results presented in Figure 1 indicate that a sliding-window methodology typically indicates lower 

levels of accuracy and ROI than a static methodology. This suggests that the cross-validation method 

employed affects prediction performance and should be considered in future comparisons. The static 

approach, which prevails in prior research (see Table 1), benefits from using a larger number of 

samples for model training compared to the sliding-window cross-validation. The dynamic approach 

benefits from including the most recent samples. Therefore, our results indicate that including recent 

price information does not improve stock market prediction more than incorporating a larger number 

of samples. This supports the view that financial markets exhibit long-term memory (Lo, 1991).   

The results presented in Figure 1 suggest that technical indicators for financial market modeling do not 

offer many advantages over simple covariates, as the accuracy and ROI distributions of the two 

settings are similar. This is surprising since we deliberately select simple covariates in the form of 

reference prices (open, high, low, close) as a benchmark for the technical indicators. For example, we 

do not consider price differences or moving averages, which have been used in prior research (see 

Table 1). Therefore, our results provide strong evidence against using technical indicators for financial 

time series forecasting. 

The results displayed in Figure 1 suggest that predictive accuracy is lower when forecasting price 

movements one hour (cf. one day) ahead but the ROI distribution does not display much difference 

between the two settings. However, it is noteworthy that both daily and hourly forecasting horizons 

produce, on average, a positive return (i.e., ROI > 1). 

Our results support previous findings that SVM performs better than ANN in financial market 

modeling (Kim, 2003; Ou and Wang, 2009; Tay and Cao, 2001). The median accuracy and the median 
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ROI are higher for SVM compared to ANN. In addition, the distribution of ROI displays less spread 

for SVM, implying greater stability of SVM-based prediction models. The lower quartile of the ROI 

distribution is higher for SVM (cf. ANN), and the ROI distribution of ANN shows an outlier value 

where ROI drops below 50%, whereas SVM do not suffer from such large losses. SVM can thus be 

considered more robust. One possible explanation is that there is tremendous noise in stock market 

data and ANN has been shown to be inferior on noisy data (Kim, 2003). Also, in our simulations, 

ANN takes considerably higher computing resources than SVM does, which decreases the probability 

of finding the best parameters during the validation. While the previous studies compare SVM and 

ANN with one or two daily stock market data, we extend the scope by including both daily and hourly 

data across 34 stock markets which comprise most major markets in the world.  Given the large scope 

of our simulation and the consistency between our findings and the previous studies (Kim, 2003; Ou 

and Wang, 2009; Tay and Cao, 2001), the superior performance of SVM for financial time series 

forecasting is convincing. This implies that SVM should be considered as an important benchmark for 

assessing novel models and methods. 

To formally test our hypotheses, we examine the statistical significance of observed mean differences 

across factor levels. We achieve this using regression analysis. In particular, we estimate the following 

regression model to explain predictive accuracy:  

Accuracy = α + βMI𝑀𝐼 + βST𝑆𝑇 + βT𝑇 + βD𝐷 + βSVM𝑆𝑉𝑀 + ε, 
(8) 

where MI, ST, T, D and SVM are dummy variables, taking the value 1 for middle income markets, a 

static model simulation, when using technical indicators alongside basic price covariates (open, high, 

low, close and change), a daily forecast horizon and SVM, respectively, and taking the value 0 

otherwise (i.e. for high income markets, a dynamic model simulation, when only using basic price 

covariates, an hourly forecast horizon and ANN). This model is also used to explain ROI. 

 To formally test our hypotheses related to the relative performance of, what we show to be, the 

best ML and econometric models (i.e., SVM and AR, respectively), we estimate the following 

regression model to explain predictive accuracy: 

Accuracy = α + βMI𝑀𝐼 + βST𝑆𝑇 + βT𝑇 + βD𝐷 + βSVM𝑆𝑉𝑀𝐴 + ε, 
(9) 

where MI, ST, T, D and SVMA are dummy variables, taking the value 1 for middle income markets, a 

static model simulation, when using technical indicators alongside basic price covariates, a daily 

forecast horizon and the best performing ML model (SVM) prediction, respectively, and 0 otherwise 

(the reference model is AR). This model is also used to explain ROI. 

 If we expect a regression model to go through the origin, we can remove the intercept term from the 

model without introducing bias in estimating coefficients. In the case of prediction accuracy, going 
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through the origin means the average accuracy is 0%. However, since the accuracy of randomly 

guessing the price direction is around 50%, the accuracy of our models are unlikely to be around 0%. 

Similarly, the regression line for ROI is also unlikely to go through the origin, unless our models 

generate huge negative returns and lose all the original capital. Consequently, we expect that the 

regression lines for both accuracy and ROI will not go through the origin. Hence, we include the 

intercept terms to avoid potential bias in estimating the parameters of the regression models (Brooks, 

2014). Tables 6 and 7 summarize the results of the regression analyses for accuracy and ROI, 

respectively, related to the comparison of the two commonly employed ML methods (SVM and ANN). 

Tables 8 and 9 summarize the results of the regression analyses for accuracy and ROI, respectively, 

related to the comparison of the best performing ML and econometric methods (SVM and AR). 

TABLE 6: REGRESSION ANALYSIS OF PREDICTIVE ACCURACY – ML TECHNIQUES 

 

Predictive accuracy Estimated 

Coefficient 

Std. Error t value p value Cohen’s d partial 𝜂2 

(Intercept)* 0.5081 0.0023 221.4 < 10-16   

Market maturity (MI) -0.0103 0.0023 -4.389 < 10-4 0.4016 0.0346 

Model simulation 

methodology (ST) 

0.0086 0.002 4.319 < 10-4 0.3350 0.0335 

Covariate composition 

(T) 

-0.0001 0.002 -0.037 0.971 0.0028 0.0000 

Forecast horizon (D) 0.0174 0.002 8.748 < 10-16 0.7105 0.1245 

Prediction method 

(SVM) 

0.0106 0.002 5.315 < 10-6 0.4154 0.0499 

Residual standard error 0.02323 df 538    

R2 0.2096 Adjusted R2 0.2023    

F-statistic 28.54 (on 5 and 538 DF)    

p-value < 2.2-16      

* Base model indicated by values of experimental factors given in brackets: MI: Middle income markets; ST: 

Static simulation methodology; T: Technical indicators included amongst the covariates; D: Forecast horizon of 

one day; SVM: Prediction method employed is SVM 
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TABLE 7: REGRESSION ANALYSIS OF ROI – ML TECHNIQUES 

 

ROI Estimated 

Coefficient 

Std. Error t value p value Cohen’s d partial 𝜂2 

(Intercept)* 1.1764 0.02228 52.8 < 10-16   

Market maturity (MI) -0.1496 0.02280 -6.564 < 10-8
 0.6264 0.0741 

Model simulation 

methodology (ST) 

0.1021 0.01934 6.015 < 10-6 0.4220 0.0492 

Covariate composition 

(T) 

-0.0168 0.01934 -0.867 0.3864 0.0679 0.0014 

Forecast horizon (D) -0.0442 0.01934 -2.285 0.0227 0.1795 0.0096 

Prediction method 

(SVM) 

0.1163 0.01934 5.277 < 10-8 0.4842 0.0630 

Residual standard error 0.2255 df 538    

R2 0.1737 Adjusted R2 0.166    

F-statistic 22.62 (on 5 and 538 DF)    

p-value < 2.2-16      

* Base model indicated by values of experimental factors given in brackets: MI: Middle income markets; ST: 

Static simulation methodology; T: Technical indicators included amongst the covariates; D: Forecast horizon of 

one day; SVM: Prediction method employed is SVM 
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TABLE 8: REGRESSION ANALYSIS OF PREDICTIVE ACCURACY – SVM VS. AR 

 

Predictive accuracy Estimated 

Coefficient 

Std. Error t value p value Cohen’s d partial 𝜂2 

(Intercept)* 0.5067 0.0026 192.11   < 10-16   

Market maturity (MI) -0.0094 0.0027 -3.4973 0.0005 0.3680 0.0295 

Model simulation 

methodology (ST) 

0.0055 0.0023 2.4191 0.016 0.2146 0.0143 

Covariate composition 

(T) 

-0.0003 0.0028 -0.1049 0.9165 0.2394 0.00002 

Forecast horizon (D) 0.0183 0.0023 7.9853   < 10-13 0.7528 0.1369 

Prediction method 

(SVMA) 

0.0129 0.0028 4.6147 < 10-5 0.5068 0.0503 

Residual standard error 0.0231 df 403    

R2 0.2142 Adjusted R2 0.2045    

F-statistic 21.92 (on 4 and 403 DF)    

p-value < 10-16      

*Base model indicated by values of experimental factors given in brackets: MI: Middle income markets; ST: 

Static simulation methodology; T: Technical indicators included amongst the covariates; D: Forecast horizon of 

one day; SVMA: Prediction method employed is SVM and the reference model is AR. 
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TABLE 9: REGRESSION ANALYSIS OF ROI – SVM VS. AR  

 

ROI Estimated 

Coefficient 

Std. Error t value p value Cohen’s d partial 𝜂2 

(Intercept)* 1.1576 0.0242 47.832   < 10-16   

Market maturity (MI) -0.186 0.0248 -7.5092   < 10-12 0.8183 0.1230 

Model simulation 

methodology (ST) 

0.0718 0.021 3.4181 0.0007 0.3018 0.0282 

Covariate composition 

(T) 

-0.0245 0.0257 -0.9515 0.3419 0.2402 0.0022 

Forecast horizon (D) -0.0466 0.021 -2.2188 0.0271 0.1946 0.0121 

Prediction method 

(SVMA) 

0.1638 0.0257 6.3665   < 10-9 0.6598 0.0916 

Residual standard error 0.2122 df 403    

R2 0.2301 Adjusted R2 0.2206    

F-statistic 29.82 (on 4 and 403 DF)    

p-value < 10-16      

*Base model indicated by values of experimental factors given in brackets: MI: Middle income markets; ST: 

Static simulation methodology; T: Technical indicators included amongst the covariates; D: Forecast horizon of 

one day; SVM: Prediction method employed is SVM, and the reference model is AR. 

The F-statistics and their corresponding p-values displayed in Tables 6-9 confirm the statistical 

significance of the four regressions. The adjusted R2 values suggest that the independent variables 

explain about 20 (21) percent and 17 (23) percent of the observed variation in predictive accuracy and 

ROI, respectively (The numbers in brackets relating to the regressions incorporating the best 

performing ML and econometric methods (SVM and AR). These R2 values may appear rather low. 

However, it is important to remember that the development of prices in financial markets is driven by 

a multitude of factors, many of which are not considered in this study. As a consequence, the 

performance of the prediction models exhibits substantial unexplained variation. However, it is 

noteworthy that R2 is higher in the regression of predictive accuracy. This emphasizes the subtle 

difference between predicting market movements using an ML model and trading profitably on 
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model-predictions. Our results show that the degree to which the latter is possible depends even more 

on external factors other than the prediction method (and on other factors considered in this study). As 

we discuss below (see Section 6), this has important implications for conclusions regarding market 

efficiency.  

We first examine results related to experiments simply incorporating ML forecasting models (SVM 

and ANN).The results presented in Table 6 and Table 7 demonstrate that the effect of all experimental 

factors (other than covariate composition) on predictive accuracy and ROI is statistically significant. 

This confirms the relevance of the chosen factors and that the potential of sophisticated technical 

indicators to help predict financial market movements (over that achievable via simple reference-price 

based covariates) might be limited. Note that we also run experiments in the markets in which data are 

available for longer periods (8 ~ 30 years). The corresponding results, which are available in online 

Appendix C, agree with those presented in the main part of the paper. 

In interpreting the other results of the regression, it is important to remember the reference model that 

forms the basis of the comparison. Given our coding of the independent variables, the reference model 

is an ANN model that predicts price movements in high income markets using simple reference prices 

as covariates one hour ahead and is evaluated using sliding-window cross-validation. Considering the 

regression coefficient of the intercept in the accuracy regression model (Table 6), such a model 

produces a directional accuracy of 51 percent. Assuming that the distribution of hourly price 

movements is roughly balanced, this is only a little better than random. However, we observe in the 

ROI regression (Table 7) that the seemingly small improvement over a random model is enough to 

produce a sizeable profit, with an ROI of about 18 percent. The regression coefficient of market 

maturity (-0.1496) indicates that profitability erodes in middle income markets. Similarly, ROI 

decreases with forecast horizon. Keeping everything else constant, predicting one day into the future 

reduces ROI approximately 4 percentage points (regression coefficient of -0.0442). However, 

predictive accuracy increases in a setting with a daily forecast horizon (regression coefficient 0.0174 

in Table 6). The results also confirm that a static model simulation methodology (cf. sliding-window 

cross-validation) and using SVM instead of ANN both significantly increase accuracy and ROI. It is 

worth noting that the significance of the intercept terms in both the regressions reported in Tables 6 

and 7 supports our decision to include these terms. It is worth noticing the large t-value for the 

intercept (221.4). Since the t-value, which can be considered as a measure of the precision for the 

estimation of the coefficient, is calculated as the estimated coefficient divided by the standard error, 

the large value results from the small value of the standard error (0.0023) which means that the range 

of the estimated coefficients is relatively small. 

To complement the analysis of the five experimental factors, Table 6 and Table 7 also include 

measures of effect size. In particular, Cohen’s d captures the mean difference between groups in 
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standard deviation units. As a rule of thumb, values of 0.2, 0.5, and 0.8 indicate small, medium, and 

large effect sizes, respectively (Cohen, 1969). The Cohen’s d results displayed in Tables 6 and 7 

indicate that market maturity, prediction model (SVM vs. ANN), and model simulation methodology 

have a medium effect on predictive accuracy and ROI. Effect sizes for the factor covariate 

composition are small, which supports the lower levels of significance that we observe for this factor. 

Finally, the forecast horizon has a medium to large effect on predictive accuracy but only a small 

effect on ROI. For completeness, we include an additional measure of effect size in Table 6 and 

Table 7, the amount of variation that is explained by an individual factor – commonly referred to as 

partial 𝜂2 in analysis of variance. Overall, the results are in line with those related to the Cohen’s d. 

We now turn to our analysis of the regressions incorporating the best performing ML and best 

performing econometric models. As discussed above, the results displayed in Tables 6 and 7, show 

that SVM outperforms ANN. This result is line with that reported in the literature (Chen et al., 2006; 

Huang et al., 2005; Kim, 2003; Ou and Wang, 2009; Tay and Cao, 2001). Our experiments also show 

that AR outperforms ARIMA and GARCH (see online Appendix A). To formally test hypotheses 6a 

and 6b, we compare SVM and AR by examining the statistical significance of observed mean 

differences across factor levels in our estimations based on equation (9).  

The results presented in Table 8 and Table 9 demonstrate that SVM significantly outperforms AR in 

terms of accuracy and ROI, providing support for Hypotheses 6a and 6b. It is important to note that 

the effects of all experimental factors (with the exception of covariate composition) on predictive 

accuracy and ROI are statistically significant. The significance and direction of the effect of the 

experimental factors on accuracy and ROI are in line with the results discussed above for the 

regressions based on the two most commonly employed ML techniques (i.e., equation (8)). This 

confirms that most of the experimental factors have a significant effect on the predictive accuracy and 

ROI achievable using both ML and econometric methods.  

2.5.2 Sensitivity Analysis 

To confirm the robustness of our conclusions, we perform additional experiments related to different 

sliding window sizes and different systems for classifying market maturity.     

2.5.2.1 Analysis of Sliding Window Size 

In sliding-window cross-validation, the size of the training window is a potentially important 

parameter that might affect the observed level of predictive accuracy. Thus, to investigate whether the 

above conclusions are robust toward alternative settings, we perform experiments with sliding window 

size 25 and 100. We estimate the following regression model to explain predictive accuracy: 
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Accuracy =  α + βMI𝑀𝐼 + βSW25𝑆𝑊25 + βSW50𝑆𝑊50 + βSW100𝑆𝑊100 + βT𝑇
+ βD𝐷 + βSVM𝑆𝑉𝑀 + ε, 

(10) 

where MI, SW25, SW50, SW100, T, D and SVM are dummy variables, taking the value 1 for middle 

income markets, when the sliding window size is 25, 50 and 100, when using technical indicators 

alongside basic price covariates, a daily forecast horizon and SVM prediction, respectively, and 0 

otherwise. Recall that the data to estimate these equations also includes the results of (static) 

forecasting models that are not subject to a sliding window evaluation. Therefore, using three 

dummies to encode the three settings for sliding window size is appropriate and does not create linear 

dependence among covariates. This model is also used to explain ROI. 

The results of regression (10)  are shown in Table 10. For both accuracy and ROI, all of the 

coefficients of SW25, SW50 and SW 100 are negative, indicating that accuracy and ROI are 

significantly higher under a static model evaluation compared to using a dynamic sliding-window 

cross-validation. For both accuracy and ROI, the coefficients of sliding window size 100 are very 

close to that of sliding window size 50, whereas the coefficient of sliding window size 25 is much 

lower than the others. Hence, increasing the size of the sliding window appears to improve prediction 

performance, but the marginal benefit appears to decrease. We take the small differences between the 

results for window sizes of 50 and 100 as evidence that the choice of 50 is appropriate and does not 

affect the conclusions of the comparison of alternative model evaluation regimes (sliding-window vs. 

static).     
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Table 10: REGRESSION ANALYSIS OF SLIDING WINDOW SIZE  

 Predictive accuracy ROI 

 Estimated 

Coefficient 

Std. 

Error 

t value p value Estimated 

Coefficient 

Std. Error t value p value 

(Intercept)* 0.5148 0.0019 273.52 <10-16 1.2286 0.0176 69.678 <10-16 

Market maturity 

(MI) 

-0.0086 0.0016 -5.265 <10-6 -0.1328 0.0154 -8.636 <10-16 

Sliding Window Size 

25 (SW25) 

-0.0114 0.0020 -5.769 <10-7 -0.1224 0.0184 -6.632 <10-8 

Sliding Window Size 

50 (SW50) 

-0.0086 0.0020 -4.369 0.0001 -0.1021 0.0184 -5.532 <10-7 

Sliding Window Size 

100 (SW100) 

-0.0083 0.0020 -4.201 <10-4 -0.1029 0.0184 -5.578 <10-7 

Covariate 

composition (T) 

-0.0006 0.0014 -0.422 0.673 -0.0072 0.0130 -0.548 0.5837 

Forecast horizon 

(D) 

0.0145 0.0014 10.403 <10-16 -0.0405 0.0130 -3.101 0.0020 

Prediction 

method (SVM) 

0.0170 0.0014 12.225 <10-16 0.1948 0.0130 14.930 <10-16 

Residual standard 

error 

0.0230 df 1080  0.2151 df 1080  

R2 0.2301    0.2507    

Adjusted R2 0.2251    0.2459    

F-statistic 46.11 (on 7 and 1080 DF) 51.63 (on 7 and 1080 DF)  

p-value <10-16   <10-16    

* Base model indicated by values of experimental factors given in brackets: MI: Middle income markets; SW 

25,50,100: Sliding window size 25,50 and 100, respectively; T: Technical indicators included amongst the 

covariates; D: Forecast horizon of one day; SVM: Prediction method employed is SVM 
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2.5.2.2 Analysis of Different Market Maturity Classification Methods 

Our earlier results show that the market maturity is an influential methodological factor regarding 

prediction performance. However, there are several stock market maturity classification methods. For 

example, Claessens et al. (2006) and Choong et al. (2010) classify stock market development based on 

the income level data of World Bank (as used in our main analysis),  Zunino et al. (2009) use the  

Morgan Stanley Capital Index (MSCI), and Kim and Shamsuddin (2008) adopt the International 

Monetary Fund (IMF) classification.  

 To examine whether the adoption of different classification methods could lead to a different 

conclusion regarding the impact of market maturity, we estimate the following regression models to 

explain predictive accuracy: 

Accuracy =  α + βIMFE𝐼𝑀𝐹𝐸 + βST𝑆𝑇 + βT𝑇 + βD𝐷 + βSVM𝑆𝑉𝑀 + ε, 
(11) 

Accuracy = α + βMSCIE𝑀𝑆𝐶𝐼𝐸 + βST𝑆𝑇 + βT𝑇 + βD𝐷 + βSVM𝑆𝑉𝑀 + ε, 
(12) 

where IMFE, MSCIE, ST, T, D and SVM are dummy variables, taking the value 1 for IMF emerging 

markets, MSCI emerging or frontier markets, a static model simulation, when using technical 

indicators alongside basic price covariates (open, high, low, close and change), a daily forecast 

horizon and SVM prediction, respectively, and 0 otherwise. That is, the only difference between the 

main analysis and this additional analysis is the definition of the market maturity variable. A market 

can be classified as a matured market in one method but an emerging market in another method. For 

example, Lithuania and Latvia are in the high income group of the World Bank and are classified as 

emerging markets by the IMF. Table 11 provides details of the manner in which different markets are 

classified using the World Bank, the IMF and the MSCI classification systems. These models are also 

used to explain ROI. 

Table 12 and Table 13 summarize the results of the regression analyses for accuracy and ROI, 

respectively. All the estimated coefficients of IMFE and MSCIE are negative and statistically 

significant. That is, predictive accuracy and the profitability of model-based trading are higher in the 

markets with greater (cf. lower) maturity. This confirms the conclusion we drew based on the World 

Bank classification system.   
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Table 11: WORLD BANK, IMF and MSCI MARKET CLASSIFICATIONS 

 

World Bank IMF MSCI 

High 

Income 

Middle 

Income 

Advanced Emerging Advanced Emerging  

or Frontier 

US, Canada, 

Japan, Korea, 

Hong Kong, 

Singapore, 

France, UK, 

Italy, Germany, 

Switzerland, 

Spain, 

Netherland, 

Belgium, 

Portugal, 

Sweden, 

Norway, 

Denmark, 

Finland, Austria, 

Czech, 

Lithuania, 

Estonia, Latvia   

 

Brazil, , 

China, 

Malaysia, 

Thailand, 

Indonesia, 

Hungary, 

South Africa, 

Turkey  

 

US, Canada, 

Japan, Korea, 

Hong Kong, 

Singapore, 

France, UK, 

Italy, 

Germany, 

Switzerland, 

Spain, 

Netherland, 

Belgium, 

Portugal, 

Sweden, 

Norway, 

Denmark, 

Finland, 

Austria, 

Czech, 

Estonia   

 

Brazil, China, 

Malaysia, 

Thailand, 

Indonesia, 

Hungary, South 

Africa, Turkey, 

Lithuania, Latvia  

 

US, Canada, 

Japan, Hong 

Kong, 

Singapore, 

France, UK, 

Italy, 

Germany, 

Switzerland, 

Spain, 

Netherland, 

Belgium, 

Portugal, 

Sweden, 

Norway, 

Denmark, 

Finland, 

Austria  

 

Brazil, China, 

Korea, 

Malaysia, 

Thailand, 

Indonesia, 

Hungary, 

South Africa, 

Turkey, Czech, 

Lithuania, 

Estonia  

 

This table lists the countries of each market maturity classification standard.  

 

  



Chapter 2 

52 

Table 12: REGRESSION ANALYSIS OF PREDICTIVE ACCURACY WITH IMF AND MSCI MARKET 

CLASSIFICATIONS 

Predictive accuracy Eq. (14) Eq. (16) 

 Estimated 

Coefficient 

Std. 

Error 

t value p value Estimated 

Coefficient 

Std. 

Error 

t value p value 

(Intercept) 0.5088 0.0023 220.69 <10-16 0.5118 0.0023 226.20 <10-16 

IMF (IMFE) -0.0109 0.0022 -5.023 <10-6     

MSCI (MSCIE)     -0.0163 0.002 -8.284 <10-15 

Model simulation 

methodology (ST) 

0.0086 0.002 4.342 <10-4 0.0086 0.002 4.506 <10-5 

Covariate 

composition (T) 

-0.00007 0.002 -0.037 0.97 -0.00007 0.002 -0.039 0.969 

Forecast horizon (D) 0.0174 0.002 8.795 < 2-16 0.0174 0.002 9.128 <10-16 

Prediction method 

(SVM) 

0.0106 0.002 5.344 <10-6 0.0106 0.002 5.546 <10-7
 

Residual standard 

error 

0.02311    0.02227    

R2 0.218    0.274    

Adjusted R2 0.2108    0.2672    

F-statistic 30 (on 5 and 538 

DF) 

 40.6 (on 5 and 538 

DF) 

 

p-value <10-15    <10-15    

* Base model indicated by values of experimental factors given in brackets: IMFE: Emerging market as 

classified by IMF classification; MSCIE: Emerging market as classified by MSCI; ST; Static simulation 

methodology; T: Technical indicators included amongst the covariates; D: Forecast horizon of one day; SVM: 

Prediction method employed is SVM 
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Table 13: REGRESSION ANALYSIS OF ROI WITH IMF AND MSCI MARKET CLASSIFICATIONs 

 

ROI Eq. (15) Eq. (17) 

 Estimated 

Coefficient 

Std. Error t value p value Estimated 

Coefficient 

Std. 

Error 

t value p value 

(Intercept)* 1.1749 0.0228 51.543 <10-16 1.1965 0.0227 52.685 <10-16 

IMF Emerging 

(IMFE) 

-0.1146 0.0215 -5.331 <10-6
     

MSCI Emerging 

Frontier (MSCIE) 

    -0.1448 0.0197 -7.342 <10-12 

Model simulation 

methodology (ST) 

0.1021 0.0196 5.210 <10-6 0.1021 0.0192 5.326 <10-6
 

Covariate 

composition (T) 

-0.0168 0.0196 -0.856 0.3925 -0.0168 0.0192 -0.875 0.3820 

Forecast horizon (D) -0.0442 0.0196 -2.256 0.0245 -0.0442 0.0192 -2.306 0.0215 

Prediction method 

(SVM) 

0.1163 0.0196 5.939 <10-8 0.1163 0.0192 6.071 <10-8
 

Residual standard 

error 

0.2284    0.2235    

R2 0.1523    0.1888    

Adjusted R2 0.1444    0.1813    

F-statistic 19.33 (on 5 and 538 DF)  25.04 (on 5 and 538 

DF) 

 

p-value <10-15    <10-15    

* Base model indicated by values of experimental factors given in brackets: IMFE: Emerging market as 

classified by IMF classification; MSCIE: Emerging market as classified by MSCI; ST; Static simulation 

methodology; T: Technical indicators included amongst the covariates; D: Forecast horizon of one day; SVM: 

Prediction method employed is SVM 
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2.5.3 The effect of transaction cost on ROI  

Shleifer and Vishny (1997) suggest that the costs of arbitrage, such as transaction costs, may allow 

mispricing to occur.;thus the prices exhibit co-movements or recognizable patterns. But the transaction 

cost may prevent arbitrageurs from exploiting these co-movements. To examine the effect of 

transaction cost on ROI, we calculate the ROI with the transaction cost as 0.1%. This is a conservative 

value given that Shleifer and Vishny (1997) use 0.5%. The results are presented in Figure 4. We 

present the results regarding the prediction horizon factor as the results of other factors are similar to 

what we presented earlier. We can see that the ROIs from most simulations are lower than 1, which 

means no profit is earned. With our trading simulation, a trade is placed every period according to the 

generated prediction from the model. It is not surprising that the ROIs in the hourly setting are much 

lower than those in the daily setting as there are eight or more opening hours in one trading day. We 

do not find evidence against the prediction of the EMH, and our results show that it is important to 

account for transaction cost in discussing excess returns. 

 

 

Figure 4: PREDICTION PERFORMANCE IN ROI ACROSS DAILY AND HOURLY DATA 

The boxplot shows the ROI of all experiments in terms of daily and hourly data. The transaction cost is 0.1% for 

each trade, and there is one trade for each period. In other words, there is one trade every day in daily data and 

one trade every hour in hourly data.  
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2.6 Discussion 

We first discuss our results relating to the factors that influence the prediction accuracy and the 

profitability of trading on the forecasts based on the most commonly employed ML techniques (SVM 

and ANN). These results demonstrate that the selection of the data source (i.e., the financial market 

being forecast) significantly and substantially influences the observed level of prediction accuracy and 

the profitability of trading on the forecasts. The impact on the profitability of trading on the forecasts 

is particularly large (Cohen’s d equal to 0.6264). However, we cannot accept hypotheses H1a and H1b 

because the direction of the influence differs from expectations. Specifically, we find that predictive 

accuracy and the profitability of model-based trading are higher in financial markets with high (cf. 

medium) income levels. This is surprising since regulations and rules related to information disclosure 

should be further developed in such markets. On the other hand, the markets in the high- and medium 

income groups differ in many ways. It may be that the middle-income markets we consider are 

sufficiently regulated to rule out the effect of information disclosure policies on market predictability. 

An analysis of the predictability of low-income markets might give further insights into which other 

factors might govern the relationship between market income-level and predictability, and thus explain 

the result observed. Unfortunately, intraday time series data of sufficient length for markets with low 

income levels is not available from our data provider (TickWrite Data Inc.3). Consequently, a focused 

comparison of high vs. low income markets with forecasting horizons of one day or above might be a 

fruitful avenue for future research. An important implication of our findings is that the financial 

market selected for a forecasting study has a significant effect on the resulting accuracy of the 

forecasts. This implies that results which have been observed for one market may not be generalized to 

a different market. Drawing conclusions from findings derived from a single market, as is undertaken 

in the majority of existing ML studies, may mask the true degree of informational efficiency in 

financial markets. Rather, researchers are well-advised to test novel forecasting methods on multiple 

financial time series. This will offer a clearer picture of the relative advantages of competing methods 

and enhance the generalizability of empirical studies.  

Our results offer support for hypotheses H2a and H2b, that predictive accuracy and the profitability 

from model-based trading are higher when evaluating forecasting models using a static train/test set 

approach (cf. a dynamic approach). The results suggest that the selection of the cross validation 

method is influential on prediction performance. This suggests that there are considerable risks in 

drawing conclusions regarding market efficiency based on the results of a single cross validation 

method.  

                                                      

3 http://www.tickdata.com/ 
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The results suggest that the prediction performance of ML techniques are more sensitive to the size of 

samples than to the use of more recent price information. ML techniques make predictions by 

recognizing patterns. One potential price pattern is long-term memory, which describes stock price 

behavior with autoregressive models (Greene and Fielitz, 1977; Lo, 1991; Mandelbrot, 1971). Our 

results suggest that the size of the training sample is a key ingredient of prediction performance. In our 

experimental settings, there are over 700 samples in the training set for a static approach. The width of 

a sliding window is fixed at 50, so the training set is always the latest 50 samples before the predicted 

sample. Hence, the higher accuracy we observe from the static approach implies that the size of the 

training set is at least as important as recent price information in predicting stock prices. On the other 

hand, doubling the size of the training window to 100 observations, as we have done in the sensitivity 

analysis, has not increased predictive accuracy substantially over the 50 observation window size. This 

suggests that the trade-off between the recency and size of data in financial time series forecasting 

experiments is indeed complex and would benefit from future research. However, from a practical 

point of view, ignoring the possibility and necessity to update a prediction model, the static approach 

appears naïve and is very unlikely to be adopted. For example, consider an experiment where stock 

prices are forecast one day into the future, and we have a financial time series of four years. Assuming 

there are roughly 350 trading days per year, this gives 1400 data points. A 70:30 train/test set split will 

reserve 420 of these data points (i.e., trading days) as a hold-out test set. Such an evaluation implies 

that a trader uses her stock prediction model for more than a year without updating. We argue that this 

is not realistic. More importantly, a static model methodology is vulnerable to selecting a test set that 

does not represent the overall population well (i.e., lucky sample effect).  

Our results lead us to reject H3a and H3b. In particular, our results suggest that the performance of a 

forecasting model that includes technical indicators is not significantly better than one that uses basic 

reference prices as covariates. We find that even advanced nonlinear prediction methods such as SVM 

and ANN, which are able to discern complex relationships among covariates and the target variable, 

are unable to distill predictive information from technical indicators beyond that contained in basic 

price covariates. Consequently, our results further support previous criticism of technical indicators 

(Fama, 1970; Lesmond et al., 2004) and cast doubt on their value for predictive modeling.   

Our results also suggest that the length of the forecast horizon has a significant effect on predictive 

accuracy and the profitability from model-based trading. However, the forecast horizon appears to 

have a different effect on the predictability (cf. profitability) of model-based trading. In particular, we 

find evidence in favor of H4b, in that the profitability of model-based trading is higher for an hourly 

(cf. daily) forecast horizon. On the other hand, predictive accuracy is significantly higher if forecasting 

price movements a day (cf. hour) into the future. Furthermore, the size of the forecast horizon effect 

on the profitability of model-based trading is small (Cohen’s d equal to 0.1795), whereas the forecast 

horizon effect on predictive accuracy is actually the largest effect observed in the study (Cohen’s d 
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equal to 0.7105). We suggest that two effects maybe important to explain these results. First, a market 

that is more volatile is ceteris paribus harder to predict. Moreover, the (weak form) EMH suggests that 

stock prices can take some time to reflect all information. Consequently, volatility is higher in short-

term forecasting, which, in turn, suggests lower predictive accuracy. However, in terms of the 

profitability of model-based trading, another effect comes into play. Second, forecasting shorter 

horizons creates more opportunities to trade on model predictions. We can only trade one daily 

forecast in a day, but multiple hourly forecasts. Furthermore, hourly forecasts and trading allow an 

investor to exploit the variation of prices within a day. In summary, the volatility argument predicts 

less accuracy from model-based trading for a forecasting horizon of one hour (cf. one day). However, 

the feasibility of higher trading frequency and the opportunity to capitalize on intraday price 

movements suggests that ROI might be higher in the intraday setting. Consequently, the positive effect 

on profitability for higher frequency trading may be larger than the negative influence of volatility. 

Given that predictive accuracy is not directly linked to trading frequency and intraday price 

movements, it is certainly plausible that we observe higher accuracy for a daily forecast horizon. There, 

higher intraday volatility is the only relevant effect, and this effect has a negative influence on 

accuracy.  

It is important to note that the results observed in the forecast horizon comparison have implications 

for market efficiency. In particular, the review of previous forecasting studies indicates a bias toward 

forecast horizons of one day or above in the ML literature. Many such studies report very high 

accuracies (see Table 1), which, in the light of the EMH, is surprising. However, the results observed 

in this study demonstrate that predictive accuracy and trading profit are not perfectly correlated in 

financial time series forecasting. Market efficiency is only questioned if empirical evidence suggests 

that trading on model-based predictions produces excessive returns. Hence, observing high accuracy 

contradicts the EMH only if the corresponding prediction models facilitate profitable trading.  We 

observe that this is not necessarily the case. More specifically, we find a forecast horizon of one day, 

the setting predominantly considered in previous ML research, to be associated with higher accuracy. 

However, we demonstrate that this forecast horizon is associated with less model-based trading profit 

than a shorter horizon of one hour. Furthermore, we find that the profit of the models decreases 

significantly when transaction cost is considered, which suggests that the high prediction accuracy 

does not guarantee excess returns in financial markets. Consequently, the disagreement between the 

financial economics and the ML literature concerning market efficiency might be less than the results 

of published studies suggest, and we do not find evidence against the prediction of the EMH. 

Our results also support H5a and H5b that SVM predicts price movements more accurately 

than ANN and also produce higher trading profits. Furthermore, Cohen’s d suggests that the effect is 

large (0.4154 for accuracy and 0.4842 for ROI). This finding is interesting given the recent history of 

the application of SVM and ANN. The former gained much popularity in early 2000, leading to a 
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partial replacement of standard feedforward ANN. However, with the advent of extreme learning 

machines (Huang et al., 2006) and, more recently, deep neural networks (Schmidhuber, 2015), 

attention has shifted back to neural prediction models. It seems likely that such advanced types of 

neural networks will be applied in the domain of financial time series forecasting. An implication of 

our results is that studies which aim to investigate the potential of these and advanced prediction 

methods for financial time series forecasting should routinely compare them with SVM since SVM 

predict price movements with high accuracy. In other words, SVM represents an important benchmark 

for assessing the marginal utility of new methods.  

Our results also support H6a and H6b that the best ML model (which we show to be SVM) 

predicts price movements more accurately than the best econometric method (which we show to be 

AR) and also produces higher trading profits. Furthermore, Cohen’s d suggests that the effect is 

sizeable (0.51 for accuracy and 0.66 for ROI). These results are in line with the literature that ML 

techniques outperform econometric methods (Donaldson and Kamstra, 1999; Pai and Lin, 2005). Our 

results, therefore, show that ML techniques, such as SVM and ANN, are useful techniques for 

detecting market anomalies. The conventional approach in the financial economics literature (Fama, 

1970; Fama and French, 1993) is to use autocorrelation and linear regression models to examine the 

relation between explanatory factors and stock prices. (e.g., Keim, 1983; French, 1980). ML methods 

work in a different way. They are trained to recognize patterns in a data-driven manner and do not 

require human intervention. We find that such an approach facilitates profitable model-based trading, 

even when using models with fairly naive covariates. Both ANN and SVM achieve an ROI greater 

than one in most of our settings and the reference setting in particular (see Figures 1 and 3). Clearly, 

studies that scrutinize the degree to which financial markets are efficient must ensure that a modeling 

method is employed that fully exploits all predictive information contained in the covariates. Our 

results indicate that ML methods are well suited for this task and, thus, deserve a place in the financial 

economists’ toolbox. 

2.7 Conclusions 

The EMH predicts that excess returns cannot be earned in a systematic way, by, for example, model-

based trading. However, many ML-based financial time series forecasting studies seem to find ways to 

anticipate market developments with surprisingly high accuracy. The direction of price movements in 

these studies is often predicted with 80 percent accuracy and above. Some studies also report that their 

models facilitate profitable trading (Bitvai and Cohn, 2014). We set out to clarify the origins of the 

apparent contradiction between the ML and EMH literature. To that end, we perform an extensive 

forecasting benchmark in which we use two established ML methods to predict price movements in 

most major stock markets, and we compare, what we show to be, the best ML and econometric models, 
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for predicting these movements. This study, to our best knowledge, is the first to compare intraday and 

daily ML and econometric prediction models across most major markets.  

We find that the maturity of a financial market, the prediction method, the horizon for which it 

generates forecasts, and the methodology to simulate model-based trading all have a significant effect 

on market predictability and the feasibility of profitable model-based trading. Consequently, decisions 

that forecasting studies have taken with respect to these factors can help explain the results observed. 

This is not true for our last experimental factor, covariate composition since we find that popular 

technical indicators are no more predictive than basic reference prices.  

Overall, we do not find overwhelming evidence which contradicts the EMH, since the results cannot 

be said to pass Fama’s (1998) tests of endurance, homogeneity, and  robustness; the EMH 

acknowledges that stock prices are partly predictable in the short run in some markets. Most of the 

predictive accuracies we observe are well below 60 percent. However, the level of accuracy we 

observe is substantially lower than that commonly published in previous research, and it is 

acknowledged that we might have increased the levels of accuracy by including more sophisticated 

covariates. Consequently, we would suggest that inefficiency may exist in some markets.  

However, the EMH is a theory related to general market behavior and acknowledges that anomalies 

can occur at certain times and in certain situations. In this context, the importance of our results lies in 

the insight they provide into the methodological issues which might explain the difference between the 

prevailing view in support of the EMH in the financial economics literature and the high accuracy in 

predicting financial market prices achieved in ML studies. Clearly, our results suggest that the 

econometric models generally employed in the financial economics literature may have led to overly 

pessimistic views of the degree to which financial price series can be predicted. It is clear from our 

results that practitioners interested in predicting financial time series are well-advised to consider ML 

techniques in their arsenal of methods. In fact, to aid this process, we show in Table B.1 in online 

Appendix B, the experimental settings that have given the best results for each individual market.  

Furthermore, our analyses help to provide a realistic estimate of the potential and limitations of ML 

techniques for financial index forecasting. In particular, they suggest that the following factors may 

have given a false sense of the degree to which the results of ML studies contradict the EMH: First, 

there may be a bias toward the specific markets studied, with an emphasis on those that might be 

easier to predict. Second, there may have been a focus on less suitable model evaluation 

methodologies (i.e., a static approach as opposed to sliding-window cross-validation), which are prone 

to give optimistic estimates of model accuracy. Third, the focus on forecast horizons of one day and 

above in prior research may have led to a false impression of the predictability of financial markets. In 

summary, our study provides some evidence that it would be unwise to draw conclusions regarding the 
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degree to which financial markets, in general, are inefficient from the accuracy figures reported in 

some previous ML financial time series forecasting studies.  

The main implication of the EMH is that, in an informationally efficient market, it is not possible to 

obtain systematic, excessive returns from trading the predictions of a forecasting model. The results of 

our study indicate an imperfect link between the predictive accuracy of a forecasting model and the 

profitability of trading on the model’s forecasts. For example, we show that predicting the direction of 

price movements one day into the future produces higher accuracy compared to predicting prices one 

hour into the future, but produces a lower return from model-based trading. Consequently, through 

concentrating on forecast horizons of one day and above, the predictive accuracy that previous studies 

observe tends to be higher than what would be observed if examining shorter, intraday, forecast 

horizons. However, our results suggest that even then this does not necessarily imply that the 

corresponding models would facilitate profitable trading. For example, we find a forecast horizon of 

one day to be associated with relatively lower ROI and the returns observed have not taken account of 

transaction costs. Furthermore, most models fail to generate profit after transaction cost is considered. 

This makes our results consistent with the implications of the EMH (Malkiel, 2003).  

Our study has focused on predicting national stock indices because these indices are used in the 

majority of previous ML studies that predict the direction of price changes. However, to confirm the 

robustness of our findings, it would be useful to extend the analyses to the prediction of stock prices 

associated with a variety of industry sectors. It would also be useful to incorporate data from a wider 

range of middle income markets and to employ higher frequency data, once sufficient data becomes 

available.  It should also be noted that due to data availability issues outlined in section 4.1, our main 

analyses were conducted using data from 2008-14, a period which covered two financial crises, the US 

subprime mortgage crisis, and the European sovereign debt crisis. Clearly, these unexpected events 

may have influenced our results. However, additional analyses, reported in online Appendix C, for the 

13 stock indices for which we were able to obtain a longer time series of data, produced similar 

conclusions to the earlier analyses. This gives some comfort that our results are robust to unexpected 

events such as financial crises. It would be valuable if future studies which employ longer time series 

of data could confirm this view. 

Our results for these hypotheses hold important implications for the machine learning literature since 

the influence of the methodological factors is severely underestimated in predicting financial markets. 

The lack of awareness of the methodological factors leads to the biased performance of the prediction 

model, and the preference of positive results might also play a role in the over-optimistic prediction 

performance of the published studies. Specifically, many machine learning studies claim to develop 

novel prediction models which can achieve very high accuracy, i.e. 80% to 90%, but these models are 

usually tested with only a simple setting, such as daily data in a single market. In other words, these 



Chapter 2 

61 

studies may suffer from the over-fitting hazard as well as the lack of general applicability. Since our 

results show that the change of one methodological factor could affect the prediction performance 

significantly, we argue that the proposed prediction models should be tested in multiple settings in 

future machine learning studies. 

Our results also have implications for the financial economics literature. In particular, we provide 

empirical evidence for the ability of advanced ML techniques in the form of SVM and ANN to detect 

market anomalies across many major financial markets. ML methods are rarely employed by financial 

economists. However, these techniques can capture complex nonlinear interactions in a financial data 

set and approximate their relationship to a target variable. This is probably the reason we find evidence 

that the best ML method (SVM) outperforms the best econometric method (AR) when predicting 

financial prices. Consequently, our results suggest that ML methods offer the prospect of studying 

informational efficiency and, thus, providing financial economists with new insights concerning the 

manner in which financial markets employ information.        
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2.8 Online Appendix A: Comparing the forecasting ability of commonly 

employed econometric techniques 

We examine the forecasting ability of three of the most widely used econometric methods for 

forecasting financial prices, namely, AR, ARIMA, GARCH (Charles, Darné, & Kim, 2011). ARIMA 

is also one of the most widely used benchmarking methods in machine learning studies (George S 

Atsalakis and Valavanis, 2009). We follow Pai and Lin’s (2005) settings for ARIMA and, hence, we 

do not include technical indicators. We follow Awartani & Corradi (2005) by using GARCH(1, 1) and 

we employ the AR(1) model with the innovation distribution defined as Gaussian with constant 

variance. Econometric methods are generally employed to predict the change in the value of an index. 

However, to compare the results with those studies employing ML techniques, we convert the 

predictions of change in value to predictions of change in direction. 

To achieve these objectives, we estimate the following regression model for predictive accuracy: 

Accuracy = α + βMI𝑀𝐼 + βST𝑆𝑇 + βT𝑇 + βD𝐷 + βARIMA𝐴𝑅𝐼𝑀𝐴 + βGARCH𝐺𝐴𝑅𝐶𝐻 + ε,  (13) 

where MI, ST, T, D, ARIMA and GARCH are dummy variables, taking the value 1 for middle income 

markets, a static model simulation, when using technical indicators alongside basic price covariates, a 

daily forecast horizon, ARIMA prediction and GARCH prediction, respectively, and 0 otherwise. That 

is, AR is the base model. This model is also used to explain ROI. 

The results relating to predictive accuracy and ROI are shown in Tables A.1 and A.2, respectively. 

The estimated coefficients of ARIMA (-0.0162) and GARCH (-0.0072) are negative and statistically 

significant in the regression reported in Table A.1, indicating that AR outperforms ARIMA and 

GARCH in terms of accuracy. The coefficient of ARIMA is negative (-0.072) and statistically 

significant, and the coefficient of GARCH is not statistically significant in the regression reported in 

Table A.2. These indicate that in terms of ROI, AR outperforms ARIMA and there is no difference 

between AR and GARCH. Taking both accuracy and ROI, into account, AR out-performs GARCH 

and ARIMA. Hence, we compare AR with SVM in our main analysis.   

 

TABLE A.1: REGRESSION ANALYSIS OF PREDICTIVE ACCURACY 

Predictive accuracy Estimated 

Coefficient 

Std. Error t value p value 

(Intercept)* 0.5081 0.0028 181.21 < 10-16 

Market maturity (MI) 0.0034 0.0029 1.1702 0.2426 

Model simulation 0.0114 0.0024 4.6725 <10-5 
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methodology (ST) 

Forecast horizon (D) 0.0037 0.0024 1.5307 0.1266 

Prediction method 

(ARIMA) 

-0.0162 0.003 -5.4513 < 10-7 

Prediction method 

(GARCH) 

-0.0072 0.003 -2.4173 0.0161 

Residual standard error 0.02458 df 402  

R2 0.1211 Adjusted R2 0.1102  

F-statistic 11.08 (on 5 and 402 DF)  

p-value < 10-9    

* Base model indicated by values of experimental factors given in brackets: MI: Middle income markets; ST: 

Static simulation methodology; D: Forecast horizon of one day; ARIMA: Prediction method employed is 

ARIMA; GARCH: Prediction method employed is GARCH. 

 

TABLE A.2: REGRESSION ANALYSIS OF ROI 

ROI Estimated 

Coefficient 

Std. Error t value p value 

(Intercept)* 1.0537 0.0268 39.337 < 10-16 

Market maturity (MI) -0.0023 0.0274 -0.0851 0.9322 

Model simulation 

methodology (ST) 

0.1791 0.0233 7.7007 < 10-12 

Forecast horizon (D) -0.0324 0.0233 -1.3934 0.1643 

Prediction method 

(ARIMA) 

-0.072 0.0285 -2.5276 0.0119 

Prediction method 

(GARCH) 

0.0007 0.0285 0.0258 0.9794 

Residual standard error 0.2348 df 402  

R2 0.148 Adjusted R2 0.1374  

F-statistic 13.97 (on 5 and 402 DF)  
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p-value < 10-11    

* Base model indicated by values of experimental factors given in brackets: MI: Middle income markets; ST: 

Static simulation methodology; D: Forecast horizon of one day; ARIMA: Prediction method employed is 

ARIMA; GARCH: Prediction method employed is GARCH. 

 

We compare the prediction performance of the most commonly employed econometrics methods 

(ARIMA, GARCH and AR: Charles, Darné, & Kim, 2011) with that of ANN and SVM. We adopt 

ARIMA, GARCH and AR among the well-known econometrics methods. We employ the same 

settings for the econometrics models indicated above, namely GARCH(1, 1) and AR(1) with the 

innovation distribution defined as Gaussian with constant variance. Overall, we obtain 136 simulation 

results for each of the prediction models (AR, ARIMA, GARCH, ANN, SVM), resulting in 680 

simulation results in total. We estimate the following regression model to explain predictive accuracy: 

Accuracy = α + βMI𝑀𝐼 + βST𝑆𝑇 + βD𝐷 + βANN𝐴𝑁𝑁 + βAR𝐴𝑅
+ βARIMA𝐴𝑅𝐼𝑀𝐴 + βGARCH𝐺𝐴𝑅𝐶𝐻 + ε, 

(14) 

where MI, ST, T, D, ANN, AR, ARIMA and GARCH are dummy variables, taking the value 1 for 

middle income markets, a static model simulation, a daily forecast horizon, ANN prediction, AR 

prediction, ARIMA prediction, GARCH prediction (with SVM as reference prediction), respectively, 

and 0 otherwise. This model is also used to explain ROI. 

The results are displayed in Table A.3. In the regressions associated with both accuracy and ROI, all 

the coefficients of ANN, AR, ARIMA and GARCH are negative, indicating that SVM, the reference 

model, outperforms the other models. In addition, the coefficients of ANN are higher than those of AR, 

ARIMA and GARCH for both accuracy and ROI. Consequently, our results are consistent with the 

literature, that suggests machine learning techniques outperform traditional econometric methods 

when predicting stock prices (Pai and Lin, 2005).  

 

Table A.3: REGRESSION ANALYSIS OF PREDICTION TECHNIQUES  

 Predictive accuracy ROI 

 Estimated 

Coefficient 

Std. 

Error 

t value p value Estimated 

Coefficient 

Std. Error t value p value 

(Intercept)* 0.5197 0.0025 204.438 < 10-15 1.2439 0.0242 51.379 < 10-15 

Market maturity 

(MI) 

-0.0016 0.0022 -0.720 0.4718 -0.0582 0.0211 -2.756 0.006 

Model simulation 0.0102 0.0019 5.426 < 10-7 0.1470 0.0180 8.207 < 10-14 
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methodology (ST) 

Forecast horizon (D) 0.0097 0.0019 5.176 <10-6 -0.0268 0.0180 -1.498 0.135 

ANN -0.0108 0.0030 -3.634 0.0004 -0.1240 0.0283 -4.380 <10-4 

AR -0.0129 0.0030 -4.351 <10-4 -0.1638 0.0283 -5.785 < 10-7 

ARIMA -0.0292 0.0030 -9.816 < 10-15 -0.2358 0.0283 -8.326 < 10-15 

GARCH -0.0201 0.0030 -6.774 < 10-10 -0.1631 0.0283 -5.759 < 10-7 

Residual standard 

error 

0.0245 df 672  0.2335 df 672  

R2 0.1961    0.1847    

Adjusted R2 0.1877    0.1762    

F-statistic 23.42 (on 7 and 672 DF) 21.75 (on 7 and 672 DF)  

p-value < 10-15   < 10-15    

* Base model indicated by values of experimental factors given in brackets: MI: Middle income markets; ST: 

Static simulation methodology; D: Forecast horizon of one day; ANN: Prediction method employed is ANN; AR: 

Prediction method employed is AR; ARIMA: Prediction method employed is ARIMA; GARCH: Prediction 

method employed is GARCH. 
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2.9 Online Appendix B: Identifying the Prediction Method 

Producing the Best Accuracy and ROI for Each Stock Index    

Table B.1 displays the setting of the experiments with the best performance for each stock 

index. As we discuss in the results section in the main paper, certain settings are positively 

influential on performance. For example, daily prediction appears more often than hourly 

prediction in the following table, indicating that daily predictions are generally more accurate 

and produce higher ROI than hourly predictions. Similarly, the static setting appears more 

often than the sliding window setting, indicating that predictions produced using the static 

setting are generally more accurate and produce higher ROI than predictions derived from a 

sliding window setting. In Table B.1, mature markets are more often those that display higher 

accuracy figures; e.g., 0.58 in France and 0.62 in Denmark. It is worth noting that our analysis, 

discussed in the main paper, suggests that SVM outperforms ANN significantly in terms of 

accuracy. However, ANN achieves the highest accuracy in more markets than SVM. We can 

explain the contrast by looking at the ANN and SVM boxplot in Figure 1: the average 

accuracy of SVM is higher, but there are more outliers for ANN, i.e., SVM performs better 

than ANN on average, but ANN occasionally achieves good performances across the 

combination of settings.   
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TABLE B.1: SETTING OF BEST ACCURACY AND ROI FOR EACH STOCK INDEX 

  Setting of Highest Accuracy  Setting of Highest ROI 

Market Index Accuracy Model Method 
Tech. 

Indicators 
Horizon 

 
ROI Model Method 

Tech. 

Indicators 
Horizon 

Netherland AEX 0.56  ANN Static No Daily  1.3  SVM Static No Hourly 

Austria ATX 0.56  SVM Static No Daily  1.79  SVM Static No Hourly 

Belgium BEL20 0.55  SVM Static Yes Daily  1.37  ANN Static No Daily 

Brazil Brazilian  Bovespa Futures 0.54  ANN 
Sliding 

Window 

No Daily  
1.4  ANN 

Sliding 

Window 
No Daily 

Hungary BUX 0.53  SVM 
Sliding 

Window 

Yes Hourly  
1.38  SVM 

Sliding 

Window 
No Hourly 

France CAC 40 0.58  SVM Static No Daily  1.79  SVM Static No Daily 

Germany DAX 0.56  ANN Static Yes Daily  1.39  ANN Static No Daily 

US 
Dow Jones Industrial 

Average 
0.55  ANN Static 

No Daily  
1.29  SVM Static No Hourly 

UK FTSE 100 0.56  ANN Static No Daily  1.27  SVM Static Yes Hourly 

Finland OMXH25 0.53  ANN Static No Hourly  1.59  ANN Static No Hourly 
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Hong Kong Hang Seng Index 0.53  ANN Static 
No Daily  

1.22  ANN 
Sliding 

Window 
Yes Daily 

Spain IBEX 35 0.54  ANN Static No Daily  2.19  SVM Static Yes Hourly 

Italy FTSE MIB Index 0.54  ANN Static No Daily  1.62  ANN Static Yes Hourly 

Indonesia Jakarta Composite Index 0.56  ANN Static 
No Daily  

1.7  ANN 
Sliding 

Window 
No Hourly 

Denmark OMX Copenhagen Index 0.62  ANN Static No Daily  1.49  ANN Static No Daily 

Malaysia 
FTSE Bursa Malaysia KLCI 

Index 
0.54  ANN Static 

No Daily  
1.22  ANN 

Sliding 

Window 
Yes Hourly 

Korea KOSPI 200 Index 0.57  SVM Static Yes Daily  1.22  SVM Static Yes Daily 

US NASDAQ-100 0.57  ANN 
Sliding 

Window 

No Hourly  
1.41  ANN Static No Daily 

Japan Nikkei 225 0.55  ANN Static No Daily  1.77  ANN Static Yes Hourly 

Norway OSE All Share Index 0.55  ANN 
Sliding 

Window 

No Daily  
1.36  ANN Static Yes Hourly 

Portugal PSI-20 0.54  ANN Static No Daily  1.63  ANN Static Yes Hourly 

Czech 
Prague Stock Exchange 

Index 
0.53  SVM Static 

Yes Daily  
1.2  SVM Static Yes Daily 

Latvia OMX Riga Index 0.54  ANN Static 
No Daily  

2.11  SVM 
Sliding 

Window 
No Hourly 

China ShangHai SE Composite 0.54  SVM Static No Daily  1.67  SVM Static No Daily 
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Index 

Sweden 
OMX ALL-SHARE 

Stockholm Index 
0.56  ANN Static 

No Daily  
1.36  ANN Static No Hourly 

US S&P 500 0.57  ANN Static No Daily  1.35  ANN Static No Daily 

Singapore Straits Times Index 0.55  ANN 
Sliding 

Window 

No Daily  
1.2  ANN 

Sliding 

Window 
Yes Daily 

Switzerland Swiss Market Index 0.57  ANN Static No Daily  1.34  ANN Static No Daily 

Estonia OMX Tallinn Index 0.53  ANN 
Sliding 

Window 

No Daily  
1.49  SVM Static No Hourly 

Thailand 
Thai Stock Exchange MAI 

Securities Index 
0.56  ANN Static 

No Daily  
1.74  ANN 

Sliding 

Window 
No Hourly 

South Africa FTSE/JSE Africa Top40 0.55  ANN Static No Daily  1.43  ANN Static No Hourly 

Canada SP TSX Composite Index 0.58  ANN Static No Daily  1.23  ANN Static No Daily 

Turkey ISE-100 0.54  ANN Static 
No Daily  

2.4  ANN 
Sliding 

Window 
Yes Hourly 

Lithuania OMX Vilnius Index 0.54  ANN Static No Daily  1.31  ANN Static No Daily 

This table lists the setting of the experiments with the best performance (accuracy and ROI) for each stock index.  
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2.10 Online APPENDIX C: Analysis of Markets with Intraday 

Data Available Prior to 2008 

In selecting the sample period for the main analysis, we wanted to maximize the number of 

markets we could use with sufficient daily and intraday data to test the hypotheses. However, 

the availability of intraday data was limited and, for many markets, was only available from 

2008 onwards. To include as many markets as possible, we choose the period 2008 to 2014, 

where intraday data is available for most markets. The selection of the sample period may 

introduce sample selection bias. In order to examine whether this bias affected our conclusion, 

we conducted additional experiments with the thirteen stock indexes for which we could 

access intraday data for longer periods (listed in table C.1).  

Table C.1 : STOCK INDICES WITH INTRADAY DATA AVAILABLE BEFORE 2008  

NO. Economy World Bank 

Income Level 

Index Start Date End Date 

1 US High S&P 500 1/2/1983 19/2/2014 

2 Japan High Nikkei 225 1/7/2003 19/2/2014 

3 Korea High KOSPI 200 Index 1/2/2004 19/2/2014 

4 Hong Kong High Hang Seng Index 1/12/2006 19/2/2014 

5 France High CAC 40 1/7/2003 19/2/2014 

6 UK High FTSE 100 1/7/2003 19/2/2014 

7 Italy High FTSE MIB Index 1/7/2003 19/2/2014 

8 Germany High DAX 1/7/2003 19/2/2014 

9 Hungary Middle BUX 1/7/2003 19/2/2014 

10 Switzerland High Swiss Market Index 1/7/2003 19/2/2014 

11 Spain High IBEX 35 1/7/2003 19/2/2014 

12 US High Dow Jones 1/4/1993 19/2/2014 
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Industrial Average 

13 US High NASDAQ-100 2/1/1997 19/2/2014 

This table lists the stock indexes for which the intraday data is available for longer periods.  

 

We estimate regressions based on equations (8) to explain prediction accuracy and ROI, and 

the results are presented in Table C.2. The results relating to prediction accuracy are 

consistent with the results for the larger group of markets for which data was available for 

2008-14 (reported in Table 6). We observe some differences in terms of the results relating to 

ROI compared to those for the larger group of markets for which data was available for 2008-

14 (reported in Table 7). In particular, the coefficient of market maturity (MI), which is 

negative and significant at the 5% level in the results reported in Table 7, is still negative but 

the p-value increases to 0.0851. This may arise because only one stock index of the 13 indices 

included in this additional experiment is from a middle income market, i.e., a less mature 

market; the sample size may, therefore, be insufficient to observe a significant difference. In 

addition, the coefficient of forecast horizon (D) is positive in these additional experiments and 

is not statistically significant. As we discussed earlier, this can be regarded as evidence of an 

imperfect link between predictive accuracy and profitability. The remaining factors show 

similar results to those reported in Table 7. Overall, the result from the markets with earlier 

intraday data is in line with our earlier conclusion and suggests that selection bias did not 

influence the results from the main analyses reported in the paper. 
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Table C.2: REGRESSION ANALYSIS OF THE MARKETS WITH INTRADAY DATA BEFORE 

2008 

 Predictive accuracy ROI 

 Estimated 

Coefficient 

Std. 

Error 

t value p value Estimated 

Coefficient 

Std. Error t value p value 

(Intercept)* 0.5047 0.0026 197.01 < 10-15 1.0772 0.0541 19.901 < 10-15 

Market maturity 

(MI) 

-0.0186 0.0043 -4.360 <10-4 -0.1559 0.0901 -1.730 0.0851 

Model simulation 

methodology (ST) 

0.0047 0.0022 2.073 0.0394 0.1345 0.0480 2.802 0.0056 

Covariate 

composition (T) 

0.0001 0.0022 0.042 0.9663 -0.0149 0.0480 -0.310 0.7566 

Forecast horizon (D) 0.0074 0.0022 3.258 0.0013 0.0216 0.0480 0.451 0.6528 

Prediction method 

(SVM) 

0.0080 0.0022 3.512 0.0005 0.1486 0.0480 3.094 0.0023 

Residual standard 

error 

0.0164 df 202  0.3462 df 202  

R2 0.1863    0.0930    

Adjusted R2 0.1662    0.0706    

F-statistic 9.251 (on 5 and 202 DF) 4.143 (on 5 and 202 DF)  

p-value <10-7   0.0013    

* Base model indicated by values of experimental factors given in brackets: MI: Middle income 

markets; ST: Static simulation methodology; T: Technical indicators included amongst the covariates; 

D: Forecast horizon of one day; SVM: Prediction method employed is SVM  
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Chapter 3: Is experience the mother of risk wisdom?  

 

Abstract― We examine the degree to which individuals modify their financial risk-taking 

behavior and learn to improve their decision performance as a result of gaining experience of 

a decision-making task. In particular, we examine whether increased experience tends to 

result in improvements in risk-adjusted (Sharpe ratio) performance. We achieve our objective 

by analyzing 6,287,477 trades of 27,868 individual UK spread-traders over a 10 year period, 

using linear mixed models. We find that, as individuals gain trading experience, they increase 

their degree of risk-taking and make higher returns. However, their returns are subject to 

greater volatility and, as a result, this leads to them achieving lower risk-adjusted returns. The 

conclusion holds after accounting for selection bias and survivorship bias. We discuss the 

implications for operators and regulators in financial markets and explore the implications for 

decision makers more generally. 

 

 

 

 

Keywords: Learning; decision making; risk, performance  
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3.1 INTRODUCTION 

The risk-taking behavior of individuals is arguably over-simplified in the financial 

economic theory. The equity premium puzzle is one of the scenarios which the financial 

economic theory fails to explain. In Thaler’s (2010) example, a dollar invested in U.S. 

Treasury bills in 1926 would be worth about $14, while a dollar invested in U.S. stocks on the 

same date would be worth more than $2,000. Mehra and Prescott (1985) show that this huge 

return difference cannot be explained by the difference of risk alone. Some progress has been 

made with behavioral insights. Benartzi and Thaler (1995) argue that this puzzle can be 

understood with a combination of psychological concepts: loss aversion, which describes the 

tendency to weigh losses more heavily than gains, and mental accounting, which is the 

implicit method deployed to evaluate financial outcomes. Barberis, Huang and Santos (2001) 

develop an equilibrium model to explain the equity premium puzzle by adding the house 

money effect which captures the tendency to take higher risk after making a profit. This 

shows the need for more empirical evidence of the risk-taking behavior of individuals.   

Recent empirical research has emphasized the influence of the outcomes of an 

individual’s previous decisions on their subsequent risk-taking behavior (Choi et al., 2009; 

Glaser and Weber, 2009; Kaustia and Knüpfer, 2008; Y.-J. Liu et al., 2010; Thaler and 

Johnson, 1990). There is also strong laboratory evidence that individuals are likely to change 

their risk-taking behavior as they gain experience of a decision-making task (Camerer and Ho, 

1999; Charness and Levin, 2003; Roth and Erev, 1995). However, there is little evidence that 

confirms these findings in real-world environments. Empirical evidence does support the 

view that an individual’s accumulated experience improves some aspects of financial 

decisions; notably leading to higher returns and reduced behavioral bias (Chiang et al., 2011; 
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Feng and Seasholes, 2005; Nicolosi et al., 2009; Seru et al., 2010). However, the impact of an 

individual’s experience on how they handle risk has been neglected; specifically, the impact 

of increased experience on the volatility of their returns and their risk-adjusted returns. This 

study aims to fill this gap.  

We first examine the degree to which individuals change their risk-taking behavior as 

they gain experience and find that, in general, risk-taking behavior tends to increase. We 

explore these research questions within the context of trading in financial markets and are 

able to use a range of measures to assess the degree of risk taken by individuals (i.e. longer 

holding times, higher investment size and trading frequency). Our results hold across all these 

measures of risk-taking. 

Second, we examine the impact of an individual’s accumulated experience on their 

risk-related performance, measured in terms of the volatility of their returns and their risk-

adjusted returns (Sharpe ratios: Sharpe, 1998). It is generally acknowledged that higher 

returns are accompanied by higher risk (Fama and MacBeth, 1973; Glosten et al., 1993; 

Markowitz, 1952). Consequently, it is our contention that previous studies, by focusing on 

assessing performance simply in terms of returns, may have produced misleading conclusions 

concerning the degree to which individuals learn as a result of experience. Our results suggest 

that traders do not learn to improve risk-adjusted performance. Rather, whilst experienced 

traders make higher profits, they suffer higher volatility of returns and decreases in risk-

adjusted performance. 

Finally, we observe the dynamic interaction of the three elements: experience, risk-

taking behavior, and volatility of returns. We find that as traders gain experience, they 

increase the size of their investments and their trading frequency and also tend to hold 
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positions for longer. Our results also show that longer holding times and higher investment 

size lead to higher volatility of returns. This provides a reasonable explanation for that traders 

increase the volatility of returns when they gain in experience. It is worth mentioning that 

trading frequency is negatively related with the volatility of returns. The positive relationship 

between trading risk and the level of risk-taking behavior is often assumed to exist. Our 

results show that this should not be taken for granted.    

In sum, our study provides important insights into the degree to which an individual’s 

risk-taking behavior and their risk-adjusted performance changes as a result of the 

accumulated experience of a decision-making task.  

The remainder of the paper is structured as follows. In section 2, we discuss the 

literature that explores the degree to which individuals change their risk-related behavior and 

their decision performance in the light of experience. We describe the data and the 

methodology in section 3. In section 4, we present our results. We discuss the results in 

section 5 and conclude in section 6.  

3.2 LITERATURE AND HYPOTHESES  

3.2.1 Experience and Risk-taking Behavior  

There is growing evidence that an individual’s risk attitude may change as a result of 

their past experiences. For example, Thaler and Johnson (1990) document the house money 

effect, whereby prior gains encourage individuals to increase their risk-seeking behavior 

(confirmed in the context of trading by Liu et al., 2010). Other studies support the view that 

past experience influences subsequent risk-taking. For example, Kaustia and Knüpfer (2008) 

find that Finnish IPO investors with higher past returns were more likely to subscribe to the 
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next IPO than those with lower past returns. Similarly, Choi et al. (2009) show that 

individuals who have achieved higher returns or lower return variance from their 401(k) 

retirement funds, which are workplace savings plans allowing employees to decide the 

portion of their salary before taxes which are saved in a specified investment fund in a tax-

advantaged way,  in the past, tend to increase their rate of saving in this fund. In addition, 

Glaser and Weber (2009) found that those individual investors who made higher past returns, 

tend to increase the level of their trading activities, i.e., portfolio turnover and number of 

transactions, and take greater risk, (e.g., buying higher risk stock and holding a less 

diversified portfolio).  

As indicated above, previous research has demonstrated that the degree of risk an 

individual is prepared to take changes under different circumstances, e.g., via the house 

money effect. However, there is a dearth of research examining the effect of experience on 

risk-taking behavior. An exception is Chiang et al.’s (2011) finding that experienced IPO 

auctioneers take greater risk and bid aggressively. Consequently, we test the following 

hypotheses: As an individual gains experience of a decision-making task they increase their 

risk-taking, in terms of: how long they are prepared to expose themselves to uncertainty 

(holding time) (H1a), the size of the stake they are prepared to put at risk (H1b) and how 

frequently they are prepared to engage in this risk taking activity (H1c).  

3.2.2 The Effect of Experience on Performance 

Some studies show that experienced individuals demonstrate less behavioral bias. For 

example, List (2004) found that those with more experience were less prone to overvalue 

goods merely because of ownership (the ‘endowment effect’) and Dhar and Zhu (2006), Liu 
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et al. (2010) and Gloede and Menkhoff (2011) report that trading experience reduces the 

tendency to, respectively, sell winning investments and to hold onto losing investments (the 

‘disposition effect’), to evaluate the risk of a new event in isolation without taking other risks 

into account and to demonstrate overconfidence.   

Some studies report that greater trading experience is associated with higher 

investment returns (e.g., Feng and Seasholes, 2005; Seru et al., 2010; Nicolosi et al., 2009 and 

Linnainmaa, 2011). By contrast, Chiang et al. (2011) find that the returns of IPO investors 

decrease as they participate in more auctions. An important feature of the existing literature is 

that learning is measured by improvements in returns. However, the risk-return trade-off is a 

fundamental concept of decision-making in general and financial decision making in 

particular. For example, a  principle of modern portfolio theory is that individuals should seek 

to maximize returns while holding risk constant or to minimize the risk while holding returns 

constant (Markowitz, 1952; Sharpe, 1964). Consequently, a risk-adjusted measure of 

performance is widely used to compare investments (e.g., stocks vs. bonds). However, the 

current literature examining the degree to which experience helps to improve performance 

pays little attention to the risk perspective of performance.  

To fill this gap, we examine to what extent greater risk is taken by individuals as they 

gain in experience in a financially-based decision making task (displayed by greater volatility 

in their returns) and to what extent they improve their performance if the greater risk they 

assume is taken into consideration.  To achieve this, we test the following hypotheses: As an 

individual gains in experience of a financially-based decision making task they achieve 

higher returns (H2a), their returns display greater volatility (H2b) and they achieve higher 

risk-adjusted returns (H2c).  
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3.2.3 The Relationship between Risk-taking Behavior and Returns Volatility  

As indicated in 2.2, when testing H2b, we intend to use the volatility of an individual’s 

financial returns as a proxy for the degree of aggression displayed in their risk-taking 

behavior. This assumption is often made (e.g., Chiang et al., 2011; Y.-J. Liu et al., 2010). 

However, there is little empirical evidence supporting the assumption, so we test the 

following hypotheses: The volatility of an individual’s returns increases when the time they 

expose themselves to uncertainty increases (H3a), the size of the stake they are prepared to 

put at risk  increases (H3b), and when they engage in the risk-taking activity more frequently 

(H3c).  

 

3.3  METHODOLOGY 

3.3.1 Data 

The data used in this study was collected from a large spread-trading broker based in the U.K. 

Spread trading has developed rapidly in the U.K. since the 1990s, due to its relatively low 

transaction costs, the ease of access it provides to retail investors to international markets and 

because profits which accrue are tax free (Brady and Ramyar, 2006; Paton and Williams, 

2005). Traders in spread-trading markets can decide to either buy or sell the market (e.g., a 

financial index). The profit and loss of each trade depend on the amount invested and how 

many points the index rises or falls in the direction that the trader predicted. For example, if a 

trader believes that the FTSE 100 will rise, they might ‘buy the index’ at, say, £50 per point. 

If the FTSE 100 rises 20 points and the trade is closed, the trader then makes £50 x 20 = 
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£1,000 profit. If the FTSE 100 falls 10 points and the trade is closed, the trader’s loss is £50 x 

10 = £500. Alternatively, traders can ‘sell’ the market, in which case profits/losses are made if 

the market falls/rises. 

Spread trading data offers a number of advantages over traditional stock market data 

for the purpose of determining the degree and manner in which individuals alter their risk-

taking behavior as they gain experience. In particular, spread trading is short-term trading, 

and on average spread traders make 3 or 4 round trades (open and close) within one hour 

(Gulthawatvichai et al., 2013). Consequently, all returns are realized and no estimation of 

gains is required. By contrast, shares purchased from conventional stock markets are normally 

held for a longer term with dividends paid in the future which often requires researchers to 

estimate the return of the stock purchased as they are not definite until sold. This process may 

lead to bias. For example, Seru et al. (2010) and Nicolosi et al. (2009) measure stock returns 

over 20- and 30-day periods following the purchase, respectively, and Barber and Odean 

(2002) assume that all trades occur on the last day of the month in estimating monthly returns. 

However, all trades in our dataset are closed, so the returns are realized and definite. Using 

such short-term trading data also reduces the possibility that any observed change in risk-

taking behavior arises from changes in an individual’s personal circumstances between trades.  

The data contains a total of 6,287,477 trades made by 27,868 individual spread 

traders [24,554 (88%) and 3,314 (12%) are male and female traders, respectively] between 

October 2003 and March 2013. Each record in the database contains the following 

information relating to a closed trade: an individual’s identification number, the time stamp, 

and price when each of the trades was opened and closed, whether the trade was to buy or sell 

the market and the amount invested. Variables, such as the measures of experience, risk and 

Sharpe ratios are calculated on a trade by trade basis. 
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Table XII summarizes the descriptive statistics relating to the data. The mean number 

of trades placed by a trader (300.4) is significantly higher than the third quartile (190), 

suggesting that a relatively small number of traders place a relatively high number of trades. 

The distribution of the time between a trader’s first and last trade in the dataset is also right-

skewed (median: 185 mean: 454.7, third quartile: 658), suggesting that some traders continue 

to trade much longer than others. The results also suggest that only around 25% of traders 

make profits and half of the trades being closed within 11.7 minutes of their opening, and 

over 75% of all trades being closed within 1 hour, indicating the generally short–term nature 

of spread-trading. Consequently, to avoid the tendency to draw overly-optimistic conclusions 

from the ‘survivors’ who place more trades or stay in the market longer than others, there is a 

need to control for survivorship bias (the detailed method will be discussed later).   

Table XII Spread Trading Data Summary 

 Mean 1st Q Median 3rd Q 

Panel A: Trader (27,868)     

Age 41 31 40 51 

Total number of trades  226.7 10 44 180 

Actively trading period (days) 436.7 23 179 637.2 

Total Profit1 -67.6 -65 -22 0 

Total investment size2 1323 16 83 433 

Mean number weekly trades 763 1 3.5 9.3 

Panel B: Trade (6,287,477)     
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Holding time(minutes) 356.2 3.2 12.2 54.3 

Investment size 4.5 1 1 4 

Profit -1.4 -7 1 6 

1A trader’s total profit is the sum of the profit of all trades and is defined as ∑𝑅𝑖𝑘 ∗ 𝑆𝑇𝑖𝑘 , where 

𝑅𝑖𝑘  is the number of  points won or lost and 𝑆𝑇𝑖𝑘  is the size of the investment of the 𝑖𝑡ℎ trade of 

trader 𝑘.  

2A trader’s total investment size is the sum of the investment size of all trades and is defined as 

∑𝑆𝑇𝑖𝑘  for trader 𝑘. 

3.3.2 Variables 

Experience 

In order to make a profit, spread traders predict the market trend after certain events, such as 

breaking news and unexpected financial announcements. Spread traders need to observe and 

infer the relationship between the sources of market information and the market fluctuation. 

Spread traders may learn by actively participating the markets and observing the outcomes of 

their trades. If this is the case, the accumulative trade number is a good proxy variable for the 

experience. Spread traders may also gain experience by observing the events and recognizing 

the patterns of market scenarios. In this case, the length of time spread traders have stayed in 

markets represents the experience they have accumulated. Both trading time and trade number 

are used as the proxy variables of experience in the literature (Chiang et al., 2011; Feng and 

Seasholes, 2005; Nicolosi et al., 2009; Seru et al., 2010). However, the trading time and trade 

number are linearly correlated (r = 0.44) in our spread trading data. Therefore, if we include 
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both trade number and trading time in our regression models, we may suffer multicollinearity 

problem which can lead to bias in estimating and interpreting coefficients of the experience 

measurements. Consequently, it is appropriate to develop our models using   trading time and 

trade number, separately. Since their respective results are similar, we have chosen to present 

the results of models using trading time in the main content of the paper and include that 

using trade number in the Appendix.    

In defining the experience of a trader, we measure the length of time they have traded 

with the spread trading company. Specifically, the experience of trader k associated with 

their 𝑖𝑡ℎ trade (𝛦𝑖𝑘) is defined as follows (Seru et al., 2010):  

𝐸𝑖𝑘 = 𝑡𝑖𝑘 − 𝑡1𝑘, 𝑘 ∈ 𝑁+; 𝑖 ∈ 𝑁+ 

 

( 1 ) 

where 𝑡1𝑘 and 𝑡𝑖𝑘  represent the point of time when trader 𝑘  opened their first 

and 𝑖𝑡ℎtrade, respectively. 𝑁+is a set of non-negative integers. Chiang et al. (2011) take a 

logarithmic transform of the experience variable, while Feng and Seasholes (2005) and 

Nicolosi et al. (2009) use the linear term. To decide whether the logarithmic transform 

should be used, we use the Cox test to compare the two sets of the regression models 

which are used to test our hypotheses. We use the logarithmic term in the first set of 

regression models and the linear term in the second one. The aim of the Cox test is to 

compare two non-nested regression models. The basic idea behind the Cox test is that, if 

the first regression model has a better set of independent variables, there should be no 

explanatory value from the fit of the independent variables from the second regression 

model to the fitted values from the first regression model. On the contrary, if we find 

explanatory value from it, the first regression model does not have a better set of 
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independent variables. Therefore, the Cox test is to regress the fitted values of the first 

regression model on the second regression model, and vice versa. The results show that 

the regression models with the logarithmic term are slightly better than those with the 

linear term. The reason might be that the logarithmic transform can capture the human 

learning characteristic of learning faster in early periods and then slowing down in later 

periods. Hence, we take a logarithmic transform of the experience variable in our 

regression models.  

Return  

We define the return, 𝑅𝑖𝑘 , as the number of points won or lost on trade i of trader 𝑘.  

Volatility of returns  

We measure volatility by the variance of returns (defined in terms of points won/lost on 

a particular trade). Specifically, the overall risk run to the point of closing the 𝑖𝑡ℎ trade 

for individual 𝑘, 𝑉𝑖𝑘, is defined as the variance of returns from their first trade up to 

their 𝑖𝑡ℎ trade:  

𝑉𝑖𝑘 = 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑅𝑗𝑘), 𝑗 ∈ [1, 𝑖]. ( 2 ) 

Sharpe ratio  

The Sharpe ratio (Sharpe, 1998) is commonly used to measure a trader’s risk-adjusted 

performance. The accumulated Sharpe ratio 𝑆𝑖𝑘  of trader 𝑘 from their first trade up to 

the point of closing their 𝑖𝑡ℎ trade is calculated as follows:   

𝑆𝑖𝑘 =
𝑚𝑒𝑎𝑛(𝑅𝑗𝑘)

√𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑅𝑗𝑘)
, 𝑗 ∈ [1, 𝑖]. ( 3 ) 

 

Holding time 
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Since spread-trading markets are highly volatile (Chordia et al., 2001), it is believed that 

longer holding times are associated with higher risks as the trader exposes themselves 

to uncertainty for longer. The holding time associated with the 𝑖𝑡ℎ trade of trader 𝑘, 𝐻𝑖𝑘, 

is defined as the number of seconds between the opening and closing of the 𝑖𝑡ℎ trade:  

𝐻𝑖𝑘 = 𝑡′𝑖𝑘 − 𝑡𝑖𝑘, ( 9 ) 

where 𝑡𝑖𝑘 and   𝑡′𝑖𝑘  represent the times when trader 𝑘 opens and closes their 𝑖𝑡ℎ trade, 

respectively. 

Investment size 

Investment size reveals an important aspect of risk-taking behavior (Fehr-Duda et al., 

2010), and higher investment size is often regarded as taking higher risk (Liu et al., 2010). 

We denote the size of the investment in the 𝑖𝑡ℎ trade by trader 𝑘 by 𝑆𝑇𝑖𝑘. This may be a 

‘long’ or ‘short’ trade.  

Trading frequency   

Similar to Seru et al. (2010), who examine the number of trades during a pre-defined 

period, we measure trading frequency, 𝑇𝐹𝑖𝑘, as the number of trades in the seven-day 

period prior to trader 𝑘 made the 𝑖𝑡ℎ trade  𝑡𝑖𝑘. 

Control variables 

Demographic variables  

Since risk-taking has been found to be greater amongst the young (e.g., Greenwood and 

Nagel, 2009), we control for a trader’s age 𝐴𝑘. We also control for gender 𝐺𝑘 , which take 
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the value 1 for male, and 0 otherwise, because males are generally regarded as taking 

more risk (Bernasek and Shwiff, 2001; Jianakoplos and Bernasek, 1998).  

Market volatility variable 

Market volatility is controlled as a significant pricing factor to account for the effect on 

investment performance and behavior (Adrian and Rosenberg, 2008). Our data contains 

detailed individual trading records from four markets: FTSE 100, DAX 30, Euro-dollar 

and sterling-dollar exchange rates. We measure their daily market volatility by 

calculating the variance of the index values at one minute interval. That is, for a given 

market and a given date, we collect the index values minute by minute and calculate 

their variance for each trading day. All trades placed in the given market on the given 

date are associated with the daily market volatility. To make the values comparable 

between markets, we standardize the daily volatility MV for each market as follows: 

𝑀𝑉 =
𝑋−𝑚𝑒𝑎𝑛(𝑋)

√𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑋)
, ( 10 ) 

 

where X is the raw value of market volatility. 

The corresponding market volatility of the 𝑖𝑡ℎ trade of trader 𝑘 is denoted as 𝑀𝑉𝑖𝑘 . 

Disposition Effect 

We control for disposition effect (DE), which is a type of behavioral bias and is the tendency 

for a trader to realize gains faster than losses (Dhar and Zhu, 2006; Odean, 1998b). This 

affects investment behavior and performance (Seru et al., 2010). Calculating a reliable 

measure for the DE requires a sufficiently large number of trades. Previous studies, using 

traditional stock market data where investors may hold positions over several months, usually 
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measure an investor’s DE over a long period, such as a year  (e.g., Seru et al., 2010). However, 

due to the much shorter average holding time of most trades placed in spread trading markets, 

we calculate the DE on a monthly basis. In determining the DE, Odean (1998b) and Dhar and 

Zhu (2006) calculate ‘realized gains’ and ‘realized losses’ and ‘paper gains’ and ‘paper losses’ 

for an investor at the time a stock was sold. The realized gain for a given investor increases by 

one if a sale is profitable, otherwise ‘realized loss’ increases by one. Other stocks remaining 

in the investor’s portfolio at the time of the sale contribute to the paper gain or paper loss. For 

any stock with a prevailing market price exceeding/less than the price at which the stock was 

bought, the paper gains/losses increase by one.  Odean (1998b) then calculate the proportion 

of gains realized (PGR) and proportion of losses realized (PLR) in over the period (say 1 

year), as follows: 

𝑃𝐺𝑅 = 
𝑅𝑒𝑎𝑙𝑖𝑧𝑒𝑑 𝐺𝑎𝑖𝑛

𝑅𝑒𝑎𝑙𝑖𝑧𝑒𝑑 𝐺𝑎𝑖𝑛 + 𝑃𝑎𝑝𝑒𝑟 𝐺𝑎𝑖𝑛
 

 

( 11 ) 

𝑃𝐿𝑅 = 
𝑅𝑒𝑎𝑙𝑖𝑧𝑒𝑑 𝐿𝑜𝑠𝑠

𝑅𝑒𝑎𝑙𝑖𝑧𝑒𝑑 𝐿𝑜𝑠𝑠 + 𝑃𝑎𝑝𝑒𝑟 𝐿𝑜𝑠𝑠
. 

( 12 ) 

 

In this study, we calculate realized gain and realized loss in the same way as Odean (1998b) 

and Dhar and Zhu (2006) (i.e., the count for realized gain/loss increases by one when a trade 

is closed in profit/loss). However, we need to modify the method of counting paper 

gains/losses as spread traders often have only one position opened and the portfolio approach 

adopted by Odean (1998a) concept is not appropriate. We use Fraser-Mackenzie et al. 

(2013)’s method to count the paper gains/losses associated with a particular trade. Since the 

holding time of a trade is generally short (the median is 11.7 minutes), we count the number 
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of minutes a trade is in profit/loss as the paper gains/losses associated with that trade. That is, 

we assume that spread traders need to make a series of hold/close decisions every minute after 

a position is opened. We add one to paper gain/loss if a position in profit/loss is held for one 

minute. We then sum up the realized gain/loss and paper gain/loss and calculate their 

respective PGR and PLR on a monthly basis. Monthly DE, 𝐷𝑖𝑘, associated with the 𝑖𝑡ℎ trade 

of trader 𝑘 is then defined as the difference between PGR and PLR:  

𝐷𝐸 =  𝑃𝐺𝑅 − 𝑃𝐿𝑅.  ( 13 ) 

A positive DE suggests a greater tendency to realize gains than losses. 

Accumulated Profit (Account Balance) 

The prospect theory predicts that individuals are risk-seeking in loss and risk-averse in profit 

(Kahneman and Tversky, 1979). Since the reference point used to determine whether the 

current position is in profit or in loss is usually the initially account balance, which is 0 in our 

data, we add the accumulated profit (account balance) to the regression models to control the 

effect of accumulated profit (or loss) on risk-taking behavior. To control the effect of 

accumulated profit (or loss) on risk-taking behavior, we add the accumulated profit to the 

regression models. The accumulated profit is calculated from the first trade each trader made 

with the spread trading company since individuals usually use the initial balance as a 

reference point in calculating profit/loss. Consequently, we include the accumulated profit (or 

loss) of trader k at the point of closing their 𝑖 − 1𝑡ℎ trade, 𝐴𝑃𝑖𝑘 , in the regressions, as follows: 

𝐴𝑃𝑖𝑘 = ∑𝑅𝑗𝑘 ∗ 𝑆𝑇𝑗𝑘 , 𝑗 ∈ [1, 𝑖 − 1], ( 14 ) 

where 𝑅𝑗𝑘 and 𝑆𝑇𝑗𝑘   are the return and investment size of the 𝑗𝑡ℎ trade of trader k . 

Recent Profit 
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Recent returns have been shown to influence risk-taking behavior (Choi et al., 2009; Glaser 

and Weber, 2009; Kaustia and Knüpfer, 2008; Liu et al., 2010; Thaler and Johnson, 1990). 

For example, the house effect suggests that individuals tend to take higher risks after gaining 

profit as prior gains might cushion the potential loss (Thaler and Johnson, 1990). 

Consequently, to control for this, we include the profit of the i-1-th trade of trader k in the 

regression models, denoted 𝐿𝑇𝑃𝑖𝑘: 

𝐿𝑇𝑃𝑖𝑘 = 𝑅𝑖−1 𝑘 ∗ 𝑆𝑇𝑖−1 𝑘, 𝑖 > 1. (15) 

Similarly, we control for accumulated profit of all trades made by trader k in the week prior to 

their 𝑖𝑡ℎ trade (𝐿𝑊𝑃𝑖𝑘).  

3.3.3 Models 

3.3.3.1 Linear Mixed Model  

The spread trading data is essentially panel data, as each trader can place multiple trades. A 

traditional pooled ordinary least squares (OLS) regression model is not appropriate for the 

analysis of the panel data. For example, if the traders who are able to learn from their 

experience place much more trades than others, the estimation will be influenced by the trades 

of these traders. This will lead to biased results which over-estimate the learning ability of the 

traders. To account for trader heterogeneity, linear mixed models (LMMs) are employed to 

control the unobserved trader-specific characteristics (see Seru et al. 2010).   

 Let Y  represent the dependent variables (i.e., returns, risk and Sharpe ratios), 𝐸  a 

trader’s experience and 𝐶 the control variables discussed in the previous section. If  𝑍 denotes 

the trade level covariates, and we use 
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𝑍 =  [
𝐸
𝐶
],  (16) 

We develop our models in two stages (Cnaan et al., 1997). We let 𝑘 = 1,…N index the 

individual traders. The first stage (trade level) model is of the following form: 

 

yik = βkzik + eik,     k = 1,…N (17) 

where yik represents a dependent variable (i.e., returns, risk or Sharpe ratios) of the 𝑖𝑡ℎtrade 

of trader 𝑘, zik is the covariate vector of the 𝑖𝑡ℎ trade of trader 𝑘, eik is zero mean error term 

and βk are the regression coefficients for trader 𝑘, and N is the number of traders in our data.  

In the second stage (trader level), the βk are regarded as dependent variables, and the 

mean of the βk  depends on trader level characteristics. Let aE,k
′  and  aC,k

′  denote the vector of 

trader level characteristics affecting the coefficients of experience ( 𝐸 ) and the control 

variables (𝐶), respectively. We assume that both slope and intercepts of traders can vary, so 

we use 

aE,k
′ = (1, k), (18) 

where k is used as the unique ID for each trader. The regression model we estimate is given 

by: 

βk = Akα + bk, (19) 

where 

Ai = [
aE,k
′ 0

0 aC,k
′ ] 

α′ = (αE
′ , αC

′ ). 

and αE
′  and αC

′  are regression parameter vectors. Combining equation (17) and (19) we have  
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Yk = Zkβk + ek =  ZkAkα + Zkbk + ek (20) 

There are two types of regression parameters in equation (20). The α’s are ‘fixed effects’ and 

help to test our hypotheses. The bk’s, are ‘random effects’ (independent random variable with 

zero mean) and are often considered as error terms. We use the method proposed by Pinheiro 

et al. (2007) to estimate the regression coefficients.  

3.3.3.2 Fixed Effect Regression Model  

In order to test our first set of hypotheses, we estimate the regression model represented 

by Eq.12 for different dependent variables, separately. Specifically, we test our hypothesis 

that as traders gain in experience they increase their risk-taking, in terms of holding time (H1a) 

using the following regression models: 

𝐻𝑖𝑘 =  𝛼 +  𝛽𝐸𝑖𝑘 + 𝛽𝑆𝑇𝑆𝑇𝑖𝑘 + 𝛽𝑇𝐹𝑇𝐹𝑖𝑘 + 𝛽𝐴𝐴𝑘 + 𝛽𝐺𝐺𝑘 + 𝛽𝑀𝑉𝑀𝑉𝑖𝑘 + 𝛽𝐷𝐷𝑖𝑘

+ 𝛽𝐴𝑃𝐴𝑃𝑖𝑘 + 𝛽𝐿𝑇𝑃𝐿𝑇𝑃𝑖𝑘 + 𝛽𝐿𝑊𝑃𝐿𝑊𝑃𝑖𝑘 + 휀𝑖𝑘 , 

(21) 

where for trader 𝑘 , 𝐻𝑖𝑘  is the holding time of their  𝑖𝑡ℎ  trade, 𝐸𝑖𝑘  is the measure of their 

experience at the opening of the 𝑖𝑡ℎ  trade, 𝐴𝑘  is their age, 𝐺𝑘  is their gender, 𝑀𝑉𝑖𝑘 is the 

market volatility, 𝐷𝑖𝑘 is an estimate of the DE, 𝐴𝑃𝑖𝑘 is the accumulated profit  up to the time 

of opening the ith trade, 𝐿𝑇𝑃𝑖𝑘 is the profit/loss secured by trader k on their i-1th trade and 

𝐿𝑊𝑃𝑖𝑘 is the profit/loss secured by trader k during the week prior to opening trade i. We use 

휀𝑖𝑘 to denote the regression error term, and 𝛼, 𝛽, 𝛽𝐻 , 𝛽𝑆𝑇 , 𝛽𝑇𝐹 , 𝛽𝐴 , 𝛽𝐺 , 𝛽𝑀𝑉  and 𝛽𝐷  are 

determined by parameter estimation. We test the hypothesis H1b and H1c by changing the 

dependent variable to the investment size (𝑆𝑇𝑖𝑘) and the trading frequency (𝑇𝐹𝑖𝑘). 

We then test our second set of hypotheses that as traders gain in experience they achieve 

higher returns (H2a), their returns display greater volatility (H2b) and they  achieve higher 
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risk-adjusted returns (H2c) as measured by the Sharpe ratio (Sharpe, 1966), by estimating the 

following regression models: 

𝑅𝑖𝑘 =  𝛼 +  𝛽𝐸𝑖𝑘 + 𝛽𝐻𝐻𝑖𝑘 + 𝛽𝑆𝑇𝑆𝑇𝑖𝑘 + 𝛽𝑇𝐹𝑇𝐹𝑖𝑘 + 𝛽𝐴𝐴𝑘 + 𝛽𝐺𝐺𝑘 + 𝛽𝑀𝑉𝑀𝑉𝑖𝑘

+ 𝛽𝐷𝐷𝑖𝑘 + 휀𝑖𝑘 , 

(22)  

where for trader 𝑘, 𝑅𝑖𝑘 is the return and 𝑉𝑖𝑘 is the variance of returns, associated with their 𝑖𝑡ℎ 

trade and 𝑆𝑖𝑘 is their accumulated Sharpe ratio up to the point of closing the 𝑖𝑡ℎ trade. We test 

the hypothesis H2b and H2c by changing the dependent variable to the variance of returns 

(𝑉𝑖𝑘) and the Sharpe ratio (𝑆𝑖𝑘). 

We finally test our third set of hypotheses that the volatility of an individual’s returns 

increases when the time they expose themselves to uncertainty increases (H3a), the size of the 

stake they are prepared to put at risk  increases (H3b) and when the y engage in the risk 

taking activity more frequently (H3c) using the following regression model:  

𝑉𝑖𝑘
𝑝

=  𝛼 + 𝛽𝐻𝐻𝑖𝑘
𝑝

+ 𝛽𝑆𝑇𝑆𝑇𝑖𝑘
𝑝

+ 𝛽𝑇𝐹𝑇𝐹𝑖𝑘
𝑝

+ 𝛽𝐴𝐴𝑘 + 𝛽𝐺𝐺𝑘 + 𝛽𝑀𝑉𝑀𝑉𝑖𝑘 + 𝛽𝐷𝐷𝑖𝑘

+ 휀𝑖𝑘 , 

(23) 

where for trader 𝑘, 𝑉𝑖𝑘
𝑝

 is the variance of returns, accumulated from their trades placed during 

the period of p days before their 𝑖𝑡ℎ  trade, 𝐸𝑖𝑘  is the measure of their experience at the 

opening of the 𝑖𝑡ℎ trade, 𝐻𝑖𝑘
𝑝

 , 𝑆𝑇𝑖𝑘
𝑝

 and 𝑇𝐹𝑖𝑘
𝑝

 are the total holding time, total investment size 

and total trade number during the period of p days before their 𝑖𝑡ℎ trade. We select multiple 

values of p, such as 1, 7, 14 and 30, to take the short-term trading characteristic of spread 

trading into account.  

3.3.4 Controlling Biases  

There are two potential sources of bias which could affect our analysis. The first one is 

selection bias which results from the sample selection approach failing to ensure the 
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representativeness of the obtained sample. In particular, the first trade of all traders is 

excluded in our regression models containing the volatility of returns and the Sharpe values. 

The reason is that we need at least two trades to calculate the volatility, and we only have one 

trade when we calculate the performance measures for the first trade. Therefore, we cannot 

calculate the volatility of returns for the first trade of all traders, and these are treated as 

missing values. Similarly, we cannot calculate the Sharpe ratio for a trader’s first trade since 

we need the volatility of returns to calculate the Sharpe ratios. Consequently, we exclude 

certain trades and form a non-randomly selected sub-sample from all the trades, which may 

introduce selection bias to our results. The second one is survivorship bias which leads to 

over-optimistic results as the traders who fail to survive may be excluded from the analysis. 

Specifically, the traders who are able to learn to improve their performance through 

experience may survive longer in the market and dominate the results of the analysis. 

3.3.4.1 Selection bias  

We follow Seru et al.’s (2010) approach and use the Heckman two-stage method to account 

for the potential selection bias (Heckman, 1976). The selection bias arise as we only have 

limited information from a non-random sub-sample, and the Heckman two-stage method is 

widely used to correct for non-randomly selected samples (Toomet and Henningsen, 2008). 

The key insight of this method is that this bias correction problem can be approached as an 

omitted variables problem. Hence, the problem of sample selection bias can be solved by 

estimating the omitted variable. 

The common sample selection problem is modeled as follows: the observation 

equation is given by: 
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yi  =  βxi
′ + εi (23) 

where yi is the dependent variable, xi
′ are the regressors, β is the regression coefficient and εi 

is a normally distributed error term. However, some of the yiobservations (Sharp ratios in our 

case) are missing, so a direct estimation with ordinary linear regression will be biased. 

Heckman (1976)‘s solution consists of two stages. All observations are included in the first 

stage, and only the observations with yi not missing are selected to the second stage. The first 

stage regression is used to predict selection:   

zi
∗ = rwi

′ + ui, (24) 

where zi
∗ is 1 if the 𝑖thobservation is selected, otherwise 0, wi

′  are the regressors, r is the 

regression coefficient and ui  is an error term. The error terms are assumed to follow a 

bivariate normal distribution:    

(ε𝑖
u𝑖

) ~ N((0
0
), (

1 ρ

ρ σ2)) . 

The observed dependence between yi and zi
∗ can be written as: 

𝐸(yi|yi 𝑖𝑠 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑) = 𝐸(yi|zi
∗ > 0). 

According to Toomet and Henningsen (2008) the observation equation can be re-written as:  

yi  =  xi
′β + εi = xi

′β +  E[εi|zi
∗ > 0] + ηi = xi

′β +  E[εi|ui > −wi
′r ] + ηi

≡ xi
′β +  ρσλ(wi

′r)  + ηi, 

(25) 

whereλ(α) =  φ(α)/Φ(α)is commonly termed the inverse Mill’s ratio, φ(α) and Φ(α) are 

standard normal density and cumulative distribution functions, and  η  is an independent 

disturbance term. ρσ is unknown and can be estimated by the ordinary least-squares method 

(OLS). The selection bias can be adjusted by including the inverse Mill’s ratio in the second 

stage (Heckman, 1976).    
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We develop our model in a setting similar to Seru et al. (2010): a trade is selected if 

this is not a trader’s first trade, and the Sharpe ratio is calculated and assigned to that trade. 

The selection condition comes from the fact that we cannot calculate the Sharpe ratio if only 

one trade is placed. In the first stage, the independent variables are  

w′ = (E, TradeNO,APr), (26) 

where E is the experience measure, 𝑇𝑟𝑎𝑑𝑒𝑁𝑂 is the number of trades which have been placed 

and APr is the accumulated profit of trader k at the time trade i is placed.  

We apply the Heckman two-stage method with those regression models having volatility or 

Sharpe ratios as dependent variables to control for the potential selection bias introduced by 

our measures of volatility and the Sharpe ratio.  

3.3.4.2 Traders Surviving Shorter/Longer 

The second potential bias may arise because traders who learn to improve their 

performance through experience may survive longer in the market and place more 

trades than those who do not learn. Nicolosi et al. (2009) tackle this so called 

‘survivorship bias’ by only examining the individuals who trade in both the first and the 

second half of the period covered by their data. However, using this approach, traders 

with short active periods may be selected (e.g., a trader is selected if they start trading 

from the end of the first half period and stops at the beginning of the second half period). 

To avoid this scenario and to account for trader-specific characteristics, we split all 

traders into two groups: those stay active in the spread-trading market for shorter or 

longer than or equal to the median of a trader’s active period in our data (i.e., 179 days). 

We define a trader’s active period as the time from their first trade to their last trade in 
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the dataset. We then run LMMs with dependent variables of returns, volatility of returns 

and Sharpe ratios (see model (17)) for both groups of traders, separately.  

3.3.4.3 Sensitivity Analysis  

In calculating the variables of trading frequency, volatility and Sharpe ratio, we need to 

specify a fixed time period. To examine the robustness of our results, we calculate those 

variables with different time periods and check if the original conclusion still holds. In 

particular, when controlling for trading frequency, in addition to the seven-day period 

employed in the main analysis, we also use a 14 and 30 day period. Furthermore, we 

calculate the volatility of returns and Sharpe ratio achieved by trader k up to the time of 

trade i from their first trade to the trade i. We also use periods of  60, 90, 120 and 180 

days to check the robustness of our results.  

3.4 RESULTS 

3.4.1 The Effect of Experience on Risk-taking Behavior 

To examine the impact of experience on risk-taking, we estimate the LMMs summarized by 

equation (21). The results are presented in   
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Table XIII and the coefficients for all three measures of risk-taking, holding time, investment 

size and trading frequency are positive and significant (i.e., 1004.2, p < 0.001; 0.0412, p < 

0.001; 6.591, p < 0.001, respectively). These results provide support for H1a, H1b and H1c, 

namely, that their risk-taking behavior increases as traders’ experience increases. Chiang et al. 

(2011) found that individuals tend to trade in a more aggressive fashion when they gain 

experience and our results support this conclusion.  

 To examine the robustness of our results, we calculate the trading frequency using 

different time intervals, (i.e., 14 and 30 days in addition to the original interval of 7 days). 

The results are presented in   
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Table XIV. These results confirm that trading frequency tends to increase as a trader’s 

experience increases.  

  



Chapter 3 

101 

 

Table XIII: Risk-taking Behavior Related to Experience 

Risk taking measure: Holding time Investment size Trading frequency 

Intercept 22976  *** 4.2137  *** 17.319  *** 

Experience  2559.1  *** 0.0236  *** 0.8673  *** 

Controls    

Holding Time  -0.0000003  *** 

 -0.000002  *** 

Investment size -204.4  ***  0.1823  *** 

Trading Frequency -33.473  *** 0.0042  ***  

Accumulated Profit 0.1795  *** 0.00009  *** 0.0002  *** 

Last Trade Profit -11.555  *** 0.000004   -0.002  *** 

Last Week Profit -0.3138  *** 0.0002  *** 0.0011  *** 

Age 14.493   -0.0188  *** -0.0725  *** 

Gender 2570.9   0.5118  ** -2.1145  *** 

Market Volatility -0.2911  *** -0.00002  *** 0.0009  *** 

Disposition 0.0384  *** -0.000002  *** -0.00003  *** 

This table presents results for regressions of the form 

𝐻𝑖𝑘 =  𝛼 +  𝛽𝐸𝑖𝑘 + 𝛽𝑆𝑇𝑆𝑇𝑖𝑘 + 𝛽𝑇𝐹𝑇𝐹𝑖𝑘 + 𝛽𝐴𝐴𝑘 + 𝛽𝐺𝐺𝑘 + 𝛽𝑀𝑉𝑀𝑉𝑖𝑘 + 𝛽𝐷𝐷𝑖𝑘 + 𝛽𝐴𝑃𝐴𝑃𝑖𝑘

+ 𝛽𝐿𝑇𝑃𝐿𝑇𝑃𝑖𝑘 + 𝛽𝐿𝑊𝑃𝐿𝑊𝑃𝑖𝑘 + 휀𝑖𝑘, 
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where for trader 𝑘, 𝐻𝑖𝑘  is the holding time of their𝑖𝑡ℎ trade, 𝑆𝑇𝑖𝑘  is the investment size of their 𝑖𝑡ℎ 

trade and 𝑇𝐹𝑖𝑘  is the trading frequency of the 𝑖𝑡ℎ trade, 𝐸𝑖𝑘  is the measure of their experience at 

the opening of the 𝑖𝑡ℎ trade, 𝐴𝑘 is the age, 𝐺𝑘  is the gender, 𝑀𝑉𝑖𝑘is the market volatility, 𝐷𝑖𝑘  is the 

estimate of disposition effect, 𝐴𝑃𝑖𝑘  is the accumulated profit, 𝐿𝑇𝑃𝑖𝑘  is the last trade profit and 

𝐿𝑊𝑃𝑖𝑘  is the last week profit. We use 휀𝑖𝑘to denote the regression error term, and 𝛼, 𝛽, 𝛽𝐻 , 𝛽𝑆𝑇 , 

𝛽𝑇𝐹 , 𝛽𝐴, 𝛽𝐺 , 𝛽𝑀𝑉  and 𝛽𝐷 are determined by parameter estimation. Data employed are for the 

period 2003 to 2013. ***, ** and * denote significance at 0.1%, 1% and 5% levels, respectively. 
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Table XIV: Trading Frequency Related to Experience – Sensitivity Analysis 

 Trading 

Frequency  

(14 days) 

Trading Frequency 

(30 days) 

Intercept 19.984  ***  10.187 ***  

Experience  3.3562  ***  9.3768 ***  

Controls   

Holding Time -0.000003  ***  -0.000005 ***  

Investment size 0.2901  ***  0.3796 ***  

Accumulated Profit 0.0004  *** 
0.0008 *** 

Last Trade Profit -0.0022  ***  -0.0020 ***  

Last Week Profit 0.001  ***  0.0003 ***  

Age -0.1021  *** -0.1587 ***  

Gender -4.1491  *** -8.2532 ***  

Market Volatility 0.0013  *** 
0.0016 ***  

Disposition -0.00004  *** 
-0.000002 ** 

This table presents results for regressions of the form  

𝑇𝐹𝑖𝑘 =  𝛼 +  𝛽𝐸𝑖𝑘 + 𝛽𝐻𝐻𝑖𝑘 + 𝛽𝑆𝑇𝑆𝑇𝑖𝑘 + 𝛽𝐴𝐴𝑘 + 𝛽𝐺𝐺𝑘 + 𝛽𝑀𝑉𝑀𝑉𝑖𝑘 + 𝛽𝐷𝐷𝑖𝑘 + 𝛽𝐴𝑃𝐴𝑃𝑖𝑘

+ 𝛽𝐿𝑇𝑃𝐿𝑇𝑃𝑖𝑘 + 𝛽𝐿𝑊𝑃𝐿𝑊𝑃𝑖𝑘 + 휀𝑖𝑘, 

 

where for trader 𝑘, 𝑇𝐹𝑖𝑘  is the trading frequency of the 𝑖𝑡ℎ trade in a period of 14 and 30 days, 𝐻𝑖𝑘  

is the holding time of their𝑖𝑡ℎ trade, 𝑆𝑇𝑖𝑘  is the investment size of their 𝑖𝑡ℎ trade, 𝐸𝑖𝑘  is the 
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measure of their experience at the opening of the 𝑖𝑡ℎ trade, 𝐴𝑘 is the age, 𝐺𝑘  is the gender, 𝑀𝑉𝑖𝑘is 

the market volatility, 𝐷𝑖𝑘  is the estimate of disposition effect, 𝐴𝑃𝑖𝑘  is the accumulated profit, 𝐿𝑇𝑃𝑖𝑘  

is the last trade profit and 𝐿𝑊𝑃𝑖𝑘  is the last week profit. We use 휀𝑖𝑘to denote the regression error 

term, and 𝛼, 𝛽, 𝛽𝐻 , 𝛽𝑆𝑇 ,  𝛽𝐴, 𝛽𝐺 , 𝛽𝑀𝑉  and 𝛽𝐷 are determined by parameter estimation. Data are 

from the period 2003 to 2013. ***, ** and * denote significance at 0.1%, 1% and 5% levels, 

respectively.  

3.4.1.1 Controlling Survival Bias 

To account for potential survival bias, we estimate the LMMs using equation (21) for the 

trades of those that have active trading periods (a) shorter and (b) greater than (or equal) to 

179 days. The results are presented in Table XV. For those traders with shorter active trading 

periods, the three risk-taking behaviors are again positively related with experience (16393, p 

< 0.001; 3.9138, p < 0.001; 6.591, p < 0.001). We also find that traders with longer active 

trading periods also increase their risk-taking measured in terms of holding time (2688.4, p < 

0.001) and investment size  (0.0215, p < 0.001) as they gain in experience. However, for this 

group, their trading frequency decreases with experience (-0.1995, p < 0.001).  

Overall, these results largely support our conjecture that traders increase risk-taking 

behavior as they gain in experience. However, traders with longer active trading periods 

appear to reduce their trading frequency.  
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Table XV Risk-taking Behavior Related to Experience – Survivorship  Analysis 

  Surviving Shorter Surviving Longer 

  
Holding Time Investment Size 

Trading 

Frequency 
Holding Time Investment Size 

Trading 

Frequency 

Intercept  16393  *** 3.9138  *** 12.486  *** 32288  *** 4.4769  *** 23.438  *** 

Experience   1004.2  *** 0.0412  *** 6.591  *** 2688.4  *** 0.0215  *** -0.1995  *** 

Controls        

Holding Time   -0.0000004 *** 

-0.000002  ** 

 -0.0000003  *** 

 -0.000002  *** 

Investment size  -52.09  ***  0.381  *** -231.51  ***  0.145  *** 

Trading 

Frequency 

 

-2.2994   0.005  *** 

 

-43.402  *** 0.0039  *** 
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Accumulated 

Profit 

 

0.2798  *** 0.0003  *** 0.0029  *** 0.1823  *** 0.00008  *** 0.0002  *** 

Last Trade Profit  -6.7449  *** 0.00007   -0.0074  *** -11.855  *** -0.000009   -0.0013  *** 

Last Week Profit  -0.5147  *** -0.00006  *** 0.004  *** -0.3055  *** 0.0002  *** 0.0007  *** 

Age  130.48   -0.0105  -0.1968  *** 

 

-15.85   

 

-0.0266  *** 

 

-0.0747  *** 

 

Gender  1324.6   0.2494  0.0713  814.87   

 

0.7039  ** 

 

-3.2912  *** 

 

Market Volatility  -0.0745   -0.00005  *** 0.0005  *** -0.3063  *** -0.00002  *** 0.0009  *** 

Disposition  0.0136  *** -0.0000009  *** -0.00003  *** 0.0402  *** -0.000002  *** -0.00002  *** 

This table presents results for regressions of the form in two groups of traders that stay active in the spread-trading market for shorter and longer periods 

𝐻𝑖𝑘 =  𝛼 +  𝛽𝐸𝑖𝑘 + 𝛽𝑆𝑇𝑆𝑇𝑖𝑘 + 𝛽𝑇𝐹𝑇𝐹𝑖𝑘 + 𝛽𝐴𝐴𝑘 + 𝛽𝐺𝐺𝑘 + 𝛽𝑀𝑉𝑀𝑉𝑖𝑘 + 𝛽𝐷𝐷𝑖𝑘 + 𝛽𝐴𝑃𝐴𝑃𝑖𝑘 + 𝛽𝐿𝑇𝑃𝐿𝑇𝑃𝑖𝑘 + 𝛽𝐿𝑊𝑃𝐿𝑊𝑃𝑖𝑘 + 휀𝑖𝑘 ,  

where for trader 𝒌, 𝑯𝒊𝒌 is the holding time of their𝒊𝒕𝒉 trade, 𝑺𝑻𝒊𝒌 is the investment size of their 𝒊𝒕𝒉 trade and 𝑻𝑭𝒊𝒌 is the trading frequency of the 𝒊𝒕𝒉 trade, 𝑬𝒊𝒌 is the measure 

of their experience at the opening of the 𝒊𝒕𝒉  trade, 𝑨𝒌  is the age, 𝑮𝒌  is the gender, 𝑴𝑽𝒊𝒌 is the market volatility, 𝑫𝒊𝒌  is the estimate of disposition effect, 𝑨𝑷𝒊𝒌  is the 
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accumulated profit, 𝑳𝑻𝑷𝒊𝒌 is the last trade profit and 𝑳𝑾𝑷𝒊𝒌 is the last week profit. We use 𝜺𝒊𝒌to denote the regression error term, and 𝜶, 𝜷, 𝜷𝑯, 𝜷𝑺𝑻, 𝜷𝑻𝑭, 𝜷𝑨, 𝜷𝑮, 𝜷𝑴𝑽 and 

𝜷𝑫 are determined by parameter estimation. We define a trader’s active period as the time from their first trade to the last of their trades in the dataset. On this basis, we find 

that the median of a trader’s active period is 179 days. Consequently, we split traders into those that have active periods shorter and longer than or equal to 179 days. Data are 

from the period 2003 to 2013. ***, ** and * denote significance at 0.1%, 1% and 5% levels, respectively. 
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3.4.2 The Effect of Experience on Performance 

The results of estimating the LMMs using equation (17) are presented in Table XVI and show 

that more experienced traders make higher returns but take greater risks and achieve lower 

Sharpe ratios. In particular, the coefficients of experience for the models with return and the 

volatility of returns as the dependent variable are positive and significant, respectively 

(0.0471, p < 0.001; 78.715, p < 0.001), indicating a positive relationship between experience 

of a trader and both their expected returns and their return volatility, thus, supporting H2a and 

H2b. However, the results of estimating the model indicate a significant negative relationship 

between a trader’s experience and the Sharpe ratio they achieve (-0.0131, p < 0.001). This 

result does not support H2c, suggesting that traders’ risk-adjusted performance declines as 

they gain in experience.  

Table XVI: Performance Related to Experience  

 Return Volatility Sharpe Ratio 

Intercept 0.1076 6252.7 *** 0.0106  

Experience  0.0471 *** 78.715 *** -0.0131 *** 

Controls    

Holding Time  -0.00003 *** 0.0017 *** -0.0004 *** 

Investment Size  -0.0119 *** -2.1632 ** 0.000000008 *** 

Trading Frequency -0.0007 *** -0.8019 *** 0.0003 *** 

Age -0.008 -13.511 -0.002 ** 

Gender -0.0348  -4233.3 *** -0.0338 
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Market Volatility -0.0002 *** 0.0215 *** 0.0000001 

Disposition -0.000003 *** -0.0001 -0.00000007 *** 

This table presents results for regressions of the form 

𝑅𝑖𝑘 =  𝛼 +  𝛽𝐸𝑖𝑘 + 𝛽𝐻𝐻𝑖𝑘 + 𝛽𝑆𝑇𝑆𝑇𝑖𝑘 + 𝛽𝑇𝐹𝑇𝐹𝑖𝑘 + 𝛽𝐴𝐴𝑘 + 𝛽𝐺𝐺𝑘 + 𝛽𝑀𝑉𝑀𝑉𝑖𝑘 + 𝛽𝐷𝐷𝑖𝑘 + 휀𝑖𝑘,  

where for trader 𝑘, 𝑅𝑖𝑘  is the return of their 𝑖𝑡ℎtrade, 𝑉𝑖𝑘  is the variance of returns associated 

with trader 𝑘’s 𝑖𝑡ℎ trade and 𝑆𝑖𝑘  is trader 𝑘’s accumulated Sharpe ratio up to the point of closing 

the 𝑖𝑡ℎ trade, 𝐻𝑖𝑘  is the holding time of their𝑖𝑡ℎ trade, 𝑆𝑇𝑖𝑘  is the investment size of their 𝑖𝑡ℎ trade 

and 𝑇𝐹𝑖𝑘  is the trading frequency of the 𝑖𝑡ℎ trade, 𝐸𝑖𝑘  is the measure of their experience at the 

opening of the 𝑖𝑡ℎ trade, 𝐴𝑘 is the age, 𝐺𝑘  is the gender, 𝑀𝑉𝑖𝑘is the market volatility, and 𝐷𝑖𝑘  is the 

estimate of disposition effect. We use 휀𝑖𝑘to denote the regression error term, and 𝛼, 𝛽, 𝛽𝐻 , 𝛽𝑆𝑇 , 

𝛽𝑇𝐹 , 𝛽𝐴, 𝛽𝐺 , 𝛽𝑀𝑉  and 𝛽𝐷 are determined by parameter estimation. Data are from the period 2003 

to 2013. ***, ** and * denote significance at 0.1%, 1% and 5 levels %, respectively.   
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Some previous studies  have also found that traders with greater experience achieve 

higher returns (Feng and Seasholes, 2005; Nicolosi et al., 2009; Seru et al., 2010), and they 

argue that this arises because traders learn from experience. However, we find that more 

experienced traders take higher risks resulting in a lower risk-adjusted performance.  

 

3.4.2.1 Controlling Selection Bias: Heckman Two-Stage Method  

The results of conducting the Heckman two-stage method are presented in Table XVII. The 

selection bias is shown to be a legitimate concern in respect of the Sharpe ratio, because ρ > 0, 

indicating that the unobserved values tend to be lower than those which are observed. That is, 

the risk-adjusted performance of the unobserved trades is lower compared to those trades 

which we can observe and use to calculate the risk-adjusted performance. After controlling 

for selection bias in the second stage, we can see that experience is negatively related with 

Sharpe ratio (-0.0091, p < 0.001). Although the magnitude of the coefficient is smaller than 

that estimated in the earlier analysis, it still remains negative and significant, confirming that 

lower Sharp ratios are generally obtained by traders with greater experience. Similarly, the 

volatility of returns is positively related with experience (337.7, p < 0.001), which is in line 

with our earlier results that as traders gain experience, their returns are subject to greater 

volatility.  

To test the robustness of our conclusions, when estimating the LMMs using equation 

(17) with the volatility of the returns and the Sharpe ratio as the dependent variable, we also 

calculate the returns volatility and Sharpe ratio using 60, 90, 120 and 180 day periods, 

respectively. The results all confirm our conclusions that a trader’s returns volatility and 
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Sharpe ratios (presented in Table VII) are positively and negatively, respectively, related to a 

trader’s experience.  

Table XVII: Performance Related to Experience – Heckman 2-stage Method  

 Volatility Sharpe 

 First Stage 

(Selected In 

Sample) 

Second 

Stage 

First Stage 

(Selected In 

Sample) 

Second 

 Stage 

Intercept 1.775 *** 886.7 *** 1.775 *** 0.0322 *** 

Experience  -0.0001 *** 337.7 *** -0.0001 *** -0.0091 *** 

TradeNO -0.0055 ***  -0.0006 ***  

Accumulated Profit 0.0000004 ***  0.0000004 

*** 

 

Holding Time  0.0064 ***  0.00000001 *** 

Investment Size   2.934 **  0.0008 *** 

Trading Frequency  -3.402 ***  0.0001 *** 

Age  -10.27 ***  -0.0009 *** 

Gender  -101.4 *  -0.0039 *** 

Market Volatility  0.0925 ***  0.000001 *** 

Disposition  -0.0022 ***  -0.0000001 *** 

R2  0.0035  0.0024 

Adjusted R2  0.0035  0.0023 
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Inverse Mills Ratio  -1898.4 ***  0.0155 *** 

Σ  32508  0.5687 

ρ   -0.0584  0.0273 

This table presents results from Heckman 2 stage method. The regression model in the first stage is 

w′ = (E, TradeNO, APr), 

where E is the experience measure, 𝑇𝑟𝑎𝑑𝑒𝑁𝑂 is the number of trades which have been placed 

and APr are the accumulated profit of the trader at the time the trade is placed. The regression 

model in the second stage is 

𝑉𝑖𝑘 =  𝛼 +  𝛽𝐸𝑖𝑘 + 𝛽𝐻𝐻𝑖𝑘 + 𝛽𝑆𝑇𝑆𝑇𝑖𝑘 + 𝛽𝑇𝐹𝑇𝐹𝑖𝑘 + 𝛽𝐴𝐴𝑘 + 𝛽𝐺𝐺𝑘 + 𝛽𝑀𝑉𝑀𝑉𝑖𝑘 + 𝛽𝐷𝐷𝑖𝑘 + 휀𝑖𝑘 ,  

where for trader 𝑘, 𝑉𝑖𝑘  is the variance of returns associated with trader 𝑘’s 𝑖𝑡ℎ trade, and 𝑆𝑖𝑘  is 

trader 𝑘’s accumulated Sharpe ratio up to the point of closing the 𝑖𝑡ℎ trade, 𝐻𝑖𝑘  is the holding time 

of their 𝑖𝑡ℎ trade, 𝑆𝑇𝑖𝑘  is the investment size of their 𝑖𝑡ℎ trade and 𝑇𝐹𝑖𝑘  is the trading frequency of 

the 𝑖𝑡ℎ trade, 𝐸𝑖𝑘  is the measure of their experience at the opening of the 𝑖𝑡ℎ trade, 𝐴𝑘 is the age, 

𝐺𝑘  is the gender, 𝑀𝑉𝑖𝑘is the market volatility, and 𝐷𝑖𝑘  is the estimate of disposition effect. We use 

휀𝑖𝑘to denote the regression error term, and 𝛼, 𝛽, 𝛽𝐻 , 𝛽𝑆𝑇 , 𝛽𝑇𝐹 , 𝛽𝐴, 𝛽𝐺 , 𝛽𝑀𝑉  and 𝛽𝐷 are determined 

by parameter estimation. Data are from the period 2003 to 2013. ***, ** and * denote significance 

at 0.1%, 1% and 5% levels, respectively. 
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Table XVIII: Performance Related to Experience – Sensitivity Analysis 

 Volatility 

(180) 

Volatility 

(120) 

Volatility 

(90) 

Volatility 

 (60) 

Sharpe  

(180) 

Sharpe 

(120) 

Sharpe (90) Sharpe (60) 

Intercept  6355.3 ***   6508.2 ***   6409.0 ***   7810.1 ***  0.0219 0.0211 0.0302 0.068 

Experience   68.546 ***   64.697 ***   76.839 ***   36.440 *   -0.0078 ***   -0.0057 ***   -0.0039 ***   -0.0017 ***  

Controls         

Holding 

Time   0.0034 ***   0.0041 ***   0.0047 ***   0.0055 ***  

 -0.000000010 

***  

 -0.00000001 

***   -0.00000002 ***   -0.00000003 ***  

Investment 

Size  -2.9344 -0.4747 -1.2054 -1.5878  0.0004 ***   0.0005 ***   0.0005 ***   0.0005 ***  

Trading 

Frequency  -1.1466 ***   -1.1306 ***   -1.2044 ***   -1.1761 ***   0.00006 ***   0.00005 ***   0.00005 ***   0.00006 ***  

Age  -22.425 -24.928 -25.001  -34.101 **   -0.0018 *   -0.0018 *   -0.0019 *   -0.0026 **  

Gender   -3859.1 ***   -4062.5 ***   -4139.0 ***   -5125.2 ***  -0.04 -0.0339 -0.0393 -0.0413 
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Market 

Volatility   0.0407 ***   0.0580 ***   0.0667 ***   0.0715 ***   0.0000002 **  0.00000008 0.000000005 -0.0000001 

Disposition  

-0.0001 0.0002 0.0005 -0.0002 

 -0.0000001 

***  

 -0.0000001 

***   -0.0000002 ***   -0.0000002 ***  

This table presents results for regressions of the form 

𝑉𝑖𝑘 =  𝛼 +  𝛽𝐸𝑖𝑘 + 𝛽𝐻𝐻𝑖𝑘 + 𝛽𝑆𝑇𝑆𝑇𝑖𝑘 + 𝛽𝑇𝐹𝑇𝐹𝑖𝑘 + 𝛽𝐴𝐴𝑘 + 𝛽𝐺𝐺𝑘 + 𝛽𝑀𝑉𝑀𝑉𝑖𝑘 + 𝛽𝐷𝐷𝑖𝑘 + 휀𝑖𝑘 ,  

where for trader 𝑘, 𝑉𝑖𝑘  is the variance of returns associated with trader 𝑘’s 𝑖𝑡ℎ trade in a period of 180, 120, 90 and 60 days, and 𝑆𝑖𝑘  is trader 𝑘’s Sharpe ratio up to 

the point of closing the 𝑖𝑡ℎ trade in a period of 180, 120, 90 and 60 days, 𝐻𝑖𝑘  is the holding time of their 𝑖𝑡ℎ trade, 𝑆𝑇𝑖𝑘  is the investment size of their 𝑖𝑡ℎ trade and 

𝑇𝐹𝑖𝑘  is the trading frequency of the 𝑖𝑡ℎ trade, 𝐸𝑖𝑘  is the measure of their experience at the opening of the 𝑖𝑡ℎ trade, 𝐴𝑘 is the age, 𝐺𝑘  is the gender, 𝑀𝑉𝑖𝑘is the market 

volatility, and 𝐷𝑖𝑘  is the estimate of disposition effect. We use 휀𝑖𝑘to denote the regression error term, and 𝛼, 𝛽, 𝛽𝐻 , 𝛽𝑆𝑇 , 𝛽𝑇𝐹 , 𝛽𝐴, 𝛽𝐺 , 𝛽𝑀𝑉  and 𝛽𝐷 are determined by 

parameter estimation. Data are from the period 2003 to 2013. ***, ** and * denote significance at 0.1%, 1% and 5% levels, respectively. 
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3.4.2.2 Controlling Survivorship Bias 

The results of estimating the LMMs using equation (17) for the trades of those that have (a) shorter 

or (b) longer than or equal to 179 days active trading periods are presented in Table XIX. The 

results indicate that, as in the main analysis, traders in both groups take more risks and their risk 

adjusted performance reduces as they gain in experience. In particular, the coefficients of the 

volatility and Sharp ratio when estimating equation (17) are significant and positive/negative, 

respectively (volatility coefficient for longer and shorter trading period groups: 77.922, p < 0.001; 

74.109, p < 0.001; Sharp ratio coefficient for shorter and longer trading period groups: -0.0275, p < 

0.001; -0.0108, p < 0.001). In addition, as in the main analysis, for traders in the longer trading 

period group, the coefficient for returns in the model represented by equation (17) is positive and 

significant (0.0495, p < 0.001); suggesting that they achieve increased returns as they gain in 

experience. However, traders with shorter active trading periods, return is negatively related with 

experience (-0.4008, p < 0.001). It may well be that these individuals cease trading because they 

fail to learn to improve their returns and, as a result, have little incentive to continue trading.  

Overall, the results largely support hypotheses 2a and 2b, namely, that as traders gain in 

experience they make greater returns but these returns are subject to higher volatility. Equally, the 

results do not appear to support H2c, indicating that as traders gain experience their risk adjusted 

performance falls. 

Table XIX: Performance related to Experience – Survivorship Analysis 

 Return Volatility Sharpe Ratio 

Surviving Shorter    

Intercept 0.9632  878.23 0.0355 

Experience -0.4008 *** 74.109 *** -0.0275 *** 

Controls    

Holding Time -0.00005 *** 0.0029 *** -0.0000002 *** 

3.4.3 Investment Size  

-0.0121 *** -0.2023  0.0002 

Trading Frequency -0.000005  -0.2537 0.00003 *** 

Age -0.0414 ** 4.3560 -0.0035 ** 
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Gender -0.6160 -537.57 -0.0502 

Market Volatility -0.0002 *** 0.0073 -0.0000001 

Disposition -0.000003 *** 0.0005 -0.0000002 *** 

Surviving Longer    

Intercept 0.7089  5539.8 *** 0.0704 ** 

Experience 0.0495 *** 77.922 *** -0.0108 *** 

Controls    

Holding Time -0.00003 *** 0.0017 *** -0.000000004  

*** 

Investment Size -0.0127 *** -2.5004 **  0.0003*** 

Trading Frequency -0.0009 ***  -1.0005 *** 0.00006 *** 

Age -0.0083 -12.999 -0.0013 *** 

Gender -0.1816  -3319.6 *** -0.0433 

Market Volatility -0.0002 *** 0.0232 *** -0.0000001 ** 

Disposition -0.000003 *** -0.0002 -0.00000006 *** 

This table presents results for regressions of the form in two groups of traders that stay active in the 
spread-trading market for shorter and longer periods 

𝑅𝑖𝑘 =  𝛼 +  𝛽𝐸𝑖𝑘 + 𝛽𝐻𝐻𝑖𝑘 + 𝛽𝑆𝑇𝑆𝑇𝑖𝑘 + 𝛽𝑇𝐹𝑇𝐹𝑖𝑘 + 𝛽𝐴𝐴𝑘 + 𝛽𝐺𝐺𝑘 + 𝛽𝑀𝑉𝑀𝑉𝑖𝑘 + 𝛽𝐷𝐷𝑖𝑘 + 휀𝑖𝑘,  

where for trader 𝑘, 𝑅𝑖𝑘  is the return of their𝑖𝑡ℎ trade, 𝑀𝑉𝑖𝑘  is the variance of returns associated with 
trader 𝑘’s 𝑖𝑡ℎ trade and 𝑆𝑖𝑘  is trader 𝑘’s accumulated Sharpe ratio up to the point of closing the 𝑖𝑡ℎ 
trade, 𝐻𝑖𝑘  is the holding time of their𝑖𝑡ℎ trade, 𝑆𝑇𝑖𝑘  is the investment size of their 𝑖𝑡ℎ trade and 𝑇𝐹𝑖𝑘  is 
the trading frequency of the 𝑖𝑡ℎ trade, 𝐸𝑖𝑘  is the measure of their experience at the opening of the 𝑖𝑡ℎ 
trade, 𝐴𝑘 is the age, 𝐺𝑘  is the gender, 𝑉𝑖𝑘is the market volatility, and 𝐷𝑖𝑘  is the estimate of disposition 
effect. We use 휀𝑖𝑘to denote the regression error term, and 𝛼, 𝛽, 𝛽𝐻 , 𝛽𝑆𝑇 , 𝛽𝑇𝐹 , 𝛽𝐴, 𝛽𝐺 , 𝛽𝑀𝑉  and 𝛽𝐷 are 
determined by parameter estimation. We define a trader’s active period as the time from their first 
trade to the last of their trades in the dataset. On this basis, we find that the median of a trader’s active 
period is 179 days. Consequently, we split traders into those that have active periods shorter and 
longer than or equal to 179 days. Data are from the period 2003 to 2013. ***, ** and * denote 
significance at 0.1%, 1% and 5% levels, respectively. 
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3.4.4 The Relationship between the Volatility of Returns and Risk-taking Behavior 

The relation between the volatility of returns and risk-taking behavior is revealed by estimating the 

LMMs using equation (18) and examining the coefficients of holding time, investment size and 

trading frequency in  

Table XX. We test the robustness of our conclusions, by including returns volatility and risk-taking 

behavior measured across 1, 7, 14 and 30 day periods. The positive coefficients of holding time 

(0.0043, p < 0.001; 0.0019, p < 0.001; 0.0013, p < 0.001; 0.0007, p < 0.001) suggest that volatility 

is positively related with the length of time a position is held open. This is as one would expect, as 

the longer the position is held open, the greater is the market risk to which the trader is exposed 

(supporting H3a). Similarly, the significant positive coefficients of investment size (0.2301, p < 

0.05; 0.1226, p < 0.001; 0.0888, p < 0.001; 0.0406, p < 0.001) suggest that as the amount they are 

prepared to invest increases the volatility of a trader’s returns (measured in terms of index points 

won/lost) increases. The result implies that traders are exposed to higher trading risk when they put 

a larger amount of money at risk, and hypothesis 3b is supported. The significant negative 

coefficients of trading frequency (-12.834, p < 0.001; -5.5314, p < 0.001; -3.964, p < 0.001; -

2.3659, p < 0.001) indicate that as a trader’s frequency of trading increases, the degree of risk taken 

decreases (i.e. the volatility of returns decreases); leading us to reject H3c.  

Table XX: Volatility of Returns Related with Risk-taking Behavior 

 Volatility of Returns 

 1 day 7 days 14 days 30 days 

Intercept 5241.6  *** 6367.3  *** 6095.9  *** 5974.2  *** 

Holding Time  0.0043  *** 0.0019  *** 0.0013  *** 0.0007  *** 

Investment Size  0.2301  * 0.1226  *** 0.0888  *** 0.0406  ** 

Trading Frequency -12.834  *** -5.5314  *** -3.964  *** -2.3659  *** 

Age -12.073   -17.141   -19.36   -14.704   

Gender -4578.4  *** -5362.7  *** -5055.9  *** -4654.6  *** 

Market Volatility 0.1498  *** 0.1166  *** 0.1032  *** 0.0723  *** 

Disposition 0.0013  ** 0.0011  *** 0.0014  *** 0.0015  *** 
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This table presents results for regressions of the form: 

𝑉𝑖𝑘
𝑝

=  𝛼 + 𝛽𝐻𝐻𝑖𝑘
𝑝

+ 𝛽𝑆𝑇𝑆𝑇𝑖𝑘
𝑝

+ 𝛽𝑇𝐹𝑇𝐹𝑖𝑘
𝑝

+ 𝛽𝐴𝐴𝑘 + 𝛽𝐺𝐺𝑘 + 𝛽𝑀𝑉𝑀𝑉𝑖𝑘 + 𝛽𝐷𝐷𝑖𝑘 + 휀𝑖𝑘, (24) 

where for trader 𝑘, 𝑉𝑖𝑘
𝑝
 is the variance of returns, accumulated from their trades placed during the period of p 

days before their 𝑖𝑡ℎ trade, 𝐸𝑖𝑘  is the measure of their experience at the opening of the 𝑖𝑡ℎ trade, 𝐻𝑖𝑘
𝑝

 , 

𝑆𝑇𝑖𝑘
𝑝

 and 𝑇𝐹𝑖𝑘
𝑝

 are the total holding time, total investment size and total trade number during the period of p 

days before their 𝑖𝑡ℎ trade. The values of p are 1, 7, 14, and 30. ***, ** and * denote significance at 0.1%, 

1% and 5% levels, respectively. 

  

3.5 DISCUSSION 

3.5.1 Change of Risk-taking Behavior through Experience  

We find evidence that traders exhibit significant behavioral change regarding risk-taking as they 

gain experience. In particular, traders hold positions for longer and increase investment amount, 

which leads to higher volatility of returns. This result suggests that traders’ level of risk-taking 

increases as they gain experience. As shown in Table XII, the majority of traders in our data lose 

money and, consequently, the increased risk-seeking behavior is consistent with the prediction of 

prospect theory that individuals are risk seeking in loss. This can lead them to become subject to 

the escalation of commitment, and our results suggest that this escalation comes in the form of the 

increased length of time they hold a trade.  

We also find that as traders gain in experience they increase trading frequency. However, 

we found that trading frequency is negatively related to the volatility of returns (which is often used 

as the measure of trading risk). A possible explanation is that when trading frequently they avoid 

volatile environments. The overall effect is that as traders gain experience they increase their 

degree of risk-taking (in terms of trading frequency) but they appear to adjust their related 

behaviors in order to control the additional risk, resulting in their returns showing lower volatility. 

This can be regarded as a form of risk homeostasis, also known as risk compensation, which refers 

to the behavior that individuals take actions to decrease potential risk while facing risky situations 

(Wilde, 1982). This result indicates the complexity of the interaction between different types of 

risk-taking behavior. 

The greater risk taken by traders as they gain experience in terms of holding time and 

investment size could be explained by overconfidence. There is much evidence that individuals 

attribute to themselves greater influence on positive outcomes than their actions merit and have 

inflated estimates of their true ability (Gervais and Odean, 2001; Odean, 1998a). It is possible that 

as traders become more experienced in trading and more familiar with the environment (e.g., with 
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trading rules, operations of trading platforms), they become overconfident and, as a result, take 

higher risk. Furthermore, it has been shown that individuals become more overconfident when 

feedback on decisions is inconclusive or uncertain (Griffin and Tversky, 1992). Since trading 

generates uncertainty in returns, the trader may attribute positive outcomes to their own ability to 

predict the future and negative outcomes to failures of the market (Gervais and Odean, 2001). 

Consequently, the more they trade, the greater their level of overconfidence. 

Our results imply that changes in risk-taking behavior do not simply arise as a result of 

changes in total wealth (i.e., increasing risk taking arising from loss aversion) and prior outcomes 

(house money effect) but from personal accumulated experience. It has been shown that small 

fluctuations in investors’ attitudes towards risk could increase the volatility of equity prices (Mehra 

and Sah, 2002). Hence, our results are important as they demonstrate that it is important to take 

accumulated experience into account when considering the degree of risk an individual decision 

maker is likely to take.  

3.5.2 Risk-Return Trade-off 

Our results concerning the impact of trading experience on returns are consistent with the existing 

literature, namely, that traders make higher returns as they gain more experience (Feng and 

Seasholes, 2005; Nicolosi et al., 2009; Seru et al., 2010). Earlier studies have regarded this as the 

evidence that traders learn to improve their performance. However, importantly, our results also 

show that these higher returns are achieved at the expense of higher risk and that this additional 

risk causes risk-adjusted performance to decline. These results suggest that traders ‘learn’ through 

the experience of trading that they can achieve higher expected returns by taking more risk but, 

they appear to fail to learn how to handle risk effectively, leading to a lower risk adjusted 

performance.  

3.5.3 Bayesian Learning 

One of the fundamental assumptions of neoclassical economic theories is that individuals are 

rational and attempt to maximize expected utility (Ackert and Deaves, 2009). This assumption has 

been challenged by a number of observed behavioral biases, e.g. disposition effect (Dhar and Zhu, 

2006; Grinblatt and Keloharju, 2001b; Shefrin and Statman, 1985), overconfidence (Barber and 

Odean, 2001), overreaction (Bondt and Thaler, 1985) and loss aversion (Kahneman and Tversky, 

1979). Despite these behavioral biases, it is possible that individuals can learn from experience to 

improve financial decision-making to the point where the assumptions of neoclassical theories hold. 

There is strong evidence that individuals are likely to change their behavior with experience 

(Camerer and Ho, 1999; Charness and Levin, 2003; Roth and Erev, 1995). However, the manner 

and degree to which they change their behavior remain a matter of debate. In particular, the 

rationality assumption would be justified if individuals can learn from experience to appropriately 
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adjust their probability estimates and finally make rational, appropriate decisions; a process 

referred to as Bayesian learning (Charness and Levin, 2003; Chiang et al., 2011). 

In response to the challenges from the evidence of irrational behavior, the advocates of 

rationality often claim that individuals follow Bayesian learning to update their beliefs, i.e., the 

probability distribution of events, and achieve rational decision making over time. One way to test 

the conjecture is to examine whether individuals improve performance through experience. For 

example, Chiang et al. (2011) argue that Bayesian learners should be able to achieve higher returns 

by learning from experience. However, such an approach fails to take account of the risk 

perspective in performance measurement, e.g., higher returns may be obtained at the expense of 

higher volatility (Fama and MacBeth, 1973; Glosten et al., 1993). We argue that both returns and 

risk-adjusted performance should be considered in measuring the performance improvement of 

learners. Since Bayesian learners can appropriately update probability estimates conditioned on 

new information, they should be able to improve their decision choices, enabling them to not only 

increase returns but also to improve their risk-adjusted performance. Our findings, that traders’ 

risk-adjusted performance decreases the longer they trade, provides strong support for the view that 

Bayesian learning does not take place, certainly amongst spread traders (Chiang et al., 2011).    

3.5.4 Reinforcement Learning  

We argue that reinforcement learning, wherein individuals repeat behavior that was rewarding in 

the past provides a reasonable explanation for our findings. Reinforcement learning describes a 

process to update the probability of selecting a strategy based on prior outcomes; the strategies with 

better outcomes in the past having a higher probability of being selected in the future. 

Psychological evidence suggests that reinforcement learning explains many of the dynamics of 

human behavior demonstrated in experiments (Roth and Erev, 1995). We would argue that our 

study provides field study support for this type of learning amongst traders. In particular, 

individuals may try trading several strategies with different levels of risk. Since higher risk 

generally brings both higher profits and greater losses, traders who undertake riskier strategies will 

either make higher profits or suffer greater losses. Those traders making a higher profit are 

reinforced by the riskier strategies, while those suffering higher losses are likely to quit the market. 

We also find that as traders gain in experience they tend to take greater risk. It might, therefore, be 

argued that these individuals are simply reinforced by risk-taking behavior accompanied with high 

return and high volatility. 

3.5.5 Dynamic interaction of risk-taking behavior, volatility and experience  

Most empirical studies focus on the influence of one factor, e.g., prior outcomes, on risk-taking 

behavior (Choi et al., 2009; Glaser and Weber, 2009; Kaustia and Knüpfer, 2008; Y.-J. Liu et al., 

2010; Thaler and Johnson, 1990). We examine the dynamic interaction between experience, risk-
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taking behavior and returns volatility by considering together the results outlined in sections 4.1, 

4.2 and 4.3. In particular, these earlier results suggested that as traders gain more experience they 

tend to hold their trades for longer and to experience higher returns volatility. In addition, we found 

that there is a positive relationship between returns volatility and risk-taking behavior, i.e., holding 

time and investment size. That is, our results suggest that as traders gain experience they increase 

their risk-taking behavior, in terms of holding trades for longer and of higher investment size and it 

is this which leads to higher volatility of returns. 

Furthermore, our results demonstrate that as traders gain in experience they increase their trading 

frequency. We also found that returns volatility and trading frequency are negatively related. 

Consequently, the increase in returns volatility experienced by traders as they gain in experience 

cannot be explained by their increasing trading frequency. 

 

3.5.6 Survivorship Bias 

Comparing the results of the two groups those that stay active for shorter and longer periods in the 

markets, we find that most traders exhibit similar tendency regarding risk-taking behavior and risk-

related performance measures. Both groups increase risk-taking behavior, achieve high volatility of 

returns and lower Sharpe ratios. However, the difference regarding returns between the two groups 

is not negligible. Those traders staying active for shorter periods decrease their returns when they 

gain experience. As individuals can easily perceive the downward trend of returns, leaving the 

markets seems a reasonable choice for those traders who keep losing more money or making less 

profit. In addition, those traders staying active for longer periods appear to reduce their trading 

frequency, which is negatively related with returns, as they place more trades. On the other hand, 

we find that the risk-taking behavior is significantly related with the volatility of returns among the 

groups of staying for longer periods, but this does not hold for the other group. One possible 

explanation is that those traders surviving longer have a better understanding on the effect of their 

behavior and, hence, is more influential on their volatility of returns. Therefore, our findings show 

that survival bias is influential on the results regarding returns. 

3.6 CONCLUSION 

We analyze 6,287,477 trades from 27,868 spread traders over a 10 year period. Our results show 

that traders make higher returns as they gain experience, which is consistent with the findings of 

Seru et al. (2010), Feng and Seasholes (2005) and Nicolosi et al. (2009). However, our results also 

show that traders take greater risk with accumulating experience, resulting in lower risk-adjusted 

performance. It appears, therefore, that traders only improve returns by taking greater risk. The 

results are consistent with traders’ risk-taking behavior being reinforced by the accompanying 
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higher returns. This leads them to take greater and greater risk without fully understanding of the 

degree of risk they are taking. This conclusion still holds after we take selection bias and 

survivorship bias into account.  

This, to our best knowledge, is the first study to examine the effects of learning through 

experience on traders in real-world financial markets, taking account of their risk-taking behavior, 

and their risk-adjusted performance. The results lead us to question one of the important 

assumptions underlying the neoclassical approach, namely, that individuals learn, following the 

Bayesian rule, i.e., they appropriately update prior probability estimations conditional on new 

information or events. Rather, our results suggest that traders learn by reinforcement, choosing 

strategies which led to ‘better’ outcomes in the past. It appears that in adopting this approach, 

traders may over-weight the value of returns in assessing what the 'better' outcomes are and this 

leads them to under-assess the underlying risk.  

It is generally believed that individuals need to be able to observe feedback from their 

actions in order for learning to take place. It is straightforward for traders to observe the returns of 

their trades. However, it is far less straightforward for them to observe their volatility of returns and 

their risk adjusted performance. This may explain the different learning effects observed for returns 

(a positive relationship with experience) and risk relevant performance (a negative relationship 

with experience). Since the latter is not easy to observe, traders may take little effective actions to 

improve those measures or to control trading risk. One solution to alleviate this situation is to 

provide risk-relevant performance measures on trading platforms, such as web sites and mobile 

applications. It is important to notice that trading platforms may be reluctant to provide their clients 

risk relevant information since the profit of trading platforms is mainly from commission fee and 

cautious clients do not always place many trades. Therefore, policy intervention might be needed.   

If our results are mirrored in future studies examining the effects of learning on risk 

adjusted performance in other financial markets, they have important implications for the 

efficiency of financial markets. In particular, they suggest that it is unlikely that individual traders 

will learn the lessons of excessive risk-taking from previous periods of excessive exuberance in 

financial markets which led to bubbles and eventual crashes. As a result, our findings point to the 

need for intervention by government or financial authorities to adopt measures which make clearer 

the risk involved in particular assets or investment strategies and/or to provide incentives for 

traders to focus more on risk-adjusted performance. 
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3.7 APPENDIX: TRADE NUMBER AS EXPERIENCE MEASURE 

We use the number of trade as the measure of experience to test H1 and H2.  

In particular, the experience of trader k associated with their 𝑖𝑡ℎ trade (𝛦𝑖𝑘), is defined as:  

𝐸𝑖𝑘 =  𝑖, 𝑘 ∈ 𝑁+; 𝑖 ∈ 𝑁+ ( 25 ) 

where 𝑁+is a set of non-negative integers. 

We estimate the LMMs (21) to examine the impact of experience on risk-taking behavior. 

The results are presented in Table XXI and are consistent with the results which we obtain by using 

trading time as experience measure. The trader experience is positively related with all three 

measures of risk taking behavior:  holding time, investment size and trading frequency (i.e. 2186.9, 

p < 0.001; 0.1194, p < 0.001; 8.0182, p < 0.001, respectively). These results provide support for 

H1a, H1b and H1, namely that the risk-taking behavior of traders increases as they gain experience. 

We present the results of estimating the LMMs using equations (22) in Table XXII. The 

results show that more experienced traders make lower returns and achieve lower Sharpe ratios. In 

particular, the coefficients of experience and Sharpe ratio are negative and significant in (22) , 

respectively (-0.1257, p < 0.001; -0.0119, p < 0.001), while the coefficient of volatility is not 

significant. Hence, the results do not provide support for H2a, H2b and H2c.  

Regarding H2c, the results are consistent with that we obtain by using trading time as 

experience measure: traders achieve lower Sharpe ratio when they gain experience, no matter we 

measure experience with trading time or with trade number. That is, as we conclude earlier, traders 

fail to learn to improve their risk-adjusted performance through experience.  

We find that traders make lower returns when they place more trades, which is consistent 

with Chiang et al. (2011)’s findings, while Seru et al. (2010) and Nicolosi et al. (2009) show 

opposing results that traders make higher returns when they place more trades. On the other hand, 

our earlier results show that traders make higher returns when they stay in the market for a longer 

time, which is consistent with Seru et al. (2010)’s and Nicolosi et al. (2009)’s findings. That is, the 

current evidence is consistent in supporting that traders make higher returns when they stay in the 

market for a longer time, but the results regarding trader number are mixed. This suggests that the 

learning approaches used by traders are influential on the returns. In particular, traders who observe 

the patterns of market events tend to make higher returns when they stay in markets for a longer 

time, while traders who learn by actively participating the markets and observing the outcomes of 

their trades tend to make lower returns when they place more trades.  
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Table XXI: Risk-taking Behavior Related to Experience (Trade Number) 

Risk Taking Measure: Holding Time Investment Size Trading Frequency 

Intercept 21584 *** 3.9191 *** -6.1537 *** 

Experience  2186.9 *** 0.1194 *** 8.0182 *** 

Controls    

Holding Time  -0.0000003 *** 

 -0.000002 *** 

Investment size -206.08 ***  0.1696 *** 

Trading Frequency -36.79 *** 0.004 ***  

Accumulated Profit 0.1687 *** 0.00009 *** 0.0004 *** 

Last Trade Profit -11.563 *** 0.000004  -0.0019 *** 

Last Week Profit -0.3003 *** 0.0002 *** 0.0011 *** 

Age 64.354  

 

-0.0193 *** 

 

-0.1291 *** 

 

Gender 3274.1  

 

0.5139 ** 

 

-2.1016 *** 

 

Market Volatility -0.291 *** -0.00002 *** 0.0009 *** 

Disposition 0.0391 *** -0.000002 *** -0.00003 *** 

This table presents results for regressions of the form 

𝐻𝑖𝑘 =  𝛼 +  𝛽𝐸𝑖𝑘 + 𝛽𝑆𝑇𝑆𝑇𝑖𝑘 + 𝛽𝑇𝐹𝑇𝐹𝑖𝑘 + 𝛽𝐴𝐴𝑘 + 𝛽𝐺𝐺𝑘 + 𝛽𝑀𝑉𝑀𝑉𝑖𝑘 + 𝛽𝐷𝐷𝑖𝑘 + 𝛽𝐴𝑃𝐴𝑃𝑖𝑘

+ 𝛽𝐿𝑇𝑃𝐿𝑇𝑃𝑖𝑘 + 𝛽𝐿𝑊𝑃𝐿𝑊𝑃𝑖𝑘 + 휀𝑖𝑘, 

 

where for trader 𝑘, 𝐻𝑖𝑘  is the holding time of their𝑖𝑡ℎ trade, 𝑆𝑇𝑖𝑘  is the investment size of their 𝑖𝑡ℎ trade 
and 𝑇𝐹𝑖𝑘  is the trading frequency of the 𝑖𝑡ℎ trade, 𝐸𝑖𝑘  is the measure of their experience at the opening 
of the 𝑖𝑡ℎ trade, 𝐴𝑘 is the age, 𝐺𝑘  is the gender, 𝑀𝑉𝑖𝑘is the market volatility, 𝐷𝑖𝑘  is the estimate of 
disposition effect, 𝐴𝑃𝑖𝑘  is the accumulated profit, 𝐿𝑇𝑃𝑖𝑘  is the last trade profit and 𝐿𝑊𝑃𝑖𝑘  is the last 
week profit. We use 휀𝑖𝑘to denote the regression error term, and 𝛼, 𝛽, 𝛽𝐻 , 𝛽𝑆𝑇, 𝛽𝑇𝐹 , 𝛽𝐴, 𝛽𝐺 , 𝛽𝑀𝑉  and 𝛽𝐷 
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are determined by parameter estimation. Data employed are for the period 2003 to 2013. ***, ** and * 
denote significance at 0.1%, 1% and 5%, respectively. 
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Table XXII: Performance Related to Experience (Trade Number) 

 Return Volatility Sharpe Ratio 

Intercept 1.8654 *** 6391.3 *** 0.0214 

Experience  -0.1257 *** -3.151  -0.0119  *** 

Controls    

Holding Time  -0.00003 *** 0.0017 *** -0.000000008 *** 

Investment 

Size  -0.0134 *** -2.1313 * 0.0003 *** 

Trading 

Frequency -0.0009 *** -0.7406 *** 0.00006 *** 

Age -0.0058 

 

-12.075 

 

-0.0022  * 
 

Gender -0.0093  

 

-4192.9  *** 
 

-0.0382 

 

Market 

Volatility -0.0002 *** 0.0209 *** 0.0000001  

Disposition -0.00001 *** 0.0012 *** -0.00000007 *** 

This table presents results for regressions of the form 

𝑅𝑖𝑘 =  𝛼 +  𝛽𝐸𝑖𝑘 + 𝛽𝐻𝐻𝑖𝑘 + 𝛽𝑆𝑇𝑆𝑇𝑖𝑘 + 𝛽𝑇𝐹𝑇𝐹𝑖𝑘 + 𝛽𝐴𝐴𝑘 + 𝛽𝐺𝐺𝑘 + 𝛽𝑀𝑉𝑀𝑉𝑖𝑘 + 𝛽𝐷𝐷𝑖𝑘 + 휀𝑖𝑘,  

where for trader 𝑘, 𝑅𝑖𝑘  is the return of their𝑖𝑡ℎtrade, 𝑉𝑖𝑘  is the variance of returns associated with 

trader 𝑘’s 𝑖𝑡ℎ trade and 𝑆𝑖𝑘  is trader 𝑘’s accumulated Sharpe ratio up to the point of closing the 𝑖𝑡ℎ 

trade, 𝐻𝑖𝑘  is the holding time of their𝑖𝑡ℎ trade, 𝑆𝑇𝑖𝑘  is the investment size of their 𝑖𝑡ℎ trade and 𝑇𝐹𝑖𝑘  is 

the trading frequency of the 𝑖𝑡ℎ trade, 𝐸𝑖𝑘  is the measure of their experience at the opening of the 𝑖𝑡ℎ 

trade, 𝐴𝑘 is the age, 𝐺𝑘  is the gender, 𝑀𝑉𝑖𝑘is the market volatility, and 𝐷𝑖𝑘  is the estimate of disposition 

effect. We use 휀𝑖𝑘to denote the regression error term, and 𝛼, 𝛽, 𝛽𝐻 , 𝛽𝑆𝑇 , 𝛽𝑇𝐹 , 𝛽𝐴, 𝛽𝐺 , 𝛽𝑀𝑉  and 𝛽𝐷 are 

determined by parameter estimation. Data are from the period 2003 to 2013. ***, ** and * denote 

significance at 0.1%, 1% and 5%, respectively. 
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Chapter 4: Estimating Behavioral Characteristics 

associated with Learning Models in Financial 

Markets 

 

Abstract  

We develop a methodology which allows us to examine the manner and extent to which important 

behavioral characteristics of individual traders associated with learning models influence the 

individual’s trading behavior and performance. We estimate traders’ behavioral characteristics 

associated with the experience weighted attraction (EWA) behavioral learning model. EWA was 

developed on the basis of psychological experiments where the number of  strategies available to 

decision makers was limited. The problem of applying the EWA model is that in real-world trading 

environments traders have no limits in terms of the strategies they can adopt. We propose a 

decision-based strategy mapping framework (DSM) to resolve this problem. DSM is designed to 

artificially limit the strategy space associated with real-world trading data, by using scenarios. In 

each scenario, individuals are assumed to have only one decision to make. This allows us to 

estimate, using data associated with an individual’s real-world trading their behavioral 

characteristics associated with EWA. Subsequently, we examine the relationship between the 

estimated behavioral characteristics of traders and their trading behavior and performance. We find 

that traders who put greater weight on foregone payoffs for unchosen strategies (i.e., opportunity 

costs) tend to place higher mean stake sizes and trade more frequently. As rational economic agents 

are generally considered to actively consider opportunity costs when making decisions, our results 

suggest that those traders who behave like rational agents tend to trade more actively. However, 

surprisingly, those traders who are more rational do not achieve superior trading performance.  
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4.1 Introduction  

Empirical studies show the influence of an individual’s demographic characteristics on their 

financial trading behavior. For example, men have been shown to be more risk seeking than 

women in making financial decisions, such as retirement planning and stock investment (Bernasek 

and Shwiff, 2001; Jianakoplos and Bernasek, 1998, 1998; Pålsson, 1996). In addition, Goetzmann 

and Kumar (2008) and Greenwood and Nagel (2009) find that young investors tend to hold less-

diversified portfolios and expose themselves to higher risk than older investors. These conclusions 

are made possible because financial trading data often contains individual measurable 

characteristics, such as age and gender. However, individual behavioral characteristics which have 

been shown to affect how individuals learn to adjust their behavior are less readily discernable. As 

a result, the effect of these behavioral characteristics has been largely neglected in empirical studies. 

To shed light on the effect of these behavioral characteristics, we develop a methodology which 

allows us to determine, using empirical data, some important behavioral characteristics of 

individual traders associated with learning models and we examine to what extent these influence 

the individual’s trading behavior and performance.  

In particular, we estimate the behavioral characteristics of traders used as parameters in a 

behavioral learning model (i.e. the experience weighted attraction (EWA) model), which describes 

how individuals make decisions after receiving feedback from their past actions. Individuals 

receive a payoff as a return after choosing one strategy from a number of strategies repeatedly in 

the experimental setting, and the EWA describes the likelihood of choosing the strategies. The 

EWA identifies the weight of foregone payoffs as the most important behavioral characteristic. 

This is used to control how unchosen strategies are reinforced. Specifically, a strategy which 

achieved a superior payoff in the past is reinforced and is more likely to be chosen in the future. 

For example, if a trader has two available strategies (say buy and sell), then if the better payoffs are 

achieved when choosing the ‘buy’ strategy the trader is more likely the trader to choose a ‘buy’ 

strategy in the future. However, while the selected strategy is reinforced according to the payoff 

achieved, EWA also allows unchosen strategies to be reinforced (e.g., as a result of a trader 

observing the payoff that would have been achieved had that strategy been chosen). The degree 

foregone payoffs influence an agent’s behavior is regarded as a measure of the agent’s economic 

rationality.  In particular, more rational economic agents are seen as those whose actions are more 

driven by accounting for the opportunity (Charness and Levin, 2003; Payzan-LeNestour and 

Bossaerts, 2014).  

EWA was developed on the basis of psychological experiments ((Camerer and Ho, 1999). 

However, applying behavioral learning models to real-world trading data is problematic as trading 

in the real-world differs to the controlled settings in which these models were developed. In 

particular, subjects participating in experiments usually select one option from a few alternatives 
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given all relevant information, i.e., the strategy space of subjects is limited. However, traders in 

financial markets face an unlimited strategy space and need to make a series of judgments and 

decisions, including the likely direction in which the market is heading direction, what 

stake/investment size to choose and when to open and close a position. They must make these 

judgments and decisions facing a number of sources of public market information, which may or 

may not be relevant.  

We propose a decision-based strategy mapping framework (DSM) to enable us to develop an 

EWA model for traders based on their real-world trading data. DSM creates the concept of 

'possible scenarios.' In each scenario, individuals are assumed to have only one decision to make. 

For example, in a ‘stake size’ scenario, traders are assumed to believe that the stake size they select 

when they place a trade is the one factor that will affect their eventual return. Similarly, in a 

‘buy/sell’ scenario, the traders are assumed to believe the decision of choosing to buy or sell is the 

one thing that will affect their eventual return. In this way, DSM creates a limited strategy space, 

which allows us to develop behavioral learning models based on real-world trading data. 

Subsequently, we are able to assess to what extent the behavioral model we develop actually fits 

the trading data; i.e., thus, enabling us to assess which of the scenarios best represents the factors 

that traders consider when placing their trades. This allows us to use an individual’s trading data to 

estimate their behavioral characteristics and the manner in which they learn for their previous 

experience; such as the weight they place on foregone payoffs. We are then able to examine the 

relation between the behavioral characteristics of individual traders and their behavior and trading 

performance.  

We find that traders think that their decisions on stake size are influential in terms of the 

percentage profit they achieve. In addition, we find that those traders with  higher mean stake sizes 

who trade more frequently tend to put greater weight on foregone payoffs for unchosen strategies 

(i.e., opportunity costs). Rational economic agents are generally considered to actively consider 

opportunity costs when making decisions. Consequently, our results suggest that those traders who 

behave like rational agents tend to trade more actively.  An interesting finding is that those traders 

who are more rational do not achieve better trading performance. In addition, traders who start 

trading with a preference for lower stake sizes achieve overall better trading performance (higher 

total profit and lower volatility of returns). 

In this study, we employed data from the spread trading market to undertake our analysis 

since it offers a number of advantages over data from conventional financial markets. In particular, 

the short-term nature of spread trading enables us to ensure that all trades which we examine have 

been closed, thereby ensuring that all returns are realized and no estimation of gains is required. In 

addition, since 75% of the trades are closed within two hours and the median holding time is 

around 25 minutes, fewer changes occur in the personal status of the trader and fewer changes arise 

in the environment than is the case for stock market investment. Furthermore, spread trading 



Chapter 4 

134 

provides prompt and deterministic feedback concerning the decisions of traders, and this is 

important to help traders learn from experience and for the application of behavioral learning 

models. 

This is, to our best knowledge, the first study to use empirical trading data to provide 

evidence that the behavioral characteristics of individuals employed in learning models are 

significantly related with their trading behavior and performance. More importantly, the DSM 

framework provides a novel approach to estimate the behavioral characteristics, such as the degree 

of rationality, which cannot be observed and measured directly from the empirical data. Also, the 

DSM framework can be used with other behavioral models, in addition to the EWA model, to 

estimate further characteristics depending on the research topics in in future research. 

The remainder of the paper is structured as follows. In section two, we discuss the literature 

associated with the influence of individual characteristics on trading behavior and on the degree to 

which traders learn from their previous experience to change their behavior. We also briefly 

examine the literature introducing the three learning models which we examine in the paper. We 

describe the data and the methodology in section three. In section three, we present our results. We 

discuss the results in section five, and this is followed by the conclusion.  

4.2 Literature 

4.2.1 The influence of individual characteristics on trading behavior 

A large body of literature provides evidence of the relationship between trading behavior and 

demographic characteristics, such as age, gender, marriage status, and wealth. For example, males 

have been shown to be more risk seeking when making financial decisions when their entire 

portfolio of assets, including real assets, stock, and bond investment, is considered (Bajtelsmit et al., 

1999; Bernasek and Shwiff, 2001; Pålsson, 1996). In addition, it has been shown that risk aversion 

associated with investment increases with age (Pålsson, 1996). For example,  Goetzmann and 

Kumar (2008) show that younger investors do not tend to diversify their portfolios to the same 

extent as older investors and  Greenwood and Nagel (2009) found that younger mutual fund 

managers take higher risks by having more inclination to chase trends and to heavily invest in 

technology stocks.  

Marriage status, education level, income level, wealth, and occupation have also all been 

shown to be associated with differences in investment behavior. For example, Jianakoplos and 

Bernasek (1998) find that single women are more risk averse than single men and married couples. 

Goetzmann and Kumar (2008) show that the level of portfolio diversification is lower among low-

income and less-educated investors. Similarly, Hartog et al. (2002) suggest that the level of risk 

aversion decreases as incomes and wealth increase. They also provide evidence that entrepreneurs 
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are more risk seeking than employees and public sector employees are more risk averse than those 

in private sectors.   

Individual behavioral characteristics cannot be directly observed from survey and trading 

data, without further analysis. However, these characteristics may also affect trading behavior. For 

example, the  disposition effect describes the reluctance of investors to realize losses (Dhar and 

Zhu, 2006; Odean, 1998b) and cannot be measured directly from trading records. Rather the 

disposition effect is estimated using a formula which requires one to measure differences between 

the tendency to realize gains and losses. The discovery of the disposition effect is important since 

investors suffering higher disposition effect are less likely to make rational decisions and as a result 

generally display inferior performance (Seru et al., 2010).  

We aim to explore other behavioral characteristics of individual traders which are used as 

parameters of the EWA model. Given that individuals receive a payoff as a return and have a 

limited number of strategies to choose repeatedly, the EWA model describes the process to update 

the attractions of the strategies, which is positively influential on the likelihood of choosing a 

strategy, in the individuals' minds based on the payoffs. These parameters are estimated with 

empirical trading data and represent how traders learn from their experience. For example, the 

parameter of the weight on foregone payoffs represents the degree to which an individual’s future 

behavior is affected by the payoffs they would have secured on unchosen strategies in the past 

(opportunity costs) in adjusting their future behavior. We explain and discuss the details of the 

parameters of the EWA model in the methodology section. To our best knowledge, this is the first 

attempt to estimate the behavioral characteristics with empirical trading data and investigate the 

relationship between the behavioral characteristics and the trading behavior/performance.  

4.2.2 The influence of experience: learning effect  

There is a rapidly growing literature exploring the degree to which individual investors 

change their behavior and performance through time. Some studies have examined the influence 

which past performance (e.g.,  returns and volatility) has on subsequent investment behavior (Choi 

et al., 2009; Glaser and Weber, 2009; Kaustia and Knüpfer, 2008; Thaler and Johnson, 1990). 

Others investigate the influence accumulated experience (e.g., number of trades, the time trading 

markets) has on behavioral changes and on performance (Dhar and Zhu, 2006; Feng and Seasholes, 

2005; Gloede and Menkhoff, 2011; Linnainmaa, 2011; List, 2004; Nicolosi et al., 2009; Seru et al., 

2010).   

4.2.2.1 The influence of past performance on future behavior 

Past returns and their volatility have been shown to be influential on individual’s subsequent 

financial behavior. For example, Thaler and Johnson (1990) found that a loss is more tolerable after 
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earlier gains (the ‘house money effect’) and individuals are more inclined to take more risk after 

prior gains. Similarly, empirical studies show that previously good performance arising from 

trading encourages individuals to engage in the greater trading activity. For example, Kaustia and 

Knüpfer (2008) found that IPO investors in the Finnish stock market who had higher past returns 

were more likely to subscribe to the next IPO than those with lower past returns. Similarly, Choi et 

al. (2009) show that individuals with experienced higher returns or lower volatility of returns from 

their 401(k) retirement fund are more likely to increase their 401(k) saving rate. Equally, Glaser 

and Weber (2009) found that higher past returns led individual investors to increase their level of 

trading activities, (i.e., portfolio turnover and number of transactions). They also found, in line with  

Liu et al. (2010), that higher past returns led investors to take greater risk (e.g., buying higher-risk 

stocks and holding a less diversified portfolio). Further evidence that previous experience 

influences future behavior was presented by Malmendier and Nagel (2009), who found that 

individuals who have experienced high inflation periods tend to predict higher inflation rates in the 

future and are more prone to borrowing and not to take nominally fixed-rate investments.  

4.2.2.2 The influence of accumulated experience on performance 

Empirical evidence suggests that experienced traders, who place more trades or stay active in 

markets for longer periods, suffer less behavioral bias and achieve better trading performance. It is 

argued that these traders accumulate knowledge when they trade or remain materially interested in 

these markets and this enables them to improve their subsequent performance. For example, List 

(2004) found that inexperienced individuals are more prone to the endowment effect, the tendency 

to overvalue goods merely because of ownership. Dhar and Zhu (2006),  Feng and Seasholes (2005) 

and Seru et al. (2010) showed that the disposition effect is alleviated when traders have more 

experience, and Liu et al. (2010) showed that trading experience mitigates narrow framing, the 

tendency to evaluate the risk of a new event in isolation without taking other risks into account. 

Similarly, Gloede and Menkhoff (2011) found that financial professionals with more working 

experience exhibited less overconfidence.  

There are several studies reporting a significant positive relationship between investment 

returns and experience  (e.g., Feng and Seasholes (2005), Seru et al. (2010) Nicolosi et al. (2009), 

Linnainmaa (2011)). In contrast to the above studies showing that experience leads to better returns 

and lower behavioral biases, Chiang et al. (2011) found that the returns of IPO investors decreased 

the more auctions in which they participated. A possible reason for the inconsistent results is the 

nature of IPO auctions which provides a limited trading opportunity (i.e., opportunity to learn and 

to apply one’s experience) compared with general stock market investment.   

In summary, experience has been shown to influence individual investment behavior.  
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4.2.3 Behavioral models of learning  

Psychologists and experimental economists have developed several behavioral models, 

based on the results of laboratory experiments, to explain the process by which individuals learn to 

improve their performance through time. We briefly introduce these below: 

4.2.3.1 Learning approaches: reinforcement and belief learning  

There are two approaches which have been developed to describe individual learning 

behavior: belief learning and reinforcement learning. Belief learning, which is consistent with the 

rational assumptions underlying the neoclassical economic theories, suggests that individuals learn 

(i.e., update their beliefs concerning the probability of events) by following the Bayesian rule 

(Charness and Levin, 2003). That is, individuals update prior probability estimations conditional on 

new information or events. On the other hand, reinforcement learning suggests that individuals 

make decisions based on previous outcomes. In particular, strategies which have led to better 

outcomes in the past are more likely to be chosen.  

The results of laboratory experiments suggest that reinforcement learning can explain most 

of the dynamics of human behavior (Charness and Levin, 2003; Roth and Erev, 1995), but that 

some individuals behave in a manner consistent with Bayesian learning. For example, Bruhin et al. 

(2010) showed that around twenty percent of subjects behaved in a manner similar to rational 

agents in attempting to maximize expected values. Payzan-LeNestour and Bossaerts  (2014) 

reported that subjects followed belief learning in executing investment tasks if they were told 

explicitly that the investment values would change regularly during the experiment, but their 

behavior was consistent with reinforcement learning when such instructions were not given.  

4.2.3.2 Experience-Weighted Attraction Model   

The experience-weighted attraction (EWA) model has been developed to integrate the 

features of the major learning models discussed above (Camerer and Ho, 1999). The EWA 

describes the learning process by which individuals choose strategies based on prior results. The 

subjects in the EWA model experiments have a limited number of strategies to choose. After 

choosing a strategy, a subject receives a payoff as a return. It is assumed that the attractions of the 

strategies in the subjects’ minds are then updated based on the payoffs. The strategies with higher 

attraction are more likely to be chosen in the future. The core of the EWA model is the rules 

applied to update these attractions.  

Camerer and Ho (1999) indicate that both belief-based models and choice reinforcement 

models can be considered to be special cases of the EWA model, by controlling how strategies are 

reinforced. The first unique feature of the EWA model is that it controls how strategies which are 

not selected are reinforced with the parameter of the weight on the foregone payoff. The 
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reinforcement model does not reinforce unchosen strategy at all, while the belief model treats 

chosen and unchosen strategies equally. The EWA model takes the middle ground with this 

parameter. The weight on foregone payoff also indicates the degree to which an individual 

resembles a rational economic agent since the belief models assume individuals update probability 

estimation of events by following the Bayesian rule (i.e., taking into account all events including 

both chosen and unchosen strategies). This is an approach which is consistent with the rational 

assumptions underlying neoclassical economic theories (Charness and Levin, 2003; Payzan-

LeNestour and Bossaerts, 2014).  

Another unique feature of the EWA model is that it includes the initial attractions of the 

different strategies as a parameter to be estimated from data. Reinforcement models have no 

concerns about initial attractions, while belief models assign initial attractions as expected payoffs. 

Initial attractions represent the prior belief and personal preference for strategies. For example, 

traders who have a high initial attraction for a ‘lower stake size’ strategy prefer to place small stake 

sizes in their first trades.  

A key difference between reinforcement and belief models is the extent to which attractions 

either average or cumulate. Reinforcement models calculate the cumulative attractions from the 

first trade in evaluating strategies, while belief models consider the average attractions. For 

example, if a trader chooses a strategy three times and receives three payoffs (say, 1, 2 and 9), the 

cumulative attraction is derived from the cumulative payoff of 1+2+9=12 and the average attraction 

is from the mean of the payoffs, 4. We skip the formulas transforming payoffs to attractions in this 

example for simple illustration (these are discussed in section 3.2.1). It is clear that both the 

cumulative and average attractions could be valuable in evaluating strategies, and the EWA model 

mixes them by including the parameter of the extent to which attractions are either average or 

cumulatively-based.  

The EWA model also describes the phenomena that individuals may forget earlier payoffs 

and beliefs. This is achieved by including the depreciation rate of previous attractions. This 

captures the decreasing weight placed on payoffs from the earlier trades compared to more recent 

trades.  Similarly, the more historical experience of individuals is discounted through the 

depreciation rate of experience. The EWA model also includes a parameter for prior experience, 

i.e., the number of periods/trades experienced before the data is collected. The parameter of the 

sensitivity to attractions allows traders to have a different response to the same level of attractions 

in the EWA model.  

In sum, the EWA model incorporates both reinforcement learning and rational belief-based 

learning into one model, and the EWA model allows further comparison and parameter estimation.  

We estimate the value of the EWA parameters from the trading data of each trader. That is, 

we find out the best values of the parameters of the EWA model that enable it to describe best the 
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strategy selection of a specific trader from the trades placed by that trader. For this specific trader, 

these values represent how strategy selection is formed. For example, if the weight on the foregone 

payoffs of a trader is estimated to be zero, we know that this trader is only affected by the payoffs 

from the selected strategies. Similarly, a high initial attraction for the low stake size strategy could 

be a sign of caution, since that trader would prefer to place small stakes in early trades rather than 

investing boldly. Consequently, the estimated parameters of the EWA model represent the learning 

behavioral characteristics of individuals in forming strategies to cope with changing environment. 

Such characteristics cannot be observed directly from demographic and trading data, and can only 

be developed by estimating learning models. Table 23 shows the characteristics estimated with 

EWA model in this study.  

Table 23: Behavioral characteristics estimated by EWA model  

Notation Behavioral characteristic 

A Initial attraction of strategies 

N Initial experience 

𝜙 Depreciation rate of previous 

attraction 

𝜌 Depreciation rate of previous 

experience 

𝛿 Weight of foregone payoffs  

𝜆 Sensitivity of players to 

attractions 

𝑘 The extent to which 

attractions are averaged or 

cumulated 

This table lists the parameters of the EWA model. Each parameter represents a behavioral characteristic 

which captures a feature of individual behavior in the learning process.  

4.2.4 Hypotheses 

As discussed above, there is clear evidence that trading behavior is influenced by 

demographic characteristics, such as gender and age (Bernasek and Shwiff, 2001; Goetzmann and 

Kumar, 2008; Greenwood and Nagel, 2009; Jianakoplos and Bernasek, 1998; Pålsson, 1996). We 
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estimate the behavioral characteristics of a trader using the EWA model with the trading data of the 

trader. Since the behavioral characteristics, such as the weight of foregone payoffs, initial 

attractions of strategies and the depreciation rate of previous attractions, describe how the 

experience of a trader affects the current decision making process, we believe that behavioral 

characteristics are also likely to influence trading behavior. This view is reinforced by the fact that 

it has been shown that different individuals change their behavior in different ways based on their 

experience (Chiang et al., 2011; Seru et al., 2010; Thaler and Johnson, 1990). We examine the 

effect of the behavioral variables (as shown in Table 23),  on the specific aspects of trading 

behavior which are  widely investigated in the literature (Glaser and Weber, 2009; Y.-J. Liu et al., 

2010) (i.e. stake size, holding time and trading frequency). We examine this conjecture by testing 

the following hypotheses:  

H1a: The relation between the behavioral characteristics in the learning models of a trader 

and their average stake size is significant. 

H1b: The relation between the behavioral characteristics in the learning models of a trader 

and their average holding time is significant. 

H1c: The relation between the behavioral characteristics in the learning models of a trader 

and their average trading frequency is significant. 

Recent studies have examined the relationship between trading performance and the 

accumulated experience of individuals. The results suggest that individuals can learn from 

experience to improve their profit (Nicolosi et al., 2009; Seru et al., 2010). We believe that a range 

of individual behavioral characteristics might affect the manner and degree to which traders learn. 

In addition, we believe that these are likely to affect their subsequent trading performance because 

these behavioral characteristics are estimated with the EWA model which captures human learning. 

We examine this conjecture by testing the following hypothesis:   

H2a: The relation between the behavioral characteristics in the learning models of a trader 

and their total profit performance is significant. 

H2b: The relation between the behavioral characteristics in the learning models of a trader 

and their volatility of returns is significant. 

H2c: The relation between the behavioral characteristics in the learning models of a trader 

and their Sharpe ratio is significant. 

Disposition effect is a type of behavioral bias and indicates the tendency for a trader to 

realize gains faster than losses (Odean, 1998b). Recent studies show that traders can reduce their 

disposition effect and improve their trading performance when they accumulate trading experience 

(Dhar and Zhu, 2006; Feng and Seasholes, 2005; Seru et al., 2010). As the behavioral 
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characteristics which we estimate with the EWA model represent the way individuals’ learn from 

experience, we examine the relation between disposition effect, a commonly behavioral bias, and 

the behavioral characteristics with the following hypothesis:  

H3: The relation between the behavioral characteristics in the learning models of a trader 

and their disposition effect is significant. 

4.3 Methodology 

4.3.1 Data 

The data used in this study was collected from a large spread-trading exchange platform 

based in the UK Since the 1990s, spread trading has developed quickly in the UK as an important 

derivative market, due to the relatively low transaction costs, the tax-free status of gains and the 

ease of access to international markets (Brady and Ramyar, 2006; Paton and Williams, 2005). 

Traders can either buy or sell the market (e.g., an index) based on their individual prediction of 

likely market movements. The investment amount and how many points the index rises or falls 

determines the profit and loss of each trade. For example, a trader might ‘buy the index’ at, say, £5 

per point if he predicts that the FTSE 100 will rise. If the FTSE 100 has risen 20 points when the 

trader closes his trade, the profit of the trade is £100 (£5 x 20), but if the FTSE 100 has fallen 10 

points when the trade is closed, the trader makes a £50 loss. (£5 x 10) Spread traders also can ‘sell’ 

the market, in which case profits are made if the market falls. 

Compared with traditional stock markets, spread trading data offers three advantages when 

using learning models to estimate the behavioral characteristics of traders. First, spread trading is 

short-term, and most trades are closed within one hour (Gulthawatvichai et al., 2013). Hence, all 

returns are realized, and no estimation of gains is required. By contrast, individuals generally buy 

shares for the long term, and their value is tied up with potential future dividends. Returns of stock 

purchases are not definite until they are sold and researchers, therefore, often need to estimate the 

return of a stock purchase. These estimates can be subject to error. For example, Seru et al. 

(2010)’s and Nicolosi et al. (2009)’s estimate stock returns over 20-and 30-day periods, 

respectively, from the date of purchase by assuming all shares are sold in the end of the periods, 

Barber and Odean (2002) make even stronger assumptions in estimating monthly returns, namely, 

that  all trades occur on the last day of the month. By contrast, we only examine spread trades that 

have been closed and the returns realized, with no estimation required. Second, there are fewer 

external factors affecting the decisions of spread traders. In particular, since most spread trades are 

closed in a very short period, the personal situation of a trader and the economic and political 

environment are likely to be invariant during the holding time. By contrast, due to the greater time 

periods involved, stock market investors may sell stocks due to an emergent need for cash or as a 
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result of a change in the economic and political environment. The relative lack of external factors 

in spread trading markets means that the trader’s view of the likely future direction of the market is 

the primary focus of their decision. Third, thanks to the short-term nature of spread trading, traders 

receive feedback concerning the decisions they have made in a timely and unambiguous fashion. 

This is an important component for effective learning to take place (Skinner, 2014)and, based on 

their experience, traders can refine their subsequent trading decisions. However, the feedback 

received by investors in stocks is more implicit, since stocks are often held for several months and 

values of stocks always rely on evaluations concerning what may happen in the future.  This lack of 

immediate, unambiguous feedback can hinder the learning process (Skinner, 2014). Our aim is to 

estimate traders’ behavioral characteristics based on the manner in which they learn to change their 

behavior (using the EWA learning model). The less ambiguous route to learning in the spread 

trading market makes the employment of this data particularly valuable. 

We examine all the 59,927 closed trades of 1,005 individual spread traders with a large 

spread-trading broker between October 2003 and March 2013. Since the accuracy of parameter 

estimation is highly related with the number of data points, we only include those traders with more 

than the median number of trades (46). This cutoff is used as learning experiments discussed in 

Camerer and Ho (1999)’s study involve subjects making more than 40 choices.  

We collected the following information relating to each closed trade: an individual’s 

identification number, the times the trade was opened and closed, the opening and closing prices, 

whether the trader bought or sold the market and the amount invested. 

Descriptive statistics relating to the data are displayed in Table 24. The distribution of a 

trader’s active period (i.e., the time between their first and last trade in the data period), is right-

skewed (median: 306.8 days, mean: 556.4 days, third quartile: 846.9 days), suggesting that some 

traders continue to trade considerably longer than others. The descriptive statistics also indicate that 

only a minority of traders (14%) make profits and that the opening and closing of an individual 

trade takes place in a short time interval: half of the trades being closed within 25.2 minutes of their 

opening, and over 75% of all trades being closed within 3 hours. 
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Table 24: Descriptive summary of data 

 Mean 1st Qu Median 3rd Qu 

Panel A (1005 traders)     

Age 42.8 33.0 41.0 51.0 

Traders’ Total Number Trades  59.6 52 59.0 66.0 

Traders’ Active Period (day) 556.4 88.7 306.8 846.9 

Traders’ Total Profit/Loss -1026 -639 -234 -82 

Total stake size 226 64 86 185 

Panel B (59927 trades)     

Holding time (minute) 1111.2 5.7 25.2 166.9 

Stake size 4.1 1.0 1.0 3.0 

Profit point -1.0 -12 1.0 9.0 

This table presents a descriptive summary of the data. There are 908 (90.3%) male traders.  

4.3.2 Learning models 

As shown in section 2, there is strong evidence that an individual’s behavior is affected by 

their previous personal experiences and performance. Learning models describe how individuals 

respond to their experience, and we intend to use what has been shown to be the most 

comprehensive of these models to discern the behavioral characteristics of traders. In particular, we 

employ the experience weighted attraction (EWA) model that combines the features of the two 

major learning approaches, reinforcement learning and belief learning. This has been shown to 

provides better explanatory and predictive power than either of its two constituent learning 

approaches alone (Camerer and Ho, 1999).  

The nonlinear interaction of parameters in the EWA model is the reason why EWA, as a 

model of human learning, is potentially superior in capturing behavioral characteristics of 

individuals to the linear methods widely used in the literature. 
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4.3.2.1 Experience Weighted Attraction (EWA) Model 

4.3.2.1.1 EWA model notation 

In order model the behavior of spread traders using the EWA model, it is necessary to make 

the assumption that the payoff of one trader is not affected by the strategies of other traders. This is 

a reasonable assumption since the movement of underlying markets on which the payoffs to spread 

traders is based largely on the independent actions of spread traders.  

Individual traders are indexed by i and each trader i has m strategies. A ‘strategy’ could be 

holding a position for a short time or putting a high stake on a trade. That is, the strategy space of 

trader i is 𝑆𝑖 = {𝑠𝑖
1, 𝑠𝑖

2, … , 𝑠𝑖
𝑚}. The actual strategy used by trader i in the tth trade is 𝑠𝑖(𝑡). The 

payoff of trader i from the tth trade is 𝜋𝑖(𝑠𝑖(𝑡)). We modify the payoff function from the original 

version of EWA by not including the strategies of other traders, since we assume that the strategy 

of one trader do not affect the payoff of another trader, as discussed above. Each strategy 𝑠𝑖
𝑗
, 𝑗 ∈

{1,… ,𝑚}, for trader i after the tth trade, is assigned a numerical attraction, 𝐴𝑖
𝑗
(𝑡), and strategies 

with a higher attraction are associated with a higher probability of being chosen. 𝑁(𝑡) is the 

experience of trader i after the tth trade and is one of the core variables which are updated for each 

trade. If learning takes place in accordance with the EWA model then 𝑁(𝑡)  is updated for each 

trade: 

𝑁(𝑡) =  𝜌 ∙ 𝑁(𝑡 − 1) + 1, 𝑡 ≥ 1 (26)  

The parameter 𝜌 is a discount factor representing how much we depreciate the impact of previous 

experience.  

The other core variable which we update for each trade is the level of attraction, 𝐴𝑖
𝑗
(𝑡), which 

depends on the payoff yielded by a strategy. The hypothetical payoffs that unchosen strategies 

would have yielded are weighted with a parameter 𝛿. And the actual payoffs which are earned from 

the chosen strategy 𝑠𝑖(𝑡) are weighted by 1 − 𝛿 , which makes a total weight of 1. Hence, the 

weighted payoff can be written as [𝛿 + (1 − 𝛿) ∙ 𝐼(𝑠𝑖
𝑗
, 𝑠𝑖(𝑡))] ∙ 𝜋𝑖(𝑠𝑖(𝑡)) , while the indicator 

function 𝐼(𝑥, 𝑦) equals 1 if 𝑥 = 𝑦 and 0 otherwise.  

To update the level of attraction, 𝐴𝑖
𝑗
(𝑡), we sum up a depreciated, experience-weighted previous 

attraction 𝐴𝑖
𝑗
(𝑡 − 1) and the weighted payoff of the tth trade, and subsequently normalize with the 

updated experience weight: 

𝐴𝑖
𝑗(𝑡) =  

𝜙 ∙ 𝑁(𝑡 − 1) ∙ 𝐴𝑖
𝑗(𝑡 − 1) + [𝛿 + (1 − 𝛿) ∙ 𝐼(𝑠𝑖

𝑗
, 𝑠𝑖(𝑡))] ∙ 𝜋𝑖(𝑠𝑖(𝑡))

𝑁(𝑡)
 

(27) 

,where 𝜙 is a discount factor depreciating previous attraction.  
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We follow Camerer and Ho (1999) and use the logit function to transform the level of 

attraction to the probability of choosing strategies. In particular, the probability of choosing 

strategy j for the t+1th trade of trader i is given by:  

𝑃𝑖
𝑗(𝑡 + 1) =

𝑒λ∙𝐴𝑖
𝑗(𝑡)

∑ 𝑒λ∙𝐴𝑖
𝑘(𝑡)𝑚

𝑘=1

 

(28)  

The parameter λ  represents the sensitivity of traders to attractions. This could vary 

considerably among traders due to both economic and psychological reasons, such as personal 

wealth, motivation in trading and perception of awards.  

There are six parameters to be estimated: 𝐴𝑖
𝑗
(0), 𝑁(0), 𝜑, 𝜌, 𝛿 and λ. 𝐴𝑖

1(0), also shorted as 

𝐴,  is the initial attraction of the first strategy for trader i. 𝑁(0) is the estimated prior experience 

which a trader already had before the data was collected, 𝜙 is the depreciation rate of previous 

attraction, and 𝜌  is the depreciation rate of previous experience. 𝛿  is the weight of unchosen 

strategies and λ is the sensitivity to attractions.  

4.3.2.1.2 EWA parameter interpretation 

Weight of foregone payoffs, δ  

The most important feature of the EWA model is the parameter, δ, which is used to control 

how unchosen strategies are reinforced. In the reinforcement model, the chosen strategy is 

reinforced according to the payoff, and unchosen strategies are not reinforced. The EWA model 

reinforces the unchosen strategies based multiplying δ by the payoff which would have yielded. 

That is, reinforcement models do not reinforce unchosen strategies (i.e., δ =0), while the EWA 

model reinforces unchosen strategies based on the payoffs of these unchosen strategies multiplied 

by δ. If δ is greater than zero, unchosen strategies are reinforced to a certain extent.  

The δ parameter demonstrates clearly the difference among EWA, reinforcement and belief 

models in capturing the law of actual effect and the law of simulated effect. These are the two basic 

principles of learning. Many learning experiments, mainly with animal subjects, show that the 

chosen strategies with superior payoffs are more likely to be chosen subsequently. This is called the 

law of actual effect as the rewards for actual choices affect subsequent choices. The law of 

simulated effect states that subsequent choices could be affected by foregone rewards. The 

unchosen strategy may be considered as simulated successes if high payoffs would have been 

yielded had a particular strategy been chosen. Simulated successes then could reinforce unchosen 

strategies and increase the probability of their being chosen in the future. The experiments 

supporting this simulated effect principle have mostly been conducted with human subjects.  
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Hence, the key to distinguishing different learning models is the empirical explanation power 

of the law of actual effect and the law of simulated effect. The reinforcement model claims that 

only actual payoffs are influential (δ = 0), while belief models consider actual and simulated effects 

equally (δ = 1). The EWA model allows more flexibility and determines δ based on the data.  

Furthermore, the parameter δ can be considered as a proxy measure of the extent to which a 

trader behaves like a rational economic agent. This is the case since the core concept of belief 

models is that probability estimates of events are updated by following the Bayesian rule, which is 

consistent with the rational assumptions underlying the neoclassical economic theories (Charness 

and Levin, 2003; Payzan-LeNestour and Bossaerts, 2014).  

Depreciation rate of previous attraction and experience, 𝝓, ρ and k 

The parameter 𝜙  depreciates the level of attraction, 𝐴𝑖
𝑗
(𝑡)  of a payoff. This parameter 

captures the decreasing weight placed on more historical trades (cf. to more recent trades). 

Similarly, the parameter ρ depreciates the experience measure N(t). Consequently, these two 

parameters are used to describe the cognitive phenomena that in a changing environment 

individuals discount old experience and forget prior beliefs.  

To understand how 𝜙 and ρ control the decay in the strength of prior beliefs, we consider the 

numerator and the denominator of the equation (27) in terms of reinforcement and belief models, 

respectively. The numerator is a running total of depreciated attraction: 𝜙 ∙ 𝑁(𝑡 − 1) ∙ 𝐴𝑖
𝑗(𝑡 − 1) +

[𝛿 + (1 − 𝛿) ∙ 𝐼(𝑠𝑖
𝑗
, 𝑠𝑖(𝑡))] ∙ 𝜋𝑖(𝑠𝑖(𝑡)). The denominator represents accumulated and depreciated 

experience: 𝜌 ∙ 𝑁(𝑡 − 1) + 1. In reinforcement models, the attractions are only affected by payoffs, 

not by experience; i.e. ρ = 0 and the denominator is always one. Consequently, reinforcement 

models monitor the running total in the numerator while the experience (the denominator) is never 

updated. On the other hand, belief models, which require 𝜙 = ρ, also monitor the running total of 

attraction (in the numerator) but divide by the accumulated experience (represented by the 

depreciated number of trades). Consequently, in evaluating strategies, the reinforcement models 

consider the cumulative (and depreciated) attractions from the first trade, while belief models look 

at the average (and depreciated) attractions. Both cumulative and average attractions could be 

helpful in evaluating strategies, and the EWA model mixes them by normalizing depreciated 

cumulative attraction by depreciated experience.  

Camerer et al. (2002) use the k notation to make it clearer that the key difference is the 

extent to which attractions either average or cumulate: 𝑘 = 1 −
ρ

𝜙
. The equation (26) can be 

rewritten as: 
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𝑁(𝑡) =  𝜌 ∙ 𝑁(𝑡 − 1) + 1 = (1 − 𝑘) ∙ 𝜙 ∙ 𝑁(𝑡 − 1) + 1, 𝑡 ≥ 1 (29)  

When k = 1, the denominator of the equation (27) (i.e., 𝑁(𝑡)) is always one as we discuss 

above for reinforcement models. In this case, attractions of strategies, which are updated with the 

equation (27), can cumulate without any boundary. Consequently, the accumulated attraction of a 

strategy could be much larger than that generated from the highest payoff. When k = 0, the 

denominator of the equation (27) is the depreciated number of trades (representing the accumulated 

experience). Therefore, attractions are weighted averages of lagged attractions and cannot grow 

outside the bounds of the payoffs.  

Initial attractions 𝑨𝒊
𝟏(𝟎) and 𝑵(𝟎), 

The term 𝐴𝑖
𝑗
(0) represents the initial attraction of strategies. Belief models require the initial 

attraction of strategies to be derived from prior beliefs, while EWA model leaves them as 

parameters to be estimated based on data. The parameter 𝑁(0)  is the prior experience and 

represents the strength of the initial attractions. A small 𝑁(0) means that the effect of the initial 

attractions disappear rapidly, while the effect of the initial attractions persists for a long time if 

𝑁(0) is large.  

Sensitivity to attractions, λ 

The parameter λ represents the sensitivity to attractions. Traders could have a different 

response to the same level of attractions due to personal status, which affects the probability of 

choosing strategies 

4.3.2.2 Reinforcement model 

In order to estimate traders’ behavior using the reinforcement model we estimate the EWA 

model with δ=0, ρ=0 and N(0)=1 (Camerer and Ho,(1999) . The EWA model works like choice 

reinforcement models when δ=0, ρ=0 and N(0)=1, where N(0) represents the initial experience and 

setting N(0) as 1 indicates the lack of prior experience. 

4.3.2.3 Belief model 

In order to estimate traders’ behavior using the belief  model, we estimate the EWA model 

with δ=1, ρ=ψ(Camerer and Ho,(1999).  

4.3.2.4 Parameter Estimation  

In order to estimate the parameters of the EWA model, we use the log-likelihood function 

from Camerer and Ho (1999) with minor modification since we estimate the parameters for each 

individual trader rather than treating all traders collectively as a representative agent: 
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𝐿𝐿(𝐴𝑖(0), 𝑁𝑖(0), 𝜑𝑖, 𝜌𝑖, 𝛿𝑖 , λ𝑖) =  ∑ln (∑𝐼 (𝑠𝑖
𝑗
, 𝑠𝑖(𝑡)) ∙ 𝑃𝑖

𝑗(𝑡)

𝑚

𝑗=1

)

𝑇

𝑡=1

,  

(30)  

where 𝑃𝑖
𝑗(𝑡) is the probability of choosing strategy j for the 𝑡𝑡ℎ trade of trader i, 𝑠𝑖(𝑡) is the 

actual strategy chosen by trader i for the 𝑡𝑡ℎ trade, 𝑠𝑖
𝑗(𝑡) is the predicted strategy for the 𝑡𝑡ℎ trade 

of trader i, and 𝐼(𝑠𝑖
𝑗
, 𝑠𝑖(𝑡)) equals to 1 if the model prediction is correct, which means 𝑠𝑖

𝑗
= 𝑠𝑖(𝑡), 

and 0 otherwise. In this study, we limit the number of available strategies to two, so 𝑚 is always 

two. The basic idea behind this log-likelihood function is to add up the predicted probability of 

those correct predictions for a given set of parameters. We use zero instead of ln(0) in rare cases. 

We use the maximum-likelihood estimation method to search for the parameters which maximize 

the LL function. We tried a variety of starting points to avoid converging to local optima. 

 

4.3.3 Decision-based Strategy Mapping Framework (DSM)  

The aim of DSM is to solve the unlimited strategy problem in applying learning models to 

empirical trading data. The basic idea is to assume that in one scenario all traders believe that only 

one (or more) type of decision is relevant to their trading outcomes. Using our data we are later 

able to assess to what extent this is a valid assumption. 

This has the advantage of enabling us to determine the behavioral strategies based on real-

world trading data, and this is achieved by assuming that the traders face a limited number of 

strategies (i.e., limited strategy space) under certain assumptions. We can have as many scenarios 

as we want to cover all potential decisions given the available data.  

A decision is the basic unit of the modeling process and could be a decision concerning, for 

example, stake size or holding time. The level of a decision is the number of available options for a 

given decision (usually ≥ 2). Hence, the number of available strategies in one scenario depends on 

the number of the relevant decisions and the level of the decisions. For example, if all traders are 

assumed to believe that the only relevant decision is whether to buy or sell, they only have two 

possible strategies available in the scenario: buy or sell. Consequently, the number of available 

strategies is limited under certain assumptions. In one scenario, the combination of decisions forms 

the strategies. The level of a decision, b, is the number of available options for one decision. The 

number of relevant decisions in one scenario is 𝑑. The number of available strategies is 𝑏𝑑. Hence, 

the strategy space of trader 𝑖 is 

𝑆𝑖 = {𝑠𝑖
1, 𝑠𝑖

2, 𝑠𝑖
3, … , 𝑠𝑖

𝑚}, where 𝑚 = 𝑏𝑑. 



Chapter 4 

149 

For example, in a scenario in which the only relevant decision is to buy or sell, the number 

of available strategies is 𝑏𝑑 = 21, where 𝑏 is 2 because there are two options: buy and sell, and 𝑑 is 

1 as there is only one relevant decision in this scenario.   

4.3.3.1 Decisions 

We examine five types of decision made by traders concerning an individual trade: the stake 

size to invest, whether to buy or sell, the holding time, length of time traders decide to hold 

positions showing a profit (profit time) and length of time traders decide to hold positions showing 

a loss (loss time). In order to demonstrate this methodology, we assume that b = 2 for all decisions 

faced by the spread traders in our study.  

In the decision relating to whether to take a short or long position the strategies naturally fall 

into two: whether to buy or sell. For those decisions involving time and money, some conversion is 

necessary. In particular, we convert all possibilities into two options by classifying them into two 

groups based on the median for a given trader. For example, a decision by trader i concerning stake 

size for a given trade is regarded as a choice of whether to invest more or less than the median of 

the stake size of all trades placed by trader i. In this manner, an infinite number of possible 

strategies can be transformed into a limited, tractable number. This enables us to develop some 

understanding of the behavioral strategies used by traders and allows us to use the data from all 

traders (since the approach used guarantees that all available strategies which we examine are 

available to all traders, i.e., each trader can decide whether to stake more or less than their median 

amount on a given trade) .  

For example, a trader is assumed to make a decision on a given trade of whether to invest 

above or below their median stake size. Let us assume that they decide to stake more than the 

median level and this trade resulted in profit. Consequently, if the trader learns by reinforcement, 

we would expect that their probability of selecting the same strategy (higher than median stake size) 

will increase on the next trade.  

4.3.3.2 Comparison among scenarios 

An important feature of DSM is its ability to enable us to assess which scenario best fits the 

real trading data. Since the strategy space is limited in a scenario under DSM, we can estimate 

learning models using our empirical trading data and examine the explanatory power of the models. 

In particular, we can report model fitness measures, such log-likelihood, to compare how well 

different models describe the data. Consequently, if the EWA model estimated for the ‘stake size’ 

scenario (i.e., stake size is the only relevant decision considered by traders) is shown to fit the 

trading data better than the model developed for ‘holding time’ scenario (i.e. holding time is 

considered as the relevant decision to make for profit), then this will suggest that it is more 

reasonable to assume the ‘stake size’ scenario than the ‘holding time’ scenario. In other words, it 
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would suggest that when seeking to increase profits, the results suggest that traders pay most 

attention to the stake size of their trade rather than holding time. 

4.3.4 Applying Learning Models to Real Markets  

 Figure 5 illustrates how we estimate the learning models using the empirical trading data. 

We examine five scenarios in this study: stake size, buy/sell, holding time, profit time and loss time. 

In each scenario, only one decision is assumed to be considered as relevant when considering 

which outcome will be achieved (i.e., the strategy space is limited). For example, in the ‘stake size’ 

scenario, we assume that traders believe that the only thing affecting the size and sign of their 

payoff is whether they select a stake size above or below their median stake size. Whilst, this may 

appear a restrictive assumption, we are able to test how well such a model fits the actual trading 

data. 

For each scenario, we produce ‘strategy data’ from trading data by converting the relevant 

decisions into strategies. We can estimate learning models directly from the strategy data 

(consisting of pairs of strategies and payoffs). For example, in the ‘stake size’ scenario: if the stake 

size of a trade is lower than his/her median stake size, we convert that stake size in the ‘lower stake 

size’ strategy; otherwise we convert it to ‘higher stake size’ category. The conversion is 

unnecessary in the ‘buy/sell’ scenario as the number of options is naturally two. For our study, we 

assume that the profit point (similar to return rate) obtained as a result of a chosen strategy is the 

payoff received by the trader. 

 

1.   DSM FRAMEWORK 

TRADING 

DATA 

STRATEGY 

DATA 

BELIEF LEARNING 

STAKE SIZE 

SCENARIO 

(or others) 

REINFORCEMENT 

EWA 

Figure 5: DSM Framework Illustration Chart 

This figure illustrates the relationship among the components of the DSM framework.  
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 We estimate the parameters of each model (EWA, reinforcement, and belief based learning 

model) using the maximum-likelihood estimation method for each trader and for each scenario. We 

compare the degree to which the various models fit the data across the five scenarios. If one model 

fits a particular scenario better than for all other scenarios, we can conclude that the assumptions of 

the scenario are more likely to be legitimate than those relating to the other scenarios. We measure 

model fitness using log-likelihood, Akaike’s information criterion (AIC)(Akaike, 1974) and 

Bayesian information criterion (BIC), and we present the results of log-likelihood ratio tests.   

We aim to examine the relationship between the behavioral characteristics and the trading 

behavior/performance. The behavioral characteristics which we aim to examine are essentially the 

parameters of the EWA model. Since we have estimated those parameters for each trader, we have 

the estimated values of the behavioral characteristics for each trader. We test our hypotheses by 

regressing the trading behavior/performance on the behavioral characteristics.  

4.3.5 Variables 

4.3.5.1 Dependent variables 

 

4.3.5.1.1 Trading behavior 

Due to the highly volatile nature of spread-trading markets(Chordia et al., 2001), it is 

generally agreed that traders who choose longer holding times are exposing themselves to greater 

risk (as they are exposed to greater market uncertainty). The average holding time of the trader 𝑖, 

𝐻𝑖, is defined as the average number of seconds between the opening and closing of the trades. 

 Stake size is directly associated with  the potential profit/loss of a trade, and larger stake 

sizes are generally regarded as higher risk options (Y.-J. Liu et al., 2010);(Fehr-Duda et al., 2010). 

The average stake size of the trader 𝑖 is denoted by 𝑆𝑇𝑖.  

We measure trading frequency with the average number of trades per day for trader 𝑖 during 

the period trader 𝑖 participates the market (𝑇𝐹𝑖). 

4.3.5.1.2 Trading performance 

We measure the success of a trader by the total profit/loss earned by trader 𝑖 (𝑇𝑃𝑖: the sum of 

the profit/loss of all trades placed by trader 𝑖) and to account for the risk taken by a trader we 

measure the volatility or variance of returns. . Specifically, the overall trading risk for trader 𝑖, 𝑉𝑖, is 

defined as the variance of returns from their all trades:  

𝑉𝑖 = 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑅𝑖𝑗), 𝑗 ∈ [1, 𝑇𝑁𝑖],   
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, where 𝑅𝑖𝑘  is the number of points won or lost on the 𝑗𝑡ℎ trade of trader 𝑖.  

Trader i’s risk-adjusted performance is measured with the Sharpe ratio (Sharpe, 1998), 

𝑆𝑖 across their all trades, as follows:   

𝑆𝑖 =
𝑚𝑒𝑎𝑛(𝑅𝑖𝑗)

√𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑅𝑖𝑗)
, 𝑗 ∈ [1, 𝑇𝑁𝑖]. 

 

 

4.3.5.1.3 Disposition effect 

The disposition effect is a behavioral bias influencing investment behavior and performance 

(Seru et al., 2010). We follow Odean (1998b) and Dhar and Zhu (2006) in estimating disposition 

effect, i.e., the tendency for a trader to realize gains more quickly than losses.  

Odean (1998b) and  Dhar and Zhu (2006) determine ‘realized gains’ and ‘realized losses’ 

and ‘paper gains’ and ‘paper losses’ for an investor at the time a stock is sold. One is added to the 

realized gain for a given investor if a sale is profitable. Otherwise, one is added to 'realized loss.' 

The remaining open trades in the investor’s portfolio contribute to the paper gain or paper loss in a 

similar fashion at the time of the sale. Odean (1998b) then determine the proportion of gains 

realized (PGR) and proportion of losses realized (PLR) as follows: 

𝑃𝐺𝑅 = 
𝑅𝑒𝑎𝑙𝑖𝑧𝑒𝑑 𝐺𝑎𝑖𝑛

𝑅𝑒𝑎𝑙𝑖𝑧𝑒𝑑 𝐺𝑎𝑖𝑛 + 𝑃𝑎𝑝𝑒𝑟 𝐺𝑎𝑖𝑛
 

 

 

𝑃𝐿𝑅 = 
𝑅𝑒𝑎𝑙𝑖𝑧𝑒𝑑 𝐿𝑜𝑠𝑠

𝑅𝑒𝑎𝑙𝑖𝑧𝑒𝑑 𝐿𝑜𝑠𝑠 + 𝑃𝑎𝑝𝑒𝑟 𝐿𝑜𝑠𝑠
. 

 

 

The disposition effect is defined as the difference between PGR and PLR: 

𝐷𝑖𝑠𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 =  𝑃𝐺𝑅 − 𝑃𝐿𝑅.  

 

 

In particular, if this difference is positive, it suggests a greater tendency to realize gains than losses. 

We adapt the method of Odean (1998b) and Dhar and Zhu (2006) to make it suitable for 

examining spread trades. Specifically, since spread traders usually have few positions opened, we 

employ a method first proposed by Fraser-Mackenzie et al. (2013) to measure disposition effect for 

spread traders. This effectively counts the paper gains/losses associated with a particular trade. Due 

to the short-term nature of spread trading, we count the number of minutes a trade is in profit/loss 

as the paper gains/losses associated with that trade. In other words, it is assumed that, after a trader 

opens a position, a series of hold/close decisions must be made, every minute. One is added to 
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paper gain/loss if a position in profit/loss is held for one minute. We estimate the disposition effect 

for each trader 𝑖 (𝐷𝑖).  

4.3.5.2 Control variables 

We control for a number of factors which might be expected to affect the manner in which 

an individual trades, including the demographic variables age  𝐴𝑘  and gender  𝐺𝑘  (1: male; 0: 

female), two trading intensity variables: total number of trades placed by trader 𝑖 (𝑇𝑁𝑖), and the 

total amount invested by trader 𝑖 (𝑇𝑀𝑖 : the sum of all the amounts invested by trader  ). 

4.3.6 Testing Hypotheses 

The hypotheses were constructed to examine the relationship between the behavioral 

characteristics associated with the learning models and the trading behavior/performance and 

disposition effect. To test these, we regress the dependent variables on the behavioral 

characteristics (i.e., the parameters of the EWA model). 

We test the hypothesis H1a with the following regression model: 

𝑆𝑇 = α + βA𝐴 + βN𝑁 + β𝜙𝜙 + β𝜌𝜌 + β𝛿𝛿 + β𝜆𝜆 + β𝑘𝑘 

+β𝐴𝑔𝑒𝐴𝑔𝑒 + β𝑀𝑎𝑙𝑒𝑀𝑎𝑙𝑒 + β𝑇𝑁𝑇𝑁 + β𝑇𝑀𝑇𝑀 + ε, 

(31) 

where 𝑆𝑇 is the average stake size of the trader, 𝐴 is the initial attraction of the first strategy, 𝑁 is 

the initial experience, 𝜙 is the depreciation rate of previous attraction, 𝜌 is the depreciation rate of 

previous experience, 𝛿  is the weight of foregone payoffs, 𝜆  is the sensitivity of players to 

attractions, 𝑘 is the extent to which attractions average or cumulate, 𝐴𝑔𝑒 is the trader’s age, 𝑀𝑎𝑙𝑒 

is 1 if the trader is male and 0 otherwise, 𝑇𝑁 is the trader’s total number of trades, and 𝑇𝑀 is the 

trader’s total amount of stake size. We test the hypothesis H1b and H1c by changing the dependent 

variable of this model to the average holding time of the trader (𝐻𝑇) and the trading frequency 

(average number of traders per day) of the trader (𝑇𝐹). 

Similarly, we use the regression model (6) with the dependent variable changed to 𝑇𝑃 (the 

total profit point of the trader), 𝑉 (the volatility of returns of the trader) and 𝑆 (the Sharpe ratio of 

the trader) to test the hypothesis H2a, H2b and H2c, respectively. Hypothesis H3 is tested with the 

the regression model (6) with 𝐷𝐸 (the disposition effect of the trader) as the dependent variable.  
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4.4 Results 

4.4.1 Scenario/learning model comparison 

We estimate the EWA, reinforcement and belief learning models for each of the five 

scenarios (i.e., stake size, holding time, total profit, time in profit and time in loss) and measure the 

goodness of fit of these models (i.e., to what extent the models represent the data). These results are 

presented in . 

Table 25: Model Fitness in Five Scenarios 

. We measure model fitness in terms of log-likelihood, AIC, and BIC. The results of 

likelihood ratio tests to measure whether one model is a significantly better fit than another are also 

presented. Models with smaller AIC/BIC and higher log-likelihoods better fit the trading data.  

These results demonstrate three important findings. First, the results of likelihood ratio tests 

associated with all five scenarios show that all the behavioral models outperform a model based on 

a random guess. This provides support for the applicability of behavioral models for understanding 

trading behavior in real financial markets.  

Second, the EWA model outperforms the reinforcement and belief learning models in all 

scenarios. This finding is consistent with the results from experiments (Camerer and Ho, 1999). 

The results imply that in each of the scenarios, the EWA model describes the real trading behavior 

of individuals better than the reinforcement and belief models. In other words, the EWA model best 

describes the manner in which traders learn to change their behavior when seeking to secure 

trading profit, if we assume that traders these decisions focus on just one relevant factor (i.e. stake 

size, buy/sell direction, holding time, time in profit, time in loss).  

Third, in the ‘stake size’ scenario, the model fit differences between a model assuming 

traders act in a random fashion and the three learning models is much higher than that in all other 

scenarios. This indicates that the behavior of the traders is better explained by the behavioral 

models in the ‘stake size’ scenario than in other scenarios. This suggests that it is most reasonable 

to assume the ‘stake size’ scenario. In other words, when seeking to increase profits, the results 

suggest that traders pay most attention to the stake size of their trade rather than holding time, 

buy/sell direction, time in profit and time in loss. 

Table 25: Model Fitness in Five Scenarios 

Stake size scenario      

 AIC BIC LL LR df p 

EWA 25948.4 26002.4 -12968.2 56697.8 6 <10-8 
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Reinforcement 28290.5 28317.4 -14142.2 54349.7 3 <10-8 

Belief 26903.2 26939.1 -13447.5 55739.0 4 <10-8 

Random guess 82634.2 82634.2 -41317.1    

Buy/sell scenario      

 AIC BIC LL LR df p 

EWA 76958.7 77012.7 -38473.3 5687.4 6 <10-8 

Reinforcement 81735.7 81762.7 -40864.8 904.49 3 <10-8 

Belief 80753.1 80789.1 -40372.5 1889.1 4 <10-8 

Random guess 82634.2 82634.2 -41317.1    

Holding time scenario      

 AIC BIC LL LR df p 

EWA 81484.3 81538.3 -40736.1 1161.9 6 <10-8 

Reinforcement 82552.6 82579.6 -41273.3 87.631 3 <10-8 

Belief 82279.4 82315.4 -41135.7 362.70 4 <10-8 

Random guess 82634.2 82634.2 -41317.1    

Profit time scenario      

 AIC BIC LL LR df p 

EWA 81593.3 81647.3 -40790.6 1052.8 6 <10-8 

Reinforcement 82432.6 82459.6 -41213.3 207.55 3 <10-8 

Belief 82330.6 82366.6 -41161.3 311.56 4 <10-8 

Random guess 82634.2 82634.2 -41317.1    

Loss time scenario      

 AIC BIC LL LR df p 

EWA 81288.1 81342.1 -40638.0 1358.0 6 <10-8 

Reinforcement 82003.9 82030.9 -40998.9 636.30 3 <10-8 

Belief  81905.8 81941.8 -40948.9 736.34 4 <10-8 

Random guess 82634.2 82634.2 -41317.1    
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This table presents the results of model fitness across scenarios. Akaike’s information criterion (AIC) is calculated with 

the following formula: 

𝐴𝐼𝐶 = −2𝐿𝐿 + 2𝑑 +
2𝑑(𝑑 + 1)

𝑛 − 𝑑 − 1
 

, where 𝐿𝐿 is log-likelihood, d is the number of parameters and n is the number of samples. Bayesian information 

criterion (BIC) is calculated with the following formula: 

𝐵𝐼𝐶 = −2𝐿𝐿 + 𝑑 ∗ 𝑙𝑜𝑔(𝑛) 

LR is likelihood ratio, df is the degree of freedom and the p-value derived from likelihood ratio test which assumes chi-

square distribution.    

4.4.2 Hypothesis test 

As indicated above, the results suggest that traders pay most attention to stake size when 

seeking to increase profits. This suggests that the ‘stake size’ scenario is the one most likely to 

reveal the behavioral factors related to a given trader. In addition, we found that the EWA model 

outperforms both the reinforcement and belief learning models. Hence, to test the hypotheses, we 

apply the EWA model in the ‘stake size’ scenario, and we examine the relationship between the 

behavioral characteristics, and the trading behavior, trading performance and disposition effect.  

4.4.2.1 Testing hypotheses concerning the relationship between behavioral 

characteristics of individuals and their trading behavior 

The results of estimating equation (31) to examine the relation between average stake size 

and behavioral characteristics of traders (H1a) are presented in Table 26. The results show that the 

initial attraction of the first strategy (𝐴) is positively related with the average stake size (0.1411, p < 

0.001). As the first strategy in the ‘stake size’ scenario is the lower stake size strategy, a high value 

of the initial attraction of the first strategy (𝐴) indicates that a trader is likely to choose a low stake 

size for the first trade. That is, cautious traders, who are more likely to use a lower stake size 

strategy in the beginning, end up displaying higher average stake sizes than other traders. The 

weight of foregone payoffs (𝛿) is positively related with the average stake size (7.0571, p < 0.001).  

Table 26: Regression Result – Estimated Parameters of EWA Models on Trading Behavior  

 Stake Size Scenario 

 ST  HT   TF  

 Coef.  Coef.  Coef.  

(Intercept) 5.4003 

(5.5456) 

 *** 1637.6 

(548.55) 
** 12.687 

(7. 8156) 
 

𝐴 0.1411 

(0. 0276) 

 * -9.8555 

(2.7688) 
*** -0.0128 

(0. 0444) 
 

𝑁 -0.00005 

(0. 00002) 

  -0.0088 

(0.00212) 
*** 0.00005 

(0. 00003) 
 

𝜙 1.4864   -590.91 * 2.4248  
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(2. 3292) (230.45) (3. 688) 

𝜌 -2.7125 

(5. 732) 

 *** 631.28 

(567.01) 
 -8.2548 

(9. 0857) 
 

𝛿 7.0571 

(1. 6632) 

  -67.213 

(166.32) 
 8.3847 

(2. 6617) 
** 

𝜆 -2.1201 

(1. 8638 ) 

  425.52 

(184.47) 
* -2.0699 

(2. 9286) 
 

𝑘  -4.1638 

(4. 9456) 

  -1015.4 

(489.39) 
* -4.5648 

(7. 8438) 
 

𝐴𝑔𝑒 -0.0294 

(0.0297) 

  1.0155 

(2.9436) 
 -0.0699 

(0. 0472) 
 

𝑀𝑎𝑙𝑒 0.6974 

(1. 2496) 

  93.203 

(123.62) 
 -5.9271 

(1. 9814) 
** 

𝑇𝑁 0.0094 

(0. 0433) 

 -6.273 

(4.2861) 
 -  

𝑇𝑀 -  -0.0125 

(0.0566) 

 -0.0001 

(0. 0009) 

 

 R2 0.1173  0.0773  0.0379  

Observations 1005   1005  1615  

The regression model is: 

𝑆𝑇 = α + βA𝐴 + βN𝑁 + βT𝑇 + β𝜙𝜙 + β𝜌𝜌 + β𝛿𝛿 + β𝜆𝜆 + β𝑘𝑘 

+β𝐴𝑔𝑒𝐴𝑔𝑒 + β𝑀𝑎𝑙𝑒𝑀𝑎𝑙𝑒 + β𝑇𝑁𝑇𝑁 + ε, 

 

where S𝑇 is the average stake size, 𝐴 is the initial attraction of the first strategy, 𝑁 is the initial experience, 𝜙 is the 

depreciation rate of previous attraction, 𝜌 is the depreciation rate of previous experience, 𝛿 is the weight of foregone 

payoffs, 𝜆 is the sensitivity of players to attractions, 𝑘 is the extent to which attractions average or cumulate, 𝐴𝑔𝑒 is the 

trader’s age, 𝑀𝑎𝑙𝑒 is 1 if the trader is male and 0 otherwise and 𝑇𝑁 is the trader’s total number of trades . ***, ** and * 

denote significance at 0.1%, 1% and 5% levels, respectively. 
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The results of estimating equation (6) to examine the relation between average holding time 

and behavioral characteristics (H1b) are presented in Table 26. The results show that the initial 

attraction of the first strategy (𝐴) is negatively related with the average holding time (-9.8555, p < 

0.001). This implies that cautious traders hold their positions longer. We also find that the 

depreciation rate of previous attraction (𝜙) is negatively related with the average holding time (-

590.91, p < 0.05).  

The results of estimating equation (6) to examine the relation between trading frequency and 

behavioral characteristics (H1c) are presented in Table 26. The result shows that the weight of 

foregone payoffs (𝛿) is positively related with the trading frequency (8.3847, p < 0.01). 

In summary, we find evidence supporting H1 that the behavioral characteristics are related 

with trading behavior. Although it is usually assumed that risk-averse traders tend to be cautious 

and avoid taking the trading risk, we find mixed results regarding various trading behaviors. In 

terms of holding time and trading frequency, our results show that the cautious traders lower their 

risk by holding positions in a short time and trading less frequently. On the other hand, the cautious 

traders place higher stake size on average than others. Therefore, our results indicate the 

complexity of risk behavior, particularly when individuals can learn from experience.  

4.4.2.2 Testing hypotheses concerning the relationship between behavioral 

characteristics of individuals and their trading performance 

The results of examining the relation between an individual’s behavioral characteristics and 

the total profit they earn (H2a) are presented in Table 5. The results show that the initial attraction 

of the first strategy, 𝐴, is positively related with total profit (57.091, p < 0.001). This implies that 

those traders who are more likely to use lower stake size strategy when they commence trading 

tend to make greater total profits throughout their trading history. The results show that k is 

negatively related with total profit (-8030.9, p < 0.01). Since k represents the extent to which 

attractions either average or cumulate, the result implies that traders who average the payoffs rather 

than cumulate make higher total profit. I also find that the depreciation rate of previous experience 

(𝜌) is negatively related with the total profit (-11626, p < 0.001). 

Table 5: Regression Result – Estimated Parameters of EWA Models on Performance  

 Stake Size Scenario 

 TP  V   S  

 Coef.  Coef.  Coef.  

(Intercept) 6370.3 

(3055.6) 

 * 9899.4 

(7103.1) 
 -0.0906 

(0.0786) 
 

𝐴 57.091 

(15.423) 

 *** -77.956 

(35.852) 
* -0.00003 

(0.0004) 
 

𝑁 0.0365 

(0.0118) 

 ** -0.0803 

(0.0275) 
** 0.00000008 

(0. 00000003) 
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𝜙 733.68 

(1283.7) 

  -6937.2 

(2984.1) 
* -0.0463 

(0. 033) 
 

𝜌 -11626 

(3158.5) 

 *** 21361 

(7342.1) 
** 0.1042 

(0. 0812) 
 

𝛿 -1141.8 

(926.44) 

  -804.4 

(2153.6) 
 0.0392 

(0. 0238) 
 

𝜆 -352.73 

(1027.6) 

  9212.3 

(2388.7) 
*** 0.0084 

(0. 0264) 
 

𝑘  -8030.9 

(2726.1) 

 ** 1280.1 

(6337) 
 0.0662 

(0. 0701) 
 

𝐴𝑔𝑒 -2.6697 

(16.397) 

  1.1281 

(38.117) 
 -0.0003 

(0. 0004) 
 

𝑀𝑎𝑙𝑒 119.1 

(688.63) 

  733.68 

(1600.8) 
 -0.0228 

(0. 0177) 
 

𝑇𝑁 33.476 

(23.875) 

 -167.54 

(55.5) 
** -0.0005 

(0. 0006) 
 

𝑇𝑀 -13.18 

(0.3151) 
*** -0.1304 

(0.7326) 
 -0.00003 

(0. 000008) 
*** 

 R2 0.6934  0.0783  0.0328  

Observations 1005   1005  1005  

The regression model is: 

𝑇𝑃 = α + βA𝐴 + βN𝑁 + βT𝑇 + β𝜙𝜙 + β𝜌𝜌 + β𝛿𝛿 + β𝜆𝜆 + β𝑘𝑘 

+β𝐴𝑔𝑒𝐴𝑔𝑒 + β𝑀𝑎𝑙𝑒𝑀𝑎𝑙𝑒 + β𝑇𝑁𝑇𝑁 + β𝑇𝑀𝑇𝑀 + ε, 

 

where 𝑇𝑃 is the total profit of the trader, 𝐴 is the initial attraction of the first strategy, 𝑁 is the initial experience, 𝜙 is the 

depreciation rate of previous attraction, 𝜌 is the depreciation rate of previous experience, 𝛿 is the weight of foregone 

payoffs, 𝜆 is the sensitivity of players to attractions, 𝑘 is the extent to which attractions average or cumulate, 𝐴𝑔𝑒 is the 

trader’s age, 𝑀𝑎𝑙𝑒 is 1 if the trader is male and 0 otherwise, 𝑇𝑁 is the trader’s total number of trades, and 𝑇𝑀 is the 

trader’s total amount of stake size. ***, ** and * denote significance at 0.1%, 1% and 5% levels, respectively. 

The results of examining the relation between behavioral characteristics and the volatility of 

returns (H2b) are presented in Table 5. We find that the volatility of returns is negatively related 

with the initial attraction of the lower stake size strategy, 𝐴 (-77.956, p < 0.05) and the prior 

experience, 𝑁 (-0.0803, p < 0.01). The depreciation rate of previous attraction, 𝜙, is negatively 

related with the volatility of returns (-6397.2, p < 0.05). This suggests that traders who weight 

previous payoffs higher achieve lower volatility of returns. In addition, the depreciation rate of 

previous experience, 𝜌, is positively related with the volatility of returns (21361, p < 0.01). This 

suggests that the traders who are more affected by their previous experience have higher volatility 

of returns. It is important to notice that 𝜙 and 𝜌 have opposite effects on the volatility of returns, 

yet both  𝜙 and 𝜌 are closely related with traders' experience. This suggests that the influence of 

experience on trading performance is complicated. 

We also find that the sensitivity to attractions (𝜆 ) is positively related with the return 

volatility (9212.3, p < 0.001).  
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The results of examining the relation between traders’ behavioral characteristics and 

Sharpe ratios (H2c) are presented in Table 5. The results show that none of the coefficients of the 

characteristics are significant. Consequently, we fail to find evidence to support H2c that there is a 

significant relationship between an individual’s behavioral characteristics and the Sharpe ratios 

they achieve throughout their trading history. 

In summary, the learning characteristics regarding stake size are significantly related to the 

total profit and the volatility of returns achieved by traders throughout their trading history. This is 

not surprising since the stake size is related with the trading risk which will affect the trading 

performance including profit and volatility of returns. However, our results do not support the view 

that relation between the learning characteristics regarding stake size and the Sharpe ratios 

achieved by traders throughout their trading history.  

 

Testing the relationship between behavioral characteristics of individuals and the disposition 

effect they display 

The results of examining the relationship between traders’ behavioral characteristics and 

disposition effect (H3) are presented in Table 6. The results show that the depreciation rate of 

previous attraction (𝜙) and the depreciation rate of previous experience (𝜌) are, respectively, 

negatively and positively related with the degree of disposition effect displayed by a trader (-

0.0883, p < 0.001; 0.1474, p < 0.05).  

  The results demonstrate that the degree to which individuals weight their experience and 

payoffs in the past are influential on the degree of disposition effect they display, thus supporting 

H3. Although there is evidence from the literature suggesting that traders can learn from their 

experience to reduce their disposition bias, we find that different elements of experience, i.e., the 

depreciation rate of previous attraction and that of previous experience, can have a different impact 

on the disposition effect.  

Table 6: Regression Result – Estimated Parameters of EWA Models on disposition effect   

 Stake Size Scenario 

 Estimated 

Coefficient 

  Std. Error 

(Intercept) -0.0893   0.0581 

𝐴 -0.0002   0.0003 

𝑁 -0.00000007   0.0000002 
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𝜙 -0.0883  *** 0.0244 

𝜌 0.1474  * 0.0601 

𝛿 -0.0214   0.0176 

𝜆 0.0007   0.0196 

𝑘  0.0907   0.0519 

𝐴𝑔𝑒 0.0004   0.0003 

𝑀𝑎𝑙𝑒 0.0057   0.0131 

𝑇𝑁 0.00005   0.0005 

𝑇𝑀 0.000006   0.000006 

 R2 0.0288   

Observations 1005   

The regression model is: 

𝐷𝐸 = α + βA𝐴 + βN𝑁 + βT𝑇 + β𝜙𝜙 + β𝜌𝜌 + β𝛿𝛿 + β𝜆𝜆 + β𝑘𝑘 

+β𝐴𝑔𝑒𝐴𝑔𝑒 + β𝑀𝑎𝑙𝑒𝑀𝑎𝑙𝑒 + β𝑇𝑁𝑇𝑁 + β𝑇𝑀𝑇𝑀 + ε, 

 

where 𝐷𝐸 is the disposition effect of the trader, 𝐴 is the initial attraction of the first strategy, 𝑁 is the initial experience, 𝜙 

is the depreciation rate of previous attraction, 𝜌  is the depreciation rate of previous experience, 𝛿  is the weight of 

foregone payoffs, 𝜆 is the sensitivity of players to attractions, 𝑘 is the extent to which attractions average or cumulate, 

𝐴𝑔𝑒 is the trader’s age, 𝑀𝑎𝑙𝑒 is 1 if the trader is male and 0 otherwise, 𝑇𝑁 is the trader’s total number of trades, and 𝑇𝑀 

is the trader’s total amount of stake size. ***, ** and * denote significance at 0.1%, 1% and 5% levels, respectively. 

4.5 Discussion 

The DSM framework enables the comparison across models and scenarios based on real 

trading data. Our results show that, across all the scenarios we examined (i.e., stake size, buy or sell, 

holding time,  time in profit and time in loss), the trading data supports the view that belief learning 

models better represent the manner in which the past experiences of traders influence their future 

behavior and performance than reinforcement learning models. However, the EWA model better 

represents traders’ behavior than both these learning models. The superior performance of the 

EWA model is not surprising since the EWA model integrates the features of both belief and 

reinforcement learning. The finding that the belief learning model better represents the behavior of 

traders than the reinforcement learning model contrasts with the majority of the results of 

psychological experiments. This suggests that individuals may adopt different approaches in 

different circumstances. In particular, it may suggest that behavior in the laboratory and the real 

world may differ or that the behavior of different types of individuals in different decision making 
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domains may differ. Our results clearly show, that in real markets with real money involved, 

individuals act in a more rational manner (i.e., in using opportunity losses as a basis of learning 

from previous experiences). This demonstrates that traders are more subject to belief learning than 

the more animal instinctive, reinforcement learning. 

The parameter 𝛿 in the EWA model, which is the weight of foregone payoffs, represents the 

difference between belief and reinforcement learning. That is, the greater weight attached to 

foregone payoffs (opportunity cost) provides a measure of greater rational choice on the part of 

traders. Our results from the stake size scenario show that traders who have higher 𝛿, and who 

therefore are considered as more rational, do not produce better trading performance (measured by 

the total profit and Sharpe ratio they achieve over their trading history). A reasonable explanation is 

that the decisions concerning stake size are not directly related to the total profit they are likely to 

achieve. Clearly higher stake sizes can result in higher profits on individual trades, but equally they 

can result in larger losses.  In other words, a trader’s decisions concerning stake sizes are highly 

related with trading risk that could harm performance if not managed carefully. In sum, our results 

question the assumption that rational traders achieve better trading performance. 

We find that individuals who trade with higher average stake sizes and who trade with 

greater frequency tend to put weight on foregone payoffs for unchosen strategies. A rational 

economic agent is generally considered to be one who considers all payoffs, including foregone 

ones, in making decisions. Consequently, the weight of foregone payoffs is regarded as 

representing the degree to which a trader makes rational decisions. Our results show that those 

traders with a higher degree of rationality trade more actively than other traders. Furthermore, 

traders with better trading performance, i.e., higher total profit and lower volatility of returns, tend 

to have a higher initial attraction to the lower stake size and lower depreciation rate of previous 

experience. That is to say, the traders who are more cautious, more likely to place small stake sizes 

in their early trading period and value their experience more (discount the previous experience 

slower) achieve higher returns and lower volatility of returns.  

The implication of our results on the individual investor behavior is that the impact of 

individual behavior on market efficiency is complex due to the heterogeneity among individuals.  

The existence of market anomaly indicates that the level of the market efficiency is not high. One 

of the well-documented market anomalies is return persistence with which excess returns can be 

realized by buying past winners and selling past losers. Return persistence is considered as the 

result of under-reaction which is irrational behavior. Jegadeesh and Titman (1993) find that traders 

exploiting the return persistence can realize excess returns in the short term.  However, the returns 

turn negative in the long run. They claim that those traders believing in return persistence move 

prices away from their long-run values temporarily and thereby cause prices to overreact and hence 

a lower level of market efficiency. Their prediction is consistent with our results that rational 

traders do not achieve superior trading performance. 



Chapter 4 

163 

 

4.6 Conclusion  

We use Camerer and Ho’s (1999) approach to estimate the parameters of  EWA model. The 

major difference is the way in which we define the strategies. Camerer and Ho (1999) use n-person 

formal-form games in which an individual faces a finite set of strategies in order to develop data to 

estimate the models, i.e., the strategy space is limited. We are concerned to develop a procedure to 

estimate the behavioral characteristics with the EWA model and to examine the influence of the 

behavioral characteristics on trading behavior and trading performance in real financial markets. In 

a real market, there are an infinite variety and combination of factors to be considered when 

making trades (e.g., the level of stakes to invest, the holding time for the trade, the profit time, etc.). 

It would be impossible to estimate a model which included the full variety of these and all their 

combinations, i.e., the strategy space is unlimited. Consequently, we employ the DSM framework 

in order to make the problem tractable and to throw some light on the behavioral factors 

influencing traders’ decisions. Clearly, the restrictive assumptions we make will prevent the model 

capturing the full complexity of the trading decision, but we expect that this approach will provide 

a step forward in understanding the behavioral factors that influence real-world trading decisions.     

Our results show that traders believe that their decisions on stake size are influential in terms 

of the percentage profit they achieve. We find that traders who behave like rational economic 

agents (i.e., put greater weight on foregone payoffs for unchosen strategies) tend to place higher 

stakes on average and trade with higher frequency. However, those traders who are more rational 

do not achieve superior trading performance. Rather, the traders who achieve superior trading 

performance (higher total profit and lower volatility of returns) tend to place small stake sizes at the 

start of their trading history and discount their previous experience slower than others.  

An empirical direction of future research is to estimate further characteristics under the DSM 

framework. The behavioral characteristics which we estimate in this study are the parameters of the 

EWA model. Hence, it is plausible to employ other behavioral models to estimate other 

characteristics depending on the research topics.  
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Chapter 5: Conclusion 

This chapter summarizes the major findings, implications, and contributions of the three papers of 

the thesis and the overall research objective. The aim of this thesis is to investigate, via empirical 

evidence, the underlying rationality assumption and efficiency prediction of the EMH by 

examining the nature of learning by traders and the extent to which machine learning techniques 

may be used to predict markets. I also examine the relationship between the rationality assumption 

and the extent to which individuals learn from their experience. 

In the first paper, I examine the potential origins of the apparent contradiction between the ML and 

EMH literature regarding market efficiency: many ML-based financial time series forecasting 

studies seem to find ways to anticipate market developments with surprisingly high accuracy, while 

the EMH predicts that excess returns cannot be earned in a systematic way. I perform an extensive 

forecasting benchmark in which two established ML methods are used to predict price movements 

in most major stock markets. This is the first study, to my best knowledge, to compare intraday and 

daily machine learning and econometric prediction models across most major stock markets.  

My results show that methodological factors, such as the maturity of a financial market, the 

prediction method, the horizon for which it generates forecasts, and the methodology to simulate 

model-based trading, have a significant effect on market predictability and the feasibility of model-

based trading. Consequently, decisions that forecasting studies have taken with respect to these 

factors can help explain the results observed. This is not true for our last experimental factor, 

covariate composition since we find that popular technical indicators are no more predictive than 

basic reference prices. The implication of the results to the machine learning literature is that the 

performance measurement should be performed under various settings in order to avoid the bias in 

estimating model prediction performance.  

On the other hand, I do not find overwhelming evidence which contradicts the prediction of EMH: 

stock prices are partly predictable, but excess returns cannot be obtained in a systematic way. 

Although most of the accuracies in my simulations are below 60 percent which is substantially 

lower than that commonly reported in the ML literature, the positive relation between accuracy and 

trading profit, which is usually assumed to be true in the ML literature, is not observed. That is, 

even if the prediction accuracy is increased with more sophisticated covariates and predictive 

models adopted, the trading profit is not necessarily increased. It is important to notice that 

transaction cost is not included in my simulation experiments, and the trading profit will decrease 

further if transaction cost is applied to each trade. The implication is important to the ML literature 

as many studies only focus on the prediction accuracy. However, the increase of prediction 

accuracy cannot guarantee a higher trading profit.  The ML studies in the future should take more 

factors, such as transaction cost and trading strategies, into account. 
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The major contribution of the first paper is to provide evidence for the conjecture that the 

methodological issues might be the source of the difference between the prevailing view in support 

of the EMH in the financial economics literature and the high prediction accuracy of stock prices 

reported in ML studies. Certainly, my results suggest that the methodological factors need to be 

decided carefully to avoid over-/under-estimation of prediction performance in the ML studies in 

the future.   

The implications of my results for the financial economics literature is the empirical evidence for 

the prediction ability of ML techniques, such as SVM and ANN, to recognize the patterns of 

market anomalies across major financial markets. ML techniques are not commonly used in the 

economic and financial field. My results show that ML techniques, even in the basic forms, can 

capture complicated patterns in a stock market data set. I also find that ML techniques outperform 

econometric methods in predicting stock prices. Therefore, my results suggest that ML techniques 

can provide new insights for financial economists studying informational efficiency. 

In the second paper, I investigate the relation between experience, risk taking behavior and trading 

performance. Specifically, I examine the degree to which individuals change risk taking behavior 

and learn to improve their trading performance through experience by analyzing decisions of 

27,868 individual UK spread-traders over a 10 year period. As other empirical studies focus on the 

effect of experience on returns and behavioral biases, this study discusses the change of risk taking 

behavior and the risk-adjusted performance when traders gain experience. The results show that 

traders increase the level of risk taking behavior while gaining more experience. I also find that 

traders do not improve risk-adjusted performance when they have more experience. Instead, whilst 

experienced traders make higher profits, they suffer higher volatility of returns and decreases in 

risk-adjusted performance.  

The major contribution of the second paper is to examine the effects of learning through experience 

on traders in real world financial markets, taking account of their risk taking behavior, volatility of 

returns and risk-adjusted performance. Risk preference of individuals is reflected by the risk taking 

behavior, and the literature shows that the change of risk taking behavior is motivated by the 

returns in the past and is affected by total wealth. My results show that risk taking behavior is also 

affected by accumulated experience, and the reason may be accumulated knowledge, such as the 

trading rule of markets and the common practices to manage potential loss. Furthermore, the 

literature generally agrees that individuals learn to improve profit when they have more experience, 

while my results tell a different story. I find that traders increase returns by taking higher risk and 

this leads to lower risk adjusted performance. This indicates that traders are likely to be reinforced 

by returns, rather than improving their investment skills when they have more experience. Also, it 

is often assumed that the level of risk taking behavior is positively related with the trading risk 

which is usually measured as the volatility of returns. I find that this assumption does not always 

hold. My results show that longer holding time leads to higher volatility of returns, but higher 
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investment size and higher trading frequency does not necessarily increase the volatility of returns. 

This indicates the complexity nature of risk taking behavior, and the conclusion for one type risk 

taking behavior should not be applied to another without empirical evidence.  

The implication of my results for the financial economics literature is to question one of the 

rational assumptions underlying the neoclassical approach. It is claimed that individuals learn by 

following the Bayesian rule, i.e., they appropriately update prior probability estimations conditional 

on new information or events. Instead, my results suggest that traders learn by reinforcement, 

choosing strategies which led to ‘better’ outcomes in the past. It appears that in adopting this 

approach, traders may over-weight the value of returns in assessing what the 'better' outcomes are 

and this leads them to under-assess the underlying risk. It is important to notice that risk is not as 

easy to understand as returns. My results suggest that individuals are likely to ignore the impact of 

taking the high risk until they suffer real loss. In particular, it is unlikely that individual traders will 

learn the lessons of excessive risk-taking from previous periods of excessive exuberance in 

financial markets which led to bubbles and eventual crashes. Consequently, my findings indicate 

the need for intervention and regulation by financial authorities to adopt measures which make 

clearer the risk involved in particular assets or investment strategies and/or to provide incentives 

and guidelines for traders to be aware of the potential trading risk.  

In the third paper, I propose the decision-based strategy mapping framework (DSM) to solve the 

problem of unlimited strategy space, which allows me to examine the manner and extent to which 

important behavioral characteristics of individual traders associated with the experience-weighted 

attraction (EWA) model influence the individual’s trading behavior and performance. The 

behavioral characteristics are estimated with the EWA model which is a behavioral model 

developed from lab experiments. 

My results show that traders believe that their decisions on stake size are influential in terms of the 

percentage profit they achieve. I find that traders who behave like rational economic agents (i.e., 

put greater weight on foregone payoffs for unchosen strategies) tend to place higher stakes on 

average and trade with higher frequency. On the other hand, those traders who are more rational do 

not achieve superior trading performance. Instead, the traders who achieve superior trading 

performance (higher total profit and lower volatility of returns) place small stake sizes at the start 

of their trading history.   

The major contribution of the third paper is the decision-based strategy mapping framework which 

is, to my best knowledge, the first attempt to estimate unobservable individual characteristics with 

trading data. The implications of my results for the financial economics literature is that the 

boundary between empirical and laboratory experiments is weakened. The models developed based 

on experimental results can be tested with empirical data under DSM framework with some 

additional assumptions.   
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In conclusion, I examine the challenges to the efficient market hypothesis with empirical market 

data. First, I run a comprehensive benchmark to examine the challenge from machine learning 

techniques to the prediction of an efficient market, and the results are not against the prediction of 

the efficient market hypothesis: excess returns cannot be earned in a systematic way. Second, I 

examine the influence of experience on trading performance and trading behavior. I find that 

traders are reinforced by high returns resulted from high risk behavior through experience, which 

strongly questioning the rationality assumption of the efficient market hypothesis. Third, I estimate 

the behavioral characteristics with the experience-weighted attraction model under the decision-

based strategy mapping framework. The results show that the behavioral characteristics, such as the 

weight on foregone payoffs, are influential on trading performance and vary across individuals 

significantly. That is, the rational agent assumption of the efficient market hypothesis is likely to 

over-simplify individual behavior in the real world. Overall, the findings of this thesis agree with 

the efficient market hypothesis on that the markets are efficient, at least to the extent to which state 

of the art machine learning techniques cannot be utilized to make excess returns. However, the 

results from individual-level analysis suggest that rationality assumption of the efficient market 

hypothesis is unlikely to be true.  
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