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Probing the evolution of the most massive galaxies

by Stewart William Buchan

This thesis sets more stringent constraints on how the most massive (logMstar � 11.5[M�])
local, central galaxies have assembled their stellar mass, especially the relative roles of
in-situ growth versus later accretion via mergers. To achieve this, I developed a series of
semi-empirical/phenomenological models which, by construction, have few theoretical
assumptions or free parameters.

I firstly show that by comparing basic abundance matching predictions to observations
of massive galaxies, the high-mass slope of the Mstar-Mhalo relation appears to be sub-
stantially steeper than the commonly used relations in the literature, and the scatter
is small (⇠ 0.15 dex). With the aid of the semi-empirical model I developed, which is
based around this steeper abundance matching relation, I find that massive galaxies can
grow by a factor two in stellar mass between z = 1 and z = 0 and a factor of four in size
over the same redshift range, providing that mergers are e�cient.

Next, I populate a catalogue of massive dark matter haloes with galaxies through the
above abundance matching relations, and compare the average stellar mass to total
baryonic mass of their progenitors at their putative formation epoch, zform= 2 � 4. I
find that the former is in fact equal to, if not greater than the latter. This would imply
that if galaxies form in a strict monolithic collapse, the e�ciency of converting baryons
into stars needs to be extremely high, if not 100%. I also argue that this means they
would need to be born extended, which may provide an observational test to discern
between early versus late formation scenarios.

I then outlined a promising framework to set constraints on the evolution of the slope
and scatter of the high-mass end of the Mstar-Mhalo relation in a way designed to bypass
observational systematics. I utilised the halo mass distribution of massive central and
satellite galaxies at z = 0.5. The former is used to constrain the relation at z = 0.5 and
the latter at their redshift of infall: 0.5 < z . 1.2. By comparing the two relations, I find
signs that individual massive galaxies have some stellar mass growth over this epoch.

Finally, I show the results of two complementary projects involving numerical simulations
that are designed to enhance and check the results presented in the above works.

Using novel semi-empirical/phenomenological models, this thesis indicates that massive,
central galaxies assemble a substantial amount of their stellar mass at later epochs rather
than forming through extremely e�cient star-bursts at high redshift.

s.w.buchan@soton.ac.uk
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Chapter 1

Introduction

1.1 Overview

The vast ocean of space is full of starry islands called galaxies. These distant objects are

dynamically bound structures comprised of gas, stars and ‘dark matter’. Understanding

the exact nature of galaxies has puzzled astronomers since the late 18th century when

they started to identify large numbers of extended objects which they called ‘nebulae’.

Modern astronomers, using large telescopes with CCD cameras and multi-object spec-

trographs have been able to observe millions of such objects, now known as galaxies.

However, there are still di�culties in trying to understand how to connect galaxies at

di↵erent distances (and therefore look-back times) to probe how an individual galaxy

evolves. It is impossible for us to actually observe a galaxy changing in real time because

the relevant timescales for galaxies evolution are vast, ranging from ⇠ 104 � 1010 years.

Despite significant e↵orts both on the observational and theoretical fronts, a standard

model for the evolution of all galaxy types has not yet been achieved. A clear theoretical

framework is particularly lacking for the most massive galaxies, which su↵er from a

number of observational selection e↵ects (as discussed in Section 1.6.3). The goal of this

thesis is to place constraints on the evolution of the most massive galaxies via the aid of

phenomenological and semi-empirical models. These are a branch of theoretical models

which are developed from the ground up using empirical relationships and numerical

dark matter merger trees. Since these models directly utilise observed relationships

rather than idealised physics, by construction, they have few input assumptions and

free parameters.

1



Chapter 1. Introduction 2

1.2 Modern cosmology

When trying to understand how galaxies form and evolve, it is important to first have

knowledge of how the Universe has evolved. To this end, I first describe the basic

principles of modern cosmology.

1.2.1 Cosmological distances, redshift and look back time

The first important concept is that galaxies are extremely distant1. This was debated

in the early 20th century (Shapley & Curtis, 1921) since measuring distances to astro-

nomical objects is very challenging. One of the original and still widely used methods

for measuring distances to galaxies is to use the Cepheid variable stars in that galaxy

as standard candles since they have a known period-luminosity relation (Leavitt, 1908;

Leavitt & Pickering, 1912).

One important observation made around the same time was that atomic emission lines

in a galaxy’s optical spectra are shifted, usually to longer wavelengths, relative to those

lines observed in the laboratory (eg. Slipher, 1917). This change is due to the doppler

e↵ect because most galaxies are moving away from us. This e↵ect is known as redshift,

z:

1 + z ⌘ �ob

�lab
=

s
1 + v

c

1 � v
c

, (1.1)

where �ob is the observed wavelength of an emission line, �lab is the wavelength of the

same line in a laboratory, v is the line-of-sight velocity of the galaxy and c is the speed

of light.

Hubble (1929) compared the distances and redshifts of galaxies (see Figure 1.1). It

is immediately obvious that there is a strong correlation whereby the further away a

galaxy is, the faster it is moving away from us. The gradient of this relation is known

as Hubble’s constant, H = 100 ⇥ h[km s
�1

Mpc
�1]. This correlation strongly implies

that the universe is expanding. One simple thought experiment is to reverse time; if

the Universe is expanding, reversing time means it’s contracting. If the contraction is

constant throughout all time, the Universe will start as a singularity. This thought

experiment lead to the notion of “The Big Bang”.

1Astronomers use the parsec (pc) as the unit of distance. It is defined as the distance which an object
subtends 1 arcsecond of parallax.
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Furthermore, matter should slow down the expansion, due to gravity. The possible

evolutionary scenarios are as follows. If the density is high enough, expansion will stop

and the Universe will collapse again. If the density is too low, the Universe will expand

forever. This lead to the idea of a critical matter density, ⇢crit, (or energy density

because of mass-energy equivalence) which is perfectly in between these two cases. This

concept was upset by the discovery of the accelerating universe (Riess et al., 1998) using

observations of supernova, which bought about the concept of ‘dark energy’, ⇤, which

adds a constant repulsive pressure.

Figure 1.1: Velocity-Distance Relation among Extra-Galactic galaxies extracted from
Hubble (1929)

One last note is that due to the finite speed of light, galaxies at high redshift are observed

to be more closer in time to the big bang than more local ones. This means we can probe

di↵erent evolutionary epochs by exploring galaxies at di↵erent redshifts (see Figure 1.2).

1.2.2 What is the universe made of?

With the advent of precision cosmology, the last decade has allowed cosmologists to

accurately measure the energy density of the Universe. This is usually quoted as a

dimensionless density parameter, ⌦ = ⇢/⇢crit. Studies which utilise baryon acoustic

oscillations (Alam et al., 2016), measurements of the cosmic microwave background

(Planck Collaboration et al., 2014), and distances to supernova (Sullivan et al., 2011)

have measured the current energy-density of the Universe and how it is divided between

matter, ⌦m and dark energy, ⌦⇤. Figure 1.3 shows recent measurements of ⌦m and ⌦⇤

to be 0.3 and 0.7 respectively from a combined supernova, CMB and BAO dataset (taken

from Kowalski et al., 2008). Indeed, the most precise constraints on the cosmological

parameters come from Planck: ⌦m = 0.308 ± 0.012 and ⌦⇤ = 0.692 ± 0.012.
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Figure 1.2: The relation between redshift and look back time for WMAP 9 cosmology
(Bennett et al., 2013).

However, when one measures the density of baryons (in stars and gas), one finds it to

be much lower than ⌦m = 0.3 (Fukugita et al., 1998). Figure 1.4 shows a measurement

of ⌦m against the fraction of mass in baryons, fb = ⌦b/⌦m (extracted from Rota et al.,

2017). It is clear from this figure that fb . 20%, implying that the majority of matter

is not visible. Indeed, studies of motion of stars in the Milky Way (Kapteyn, 1922), of

satellite galaxies in clusters (Zwicky, 1933) and the rotation curves of galaxies (Babcock,

1939) showed that there is a large amount of ‘dark matter’ around galaxies.

The most widely adopted theory in cosmology is that the Universe today is comprised

primarily of dark energy and cold dark matter, known as ⇤CDM (Lemâıtre, 1933; Riess

et al., 1998). The exact nature of dark matter and dark energy are not critical for this

thesis. To this end, dark matter is treated as a massive, weakly interacting particle that

interacts with baryons via gravity but not via any other force.

1.2.3 The time line of the Universe

In this section, I briefly summarise the key phases in the evolution of the early Universe.

For reference, a schematic is shown in Figure 1.5.
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Figure 1.3: Contours at 68.3%, 95.4%, and 99.7% confidence level on ⌦⇤ and ⌦M

obtained from CMB, BAO, and the Union SN set (Kowalski et al., 2008), as well as
their combination. Extracted from Kowalski et al. (2008).
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Figure 1.4: The constraints on the the baryon fraction fb = (⌦b/⌦M ) and ⌦Mh

from VIPERS (Rota et al., 2017), WiggleZ (Parkinson et al., 2012) and Planck (Planck
Collaboration et al., 2014). Extracted from Rota et al. (2017).

• Big bang: The “start” of the Universe. Immediately after the big bang, the

universe is comprised of a plasma of elementary quantum particles.

• Inflation: In the first ⇠ 10�34
s after the Big Bang, the Universe underwent a

rapid expansion phase. Quantum fluctuations were frozen in place during inflation,

giving rise to random density perturbation which are the initial seeds for structure

formation.

• Structure formation begins: ⇠ 70, 000 years after the Big Bang, the first dark

matter structures begin to collapse.

• Surface of last scattering: ⇠ 370, 000 years after the Big Bang, the Universe cooled

significantly enough for atoms to form. At this time, photons are no longer coupled

to the hot plasma and so the Universe went from being opaque to transparent. We

observe this today as the cosmic microwave background.

• First stars: The fist stars form around 200-300 million years after the Big Bang.

These stars can be extremely massive (> 100M�) and thus are UV bright. They

are then capable of re-ionising the primordial gas, dropping its pressure and thus

promoting galaxy formation.
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Figure 1.5: Schematic diagram of the history of the Universe, Credit NAOJ.

1.3 Structure formation

Having briefly established the main concepts in the current standard cosmological frame-

work which describe the evolution of the Universe, I now discuss how dark matter

structures form and grow. These dark matter structures, known as “haloes”, form the

potential wells that gas will gradually condense into to form galaxies. The latter would

imply that there is an intimate connection between dark matter haloes and galaxies.

Over cosmic time, initial density perturbations (possibly arising from quantum fluc-

tuations that expand during inflation) will collapse into bound structures, when they

become dense enough. Small, high density regions collapse under gravity against the

expansion of the Universe before larger, more massive regions. Bound structures can

grow both via mergers and smooth mass accretion to form more massive haloes. This

paradigm, known as the hierarchical growth of dark matter, is described in more detail

below.

Here, I introduce two additional cosmological parameters which describe the distribution

of dark matter in the universe. Firstly, the Universe can be described as a density field.

The distribution of matter within this density field is normally described by its spatial

Fourier transform. This indicates the power, P at a given scale (the spatial wave number,

k) and is characterised as a power law of the type:

P (k) = P (k0)

✓
k

k0

◆ns+(1/2)dns/d ln k ln k/k0

, (1.2)

where ns is the spectral slope at k0 = 0.05Mpc
�1 and takes the value ns ⇠ 0.95

(Kosowsky & Turner, 1995; Planck Collaboration et al., 2014). P is a measure of the

amount of variance in the density field that is accounted for by a wave with wave number

k. The normalisation of this power law is more often than not quoted as �8, the linear,
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rms fluctuation amplitude of the power spectrum within spheres of radius 8h�1
Mpc,

evaluated at z = 0. Planck gives one of the best estimate of �8 = 0.829 ± 0.012.

The first attempt to quantitatively calculate the number of collapsed haloes at a given

cosmic epoch was made by Press & Schechter (1974). They considered the Universe to

be a comprised of a random Gaussian density density field, which can be expressed in

terms of an overdensity field:

�(~x.t) =
⇢(~x, t) � ⇢̄

⇢̄
. (1.3)

According to the spherical collapse model, regions with �(~x, t) > �c ' 1.69 will be a

collapsed dark matter halo at time t. In linear theory; �(~x, t) = D(t)�0(~x), where D(t)

depends on the cosmological parameters and is normalised to unity at the present day.

Press & Schechter (1974) begins by smoothing the overdensity field with a spherical

top-hat filter with characteristic radius R to give the new smoothed field; �s(~x;R). By

varying R, structures at di↵erent masses can be considered (with M = 4⇡R3
⇢/3). The

ansatz of Press-Schechter formalism is that the probability that �s > �c(t) is the same as

the fraction of mass elements that, at time t, are contained in haloes with mass greater

then M . Under the above assumptions, the probability that �s > �c(t) is given by:

P[> �c(t)] =
1p

2⇡�(M)

Z inf

�c(t)
exp


� �

2
s

2�2(M)

�
d�s ,

=
1

2
erfc


�c(t)p
2�(M)

�
,

�
2
M =

⌦
�
2
s(~x;R)

↵
.

(1.4)

Then following the Press-Schechter ansatz, equation 1.4 is equal to the mass fraction

of collapsed objects with mass > M . At this stage, Press & Schechter (1974) also

introduced the famous factor two ‘fudge factor’, such that F (> M) = 2 ⇥ P[> �c(t)].

The number of objects between M and M + dM (the halo mass function) is then given

by:
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n(M, t) =
⇢̄

M

@F (> M)

@M
dm = 2

⇢̄

M

@P[> �c(t)]

@�

����
d�

dm

���� dm ,

=

r
2

⇡

⇢̄

M2

�c

�M
exp


� �

2
M

2�2
M

� ����
d ln�M
d lnM

���� dM .

(1.5)

During the 1990’s, much e↵ort was put into developing the extended-Press-Schechter

formalism(Peacock & Heavens, 1990; Bond et al., 1991; Bower, 1991; Lacey & Cole,

1993; Jedamzik, 1995; Yano et al., 1996; Nagashima, 2001). In part, this was to explain

the factor two but also to broaden the input assumptions.

In parallel to development of the extended-Press-Schechter formalism, substantial ef-

fort went into the study of structure formation using N-body simulations (Efstathiou

et al., 1988; Lacey & Cole, 1994; Gross et al., 1998; Governato et al., 1999; Somerville

et al., 2000). These initial works find that, despite the obvious approximations found in

extended-Press-Schechter formalism, it does a remarkably good job of reproducing the

evolution of the halo population.

With the increase in computational power, cosmological dark matter simulations could

be run with greater spatial and mass resolution, revealing large numbers of sub-structures

in each distinct halo (Klypin et al., 1999; Coĺın et al., 2000). Figure 1.6 shows snapshots

from a high resolution, N-body simulation, extracted from Baugh (2006). Sub-structures

originate as distinct haloes which ‘fall into’ a more massive halo. Each infalling halo

is observed to orbit round the more massive host halo, slowly losing mass due to tidal

e↵ects, and eventually completely merging into it. The merging histories of haloes can

be represented as a tree (Lacey & Cole, 1993), where the trunk is the ‘main progenitor’

(the most massive halo during any merging event) and the branches are mergers between

haloes. The base of the tree is at z = 0 with the branches at higher redshifts. In

Appendix A, I provide a detailed descriptions and comparisons of both extended-Press-

Schechter based, analytic algorithms for generating merger trees and the results of N-

body simulations. In this theses, I will utilise merger trees constructed using both

methods.

An important assumption I make throughout this thesis is that every distinct halo has

exactly one central galaxy and, by extension, each sub-halo will host a satellite galaxy.

This is a safe assumption for the galaxy masses I probe in this thesis which are not

a↵ected by e.g., the missing satellite problem (Bullock, 2010, and refs. therein).
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Figure 1.6: The formation of a dark matter halo in a high resolution N-body simu-
lation of a 3 ⇥ 1011[h�1

M�] halo (extracted from Baugh, 2006). The circle marks the
present day virial radius. The colours reflect the density of dark matter, with redder

colours indicating spatial higher density.
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1.4 Observations of local galaxies

In Sections 1.2 and 1.3 I covered the theoretical framework for dark matter evolution.

In this section, I discuss the current observational understanding of galaxies in the local

Universe (z . 0.1). In the next section I discuss observations of galaxies at higher

redshifts, closer to their formation epochs.

1.4.1 The Hubble galaxy classification

One of the most common methods of classifying galaxies is through their visual mor-

phology. Figure 1.7, shows the widely used classification scheme, first laid out by Hubble

(1936), known as the Hubble tuning fork. It shows the division between spiral galax-

ies, characterised as being disc-like and having spiral arms and dust lanes (right in the

diagram) and elliptical galaxies, which are quasi-spherical and featureless (left). In be-

tween these two categories are lenticular galaxies, which are disc-like but usually lack

spiral features or dust lanes. Ellipticals and lenticulars are then collectively known as

“early-type” galaxies and spirals as “late-type”. Anything that doesn’t fit into these

categories are known as ‘irregular’ galaxies.

Figure 1.7: A schematic representation of the classifications of ‘nebulae’ (now called
galaxies). Extracted from Hubble (1936).

The evolution of the most massive elliptical galaxies is the topic of this thesis. They are

universally classified as having smooth elliptical morphologies, usually containing little

gas and dust and are red in colour, meaning they have old stellar populations. They

are ⇠ 3 � 100 times more luminous than the Milky Way and have characteristic sizes

of tens of kiloparsecs. The stars in giant ellipticals show very little ordered motion (i.e.

rotation) thus implying they are pressure supported.
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1.4.2 Measuring physical galaxy properties

In the following section I describe how some key, relevant physical properties of galaxies

are measured.

• Galaxy light profiles and e�ctive radii: A typical approach to characterise the

structure of a galaxy is to measure its surface brightness as a function of radius,

i.e., the integrated light through an annulus of radius, r. The surface brightness

profile, I(R), derived in this way can well fit by a Sérsic (1963) profile:

I(r) = I0 ⇥ exp

 
�b(n) ⇥

"✓
r

re

◆1/n

� 1

#!
, (1.6)

where I0 is the normalisation, n is the “Sersic index” and b(n) is calibrated such

that half of the galaxy’s light is contained within the radius re. Disc galaxies

(spirals) have n = 1 and ellipticals tend to have n & 4, and up to 8 � 10 for the

most massive, central galaxies.

• Velocity dispersion and rotation: An additional probe of a galaxy’s structure is the

mean orbital velocity of its stars. In rotationally supported galaxies (spirals and

lenticulars), a long slit spectragraph or, in recent years, an integral field unit can

be used to probe rotation curves. In pressure supported galaxies (ellipticals), the

mean light-of-sight velocity of stars can be extracted from the doppler broadening

of atomic emission and absorption lines in the galaxy’s spectra, such as H↵ and

H� .

• Stellar mass: The main method to measure the stellar content of a galaxy is to

fit its spectrum to model stellar population templates (known as SED fitting; e.g.

Maraston, 2005; Cid Fernandes et al., 2005; Ocvirk et al., 2006; Conroy et al., 2009).

Groups have created such mock stellar populations by inputting a stellar initial

mass function (IMF, e.g. Salpeter (1955); Kroupa (2001); Chabrier (2003)), into

standard stellar evolution recipes. A synthetic spectral templates are then created

by summing the spectra of the evolved stars assuming di↵erent metallicities and

ages for the populations. These templates can then be fit to a galaxies spectrum

to give its stellar mass.

• Gas fraction: The method used to observe gas in galaxies depends heavily on the

gas’ temperature. The most important gas phases are; firstly, the molecular gas

which is used in star formation, and is observed using tracers such as CO (Israel,

1997). Secondly, a large proportion of the gas in early-type galaxies is locked up in

atomic hydrogen. This is probed using radio observations of the 21cm line, cased
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by the flip of the electron’s spin. Lastly, hot X-ray gas can be used to measure

dark matter halo masses and is detected through deep X-ray observations.

• Star formation rate: There are several methods for tracking the formation of new

stars, all of which rely on tracing the number of massive, short lived stars (e.g.

Kennicutt, 1983; Condon, 1992; Cowie et al., 1997). The most common methods

use the UV continuum to directly probe the number of young, hot stars. Addi-

tionally, a fraction of the UV luminosity is absorbed by the interstellar medium

and dust. The former can be traced by recombination lines (such as H↵, H� , P↵,

P� , Br↵, Br� , etc.) and the latter by the far-infrared emission. Thus both these

can be used as proxies for the intrinsic UV luminosity and thus star formation

rate. The star formation rate in local galaxies can range from virtually zero in

early-type galaxies to . 20 [M�/yr] in late-type galaxies (although, it can be an

order of magnitude higher in galaxies undergoing a “starburst”).

• Dark matter mass: There are a number of ways to measure the host dark matter

halo mass of a galaxy. Many studies have used the weak-lensing (Tyson et al.,

1984; Hoekstra et al., 2005; Mandelbaum et al., 2006) and strong-lensing (Auger

et al., 2010; Sonnenfeld et al., 2013; Dye et al., 2014; Jauzac et al., 2015) of back-

ground galaxies to probe the total line-of-sight mass. Other techniques include

modelling the rotation curves of spiral galaxies (Sofue & Rubin, 2001), measur-

ing the properties of hot X-ray gas (Vikhlinin et al., 2006) and the dynamics of

globular clusters (Romanowsky et al., 2009).

1.4.3 Statistical properties of galaxies

In the previous section I described how to measure some relevant properties of individual

galaxies. In this section I focus on the statistical properties of galaxies that will be used

throughout this thesis.

1.4.3.1 Luminosity and stellar mass functions

Possibly the most fundamental statistical property of galaxies is the number density

of galaxies as a function of their intrinsic luminosity. The blue line in the top panel of

Figure 1.8 displays one of the latest renditions of the local (z . 0.1) luminosity function,

�(L), from Bernardi et al. (2013), defined as the number of galaxies per unit volume in

the luminosity range L ± dL/2. In general, the luminosity function is well described by

a power law with an exponential cut-o↵ at the high luminosity end. This is otherwise

known as a Schechter function (Schechter, 1976) and has the form:
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�(L)dL = �?

✓
L

L?

◆↵

exp


�
✓

L

L?

◆�
dL . (1.7)

The other coloured lines in the top panel of Figure 1.8 show how the luminosity function

is split between the di↵erent morphological types (as labelled). It is clear that elliptical

galaxies dominate the high-luminosity end whereas spirals dominate the low-luminosity

end.

The bottom panel of Figure 1.8 shows the corresponding local stellar mass function,

which will be utilised extensively throughout this thesis. As evident from this panel,

the stellar mass function has, as expected, a very similar morphological trend to the

luminosity function.

1.4.3.2 The Mstar-Mhalo relation

As conveyed in Section 1.3, galaxies are born and evolve within their host dark matter

haloes. This implies that there should be an intimate connection between the evolution-

ary pathways of (central) galaxies and their dark matter hosts, especially in terms of

the stellar and halo mass growth. Indeed, direct measurements of massive galaxy stellar

masses and their halo mass have revealed a strong correlation between the two proper-

ties. More statistical approaches, such as abundance matching whereby the integrated

stellar mass function and halo mass functions are equated (e.g., Vale & Ostriker, 2004;

Shankar et al., 2006; Moster et al., 2010; Leauthaud et al., 2012; Behroozi et al., 2013b;

Moster et al., 2013; Gu et al., 2016; van Uitert et al., 2016, and see Section 2.2.2) have

shown that this relationship is best fit by a double power law, and there is remarkably

small scatter about the relation (0.15 � 0.20 dex). The relationship between a galaxy’s

stellar mass and its host halo mass will be utilised heavily throughout this thesis. More

specific details will be given in Section 2.2.2.

1.4.3.3 The Colour-mass distribution

Another key observed quantity is a galaxy’s colour. In this context, colour is defined as

the ratio of the galaxy’s flux in two optical bands (or the di↵erence in magnitudes in two

bands) which is usually redshift and dust corrected. Figure 1.9 shows the distribution of

colours and stellar masses for galaxies in the Sloan Digital Sky Survey (Eisenstein et al.,

2011; SDSS Collaboration et al., 2016, SDSS). From this figure, it is clear that there

is a bimodality in galaxy colours, where the red galaxies belong to the “red sequence”

and blue galaxies to the “blue cloud”, separated by the “green valley” (Strateva et al.,

2001; Hogg et al., 2002; Blanton et al., 2003; Baldry et al., 2006). The blue band of a
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Figure 1.8: The observed z = 0 luminosity (blue, top) and corresponding observed z =
0 stellar mass (blue, bottom) functions, separated into their morphological calcification

(as labelled). Adapted from Bernardi et al. (2013).

galaxy’s spectrum is dominated by the young, hot stars which are tracers of active star

formation, meaning galaxies in the blue cloud are actively star forming whereas those
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Figure 1.9: The u � r colourmass diagram of local galaxies. The left panel shows all
galaxies. The right panels show galaxies separated into early-type (top) and late-type

(bottom). Extracted from Schawinski et al. (2014).

in the red sequence are not. The lack of galaxies in the green valley suggests that this

transition should be fast, a process refereed to as “quenching”.

The observation that more massive galaxies tend to be red gave rise to the idea of

“mass quenching’ whereby a galaxy is quenched when it reaches a mass threshold. This

could be due to the energy and/or momentum input from the central supermassive

black hole (Granato et al., 2004; Shankar et al., 2006; Hopkins et al., 2008). It could

also be because the galaxy’s host dark matter halo, when more massive than given

threshold, log(Mhalo) ⇠ 12, prevents new cold gas from reaching the central galaxy, a

mechanism known as “halo quenching” (Dekel & Birnboim, 2006; Dekel et al., 2009).

Physically, above this critical halo mass, cold gas is shock heated at the virial radius to

the virial temperature (⇠ 106k), which dramatically decreases the star formation rate

of the central galaxy.

Additionally, It was noted by, e.g. Hubble & Humason (1931) that the mix of mor-

phologies and colours of galaxies in a given region of space depends on their density

(Kau↵mann et al., 2004; Baldry et al., 2006; Weinmann et al., 2006). The densest en-

vironments with the most massive dark matter haloes (known as galaxy clusters) host
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a larger fraction of quenched, early-type satellite galaxies. This is labelled as “environ-

mental quenching” (Peng et al., 2010; Ilbert et al., 2013; Pontzen et al., 2017). The

physical mechanisms behind environment quenching are still debated but could be ram

pressure stripping, strangulation, harassment to name a few (for a full review, see Boselli

& Gavazzi, 2006).

1.4.3.4 The Size-mass relation

The last key statistical property of galaxies I discuss is the relationship between a

galaxy’s stellar mass and its radius. A galaxies size is quantified by its half-light ra-

dius (the circle containing half the galaxy’s projected light) or as the half-mass radius

(the sphere containing half the galaxy’s total stellar mass). Figure 1.10 shows the median

half-light-stellar mass relation for pressure supported (ellipticals; squares) and rotation-

ally supported (spirals and lenticulars; triangles) galaxies. It is clear from this figure

that the size of a galaxy is correlated with its stellar mass. Additionally, the relation-

ship is di↵erent for di↵erent galaxy morphologies, with ellipticals having a much steeper

size-mass relation.

More generally, elliptical galaxies are observed to follow a tight (typically only a 15�20%

scatter) “fundamental plane” in the size-stellar mass-velocity dispersion phase space,

which is of the form:

logRe = a log �0 + b log hIie + constant , (1.8)

where Re is the e↵ective radius, �0 is the central velocity dispersion and hIie is the mean

surface brightness within Re. The origin of the fundamental plane can be traced back

to the virial theorem:
GM

hRi =
⌦
v
2
↵
, (1.9)

where M is the mass of the system and hRi is the average radius. The left hand side of

equation 1.9 defines the potential energy per unit mass, and the right hand side,
⌦
v
2
↵
,

is the mean squared velocity, i.e. twice the kinetic energy per unit mass. Equation 1.9

would lead to the constants in Equation 1.8 having values of a = 2 and b = �1. However,

typically the best fit values range from a ⇠ 1.2 for blue bands to a ⇠ 1.5 for IR bands, and

b ⇠ �0.8 (Jorgensen et al., 1996; Pahre et al., 1998; Colless et al., 2001; Bernardi et al.,

2003). This departure from the virial theorem is known as the “tilt” of the fundamental

plane. The tilt is usually associated to non-homology, dark matter contributions, and/or

variations in M?/L? ratios.
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Figure 1.10: The median and dispersion of the distribution of Seŕsic half-light radius,
R, in the z band as a function of stellar mass extracted from (Shen et al., 2003).
Triangles represent results for late-type galaxies, while the squares are for early-type

galaxies. The error bars represent the scatter among 20 bootstrap samples.

1.5 Observations of high redshift galaxies

The results of fitting synthetic stellar populations to the spectra of massive early-type

galaxies show that their stars are, on average & 8Gyr old, corresponding to formation

epochs zform& 2 (Thomas et al., 2005). Indeed, the epoch 2 . z . 4 corresponds to the

peak of the star formation density (see Figure 1.11) when the Universe was most active,

therefore, catching the formation of massive galaxies “in the act” requires observations

at these early times (Conselice, 2014).

Deep optical and infra-red surveys (e.g. CANDELS; Grogin et al. 2011; Koekemoer et al.

2011 and UltraVista McCracken et al. 2012) have revealed that galaxies at this time are
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Figure 1.11: Evolution of the star formation rate density based on rest-frame UV
luminosity functions (extracted from Bouwens et al., 2010). The lower, blue shaded
region shows the star formation rate density with no dust correction. Instead, the top,

red shaded region shows the dust corrected rate.

distinctly di↵erent to local ones. Galaxies at these early epochs do not fit into the

standard Hubble classification scheme used for local galaxies of discs and ellipticals. In-

stead, the appearance of high redshift galaxies ranges from extremely compact spheroids

to clumpy, di↵use discs (Huertas-Company et al., 2015; Kartaltepe et al., 2015).

1.5.1 Detecting z > 1 galaxies

With the exception of a few deep spectroscopic surveys (e.g. VIRMOS; Le Fèvre et al.,

2005), a handful of novel methods are utilised to detect high redshift galaxies. Although

e↵ective at isolating high-redshift galaxies, all of these selection methods su↵er from

incompleteness which is very di�cult to estimate. For example, carefully tuned colour

cuts can isolate, e.g., the Lyman-↵ break (these are known as Lyman-break galaxies;

Steidel et al. 1996, 2003), the Balmer break (Franx et al., 2003; van Dokkum et al.,

2003), or combinations thereof (Daddi et al., 2004).

The increase in star-formation leads to massive galaxies having a high rest frame UV

luminosity. However, they are generally heavily dust enshrouded and so their UV light

is absorbed and re-emitted in the IR. Consequently, massive, high redshift, star forming

galaxies are observed to be bright in the sub-mm band and so can be e�ciently detected

by, e.g., SCUBA or MIPS (known as sub-mm galaxies; SMG; Smail et al. 1997).
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1.5.2 Redshift evolution

In this section, I compare the physical properties of galaxies, observed at di↵erent epochs.

1.5.2.1 Morphology

Galaxies at high redshift appear very di↵erent to local galaxies. Figure 1.12 shows the

types of morphologies observed at 1 < z < 3, extracted from Mortlock et al. (2013).

Figure 1.13 shows the fraction of each galaxy morphology at 0 < z < 3 at fixed number

density, extracted from Huertas-Company et al. (2015). In general, morphologies at

high redshift are more disturbed, asymmetrical and clumpy than local galaxies (Lotz

et al., 2006; Ravindranath et al., 2006). Additionally, the fraction of massive discs is

much higher (Huertas-Company et al., 2015; Mortlock et al., 2013). Also, star-forming

galaxies are observed to have strong outflows (Pettini et al., 2001; Shapley et al., 2003;

Steidel et al., 2010).

Figure 1.12: Examples of CANDELS H160-band images of galaxies with di↵erent
morphologies at 1 < z < 3. Extracted from Mortlock et al. (2013)

1.5.2.2 Stellar mass

The stellar mass function has been measured up to z & 5 (e.g. Fontana et al., 2004,

2006; Drory et al., 2005; Pozzetti et al., 2007; Elsner et al., 2008). Figure 1.14 shows the

integrated stellar mass in galaxies above logMstar> 8 [M�] per unit volume, taken from

(Marchesini et al., 2009, and references therein). This figure shows that only 50% of the
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Figure 1.13: The evolution of the relative abundances of di↵erent galaxy morphologies
between z ⇠ 0 and z ⇠ 3; extracted from Huertas-Company et al. (2015).
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stellar mass in the Universe was formed z & 1 and only 10% was formed z & 2.5. While

there is clear evidence that there is substantial growth in the stellar mass density of

the Universe, it is still debated how the new stars are distributed between existing and

newly forming galaxies as well as between the di↵erent morphologies and stellar mass

regimes.

Figure 1.14: The redshift evolution of the stellar mass density. This is found by
integrating the stellar mass function from 108 to 1013 [M�] at each redshift. Extracted

from Marchesini et al. (2009)

1.5.2.3 E↵ective radius

As noted by several groups (e.g. Daddi et al., 2005; Toft et al., 2007; Trujillo et al., 2007;

Buitrago et al., 2008; Cimatti et al., 2008; van Dokkum et al., 2008; Damjanov et al.,

2009), z ⇠ 2 quiescent galaxies have e↵ective radii that are ⇠ 3 � 5 times smaller than
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those of local early-type galaxies of the same stellar mass. Figure 1.15 shows the e↵ective

radii of disc and spiral galaxies and their stellar mass at 0.25  z  2.75; extracted from

van der Wel et al. (2014). Of important note is that the slope and 1� scatter of this

size-mass relation remains constant with redshift, and the mean relation only changes in

normalisation. Furthermore, the change in normalisation may be di↵erent for spirals and

ellipticals. At fixed stellar mass, the e↵ective radius of spirals varies as Re / (1+z)�0.75,

whereas the redshift dependants is more strong in ellipticals; Re / (1 + z)�1.5 (van der

Wel et al., 2014).

Figure 1.15: The sizestellar mass distribution of late-type (blue) and early-type (red)
galaxies for six redshift bins, extracted from van der Wel et al. (2014). The solid lines
in each panel are the best-fit Mstar-Mhalo relation at that redshift. Instead the dashed

line is the best-fit at 0 < z < 0.5.

1.6 Galaxy formation scenarios

In the previous section, I described some key observational probes of galaxy evolution.

I now discuss the key question of how they form and evolve.

1.6.1 Formation of spirals

The long standing theory to explain the formation of spiral galaxies is that gas is accreted

from the cosmic web into the centres of host dark matter haloes. The specific angular
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momentum of the gas is conserved thus forming a disc (Fall & Efstathiou, 1980; Mo

et al., 1998).

The formation of gas clumps in high redshift disc galaxies can be explained in terms of

the Toomre (1964) Q parameter;

Q ⌘ cs⌦

⇡G⌃
, (1.10)

Where cs is the sound speed of the gas, ⌦ is the angular velocity and ⌃ is the local

surface density. If Q < 1, then local gravitational collapse can overcome the sheering

disruption of the disc. Clumps are less prominent in the local universe because discs

are more settled (Dekel et al., 2009), possibly because of a decrease in the cosmic gas

accretion rate (Genel et al., 2012).

1.6.2 Formation of giant ellipticals

Unlike Disc galaxies, there is no singular hypothesis on how giant ellipticals form. In-

stead, there are broadly two, almost polar opposite ideas which I describe in the following

sections.

1.6.2.1 Formation of giant ellipticals: monolithic collapse

The monolithic collapse model claims that massive galaxies formed and assembled most

of their final stellar mass in strong bursts of star formation at high redshifts (Partridge &

Peebles, 1967; Larson, 1975). These starbursts can have star formation rates as high as

several thousands of solar masses per year (Chapman et al., 2005). After the starburst

has quenched, possibly induced by an e�cient AGN feedback, the galaxy is assumed

to evolve almost passively until the present day (Granato et al., 2004, 2006; Carollo

et al., 2013; Zolotov et al., 2015). Massive ellipticals have remarkably homogeneous and

have uniform, old stellar populations. The morphology and size of the galaxy depends

critically on the redshift at which all the stars formed (Granato et al., 2004; Cirasuolo

et al., 2005). In addition, they are observed to be enhanced in alpha-elements relative to

their iron content which is evidence for short bursts of intense star formation (Thomas

et al., 2005; Pipino et al., 2009; Conroy et al., 2014; Citro et al., 2016).

In principle, one might expect the collapse of this gas to form a disc (like lower mass

galaxies). However, early studies showed that it is possible for the gas to transfer angular

momentum to the halo, naturally creating pressure supported spheroids (Katz & Gunn,

1991; Katz, 1992).
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In this framework, there would be little room for any structural evolution along cosmic

time which is inconstant with observations (see Section 1.5.2.3). Fan et al. (2008) pro-

posed a method for expanding galaxies at z <zform in which strong winds/jets from AGN

can possibly expel large quantities of baryons from the galaxy. As a reaction to drop

in the central gravitational potential well, the galaxy will expand quasi-adiabatically

(Ragone-Figueroa & Granato, 2011). Fan et al. (2010) showed that in cosmological con-

text, including all galaxies formed at di↵erent epochs, quasi-adiabatic expansion may

substantially contribute to the observed size increase in massive elliptical galaxies.

1.6.2.2 Formation of giant ellipticals: Mergers

Hierarchical merger models instead predict that massive galaxies have assembled most

of their final stellar mass via a sequence of mergers following their host dark matter

haloes (e.g., Toomre, 1977; Naab et al., 2009; Shankar & Bernardi, 2009; van Dokkum

et al., 2010; Guo et al., 2011; Shankar et al., 2013; Montes et al., 2014). There is no

doubt that massive galaxies must have merged at some point as tidal tails and concentric

shells are observed around massive, local galaxies (Duc et al., 2015). However, the two

pressing questions are: 1) Can mergers between real galaxies actually create ellipticals

like those observed in the local Universe? 2) Is the merger rate and mixture of progenitor

properties as a function of environment, integrated over cosmic time, able to reproduce

the observed properties of local ellipticals. The first issue has been addressed using N-

body simulations of isolated merging galaxies (Gerhard, 1981; Farouki & Shapiro, 1982;

Negroponte & White, 1983; Barnes, 1988). More recent simulations have shown that

dissipationless (dry) mergers between equal mass galaxies can result in massive ellipticals

with properties similar to observed ones (Khochfar & Burkert, 2005; Cox et al., 2006;

Naab et al., 2006), whereas more unequal mergers between disc galaxies tend to preserve

the disc-like morphology (Naab & Burkert, 2003). The second issue will be addressed

over the course of this thesis.

1.6.3 Formation of giant ellipticals: Observational challenges

From the observational perspective, it is currently di�cult to distinguish between these

two modes of massive galaxy formation. As several groups have noted, the perceived

evolution in physical properties could simply be due to the large systematics in mass

estimates (Marchesini et al., 2009; Kravtsov et al., 2014; Shankar et al., 2014b; Bernardi

et al., 2016b, 2017), progenitor bias (van Dokkum & Franx, 1996; Saglia et al., 2010;

Newman et al., 2012; Carollo et al., 2013) and environmental e↵ects (Poggianti et al.,

2006; Shankar et al., 2013; Delaye et al., 2014; Shankar et al., 2014a; Stringer et al., 2015).
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These all particularly e↵ect the extreme high-mass end of the stellar mass function (e.g.,

Marchesini et al., 2014; Shankar et al., 2014a; Leauthaud et al., 2016; Bernardi et al.,

2016b). The left panel in Figure 1.16 shows Hubble space telescope (HST) images of

local galaxies. The right panel shows mock HST observations of those same galaxies if

they were at z = 2.5. It is clear from this figure that it is often di�cult to discern the

structure of galaxies at high redshifts. In the future, telescopes such as the James Webb

space telescope might be able to set direct constrains on massive galaxy evolution.

Figure 1.16: Nearby galaxies originally observed at z ⇠ 0 in B-band, simulated to
how they would appear at z = 2.5 in rest-frame B-band. Extracted from Conselice

(2014)

1.6.4 Formation of giant ellipticals: Modelling techniques

Instead, a theoretical understanding of galaxy evolution can be obtained through detailed

physical models. In this section, I discuss the results of semi-analytic, hydrodynamical

and semi-empirical models, paying particular attention to their input into the early

versus late formation scenarios.

1.6.4.1 Semi-analytic models

Semi-analytic models (SAM hereafter) take the approach of treating various physical pro-

cesses associated with galaxy formation using approximate, analytic prescriptions (Cole

et al., 2000; Baugh, 2006; Guo et al., 2011; Benson, 2012; Lacey et al., 2015). SAMs

start with dark matter merger trees, constructed using either N-body simulations or an-

alytic extended-Press-Schechter algorithms (Appendix A gives a detailed comparison of
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merger tree algorithms). Gas is allowed to flow and relax into the halo. Heating/cooling

prescriptions are added to trace the hot/cold gas components. Star formation follows

the Kennicutt-Schmidt law (Kennicutt, 1998) with a free parameter for normalisation.

SAMs use similar analytic recipes for black hole growth (Marulli et al., 2008), AGN and

supernova feedback (used for reheating cold gas and driving outflows Menci et al., 2006;

Guo et al., 2011), mergers (Cole et al., 2000), starbursts (Somerville et al., 2008) and

quenching (Cattaneo et al., 2006). Each of these recipes has a series of free parameters

which are tuned so the model matches observations of local galaxies.

SAMS are an e↵ective way of probing the diverse physical processes that are believed to

drive galaxy formation and evolution. However, a range of SAMs can provide degenerate

solutions while still reproducing key statistical properties such as the galaxy stellar mass

function (see review discussion in Mo et al., 2010). This is because they have a large

numbers of free parameters and a wide array of input assumptions which can lead to

a range of interpretations of their outputs. Broadly speaking, SAMs can predict both

that mergers can dominate the evolution (De Lucia et al., 2011; Gonzalez et al., 2011;

Guo et al., 2011; Shankar et al., 2013; Wilman et al., 2013) and that in-situ processes

are more important (Lapi et al., 2011; Ragone-Figueroa & Granato, 2011; Chiosi et al.,

2012; Merlin et al., 2012; Posti et al., 2014) depending on their exact parametrisations.

1.6.4.2 Cosmological hydrodynamical simulations

With the rise in computing power, full cosmological hydrodynamical simulations are

becoming an increasingly popular way of studying galaxy evolution (e.g. Dubois et al.,

2013; Hopkins et al., 2014; Schaye et al., 2015). They aim to directly simulate both

the dark matter and baryon components in a cosmological box. High redshift random

density perturbations are sampled in both gas and dark matter (either using grids or

particles) to give the initial conditions of the simulation. These initial conditions are then

allowed to evolve by solving gravitational and hydrodynamical equations. Because of

the finite resolution of hydrodynamical simulations, ‘sub-grid’ physics is included to take

into account the intricate physics that is important on scales that cannot be resolved.

In general, these are similar to the prescriptions used in SAMs. Hydro simulations have

the advantage that they make fewer assumptions about the interactions between the

dark matter and gas components. However, they are generally more complex to analyse

and more computationally expensive to run.

Modern SAMs and hydrodynamical simulations are capable of fitting a handful of key

observations such as the local stellar mass function (Schaye et al., 2015). Both agree on

the need for strong AGN and supernova feedback (Shankar et al., 2006). For the most
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part, models agree that there is at least some mass and structural evolution in massive

galaxies, however, they disagree on the exact cause. For instance, some groups suggest

that all the evolution is driven by mergers (Gonzalez et al., 2011) whereas other take the

line that mergers are unimportant (Lapi et al., 2011). Disc instabilities (Bournaud et al.,

2011) have been put forward to explain the formation of bulges. Hydrodynamical zoom

simulations (e.g., Hirschmann et al., 2012) have converged on the idea that there are

two phases to massive galaxy evolution where in-situ star formation dominates the early

assembly and mergers become more important at lower redshifts (Naab et al., 2009; Oser

et al., 2010). Hydrodynamical simulations in a full cosmological box continue to support

this two-stage evolutionary patten at least for the most massive galaxies (Hirschmann

et al., 2012; Torrey et al., 2015; Welker et al., 2015).

1.6.4.3 Semi-empirical models

In recent years, a third complementary approach has been put forward to more securely

probe and constrain the possible evolutionary pathways of massive galaxies. Semi-

empirical models aim to explore the fundamentals of galaxy formation by utilising empir-

ical relationships (such as the Mstar-Mhalo, Mstar-mgas, Mstar-re, Mstar-sSFR relations)

thus minimising the number of assumptions and free parameters. A successful model

has been the ‘bath tub’ model which treats galaxies as a gas reservoir (e.g. Lilly et al.,

2013; Dekel & Mandelker, 2014). van Dokkum et al. (2010), Marchesini et al. (2014)

and Huertas-Company et al. (2015) have adopted number conservation techniques to

track the putative main progenitors of massive galaxies. Other techniques are based

on continuity equation models for the stellar population (e.g., Peng et al., 2010; Aversa

et al., 2015). Also, Lidman et al. (2012) and Shankar et al. (2015) followed the main

progenitor track of the host haloes to identify potential proto-galaxies as progenitors.

All of these semi-empirical approaches broadly agree in assessing the primary role of

in-situ growth for galaxies below Mstar. 1011 M�. However, models become generally

more discordant when predicting the evolution of the most massive galaxies. One of the

main reasons for such discrepancies can be traced back to the growing significance of

the systematics associated with observations such as surface brightness variations, es-

timates of the proper background, cosmic variance, stellar mass estimates, the number

of mergers and the initial mass function (van Dokkum et al., 2010; Marchesini et al.,

2009; Behroozi et al., 2013b; Maraston et al., 2013; Bernardi et al., 2014; Shankar et al.,

2014a; Aversa et al., 2015; Leauthaud et al., 2016; Bernardi et al., 2016a). In particular,

Bernardi et al. (2016b) have recently shown that even when some of the more serious

systematic uncertainties are removed by creating a self-consistent observational dataset
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of massive galaxies at a range of redshifts, a clear interpretation of how the most massive

galaxies evolve is still elusive.

1.7 Thesis outline

This thesis aims to set more stringent constraints on the still debated formation and

evolution scenarios for the most massive galaxies. To achieve this, I have developed a

series of semi-empirical models to answer the following questions:

1. On average, how much do massive galaxies grow in stellar mass since their forma-

tion epoch?

2. Can mergers alone account for such growth in stellar mass and in size?

3. Can a basic monolithic collapse scenario account for the observations?

This thesis contains the research I conducted to explore the above questions, and is

structured as follows:

• In Chapter 2 I set constraints on the evolution of the most massive galaxies at

z ⇠ 1 to z = 0 using the relationship between their stellar mass and halo mass,

constructed using abundance matching (work presented in Shankar et al. 2014b).

This is enriched by the results of a cosmological semi-empirical model I developed

based around the abundance matching results (work presented in Shankar et al.

2015).

• In Chapter 3 I present more strong, model independent constraints on the evolution

of the most massive galaxies from z � 2 to z = 0 using their abundances and ages

(work presented in Buchan & Shankar 2016).

• In Chapter 4 I present a novel, systematic-free method for evaluating the evolution

of the most massive galaxies between z . 1 and z = 0.5 utilising the clustering

properties of central and satellite galaxies (work presented in Buchan et al. 2017).

• In Chapter 5 I compare the above results to numerical simulations. Firstly, I

revisit the adiabatic-expansion model presented by Fan et al. (2010) using idealised

numerical simulations to evaluate its role in growing galaxies in size. Secondly, I

utilise a sub-sample of the cosmological zoom-in simulations run by Martizzi et al.

(2014), as well as my own, to study the growth of a massive galaxy.

• In Chapter 6 I summarise this thesis and conclude.





Chapter 2

Probing the evolution of massive

galaxies using their abundances

and validation through a

semi-empirical model.

2.1 Introduction

The size and mass evolution of massive, spheroidal galaxies has become one of the hottest

topics in modern cosmology. Local early-type galaxies are observed to obey a tight half-

light radius-stellar mass relation with an intrinsic scatter of less than 0.3 dex (Bernardi

et al., 2011b,a; Nair et al., 2011). This observational feature still represents a major

challenge for hierarchical models of galaxy formation that evolve proto-galaxies via a

sequence of stochastic mergers, often resulting in the incorrect scaling relation and/or

much greater scatter (Bower et al., 2006; Nipoti et al., 2009; Shankar et al., 2010a, 2013).

While there are promising ideas on how massive galaxies assembled to give tight scaling

relations, a comprehensive evolutionary model is still missing.

From the observational side, a significant fraction of studies are conducted by comparing

galaxies at di↵erent redshifts at fixed stellar mass. This procedure inevitably includes

contributions from both pre-existing galaxies and ones which have evolved to enter the

selection criteria at later times. As emphasised by several groups (Hopkins et al., 2009;

Carollo et al., 2013), the impact of these newcomers, usually termed “progenitor bias”

(van Dokkum & Franx, 1996; Saglia et al., 2010), may account for most of the observed

structural evolution. Indeed, there is strong evidence for a significant increase in number

31
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density of massive galaxies at all redshifts (Buitrago et al., 2013; Carollo et al., 2013;

Huertas-Company et al., 2013).

The goal of this chapter is to provide initial constraints on the mass and structural evo-

lution of very massive galaxies in ways that are, by construction, free from progenitor

bias. Further more, they are largely independent of the complexities of modern cosmo-

logical models instead relying (mostly) on direct observations and abundance matching

(see Section 2.2.2).

To further validate the above constraints, I also utilise a semi-empirical models of galaxy

evolution (eg. Hopkins et al., 2009) which I developed following the methodology of

Shankar et al. (2014a). The latter, by design, are an extremely e↵ective way of making

use of the known properties of galaxies together with minimal theoretical inputs to make

testable predictions on a set of observables, and set unique, independent constraints on

the major processes that drive galaxy evolution. These models are fast enough to allow

a large volume of galaxies to be quickly simulated, and to test a wide range of input

assumptions to with strong statistical significance.

2.2 Initial constraints from abundance matching.

I start by discussing work presented in Shankar et al. (2014b) which is an initial step in

understanding the evolution of massive galaxies and further motivates the work in this

thesis. Shankar et al. (2014b) compares the direct measurements of the halo mass and

stellar mass of very massive galaxies to the results of abundance matching at various

redshifts. Specifically, Shankar et al. (2014b) utilise a sample of massive galaxies and

haloes to test the null hypothesis that the stellar mass of massive galaxies remains

constant between z=0 and z=1. Abundance matching (AM hereafter) is a semi-empirical

technique for statistically mapping stellar masses onto dark matter halo masses. The

null hypothesis that all galaxies do not change in stellar mass will imply that the number

densities of massive galaxies also remains constant.

In principle, by tracking the redshift-dependent Mstar-Mhalo relation, it is possible to

extract valuable constraints on the average stellar mass growth of (especially) the most

massive galaxies, the focus of this work. In Figure 2.1 I provide a sketch to explain

this point. In the top panels of Figure 2.1 I assume an extreme scenario in which the

number density of massive galaxies remains constant at all cosmic times. The halo mass

function strongly evolves with cosmic time (due to the hierarchical growth of dark matter

haloes), thus the mean halo mass at fixed number density substantially increases with

decreasing redshift. As a consequence, massive galaxies at high redshifts get mapped
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Figure 2.1: A cartoon sketching how two contrasting redshift evolutions in the Mstar-
Mhalo relation predicts predict di↵erent evolutions in Mstar. Panel A shows the mean
evolution of a local log Mhalo= 11[M�] halo. Panels B and C show a gradually decreas-
ing Mstar-Mhalo relation and a static one respectively. The blue arrows on the relations
show the evolution in Mhalofrom panel A along with the corresponding evolutions in

Mstar. Panels D and E explicitly show the corresponding evolutions in Mstar.

onto increasingly lower mass haloes since the mean mass of haloes is decreasing, at fixed

number density, but the mean stellar mass is remaining constant. This naturally predicts

that the high mass slope of the Mstar-Mhalo relation should increase with higher redshift

(top, left panel).

Conversely, in the bottom panels of of Figure 2.1 I allow for substantial mass growth in

massive galaxies. In this scenario, the number density of massive galaxies is decreasing

with increasing redshift. This would imply that the high-mass end slope of the Mstar-

Mhalo relation should steepen less than the former scenario or even get shallower. In

fact if, on average, massive galaxies and their host dark matter haloes are growing in

such a way that their respective change in number density at fixed mass is the same,
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the high-mass end of the Mstar-Mhalo relation will remain roughly constant in slope, at

fixed intrinsic scatter.

The idea is therefore to compare the Mstar-Mhalo relationship constructed using a static

z = 0 stellar mass function and a redshift dependent halo mass function to observed

galaxies at a range of redshifts. Comparing simple, semi-empirical models such as this to

direct observations has the advantage that the conclusions are not clouded by the com-

plexities and parametrisations of more sophisticated semi-analytic/numerical models. In

what follows, I (briefly) present the observations adopted in Shankar et al. (2014b), and

then move onto technique of AM. I will then discuss the constraints when combining

the direct measurements with AM.

2.2.1 Observations

Firstly, Shankar et al. (2014b) constructed an observational dataset of massive, central

galaxies at di↵erent redshifts. They gather measurements of the host halo masses of

massive galaxy clusters and the stellar mass of their respective central galaxies. Here, I

list the datasets used:

• Clusters at z < 0.3, selected from the Sloan Digital Sky Survey (Eisenstein et al.,

2011; SDSS Collaboration et al., 2016, SDSS hereafter) by Kravtsov et al. (2014)

and Gonzalez et al. (2013). These two studies use X-ray measurements of the hot

inter-cluster gas to constrain the total mass of the cluster and they obtain estimates

of the stellar mass of the central galaxies using SED fitting from multi-wavelength

spectral energy distribution (SED hereafter) observations.

• Galaxies in the The Cosmic Evolution Survey (Scoville et al., 2007, COSMOS

hereafter) fields at 0.2 < z < 1 from Huertas-Company et al. (2013) and refs.

therein. They measure halo masses through a combination of weak lensing x-ray

observations. Galaxy stellar masses through multi-wavelength SED fitting.

• Brightest cluster galaxies (BCGs hereafter) from the Spitzer Adaptation of the

Red-Sequence Cluster Survey (Muzzin et al., 2009, SpARCS hereafter) spanning

0.03 < z < 1.63 from Lidman et al. (2012) and (van der Burg et al., 2013). They

use optical/IR measurements to constrain stellar masses and x-ray observations to

constrain the total cluster mass.

• Targeted observations of a clusters at z ⇠ 1.2 � 1.4 by Strazzullo et al. (2010);

Raichoor et al. (2011); Strazzullo et al. (2010). They measure halo masses through

X-ray observations and galaxy properties through IR/optical imaging.
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• BCGs in the Cl1604 supercluster (and other structures) from the ORELSE survey

(Ascaso et al., 2014). The halo virial masses are measured through the dynamics

of the member galaxies an the stellar mass of the central galaxies are measured

through SED fitting.

Galaxies and haloes from these catalogues are grouped together into four redshift bins:

z < 3, 0.3 < z < 0.6, 0.6 < z < 0.8 and 0.8 < z < 1.4 so that they can compared to

results of AM at those redshifts.

2.2.2 Constraints from abundance matching

As a second step, Shankar et al. (2014b) compute the mean Mstar-Mhalo relation from

abundance matching, to compare with the data. Figure 2.2 shows a simplified cartoon

of the abundance matching (AM) procedure. Panel ‘A’ shows an image from SDSS

centred on a massive galaxy. All the local galaxies in this image that are in the NASA-

Sloan Atlas have their stellar masses labelled. Panel ‘B’ shows a zoom-in simulation at

z = 0 where a random selection of collapsed dark matter haloes have their halo masses

labelled. Panel ‘C’ (right) then shows the basic AM procedure where galaxies and haloes

contained in equal co-moving volumes are ranked by their mass and mapped from one

to the other. In other words, the most massive galaxies in a given volume is mapped

onto the most massive halo in the same volume and the 100th most massive galaxy is

mapped onto the 100th most massive halo, etc.

Note that most stellar mass functions are the combined number densities of central and

satellite galaxies at a given mass. This means that the AM procedure also requites a

list of the masses of sub-haloes that contain satellite galaxies.

A major issue with this procedure is that constructing complete, unbiased catalogues of

galaxies and haloes at equal volumes is challenging. Figure 2.3 shows a more practical

method for AM. The left panel shows the sum of the integrated halo mass function

(ie. the number of distinct haloes above a given mass per unit volume) from Tinker

et al. (2008) and the integrated unevolved subhalo mass function (same but for the un-

stripped masses of subhaloes that host satellites) from Giocoli et al. (2008). The right

panel shows the integrated stellar mass function (centrals plus satellites) from Bernardi

et al. (2013), in the same units. The horizontal lines track constant number densities.

The vertical lines track instead the halo/stellar mass these integrated number densities

correspond to. Table 2.1 reports the implied mapping between Mstar and Mhalo over a

wide range of number densities, as shown in Figure 2.3.

This procedure can be summed up with the equation:
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C

Figure 2.2: A cartoon of abundance matching. Panel ‘A’ shows an image from SDSS
centred on a massive galaxy. All the local galaxies within this picture have their log
Mstar labelled. Instead, panel ‘B’ is a picture of a slice through a zoom-in cosmological
simulation. A random sample of haloes have their log Mstar labelled. Panel ‘C’ then
shows a schematic of abundance matching, where samples of galaxies and haloes are

selected from equal volumes, ranked by mass and mapped.
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Table 2.1: The mapping between stellar mass had halo mass corresponding to the
example shown in Figure 2.3.

Number (> M)/Mpc
3
h
�3 10�2 10�4 10�6 10�8

Mhalo[M� h
�1] 4 ⇥ 1011 2.2 ⇥ 1013 2.9 ⇥ 1014 1.1 ⇥ 1015

Mstar[M� h
�1] 1.8 ⇥ 1010 2.9 ⇥ 1011 1.0 ⇥ 1012 2.5 ⇥ 1012

�(> Mstar, z) = �(> M200c, z) , (2.1)

Where �(> Mstar, z) is the integrated number density of galaxies above Mstar at z and

�(> M200c, z) is the integrated number density host haloes above M200c at z. Equa-

tion 2.1 yields a monotonically increasing function which can conveniently be fit by a

double power-law of the type:

Mstar

Mhalo
= 2N

"✓
Mhalo

M1

◆��

+

✓
Mhalo

M1

◆�
#�1

, (2.2)

where M1 is the overall normalisation, N controls the location of the break, � and � are

the low and high mass power-law indices (or the slopes of the relation in log-space).

An important caveat the the AM procedure is the intrinsic scatter in the Mstar-Mhalo

relation. This scatter has the e↵ect of mixing up the the one-to-one correlation described

above. To outline the e↵ect the scatter will have on the AM results presented above, I

will first consider a fixed halo mass function and a fixed median mapping between Mstar

and Mhalo. In this case, the scatter will manifest itself as a scatter in stellar masses of

galaxies at fixed halo mass. Figure 2.4 is a cartoon showing the e↵ect that a scatter in

stellar mass at fixed halo mass will have on the stellar mass function. The top left panel

shows a scatter plot of the stellar masses of fictitious galaxies and their associated halo

masses, assuming that there is a monotonically increasing relation between them with

no scatter. The resulting stellar mass function is shown in blue in the bottom panels.

The top right panel shows the result if the stellar mass of each galaxy is scattered by

a random amount following a log-normal distribution. It can be seen that the mean

relation is the same. I have chosen the standard deviation of this scatter such that 10%

of the galaxies enter a higher mass bin in the stellar mass function and 10% enter a

lower one (as shown by the green and orange arrows in the bottom left panel). The

comparison between the initial stellar mass function (blue) and the resulting one after

the scatter (orange) can be seen in the bottom right panel. It can be seen that the

scatter has no e↵ect in the left bins where the mass function is flat. However at the
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higher mass bins, the mass function is flattened out since more galaxies are scattered up

than are scattered down. This e↵ect is known as Eddington bias.

In practice, there is an intrinsic, non-zero but unknown scatter in the observed relation

between the masses of galaxies and their host halo. Figure 2.5 shows a real case where

the parameters in equation 2.2 are fit using the AB technique with the Tinker et al.

(2008) halo mass function, Giocoli et al. (2008) subhalo mass function and the Bernardi

et al. (2013) stellar mass function assuming the intrinsic scatter is 0, 0.15 and 0.3dex

(blue, orange and green respectively). As it can be seen in the bottom panel, all three

scatters can provide good fits to the stellar mass function. However, as indicated in the

top penal, increasing the scatter leads to a shallower high-mass slope in the mean Mstar-

Mhalo relation. However, the other parameters in the Mstar-Mhalo relation are roughly

unchanged. Thus, an e�cient (but not unique) way to include scatter in AM is to first

fit Equation 2.2 first with zero scatter then “tilt” the best-fit � = 1 � � until the input

stellar mass function (are other statistical properties) are reproduced. I will (mostly)

follow this method throughout this thesis.

In Shankar et al. (2014b), AM is done using the Tinker et al. (2008) halo mass function

which is well calibrated (< 5% systematic uncertainty) over a large range of halo masses

(1011h�1
M� < M < 1015h�1

M�). Additionally, a variety of stellar mass functions

are adopted from the literature to verify that the key results are not induced by the

systematics from stellar mass/volume estimates. Figure 2.6 shows four panels of galaxy

stellar mass versus its host halo mass for each of the redshift bins. The observed massive

galaxies described in Section 2.2.1 are plotted in their respective panels. Additionally,

the mappings from Mstar to Mhalo derived from AM are shown.

It is clear from Figure 2.6 that all Mstar-Mhalo relations derived by Shankar et al. (2014b)

(Yang et al., 2011; Bernardi et al., 2013; Maraston et al., 2013; Muzzin et al., 2013) are

substantially steeper than those widely adopted in the literature (Behroozi et al., 2013b;

Moster et al., 2013) despite all using the AB technique (although using di↵erent halo

mass and stellar mass functions). Additionally, it is also evident from Figure 2.6 that

in the limit where the stellar mass function does not change, AB produces a too-steep

slope with respect to the data at z ⇠ 1. This conclusion holds on the assumption that

the scatter is small and does not change with redshift and that the data does not su↵er

from high redshift systematics such as surface brightness dimming. I will show that

the former is holds via clustering measurements, which is a technique independent of

the AM procedure presented above. The latter cannot be excluded the latter using

the methodology presented so far, but I will present a new technique in Chapter 4 to

probe the evolution of the Mstar-Mhalo relation which is free from redshift-dependant

observational systematics.
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Figure 2.4: A cartoon to show the a↵ect of adding scatter to the Mstar-Mhalo relation.
The top left panel shows the Mstar-Mhalo relation of fictitious galaxies that follow a
strict relation with zero scatter. The blue histogram in the bottom panels shows this
fictitious mass function. The top right panel shows the relation when the stellar mass
each galaxy in the top left panel is scattered by a random amount following a log-normal
distribution. The standard deviation has been chosen such that 10% of the objects are
scattered into a higher mass bin and 10% being scattered into a lower one (as shown by
the arrows in the bottom left panel). The orange line in the bottom right panel shows

the resulting mass function after this scattering.

The top right and bottom left panels show galaxies at 0.3 < z < 0.6 and z < 0.6 <

0.8 respectively from Huertas-Company et al. (2013) The open circles show individual

galaxies whereas the solid points shows their median.

2.2.3 Constraints from galaxy clustering

To constrain the scatter in the Mstar-Mhalo relation, Shankar et al. (2014b) use the

probability distribution dP/d logMhalo, independently extracted from the modelled halo

occupation distribution (HOD hereafter) of massive galaxies. As input, these models

take the two point correlation function (2PCF hereafter), which is the excess probability

that two galaxies (from within a sample of galaxies) are found at a distance r apart

versus a random distribution. They then give in output the average number of central
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Figure 2.5: Top panel: A plot showing the e↵ect that changing the intrinsic scatter
in the mean Mstar-Mhalo relation at fixed halo mass has on the best fit Mstar-Mhalo

relation. Bottom panel: The input observed stellar mass function by (Bernardi et al.,
2013) as well as the resulting best fits for each scatter.
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Figure 2.6: The median stellar mass to halo mass relation for central galaxies at
< z >= 0.1, 0.4, 1.1 and 0.7 going clockwise from top left. Each panel shows data
points from observed massive galaxies at that redshift range. Specifically, the data
points in the top left panel are local galaxies from Kravtsov et al. (2014) (orange)
and Gonzalez et al. (2013) (blue). The open circles in the other three panels show
galaxies from Huertas-Company et al. (2013) and the filled circles in each panel show
their median. The black squares in the bottom right panel show a selection of targeted
observations (see Section 2.2.1) at 0.8 < z < 1.4 and the green triangles are galaxies in
the Cl1604 supercluster from Ascaso et al. (2014). The lines in each panel correspond to
the results of abundance matching from stellar mass functions found in the literature.
For reference, each panel also shows reference slopes where � = 1�� from Equation 2.2.

and satellite galaxies (from within the galaxy sample) at fixed halo mass hN(Mhalo)i,
which can be renormalised to give the probability distribution, dP/d logMhalo.

In practice, the 2PCF is found by measuring the positions of all galaxies within a sample.

The galaxy-galaxy (gg) 2PCF is then computed using, eg, the Landy & Szalay (1993)

estimator:

⇠gg(r) =
nR(nR � 1)

nD(nD � 1)

DD

RR
� 2

nR � 1

nD

DR

RR
+ 1 (2.3)

where DD is the histogram of the euclidean distance between every data point in sam-

ple. RR and DR are the same but now are histograms of the distances between all the

points in a random and the distances between a random sample and the original data

respectively. nD and nR are the number of data points in the data and random samples
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respectively. The di�culty is that 2PCF is computed in 3D but measuring the distances

to galaxies is very di�cult. This can either be measured by directly measuring the dis-

tances to galaxies using, eg. Cepheid variable stars or by converting the galaxies redshift

to a luminosity distance assuming that the galaxy is in the hubble flow. Conversely, the

line-of-sight 2PCF is often used which is simply the 3D 2PCF projected onto a 2D plane.

This is calculated as:

wp(rp) = 2

Z r⇡,max

0
⇠(rp, r⇡)dr⇡ (2.4)

In what follows, it does not matter if ⇠ or wp is chosen. The 2PCF is formed of two

components, the ‘one halo’ which represents the clustering of galaxies within one halo

and the ‘two halo’ term which is the clustering between galaxies in di↵erent haloes:

⇠gg(r) = ⇠
1h
gg (r) + ⇠

2h
gg (r) + 1 (2.5)

At large radii (beyond the virial radii of the most massive clusters) the two halo term

dominates and at small radii the single halo term dominates. At extremely large radii the

clustering tends to zero (in accordance with the cosmological principle of homogeneity).

In turn, the one halo term is given by

1 + ⇠
1h
gg (r) =

1

2
n̄
�2
g

Z
n(m)hN(N � 1)iM�(r|M)dm (2.6)

and the two halo term is given by

⇠
2h
gg = ⇠

lim
mm(r)n̄�2

g

Z
n(M1)bh(M1)hNiM1dM1

⇥
Z

n(M2)bh(M2)hNiM2�(r|M1,M2)dM2

(2.7)

where n̄g is the mean number density of galaxies, n(M) is the halo mass function,

�(r|M) relates to the radial mass profile of a halo with mass M and �(r|M1,M2) relates

to the convolution of the mass radial profiles of haloes with M1 and M2. bh is the halo

bias which is a measurement of how clustered dark matter haloes are relative to the

underlying dark matter distribution. The latter is found from high resolution, large

scale n-body simulations.
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The key to HOD modelling is that most of these parameters in equations 2.6 and 2.7

are well constrained and the only unknowns are the mean number of galaxies per halo of

a given mass, hNiM and the mean number of satellites with a given mass M2 in a halo

with mass M1, hN(N � 1)iM . For a sample of galaxies with a minimum mass, Kravtsov

et al. (2004) and Zheng et al. (2005) show that the best analytical description for hNiM
and hN(N � 1)iM are of the type:

hNcen(M)i = 1

2


1 + erf

✓
logM � logMmin

�logM

◆�
(2.8)

hNsat(M)i = hNcen(M)i
✓
M � M0

M
0
1

◆↵

(2.9)

these can be convolved with the halo mass function and renormalised to give the prob-

ability that a galaxy within the sample is in a halo of mass M , ie. dP (M)/dM .

Shankar et al. (2014b) uses the host halo mass probability distributions, dP/d logMhalo

from Guo et al. (2014) as an independent constraint on the scatter in the Mstar-Mhalo

relation. Figure 2.7 shows the predicted dP/d logMhalo distributions of galaxies with

log Mstar> 11.5[M�] at 0.4 < z < 0.6 (left panel) and 0.6 < z < 0.8 (right panel). The

grey bands show the results of the HOD analysis by Guo et al. (2014) who use a sample

of galaxies from BOSS with that mass cut at those redshifts. The three lines in each

panel show instead the results of the analysis by Shankar et al. (2014b) who use AM to

fit the Muzzin et al. (2013) stellar mass function, which matches the number densities of

Guo et al. (2014). Di↵erent values of the intrinsic scatter are used, � = 0.15, 0.2 & 0.25

dex. As evident from Figure 2.7, an intrinsic scatter of � . 0.15 dex best matches the

clustering measurements.

Overall, the results of Shankar et al. (2014b) can be summarised as follows:

• To fit the clustering data of central galaxies from Guo et al. (2014), a scatter of

� ⇠ 0.15 dex is required (at least at z . 1).

• The latest determinations of z . 1 stellar mass functions point to the high-mass

slope of the Mstar-Mhalo relation being substantially steeper than previous esti-

mates in the literature (Behroozi et al., 2013b; Moster et al., 2013) in the redshift

range 0  z . 1.

• The null hypothesis that the stellar mass function does not evolve is not supported

by direct observations of the stellar and halo halo masses of massive, central galax-

ies in the redshift range 0  z . 1, when compared to the expectations from AM.
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Figure 2.7: The predicted probability that a BCG with log Mstar> 11.5[M�] will
reside in a halo of mass M . The grey band is the results from Guo et al. (2014) for
observed, central galaxies in BOSS and the coloured lines are the results of Shankar
et al. (2014b) analysis for central galaxies using three di↵erent intrinsic scatters, as
labelled. The left panel shows results at z = 0.5 and the right panel shows them at

z = 0.7.

The validity of the above results partly relies on the reliability of the measurements

of high redshift stellar masses and volumes. While a full discussion of this will be

presented in Chapter 4, the work presented in the rest of this chapter will show that

these preliminary results on the evolution of the most massive galaxies are consistent

with the predictions of a state-of-the-art cosmological evolution model.

2.3 Semi-empirical model

In the rest of this chapter, I present a state-of-the-art model for growing galaxies through

cosmic time. The semi-empirical model (SEM hereafter) is designed as a light-weight,

flexible, fast, e�cient model based on few input parameters and assumptions; In contrast

with the SEM, semi-analytic models populate haloes with gas and allow them to evolve

via complex parametrisations which attempts to capture the core physics. Instead, SEM

populates haloes with galaxies using empirical AM relationships before evolving them

through empirically inspired recipes. In the following section, I describe the recipes used

to evolve galaxies in the SEM after which I present a handful of key results.

2.3.1 Merger trees

Dark matter halo merger trees have become the backbone of most (if not all) models of

galaxy formation. This is because dark matter haloes define the potential well in which

high redshift gas condenses into to form galaxies. The depth of this well controls the flow
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Figure 2.8: An example merger tree taken from Heitmann et al. (2014). The coloured
discs represent dark matter haloes where the mass increases from pink to blue. As
highlighted, forks show when two dark matter haloes merge. A major merger is when
the two haloes are of compatible mass. Haloes can also grow via steady smooth accretion

of dark matter from the cosmic web.

rate of gas into its centre and the rate at which this gas cools to form stars. Additionally,

dark matter haloes grow hierarchically with smaller haloes merging together into larger

ones. The mergers between haloes give rise to mergers between galaxies and thus the

merger history of the halo itself possibly becomes a driver of galaxy evolution.

Mergers between haloes can be represented as trees; In this analogy, the trunk of the

tree is the “so-called” main progenitor branch, which represents the direct evolution of

the most massive halo. O↵ the trunk are the “branches” which represent the evolution

of the lower mass haloes merging onto the main progenitor.

Figure 2.8 shows a merger tree where the circles represent dark matter haloes, and

cosmic time increases from left to right. The colour of each circle indicates the mass of

the halo. Importantly, it highlights the key features that define a merger tree. Along

the top of the tree is a halo which has no mergers but sill increases in mass via smooth

accretion of dark matter from the cosmic web. In the middle of the tree, a major merger

is highlighted which is a merger of two haloes with equal masses.

Producing dark matter merger trees can be generally achieved in two ways. The first

is to use the Extended Press-Schechter formalism to randomly fragment a z = 0 seed

halo into its progenitors at higher redshift. The second is to utilise large volume N-body

cosmological simulations. Because dark matter plays a dominant role in the evolution

of its central galaxy, it is very important to construct statistically correct merger trees

before building any galaxy evolution models on top of them. In Appendix A, I discuss
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merger trees from numerical simulations and analytic algorithms and their respective

advantages and disadvantages for assessing massive galaxy evolution. In summary, I

find that the Parkinson et al. (2008) algorithm is the best choice for the SEM.

2.3.2 Generating halo catalogues

Having selected to use Parkinson et al. (2008) merger trees, the first step is to construct

a catalogue of merger trees to use as the backbone for my galaxy evolution models.

Firstly, a su�ciently large catalogue of massive haloes needs to be constructed at z = 0.

Each halo in the catalogue will form the base of a distinct merger tree, created via

the Parkinson et al. (2008) algorithm. For a given volume, I integrate the halo mass

function, finding the masses where the number of haloes is an integer, i.e., I perform the

operation:

n = V

Z 1

Mhalo

�(m)dm n 2 Z . (2.10)

Similarly to a random selection, the approach in equation 2.10 e�ciently produces large

catalogues of dark matter haloes. Figure 2.10 demonstrates this procedure for a volume,

V = 104 Mpc
3
h
�3. Each coloured band has an area equal to one and therefore is a

distinct halo.

The initial catalogue of haloes is extracted from the Tinker et al. (2005) halo mass

function. Figure 2.9 shows the Tinker et al. (2005) halo mass function is a very good fit

to two large, dark matter only simulations, Bolshoi (Klypin et al., 2011) and MultiDark

(Riebe et al., 2011). It is clear that these simulations have limited statistics at high

halo masses which is the focus of this thesis. This is one of the main reasons why the

SEM was constructed on top of analytic merger trees. However, I will often refer back

to numerical simulations when appropriate.

2.3.3 Adding galaxies

In this section, I describe the details of the semi-empirical model.

Initially, for a given volume at z = 0, a catalogue of dark matter haloes is constructed

using the method described in section 2.3.2. For each halo in the catalogue, I construct a

merger tree using the Parkinson et al. (2008) algorithm to a maximum redshift, zmax =

3 (since the empirical AM relationships are defined best below this redshift Huertas-

Company et al. 2015) and with a mass resolution of Mmin = 1011[M�h
�1] (as this best
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Figure 2.9: A comparison between the halo mass functions produced by two dark
matter-only simulations and the analytic relation of Tinker et al. (2008) at z = 0.

Figure 2.10: A demonstration of our sampling strategy. The blue curve is the inte-
grated number density of haloes above a given mass. The alternating coloured regions

represent single haloes (when N in an integer) for a 104 Mpc
3
h
�3 box.

balances good mass resolution while allowing for large numbers of massive galaxies to

be simulated). The SEM then starts with the lowest mass haloes in the z = 0 halo

catalogue and sequentially works to the more massive ones.
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Figure 2.11: A cartoon showing a portion of a single merger tree which is being
simulated by the semi-empirical model. The coloured circles represent the underlying
dark matter. The presence of a galaxy shows that that halo is populated. The central
column shows the main progenitor branch and the others show smaller galaxies which

merge onto it.
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Figure 2.11 shows a cartoon of the inner workings of the SEM for a single z = 0 central

galaxy. The coloured circles show the underlying dark matter merger tree from some

arbitrary zform to z = 0. The central column represents the main progenitor branch of

the merger tree and the galaxy at its centre is the the main focus of the SEM. The other

branches are mergers between the main progenitor and other, (usually) less massive

haloes (see Section 3.2.2 a detailed discussion).

Firstly, the main progenitor is populated with a galaxy at the chosen zform. This galaxy

is assumed to be a typical, star forming, disc-like (see section 1.5.2.1) main sequence

galaxy (Huertas-Company et al., 2015, showed this to be the case for the galaxies the

SEM is focused on at z & 3.) and thus, haloes are populated using empirical relationships

for Mstar-Mhalo (eg. Moster et al., 2013), Mstar-Mgas (eg. Stewart et al., 2009), Mstar-

specific star formation rate (sSFR; e.g. Peeples & Somerville, 2013) and Mstar-e↵ective

(half-light) radius (re; e.g. Shen et al., 2003) with re(z)/re(0) from (Hopkins et al., 2009).

Next, the haloes that merge directly with the main progenitor get populated with galax-

ies at their redshift of infall, zinf . This is initially done assuming that the satellite galaxies

are also disc-like and follow the main sequence. However, when the simulation has built

up a statistically significant population of galaxies, the model searches through through

the simulated main progenitors to find one with a similar halo mass and redshift and

copies the properties of that galaxy into the infalling halo. This makes the simula-

tion self-consistent as the model merges galaxies that are representative of the galaxy

population at lower redshift.

Once the main progenitor and 1st order progenitors in the merger tree have been popu-

lated with galaxies, the model works on evolving the central galaxy. At each timestep,

the model will evolve the galaxy through any in-situ processes that have been included1.

Additionally, as detailed below, any satellite galaxy that merges with the central in that

timestep gets its properties ‘merged’ with the central.

When dark matter haloes merge according to the merger tree, the model waits an addi-

tional dynamical friction timescale, before allowing the galaxies to merge. The dynamical

friction timescale is given by:

tdf = tdyn ⇥ T (Mhalo/Ms, orbit) , (2.11)

1The semi-empirical model presented in this chapter does not include processes such as disc insta-
bilities (Bower et al., 2006) or disc regrowth after major mergers (Hammer et al., 2009). However,
semi-analytic models have shown these processes only play a significant role in intermediate mass galax-
ies (De Lucia et al., 2011; Wilman et al., 2013) which is below the stellar mass threshold we consider in
this work.
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where tdyn is the dynamical time given by tdyn = 0.1H(z)�1 and T (Mhalo/Ms, orbit) is a

general function of the host-to-satellite mass ratio at infall and the orbit of the satellite.

T (Mhalo/Ms, orbit) is normally explored using high resolution simulations of idealised

merging galaxies (e.g. Lotz et al., 2008). There are several analytical treatments of tdf in

the literature (see De Lucia et al., 2010, for review). The SEM presented in this chapter

adopts the parametrisation presented by McCavana et al. (2012). The dynamical friction

timescale ranges from ⇠ 0.1Gys to ⇠ 10Gys (but typically few Gys) depending on the

mass ratio of the central and satellite.

After the delay of tdf , the merger gets classified into one of three categories based on

the ratio of the central and satellites stellar mass, µ = Mstar,sat/Mstar,cen.

• If µ < 0.01, the merger is classified as a “micro” merger. All the stellar mass and

gas mass of the satellite get added to the central galaxy’s disc.

• If 0.01  µ < 0.3, the merger is classified as a “minor” merger. All the stellar

mass of the satellite gets added to the bulge of the central and the gas from the

satellite gets added to the disc of the central. Additionally, there is a starburst

during which a fraction of the total gas gets converted to stars. This is due to

the satellite causing turbulence in the gas in the central, inducing star formation

(Sanders et al., 1988; Bell et al., 2006). Specifically, I use the prescription from

Somerville et al. (2001):

eburst = 0.56

✓
M2

M1

◆0.7

, (2.12)

where Somerville et al. (2001) chose these parameters to reproduce the detailed

numerical simulations by Mihos & Hernquist (1994, 1996).

• If µ � 0.3, the merger is classified as a “major” merger. In this case, the gas

from both the central and satellite is converted into stars in a maximal starburst.

The stellar mass from this new starburst, the total stellar mass from the satellite

and the stellar mass from the disc of the central are added to the bulge of the

central such that only the bulge remains. This simulates a complete morphological

transformation to an elliptical galaxy.

In all cases, the new size of the central galaxy is calculated by conserving the binding

and orbital energies of the central and satellite galaxies.

(M1 +M2)2

Rnew
=

M
2
1

R1
+

M
2
2

R2
+

forb

c

M1M2

R1 +R1
, (2.13)

Where Mi and Ri are, respectively, the total baryonic masses and half light radii of

the merging galaxies. c is the form factor and takes the value c ⇠ 0.5. In principle, c
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can be calculated analytically for a given density profile or can be found experimentally

through numerical simulations (Cole et al., 2000). forb parametrises the average mutual

orbit between the merging galaxies where 0 are parabolic orbits and 1 are circular.

A final important procedure in the model is to re-initialise the central galaxy at every

timestep. In practice, this means that if the stellar mass is too low relative to AM

relations, stellar mass gets added to the disc which accounts for extra, hidden star

formation or any other unspecified physics that drives galaxy evolution. Additionally, if

the gas fraction is too low then extra gas is added to replicate cold flows. This step is

only done when necessary to preserve the modelled scatter in the Mstar-Mhalo relation

and the Mstar�re relation which are two key outputs of the model used to compare

to data. There is no clear way to re-assign sizes and thus the process of updating

stellar masses slightly biases the Mstar�re relation. Because of this, it is important to

reinitialise stellar mass as little as possible and therefore, the star formation and merger

routines are critical. It is currently not possible to extract the breakdown of how much a

galaxy’s stellar mass is grown by mergers, star formation and reinitialisation (because of

the volume of data this would add to the model’s output) but it is an important feature

being explored by Grylls et al., in prep.

However, the re-initialisation routine can be vetoed if the galaxy is ‘quenched’. I im-

plement two forms of quenching in the SEM. The first is when the central galaxy has

a major merger. The second is if the halo grows larger than 1012[M�] simulating the

shock heating of cold flows (Dekel et al., 2009).

Figure 2.13 shows a more detailed schematic of the model. The box labelled ‘A’ shows the

section which controls loading merger trees and populating them with galaxies. Instead,

the box labelled ‘B’ is the section that evolves galaxies from zform to z = 0. Finally, the

box labelled ‘C’ controls the storage and querying of central galaxies simulated earlier

in the model.

2.3.4 Results

In this section I present key results from the SEM I constructed. I first present the

SEM in action on a single merger tree. I then present the median stellar mass and

e↵ective (half-light; Re) radius evolution of massive galaxies simulated within a large

cosmological box as well as the number of mergers they have at fixed halo/stellar mass.

These results were used to validate the Shankar et al. (2014a) SEM in Shankar et al.

(2015). Additionally, I show the e↵ect of changing the orbit between the central and

satellite galaxy has on the Mstar-Re relation, validating a key result of Shankar et al.
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Figure 2.12: The evolution of a single, massive galaxy in the semi-empirical model.
The top panel shows the stellar mass contained within the disc (orange), the bulge
(blue) and total (green). Additionally, the cold gas mass is shown (red). The bottom
panel shows the e↵ective radius of the disc (orange), bulge (blue) and the mass weighted
average (blue). There is a major merger at z ⇠ 1.8 which transforms the galaxy from

disc dominated to a giant elliptical.
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(2014a). Additionally, I will present an extra, new result assessing the e↵ect ‘halo

quenching’ has on the Mstar-Re relation.

2.3.4.1 Individual brightest cluster galaxy

Figure 2.12 shows the evolution of the stellar mass (left panel) and the e↵ective radius

(right panel) of one massive galaxy out of ⇠ 30, 000 galaxies in a 2563 [Mpc
3] cosmolog-

ical box. Galaxies are comprised of a disc, a bulge and a gas component. This specific

galaxy starts as a disc and grows initially in size and radius via gas accretion and in-situ

star formation. At z ⇠ 1.8, the galaxy has a major merger which causes the disc to be

fully disrupted and become a pure elliptical galaxy. Below this redshift, the stellar mass

and bulge size grow dramatically via a string of dry (gas-poor) mergers.

2.3.4.2 Stellar mass evolution

Figure 2.14 shows the median stellar mass growth of all central massive galaxies with

logMstar> 11.5[M�] in a 2563 [Mpc
3] cosmological box. The model predicts that very

massive galaxies have a mass evolution of ⇠ 0.3dex between z = 1 and z = 0 which is

consistent with the original findings by Shankar et al. (2014b, Figure 2.6 here), more

advanced abundance matching (Shankar et al., 2015), other semi-analytic models (eg.

Guo et al., 2011) and numerical simulations (eg. Torrey et al., 2015).

2.3.4.3 Size evolution

The SEM also predicts a degree of size evolution of massive galaxies. As discussed in

section 2.1, one key observable is the tight correlation between the stellar mass and size

of galaxies. I have explored the e↵ect changing the orbital energy parameter (forb in

equation 2.13) has on the size-mass relation. Figure 2.15 shows the observed size-mass

relation of local galaxies from SDSS (Bernardi et al., 2013) as a blue line. Additionally,

it shows the median size of central, z = 0 galaxies from two outputs of the SEM where

forb = 0 (e�cient parabolic orbits) and forb = 0.5 (less e�cient, more circularised orbits)

are adopted. Clearly, the model favours the more e�cient merging orbits confirming the

findings of Shankar et al. (2014a).

Having established that the SEM can faithfully replicate the local size-mass relation,

Figure 2.16 shows the median and 1� dispersion of the radii of the progenitors of galaxies

with logMstar> 11.5 at z = 0. The model predicts that with e�cient mergers, massive

galaxies may grow by up to a factor of four between z = 1 and z = 0.
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Figure 2.14: The median and 1� scatter of the stellar masses of the progenitors of
galaxies which have a final stellar mass logMstar> 11.5 at z = 0 evolved using the SEM.

Figure 2.15: A comparison between the observed size-mass relation for local galaxies
in SDSS from (Bernardi et al., 2013, green line) and the results of the SEM assuming
all satellites have forb = 0 (parabolic orbits, blue line) and an forb = 0.5 (intermediate

orbit, orange).
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Figure 2.16: The median and 1� dispersion of the e↵ective radii of the progenitors
of galaxies with logMstar> 11.5[M�] at z = 0. The error bars show the sizes of typical
elliptical galaxies from SDSS (Bernardi et al., 2013, purple), DEEP2 (Trujillo et al.,
2007, Grey) and CANDLES (green van der Wel et al., 2014) with the same stellar

masses as the galaxies shown from the SEM.

Additionally, I test the e↵ect that halo quenching has on the size-mass relation. Halo

quenching is implemented by ‘shutting down’ the galaxy (vetoing the galaxy’s reinitial-

isation). There are several physical mechanisms that could result in the central galaxy

quenching. Here, I test the hypothesis that halo quenching is the main driver thus

only quench galaxies if they are above the halo mass threshold given by Cattaneo et al.

(2006):

Mcrit = Mshock ⇥ max{1, 101.3(z�zc)}[M�] , (2.14)

where Mshock = 1012 and zc is a free parameter in the range ⇠ 1 � 3. Figure 2.17

shows the observed size-mass relation of local galaxies in SDSS from Bernardi et al.

(2013) (green line). Additionally, it shows the median size-mass relation of central z = 0

galaxies from two runs of the SEM including halo quenching with zc = 3 (orange line)

and without (blue line). No significant change to this relation is evident between the

two relations indicating late stellar growth in massive central galaxies is dominated by

(dry) mergers.
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Figure 2.17: Same as Figure 2.15 but showing the e↵ect of including environmental
quenching in the SEM.

2.3.4.4 Number of mergers

One last interesting output of the SEM is the number of mergers each massive, central

galaxy has undergone. Figure 2.18 shows a comparison between the numbers of mergers

galaxies (left panel) and haloes (right panel) have as a function of their mass between

z = 1 and z = 0. Specifically, the colours in each plot represent the mean number

of mergers above a given merger ratio, µ ⌘ Msat/Mcen at the redshift of the merger.

I found that massive galaxies with logMstar> 11.5[M�] have, on average, ⇠ 1 major

merger and ⇠ 8 minor mergers. This number drops as the z = 0 stellar mass and halo

mass decreases.

Observationally, the number of mergers that massive galaxies have is still debated. For

instance, Liu et al. (2015) inferred that merger rate for BCGs is (0.55 ± 0.27)Gyr
�1 at

z ⇠ 0.43 from deep, high resolution imaging. From this merger rate, they find BCGs

should assemble ⇠ (35± 15)% of their present stellar mass below z = 0.6 via dry, minor

mergers which is fully consistent with the results presented in this chapter. Conversely,

a detailed study of galaxy pairs by Mundy et al. (2017) find the major merger rate

(µ > 0.3) is 0.04+0.025
�0.008Gyr

�1 and clustering measurements (eg. Wake et al., 2008; White

et al., 2008, and references therein) infer a merger rate that is considerably lower still

(⇠ 0.024Gyr
�1). This observational discrepancy is, in part, due to the assumptions

in converting from galaxy pairs to a merger rate. Namely, the time it takes for the



Chapter 2. Constraints from abundance matching and semi-empirical model. 60

galaxies to merge (Tobs) and the fraction of galaxies which are spatially close that are

real merging events (Cmerge; Mundy et al., 2017).

Figure 2.18: The mean number of mergers between z = 1 and z = 0, above a given
merger ratio, µ (defined at the time of the merger) a galaxy (left) or halo (right) has

as a function of their z = 0 mass.

2.4 Summary

In this chapter, I have shown that:

• Comparing basic abundance matching predictions to observations of massive galax-

ies showed, firstly, that the high mass slope of the Mstar-Mhalo relation should be

substantially steeper than the commonly used relations in the literature and the

scatter should be small. Secondly, this analysis showed that there are signs of

substantial growth in stellar mass in massive, central galaxies. However, this lat-

ter conclusion rests on the accuracy of measurements of Mstar and estimates of

co-moving volumes at z ⇠ 1.

• A state-of-the-art, semi-empirical model has been developed from scratch, follow-

ing the general methodology laid out in Shankar et al. (2014a). The model takes

dark matter merger trees as input, and gives the stellar mass, gas fraction and

e↵ective radius as functions of redshift as output.

• By inputting merger trees which are drawn from a cosmologically significant sam-

ple, I showed that the model predicts that massive galaxies can grow by a factor

two in stellar mass between z = 1 and z = 0, consistent with other studies.

• Additionally, massive galaxies can grow in size by (up to) a factor of four over

the same redshift range, providing that mergers are “e�cient” (satellites have

parabolic orbits).
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• Finally, massive galaxies have on average ⇠ 1 major mergers between z = 1 and

z = 0 and ⇠ 8 minor mergers.

2.5 Future work

The semi-empirical model I designed and constructed has been left as a legacy project

to the galaxy formation group at the University of Southampton. Already, a graduate

student has started to modify and extend the model to include velocity dispersion to

study the M � � relation and has plans to additionally include black holes.





Chapter 3

Constraining the evolution of the

most massive galaxies through

their abundances and ages.

3.1 Introduction

In the previous chapter, I discussed an initial probe of massive galaxy evolution using

abundance matching as well as a cosmological semi-empirical model. I now present the

work published in Buchan & Shankar (2016). The aim of this chapter is to set more

stringent and secure constraint on the evolution of the most massive, central galaxies

in the local universe for Mstar>3 ⇥ 1011 M� for which data are still incomplete and/or

uncertain, especially at high redshifts. In this chapter, I use a series of observationally-

driven models that, by design, rely on very few assumptions and thus provide us with

constraints less clouded by more complex modelling.

This chapter is structured as follows: In Section 3.2 I give an overview of the method-

ology and describe the sample selection. In Section 3.3 I discuss the constraints I set

on the assembly scenario of massive galaxies. In Section 3.4 I investigate the relative

importance of in-situ processes and mergers in driving the evolution of massive ETGs

in a late assembly scenario using both observationally informed models as well as a full

cosmological, semi-empirical model.

In this chapter I adopt a flat ⇤CDM cosmological with ⌦M = 0.3, h = 0.7, ⌦B = 0.045,

�8 = 0.8, d0c = 1.69, and assume a Chabrier initial mass function (IMF: Chabrier, 2003).

Throughout this chapter, I define the halo mass as Mhalo= M200c, 200 times the critical

density at redshift z.

63
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3.2 Overview and Methodology

In a dark-matter dominated universe, large scale structures are formed from the collapse

of primordial density fluctuations (White & Frenk, 1991). Over cosmic time, cold pri-

mordial gas condenses within these density perturbations forming the baryonic portion

of galaxies (see Mo et al., 2010, for a detailed review). However, the processes of turning

primordial gas into the galaxies we observe today are still debated. In this chapter, I

circumvent the complexities of baryon physics by tracing the evolution of the host dark

matter haloes, which is more transparent and secure as it relies only on gravitational

physics. I then map galaxies to haloes in a statistical sense using semi-empirical rela-

tionships. I selected dark matter haloes from the dark matter-only Bolshoi simulation

(Klypin et al., 2011), which provides the full dark matter merging history.

Figure 3.1: A comparison among estimates of the stellar mass-to-halo mass relations.
In this chapter, I adopt the relations by Moster et al. (2013) as well a steeper version
which matches the relations by Shankar et al. (2014b) and Kravtsov et al. (2014).

More specifically, to set more stringent constraints on the evolutionary patterns of local

massive galaxies, I use an observationally-driven model that works as follows:

1. I extract all central haloes from the Bolshoi simulation and assign them a stellar

mass, Mstar, using the Mstar-Mhalo relation found in Section 2.2.2 (Equation 3.6

here with parameters presented in table 3.1).

2. I select those haloes where the central galaxy has log (Mstar) > 11.5 M�.



Chapter 3. Constraints at zform 65

3. For each halo, I track its progenitors backwards in time until the putative formation

epoch, zform= 2, 3 & 4.

4. I estimate their total baryonic mass and stellar mass at zform from the global

baryon fraction (Mbaryonic = 0.9⇥Mhalo⇥fb; Crain et al. 2007) and from abundance

matching relations, respectively.

5. I finally compare the estimated baryonic mass to their descendent galaxy’s stellar

mass at z = 0.

3.2.1 Selecting descendant galaxies at z=0

Techniques such as abundance matching allow us to connect galaxies to their dark matter

haloes in a statistical sense. Abundance matching works by matching the cumulative

number densities of dark matter haloes to the observed number densities of galaxies.

This is a powerful technique in predicting the mean stellar content of dark matter haloes,

especially for massive, central galaxies with Mstar> 2 ⇥ 1011M�, where the scatter in

stellar mass reduces to  0.15dex, and the dispersion in assembly histories due to,

e.g., environment, age spread, specific star formation history, becomes less important

(Shankar et al., 2014a; Gu et al., 2016; Clauwens et al., 2016). In this chapter, I use the

parametrizations of the stellar mass to halo mass relation of Moster et al. (2013):

Mstar

Mhalo
= 2N

"✓
Mhalo

M1

◆��

+

✓
Mhalo

M1

◆�
#�1

, (3.1)

(3.2)

logM1(z) = M10 +M11(1 � a) = M10 +M11
z

z + 1
, (3.3)

N(z) = N10 +N11(1 � a) = N10 +N11
z

z + 1
, (3.4)

�(z) = �10 + �11(1 � a) = �10 + �11
z

z + 1
, (3.5)

�(z) = �10 + �11(1 � a) = �10 + �11
z

z + 1
. (3.6)

where M10, M11, N10, N11, �10, �11, �10 and �11 are constants.

One of the main sources of systematic uncertainties in the high mass end of the Mstar-

Mhalo relation comes about from the exact shape of the stellar mass function. It has

recently been shown that the high mass end of the stellar mass function has significantly

higher number densities than earlier measurements (Bernardi et al., 2013; D’Souza et al.,
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Table 3.1: The parameters used in equation 1. The top portion gives the z = 0
parameters of the Mstar-Mhalo relation for both the original Moster et al. (2013) relation
as well as the steeper version from Shankar et al. (2014b). The bottom portion gives

the redshift dependence of the Mstar-Mhalo relation.

M10 N10 �10 �10

Model I 11.59 0.0351 1.376 0.608
Model II 11.70 0.0380 1.25 0.490

M11 N11 �11 �11

1.195 -0.0247 -0.826 0.329

2015; Bernardi et al., 2016a; Thanjavur et al., 2016). Bernardi et al. (2016a) in particu-

lar, have shown that possible systematics in photometry are now of the order ⇠ 0.1dex.

Recent results by Kravtsov et al. (2014) and Shankar et al. (2014b), based on the new

stellar mass function of Bernardi et al. (2013), coupled with direct measurements of

the stellar masses and host halo masses of individual brightest group and cluster galax-

ies, conclude that the mean stellar mass of massive central galaxies is systematically a

factor of ⇠3-4 higher at fixed halo mass than previously estimated by, e.g., Behroozi

et al. (2013b) and Moster et al. (2013). In what follows, to bracket the possible residual

systematics in the Mstar-Mhalo relation, I will adopt Equation 3.6 with both the original

parameters found by Moster et al. (2013, hereafter model I) as well as with updated

parameters to match the results of Kravtsov et al. (2014) and Shankar et al. (2014b) in

the stellar mass range of interest in this thesis (hereafter model II; see table 1 for the

new parameters).

Figure 3.1 shows a comparison between models I, II and the latest relations by Shankar

et al. (2014b) and Kravtsov et al. (2014). I choose to specifically consider galaxies

with Mstar> 3 ⇥ 1011 M� as this is the threshold in stellar mass where there is most

disagreement in the assembly history among di↵erent galaxy evolutionary models (e.g.,

Bernardi et al., 2016b). This stellar mass cut of log (Mstar) > 11.5 M� is shown as a

horizontal line in Figure 3.1.

When applying the Mstar-Mhalo relation to high redshift progenitor haloes, I keep the

original redshift dependence of Moster et al. (2013) for both models I and II. The red-

shift dependants of the Mstar-Mhalo relation using Model I is presented in Figure 3.2.

Maintaining the Moster et al. (2013) formalism has the advantage to directly extend

the abundance matching to z > 0.5 � 1 a redshift regime beyond the one probed by

Kravtsov et al. (2014) and Shankar et al. (2014b). It is important to note that at higher

redshift, I am probing haloes with Mhalo⇠ 1012 M�, which sit around the knee of the
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Figure 3.2: The redshift dependence of the Mstar-Mhalo relation using the parameters
of Model I from Table 3.1.

stellar mass function and are thus significantly less prone to the above mentioned sys-

tematic uncertainties (for example, in stellar masses) characterizing the high-mass end

of the Mstar-Mhalo relation. I anyway stress that the main conclusions do not depend on

the exact redshift dependencies in Moster et al. (2013). I also note that Behroozi et al.

(2013b) are consistent with Moster et al. (2013) within the uncertainties.

3.2.2 Selecting their progenitors

The progenitor of a massive galaxy is usually considered to follow the so-called “main

progenitor” halo. This is defined as the most massive progenitor of a parent halo (Jiang

& van den Bosch, 2014). The main progenitor branch is therefore a chain of haloes

constructed by finding the most massive progenitor of the previous main progenitor,

starting at z = 0 and working backwards in time. However, this definition does not

necessarily imply that the main progenitor is the most massive progenitor at all times.

This is because of the statistic nature of dark matter halo growth; sometimes the initial

mass of the main progenitor can be lower than the initial mass a halo that it mergers

with if the main progenitor has gained more mass over time (this will be discussed

in more detail in the following sections). In fact, studies such as those by Lapi et al.

(2013), which are based on the excursion-set formalism (Bond et al., 1991), have pointed

out that possibly the most massive progenitor haloes at zform are more relevant than

the main progenitor for the evolution of today’s central, massive galaxies. This is an

important distinction to make as a more massive halo has more potential to form a more

massive galaxy in a single burst.
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Figure 3.3: The top panels are visualizations of two dark matter merger trees and
bottom panels show the mass evolutions of the main progenitor (solid) and the most
massive progenitor at z = 2 (dashed line). The panels labelled A show the evolution
of a halo where the main progenitor halo is not the most massive halo at high redshift.
The panels labelled B instead shows a more idealised case where the main progenitor

is the most massive at all the redshifts I consider.

To visualise the di↵erence between the main progenitor and most massive progenitor

branches, Figure 3.3 shows the merger trees of two representative dark matter haloes

in the Bolshoi simulation. The panels labelled “A” show a merger tree whereby the

main progenitor is not the most massive progenitor at all redshifts. The panels labelled

“B” instead show a more idealised case where the main progenitor is the most massive
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progenitor at all epochs. The top two panels show a visualisation of the merger trees

with redshift along the y-axis and the branches of the tree separated out along the x-

axis. The main progenitor branch is positioned at the far left-end of the plots and is

indicated with a blue, solid arrow. I also indicate the branch which contains the most

massive progenitor at z = 2 with a green, dashed arrow. The horizontal lines show

merging events between the branches. The size of the circles is proportional to the mass

of the progenitors at that redshift, as encoded in the colour legend. The bottom panels

then show the mass evolution of the main progenitor and of the most massive z = 2

progenitor.

The relevant question one needs to answer is how frequent the main progenitor remains

indeed the most massive progenitor at all times, as in the panels labelled “A” of Fig-

ure 3.3. To this purpose, I carefully analyse the merger trees of each halo in the sample1

of galaxies with log (Mstar) > 11.5 M�. In Figure 3.4, I show the mass functions of the

main progenitors (solid) and most massive progenitors (dashed) at the labelled redshifts.

From this figure, it is clear that the choice in definition of progenitors has little impact

on the mean evolution in halo mass and at most is only relevant for the low mass wings

of the distributions at z > 3. This is because only . 25% of the haloes follow the “most

massive” progenitor track. I checked that this conclusion still holds even if the analysis

is restricted to only the most massive haloes in the sample with log (Mhalo) > 14 M�

where the e↵ect could be most prominent (Lapi et al., 2013). In the following, I use

the main progenitor as the reference, though I also show results using the most massive

progenitor, where relevant.

3.2.3 Ages of massive, early type galaxies: selecting a formation epoch.

From stellar population synthesis modelling it is possible to estimate the mass-weighted

age of the stars within a galaxy. The general method to constrain the age of a galaxy

is to fit the galaxy’s spectra with either a single or a combination of synthetic stellar

populations with varying star formation rates, for a given initial mass function (Vinco-

letto et al., 2012; McDermid et al., 2015; Mendel et al., 2015; Citro et al., 2016). For

the galaxies of interest in this thesis (Mstar> 3 ⇥ 1011 M�), the majority of the stars

form at or above zform= 2, with less massive galaxies having, on average, younger stel-

lar populations (Thomas et al., 2005). This is the so-called ‘top-down’ mass assembly

scenario for massive ETGs.

I explore the consequences of a formation redshift, zform= 2�4. For reference, McDermid

et al. (2015) find that � 50%(90%) of the stellar mass is older than z = 3(2) for the stellar

1I verified that most massive progenitor distributions are very similar in the MultiDark Planck 2
simulation (Klypin et al., 2016) which has a larger volume and di↵erent cosmology than Bolshoi.
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Figure 3.4: The mass functions of the progenitor haloes that contain galaxies with
log (Mstar) > 11.5 M� at z = 0. The solid and dashed lines show the main progenitor

and most massive progenitor mass functions at di↵erent redshifts, as labelled.

mass I consider in this chapter2. At these formation epochs, I compare the amount of

baryons in the progenitor haloes to the stellar content of the descendants.

3.3 Results

3.3.1 Constraints on the assembly scenario

Having constructed the z = 0 dark matter halo catalogue and traced their progenitors to

zform, I am now in a position to compare the baryonic content between progenitor haloes

at zform and descendent haloes at z = 0. The total baryonic mass is computed using

the cluster baryon fraction extracted from numerical simulations. Crain et al. (2007), in

particular, find that the baryon fraction inside the virial radius of dark matter haloes is

90% of the cosmic mean fraction, independent of halo mass and redshift

Mbaryon = 0.9 ⇥ Mhalo ⇥ fb (3.7)

2Note that strictly speaking the stellar masses in McDermid et al. (2015) are dynamical masses from
jeans modelling. Cappellari et al. (2013) discuss that these masses are closer to those measured assuming
a Salpeter IMF. This would imply that the galaxies I have selected for this chapter have higher stellar
mass at fixed halo mass and hence I could be, if anything, underestimating their age.
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Figure 3.5: A plot showing the predicted mean stellar mass of galaxies with
log (Mstar) > 11.5 M� at z = 0 (blue triangle at z = 0) using the original Moster
et al. (2013) Mstar-Mhalo relation (bottom) and a modified version to match the latest
relation from (Shankar et al., 2014b, top) (models I and II, respectively). The one
sigma range of this z = 0 point has been extended to all redshifts (blue band) so the
z=0 point can be compared to points at higher redshift. I show the mean and 1� of
the total baryonic mass associated with the the main progenitor haloes (red circles)
and most massive progenitors (green circles). The decline in Mstar after star formation
has stopped in due to older stars dying (Behroozi et al., 2013b). For reference, I also
show the stellar mass estimates of galaxies in the respective haloes using the given

Mstar-Mhalo relations (Model I or Model 2; blue triangles).
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where fb in equation 3.7 is the global mean ratio between the baryon and dark matter

density3. I show the implied total baryon masses in Figure 3.5 for the main progenitor

haloes (red circles) and most massive progenitor (green circles) at the putative formation

epochs zform= 2 to 4 in steps of 0.5. The blue triangles show instead the mean stellar

mass computed along the main progenitors adopting model I (the Mstar-Mhalo relation

using the original parameters found by (Moster et al., 2013, botton panel) and Model II

(the updated parameters, top panel). Additionally, for reference, I show the mean mass

evolutionary tracks expected in a passive evolutionary model, taking into account the

ageing stellar population, following equation 14 by Behroozi et al. (2013b) who also use

a Chabier IMF and Bruzual & Charlot (2003) stellar evolution tracks. The green solid

lines show two evolutionary tracks that are needed to reproduce the z = 0 stellar mass

distribution starting at zform= 2 and 3.

The first point to make regarding Figure 3.5 is that the local stellar mass of massive

ETG’s is comparable to, if not greater than, the total baryonic mass contained in their

main progenitor haloes at zform. This is especially evident in the top panel, which utilise

the steeper high mass slope in model II to map lower mass haloes at fixed stellar mass

(Figure 3.1), while it only becomes evident at z > 3 in model I. Thus the updated abun-

dance matching relations would imply that if a galaxy is formed via a strict monolithic

collapse4 at the epoch of formation, star formation should have been extremely e�cient,

if not 100%, to account for the (high) stellar mass content observed today in the descen-

dant haloes. Moreover, this scenario would preclude any substantial loss of baryons due

to stellar winds and/or quasar mode feedback during this rapid star formation phase.

Note that this result is not changed and, in fact, possibly strengthened by assuming a

Salpeter IMF, which some authors (e.g., Cappellari et al., 2013) have suggested to be

more representative of massive galaxies. A Salpeter IMF would imply a higher stellar

mass at z = 0 for the same set of host haloes of interest here (Mhalo> 3 ⇥ 1012 M�),

worsening the tension with the available baryons at zform.

3.3.2 Are today’s central, massive galaxies just outliers at the epoch

of formation?

Figure 3.5 also shows that z = 0 stellar masses are a factor of at least five times greater

than the typical stellar mass of the progenitor galaxies at zform as predicted by abundance

matching (blue triangles). There are two possible conclusions from this finding. If the

3This will be verified in Section 5.3.2.2.
4In the monolithic collapse scenario, I assume that the dark matter still grows hierarchically via

mergers, as indicated from N-body simulations. However I assume that that mergers between galaxies
are ine�cient (because, e.g., the merging timescale is long or because mergers grow the intercluster light
rather than the central galaxy due to high amounts of ram pressure stripping) and hence the central
galaxy maintains its initial mass.
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progenitors of massive galaxies at zform are representative of galaxies at that halo mass,

then clearly a later mass growth is needed to match the stellar mass of the descendants

to their local counterparts. On the other hand, the progenitors of very massive galaxies

might not be representative of the general population of galaxies at zform at fixed halo

mass. For instance, they could be extreme outliers with a stellar mass much greater

than what is predicted by abundance matching relations. This could arise in strictly

monolithic models where stars are formed in an extremely e�cient and fast mode around

zform.

To probe the latter possibility, I proceed as follows. In the top panel of Figure 3.6, I

show as black solid and blue dashed lines respectively, the full z = 0 cumulative mass

functions of all massive dark matter haloes with Mhalo> 3 ⇥ 1012 M�, and of those

hosting the stellar mass-selected sample (log (Mstar) > 11.5 M�). I then trace the main

progenitors of the selected galaxies back to z = 3. In the middle panel of Figure 3.6, I

show the di↵erential mass functions of the main progenitors of all massive z = 0 haloes

(solid black) and of those in the stellar mass selection (dashed blue). Here, it is evident

that the mean mass of these progenitor haloes at z = 3 is Mhalo⇠ 2⇥1012 M�, consistent

with Figure 3.4, which I highlight as a blue band in the middle panel. I select those

haloes at z = 3 which are between 12.25 < log (Mhalo) < 12.45 and follow them forward

to z = 0. The black solid line in the bottom panel of Figure 3.6 is the cumulative number

density at z = 0 of haloes which have a z = 3 progenitor mass Mhalo⇠ 2 ⇥ 1012 M�.

The blue dashed line instead are haloes which are in the same mass range at z=3 but

also become massive enough to enter the z = 0 stellar mass selection.

By comparing the cumulative mass functions, I find that on average, only ⇠ 30% of

the haloes with mean host mass Mhalo⇠ 2 ⇥ 1012 M� at z = 3 will host galaxies with

log (Mstar) > 11.5 M� at z = 0. The selected brightest cluster galaxies are thus only a

relatively minor fraction of the galaxies residing in Mhalo⇠ 2⇥ 1012 M� at z = 3. I thus

conclude that the progenitors of massive galaxies could indeed be outliers with respect

to the general population of galaxies at zform= 3 and with Mhalo⇠ 2 ⇥ 1012 M� (for

instance, these galaxies might not abide by the Mstar-Mhalo or Mstar-sSFR relations at

z = 3). However, they represent the majority of galaxies that will end up as centrals in

haloes with Mhalo> 5 ⇥ 1013 M�, within the mass scale of massive groups and clusters.

3.4 Discussion

From the previous sections I conclude that very massive central galaxies are either

extreme outliers with respect to their counterparts at zform or, alternatively, have as-

sembled most of their final stellar mass at z <zform(where zform⇠ 2 � 4). Here, I probe
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Figure 3.6: Top: the integrated number density of dark matter haloes in the Bol-
shoi simulation. The black line shows the distribution for all haloes in the simulation
and blue shows those which are included in the stellar mass selection (log (Mstar) >

11.5 M�). Middle: the di↵erential mass function of dark matter haloes at z=3 which
survive to z=0. The black line shows the total halo distribution and blue are those
haloes which enter the stellar mass selection. Bottom: I apply a halo mass selection
at z=3 (highlighted in the middle panel) and follow those haloes forward to z=0. The
black shows the distribution of haloes when selected from the total distribution and

blue when selected from those which are included in the stellar mass cut.
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the relative roles of star formation and mergers in growing massive galaxies in a late

assembly scenario. For the former, I utilise empirical estimates of the star formation

rates of massive galaxies as functions of redshift and stellar mass to evaluate if it is

su�cient to grow the galaxy up to the stellar mass we observe today. For the latter, I

utilise the more sophisticated semi-empirical model described in Section 2.3 to evaluate

the e↵ectiveness of mergers in evolving the galaxy’s stellar mass and size.

3.4.1 Can massive galaxies grow solely through in-situ star formation?

In this section, I utilise empirically-informed models to assess whether log (Mstar) >

11.5 M� galaxies at z = 0 could have grown to their final stellar mass mostly through

in-situ star formation, without the need for numerous mergers. I start by assuming

that the progenitor galaxies are lying on the Mstar-Mhalo relation and the specific star

formation rate (sSFR)-Mstar relation of typical main sequence galaxies at z =zform. I

take each of the z = 3 progenitor haloes and assign to them a stellar mass using the

Mstar-Mhalo relation as described in Section 3.2.2. For each of the galaxies, I evolve the

stellar mass via redshift and mass dependent star formation rates but also accounting

for the stellar mass loss of the evolving stellar population assuming a Chabrier (2003)

IMF. Specifically, I use the redshift-dependant, empirical star formation rates by Peeples

& Somerville (2013) and Tomczak et al. (2016), and use the Behroozi et al. (2013b)

prescription (their Equation 14) for the stellar mass loss. I assume that the galaxy can

e�ciently form stars, at least up to the maximum baryonic content, assuming that the

cold gas reservoir can be replenished via, e.g., cold flows (Dekel et al., 2009).

Figure 3.7 shows the mean evolutionary track of the sub-sample of galaxies with log (Mstar) >

11.5 M� at z = 0. The blue band represents the systematic uncertainty in the Mstar-

Mhalo relation (model I and II as described in Section 3.2.2). I find that assuming these

galaxies remain on the star forming main sequence until z = 0, the Peeples & Somerville

(2013) star formation rate (top panel) can fully account for the observed mass measured

in the local universe (dotted lines). The Tomczak et al. (2016) star formation (middle

panel) predicts a final stellar mass which is a factor of two to three lower. However,

systems grown via a very prolonged star formation episode would be inconsistent with

the observed ages (and colours) of very massive, central galaxies at z = 0. As discussed

in Section 3.2.3, McDermid et al. (2015) claim that from their spectral fitting, 90% of

stellar mass in galaxies with log (Mstar) > 11.3 � 11.5 M� was formed at z > 2 with

a slight dependence on environment. Also, as mentioned in section 3.1, very massive

galaxies have enhanced alpha element abundances relative to iron. In a closed box

model, values of [↵/Fe] ⇠ 0.17, which are consistent with those measured in BCGs (eg,

Oliva-Altamirano et al., 2015), imply the length of star formation, �t is < 0.5� 1 Gyrs,



Chapter 3. Constraints at zform 76

Figure 3.7: The mean star formation track of galaxies selected with log (Mstar) <

11.5 M� at z = 0 using the mass-dependant empirical star formation rates of Peeples &
Somerville (2013, top panel) and Tomczak et al. (2016, middle panel). The y-axis shows
the mean stellar mass of all galaxies in the sample. The band shows the systematic
uncertainty in the Mstar-Mhalo relation. The unfilled band shows the full evolutionary
track from z = 3 to z = 0 and solid band shows the e↵ects if the star formation is
quenched at z = 2. The bottom panel instead shows a band bracketing the mean
evolutionary path assuming a constant star formation of 500 and 1000 M�/yr. For
reference, I also show the total baryonic mass in the progenitor haloes as a red band

between z = 2 and 3.
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according to the approximation

[↵/Fe] ⇠ 1

5
� 1

6
⇥ �t(Gyrs) , (3.8)

from Thomas et al. (2005) and Citro et al. (2016), which is in broad agreement with other

studies of chemical evolution of massive galaxies (e.g., Granato et al., 2004; Conroy et al.,

2014). If star formation is longer than �t ⇠ 1Gyr then the alpha element enhancement

will be rapidly washed out by type Ia supernovae. The filled blue bands in Figure 3.7

show the predicted stellar mass evolution in the hypothesis that massive galaxies form

by z ' 3 and quench by z ' 2 satisfying the conditions that the burst of star formation

is limited to �t 6 1 Gyrs and that most of the stars are formed by z ' 2. It can be seen

that, in the assumption that no new star formation takes place at z < 2, the resultant

stellar mass is at most log (Mstar) . 11.2 which is a factor of at least three less that

what is measured at z = 0.

Alternatively, massive galaxies could be, as mentioned earlier, extreme outliers in both

the Mstar-Mhalo and/or sSFR-Mstar relations. For example, if the progenitors were closer

to SCUBA/ULIRGs with star formation rates up to 500-1000 M�/yr between z = 3 and

= 2 (which is ⇠ 1Gyr), they could easily reach the stellar mass measured at z=0. This

is illustrated in the bottom panel of Figure 3.7 which shows with a blue band the mean

mass growth of galaxies assuming a constant star formation of 500 and 1000M�/yr.

To maintain such a high star formation rates, progenitor galaxies would need to turn

about all of their initial baryonic content in the host dark matter halo (red regions)

into stars. Additionally, this scenario would not allow for the observed, significant mass

loss by stellar and/or AGN winds seen in a number of ULIRGs (e.g., Smail et al., 2003;

Swinbank et al., 2005).

3.4.2 Can mergers drive mass evolution of massive galaxies?

I now turn to explore the possibility that (mainly dry, minor) mergers are the main

driver behind the mass and size evolution of massive, central galaxies. To this purpose,

I utilise the more sophisticated, state of the art semi-empirical model (SEM). A full

description of the SEM is given by Shankar et al. (2014a, 2015) and in Section 2.3 but

I also provide a brief overview here.

The SEM is constructed on top of dark matter merger trees extracted from the Millen-

nium simulation (Springel, 2005a) and analytic trees constructed using the Parkinson

et al. (2008) algorithm. At the formation redshift, the main progenitors haloes are ‘pop-

ulated’ with star forming, disc galaxies which, by construction, follow empirical relations

for stellar mass (Moster et al., 2013), gas fraction (Stewart et al., 2009), disc radius (Shen
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et al., 2003), and star formation rate (Peeples & Somerville, 2013). At each timestep, If

a main progenitor galaxy’s stellar mass is too low with respect to a fiducial abundance

matching relation, it’s stellar mass and gas fraction is re-initialised using these empirical

relations thus bypassing the need to model the full, complex and still unclear aspects

of galaxy formation, such as cooling and feedback. However, because there is no clear

way to re-initialise the galaxy’s size, adding substantial amounts of stellar mass will

bias the scatter in the Mstar-Mhalo relation and the mean Mstar�Re relation, two key

outputs from the model which can be directly compared to observations. Therefore, it

is important that the re-initialisation is kept to a minimum and thus processes such as

star formation are still included.

When sub-haloes infall into the halo hosting the massive galaxy, I assign to them a

satellite galaxy with stellar mass given by abundance matching relations at the redshift of

infall. The structural properties of this new satellite are equal to a previously simulated,

random central galaxy extracted from the model with equal stellar mass at the redshift

of infall. The new satellite galaxy is allowed to orbit for a dynamical friction timescale,

calculated at zinfusing the analytic recipe by McCavana et al. (2012). Over this time,

the satellite can grow in stellar mass and size according to its available gas and star

formation rate at infall. If a merger between the central and satellite galaxy occurs, the

stellar mass and gas mass of the satellite are added to the bulge and disc of the central

galaxy, respectively. The new radius of the bulge is calculated by conserving the sum

of the binding energies and the mutual orbital energy of the two merging galaxies (Cole

et al., 2000).

Figure 3.8 shows the mean mass evolution of the most massive galaxies evolved using

my SEM. The shaded region represents the 1� dispersion in the mean stellar mass at

any redshift. I find that the merger-driven SEM is capable of reproducing the median

mass evolution of the most massive galaxies. This result confirms, and extends, what

was found by Shankar et al. (2015) from the evolution of brightest cluster galaxies from

z ⇠ 1 to 0. This result is also in agreement with previous works mainly based on high-

resolution N-body simulations which showed that the history of the centre of clusters

is highly a↵ected by frequent mergers. For example, Gao et al. (2004) discussed that

a typical massive brightest cluster galaxy should have undergone a significant number

of merging events even at z < 1. More recently this has been further discussed and

confirmed by Laporte & White (2015). As shown in Figure 3.8, the results from the

semi-empirical model are also in agreement with the full, cosmological hydro-simulations

of Torrey et al. (2015).
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Figure 3.8: The evolution of the mean stellar mass of a galaxies with log (Mstar) >
11.5 at z = 0 evolved using the SEM in Shankar et al. (2014a). The shaded region shows
the statistic dispersion in the galaxies’ evolutionary histories. The error bars show the
predictions from abundance matching for galaxies with log (Mstar) > 11.5 M� where
model I and II are shown in yellow and red respectively. For reference, I also show the
the mean evolution in the mass of the most massive galaxies in the illustris simulation

(Torrey et al., 2015).

3.4.3 Can mergers drive size evolution of massive galaxies?

Additional hints come from the size evolution of the central galaxies. Figure 3.9 shows

a comparison between the size evolution of massive ETGs evolved using my SEM to the

observations of Bernardi et al. (2014) in the local universe. I also plot the observed size

of the putative progenitor at z = 0.25 � 2.75 in steps of 0.5 by using the stellar masses

predicted by the SEM and using the size-mass relation for disc galaxies found by van der

Wel et al. (2014). I show the sizes these galaxies would have if they were all spirals and

ellipticals since, as discussed previously, all galaxies start as disk-like galaxies at high

redshift and transition to ellipticals. As described in Section 2.3.3, galaxies in the SEM

are grown in size by conserving the binding energies and the mutual orbital energies of

central and satellite galaxies when they merge. The shaded region in Figure 3.9 shows

the systematic uncertainty in the predicted mean size evolution caused by allowing

for some stellar stripping at the level suggested by observations (see Cattaneo et al.,

2011; Shankar et al., 2014a, for full details). I find that, irrespective of the exact level

of (stellar) stripping, the SEM is fully capable of reproducing the observed mean size
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Figure 3.9: The median evolution of the e↵ective radius of a galaxies with
log (Mstar) > 11.5 at z = 0 evolved using the SEM in Shankar et al. (2014a). The
shaded area represents the systematic uncertainty of the model when gas dispersion

included.

evolution of the most massive galaxies, in line with the conclusions of Shankar et al.

(2015) at z < 1.

3.4.4 Size growth from quasar mode feedback

The extreme assumption of a very e�cient collapse in which the majority of initial

baryons are converted into stars, as discussed in Section 3.4.1 and Section 1.6.2.1, would

clearly not allow for any size growth from zform> 2 to z = 0. Even in the pu�ng up

scenario proposed by Fan et al. (2008) and discussed in Section 3.1, a significant fraction

of the baryons must be lost via stellar winds and/or quasar mode feedback at zform for the

galaxy to react quasi-adiabatically and expand. Analytic arguments by Fan et al. (2010),

backed up by numerical simulations by Ragone-Figueroa & Granato (2011), have shown

that the increase in e↵ective radius is roughly proportional to the amount of mass lost.

This would imply that to allow for a factor of at least three increase in mean size since

z ⇠ 3, as observationally inferred by van der Wel et al. (2014), & 70% of the total initial

baryons must be expelled from the galaxy (Fan et al., 2010). A mass loss of & 70%

at z > 2 would place the residual baryonic mass in the progenitor halo significantly

below the descendants’ stellar mass at z = 0. Thus, even in an e�cient quasar-feedback

scenario, the progenitor-descendant evolutionary tracks would still require substantial

late assembly of stellar mass via, e.g., mergers.
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3.4.5 No size growth for very massive ETGs?

Interestingly, there is mounting observational evidence for very massive galaxies at the

centre of high redshift clusters that sit already on the local size-mass relation of early-

type galaxies (Strazzullo et al., 2013; Delaye et al., 2014; Newman et al., 2014). This

might be in support of the hypothesis of very rapid and e�cient bursts of star formation.

However, even if massive galaxies are indeed true outliers with respect to the general

population of central galaxies with Mhalo⇠ 1012M� at zform� 2, they would still require

an initial star formation burst capable of converting ⇡ 100% of the initial baryons into

stars. Thus, one clear observational prediction I can make is that the progenitors of

massive galaxies should either be moderately massive and compact, or very massive and

extended.

3.5 Conclusions

In this chapter, I have set tighter constrains on the assembly and evolution of massive,

central galaxies. I utilise a catalogue of dark matter haloes created from the Bolshoi

simulation. I populate these haloes with galaxies with a stellar mass given by the most

recent rendition of the stellar mass-to-halo mass relation by Kravtsov et al. (2014) and

Shankar et al. (2014b) at z = 0, and select haloes with log (Mstar) > 11.5 M�. I then

trace host haloes back to their putative formation epoch, zform= 2� 4, as inferred from

the stellar ages of massive ETGs. At this epoch, I estimate the total mass in baryons

within the host halo from the universal baryon fraction. I find that the stellar mass of

the ETG in the local universe is comparable to, if not higher than, the total baryonic

mass contained within the progenitor halo. From this comparison, I draw the following

important conclusions.

1. In-situ formation: For massive galaxies with log (Mstar) > 11.5M� and log (Mhalo) >

13.5 M� to fully assemble at the formation epoch, the e�ciency of converting

baryons into stars needs to be extremely high if not 100%. I also show that this

formation scenario would lead to all ETGs being extreme outliers with respect to

what is predicted by abundance matching at zform.

2. Size: Even when assuming an extremely e�cient star formation at zform, the galaxy

would not be allowed any size growth since the formation epoch. Even an in-situ

expansion would in fact require a mass loss of � 70% of the initial baryon con-

tent to be su�ciently e�cient. Thus, in a strictly monolithic scenario, progen-

itors of massive galaxies should already be extended systems at their formation
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epoch. Measurements of the structure of massive galaxies in massive haloes with

log (Mhalo) ⇠ 12.5 M� at z & 2 will be critical to assess this possibility.

3. Late assembly: Star formation could contribute to the stellar mass growth of the

progenitors of massive galaxies, but cannot explain their full evolution. I show

through state-of-the-art, cosmological, semi-empirical models that massive galax-

ies could have indeed assembled most of their final mass via late mergers and

be consistent with available data on their size evolution. It remains to be seen

the impact of mergers on other (tight) galaxy scaling relations involving veloc-

ity dispersion (e.g., Bernardi et al., 2011a,b; Shankar et al., 2016, and references

therein).

More secure and statistically relevant measurements of the stellar mass and structure

of high redshift brightest cluster galaxies will be of key relevance to discern between

merger scenarios and extremely e�cient starbursts events.



Chapter 4

Probing the stellar mass to halo

mass relation at 0.5  z . 1.2 using

the clustering of satellite galaxies.

4.1 Introduction

In this Chapter, I extend the methodology presented at the start of Chapter 2 in which I

set initial constraints on massive galaxy evolution using an empirically derived, redshift

dependant Mstar-Mhalo relation. Knowledge of the exact mapping between galaxy stellar

mass and host dark matter halo mass as a function of time and, possibly, environment,

has become one of the hottest topics in cosmology. This is because it potentially repre-

sents a valuable probe of the relevant, but still not fully understood, physical processes

driving galaxy evolution, such as mergers, tidal stripping, or in-situ growth.

As discussed in Section 2.2, in principle, by tracking the redshift-dependent Mstar-Mhalo

relation, it is possible to extract valuable constraints on the average stellar mass growth

of (especially) the most massive galaxies, the focus of this work. In this section, I

reiterate the concept outlined in Section 2.2. In Figure 4.1 I provide a sketch to explain

this point. In panel A of Figure 4.1, I show the mean evolution of a local log Mhalo=

15[M�] halo from z = 2 to z = 0. In the left panels (B and D), I assume an extreme

scenario in which the number density of massive galaxies remains constant at all cosmic

times. As reflected in panel A, a halo mass strongly evolves with cosmic time (due to the

hierarchical growth of dark matter haloes), thus the mean halo mass at fixed number

density substantially increases with decreasing redshift. As a consequence, massive

galaxies at high redshifts get mapped onto increasingly lower mass haloes since the

mean mass of haloes is decreasing, at fixed number density, but the mean stellar mass

83
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remains constant. This naturally predicts that the high mass slope of the Mstar-Mhalo

relation should increase at higher redshifts (panel D).

Conversely, the right panels of of Figure 4.1 allows for substantial mass growth in massive

galaxies. In this scenario, the number of galaxies per unit co-moving volume of massive

galaxies is decreasing with increasing redshift. This would imply that the high-mass end

slope of the Mstar-Mhalo relation should steepen less than the former scenario or even

get shallower. In fact if, on average, massive galaxies and their host dark matter haloes

are growing in such a way that their respective change in number density at fixed mass

is the same, the high-mass end of the Mstar-Mhalo relation will remain roughly constant

in slope, at fixed intrinsic scatter.
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Figure 4.1: A cartoon sketching how two contrasting redshift evolutions in the Mstar-
Mhalo relation predicts predict di↵erent evolutions in Mstar. Panel A shows the mean
evolution of a local log Mhalo= 15[M�] halo. Panels B and C show a gradually decreas-
ing Mstar-Mhalo relation and a static one respectively. The blue arrows on the relations
show the evolution in Mhalofrom panel A along with the corresponding evolutions in

Mstar. Panels D and E explicitly show the corresponding evolutions in Mstar.
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The above arguments imply that independent constraints on the shape and scatter of

the Mstar-Mhalo relation across time can reveal important clues on the average mass

growth in individual galaxies. Unfortunately, an exact determination of the Mstar-Mhalo

relation and its evolution with redshift is severely hindered by observational selection

e↵ects and/or systematic uncertainties in, e.g., satisfactory light profile models, adequate

stellar mass-to-light ratios, unavoidable field-to-field variations, unclear galaxy gradients,

etc. Such issues are clearly at play even at relatively low redshifts z . 0.5 (e.g., Kravtsov

et al., 2014; Shankar et al., 2014a; Bernardi et al., 2016b, 2017), but become progressively

more severe at higher redshifts. This may be due to a variety of causes, from strong

surface brightness dimming e↵ects, changes in, e.g., galaxy morphologies and/or in the

composition of the interstellar medium, and/or limitations in surveying su�ciently large

and deep co-moving volumes (see Bernardi et al., 2017, and references therein).

Alternative methods for probing the relation between galaxies and their host dark matter

haloes rely on reproducing the clustering of galaxies of given mass and redshit. These

measurements can then be interpreted within the halo occupation distribution (HOD)

formalism to derive the probability P (N |Mhalo) that a given halo of mass Mhalo hosts a

number N of galaxies of the type considered (Yang et al., 2003; Tinker et al., 2005; van

den Bosch et al., 2007; Zheng et al., 2007; Wake et al., 2011; Leauthaud et al., 2012).

It is also possible to probe the high-mass end of the Mstar-Mhalo relation directly for a

small number of clusters by measuring the stellar mass of the central brightest cluster

galaxy and the halo mass via, e.g., weak lensing or X-ray measurements of the hot gas

(e.g., Finoguenov et al., 2007; Vikhlinin et al., 2009; George et al., 2011; Kravtsov et al.,

2014).

Chapter 2 used a combination of abundance matching, galaxy clustering, and direct

galaxy and halo mass measurements, to support the evidence of a high mass-end slope

of the Mstar-Mhalo relation significantly steeper than what was previously estimated,

with a mean value and scatter of � & 0.4 and � ⇠ 0.15dex (see Section 4.2.2), both

weakly evolving with time up to at least z ⇡ 0.5. Note, however, that none of the

techniques considered in Shankar et al. (2014b) are fully free of the observational biases

and limitations discussed above. This is simply because Shankar et al. (2014b) compares

AB results to an array of di↵erent observations at a range of redshifts, each with their

own systematics and biases. It is therefore non-trivial to discern if the apparent redshift

evolution is a result of redshift-dependant systematics in the observations or a ‘real’

evolution.

In this chapter, I devise a novel methodology that is largely independent of systematic

e↵ects, allowing for a more secure determination of the high mass-end of the Mstar-Mhalo

relation. The aim is to confirm and extend to higher redshifts, the preliminary findings
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put forward by Shankar et al. (2014b), that the high-mass slope of the Mstar-Mhalo

relation is steeper than previously thought. In essence, the methodology starts from the

abundance and parent halo mass distribution of massive central and satellite galaxies at

a given redshift zobs, constrained via abundance matching and/or HOD measurements.

The satellites were once centrals in their own discrete haloes at a z > zobs (see the

cartoon in Figure 4.3), obeying a specific Mstar-Mhalo relation that, as detailed below,

can be e↵ectively constrained in both slope and scatter by the number and parent

halo mass distribution at the redshift of observation zobs. This methodology has the

unique advantage that it does not rely on any specific measurement of stellar masses at

z > zobs, and as such it is virtually una↵ected by systematic observational biases. In

other words, we are able to constrain the evolution in the Mstar-Mhalo relation simply

based on observations carried out at the redshift of observation of the satellites zobs,

without the need for any additional stellar mass and/or volume measurements at higher

redshifts.

In Section 4.2 I discuss my full methodology for probing the high mass end of the Mstar-

Mhalo relation at z = 0.5 and z > 0.5 . 1. In Section 4.3 I present the results, and in

Section 4.4 I discuss the implications these results have on galaxy evolution. In what

follows we adopt a cosmology with h = 0.7, ⌦m = 0.3, �8 = 0.84, ns = 1.0 to be

consistent with the parameters used by Bernardi et al. (2013) but note that none of the

results presented in this chapter depend on the exact choice of cosmological parameters.

4.2 Overview and Methodology

The aim of this chapter is to probe the high-mass end slope and intrinsic scatter of the

Mstar-Mhalo relation at z > 0.5 by relying on only the statistics of central and satellite

galaxies at z = 0.5, thus circumventing the need for higher-redshift stellar mass function

measurements. Information on the redshift evolution of the Mstar-Mhalo relation is vital

to constrain the mass growth of the massive galaxies at z . 1, as detailed in Section 4.1.

My overall methodology can be summarised as follows:

1. At any redshift of interest I first create large catalogues of host dark matter haloes

and (un-stripped) sub-haloes (those dark matter sub-structures inside the main

halo that host satellite galaxies, and masses defined at their infall) extracted from

the analytic halo mass functions of Tinker et al. (2008) and Giocoli et al. (2008),

respectively. Working with an analytic mass functions allows for the production of

halo catalogues with very large volumes without being a↵ected by (the sometimes

severe) resolution e↵ects.
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2. To each sub-halo is then randomly assigned a redshift of infall zinf . The full

distribution of zinf for all the satellites as a function of parent halo mass at z =

0.5 with logMhalo/M�h
�1 � 12 is extracted from the Bolshoi simulation (see

Appendix B for details) and is shown in Figure 4.4.

3. I then populate the halo and sub-halo catalogues following a variable, redshift-

dependent Mstar-Mhalo relation to create mock galaxy catalogues at all redshifts of

interest. The parameters used in this analytic relation are derived in the following

steps.

4. In the initial “no-evolution” model, the Mstar-Mhalo relation at z > 0 is derived

via abundance matching between the halo and sub-halo mass functions and the

z = 0.1 Bernardi et al. (2013) stellar mass function. The high-mass end slope �

and scatter � of the Mstar-Mhalo relation are then allowed to vary, mimicking some

possible redshift evolution in the number density of massive galaxies.

5. We constrain the degree of evolution in both � and �, particularly in the redshift

range 0.5 < z < 1.2, by fitting the inferred halo mass distributions for both central

and satellite BOSS galaxies calibrated at z = 0.5 by Tinker et al. (2016).

In the rest of this section, I provide the full details of my methodology.

4.2.1 Dark matter halo catalogues

The foundation of the work presented in this chapter are dark matter mock catalogues

of haloes and associated un-stripped sub-haloes. Firstly, to produce the catalogue of

distinct parent dark matter haloes where the central galaxies will reside, I utilise the

analytic halo mass function by Tinker et al. (2008). This halo mass function is well

calibrated using a large set of N-body cosmological simulations (< 5% systematic un-

certainty) over a large range of halo masses (1011 . Mhalo/M� . 1015). For a given

volume, the halo mass function is integrated in such a way as to find the masses where

the number of haloes is an integer, i.e., I perform the operation:

n = V

Z 1

Mhalo

�(m)dm n 2 Z . (4.1)

Similarly to a random selection, the approach in equation 4.1 e�ciently produces large

catalogues of dark matter haloes. The volume, V = 7503h�3
Mpc

3 was chosen as it

provides a good compromise between high number statistics and reasonable computing

timescales.
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Figure 4.2: A plot showing the integrated halo mass function of Tinker et al. (2008)
(orange), the integrated mass function of all subhaloes by George et al. (2011) (blue) and
their sum (green). These are the principle mass functions used to build halo catalogues

in this thesis.

Secondly, for each parent dark matter halo, I construct a modelled catalogue of sub-

haloes extracted as in equation 4.1 from the Giocoli et al. (2008) modelled sub-halo mass

function. The latter is characterized by a combination of a power-law mass distribution

and an exponential cut-o↵. The power-law in the Giocoli et al. (2008) sub-halo mass

function has a nominal value of � = 0.8 which is slightly reduce to � = 0.65 to fully

match the more relevant sub-halo statistics in Behroozi et al. (2013b) and Tinker et al.

(2016). The latter, in particular, is the halo catalogue adopted as a reference at z = 0.5.

For reference, these two principle halo mass functions can be seen in Figure 4.2.

An essential component of the methodology is the infall redshift distribution P (zinfkMhalo).

This is extracted from the Bolshoi simulation and then applied to the analytic mock cat-

alogues. I trace each sub-halo with relevant host halo mass logMhalo/M� > 12 from

z = 0.5 to the time it becomes a distinct halo. To e�ciently trace sub-haloes through

the Bolshoi simulation I exploit a graph representation of the data using a Neo4j graph

database1. The result is shown in Figure 4.4, which shows the mean zinf for massive

satellites is z ⇠ 0.7.
1Full details of my querying algorithm is given in Appendix B.
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Figure 4.3: A cartoon showing how I find the redshift of infall for a satellite galaxy.
Here the orange circles represent a halo which starts as a distinct halo at z >zinfand
falls into a new host halo, represented in blue, at z = zinf and remains a satellite until

zobs.

4.2.2 Mock galaxy catalogues

To populate haloes and sub-haloes with galaxies, I adopt a double power-lawMstar-Mhalo

analytic relation as suggested by Moster et al. (2013)

Mstar

Mhalo
= 2N

"✓
Mhalo

M1

◆��

+

✓
Mhalo

M1

◆�
#�1

. (4.2)

To constrain the parameters of the Mstar-Mhalo relation up to z ⇠ 1, I follow a multi-step

approach, building on the methodology outlined in Shankar et al. (2014b):

• I start by fitting the parameters of equation 4.2 via a cumulative abundance match-

ing procedure between the halo and sub-halo mass functions and the Bernardi et al.

(2013) stellar mass function. I assume zero intrinsic scatter in the Mstar-Mhalo re-

lation and that the stellar mass function has no evolution up to z ⇠ 1. Using a

single stellar mass function and not including scatter makes fitting the parameters

in the Mstar-Mhalo relation much more simple and e�cient. Selecting one of the
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Figure 4.4: The distribution of redshift of infall, zinf , for all sub haloes in the Bolshoi
simulation with logMhalo/M� > 12 at z = 0.5. This distribution is randomly sampled

to assign a zinf to sub-haloes in the derived catalogue.

most recent stellar mass functions also somewhat minimises errors due to choosing

di↵erent stellar mass functions with their own sets of systematics.

Given the strong redshift evolution in the halo mass function, preserving a fixed

stellar mass function with imply a noticeable evolution in all the parameters of

equation 4.2. Unless otherwise noted (see Section 4.3.2) I assume each redshift-

dependent parameter xi in equation 4.2 to vary with redshift as

xi = x̄i


1 + z

1 + z̄

�↵i

, (4.3)

where x̄i is the value of xi at z̄, and ↵i controls the degree of redshift evolution

characterizing parameter xi. Using a weighted least squares regression, I simul-

taneously fit all the parameters in equation 4.2 using the Bernardi et al. (2013)

stellar mass function and ten halo catalogues constructed at di↵erent redshifts, in

steps of �z = 0.1 between z = 0 and z = 1.

Note that, observationally the stellar mass function does not change significantly

at or below the knee in the redshift range 0 < z . 1.0, but mostly above the

knee (eg., Pérez-González et al., 2008; Muzzin et al., 2013). In other words, a

decrease in the number density of massive galaxies (i.e., those more massive than

the break in the Schechter function) at higher redshifts mostly tends to flatten out

the high-mass end slope � of the Mstar-Mhalo relation, at fixed scatter. In what
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follows it is safely assumed that all the redshift-dependent low-mass parameters in

the Mstar-Mhalo relation in equation 4.2 (N , M1 and �) are not impacted by any

possible variations in the number density of massive galaxies and/or in the scatter

� up to z . 1.

• I then relax the assumptions of a strict zero scatter in the Mstar-Mhalo relation.

As I describe in Section 2.2.2, this modification will mostly a↵ect the high-mass

end slope � = 1� � of the Mstar-Mhalo relation in equation 4.2. In fact, as already

recognised several times in the literature (Behroozi et al., 2010; Shankar et al.,

2014b), increasing the input scatter in stellar mass at fixed halo mass can be

accommodated by a shallower slope �, and vice versa.

• At any redshift of interest, I perform a Monte Carlo Markov Chain (MCMC)2 in

which I fix the “low-mass” parameters in equation 4.2 but allow for both the high-

mass end slope � and the intrinsic scatter �, to vary to fit some sets of independent

data. In the specific, I fit � and �, using an MCMC, to the z = 0.5 halo mass

distributions for massive central BOSS galaxies derived by Tinker et al. (2016, see

Section 4.3).

In each iteration of the MCMC, I populate the mock halo catalogue constructed

using the method described in Section 4.2.2, with a stellar mass using the Mstar-

Mhalo relation defined in Section 4.2.2 and add a random scatter to each galaxy

with mean 0 and standard deviation �. As detailed above, I then “freeze” the low-

mass parameters to the best-fit values of the no-evolution model, but leave the

high-mass end slope and intrinsic scatter as free parameters. I then extract the

co-moving number density of host dark matter haloes of galaxies above a given

stellar mass, ngal(Mhalo), and compare it to the one independently inferred by

Tinker et al. (2016).

• In order to constrain the high mass-end abundance matching parameters of the

Mstar-Mhalo relation at 0.5 < z . 1, the focus of this chapter, I assume an aver-

age value of the high-mass end slope �z>0.5 and intrinsic scatter �z>0.5 (which are

independent of the z = 0.5 values used for centrals). Varying these two param-

eters will clearly predict di↵erent abundances of satellite galaxies at z = 0.5. I

thus constrain �z>0.5 and �z>0.5 via a similar MCMC fitting routine as described

for central galaxies but aimed at fitting the BOSS Tinker et al. (2016) satellite

distribution of massive galaxies.

As, for the most part, current observations and models suggest the average number

density of galaxies seems to gradually rise with cosmic time (e.g., Pérez-González et al.,

2Specifically, we use the emcee MCMC package in python (Foreman-Mackey et al., 2013) and plot
the results using the ChainConsumer package (Hinton, 2016).
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2008; Ilbert et al., 2013; Mortlock et al., 2013; Muzzin et al., 2013) one might infer

the number densities of massive galaxies measured at higher redshifts to be lower than,

or at the most comparable with, the abundances measured locally. In the strict limit

of no redshift evolution in the Bernardi et al. (2013) stellar mass function, abundance

matching would thus naturally predict a sort of “maximum slope” for �, at fixed scatter

�. This is because any decrease in the number density of massive galaxies at higher

redshifts should correspond to a constant or even flatter �. I thus label this “maximum

slope” model as the “no-evolution” model hereafter.

Figure 4.5: A comparison among estimates of the stellar Mstar-Mhalo relations from
the literature at z = 0.1. The black solid line shows the ‘no evolution’ relation which
I define in section 4.2.2, in which I use the analytic relation by Moster et al. (2013)
changing the high mass slope and the scatter to fit the Bernardi et al. (2013) stellar
mass function. Additionally, I show three reference slopes with � = 0.6, 0.45 and 0.3.

4.3 Probing the high-mass end slope � and intrinsic scatter

� with BOSS massive galaxies.

In this section, I lay out the first constraints on the high mass-end slope � and the

intrinsic scatter � of the Mstar-Mhalo relation at z = 0.5, which will represent the bench-

mark for setting constraints on the same quantities at higher redshifts. As described

in Section 4.2.2, I first fit the low-mass parameters using the Bernardi et al. (2013)

stellar mass function. I then run an MCMC to fit the di↵erential halo mass function
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distributions ngal(Mhalo) of massive central3 galaxies as derived by Tinker et al. (2016),

only vary the high-mass end slope � and intrinsic scatter �. Specifically, Tinker et al.

(2016) adopted abundance matching techniques to create the galaxy mocks that best

reproduce the stellar mass function and the large-scale clustering of the massive galaxies

in a complete sample from the Baryon Oscillation Spectroscopic Survey (BOSS). Using

this approach, they find a Mstar-Mhalo relation with a high-mass end slope � & 0.4 and

a scatter of � . 0.18dex in the range 13 . logMhalo/M� . 14 (see, e.g., their Figure 9).

In what follows, broadly following Shankar et al. (2014b), I will specifically focus on

the sub-sample of the Tinker et al. (2016) mock galaxy catalogue with logM�/M� >

11.5 (Kroupa IMF)4. As evident from Figure 4.6, this cut is chosen to maximise the

completeness of the sample (& 90%), but still allowing for a sensible number of satellite

galaxies, a vital component of my modelling. Moreover, this mass threshold allows to

probe the very massive end of theMstar-Mhalo relation, which is most sensitive to changes

in slopes and scatters.

Figure 4.6: Blue: the boss incompleteness at z = 0.5 from Leauthaud et al. (2016).
Green: the expected communicative number of satellite galaxies that are in all the
galaxy clusters in the 7503[Mpc

3
/h

3] box I use in this chapter (assuming the Moster
et al. (2013) Mstar-Mhalo relation) as a function of the satellite galaxy’s mass.

3When comparing with the Tinker et al. (2016) sample I subtract 0.05dex to convert from their
adopted Kroupa (2001) IMF, to the reference Chabrier (2003) IMF, following Bernardi et al. (e.g.,
2010).

4Note that Tinker et al. (2016) generates halo catalogues from the Multidark simulation (Riebe et al.,
2011) which adopts slightly di↵erent cosmological parameters than the reference cosmology used in this
work. However, I find my results are not a↵ected by this.
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4.3.1 Constraints at z = 0.5

The grey bell-shaped curves5 shown in Figure 4.7 show the ngal(Mhalo) distribution for

the Tinker et al. (2016) central galaxies6 with logMstar/M� > 11.5. Before showing

the results of the MCMC, it is instructive to qualitatively discuss the e↵ects on the

ngal(Mhalo) halo distributions of changing either � (top panel) or � (bottom panel),

while keeping all the other parameters of the Mstar-Mhalo relation fixed. A steeper high-

mass end slope �, corresponds to a higher number density of massive galaxies which

are mapped via abundance matching to less massive and more numerous host haloes.

This in turn has the e↵ect to increase the ngal(Mhalo) distributions (blue dot-dashed

lines) and to naturally shift the peak of the distributions to lower host halo masses.

Similarly, increasing the intrinsic scatter at fixed �, will clearly increase and broaden the

ngal(Mhalo) distributions, as more numerous and less massive haloes will be mapped to

galaxies of the same stellar mass. Just the opposite e↵ects will occur by decreasing � or

� (dashed, orange lines). It is already evident from Figure 4.7 that current data tend

to prefer very small scatters � ⇠ 0.16 and steeper slopes � ⇠ 0.46 than the usual values

� < 0.30 quoted in the literature at these redshifts (e.g., Behroozi et al., 2013b; Moster

et al., 2013).

It is of particular relevance to note that Tinker et al. (2016) use PCA mass estimates

from BOSS (Chen et al., 2012), which are roughly consistent with those used in Bernardi

et al. (2013) (see Bernardi et al., 2016b, for details). On the other hand, I checked that

the stellar masses used by Tinker et al. (2016) are on average . 0.25dex higher than

those adopted by Guo et al. (2014) (see also Shankar et al., 2014b). Nevertheless, I find

that that a steeper slope � & 0.4 and a small scatter � ⇠ 0.15dex, remain broadly valid at

z = 0.5 even when switching to the Guo et al. (2014) BOSS galaxy sample. Appendix C

explains my choice in using the Tinker et al. (2016) ngal(Mhalo) distributions as opposed

to the distribution from Guo et al. (2014).

Figure 4.8 shows the results of the MCMC. Within the top three panels, the lower left

panel reports the contour plots for the two parameters that are varied, the scatter �

and slope �, while the lower right and upper panels show their relative distributions.

The best-fit value for the scatter is � = 0.165+0.004
�0.006, which is consistent with what

inferred at low redshifts, and by other independent analyses carried out at the same

redshift (Shankar et al., 2014b; Tinker et al., 2016). The constrains on the slope are

extremely tight, with best fit value � ⇠ 0.458 ± 0.004. The latter appears to be highly

5These grey contours include statistical errors on the Tinker et al. (2016) ngal(Mhalo) distributions
due to the variation caused by changing the scatter to � = 0.16 and � = 0.20.

6It is worth mentioning that I have converted halo masses in Tinker et al. (2016), defined to be 200
times the background density of the universe, to halo masses defined as 200 times the critical density.
The conversion is obtained via the Hu & Kravtsov (2003) formalism, coupled to the concentration-halo
mass relation from Diemer & Kravtsov (2015), inclusive of a scatter of 0.16dex.
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Figure 4.7: The galaxy halo mass distributions ngal(Mhalo) of massive galaxies with
stellar mass logMstar/M� > 11.5. I show the e↵ects of changing the high-mass end

slope � (top) and the intrinsic scatter � (bottom).

inconsistent with previous results. For example, the slope of the Moster et al. (2013)

relation (vertical, dashed red line) is � = 0.28 at z = 0.5, which is more than 40 standard

deviations shallower than the best-fit value. This discrepancy can be largely ascribed

to the outdated stellar mass functions adopted by Moster et al. (2013, see discussions

in, e.g., Kravtsov et al. 2014; Shankar et al. 2014b; Bernardi et al. 2017; Shankar et al.
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2017).

More interestingly, the best-fit value is more than 10� lower than what suggested by

a strictly no-evolution model (vertical solid blue line). The latter is derived via abun-

dance matching between the Bernardi et al. (2013) stellar mass function and the z = 0.5

(sub)halo mass function assuming the same intrinsic scatter of � = 0.165. Some evolu-

tion in � is indeed expected at z = 0.5. As evident in the bottom panel of Figure 4.8, at

face value the Tinker et al. (2016) stellar mass function (dot-dashed, orange line) suggests

in fact a slightly lower number density of very massive galaxies with logMstar/M� > 11.5,

with respect to the one predicted in the local Universe by the Bernardi et al. (2013) stel-

lar mass function (solid blue line). This in turn inevitably induces flatter slopes � at

z = 0.5 as massive galaxies will now be mapped to less numerous and more massive host

haloes.

At this level of the analysis, it is however unclear if this apparent evolution in � from

z = 0.1 to z = 0.5 is a simple bi-product of systematics in stellar mass estimates

between the Tinker et al. (2016) and Bernardi et al. (2013) galaxy samples (see, e.g.,

discussions in Bernardi et al., 2016b). What is more relevant to emphasize here is

that the methodology, based on fitting the ngal(Mhalo) host halo mass distributions of

galaxies at a given redshift, is exceptionally e�cient in detecting even tiny variations in

the number densities of massive galaxies, and thus in � and/or �, over cosmic time. I

now move on to set constraints on � and � at z > 0.5, the main aim of this chapter.

4.3.2 The “frozen” model

In order to set constraints on the high-mass end slope � and scatter � of the Mstar-Mhalo

relation at z > 0.5, I now focus on the ngal(Mhalo) host halo mass distributions of massive

satellite galaxies at z = 0.5. As outlined in Section 4.2, satellites at z = 0.5 were in

fact centrals in their own respective dark matter haloes at some redshift z > 0.5, and

followed a specific Mstar-Mhalo relation applicable to central galaxies at those redshifts.

Varying the high-z Mstar-Mhalo relation, convolved with di↵erent stellar mass growth

histories in the satellites after infall, will thus substantially impact the shape of the

z = 0.5 ngal(Mhalo) distributions of satellite galaxies, as detailed below. The match to

the Tinker et al. (2016) distributions will then constrain the viable models.

As I did for central galaxies in Figure 4.7, Figure 4.9 shows an example of a comparison

between the Tinker et al. (2016) ngal(Mhalo) parent halo mass distributions for massive

satellite galaxies with logMstar/M� > 11.5 at z = 0.5, and three z = 0.5 model realisa-

tions characterized by di↵erent high-mass end slopes � (top) and scatters � (bottom).

Satellites are substantially less numerous and of course inhabit more massive haloes with
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Figure 4.8: (top) The results of the MCMC for central galaxies at z = 0.5. The
histograms show the probability distributions of the high mass slope, � and intrinsic
scatter, � at z = 0.5. The shaded areas shows the 1, 2 and 3 standard deviation
confidence regions. The number quoted on top of each histogram is the maximum
likelihood of that parameter with its associated error. Additionally, I show the value
Moster et al. (2013) high mass slope (red dashed line) and the slope that would imply
no evolution in stellar masses between z = 0.5 and z = 0 (solid blue line) in the top
left histogram. (Bottom) The stellar mass function taken from the maximum likelihood
parameters of the MCMC as compared to the z = 0 stellar mass function from Bernardi

et al. (2013).
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respect to centrals of similar stellar mass at the same redshift. Nevertheless, Figure 4.9

shows that the method yields very similar results to those obtained for central galaxies,

with preferred values of � & 0.41 and � ⇠ 0.16dex. Adopting satellite distributions alone

is thus as e↵ective as central galaxies in constraining the parameters of the Mstar-Mhalo

relation.

Figure 4.9: Same format as Figure 4.7, showing the ngal(Mhalo) parent halo mass
distributions for satellite galaxies with stellar mass logMstar/M� > 11.5.

I now move on to the full modelling and add satellites to the MCMC fitting routine
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to extend the constraints on the Mstar-Mhalo relation to z > 0.5. To this purpose I

simultaneously fit both Tinker et al. (2016) ngal(Mhalo) central and satellite z = 0.5 halo

mass distributions, assuming average values for � and � at z > 0.5 (independent of those

at z = 0.5). For the latter, I have in fact checked that a full redshift parametrization as

given in equation 4.3 cannot be e�ciently constrained by the present data.

I initially consider all satellites to strictly preserve their stellar mass after infall until

z = 0.5. This could be either interpreted as having minimal star formation and stel-

lar stripping, or simply that the two (or more) processes influencing massive satellites

evolution balance each other. I consider this as the reference model, and label it the

“frozen” model. I will explore the impact of relaxing the assumption of no evolution

after infall in the next Sections.

The best-fit values for the frozen are shown in Figure. 4.10, with a high-redshift high-

mass end slope �z>0.5 = 0.38+0.04
�0.03 and scatter �z>0.5 = 0.19+0.03

�0.03. At the same time

I constrain the values of the slopes and scatter at z = 0.5 to be �z=0.5 ⇠ 0.46 and

�z=0.5 ⇠ 0.16dex, fully consistent with those obtained in Section 4.3 when comparing

with only the ngal(Mhalo) for centrals. Adding the satellites, as expected, does not alter

the constraints on the Mstar-Mhalo relation at z = 0.5.

All in all, I find evidence for the slope � to decrease beyond redshift z = 0.5, while the

scatter to remain roughly constant. This inevitably implies evolution (reduction) in the

number density of massive galaxies at earlier cosmic epochs, as seen in the bottom panel

of Figure 4.10. Our reconstructed stellar mass function shows in fact a decrease of a

factor of three up to an order of magnitude for galaxies with stellar mass logMstar/M� &
12 from z ⇠ 0.5 and z ⇠ 0.1 (dot-dashed, orange line and solid, blue line, respectively)

to higher redshifts (green, dotted line).

4.3.3 Models with tidal stellar stripping

In the previous section I have explored a model where the stellar mass of satellites after

infall remains strictly constant, which may well apply in situations of perfect balance

between stellar mass losses due to, e.g., tidal stellar stripping, and stellar mass regrowth

from residual cold gas in the satellite galaxy. In this section, I explore the possibility

of relaxing the assumption of equilibrium, allowing for satellites to specifically undergo

substantial amount of stellar stripping of 30%, of the order of (in fact a little less than)

the usual amounts inferred from simulations and semi-empirical cosmological models

(e.g., Klimentowski et al., 2009; Cattaneo et al., 2011). I assume that the stars that lost

during the mass loss are contributing to the intracluster light rather than merging with

the central or being expelled from the halo.
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Figure 4.10: Similar format to Figure 4.8. Here I have added the constraints on the
ngal(Mhalo) of massive satellite galaxies to probe higher redshifts z > 0.5 (with mean
redshift of infall zinf= 0.7). I assume a “frozen” model, i.e., satellites maintain constant
stellar mass after infall. I have also added for comparison the values for � from Moster
et al. (2013, red, long-dashed line) at z > 0.5, and the no-evolution model (solid, vertical
lines) with two values of the scatter, as labelled. In the bottom panel we additionally
show the implied stellar mass function derived from the maximum likelihood parameters
of the Mstar-Mhalo relation at z = 0.5 and at z > 0.5 (orange, dot-dashed and green,

dotted lines, respectively).
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As the methodology cannot currently e↵ectively probe any time- and/or mass-dependent,

second-order dependences, just as for the constant z > 0.5 slope, scatter �z>0.5, and

�z>0.5, I include in the modelling a constant stellar stripping, independent of infall time

and/or the potential well of the host halo. In practice, I increase the stellar mass thresh-

old logMstar/M� = 11.5 by the percentage of assumed stellar stripping, and then re-run

the MCMC fitting routine.

The results are reported in Figure 4.11. The best-fit value for the high-redshift slope

and scatter are now �z>0.5 = 0.49+0.03
�0.04 and �z>0.5 = 0.23+0.02

�0.04, both larger than what

found for the frozen model, especially in terms of slope. The latter is of course not

unexpected, as a steeper slope implies more numerous massive galaxies, which then

gradually decrease with cosmic time due to stripping. What is less expected is that

the best-fit slope (and scatter) implies, as shown in the bottom panel of Figure 4.11,

a number density of massive galaxies at z ⇠ 0.7 (dotted, green line) even higher than

what inferred locally at z ⇠ 0.1 (solid, blue line). Such a large number density of

massive galaxies at z > 0.5, and subsequent non-linear evolution at lower redshifts, are

disfavoured by almost all deep surveys, which suggest instead a gradual build-up of the

stellar mass function, as also implied by detailed continuity equation arguments (e.g.,

Peng et al., 2010; Lee & Yi, 2013; Aversa et al., 2015).

It is important to note that the average increase in � between z = 0.5 and z ⇠ 0.7 in

this model with stellar stripping is not a direct result of the stripping. Instead, it is a

consequence of the central galaxy population being, on average, more massive at z ⇠ 0.7

than at z = 0.5.

If the slope � is truly much steeper at z > 0.5 than at z = 0.5 (and in fact, even steeper

than the no-evolution slope), then individual massive galaxies have either lost substantial

amounts of stellar mass just below z ⇠ 0.7, and/or have undergone a substantial number

of mergers, depleting the population, which is not supported by observational data (e.g.,

Mundy et al., 2017, and references therein). The much more likely scenario is that tidal

stripping is possibly limited to . 10%, at least above logMstar/M� & 11.5, which would

imply that intracluster light should be originating from tidal stripping of lower mass and

younger galaxies, as supported by some independent observations. DeMaio et al. (2015),

for example, analysed four cluster galaxies in the CLASH sample at 0.44  z  0.57,

finding that the ICL colour and colour gradient could arise from L
⇤ galaxies or even

dwarfs, but definitely not from much more massive galaxies. An overall low level of

stellar stripping would also nicely reconcile with the need for “healty” satellites, which

could better promote e�cient size and mass growth via (dry) mergers in massive central

galaxies (e.g., Taranu et al., 2013; Shankar et al., 2015).
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Figure 4.11: Same as Figure 4.8 but now assuming that all satellites loose 30% of
their stellar mass at zinf .
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4.3.4 Stellar mass loss and star formation

To the models with 30% stellar stripping, I now also include star formation occurring in

satellite galaxies after infall. To assess the (maximum) impact that star formation may

have on the best-fit Mstar-Mhalo relation, I allow for massive satellites to continuously

form stars between redshift of infall zinf (when they have their stellar masses assigned)

and z = 0.5 (when they are observed) using a redshift and stellar mass-dependant rate, as

specified by the empirical star formation rate (SFR) by Tomczak et al. (2016). As shown

in Figure 4.12, I checked the Tomczak et al. (2016) SFR relation to be representative of

the (specific) SFR in massive galaxies in the redshift range 0 < z < 1, broadly matching

the latest data by (e.g., Peeples & Somerville, 2013; McDonald et al., 2016, and references

therein). I also self-consistently include stellar mass loss rate (for a Chabrier IMF) as

parametrized by Behroozi et al. (2013b).

To include SFR in the modelling, I follow a statistical approach. I first derive the

redshift-dependent lower limit in stellar mass of a galaxy that at any redshift of infall

zinf> 0.5 would end up by z = 0.5 having a stellar mass equal to the selected mass

cut of logMstar/M� � 11.5(+any stripping). I then select all the satellite galaxies

with infall stellar mass above this time-dependent threshold mass. If a satellite is more

massive than this limit at zinf , it is in fact expected to become more massive than

logMstar/M� = 11.5(+ stripping) by z = 0.5, and therefore to be included in the chosen

stellar mass cut.

Figure 4.13 shows the results of the MCMC for a model with both stellar stripping

and star formation. It is clear that the best-fit values for the high-redshift slope and

scatter �z>0.5 = 0.48+0.04
�0.03 and �z>0.5 = 0.22+0.03

�0.03 are nearly identical to those without

star formation (cfr. Figure 4.11). Including star formation, at the observed rate typical

of massive galaxies at z . 1, does not therefore alter the overall conclusions disfavouring

a strictly no-evolution model since z ⇠ 1.

4.4 Discussion

4.4.1 Implications for galaxy evolution since z ⇠ 1

By comparing the (large) stellar masses in central galaxies in massive haloes today, with

the (relatively low) baryon fraction in their halo progenitors at z > 2, the previous

chapter (Buchan & Shankar, 2016) argued that the formation and evolution of very

massive galaxies should fall into one of the following two scenarios: 1) They are born

at z > 2 already very massive and extended, with strictly passive evolution thereafter
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Figure 4.12: Top: the blue data points show the stellar masses of BCGs in the
McDonald et al. (2016) sample. The horizontal line shows that logMstar= 12.1[M�]
is representative of the stellar masses of the sample. Bottom: A comparison between
the star formation rates of the BCGs shown in the top panel (measured through the
labelled technique) as well the empirical star formation rates by Tomczak et al. (2016)
and Peeples & Somerville (2013) using a stellar mass of logMstar= 12.1[M�] at all

redshifts.

and no e�cient, not even adiabatic, size expansion (Fan et al., 2008; Damjanov et al.,

2009; Lapi et al., 2011; Ragone-Figueroa & Granato, 2011; Chiosi et al., 2012; Merlin

et al., 2012; Posti et al., 2014). 2) They form only a relatively moderate fraction of

their final stellar mass at their formation epoch, and then substantially grow in mass

and size at later epochs, predominantly via minor mergers (Hopkins et al., 2009; Naab

et al., 2009; Shankar et al., 2010a,b; Lidman et al., 2012, 2013; Shankar et al., 2013; Bai
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Figure 4.13: Same as Figure 4.11 but now also including star formation in satellite
galaxies between their zinfand z = 0.5 at a rate given by Tomczak et al. (2016) and

additional mass loss due to stellar evolution given by Behroozi et al. (2013b).
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et al., 2014; Shankar et al., 2014a; Peralta de Arriba et al., 2015; Shankar et al., 2015;

Bellstedt et al., 2016).

In this work I have presented an e�cient methodology to break the above degeneracy

by setting constraints on the assembly history of very massive, central galaxies at z  1.

In the previous sections I have in fact shown that the inferred satellite host halo mass

distribution ngal(Mhalo) at z = 0.5 is consistent with negligible evolution in the high-mass

end of the Mstar-Mhalo slope and scatter at z > 0.5, with reference values of � ⇠ 0.45

and � ⇠ 0.16dex. This behaviour can be more easily understood in terms of the satellite

fraction:

fsat =

R
ngal,sat(Mhost) dMhostR

[ngal,cen(Mhost) + ngal,sat(Mhost)] dMhost
. (4.4)

At fixed scatter, a too steep slope in the Mstar-Mhalo relation at z > 0.5 of � ⇠ 0.5,

comparable to assuming a strict no evolution in the stellar mass function up to z ⇠ 1,

would imply too many massive galaxies at z > 0.5, and thus an fsat that is too high at

z = 0.5, with respect to the clustering data, inferred at those redshifts. Conversely, a

too flat high-mass end slope, (e.g., � . 0.30; as put forward in previous works Behroozi

et al. 2013b) would imply too few massive galaxies at z > 0.5 to satisfy the constraints

on the fsat, inferred at z = 0.5.

I verified that the main conclusion on the weak evolution of slope and scatter in the

Mstar-Mhalo relation holds true even allowing for further post-processing of the satellites

after accretion. In particular, even allowing after infall for relatively moderate levels of

stellar stripping (⇠ 10%) and/or of specific star formation rate at the level constrained

at z . 1 for massive galaxies (Tomczak et al., 2016), induces comparable results. Higher

levels of stellar stripping may be possible, but it would create a very unlikely non-

linear evolution in the number density of massive galaxies as a function of redshift.

The constraint I place on stellar stripping in massive galaxies is in nice agreement with

independent, recent work by Moster et al. (2017) also based on semi-empirical routines.

It is also interesting to note that low levels of tidal stripping in very massive galaxies

suggests the ICL must have been formed by lower-mass galaxies at z < 1 (DeMaio et al.,

2015).

One interesting question now to ask is what the inferred weak redshift evolution in the

(steep) high mass-end slope of the Mstar-Mhalo relation actually implies for the mass

growth of individual galaxies at z . 1 (see discussion and sketch in Section 4.1 and

Figure 4.1). To this purpose, following the methodology outlined in Buchan & Shankar

(2016), at each redshift of interest in the range 0 < z < 1, I assign galaxies to host

dark matter haloes by using the redshift-dependent Moster et al. (2013) relation with a

constant scatter of 0.18dex. I then select at z = 0.1 the “typical” massive galaxy in the
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sample with logMstar/M� = 11.7 ± 0.1, and trace its putative progenitors back in time

by following the evolutionary mass growth of their “typical” host dark matter haloes. I

repeat this exercise for the best-fit Mstar-Mhalo relations and intrinsic scatters at z = 0.5

and z = 0.7. All stellar evolutionary tracks are normalised at z = 0.5, which is the

redshift of reference and starting point in this chapter.

The results are shown in Figure 4.14 The Moster et al. (2013) model (dashed, blue

line) predicts a broad evolution of a factor of ⇠ 2 in stellar mass growth since z ⇠ 1.

This trend agrees well with the constraints at z & 0.5 (green circles with error bars),

which also imply non-negligible growth of ⇠ 50% in the redshift range 0.5 < z < 1.0.

For completeness, Figure 4.14 also reports the results of the semi-empirical model put

forward by Shankar et al. (2015) (dotted, orange line), which also consistently predicts

similar degree of stellar mass growth in the same redshift range. It is interesting to

note that Shankar et al. (2015) predict an average stellar mass growth less prominent

at z < 0.35 than within 0.35 < z < 1.0 (about half of the growth for the same amount

of cosmic time). This possible slowdown has been reported in the recent literature

(Oliva-Altamirano et al., 2015).

4.4.2 Comparison with previous works

The literature on the evolution of the most massive, central galaxies in the local Universe

is extremely rich. Here I do not attempt to provide a comprehensive review of previous

papers on this topic (relevant reviews may be found in, e.g., Conselice 2014), but rather

to make contact with just a few observational and theoretical results appeared in recent

years of direct interest to the present work.

From the observational point of view Vulcani et al. (2016) took advantage of a SAM and

UltraVISTA catalogue confirming that the growth history of massive galaxies is in fact

dominated by in-situ star formation, which however becomes gradually less dominant at

lower redshifts, being replaced by mergers at z < 1.

Bernardi et al. (2016b, and references therein) measured the Sérsic-based stellar mass

function of CMASS galaxies at z ⇠ 0.55 found very weak evolution in the number density

of the most massive galaxies. However, in line with our results, they also emphasize that

evolution in the clustering amplitude of SDSS and CMASS galaxies samples matched in

co-moving number density, tends to rule out a strictly passive evolution or any minor

merger scenarios which preserve the rank ordering in stellar mass of the population.

Other recent observational work by Bellstedt et al. (2016) suggested that the stellar

mass growth of the most massive central galaxies since z ⇠ 1 may be up to a factor
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of three. Contini et al. (2017) stressed, however, that the overall inferred evolution of

the stellar mass function and star formation rate density are hindered by the systematic

uncertainties both in the stellar mass and star formation rate estimates. Gargiulo et al.

(2016) derived the number density ⇢ at 1 < z < 1.6 from the MUNICS and GOODS-

South surveys, and at 0.2 < z < 1.0 from the COSMOS spectroscopic survey. They

suggested that ultramassive dense galaxies missing in the local Universe could have

joined, in the last 9 Gyr, the non-dense early-type galaxy population through minor

mergers.

On the theoretical side, Rodriguez-Gomez et al. (2016) found from the Illustris simu-

lation that the “two-phase” model for galaxy formation, with both substantial in-situ

star formation as well as late ex-situ assembly of stellar mass, is a good approximation

for especially the most massive galaxies. For the latter, although with large variations

depending on environment and age (see also, e.g., Keating et al., 2015; Saito et al., 2016;

Wellons et al., 2016), over 80% of their final stellar mass could be gained via mergers

(see also, e.g., Gonzalez et al., 2011; Shankar et al., 2013). They also claim that ⇠ 50%

of the ex-situ stellar mass comes from major mergers, ⇠ 20 per cent from minor mergers

(1/10 < µ < 1/4), and ⇠ 20 per cent from very minor mergers (µ < 1/10).

Also, Ownsworth et al. (2014) use number density conservation to find that 51 ± 20%

of the stellar mass of galaxies with logMstar/M� > 11.24 at z = 0.3 comes from major

and minor mergers and 24 ± 8% from in-situ starformation since z = 3. They therefore

agree that there is substantial growth in stellar mass.

Gu et al. (2016) specifically focused on the evolution of the intrinsic scatter of the

high-mass end of the Mstar-Mhalo relation since z ⇠ 2. They claimed that hierarchical

assembly of dark matter haloes and their central galaxies is the key towards a tight

scatter of � ⇠ 0.16dex, with little dependence on host halo mass and redshift, in excellent

agreement with the findings presented in this chapter.

4.5 Summary

In this chapter, I have outlined a promising framework to set valuable constraints on the

slope and scatter of the high-mass end of the Mstar-Mhalo relation. The methodology

is specifically designed to bypass the still substantial and unavoidable systematics in

galaxy stellar mass and number density measurements, gradually more prominent with

increasing redshift. To this purpose, I utilise the halo mass distribution of massive,

logMstar/M� > 11.5 BOSS satellite galaxies at z = 0.5, as independently inferred by

Tinker et al. (2016) from abundance matching and clustering techniques, to constrain
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Figure 4.14: The predicted mean evolution of stellar mass in individual galaxies,
anchored at z=0.5. I have selected haloes in the Bolshoi simulation at z = 0 that have
logMstar⇠ 11.7 using the Moster et al. (2013) Mstar-Mhalo (blue line) and abundance
matching to the Bernardi et al. (2013) stellar mass function (errorbars). I trace the
progenitors of these haloes to higher redshift. In the blue line shows the median stellar
mass of the progenitors when populated using the Moster et al. (2013) Mstar-Mhalo

relation. The error bars show the mean stellar mass when populated using the maximum
likelihood Mstar-Mhalorelation assuming the frozen model. The horizontal line shows a
constant stellar mass. The orange line shows the results of a full semi-empirical model

from Shankar et al. (2015).

the Mstar-Mhalo relation at 0.5 < z . 1.2. My routine is to populate satellite haloes

with stellar masses at their respective infall redshifts with Mstar-Mhalo relations with

varying high-mass end slopes � and scatter �. After infall, satellites are left frozen in

stellar mass, or are allowed to evolve in stellar mass via stripping with and without star

formation. I utilise an MCMC routine to fit the high-mass end slope and scatter in each

respective model to the ngal(Mhalo) distribution.

The main results in this chapter can be summarised as follows:

1. When assuming satellites to be strictly frozen after infall, the best-fit values are

�z>0.5 ⇠ 0.38 and �z>0.5 ⇠ 0.19dex. The former implies a slope much steeper than

what previously inferred, significantly steeper than what previously suggested in

the literature at these redshifts (� . 0.25; Behroozi et al. 2013b; Moster et al.
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2013). Still, the inferred slopes are significantly lower than what expected from

a pure no-evolution scenario in the stellar mass function, implying some stellar

mass growth in massive galaxies since z ⇠ 1 of ⇠ 50% in the redshift range

0.5 < z < 1.0. A nearly constant and small scatter is in line with what expected

from a hierarchical assembly scenario.

2. Stellar stripping of massive satellites after infall must have been relatively small,

. 10%. Larger amounts of stripping would have implied unrealistically high-z

number densities of massive galaxies. This in turn implies that intracluster light

should have originated from lower-mass and younger satellites.

3. Including star formation in infalling satellites, at the rate observed in massive

galaxies at z < 1, does not alter any of the above conclusions.

The next generation of galaxy surveys (e.g., Euclid, LSST) will allow to measure precise

clustering of massive galaxies up to z ⇠ 1 thus allowing the methodology presented in

this chapter to be extended closer to the peak of the star formation rate (z ⇠ 2) and

possibly even beyond.



Chapter 5

Testing the mass and size growth

of massive galaxies using

numerical simulations.

5.1 Introduction

The key focus thus far has been on setting more secure constrains on the evolution of

the most massive galaxies with the aid of semi-empirical models, specifically designed

to minimise the number of assumptions and parametrisations. Now, it is informative to

check the results using state-of-the-art numerical simulations. In this chapter, I discuss

the results of two projects that utilise the latter technique, tailored to probe the evolution

of the most massive galaxies, found at the centres of cluster-sized dark matter haloes.

Thanks to the vast increase in computing power in the past few decades, it has been

possible to tackle many of the puzzles in galaxy evolution using increasingly sophisticated

numerical simulations. The specific numerical set-up of these simulations depends on

exactly what physics they are trying to probe. In general, there are three broad tiers of

processes that are involved in galaxy evolution.

The first one represents the gravitational forces that govern dark matter structure for-

mation and, to first order, galaxy dynamics. Simulations that only explore gravitational

e↵ects usually utilise a large number of collisionless particles. The force on the ith parti-

cle, ~Fi, is determined by the gravitational potential, r�, caused by all the other particles

in the simulation:

~Fi = �r�|i . (5.1)

111
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The second tier of processes are the more complex gas dynamics which are probed by

numerically solving the hydrodynamical equations. There are three common method-

ologies for solving these hydrodynamical equations.

• The first is to use the Lagrange formalism where the coordinates are co-moving

with respect to the fluid element. In this framework, it is possible to treat each

fluid element as a particle in so-called smooth-particle hydrodynamics (SPH; e.g.

GADGET; Springel 2005a). The global properties of the gas are found by smooth-

ing over the particles with a kernel.

• The Second method is to use the Eulerian formalism where space is divided into a

Cartesian grid. The hydrodynamical equations are solved by considering the net

flux of mass, momentum and energy across each cell boundary. In Adaptive mesh

refinement (AMR) codes (e.g. RAMSES; Teyssier 2002), the cells are allowed to

divide, providing a high resolution with little computational overhead.

• The last commonly used method is a combination of the previous two. Space is

divided into a mesh using a Voronoi tessellation. In so-called moving-mesh codes

(e.g. AREPO; Springel 2010), each cell is allowed to ‘move’ following the velocity

of the local flow and thus solving some key numerical issues in the above two

methods.

The final tier include the physics of radiative transfer and magnetic processes. These

are important in small-scale structures and in high-energy systems. In simulations of

galaxy evolution, these second order e↵ects are accounted for in ‘sub-grid physics’ which

encompass for the processes below the resolution limit.

In this chapter, I first utilise N-body simulations to explore if quasi-adiabatic expan-

sion (as described in Section 1.6.2.1) can explain the size evolution in massive galaxies.

Secondly, I explore the evolution of massive galaxies in tailored, cosmological zoom-in

simulations. I present my re-analysis of simulations run by Martizzi et al. (2014) as well

as one simulation I ran.

5.2 Quasi-adiabatic expansion of an isolated galaxy

One of the key results of the work presented in Chapter 3 is that the observation of

whether or not massive galaxies at z & 2 already follow the z = 0 size-mass relation is

crucial in discerning between between the monolithic and hierarchical assembly scenarios

(as described in Section 1.6.2.1). This is because I showed that the stellar mass of z = 0
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massive central galaxies is, on average, higher than the total baryonic mass of their

progenitor proto-clusters at z & 2. This implies that either baryons can be converted

to stars with 100% e�cency at these early epochs, or that they assemble later. In the

former scenario, it is challenging to devise a model in which galaxies are born with their

full stellar mass and while still allowing for substantial size evolution, or vice-versa (e.g.

Hopkins et al., 2010).

Strong AGN feedback at early epochs might be one avenue for dramatic size evolution.

In the so-called quasi-adiabatic expansion model whereby substantial fractions of the

baryons are expelled from inside the galaxy to outside the virial radius (Fan et al.,

2008). As a reaction to the central gravitational potential lowering, the galaxy will

dynamically expand. Physically, this is because the potential energy of the galaxy

has dropped rapidly and so no-longer obeys the virial equation: 2 ⇥ kinetic energy +

potential energy = 0. Because the galaxy is no-longer in equilibrium, it will expand and

in doing so lower the mean kinetic energy. The expansion will stop when the kinetic

energy is lowered enough to re-obey the virial equation.

Groups such as Ragone-Figueroa & Granato (2011) have run numerical experiments

on removing baryons from simulated elliptical galaxies, mimicking the e↵ect of AGN

feedback. They showed that the amount of expansion is roughly proportional to the

amount of mass lost: R⇥M = constant, that is, if the galaxy looses half its baryons, it

will roughly double in size.

If some evolution from AGN feedback is ensuing, it should leave traces in observations of

the size-mass relation. Barro et al. (2013) however, showed that compact high-redshift

galaxies move from a “blue nugget” to “red nugget” phase, possibly due to AGN feed-

back, with no apparent change in their sizes. Could morphology, e.g. the presence of a

disc, prevent size expansion?

To answer this question, I ran a series of numerical experiments whereby an initially over-

massive (with respect to abundance matching relations), three component (stellar bulge,

stellar disc and dark matter halo) galaxy loses a substantial fraction of its baryonic mass.

In the following sections, I detail the numerical set-up and the results of the simulations.

5.2.1 Numerical set-up

Firstly, an isolated, dynamically stable, over-massive galaxy is generated using the

GALIC code (Yurin & Springel, 2014). Next, a fraction of baryons are instantaneously

removed to bring the galaxy down to a ‘normal stellar mass’ given by abundance match-

ing relations. For simplicity, the N-body code, GADGET2 (Springel, 2005b) was chosen.
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The baryonic mass of the galaxy is artificially lowered by randomly removing particles

from the simulation then the resulting galaxy is allowed to dynamically relax. Note

that the same exercise is significantly more di�cult with a grid-based code as changing

the mass in each cell may lead to large numerical artefacts. In addition, GADGET2 is

freely available, well documented and has pre-written initial conditions generators and

analysis tool kits.

In the work presented here, there is no gas or sub-grid physics in the simulations. This

is because quasi-adiabatic expansion is purely a dynamical e↵ect, and thus the details

of galaxy composition are not be important. Dark matter and star particles can be

treated as collisionless. Dark matter only interacts via gravity and the average distance

between stars is much larger than a stellar radius making them e↵ectively collisionless.

A simulation that only includes collisionless particles is by far simpler to run and analyse

than a full hydrodynamic simulation.

Furthermore, I randomly remove particles with equal probability from the galaxy rather

than weighting them by their position. A more realistic model would be to remove

particles preferentially from the centre of the galaxy (simulating kinetic/radio mode

feedback). However, this first order approximation is a good initial step.

The initial properties of the galaxy are given as follows:

• I generate an isolated, massive galaxy with halo mass, Mhalo, at some redshift

0  z <zform.

• The virial radius of the halo is given by:

rvir =


200

�vir⌦m(t)

GMvir

10H(t)

� 1
3

(5.2)

�vir ⇡ 18⇡2 + 82x � 39x2

⌦m(t)

x = ⌦m(t) � 1

• The final stellar mass of the galaxy, Mstar,f(z) is given by the Moster et al. (2010)

abundance matching relation. The initial stellar mass (before mass is removed) is:

Mstar,i =
Mstar,f

(1 � f)
, (5.3)

where f is the fraction of the total stellar mass lost.
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• The halo concentration is given by Dutton & Macciò (2014) with no scatter.

• In the work presented here, particles are only removed from the bulge. The final

stellar mass, Mstar,f is split equally between bulge and disc meaning the initial disc

mass is Mstar,f/2 and bulge mass is Mstar,f(f + 1/2) (see equation 5.3).

• The disc is assumed to follow an exponential profile with an initial half mass radius

given by the Shen et al. (2003) empirical size-mass relation.

• The bulge-half mass radius is given by the redshift-dependant parametrisations by

van Dokkum et al. (2010), normalised to match the relation for z = 0 local SDSS

galaxies (Bernardi et al., 2013):

R0.5m =
10.8

(1 + z)1.35
⇥ Mstar

1011
[kpc] . (5.4)

The simulations I present in this section have Mhalo= 3⇥ 1013M�, concentration c = 4,

Rvir ⇠ 500 kpc, Mstar,f = 2 ⇥ 1011M�. The radii are dependent on Mstar,i. In total,

5 ⇥ 105 dark matter particles and 5 ⇥ 105 star particles are used. A key parameter

when using particle based simulations is the gravitational softening. This essentially

defines the spatial resolution and prevents the particles becoming e↵ectively collisional.

The softening lengths used here are 0.01kpc and 0.001kpc for the dark matter and stars

respectively.

5.2.2 Results

5.2.2.1 Expansion due to mass-loss

In this section, I present the results of six simulations using three di↵erent mass-loss

fractions, f , and two values of disc height (the disc thickness-to-radius ratio; DH =

hz/R0.5m). The simulations are initialised using the methodology detailed in Sec-

tion 5.2.1. Specifically, I use f = 0.5, 0.33 and 0.2 and DH = 0.2 and 0.4. A thick

disc has a typical value of DH = 0.2 but I also include a very extreme disc geometry to

test if it is at all possible for the disc to ‘block’ quasi-adiabatic expansion.

The simulations are then run for one course timestep using the GADGET2 code, after

which a fraction of the stellar mass, f is removed from the bulge. The simulation is

allowed to run for a further 1Gyr without additional intervention. Snapshots of the

simulation are saved every 10Myr. The half-mass radius of the stellar component is

extracted from each snapshot by finding the 3D sphere that contains 50% of the stellar

particles.
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Figure 5.1 shows the expansion of the galaxies in the six simulations. The y-axis shows

the fractional increase in half-mass radius and the x-axis shows the time since mass-loss.

I firstly find that after the particles are removed, the galaxy indeed does expand. The

amount of expansion is directly proportional to the amount of mass that was removed.

It can also be seen in Figure 5.1 that the galaxy’s expansion oscillates. This is most

likely a simple dynamical e↵ect. At first, the galaxy rapidly expands due to the loss

in potential energy which was binding the galaxy together. As it expands, the mean

kinetic energy will drop, slowing the expansion. Since the system is only lightly damped

(possibly because the particles making up the galaxy are collision-less) meaning the

galaxy’s size will oscillate about its new equilibrium.

In addition, Figure 5.1 shows that the stellar mass the disc geometry does not inhibit

expansion but acts to increase the dampening in the oscillations as the galaxy relaxes.

Figure 5.1: The fractional expansion of a galaxy after a portion of its mass has been
removed. The blue, green and purple lines show when the stellar mass starts as 3, 2
and 1.5 times the final bulge mass (plus the disk mass). In other words, when 20%,
33% and 50% of the stellar mass is removed. The orange, red and brown lines show the
same but for a thicker disc geometry (the disk height, DH = hz/R05m). Time starts

when the particles are removed.

5.2.2.2 Testing the significance of this expansion

As demonstrated in Section 5.2.2.1, a bulge-dominated galaxy will expand if substantial

amounts of baryons are removed. In the following section, I will discuss an important

test as well as the wider implications of this result.
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One important test to verify the significance of the expatiation is to test stability of

the final galaxy without any mass loss. I initialized an isolated galaxy with the same

properties as the ones above after the particles have been removed. This means that the

initial conditions generator should create a galaxy which is stable and thus not expand.

This galaxy was then simulated for 0.5 Gyr, without any mass-loss. Figure 5.2 shows

the initial density profile of the galaxy (blue dashed line) and after 0.5 Gyr (orange solid

line), calculated by finding the mass contained in thin shells distance r from the centre

of the galaxy. I also show their respective half-mass radii (vertical dashed and solid

lines). It is clear that there is a numerical e↵ect (possibly due to the choice of softening

length or exact seed galaxy) which is causing particles to di↵use from the central regions,

flattening the density profile and thus quasi-expanding the galaxy.

I find that at 0.5 Gyr (the time at which all the galaxies which had particles removed

had relaxed), the isolated galaxy in this test had expanded by a factor ⇠ 1.5, an amount

comparable to the 20% mass-loss (blue and orange lines in Figure 5.1). This test has

possibly shown that numerical e↵ects could contribute to the observed expansion in

the simulated galaxies. However, it is clear that when substantial amounts of baryons

are lost (& 33%), the observed increase in half-mass radius is mostly due to dynamical

quasi-adiabatic expansion. In either case, the results presented in this section should be

viewed as upper-limits on the amount of expansion.

Figure 5.2: The 3D density profile of an over-massive galaxy with the initial conditions
described in Section 5.2.1 immediately after its initialization (blue line) and after 0.5Gyr

of time (orange line). The vertical lines show their respective half-mass radii.
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5.2.3 Conclusions

In this section I explored a model whereby an initially over-massive galaxy has a large

fraction of its baryons removed, simulating strong AGN feedback and observed the

e↵ect this has on the galaxy’s size. I found that expansion of the galaxy is roughly

proportional to the fraction of baryons lost, in line with the findings of Ragone-Figueroa

& Granato (2011). In addition, this test shows that morphology and/or dynamics of

the galaxy does not change the end product of the quasi-adiabatic expansion as put

forward by Fan et al. (2008). Indeed, this means that strong kinetic/radio mode feedback

cannot be the mechanism to transform compact high-redshift galaxies from a “blue

nugget” to “red nugget” phase. More work is needed to verify this e↵ect, starting

from di↵erent seed galaxies, including hydrodynamics and a more realistic radio-mode

feedback prescription.

5.3 A cosmological zoom-in with RAMSES

At this stage, it is informative to compare the results presented thus far, derived from

semi-empirical models, to state-of-the-art cosmological zoom-in simulations. To this

end, I have re-analysed eight simulations by Martizzi et al. (2014) as well as (starting

to run) my own tailored simulation.

5.3.1 Numerical set-up

In this section, I discuss the numerical set-up of the simulation I ran for this work. The

simulations run by Martizzi et al. (2014) use the same methodology but with di↵erent

initial conditions and slightly di↵erent sub-grid physics. In both cases, the RAMSES

code (Teyssier, 2002) was used. RAMSES treats stars and dark matter as collisionless

particles but uses grids for the gas. Adaptive mesh refinement is implemented to achieve

a high spatial resolution in high density regions without wasting computing power on

low-density space. Furthermore, zoom-in simulations take this methodology one step

further by only allowing one region of the cosmological box to be refined to higher

resolution. The latter technique allows for extremely high resolution simulations (e.g.

Hirschmann et al., 2013; Dubois et al., 2015), while still accounting for the large scale

inflows and outflows of gas into the halo and ultimately onto the galaxy.

In general, cosmological zoom-in simulations are run as follows:

• Initial conditions are generated with the MUSIC code (Hahn & Abel, 2011) at

z = 50.
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• The cosmological box is first simulated only with the dark matter and with a low,

uniform resolution.

• At z = 0, the halo of interest is selected. The particles from this halo (plus a small

border) are traced back to the initial conditions. The surface enclosing the high

redshift particles defines the co-moving volume which will be simulated at higher

resolution.

• The simulation is then re-run. Outside the high resolution area, the simulation

uses the low, uniform resolution as before. However, the mesh and particles in

the area of interest are allowed to adaptively refine (up to a limit), giving it a

higher resolution than the rest of the box. Snapshots are saved at pre-determined

redshifts.

• The simulation can then be analysed.

I initially simulated a (100/h Mpc)3 cosmological box containing only dark matter to

z = 0. I selected a massive halo which is towards the outskirts of a high density region to

re-simulate at higher resolution. The zoom region was 3⇥Rvir and the peak resolution

inside this region was ⇠ 1kpc. In my simulation, I utilise the sub-grid physics and

physical parameters as used in the Horizon-AGN simulation (Dubois et al., 2014) which

were tuned to broadly reproduce the statistical properties of local galaxies. I aimed to

run my simulation to z = 0.5 to connect with Chapter 4. However, due to technical

issues1, I only ran it to z ⇠ 4.3. In the following section, I discuss the results of my

simulation, which I have complemented with my analysis of the Martizzi et al. (2014)

simulations which have been run to z = 0.

5.3.2 Analysis and results

The following analysis applies to both the simulation I ran for this work and to the

Martizzi et al. (2014) simulations. Firstly, each snapshot gets analysed with the HOP

halo finding algorithm (Eisenstein & Hut, 1998, See Section A.2 for brief discussion on

halo finders). The next stages of the analysis heavily utilise the pynbody python package

(Pontzen et al., 2013). Each snapshot is centred on the halo of interest using the centroid

determined from the halo finder, after which it is re-centred using the more accurate

shrinking-sphere method (Power et al., 2003).

1These issues are set to be resolved in future work so that the simulation can be completed along
with a detailed analysis (Grylls et al. in prep).
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5.3.2.1 Global properties

After the halo has been centred, some initial key properties can be gathered. Firstly, I

measure the halo radius and mass (R200c and M200c respectively) by finding the sphere in

which the mean density is 200 times the critical density of the Universe at that redshift.

Additionally, I find the stellar and gas masses enclosed in that sphere.

Figure 5.3 shows an image of the projected 2D density of the dark matter halo I simulated

at z ⇠ 4.3 within a cube with sides 6⇥R200c (where darker regions show higher density).

The orange circle in the image shows R200c.

Figure 5.3: An image of the projected 2D density of the dark matter halo I simulated
at z ⇠ 4.3 within a cube with sides 6 ⇥ R200c. Darker regions show higher densities.

The orange circle shows R200c.

The lines in Figure 5.4 show the evolution of M200c in each of the chosen haloes in the

zoomed-in simulations by Martizzi et al. (2014). The star shows the mass of the halo

in my simulation at z ⇠ 4.3. It is clear that each halo has substantial growth in mass
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over cosmic time, in agreement with the structure formation framework discussed in

Section 1.3, and they all end up as massive clusters at z = 0.

Figure 5.4: The evolution of Mhalo with redshift at the centre of each of Martizzi
et al. (2014) zoom-in simulations (coloured lines). Additionally, I show Mhalo of my

simulated halo at z ⇠ 4.3 (blue star).

5.3.2.2 Estimating stellar mass

Having probed the halo properties in each zoom-in simulation, I now turn to the central

galaxy. There are in general, two ways to measure the stellar mass of massive simulated

galaxies (Puchwein et al., 2010). The first is to define a ‘maximum radius’ which specifies

the outer edge of the galaxy, normally based on empirical estimates of a galaxy’s size

based on its halo mass (from, e.g. Bernardi et al., 2014). The other method is to fit

2D or 3D density profiles with a model template. The model density profile can then

be integrated to give the total mass of the galaxy. Importantly, the massive elliptical

galaxies at the centres of clusters have an excess of stars at large radii with respect to

lower mass elliptical galaxies (known as the intra-cluster light; ICL Schombert, 1986).

To account for the ICL, I use the latter method for measuring the central galaxy’s mass.

Specifically, I assume that the 3D density profile of the central galaxy and ICL can each

be well described by Hernquist (1990) profiles2 with the analytic form:

2In principle, it could be better to fit a Sérsic+exponential profile or even two Sérsic profiles. (Graham
& Driver, 2007). However, as discussed by Puchwein et al. (2010), the increase in degrees of freedom
with these models makes it di�cult to unambiguously de-blend the ICL from the central galaxy.
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⇢(r) =
M

2⇡

a

r

1

(a+ r)3
, (5.5)

where M is the total stellar mass and a is the scale radius. Equation 5.5 leads to the

cumulative mass distribution:

M(< r) = M
r
2

(r + a)2
. (5.6)

Note that the half-mass radius, R0.5M = (1 +
p
2)a. This profile closely reflects the

surface brightness profile, I(r) / r
1
4 , as observed in elliptical galaxies (Uson et al., 1991;

Scheick & Kuhn, 1994; Gonzalez et al., 2000).

To measure the 3D stellar density profile, I use the profile tool in the pynbody python

package, which finds the number of star particles within thin shells, distance r from the

galaxy centre. However, as seen Figure 5.3, there are many sub-haloes inside the inner

regions of the host halo. Each of these sub-haloes will contain a satellite galaxy which

will heavily disturb the density profile of the central galaxy. I therefore iteratively mask

stellar over-densities within 0.5R200c until the smoothed galaxy profile always decreases.

The mass and the volume of these masked regions are subtracted from the density

calculation and thus do not bias the mean density calculation.

For every snapshot in each simulation, I calculate the 3D density profile, to which I fit

both one and two Hernquist profiles using a least-squares regression. The purple line

in Figure 5.5 shows the 3D density profile for the galaxy at the centre of simulation

run in this work at z ⇠ 4.3. The red line shows the best fit single Hernquist profile.

Instead, the blue line shows the best fit double Hernquist profile where the first ‘galaxy’

component is shown as orange and the second ‘ICL’ component is shown in green.

Figure 5.6 shows the evolution of stellar mass of the galaxy at the centre of the zoomed-in

halo in each of the Martizzi et al. (2014) simulations. Furthermore, the blue star shows

the stellar mass of the galaxy in my simulation at z ⇠ 4.3. The top panel shows the

best fit integrated stellar mass if only one Hernquist profile is fitted. Instead, the middle

and bottom panels show the results when two Hernquist profiles are jointly fitted, with

the middle panel just showing the mass from the first galaxy profile and the bottom

panel showing the sum of the two profiles. It is clear in all cases that individual, central,

massive galaxies have substantial stellar mass evolution since their formation, in-line

with the conclusions drawn throughout this thesis.

I next test the methodology used in Chapter 3. In that chapter, I compared the empirical

estimates of the stellar mass of local central galaxies to the total baryonic mass available
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Figure 5.5: The purple line shows the 3D density profile of the central galaxy of the
simulation run in this work at z ⇠ 4.3 (top) and one example fit from the Martizzi et al.
(2014) simulations at z = 0 (bottom). The red line shows the best fit single Hernquist
profile. Instead, the blue line shows the best fit double Hernquist profile, where the
orange line shows the first ‘galaxy’ profile and the green shows the second ‘ICL’ profile.
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Figure 5.6: The coloured lines show the evolution of Mstar in each of the central
galaxies of the zoomed-in dark matter halo in the Martizzi et al. (2014) simulations. The
blue star shows the Mstar of the central galaxy of the zoomed-in dark matter halo in my
simulation at z ⇠ 4.3. The top panel shows Mstar when only a single Hernquist profile
is used. The middle panel shows Mstar measured using the first ‘galaxy’ profile and
the bottom panel shows the sum of the ‘galaxy’ and ‘ICL’ profiles when two Hernquist

profiles are fitted.
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Figure 5.7: The mean ratio of the baryonic (stars plus gas) mass to the dark matter
mass within R200c in the zoomed-in dark halo in the Martizzi et al. (2014) simulations

(coloured lines) and of this work (blue star).

for galaxy formation inside their progenitor halo at high redshift. I found that the local

stellar mass was equal to, if not greater than, the total baryonic mass at high redshift

and thus concluded that not all of the local stellar mass could have been formed at those

early epochs.

Firstly, I test the results of Crain et al. (2007) who find that the ratio of baryons to

dark matter in haloes is ⇠ 16%, independent of halo mass and redshift. This is an

important input into my analysis in Chapter 3. Figure 5.7 shows the ratio of baryons to

dark matter inside R200c, as a function of redshift, in each of the Martizzi et al. (2014)

simulations. The star shows the ratio inside the zoomed-in halo in my simulation. I find

a slightly lower baryon fraction than Crain et al. (2007) which would, in fact, strengthen

the conclusions in Chapter 3.

Figure 5.8 directly shows the total baryonic mass inside R200c for each simulation as a

function of redshift, and the stellar mass of the central galaxy from the two component

fit (the most conservative of the three measurements). It is again clear that the baryonic

mass inside the halo at z & 3 is lower than the stellar mass of the central galaxy at z = 0.
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Figure 5.8: The evolution in the stellar mass of the central galaxies in the zoomed-in
halo in the Martizzi et al. (2014) simulations (dashed orange lines) and of this work
(orange star). Each line represents a di↵erent simulation. Additionally, I show the
evolution of the total baryonic (stellar and gas) mass within R200c (blue solid lines and

blue star).

5.3.2.3 Estimating the half-mass radius

In addition to extracting the stellar mass of the central galaxy, the fits to the density

profile also provide the half-mass radius. Figure 5.9 shows evolution of the half-mass

radius, R0.5M of the central galaxy in the zoomed-in haloes of the Martizzi et al. (2014)

simulations (lines) and mine (star). It is clear that there is substantial size evolution

when only one Hernquist profile is fitted (top panel). However, it is less clear if the size

of the central galaxy evolves when it is de-blended from the ICL (middle and bottom

panels).

5.3.3 Conclusions

The results of this section clearly indicate that the stellar mass of the central galaxy

evolves with redshift. There are two avenues to further explore the mechanisms that

contribute to the stellar mass growth. The first is to trace the star particles back to their

formation to test if they were created within the central galaxy, or ex-situ and bought

in via mergers. The second is to probe the growth of the ICL by observing where the
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Figure 5.9: Same as Figure 5.6, but showing the evolution the half-mass radius,
R0.5M .
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star particles that initially started in satellites end up, as a function of the stellar mass

of the satellite and of their orbit.

The question whether or not these simulations support substantial size evolution in

massive galaxies depends on how exactly the galaxy is de-blended into the galaxy and

ICL components. This possibly needs higher spatial and temporal resolution simulations

since high redshift, so that either more complex template profiles can be used or so that

the two components can be probed via their dynamics.

Overall, the results of these cosmological zoom-in simulations seem to confirm the con-

clusions I drew throughout this thesis that the most massive galaxies have substantial

growth since their formation. More detailed simulations will be run in the near future

once technical issues with the RAMSES code have fixed, providing a more statistically

significant sample of massive galaxies to draw conclusions from.



Chapter 6

Conclusion.

This thesis aimed to set more stringent constraints on the still debated formation and

evolution scenarios for the most massive galaxies. To achieve this, I developed a series

of semi-empirical models to answer the following questions:

1. On average, how much do massive galaxies grow in stellar mass since their forma-

tion epoch?

2. Can mergers alone account for such growth in size and stellar mass?

3. Can a basic monolithic collapse scenario account for the observations?

In the following section, I detail my findings, and use them to answer the questions

posed above.

6.1 Main conclusions

6.1.1 Chapter 2

In Chapter 2, I first showed that by comparing basic abundance matching predictions to

observations of massive galaxies, the high mass slope of the Mstar-Mhalo relation appears

to be substantially steeper than the commonly used relations in the literature, and the

scatter small (⇠ 0.15 dex). Secondly, I showed that there are signs of substantial growth

in stellar mass z . 1. However, this latter conclusion rests on the accuracy of stellar

masses measurements and the estimates of co-moving volumes at z ⇠ 1.

I also developed a state-of-the-art, semi-empirical model from scratch, following the

general methodology laid out in Shankar et al. (2014a). By construction, this model has

129
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a minimum number of input assumptions and parametrisations. The model takes dark

matter merger trees as input and gives the stellar mass, gas fraction and e↵ective radius

as functions of redshift as output.

By inputting merger trees which are drawn from a cosmologically significant sample, I

showed that massive galaxies can grow by a factor two in stellar mass between z = 1

and z = 0, consistent with other studies. Additionally, massive galaxies can grow in

size by (up to) a factor of four over the same redshift range, providing that mergers

are e�cient (satellites have parabolic orbits). Finally, massive galaxies have ⇠ 1 major

mergers between z = 1 and z = 0 and ⇠ 8 minor mergers.

6.1.2 Chapter 3

In Chapter 3, I set tighter constrains on the assembly and evolution of massive, central

galaxies. I utilised a catalogue of dark matter haloes created from the Bolshoi simulation.

I populated these haloes with stellar mass using the stellar mass to halo mass relation

by Kravtsov et al. (2014) and Shankar et al. (2014b) at z = 0, and selected haloes

with log (Mstar) > 11.5 M�. I then traced host haloes back to the putative formation

epoch, zform= 2� 4, as inferred from the stellar ages of massive ETGs. At this epoch, I

estimated the total mass in baryons within the halo from the baryon fraction. I found

that the stellar mass of early-eype galaxies in the local universe is comparable to, if not

higher than, the total baryonic mass contained within the progenitor halo. From this

comparison, I drew the following important conclusions.

1. In-situ formation: For these massive galaxies to have fully assembled at the forma-

tion epoch, the e�ciency of converting baryons into stars needs to be extremely

high, if not 100%. I also show that this assembly scenario would lead to all ETGs

being extreme outliers with respect to what is predicted by abundance matching

at zform.

2. Size: Even when assuming an extremely e�cient star formation at zform, the galaxy

would not be allowed any size growth since the formation epoch. Even an in-situ

expansion would in fact require a mass loss of � 70% of the initial baryon content

to be su�ciently e�cient. Thus, in a strictly monolithic scenario, progenitors

of massive galaxies should already be extended systems at their formation epoch.

Measurements of the structure of massive galaxies in massive haloes will be critical

to assess this possibility.

3. Late assembly: Star formation could contribute to the stellar mass growth of the

progenitors of massive galaxies, but cannot explain their full evolution. I show
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through state-of-the-art, cosmological, semi-empirical models that massive galax-

ies could have indeed assembled most of their final mass via late mergers and

be consistent with available data on their size evolution. It remains to be seen

the impact of mergers on other (tight) galaxy scaling relations involving veloc-

ity dispersion (e.g., Bernardi et al., 2011a,b; Shankar et al., 2016, and references

therein).

6.1.3 Chapter 4

In Chapter 4, I outlined a promising framework to set valuable constraints on the slope

and scatter of the high-mass end of the Mstar-Mhalo relation. The methodology was

specifically designed to bypass the substantial and unavoidable systematics in galaxy

stellar mass and number density measurements which become gradually more prominent

with increasing redshift. To this purpose, I utilised the halo mass distribution of massive,

logMstar/M� > 11.5 BOSS satellite galaxies at z = 0.5, as independently inferred by

Tinker et al. (2016) from abundance matching and clustering techniques, to constrain

the Mstar-Mhalo relation at 0.5 < z . 1.2. My method was to populate satellite haloes

with stellar masses at their respective infall redshifts with Mstar-Mhalo relations with

varying high-mass end slopes � and scatter �. After infall, satellites are left frozen in

stellar mass, or are allowed to evolve in stellar mass via stripping with and without star

formation. I utilised an MCMC routine to fit the high-mass end slope and scatter in

each respective model to the ngal(Mhalo) distribution.

The main results in Chapter 4 can be summarised as follows:

1. When assuming satellites to be strictly frozen after infall, the best-fit values were

�z>0.5 ⇠ 0.38 and �z>0.5 ⇠ 0.19 dex. The former implied a slope much steeper than

what previously suggested in the literature at these redshifts (� . 0.25; Behroozi

et al. 2013b; Moster et al. 2013). Still, the inferred slopes were significantly lower

than what expected from a pure no-evolution scenario in the stellar mass function,

implying some stellar mass growth in massive galaxies in the redshift range 0.5 <

z < 1.0. A small and nearly constant scatter is in line with what expected from a

hierarchical assembly scenario.

2. Stellar stripping of massive satellites after infall must have been relatively small,

. 10%. Larger amounts of stripping would have implied unrealistically high-z

number densities of massive galaxies. This in turn implies that intracluster light

should have originated from lower-mass and younger satellites.
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3. Including star formation in infalling satellites, at the rate observed in massive

galaxies at z < 1, does not alter any of the above conclusions.

6.1.4 Chapter 5

In Chapter 4, I showed the results of two projects involving numerical simulations that

were designed to enhance and check the results presented in the previous chapters. First

I utilised N-body simulations to explore if quasi-adiabatic expansion (as described in

Section 1.6.2.1) can explain the size evolution in massive galaxies. Secondly, I explore

the evolution of massive galaxies in tailored, cosmological zoom-in simulations.

I first explored if the morphologies of massive galaxies can e↵ect the dynamical quasi-

adiabatic expansion caused by strong mass-loss. To this end, I simulated an initially over-

massive (with respect to abundance matching relations), isolated galaxy with the N-body

code, GADGET2. After one simulated time step, I randomly removed a fraction of the

particles such that it now follows abundance matching relations. I found that the galaxy

does indeed expand, where the fractional change in radius was roughly proportional

to the fractional change in mass (M ⇥ R = constant). Additionally, I found this is

independent of the exact morphology of the galaxy.

Furthermore, I ran a test to check the significance of the observed expansion by simu-

lating an isolated galaxy with similar properties to those which I removed mass from.

I found that numerical e↵ects may play a moderate role in the expansion when only

a modest fraction of baryons are removed but will not impact the conclusions when I

remove a more extreme fraction of the baryons.

Secondly, I conducted a complementary project to verify the results presented in the

previous chapters utilising cosmological zoom-in simulations. Specifically, I re-analysed

eight simulations by Martizzi et al. (2014) as well as (starting to run) my own tailored

simulation.

The conclusions of the project can be summarised as follows:

• The results of the simulations clearly indicated that the stellar mass of the central

galaxy evolves with redshift, both when the galaxy is and is not de-blended from

the ICL. However, I did not explore the exact mechanism for stellar mass growth.

• I verified the conclusions of Chapter 3 that the total mass in baryons is . 16% of

the halo mass. Additionally, I showed that the the stellar mass of giant elliptical

galaxies at the centres of clusters is higher than the total mass in baryons at

zform& 2.
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• Whether or not these simulations support substantial size evolution in massive

galaxies depends on how exactly the galaxy is de-blended from the ICL.

6.1.5 Answering the key questions

Here I answer the three questions posed at the start of this thesis.

1. It is highly probably that massive galaxies assemble a substantial proportion of

their stellar mass at later epochs.

2. If the satellite galaxies have, on average, parabolic orbits, they can fully account

for the increase in stellar mass and size of massive early type-galaxies between the

epoch of formation and the present day.

3. A simple monolithic collapse scenario could still be consistent with observations so

long as they are born extended. However, numerical simulations do not support

this picture.

6.2 Future work

Work has already been undertaken by our group to progress the research presented in

this thesis. Here I detail some extensions to my analysis that will be submitted this

year.

Velocity dispersion has been added to the semi-empirical model I presented in Chapter 2

which allows us to probe galaxy formation using the fundamental plane (Grylls et al.

in prep.). In addition, black holes will be added to the model so we can probe their

growth, thus giving a more complete view of massive galaxy formation.

The cosmological zoom-in simulation I presented in Chapter 5 will be completed, allow-

ing us to probe the formation of massive galaxies in more detail. We will isolate the stars

formed in satellite galaxies to test how e�ciently they merge with the central galaxy,

and how much they contribute to the ICL.

The methodologies I presented in this thesis have provided more secure constraints on

massive galaxy formation and evolution. The next generation of great observatories

(e.g., Euclid, LSST, E-ELT JWST) will allow for more precise and statistically relevant

measurements of the stellar mass, structure and clustering properties of high redshift,

massive proto-galaxies. This will be the key to discern between merger scenarios and

extremely e�cient starbursts events.





Appendix A

Generating merger trees.

A.1 Analytic trees

The first method to generate merger trees is to use Press-Schechtor formalism (Press &

Schechter, 1974) to construct the halo mass function at each redshift. It is also possible

to construct a conditional mass function of progenitor haloes. In more detail, this is the

fraction of trajectories that an object at time t, with mass between M and M +dm that

make their first uncrossing through the threshold ! = �c(t) with variance in the range

S and S + dS. These variances can be converted to masses such that this conditional

mass function becomes

f(M1, z1|M0, z0) = fsc(S1,!1|S0,!0)|
dS1

dM1
(A.1)

fsc(S1,!1|S0,!0) =
1p
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(A.2)

where f(M1, z1|M0, z0) is the fraction of mass represents the fraction of mass from haloes

of mass M0 at redshift z0 that is contained in progenitor haloes of mass M1 at an earlier

redshift z1.

The first useful quantity to define is the average number of objects with mass M1 that

an object with mass M2 ‘fragments into’ in a time step of dt1. This is given by

dN

dM1
=

dfsc

dt

M2

M1
dt (A.3)
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It then follows that the mean number of haloes that fragment from a halo with mass

M2, given a resolution limit (Mres), is given by:

P =

Z M2/2

Mres

dN

dM1
dM1 (A.4)

Additionally, the mass that gets accreted onto halo over this dz

P =

Z Mres

0
M1

dN

dM1
dM1 (A.5)

The first, most simple algorithm to generate merger trees is Cole et al. (2000) which

works as follows. Starting with a halo with mass M2 at z, a random number, R is

drawn. If R > P then the halo does not split in that time step. However, the accreted

mass, given by Equation A.5, is still deducted from the main halo so that the new main

progenitor has mass M2(1 � F ). However, if R < P , the halo splits. In this case, a

random value M1 is generated from the conditional mass function at that redshift, in

the range Mres < M1 < M2/2. Accreted mass is also deducted such that the main

progenitor has mass M2(1 � F ) � M1. This is then looped until the main progenitor

reaches a given value or time reaches a given epoch.

The second, more complex algorithm is by Somerville & Kolatt (1999) who allow for

multiple mergers per time step. The algorithm works by drawing a random number

which is converted to a mass M1 in the range 0  M1  M2 using equation A.5. If

M1 < Mres then M1 is added to the accreted mass. If M1 > Mres it is a progenitor.

If the remaining mass �M = M2 � M1 is less than Mres it is added to the accreted

mass. If, however, �M > Mres then it will contain another progenitor. In this case,

another random mass, M3 is drawn from the mass weighted probability distribution. If

M3 > �M then it is thrown away and another mass is drawn. If M3 < Mres it is added

to the accreted mass and if �M > M3 > Mres it is another progenitor. In the latter

case, �M = M1 � (M2 +M3). This is repeated until �M < Mres.

The last, most complex algorithm by Parkinson et al. (2008) claims to be more faith-

ful to numerical simulations. To achieve this, Parkinson et al. (2008) introduce the

perturbation function to equation A.3

dn

dM1
! dn

dM1
G(�(M1)/�(M2),!2/�2) (A.6)
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where G(�(M1)/�(M2),!2/�2) is chosen such that it is of order unity over most of

masses, mass ratios and redshifts of interest. Specifically, Parkinson et al. (2008) choose

to use:

G(�(M1)/�(M2),!2/�2) = G0

✓
�1

�2

◆�1 ✓
!1

�2

◆�2

(A.7)

This has the advantage that the algorithm maintains the speed of the Cole et al. (2000)

algorithm but the merger rate can be fitted to numerical simulations. The values of

G0, �1 & �2 were fitted by Parkinson et al. (2008) such that the merger trees their algo-

rithm produce match statistical properties of merger trees produced by Cole et al. (2008)

from the Millennium simulation. Throughout this work we adopt their best fir param-

eters of G0 = 0.57, �1 = 0.19, �2 = �0.005. However, in principle these values could be

refit to match trees produced from any numerical simulation with any reasonable ⇤CDM

cosmology.

A.2 Numerical trees

In this Appendix Chapter, I compare di↵erent extended-Press-Schechter based algo-

rithms for generating merger trees, along with numerical merger trees, with the aim

of selecting the method for use in my semi-empirical model. An increasingly popular

method for generating merger trees is to directly use the results of large volume, dark

matter-only n-body simulations (eg. Millennium Springel 2005a, Bolshoi Klypin et al.

2011). Over the past three decades, increasing computing power has allowed astronomers

to run large volumes and higher resolutions to understand exactly how dark matter struc-

tures grow. The exact details of these simulations and the codes vary greatly, however,

generally they work either by using collisionless particles or using an adaptive mesh re-

finement code. In either case, the simulation is initialised as a 3D, random density field

following a power spectrum defined by a set of cosmological parameters at high redshift.

This approximates the mass distribution of dark matter soon after inflation has ended.

In all cases, they use periodic boundary conditions to avoid edge e↵ects.

This random density field is then allowed to evolve under gravity to the present day

forming collapsed structures. In principle, this can be done by finding the gravitational

acceleration on every particle (cell) due to every other particle (cell). However, because

this is scales as the number of particles, np, as np(np � 1) more sophisticated algo-

rithms (e.g., tree particle-mesh (eg, GADGET Springel, 2005b), multigrid relaxation

(e.g., RAMSES Teyssier, 2002), fast multipole (e.g., PKDGRAV3 Potter et al., 2016),

etc) are implemented to calculate forces.
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At each snapshot of the simulation, so called ‘halo finders’ are run to identify these

bound structures. These generally work by finding groups of particles in close proximity

(FoF algorithms) or by looking for peaks and troughs in the density field (density peak

finders). More complex algorithms such as (to name but a few) bound density maxima

(BDM Klypin & Holtzman, 1997), AMIGA halo finder (AHF Knollmann & Knebe,

2009), SUBFIND (Springel et al., 2001) and ROCKSTAR (Behroozi et al., 2013a) build

on these two techniques.

Finally, haloes are linked together between snapshots by tagging all the particles in each

halo and following them between snapshots. Haloes in di↵erent snapshots are linked

together if they share a significant number of particles. Mergers occur when two haloes

are no longer distinguishable.

A.3 Comparison

Dark-matter-only simulations have the strong advantage that they do not make assump-

tions about the collapse of dark matter haloes and the thus haloes are more represen-

tative of real haloes. However, this realism makes defining mergers very di�cult during

messy interactions. The semi-empirical model is very sensitive to fluctuations in halo

mass because of the method used to keep main sequence galaxies following empirical

relationships. Simulations are also limited by their modest volume and resolutions mak-

ing it more di�cult to probe very massive galaxies. Therefore, it is advantageous to use

analytic merger trees for their simplicity providing that they faithfully reproduce the

evolution predicted by numerical simulations.

In this section, I compare merger trees from SK99, C00 and P08 to the Bolshoi sim-

ulation. To this end, we assume that the Bolshoi simulation (Klypin et al., 2011, the

reference simulation used throughout this thesis) accurately predicts the true evolution

of dark matter haloes and will find the best analytic algorithm that matches it. The

first important property of merger trees is that the main progenitor is growing at the

correct rate. This is important for the semi-empirical model since the main progenitor

is populated with a galaxy at high redshift using an Mstar-Mhalo relation. It is thus

important to get the correct progenitor halo mass to ensure the seed galaxy mass is

correct. Figure A.1 shows the median mass growth of the main progenitor and its 1�

dispersion produced using the three algorithms and from the Bolshoi simulation (the

four panels as labelled) and for four initial z = 0 halo masses (four colours as labelled).

This figure shows the well-documented trend that the more massive haloes grow at a

faster rate than low mass haloesMcBride et al. (2009); van den Bosch et al. (2014);

Correa et al. (2015). Instead, Figure A.2 shows di↵erence the in mass growth between
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the three analytic algorithms (coloured lines) and the trees from the Bolshoi simulation

for four di↵erent initial halo masses (four panels as labelled). I find that the Parkinson

et al. (2008) algorithm most closely matches the simulation.

Figure A.1: The median and one standard deviation mass accretion histories of main
progenitor haloes with z = 0 masses: logMhalo = 12, 13, 14 & 15. The bottom right
panel is constructed using haloes in the Bolshoi simulation. The other panels are
constructed using algorithms based on extended Press-Schector theory. In all cases
except logMhalo = 15 in the Bolshoi simulation (due to volume limitations), 100 haloes

are simulated.

Next, I compare the sub-halo mass functions produced from he di↵erent algorithms.

This is e↵ectively a measure of the merger rate and the average merger ratio of dark

matter haloes. This is important for the semi-empirical model because it directly deter-

mines the rate of mergers of satellite galaxies with the main progenitor and the merger

ratio. Figure A.3 shows a comparison between the subhalo mass function produced by

creating merger trees from each analytic algorithm down to a lower resolution. The top

panels show a comparison the sub-halo mass functions with the Giocoli et al. (2008)

subhalo mass function, found from numerical simulations for two stating halo masses.

The bottom panels show the di↵erence between the subhalo mass functions found from

merger trees and the one by Giocoli et al. (2008). I find that the Parkinson et al.

(2008) algorithm matches much more closely. Because of these two tests, I conclude

that Parkinson et al. (2008) is the best algorithm.



Appendix A. Merger trees 140

Figure A.2: A comparison between the mass accretion histories of three extended
Press-Schector bases algorithms to that of haloes in the Bolshoi simulations.

Figure A.3: A comparison between the mean 1st order subhalo mass functions pre-
dicted with three extended Press-Schector bases algorithms for producing merger trees

to analytic relation of Giocoli et al. (2008) for two initial halo masses.



Appendix B

Modelling the zinf graph structure

with Neo4j

A critical component of the methodology incorporated in Chapter 4 is knowing the in-

fall redshift distribution, P (zinfkMhalo). This is estimated using the Bolshoi simulation

Klypin et al. (2011) which simulates the growth of dark matter structures over cosmo-

logical time. The data comprises of lists of dark matter haloes that exist at each redshift

step and their relationship to past haloes. For many years this has been thought of as

a tree structure (Lacey & Cole, 1993). To construct the infall redshift distribution it is

necessary to trace the evolution of individual sub-haloes back through time until they

are an independent halo. The size of the dataset and the requirement to query the tree

structure within the data makes this very computationally ine�cient if the data is stored

as flat files or within a classic relational database (e.g. SQL). Consequently, a graph

database was built to enable e�cient querying and exploration of the data; the Neo4j1

graph database was chosen as it is widely used within industry and has a community,

open-source version (Robinson et al., 2015).

A Neo4j graph database comprises of two fundamental object types. The first are nodes

that represent an entity of some variety; any node may have individual attributes and

labels that specify its characteristics. The second object type are relationships that

describe the connection between two nodes; these too may have labels and attributes.

Within out representation of the Bolshoi simulation I constructed the following objects:

• Node: Halo nodes, each halo and sub-halo within the dataset was represented by

a unique node.

• Node: Redshift nodes, each redshift step was given it’s own unique node.

1Neo4j Open Source project
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Table B.1: Properties of the Neo4j database: the number of nodes and relationships
broken down by label.

Label #
Halo nodes 109

Redshift nodes 62
IS SUB OF 2 ⇥ 108

IS PARENT OF 109

AT REDSHIFT 109

• Relationship: IS SUB OF, connected sub-haloes to its host halo.

• Relationship: IS PARENT OF, connected haloes to its parent halo at previous

redshift step.

• Relationship: AT REDSHIFT, connected haloes to the redshift node at which it

exists.

A common way to describe example graph structure is to use ASCII art where nodes are

indicated by ( ), and relationships by [ ]. All relationships within Neo4j need to also

have a direction and this is indicated by the >. Therefore an ASCII art representation

of the sort of structure that would exist within the graph model of the data is:

(z: z=1.66)<-[:IS_AT_REDSHIFT]-(HALO: id=34)-\\

[:IS_PARENT_OF]->(HALO: id=235)-[:IS_SUB_OF]->\\

(HALO: id=456)-[:IS_AT_REDSHIFT]->(Z: z=2)

As the dataset was static the fastest way to build the Neo4j database was to use the

neo4j-import tool. As a pre-processing step this required loading all of the breadth-

first-search Bolshoi data files and extracting out unique lists of haloes and their asso-

ciated relationships. These lists were then used to build the final graph representation

of the database that was subsequently indexed on the redshift nodes. The properties

of the final database are given in Table B.1. The size of the final database was 130GB

compared to the ⇠1TB of original Bolshoi simulation data files; however, it should be

noted that other than the halo ids and redshifts the only additional attributes from the

original data that were stored were the M200b and M200c values (these correspond to

the mass enclosed within the over-density 200 ⇥ ⇢b and 200 ⇥ ⇢crit respectively; see

Klypin et al. (2011) for more details). A desktop computer was used throughout but it

required additional memory when constructing the graph database.

From storing the simulation data in this manner makes it then very easy and e�cient

to query the database to get the information required to estimate the infall redshift

distribution, P (zinfkMhalo). This is because the merger trees are natural trees structures

which is extremely e�cient to traversing using Neo4j (see Robinson et al. (2015) for
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comparisons between Neo4j with SQL when traversing data). In more detail, I search

for all sub-haloes that exist at redshift 0.5 and then trace their “heritage” back in time

until they are an independent halo. Neo4j databases are queried with the CYPHER

query language that is designed to be intuitive as related to graph structures (Robinson

et al., 2015). The exact query used to generate the data to estimate P (zinfkMhalo) as

shown in Figure 4.4 of Section 4.2.1 is:

MATCH (r:redshift {z:0.5}) <-[:AT_REDSHIFT]-(h1:Halos)-\\

[:IS_SUB_OF]->(h2:Halos)

WITH h1 as myhalo

MATCH p=myhalo -[:IS_PARENT_OF*]->(h3:Halos)

WHERE NOT (h3)-[:SUB_OF]->() AND (h3)<-[:IS_PARENT_OF]-()-[:SUB_OF]->()

MATCH (h3)-[:AT_REDSHIFT]->(zinf:scale)

RETURN myhalo,h3,zinf

Additionally, this query can be run for fine bins of host halo mass. Figure B.1 shows

how the mean zinf depends on the host halo mass and the mass of the sub-halo at infall.

I find that there is only a weak trend with host halo mass. This shows that it is safe

to draw a random zinf from the total distribution rather than needing to fit a specific

zinf(Mhost,Minf) function.

Figure B.1: The mean zinf for di↵erent host halo masses and sub-halo mass at infall.
I fond that there is only a weak trend with host halo mass.





Appendix C

Test the Guo et al. (2014) and

Tinker et al. (2016) dP/d log Mhalo

distributions

In this Appendix Chapter, I compare the central and satellite dP/d logMhalo distribu-

tions from Guo et al. (2011) and Tinker et al. (2016) for use in Chapter 4. Initially, I

had planned on using the halo occupations distribution (HOD) results from Guo et al.

(2014) in Chapter 4. However, when using that data, the fitting routine would always

fit a very steep slope with zero intrinsic scatter. Additionally, when using the same pa-

rameters as the centrals, the dP/d logMhalo distribution would have roughly the correct

normalisation but be systematically o↵set towards lower host halo masses.

To evaluate if there is an issue with the satellite HOD results of Guo et al. (2014), I

compared them to the AB+HOD results of Tinker et al. (2016). They use di↵erent

methods to measure mass which creates a 0.28dex systematic o↵set between the two.

After correcting for this, I find that their dP/d logMhalo distributions are in close agree-

ment (shown in the top panel of Figure C.1). Conversely, I find that there is an o↵set

in their respective satellite distributions (as seen in the bottom panel).

To test which satellite is correct, I devised a self consistency check. Guo et al. (2014)

additionally have HOD results at z = 0.7 which is coincidently the mean redshift of

infall for satellites at z = 0.5. Furthermore, the two-halo term in the HOD model gives

the average number of central galaxies within the sample that have a halo mass Mhalo.

Flipping this logic, since a halo always contains one central, it is the probability that halo

of mass Mhalo contains a central galaxy that is in the sample. The z = 0.5 and z = 0.7

probability distributions are are shown in Figure C.2 in blue and orange respectively.
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Figure C.1: A comparison between the central (top) and satellite (bottom)
dP/d logMhalo distributions from Tinker et al. (2016, Blue) and Guo et al. (2014, red).

For each sub-halo, I draw a random number, R for a uniform distribution in the range

0  R  1. If R is less than the P (LRG|Mhalo) the sub-halo contains a massive galaxy

that is included in the sample.A comparison the satellite dP/d logMhalo distributions

with this self consistency check is shown in Figure C.3. It is clear that Tinker et al.

(2016) is self-consistent whereas Guo et al. (2014) is not. Therefore, In Chapter 4, I

utilise the central distributions from both Tinker et al. (2016) and Guo et al. (2014) but
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Figure C.2: The probability that a halo with a given mass contains a central galaxy
with a mass logMstar> 11.5[M�] at z = 0.5 (blue) and z = 0.7 (orange) from Guo et al.

(2014).

I only utilise the satellite distribution from Tinker et al. (2016).

Figure C.3: A comparison between the satellite dP/d logMhalodistributions from Tin-
ker et al. (2016, Blue) and Guo et al. (2014, red) with the self consistency test described

in this Appendix.
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Hopkins P. F., Kereš D., Oñorbe J., Faucher-Giguère C.-A., Quataert E., Murray N.,

Bullock J. S., 2014, MNRAS, 445, 581

Hu W., Kravtsov A. V., 2003, ApJ, 584, 702

Hubble E., 1929, Proceedings of the National Academy of Science, 15, 168

Hubble E. P., 1936, Realm of the Nebulae

Hubble E., Humason M. L., 1931, ApJ, 74, 43

http://dx.doi.org/10.1111/j.1745-3933.2006.00160.x
http://adsabs.harvard.edu/abs/2006MNRAS.368L..72G
http://dx.doi.org/10.1088/0067-0049/197/2/35
http://adsabs.harvard.edu/abs/2011ApJS..197...35G
http://dx.doi.org/10.1046/j.1365-8711.1998.01998.x
http://adsabs.harvard.edu/abs/1998MNRAS.301...81G
http://dx.doi.org/10.3847/0004-637X/833/1/2
http://adsabs.harvard.edu/abs/2016ApJ...833....2G
http://dx.doi.org/10.1111/j.1365-2966.2010.18114.x
http://adsabs.harvard.edu/abs/2011MNRAS.413..101G
http://dx.doi.org/10.1093/mnras/stu763
http://adsabs.harvard.edu/abs/2014MNRAS.441.2398G
http://dx.doi.org/10.1111/j.1365-2966.2011.18820.x
http://adsabs.harvard.edu/abs/2011MNRAS.415.2101H
http://dx.doi.org/10.1051/0004-6361/200912115
http://adsabs.harvard.edu/abs/2009A%26A...507.1313H
http://dx.doi.org/10.1109/MCSE.2014.49
http://dx.doi.org/10.1086/168845
http://adsabs.harvard.edu/abs/1990ApJ...356..359H
http://dx.doi.org/10.21105/joss.00045
http://dx.doi.org/10.1111/j.1365-2966.2011.19961.x
http://adsabs.harvard.edu/abs/2012MNRAS.419.3200H
http://adsabs.harvard.edu/abs/2012MNRAS.419.3200H
http://dx.doi.org/10.1093/mnras/stt1770
http://adsabs.harvard.edu/abs/2013MNRAS.436.2929H
http://dx.doi.org/10.1086/496913
http://adsabs.harvard.edu/abs/2005ApJ...635...73H
http://dx.doi.org/10.1086/341392
http://adsabs.harvard.edu/abs/2002AJ....124..646H
http://dx.doi.org/10.1086/524362
http://adsabs.harvard.edu/abs/2008ApJS..175..356H
http://dx.doi.org/10.1088/0004-637X/691/2/1424
http://adsabs.harvard.edu/abs/2009ApJ...691.1424H
http://dx.doi.org/10.1111/j.1365-2966.2009.15699.x
http://adsabs.harvard.edu/abs/2010MNRAS.401.1099H
http://dx.doi.org/10.1093/mnras/stu1738
http://adsabs.harvard.edu/abs/2014MNRAS.445..581H
http://dx.doi.org/10.1086/345846
http://adsabs.harvard.edu/abs/2003ApJ...584..702H
http://dx.doi.org/10.1073/pnas.15.3.168
http://adsabs.harvard.edu/abs/1929PNAS...15..168H
http://dx.doi.org/10.1086/143323
http://adsabs.harvard.edu/abs/1931ApJ....74...43H


Bibliography 155

Huertas-Company M., et al., 2013, MNRAS, 428, 1715

Huertas-Company M., et al., 2015, ApJ, 809, 95

Ilbert O., et al., 2013, A&A, 556, A55

Israel F. P., 1997, A&A, 328, 471

Jauzac M., et al., 2015, MNRAS, 452, 1437

Jedamzik K., 1995, ApJ, 448, 1

Jiang F., van den Bosch F. C., 2014, MNRAS, 440, 193

Jorgensen I., Franx M., Kjaergaard P., 1996, MNRAS, 280, 167

Kapteyn J. C., 1922, ApJ, 55, 302

Kartaltepe J. S., et al., 2015, ApJS, 221, 11

Katz N., 1992, ApJ, 391, 502

Katz N., Gunn J. E., 1991, ApJ, 377, 365

Kau↵mann G., White S. D. M., Heckman T. M., Ménard B., Brinchmann J., Charlot

S., Tremonti C., Brinkmann J., 2004, MNRAS, 353, 713

Keating S. K., Abraham R. G., Schiavon R., Graves G., Damjanov I., Yan R., Newman

J., Simard L., 2015, ApJ, 798, 26

Kennicutt Jr. R. C., 1983, ApJ, 272, 54

Kennicutt Jr. R. C., 1998, ApJ, 498, 541

Khochfar S., Burkert A., 2005, MNRAS, 359, 1379

Klimentowski J.,  Lokas E. L., Kazantzidis S., Mayer L., Mamon G. A., 2009, MNRAS,

397, 2015

Klypin A., Holtzman J., 1997, ArXiv Astrophysics e-prints,
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