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Abstract. If K is a simplicial complex on m vertices the flagification of K is the minimal flag

complex Kf on the same vertex set that contains K. Letting L be the set of vertices, there

is a sequence of simplicial inclusions L −→ K −→ Kf . This induces a sequence of maps of

polyhedral products (X,A)L
g−→ (X,A)K

f−→ (X,A)K
f

. We show that Ωf and Ωf ◦ Ωg have

right homotopy inverses and draw consequences. For a flag complex K the polyhedral product of

the form (CY , Y )K is a co-H-space if and only if the 1-skeleton of K is a chordal graph, and we

deduce that the maps f and f ◦ g have right homotopy inverses in this case.

1. Introduction

The purpose of this paper is to investigate the homotopy theory of polyhedral products as-

sociated with flag complexes. Polyhedral products have received considerable attention recently

as they unify diverse constructions from several seemingly separate areas of mathematics: toric

topology (moment-angle complexes), combinatorics (complements of complex coordinate subspace

arrangements), commutative algebra (the Golod property of monomial rings), complex geometry

(intersections of quadrics), and geometric group theory (Bestvina-Brady groups).

To be precise, let K be a simplicial complex on the vertex set [m] = {1, 2, . . . ,m}. For 1 ≤ i ≤ m,

let (Xi, Ai) be a pair of pointed CW -complexes, where Ai is a pointed CW -subcomplex of Xi.

Let (X,A) = {(Xi, Ai)}mi=1 be the sequence of pairs. For each simplex σ ∈ K, let (X,A)σ be the

subspace of
∏m
i=1Xi defined by

(X,A)σ =

m∏
i=1

Yi where Yi =

 Xi if i ∈ σ

Ai if i /∈ σ.

The polyhedral product determined by (X,A) and K is

(X,A)K =
⋃
σ∈K

(X,A)σ ⊆
m∏
i=1

Xi.

For example, suppose each Ai is a point. If K is a disjoint union of m points then (X, ∗)K is

the wedge X1 ∨ · · · ∨ Xm, and if K is the standard (m − 1)-simplex then (X, ∗)K is the product

X1 × · · · ×Xm.

The combinatorics of K informs greatly on the homotopy theory of (X,A)K . One notable family

of simplicial complexes is the collection of flag complexes. A simplicial complex K is flag if any set of
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vertices of K which are pairwise connected by edges spans a simplex. Flag complexes are important

in graph theory, where they are referred to as clique complexes, in the study of metric spaces, where

they are referred to as Rips complexes, and in geometric group theory, where they are referred to as

Gromov’s no-4 complexes.

The flagification of K, denoted Kf , is the minimal flag complex on the same set [m] that con-

tains K. We therefore have a simplicial inclusion K → Kf . For example, the (m−1)-simplex ∆m−1,

consisting of all subsets of [m], is flag, while its boundary ∂∆m−1, consisting of all proper subsets

of [m], is flag only for m = 2. The flagification of ∂∆m−1 with m > 2 is ∆m−1. An m-cycle (the

boundary of an m-gon) is flag whenever m > 3.

The main result of the paper is the following.

Theorem 1.1. Let K be a simplicial complex on the vertex set [m], let Kf be the flagification

of K, and let L be the simplicial complex given by m disjoint points. Let (X,A) = {(Xi, Ai)}mi=1

be a sequence of pairs of pointed CW -complexes, where Ai is a pointed CW -subcomplex of Xi. Let

(X,A)L
g−→ (X,A)K

f−→ (X,A)K
f

be the maps of polyhedral products induced by the maps of

simplicial complexes L −→ K −→ Kf . Then the following hold:

(a) the map Ωf has a right homotopy inverse;

(b) the composite Ωf ◦ Ωg has a right homotopy inverse.

In particular, consider the special case when each Ai is a point. Write (X, ∗) for (X,A) and

notice that (X, ∗)L = X1 ∨ · · · ∨Xm. If K is a flag complex on the vertex set [m] then the simplicial

map L −→ K induces a map f : X1 ∨ · · · ∨Xm = (X, ∗)L −→ (X, ∗)K . By Theorem 1.1, Ωf has a

right homotopy inverse. That is, Ω(X, ∗)K is a retract of Ω(X1 ∨ · · · ∨Xm). This informs greatly

on the homotopy theory of Ω(X, ∗)K since the homotopy type of Ω(X1 ∨ · · · ∨ Xm) has been well

studied; in particular, in the special case when each Xi is a suspension the Hilton-Milnor Theorem

gives an explicit homotopy decomposition of the loops on the wedge. Theorem 1.1 also greatly

generalizes [GPTW, Theorem 5.3], which stated that such a retraction exists in the special case

when each Xi = CP∞ provided spaces and maps have been localized at a prime p 6= 2.

Theorem 1.1 can be improved in certain cases. In Section 6 we consider polyhedral products of

the form (CY , Y )K , where CY is the cone on Y , and identify the class of flag complexes K for

which (CY , Y )K is a co-H-space. As a corollary, we obtain conditions that allow for a delooping of

the statement of Theorem 1.1. In Section 7 we relate Theorem 1.1 to Whitehead products. First,

we consider polyhedral products of the form (X, ∗)K with flag K whose 1-skeleton is a chordal

graph, and obtain a generalisation of Porter’s description of the homotopy fiber of the inclusion of

an m-fold wedge into a product in terms of Whitehead brackets. Second, we consider the loop space

Ω(S, ∗)K on a polyhedral product formed from spheres for an arbitrary flag complex K, and obtain

a generalisation of the Hilton–Milnor Theorem.

The research of the first author was carried out at the Institute for Information Transmission

Problems of Russian Academy of Sciences and was supported by the Russian Science Foundation
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(grant no. 14-50-00150). The second author would like to thank the Royal Society for the award

of an International Exchanges Grant which helped make this research possible. The authors would

also like to thank the referee for making several helpful comments.

2. Combinatorial preparation

This section records the combinatorial information that will be needed. We begin with some

definitions. Let K be an abstract simplicial complex on the set [m] = {1, 2, . . . ,m}, i. e. K is a

collection of subsets σ ⊆ [m] such that for any σ ∈ K all subsets of σ also belong to K. We refer

to σ ∈ K as a simplex (or a face) of K and denote by |σ| the number of elements in σ. We always

assume that the empty set ∅ belongs to K. We do not assume that K contains all one-element

subsets {i} ⊆ [m]. We refer to {i} ∈ K as a vertex of K, and refer to {i} /∈ K as a ghost vertex. We

say that K is a simplicial complex on the vertex set [m] when there are no ghost vertices.

Let K be a simplicial complex on the set [m]. For a vertex v ∈ K, the star, restriction (or

deletion) and link of v are the subcomplexes

starK(v) = {τ ∈ K | {v} ∪ τ ∈ K};

K \ v = {τ ∈ K | {v} ∩ τ = ∅};

linkK(v) = starK(v) ∩K\v.

Throughout the paper we follow the convention of regarding starK(v) as a simplicial complex on

the same set [m] as K, while regarding K \ v and linkK v as simplicial complexes on the set [m] \ v.

This implies that starK(v) and linkK v may have ghost vertices even if K does not.

The join of two simplicial complexes K1,K2 on disjoint sets is the simplicial complex

K1 ∗K2 = {σ1 ∪ σ2 | σi ∈ Ki}.

From the definitions, it follows that starK(v) is a join,

starK(v) = {v} ∗ linkK(v),

and there is a pushout

(1)

linkK(v) //

��

starK(v)

��
K\v // K.

A non-face of K is a subset ω ⊆ [m] such that ω /∈ K. A missing face (a minimal non-face) of K

is an inclusion-minimal non-face of K, that is, a subset ω ⊆ [m] such that ω is not a simplex of K,

but every proper subset of ω is a simplex of K. A ghost vertex is therefore a missing face consisting

of one element. Denote the set of missing faces of K by MF(K). For a subset ω ⊆ [m], let ∂ω denote

the collection of proper subsets of ω. Observe that ω ∈ MF(K) if and only if ω /∈ K but ∂ω ⊆ K.

A simplicial complex K on the set [m] is called a flag complex if each of its missing faces consists

of at most two elements. Equivalently, K is flag if any set of vertices of K which are pairwise
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connected by edges spans a simplex. Every flag complex K is determined by its 1-skeleton K1, and

is obtained from the graph K1 by filling in all cliques (complete subgraphs) by simplices.

Lemma 2.1. Let K be a flag complex on the set [m] and let v be a vertex of K. If ω ∈ MF(linkK(v))

and |ω| ≥ 2, then ω ∈ MF(K\{v}).

Proof. Suppose not. Then there is a missing face ω of linkK(v) with ω ∈ K\{v} and |ω| ≥ 2.

Therefore, ∂ω ⊆ linkK(v) but ω /∈ linkK(v). Since ω ∈ K\{v}, we also have ω ∈ K. On the other

hand, as starK(v) = linkK(v) ∗ {v}, we have ∂ω ∗ {v} ⊆ starK(v), and so ∂ω ∗ {v} ⊆ K. Therefore

∂ω ∗ {v} ∪ ω ⊆ K.

Observe that ∂ω ∗ {v}∪ω = ∂τ where τ = ω ∗ {v}. Thus ∂τ ⊆ K. As K is flag and |ω ∗ {v}| > 2,

this implies that τ = ω ∗ {v} ∈ K. Hence, ω ∈ linkK v, a contradiction. �

Lemma 2.2. Let K be a flag complex on the set [m] and let v be a vertex of K. Then K\{v},

starK(v) and linkK(v) are all flag complexes.

Proof. Since K\{v} is a full subcomplex of K, any missing face of K\{v} is also a missing face of K.

So as K is flag, any missing face has at most two elements, implying that any missing face of K\{v}

also has at most two elements. Thus K\{v} is flag.

Let ω ∈ MF(starK(v)) and |ω| ≥ 2. We claim that ω ∈ MF(K) as well. As ∂ω ⊆ starK(v), we

also have ∂ω ⊆ K, so if the claim does not hold then it must be the case that ω ∈ K. Then v /∈ ω, as

otherwise ω ∈ starK(v). For τ = ω ∗ v we have ∂τ = ∂ω ∗ v ∪ω ∈ K. As K is flag and |ω ∗ {v}| > 2,

we obtain τ = ω ∗ {v} ∈ K. This implies that ω ∈ starK(v), a contradiction. Hence, ω ∈ MF(K)

and so |ω| = 2 since K is flag. Thus starK(v) is flag.

Let ω ∈ MF(linkK(v)) and |ω| ≥ 2. By Lemma 2.1, ω ∈ MF(K\{v}) as well. It has already been

established that K\{v} is flag, so we have |ω| = 2. Thus linkK(v) is also flag. �

Given a subset ω ⊆ [m], the full subcomplex of K on ω is

Kω = {σ ∈ K | σ ⊆ ω}.

Note that K \ {v} = K[m]\{v}. A key property that will be important subsequently is the following.

Lemma 2.3. Let K be a flag complex on the set [m] and let v be a vertex of K. Then linkK(v) is

a full subcomplex of K\{v}.

Proof. Let ω be the vertex set of linkK(v). Suppose that linkK(v) is not a full subcomplex of K\{v}.

Then there is a face σ ∈ K\{v} such that σ ⊆ ω and σ /∈ linkK(v). By selecting a proper face of σ

if necessary, we may assume that σ is a missing face of linkK(v) with |σ| ≥ 2. But then as K

is flag, Lemma 2.1 implies that σ is also a missing face of K\{v}. In particular, σ /∈ K\{v}, a

contradiction. �
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3. Homotopy theoretic preparation

3.1. The Cube Lemma. Assume that all spaces are pointed and have nondegenerate basepoints,

implying that the inclusion of the basepoint is a cofibration. This holds, for example, for pointed

CW -complexes, and hence for polyhedral products. One part of Mather’s Cube Lemma [Ma] states

that if there is a diagram of spaces and maps

E //

  

��

F

  
G //

��

��

H

��

A

  

// B

  
C // D

where the bottom face is a homotopy pushout and the four sides are obtained by pulling back with

H −→ D, then the top face is also a homotopy pushout. In what follows this will be used to identify

the homotopy type of the pushout H in a certain context. However, we need this identification to

have a naturality property, which is not immediate from the statement of the Cube Lemma. To

obtain this, we prove a special case of the Cube Lemma from first principles.

In what follows, we work with strictly commutative pushouts and pullbacks rather than homotopy

commutative ones. For a space Y let 1Y be the identity map on Y . Suppose that there is a strictly

commutative diagram

(2)

B ×A
1B×i //

j×1A

��

B ×X

��
j×1X

��

C ×A //

1C×i **

D
f

%%
C ×X

where the square is a pushout, and the maps i, j and f are pointed inclusions of subspaces. We

will turn the maps f , 1C × i, j × 1X and j × i from the four corners of the pushout to C ×X into

fibrations, up to homotopy, and examine their fibres.

There is a standard way of turning a pointed, continuous map g : Y −→ Z between locally com-

pact, Hausdorff spaces into a fibration, up to homotopy. Let I be the unit interval and let Map(I, Z)

be the space of continuous (not necessarily pointed) maps from I to Z. Let d : Map(I, Z) −→ Z×Z

be defined by evaluating a map ω : I −→ Z at the two endpoints, explicitly, d(ω) = (ω(0), ω(1)).

Define the space P̃g by the pullback

P̃g //

��

Map(I, Z)

ev0

��
Y

g
// Z
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where ev0(ω) = ω(0). As a set,

(3) P̃g = {(y, ω) ∈ Y ×Map(I, Z) | ω(0) = g(y)}.

Then, as in [Se, p. 59] for example, there is an inclusion Y −→ P̃g which is a homotopy equivalence

and the composite

q : P̃g −→ Map(I, Z)
ev1−→ Z

is a fibration, where ev1(ω) = ω(1). Moreover, if 1 is the basepoint of I and PZ is the path space

of Z (with paths at time 1 ending at the basepoint of Z), then the fibre of q is homeomorphic to

the mapping path space of g,

(4) Pg = {(y, ω) ∈ Y × PZ | ω(0) = g(y)},

which is obtained by the pullback

Pg //

��

PZ

ev0

��
Y

g
// Z.

Consider how these constructions behave with respect to pointed subspace inclusions. Let S
s−→ Y

be the inclusion of a pointed subspace. If Q is the pullback of S
s−→ Y and P̃g −→ Y , then the

pullback defining P̃g implies that Q is also the pullback of g ◦ s and ev0. But this pullback is the

definition of P̃g◦s, so Q = P̃g◦s. Similarly for Pg◦s, giving pullbacks

P̃g◦s //

��

P̃g

��

Pg◦s //

��

Pg

��
S

s // Y S
s // Y.

Since Pg and Pg◦s are the respective fibres of P̃g and P̃g◦s over Z, we obtain a pullback

(5)

Pg◦s //

��

Pg

��

P̃g◦s // P̃g.

Next, suppose that Y is the union of pointed, closed subspaces S and T . Let s : S −→ Y and

t : T −→ Y be the pointed subspace inclusions, and let u and v be the pointed subspace inclusions

u : S ∩ T −→ S and v : S ∩ T −→ T . Since S and T are closed subspaces of Y , the pushout of u

and v is Y . (More generally this is true if (Y ;S, T ) is an excisive triad, but we do not need this level

of generality - in our case each of S, T and Y will be certain polyhedral products.)
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Lemma 3.1. Suppose that Y
g−→ Z is a pointed subspace inclusion and that Y = S ∪ T where S

and T are closed, pointed subspaces of Y Then there are pushouts

P̃g◦s◦u //

��

P̃g◦t

��

Pg◦s◦u //

��

Pg◦t

��
P̃g◦s // P̃g Pg◦s // Pg.

Proof. By its definition, P̃g is the space of paths on Z that begin in Im(g) and end in Z. As g is a

subspace inclusion, we may regard P̃g as the space of paths on Z that begin in Y and end in Z. As

Y = S ∪ T , any such path either begins in S or in T - that is - the path is either in P̃g◦s or P̃g◦t.

Moreover, the intersection P̃g◦s ∩ P̃g◦t is all paths on Z that begin in S ∩ T and end in Z - that is

- the paths in P̃g◦s◦u = P̃g◦t◦v. Thus P̃g = P̃g◦s ∪ P̃g◦t and P̃g◦s◦u = P̃g◦s ∩ P̃g◦t. Further, since S

and T are closed subspaces of Y , we have P̃g◦s and P̃g◦t closed subspaces of P̃g. Therefore there is

a pushout

(6)

P̃g◦s◦u //

��

P̃g◦t

��

P̃g◦s // P̃g.

The same argument shows that Pg is the pushout of Pg◦s and Pg◦t over Pg◦s◦u = Pg◦t◦v. �

Now apply this construction to the maps f , 1C × i, j × 1X and j × i from the four corners of the

pushout in (2) to C ×X.

Lemma 3.2. There is a commutative cube

Pj×i //

$$

��

Pj×1X

##
P1C×i

//

��

��

Pf

��

P̃j×i

##

// P̃j×1X

""
P̃1C×i

// P̃f

where the top and bottom faces are pushouts and the four sides are pullbacks. Further, this cube is

natural for maps of diagrams of the form (2).

Proof. Since f , 1C × i, j × 1X and j × i are all subspace inclusons, the four sides of the cube are

pullbacks by (5). Since D is a pushout, it is the union of C ×A and B×X with intersection B×A.

The top and bottom faces of the cube are therefore pushouts by (6). The naturality statement holds

since the constructions of P̃g and Pg are natural. �

The top face of the cube in Lemma 3.2 will be more precisely identified. This requires two lemmas.
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Lemma 3.3. A map g× h : Y ×M −→ Z ×N has Pg×h = Pg ×Ph. Further, this decomposition is

natural for compositions s× t : Z ×N −→ Z ′ ×N ′.

Proof. First observe that P (Z×N) = PZ×PN since any pointed path ω : I −→ Z×N is equivalent

to the product of the pointed paths ω1 : I −→ Z and ω2 : I −→ N given by projecting ω to Z and N

respectively. Moreover, the evaluation map P (Z ×N)
ev0−→ Z ×N becomes a product of evaluation

maps PZ × PN ev0×ev0−−−−→ Z ×N . Thus the pullback Pg×h is identical to the pullback

Q //

��

PZ × PN

ev0×ev0
����

Y ×M
s×t // Z ×N,

where

Q = {((y,m), (ω1, ω2) ∈ Y ×M × PZ × PN | s(y) = ω1(0), t(m) = ω2(0)}

= {(y, ω1) ∈ Y × PZ | s(y) = ω1(0)} × {(m,ω2) ∈M × PN | t(m) = ω2(0)}

= Ps × Pt.

The identification of Ps×t as Ps×Pt only used the fact that P (Z×N) = PZ×PN . As the latter

decomposition is natural, therefore so is the former. �

Lemma 3.4. There is a natural homeomorphism P1Y
∼= PY .

Proof. Taking g = 1Y in (4) gives

P1Y
= {(y, ω) ∈ Y × PY | ω(0) = y}.

Define φ : PY −→ P1Y
by φ(ω) = (ω(0), ω) and ψ : P1Y

−→ PY by ψ(y, ω) = ω. Both φ and ψ are

continuous, ψ ◦ φ = idPY and, because for any pair (y, ω) ∈ P1Y
there is the condition y = ω(0),

we also have φ ◦ ψ = 1P1Y
. Hence ψ is a homeomorphism. As both φ and ψ are natural, the

homeomorphism is too. �

Applying Lemmas 3.3 and 3.4 to the top face in Lemma 3.2, the space Pf is homeomorphic to

the space Qf defined by the pushout

(7)

Pj × Pi //

��

Pj × PX

��
PC × Pi // Qf .

Moreover, the naturality statements in Lemmas 3.2 through 3.4 imply that (7) is natural for maps

of diagrams of the form (2).

One further modification of (7) is needed. If Y is a pointed space the reduced cone on Y is the space

CY = Y ∧ I (i.e., CY = (Y × I)/(Y ∨ I)). If Y and Z are pointed spaces with basepoints y0 and z0

respectively, then the reduced join is defined by Y ∗Z = (Y × I ×Z)/ ∼, where (y, 0, z) = (y, 0, z′),
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(y, 1, z) ∼ (y′, 1, z) and (y0, t, z0) = (y0, 0, z0) for all y, y′ ∈ Y , z, z′ ∈ Z and t ∈ I. Observe that

there is a pushout

Y × Z //

��

Y × CZ

��
CY × Z // Y ∗ Z.

Proposition 3.5. Up to homotopy equivalences, the top face in Lemma 3.2 can be identified with

the pushout

Pj × Pi //

��

Pj × CPi

��
CPj × Pi // Pj ∗ Pi.

In particular, Pf is homotopy equivalent to Pj ∗ Pi. Further, this homotopy equivalence may be

chosen to be natural for maps of diagrams of the form (2).

Proof. In general, suppose that Z is contractible. Then there is a pointed homotopy Z × I −→ Z

which at t = 0 is the identity map on Z and at t = 1 is the constant map to the basepoint. The

homotopy sends Z ∨ I to the basepoint, and so factors through a map CZ = Z ∧ I −→ Z. That is,

the contracting homotopy for Z determines a specific map CZ −→ Z. If the contracting homotopy

is natural for maps Z −→ Z ′, then the map CZ −→ Z is also natural. In fact, it is a natural

homotopy equivalence. Refining, if g : Y −→ Z is a pointed map with Z being contractible, then we

obtain a composite CY
Cg−→ CZ −→ Z with the same naturality properties.

In our case, consider (7). Since PC and PX are contractible, we obtain composites Pj −→

CPj −→ PC and Pi −→ CPi −→ PX in which the right hand maps are homotopy equivalences.

Thus the pushout Qf in (7) is homotopy equivalent to the space Pj ∗ Pi obtained from the pushout

Pj × Pi //

��

Pj × CPi

��
CPj × Pi // Pj ∗ Pi.

Since Pf is homeomorphic to Qf , we obtain Pf ' Pj ∗ Pi. Further, since the contracting homotopy

for a path space PZ can be chosen to be natural for any map Z −→ Z ′, this homotopy equivalence

for Pf is natural to the same extent as (7) is natural. That is, it is natural for maps of diagrams of

the form (2). �

3.2. Two general results on fibrations. Now assume that all spaces have the homotopy type of

pointed CW -complexes. If X is such a space then by [Mi, Corollary 3] so is ΩX. Also, any weak

homotopy equivalence between two such spaces is a homotopy equivalence (see, for example, [Sp,

Ch. 7, §6, Corollary 24].

Lemma 3.6. Suppose that ΩB
∂−→ F

f−→ E
p−→ B is a homotopy fibration sequence and p has a

left homotopy inverse. Then ∂ has a right homotopy inverse.
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Proof. Let s : B −→ E be a map such that s ◦ p is homotopic to the identity map on E. Then f '

s◦p◦f , implying that f is null homotopic since p◦f is. If X is any pointed space then the homotopy

fibration ΩB
∂−→ F

f−→ E induces an exact sequence of pointed sets [X,ΩB]
∂∗−→ [X,F ]

f∗−→ [X,B]

where [X,Y ] is the set of pointed homotopy classes of maps from X to Y . Since f is null homotopic,

f∗ = 0, so ∂∗ is onto. Taking X = F implies that the (homotopy class of the) identity map on F

lifts through ∂∗ to a map t : F −→ ΩB. That is, ∂ ◦ t is homotopic to the identity map on F . �

In general, if F
f−→ E

p−→ B is a homotopy fibration where E is an H-space and p has a right

homotopy inverse s : B −→ E, then the composite

B × F s×f−→ E × E µ−→ E

is a weak homotopy equivalence, and hence a homotopy equivalence. We wish to give a slight

variation on this in the case when B = B1 ×B2 and each factor has a right homotopy inverse. For

i = 1, 2 let pi be the composite pi : E
p−→ B1 ×B2

πi−→ Bi where πi is the projection. As maps into

a product are determined by their projection onto each factor, we have p = (p1, p2).

Lemma 3.7. Let F
f−→ E

p−→ B1×B2 be a homotopy fibration where p is an H-map. Suppose that

for i = 1, 2 there are maps si : Bi −→ E such that pi ◦ si is homotopic to the identity map on Bi,

and pi ◦ sj is null homotopic for i 6= j. Then the composite

B1 ×B2 × F
s1×s2×f−−−−→ E × E × E µ◦(µ×1)−−−−→ E

is a homotopy equivalence, where µ is the multiplication on E.

Proof. From the general result stated before the lemma, it suffices to show that s1 × s2 is a right

homotopy inverse for p. Consider the diagram

B1 ×B2

s1×s2 //

i1×i2
((

E × E
µ

//

p×p
��

E

p

��
(B1 ×B2)× (B1 ×B2)

µ′
// B1 ×B2

where i1 and i2 are the inclusions into the first and second factors respectively and µ′ is the multi-

plication on B1×B2. The left triangle homotopy commutes since pi ◦si is homotopic to the identity

map on Bi and pi ◦ sj ' ∗ if i 6= j. The right square homotopy commutes since p is an H-map.

Observe that the lower direction around the diagram is homotopic to the identity map on B1 ×B2.

Therefore the upper direction around the diagram implies that µ ◦ (s1 × s2) is a right homotopy

inverse for p. �

4. Polyhedral products and the proof of Theorem 1.1

Let K be a simplicial complex on the set [m] and let v be a vertex of K. Following Félix and

Tanré [FT], define a new simplicial complex K on [m] by

K = K\{v} ∗ {v}.
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Observe that there is an inclusion of simplicial complexes K\{v} −→ K given by including the join

factor, so as starK(v) = linkK(v) ∗ {v}, there is a pushout map

K −→ K.

Observe also that K\{v} is the full subcomplex of K. That is, K\{v} = K\{v}.

By [GT2], the pushout of simplicial complexes in (1) induces a pushout of polyhedral products

(8)

(X,A)linkK(v) ×Av
1×iv //

j×1

��

(X,A)linkK(v) ×Xv

��
(X,A)K\{v} ×Av // (X,A)K

where iv is the inclusion. (Here we regard linkK(v) and K \ {v} as simplicial complexes on the

set [m] \ {v}.) To relate this to (X,A)K , observe that the definition of the join of two simplicial

complexes implies that if K = K1 ∗K2 then there is a homeomorphism

(X,A)K ∼= (X,A)K1 × (X,A)K2 .

In particular, as K = K\{v} ∗ {v} there is a homeomorphism

(X,A)K ∼= (X,A)K\{v} ×Xv

and a strictly commutative diagram

(9)

(X,A)linkK(v) ×Av
1×iv //

j×1

��

(X,A)linkK(v) ×Xv

��
j×1

##

(X,A)K\{v} ×Av //

1×iv ,,

(X,A)K

f

))
(X,A)K\{v} ×Xv

where f is the map induced by the simplicial map K −→ K and all maps are inclusions of subspaces.

Let BKv be the fibre Pj obtained by turning the map (X,A)linkK(v) j−→ (X,A)K\{v} into a

fibration and let Yv be the fibre Piv obtained by turning the inclusion Av
iv−→ Xv into a fibration.

Lemma 4.1. If FKv is the fibre Pf obtained by turning the map (X,A)K
f−→ (X,A)K\{v}×Xv into

a fibration, then there is a homotopy equivalence

FKv ' BKv ∗ Yv.

Further, this homotopy equivalence is natural for inclusions of simplicial complexes K −→ K ′ on

the set [m].

Proof. Proposition 3.5 immediately implies the asserted homotopy equivalence for FKv and states

that it is natural for maps of diagrams of the form (9). Now observe that any inclusion of simplicial

complexes K −→ K ′ on the vertex set [m] induces such a map of diagrams. �
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To take this further we need a general result about polyhedral products.

Lemma 4.2. Suppose that Kω is a full subcomplex of a simplicial complex K. Then the map of

polyhedral products (X,A)Kω −→ (X,A)K induced by the simplicial inclusion Kω −→ K has a left

inverse, that is, there is a retraction (X,A)K −→ (X,A)Kω . Further, the construction of the left

inverse is natural for simplicial inclusions K −→ K ′.

Proof. We have

(X,A)K =
⋃
σ∈K

(∏
i∈σ

Xi ×
∏

i∈[m]\σ

Ai

)
, (X,A)Kω =

⋃
σ∈K, σ⊆ω

(∏
i∈σ

Xi ×
∏
i∈ω\σ

Ai

)
.

Since each Ai is a pointed space, there is a canonical inclusion (X,A)Kω −→ (X,A)K . Furthermore,

for each σ ∈ K there is a projection

rσ :
∏
i∈σ

Xi ×
∏

i∈[m]\σ

Ai −→
∏

i∈σ∩ω
Xi ×

∏
i∈ω\σ

Ai.

Since Kω is a full subcomplex, the image of rσ belongs to (X,A)Kω . The projections rσ patch

together to give a retraction r =
⋃
σ∈K rσ : (X,A)K −→ (X,A)Kω . The naturality assertion follows

from the naturality of inclusions and projections. �

Proposition 4.3. Let K be a simplicial complex on the index set [m] and let v be a vertex of K.

Then there is a homotopy equivalence

Ω(X,A)K ' ΩXv × Ω(X,A)K\{v} × Ω(BKv ∗ Yv)

which is natural for inclusions of simplicial complexes K −→ K ′ on the set [m].

Proof. Consider the homotopy fibration

(10) FKv −→ (X,A)K
f−→ (X,A)K\{v} ×Xv

from Lemma 4.1. Observe that K\{v} and {v} are the full subcomplexes of K on the sets [m]−{v}

and {v} respectively. So by Lemma 4.2, the maps s1 : (X,A)K\{v} −→ (X,A)K and s2 : Xv −→

(X,A)K have left inverses (X,A)K
f1−→ (X,A)K\{v} and (X,A)K

f2−→ Xv = (X,A){v} respectively.

Since the vertex sets for K\{v} and {v} are disjoint, the left inverses have the property that f1 ◦ s2

and f2 ◦ s1 are trivial. Lemma 3.7 cannot be applied immediately since f is usually not an H-map,

but after looping the homotopy fibration (10) it can be applied, and this gives the asserted homotopy

equivalence.

The naturality property follows from the naturality properties of the simplicial map K −→

K\{v} ∗ {v}, the polyhedral product and Lemma 4.2, together with the fact that Ω(X,A)K −→

Ω(X,A)K
′

is an H-map. �

One more preliminary result is needed before the proof of Theorem 1.1. Let K be a simplicial

complex on the vertex set [m], let Kf be the flagification of K, and let L be the simplicial complex
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consisting of the vertices of K. Let M be either L or K. If v is a vertex of K then the simplicial

map M −→ Kf implies that there is commutative diagram of simplicial complexes

linkM (v) //

��

M\{v}

��
linkKf (v) // Kf\{v}.

Taking polyhedral products and then taking homotopy fibres gives a homotopy fibration diagram

(11)

Ω(X,A)M\{v} //

��

BMv //

bv
��

(X,A)linkM (v) //

��

(X,A)M\{v}

��

Ω(X,A)K
f\{v} // BK

f

v
// (X,A)link

Kf (v) // (X,A)K
f\{v}

for some induced map of fibres bv.

Lemma 4.4. Let M be either L or K. Suppose that in (11) the map Ω(X,A)M\{v} −→ Ω(X,A)K
f\{v}

has a right homotopy inverse. Then bv has a right homotopy inverse sv : BK
f

v −→ BMv . Moreover,

sv can be chosen so that it factors through the map Ω(X,A)M\{v} −→ BMv .

Proof. Consider the homotopy fibration along the bottom row of (11). SinceKf is flag, by Lemma 2.3,

linkKf (v) is a full subcomplex of Kf\{v}. Thus (X,A)link
Kf (v) is a retract of (X,A)K

f\{v}. There-

fore, by Lemma 3.6, the map Ω(X,A)K
f\{v} −→ BK

f

v has a right homotopy inverse t : BK
f

v −→

Ω(X,A)K
f\{v}. By hypothesis, the map Ω(X,A)M\{v} −→ Ω(X,A)K

f\{v} has a right homotopy

inverse s : Ω(X,A)K
f\{v} −→ Ω(X,A)M\{v}. Thus there is a homotopy commutative diagram

BK
f

v

t // Ω(X,A)K
f\{v} s // Ω(X,A)M\{v} //

��

BMv

bv
��

Ω(X,A)K
f\{v} // BK

f

v .

As the lower direction around the diagram is homotopic to the identity map on BK
f

v , the upper

direction around the diagram implies that bv has a right homotopy inverse. �

Proof of Theorem 1.1. Let K be a simplicial complex on the vertex set [m], let Kf be its flagification,

and let L be m disjoint points. Then there is a sequence of inclusions of simplicial complexes

L −→ K −→ Kf . Taking polyhedral products with respect to (X,A) gives a sequence of maps

h : (X,A)L
g−→ (X,A)K

f−→ (X,A)K
f

We will show that Ωh has a right homotopy inverse, implying

that the map Ωf : Ω(X,A)K −→ Ω(X,A)K
f

also has a right homotopy inverse. This would prove

both parts of the statement of the theorem.

The proof is by induction on the number of vertices. If m = 1, then L, K and Kf all equal

the single vertex {1}, implying that h is the identity map, and so Ωh has a right homotopy inverse.

Assume that the statement of the theorem holds for all simplicial complexes with strictly less than m
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vertices. The decomposition and naturality statements in Proposition 4.3 imply that there is a

homotopy commutative diagram of homotopy equivalences

(12)

(Ω(X,A)L\{v} × ΩXv)× Ω(BLv ∗ Yv)
' //

(Ωa×1)×Ω(bv∗1)
��

Ω(X,A)L

��

(Ω(X,A)K
f\{v} × ΩXv)× Ω(BK

f

v ∗ Yv)
' // Ω(X,A)K

f

.

Observe that Kf\{v} has m − 1 vertices and L\{v} −→ Kf\{v} is the inclusion of these vertices.

Since L and Kf are flag complexes, by Lemma 2.2 so are L\{v} and Kf\{v}. Therefore, by inductive

hypothesis, the map Ωa has a right homotopy inverse s : Ω(X,A)K
f\{v} −→ Ω(X,A)L\{v}. As L

and Kf are flag complexes and Ωa has a right homotopy inverse, by Lemma 4.4 the map bv also

has a right homotopy inverse t : BK
f

v −→ BLv . Therefore t′ = Ω(t ∗ 1) is a right homotopy inverse

for Ω(bv ∗ 1). Putting s and t′ together we obtain a map

Ω(X,A)K
f\{v} × ΩXv × Ω(BK

f

v ∗ Yv)
s×1×t′−−−−→ Ω(X,A)L\{v} × ΩXv × Ω(BLv ∗ Yv)

which is a right homotopy inverse of (Ωa×1)×Ω(bv∗1). The homotopy equivalences in (12) therefore

imply that the map h : Ω(X,A)L −→ Ω(X,A)K
f

has a right homotopy inverse. This completes the

induction. �

5. Refinements

This section gives two refinements describing the homotopy type of the space BKv under certain

conditions. First consider the homotopy fibration diagram (11) in the case when M = K. Define

the space DK
v and the map dv by the homotopy fibration

(13) DK
v

dv−→ BKv
bv−→ BK

f

v .

Lemma 5.1. Given the hypotheses of Lemma 4.4, there is a homotopy equivalence BKv ' BK
f

v ×DK
v .

Proof. By Lemma 4.4, bv has a right homotopy inverse BK
f

v
sv−→ BKv . As BKv need not be an

H-space this does not immediately imply that it is homotopy equivalent to BK
f

v ×DK
v . However,

Lemma 4.4 also says that sv can be chosen to factor through the homotopy fibration connecting map

Ω(X,A)K\{v} −→ BKv . That is, sv can be chosen to be a composite BK
f

v

s′v−→ Ω(X,A)K\{v} −→ BKv

for some map s′v. For any homotopy fibration sequence ΩB
δ−→ F −→ E −→ B the connecting

map δ satisfies a homotopy action θ : ΩB×F −→ F which restricts to the identity map on F and δ

on ΩB. In our case, we obtain a composite

ψ : BK
f

v ×DK
v

s′v×dv−−−−→ Ω(X,A)K\{v} ×BKv
θ−−−−→ BKv .

Observe that the restriction of ψ to BK
f

v is sv and the restriction to DK
v is dv. Thus ψ is a

trivialization of the homotopy fibration (13), implying that it is a homotopy equivalence. �
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Second, suppose that K is a flag complex. By Lemma 2.3, linkK(v) is a full subcomplex of K\{v}.

So by Lemma 4.2, the inclusion (X,A)linkK(v) −→ (X,A)K\{v} has a left inverse. Define CKv by the

homotopy fibration

(14) CKv −→ (X,A)K\{v} −→ (X,A)linkK(v).

From the retraction of (X,A)linkK(v) off (X,A)K\{v} and the definitions of BKv and CKv we obtain

a homotopy pullback diagram

BKv

��

BKv

��
∗ //

��

(X,A)linkK(v)

��

(X,A)linkK(v)

CKv // (X,A)K\{v} // (X,A)linkK(v).

Thus BKv ' ΩCKv .

Lemma 5.2. Let K be a flag complex on the vertex set [m] and let v be a vertex of K. Then there

are homotopy equivalences

Ω(X,A)K ' ΩXv × Ω(X,A)K\{v} × Ω(ΩCKv ∗ Yv)

Ω(X,A)K\{v} ' Ω(X,A)linkK(v) × ΩCKv .

Proof. The first homotopy equivalence follows immediately from Proposition 4.3, while the second

is an immediate consequence of the homotopy fibration (14) and the retraction of (X,A)linkK(v) off

(X,A)K\{v}. �

6. Co-H-space properties

In this section we consider polyhedral products of the form (CY , Y )K and identify the class of

flag complexes K for which (CY , Y )K is a co-H-space. As a corollary, we obtain conditions that

allow for a delooping of the statement of Theorem 1.1. This begins with an abstract lemma.

Lemma 6.1. Let A and B be pointed spaces with the homotopy types of CW -complexes. Suppose

that there is a pointed map f : A −→ B and B is a co-H-space. If Ωf has a right homotopy inverse

then f has a right homotopy inverse.

Proof. Since B is a co-H-space, by [G2] there is a map s : B −→ ΣΩB which is a right homotopy

inverse to the canonical evaluation map ev : ΣΩB −→ B. Let t : ΩB −→ ΩA be a right homotopy
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inverse of Ωf . Consider the diagram

B
s // ΣΩB

Σt

��
ΣΩA

ΣΩf
//

ev

��

ΣΩB

ev

��
A

f
// B.

The upper triangle homotopy commutes since t is a right homotopy inverse of Ωf . The lower square

homotopy commutes by the naturality of the evaluation map. The upper direction around the

diagram is homotopic to ev ◦ s, which is the identity map on B. The lower direction around the

diagram therefore implies that ev ◦ Σt ◦ s is a right homotopy inverse of f . �

Proposition 6.2. Let K be a simplicial complex on the vertex set [m], let Kf be the flagification

of K, and let Y1, . . . , Ym be pointed CW -complexes. If (CY , Y )K
f

is homotopy equivalent to a co-

H-space then the map f : (CY , Y )K −→ (CY , Y )K
f

induced by the simplicial inclusion K −→ Kf

has a right homotopy inverse.

Proof. Taking (X,A) = (CY , Y ), by Theorem 1.1, Ωf : Ω(CY , Y )K −→ Ω(CY , Y )K
f

has a right

homotopy inverse. Since (CY , Y )K
f

is a co-H-space, Lemma 6.1 implies that f has a right homotopy

inverse. �

Remark 6.3. Note that in Proposition 6.2 we do not need to assume that Y1, . . . , Ym are path-

connected. Since we asssume that every singleton of [m] is a vertex (K is on the vertex set [m]),

(CY , Y )K is path-connected even if Y is not.

Next we obtain a characterisation of those flag complexes K for which (CY , Y )K is a co-H-space.

In terms of notation, when all pairs in the sequence {(Xi, Ai)}mi=1 are the same, (Xi, Ai) = (X,A),

we use the notation (X,A)K for (X,A)K . Special cases are the Davis-Januskiewicz space DJ(K) =

(CP∞, ∗)K and the moment-angle complex ZK = (D2, S1)K .

A graph Γ is called chordal if each of its cycles with ≥ 4 vertices has a chord (an edge joining two

vertices that are not adjacent in the cycle). Equivalently, a chordal graph is a graph with no induced

cycles of length more than three. By the result of Fulkerson and Gross [FG] a graph is chordal if

and only if its vertices can be ordered in such a way that, for each vertex i, the lesser neighbours

of i form a clique. Such an order of vertices is called a perfect elimination ordering.

By [GPTW], ZKf = (D2, S1)K
f

is homotopy equivalent to a wedge of spheres if and only if the

1-skeleton of Kf is a chordal graph. In particular, if the 1-skeleton of Kf is a chordal graph then

ZKf is a co-H-space. This result is readily extended to general polyhedral products of the form

(CY , Y )K , where CY denotes the cone over Y . Let X∨k be the k-fold wedge of X.

Theorem 6.4. Assume that K is a flag complex on the vertex set [m] and H̃∗(Yi;Z) 6= 0 for

1 ≤ i ≤ m. The following conditions are equivalent
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(a) the 1-skeleton K1 is a chordal graph;

(b) (CY , Y )K is a co-H-space.

Furthermore, if K1 is chordal, there is a homotopy equivalence

(15) (CY , Y )K '
m∨
k=2

∨
1≤i1<···<ik≤m

(
ΣYi1 ∧ · · · ∧ Yik

)∨ c(i1,...,ik)
,

where c(i1, . . . , ik) = rank H̃0(K{i1,...,ik}) is one less than the number of connected components of

the full subcomplex K{i1,...,ik}.

Proof. The argument is similar to [GPTW, Theorem 4.6] or [PV, Theorem 4.3], but this time we keep

track of the wedge summands. Assume that K1 is chordal. Choose a perfect elimination ordering

of vertices, and for each vertex i = 1, . . . ,m denote by σi the face of K corresponding to the clique

of K1 consisting of i and its lesser neighbours. All maximal faces of K are among σ1, . . . , σm, so

we have
⋃m
i=1 σi = K. Furthermore, for each k = 1, . . . ,m the perfect elimination ordering on K

induces such an ordering on the full subcomplex K{1,...,k−1}, so we have
⋃k−1
i=1 σi = K{1,...,k−1}.

In particular, the simplicial complex
⋃k−1
i=1 σi is flag as a full subcomplex in a flag complex. The

intersection σk ∩
⋃k−1
i=1 σi is a clique σk \ {k}, so it is a face of

⋃k−1
i=1 σi. Therefore, K is obtained by

iteratively attaching σk to
⋃k−1
i=1 σi along the common face σk \ {k}.

We use induction on m to prove the decomposition (15). When m = 1, both sides of (15) are

trivial. Now assume that (15) holds for K with < m vertices. The pushout square (1) for v = {m}

becomes

σm \ {m} //

��

σm

��
K \ {m} // K.

According to our convention, σm \ {m} and K \ {m} are regarded as simplicial complexes on [m] \

{m} = [m− 1], while σm is regarded as a complex on [m]. The corresponding pushout square (8) of

the polyhedral products becomes

(16)

(CY , Y )σm\{m} × Ym //

j×1

��

(CY , Y )σm

��
(CY , Y )K\{m} × Ym // (CY , Y )K

As σm \ {m} is a face of K \ {m} and σm is a face of K, we have

(CY , Y )σm\{m} =
∏

i∈σm\{m}

CYi ×
∏
i/∈σm

Yi, (CY , Y )σm =
∏
i∈σm

CYi ×
∏
i/∈σm

Yi.

Since each {i} is a vertex of K, the inclusion
∏
i∈ω Yi → (CY , Y )K is null-homotopic for any subset

ω ⊆ [m], and the same holds with K replaced by K \{m}. Hence, the map j×1 in (16) decomposes
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into the composition i2 ◦ π2 of the projection onto the second factor and the inclusion. It follows

that the pushout square (16) decomposes as

∏
i/∈σm

Yi × Ym
π1 //

π2

��

∏
i/∈σm

Yi

��
Ym

ε //

i2

��

(∏
i/∈σm

Yi
)
∗ Ym

��
(CY , Y )K\{m} × Ym // (CY , Y )K

where the map ε is null-homotopic. From the bottom pushout square we obtain

(CY , Y )K '
(

(CY , Y )K\{m} o Ym

)
∨
(( ∏

i/∈σm

Yi
)
∗Ym

)
,

where X o Y = X × Y/(∗ × Y ) is the right half-smash product, which is homotopy equivalent to

X ∨ (X ∧ Y ) when X is a suspension. By the inductive hypothesis, (CY , Y )K\{m} is a suspension,

so we can rewrite the identity above as

(CY , Y )K ' (CY , Y )K\{m} ∨
(
(CY , Y )K\{m} ∧ Ym

)
∨
( ∨

1≤i1<···<ik≤m−1

{ij ,m}/∈K

ΣYi1 ∧ · · · ∧ Yik ∧ Ym
)
,

Now a simple counting argument together with the inductive hypothesis gives (15). This also proves

the implication (a)⇒(b).

To prove the implication (b)⇒(a), assume that K1 is not chordal. Choose an induced chordless

cycle Kω with |ω| ≥ 4 (i. e. a full subcomplex isomorphic to the boundary of an |ω|-gon). Then there

is a nontrivial product in the cohomology ring H∗((CY , Y )Kω ;Z). (When (CY , Y ) = (D1, S0), the

polyhedral product (D1, S0)Kω is an orientable surface of positive genus [BP1, Example 6.40]; the

general case then follows from [BBCG2, Theorem 1.9]). By Lemma 4.2, the same nontrivial product

appears in H∗((CY , Y )K ;Z). Thus, (CY , Y )K is not a co-H-space. �

Remark 6.5. Theorem 6.4 implies that the wedge decomposition of Σ(CY , Y )K of [BBCG1] desus-

pends when K is flag and K1 is chordal; this also follows from the results of Iriye and Kishimoto [IK,

Theorem 1.2, Proposition 3.2]. Other classes of simplicial complexes K with this property are de-

scribed in [IK] and [GT3]. The novelty of Theorem 6.4 compared to [IK] is the description of the

wedge decomposition of (CY , Y )K in terms of the degree zero cohomology of full subcomplexes of K,

which does not follow readily from desuspending the decomposition in [BBCG1].

When K is not flag, the implication (b)⇒(a) of Theorem 6.4 still holds, but (a)⇒(b) fails. Indeed

one can take K to be the boundary of a cyclic polytope [BP2, Example 1.1.17] of dimension n ≥ 4

with m > n+ 1 vertices. Then K1 is a complete graph on m vertices, so it is chordal. On the other

hand, ZK = (D2, S1)K is an (m+ n)-manifold with nontrivial cohomology product, so it cannot be

a co-H-space.
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Finally, we give conditions that allow for a delooping of the maps in Theorem 1.1.

Corollary 6.6. Let K be a simplicial complex on the vertex set [m] whose 1-skeleton is a chordal

graph. If Kf is the flagification of K then the map f : (CY , Y )K −→ (CY , Y )K
f

has a right

homotopy inverse. �

Proof. As K and Kf have the same 1-skeleton, Theorem 6.4 implies that (CY , Y )K
f

is a co-H-space

(and even a suspension). The result follows from Proposition 6.2. �

Corollary 6.7. Let K be a flag simplicial complex on the vertex set [m], and let L be the simplicial

complex given by m disjoint points. The map h : (CY , Y )L −→ (CY , Y )K has a right homotopy

inverse if and only if the 1-skeleton of K is a chordal graph.

Proof. Assume that K1 is a chordal graph. As K is flag, Theorem 1.1 implies that Ωh has a right

homotopy inverse, and Theorem 6.4 implies that (CY , Y )K is a co-H-space. Then h has a right

homotopy inverse by Lemma 6.1.

Now assume that h has a right homotopy inverse. Then (CY , Y )K is a co-H-space, being a retract

of the co-H-space (CY , Y )L. Theorem 6.4 implies that K1 is a chordal graph. �

Remark 6.8. Given (CY , Y )L
g−→ (CY , Y )K

f−→ (CY , Y )K
f

, Theorem 1.1 states that each of

the two maps Ωf and Ωh = Ωf ◦ Ωg has a right homotopy inverse. Corollary 6.6 gives a sufficient

condition for a delooping of the first map, and Corollary 6.7 gives a necessary and sufficient condition

for a delooping of the second map. In both cases the condition is thatK1 is a chordal graph. However,

this condition is obviously not necessary for a delooping of Ωf . Indeed, f has a right inverse for any

flag K, not only for those with chordal K1, because in this case Kf = K and f is the identity map.

7. Whitehead products

In this section we describe two ways of relating the results of Theorem 1.1 and Theorem 6.4 to the

classical iterated Whitehead products. First, we consider polyhedral products of the form (X, ∗)K

with flag K whose 1-skeleton is a chordal graph, and obtain a generalisation (Proposition 7.1) of

Porter’s description of the homotopy fiber of the inclusion of an m-fold wedge into a product in

terms of Whitehead brackets. Second, we consider the loop space Ω(S, ∗)K on a polyhedral product

of spheres for an arbitrary flag complex K, and obtain a generalisation (Proposition 7.2) of the

Hilton–Milnor Theorem.

First, specialize to the case when each pair (Xi, Ai) is of the form (Xi, ∗) and write (X, ∗) for

(X,A). By [GT1], for example, there is a homotopy fibration

(CΩX,ΩX)K
γK−→ (X, ∗)K −→

m∏
i=1

Xi

for any simplicial complex K. This is natural for simplicial inclusions, so if K is a flag complex on

the vertex set [m] and L −→ K is the inclusion of the vertex set then there is a homotopy fibration
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diagram

(17)

(CΩX,ΩX)L
γL //

h′

��

(X, ∗)L //

h

��

∏m
i=1Xi

(CΩX,ΩX)K
γK // (X, ∗)K // ∏m

i=1Xi

where both h and h′ are induced maps of polyhedral products. By Theorem 1.1, Ωh′ has a right

homotopy inverse. Further, if K1 is a chordal graph then Proposition 6.2 and Theorem 6.4 imply

that h′ has a right homotopy inverse.

Observe that as L ism disjoint points we have (X, ∗)L = X1∨· · ·∨Xm, implying that (CΩX,ΩX)L

is the homotopy fibre of the inclusion of the wedge into the product. Porter [P] identified the

homotopy type of this fibre, from which we obtain a homotopy equivalence

(18) (CΩX,ΩX)L '
m∨
k=2

∨
1≤i1<···<ik≤m

(ΣΩXi1 ∧ · · · ∧ ΩXik)∨(k−1).

Notice that L1 is a chordal graph and the decomposition in (18) exactly matches that of (CΩX,ΩX)L

in (15). Moreover, by [T, Theorem 6.2], Porter’s homotopy type identification can be chosen so that

the composite

ϕL :

m∨
k=2

∨
1≤i1<···<ik≤m

(ΣΩXi1 ∧ · · · ∧ ΩXik)∨(k−1) '−→ (CΩX,ΩX)L
γL−→ (X, ∗)L

is a wedge sum of iterated Whitehead products of the maps

evi : ΣΩXi
ev−→ Xi ↪→ X1 ∨ · · · ∨Xm = (X, ∗)L.

Returning to (17), the naturality of the Whitehead product implies that h ◦ ϕL is a wedge sum of

Whitehead products mapping into (X, ∗)K . The right homotopy inverse for h′ when K1 is a chordal

graph therefore implies the following.

Proposition 7.1. Let K be a flag complex such that K1 is a chordal graph. Then the map

(CΩX,ΩX)K
γK−→ (X, ∗)K factors through a wedge sum of Whitehead products. �

In the case when (X, ∗)K = (CP∞, ∗)K = DJ(K) and (CΩX,ΩX)K ' (D2, S1)K = ZK the

result above follows from [GPTW, Theorem 4.3], where the Whitehead products were explicitly

specified as iterated brackets of the canonical generators.

Theorem 1.1 also leads to a generalization of the Hilton-Milnor Theorem. In this case we specialize

to pairs (ΣXi, ∗), giving (ΣX, ∗)L = ΣX1∨· · ·∨ΣXm. The Hilton-Milnor Theorem states that there

is a homotopy equivalence

(19) Ω(ΣX1 ∨ · · · ∨ ΣXm) '
∏

α∈L〈V 〉

Ω(ΣX∧α1
1 ∧ · · · ∧X∧αm

m )

where: V is a free Z-module on m elements x1, . . . , xm; L〈V 〉 is the free Lie algebra on V ; α runs

over a Z-module basis of L〈V 〉; and αi is the number of occurances of xi in the bracket α. Here, if
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αi = 0 we interpret Xi as being omitted from the smash product rather than as being trivial. For

example, X∧2
1 ∧X0

2 = X∧2
1 . The Hilton-Milnor Theorem also describes the maps from the factors on

the right side of (19) into Ω(ΣX1∨· · ·∨ΣXm). If the length of α is 1 then the relevant factor is ΩΣXi

for some i and the map ΩΣXi −→ Ω(ΣX1 ∨ · · · ∨ΣXm) is the loops on the inclusion into the wedge.

If the length of α is larger than 1 then the map Ω(ΣX∧α1
1 ∧ · · · ∧X∧αm

m ) −→ Ω(ΣX1 ∨ · · · ∨ ΣXm)

is the loops on the Whitehead product corresponding to the bracket α.

By Theorem 1.1, if K is a flag complex on the vertex set [m] then the map Ω(ΣX, ∗)L h−→

Ω(ΣX, ∗)K has a right homotopy inverse. In particular, Ω(ΣX, ∗)K is a retract of the product on

the right side of (19). It is probably the case that the retraction consists of selecting an appropriate

subproduct, but this is not immediately clear. That is, simply knowing that Ωh has a right homotopy

inverse leaves open the possibility that some of the factors Ω(ΣX∧α1
1 ∧ · · · ∧X∧αm

m ) split as A× B

where A retracts off Ω(ΣX, ∗)K while B does not. However, if we specialize a bit more then this

possibility is essentially eliminated.

Suppose that each Xi is a connected sphere Sni−1 and write (S, ∗) for (ΣX, ∗). Since each Xi

is a sphere, the space ΣX∧α1
1 ∧ · · · ∧ X∧αm

m is homotopy equivalent to a sphere, so the right side

of (19) becomes a product of looped spheres. The space ΩSn is indecomposable unless n ∈ {2, 4, 8}.

In the latter case, we have a homotopy equivalence ΩH × E : ΩS2n−1 × Sn−1 '−→ ΩSn, which is

a product of the looped Hopf map H and the suspension map E. The retraction of Ω(S, ∗)K off

Ω(S, ∗)L implies the following.

Proposition 7.2. Let K be a flag complex. Then

Ω(S, ∗)K '

(
m∏
i=1

ΩSni

)
×M

where M is homotopy equivalent to a product of spheres and loops on spheres. Further,

(a) a factor ΩSn of M with n /∈ {3, 7, 15} maps to Ω(S, ∗)K by a looped Whitehead product

ΩSn
Ωw−→ Ω(S, ∗)K ;

(b) a factor ΩS2n−1 of M with n ∈ {2, 4, 8} maps to Ω(S, ∗)K by a looped Whitehead product

ΩS2n−1 Ωw−→ Ω(S, ∗)K or by a composite ΩS2n−1 ΩH−→ ΩSn
Ωw−→ Ω(S, ∗)K , where H is the

Hopf map;

(c) a factor Sn−1 of M has n ∈ {2, 4, 8} and maps to Ω(S, ∗)K by a composite Sn−1 E−→

ΩSn
Ωw−→ Ω(S, ∗)K , where E is the suspension map and w is a Whitehead product. �

Refining a bit, by [GT1] the homotopy fibration (CΩS,ΩS)K
γK−→ (S, ∗)K −→

∏m
i=1 S

ni splits

after looping to give a homotopy equivalence

Ω(S, ∗)K ' (

m∏
i=1

ΩSni)× Ω(CΩS,ΩS)K .
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Therefore, Proposition 7.2 implies that if K is a flag complex then Ω(CΩS,ΩS)K is homotopy

equivalent to a product of spheres and loops on spheres, and under this homotopy equivalence ΩγK

becomes a product of maps of the from Ωw, Ωw ◦ ΩH or Ωw ◦ E.

This has implications for moment-angle complexes and Davis-Januszkiewicz spaces. Recall that

DJ(K) ' (CP∞, ∗)K and ZK ' (D2, S1)K . There is a homotopy fibration

ZK
ψK−→ DJ(K) −→

m∏
i=1

CP∞

which splits after looping to give a homotopy equivalence

ΩDJ(K) ' (

m∏
i=1

S1)× ΩZK .

The inclusion S2 −→ CP∞ induces maps of pairs (S2, ∗) −→ (CP∞, ∗) and (CΩS2,ΩS2) −→

(CΩCP∞,ΩCP∞)
'−→ (D2, S1). These then induce a commutative diagram of polyhedral products

(20)

(CΩS2,ΩS2)K
γK //

G

��

(S2, ∗)K

F

��
ZK

ψK // DJ(K).

Observe that the suspension map S1 E−→ ΩS2 induces a map of pairs (CS1, S1) −→ (CΩS2,ΩS2)

with the property that the composite (CS1, S1) −→ (CΩS2,ΩS2) −→ (D2, S1) is a homotopy

equivalence. This implies that the map G in (20) has a right homotopy inverse. If K is a flag

complex then Proposition 7.2 says that Ω(CΩS2,ΩS2)K is homotopy equivalent to a product of

spheres and loops on spheres, and the factors map to Ω(S2, ∗)K by maps of the form Ωw, Ωw ◦ΩH

or Ωw ◦ E. Thus from the map G in (20) having a right homotopy inverse, and F being natural

with respect to Whitehead products, we obtain the following.

Corollary 7.3. Let K be a flag complex. Then ΩZK is homotopy equivalent to a product of spheres

and loops on spheres, and under this equivalence the map ΩZK
ΩψK−→ ΩDJ(K) becomes a product of

maps of the form Ωw, Ωw ◦ ΩH or Ωw ◦ E where w is a Whitehead product. �

Notice that ZK itself is often not a product or a wedge of spheres. For example, if K is the

boundary of an n-gon for n ≥ 5 then K is flag and ZK is diffeomorphic to a connected sum of

products of two spheres. Nevertheless, ΩZK is homotopy equivalent to a product of spheres and

loops on spheres.

8. Homotopy theoretic consequences

We restrict attention to Davis-Januszkiewicz spaces DJ(K) = (CP∞, ∗)K and moment-angle

complexes ZK = (D2, S1)K . Let S2 −→ CP∞ be the inclusion of S2 ∼= CP 1 into CP∞. Then there

is an induced map of polyhedral products

iK : (S2, ∗)K −→ (CP∞, ∗)K .
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Building on the fact that the map G in (20) has a right homotopy inverse, in [GT3] the following

was proved.

Lemma 8.1. The map ΩiK has a right homotopy inverse. �

Lemma 8.2. Let K be a flag complex. Suppose that there is a map h : (CP∞, ∗)K −→ Y where Y

is 2-connected. Then Ωh is null homotopic. Consequently, h induces the zero map on homotopy

groups.

Proof. Let L be the simplicial complex on m disjoint points. The simplicial map L −→ K induces

a map of polyhedral products g : (S2, ∗)L −→ (S2, ∗)K . Consider the composite

(S2, ∗)L g−→ (S2, ∗)K iK−→ (CP∞, ∗)K h−→ Y.

Observe that by the definition of the polyhedral product, (S2, ∗)L '
∨m
i=1 S

2. Since Y is 2-connected,

the composite h ◦ iK ◦ g is therefore null homotopic. Since K is a flag complex, by Theorem 1.1, Ωg

has a right homotopy inverse. Therefore Ωh ◦ ΩiK is null homotopic. By Lemma 8.1, ΩiK also has

a right homotopy inverse. Therefore Ωh is null homotopic. �

For example, let C be the homotopy cofibre of the composite

ψ :

m∨
i=1

S2 −→
m∨
i=1

CP∞ −→ DJ(K)

where the left map is the wedge of inclusions of the bottom cells and the right map is the map of

polyhedral products induced by including the vertices into K. The description of H∗(DJ(K);Z)

(see, for example [BP1]) implies that C is 3-connected. Therefore Lemma 8.2 implies that if K is a

flag complex then the quotient map

f : DJ(K) −→ C = DJ(K)/(

m∨
i=1

S2)

induces the trivial map on homotopy groups.

Lemma 8.2 says that if K is a flag complex then the bottom 2-spheres in DJ(K) have a great

impact on its homotopy theory. The next lemma says this much more dramatically in the case of ZK
when K1 is a chordal graph.

Lemma 8.3. Let K be a flag complex such that K1 is a chordal graph. Then there is a homotopy

commutative diagram ∨m
i=1 S

2

ψ

��
ZK //

λ
;;

DJ(K)

for some map λ.
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Proof. As usual, let L be the vertex set of K. Consider the diagram

(CΩS2,ΩS2)L
γL //

h

��

(S2, ∗)L

��
(CΩS2,ΩS2)K

γK //

G

��

(S2, ∗)K

F

��
ZK

ψK // DJ(K).

The upper square is induced by the simplicial inclusion of L into K. The lower square homotopy

commutes by (20). Notice that the right column is equal to ψ. As mentioned in the previous section,

the map G has a right homotopy inverse. Since K is a flag complex and K1 is a chordal graph, by

Corollary 6.7, the map h has a right homotopy inverse. Thus G ◦ h has a right homotopy inverse

and the lemma follows. �
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[GT1] J. Grbić and S. Theriault, The homotopy type of the complement of a coordinate subspace arrangement,

Topology 46 (2007), 357-396.
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