PASCAL: an Architecture for Proactive Auto-Scaling of Distributed Services

Federico Lombardi®P+* Andrea Muti®, Leonardo Aniello®, Roberto Baldoni?, Silvia Bonomi®, Leonardo Querzoni®

%Research Center of Cyber Intelligence and Information Security - Sapienza University of Rome
b University of Southampton - Cyber Security Research

Abstract

One of the main characteristics that today makes cloud services so popular is their ability to be elastic, i.e., they can
adapt their provisioning to variable workloads, thus increasing resource utilization and reducing operating costs. At the
core of any elastic service lies an automatic scaling mechanism that drives provisioning on the basis of a given strategy. In
this paper we propose PASCAL, an architecture for Proactive Auto-SCALing of generic distributed services. PASCAL
combines a proactive approach, to forecast incoming workloads, with a profiling system, to estimate required provision.
Scale-in/out operations are decided according to an application-specific strategy, which aims at provisioning the minimum
number of resources needed to sustain the foreseen workload. The main novelties introduced with PASCAL architecture
are: (i) a strategy to proactively auto-scale a distributed stream processing system (namely, Apache Storm) with the aim
of load balancing operators through an accurate system performance estimation model, and (ii) a strategy to proactively
auto-scale a distributed datastore (namely, Apache Cassandra), focussed on how to choose when executing scaling actions
on the basis of the time needed for the activation/deactivation of storage nodes so as to have the configuration ready
when needed. We provide a prototype implementation of PASCAL for both use cases and, through an experimental
evaluation conducted on a private cloud, we validate our approach and demonstrate the effectiveness of the proposed
strategies in terms of saved resources and response time.

Keywords:
Cloud, Elasticity, Automatic Scaling, Stream Processing, Distributed Storage, Storm, Cassandra.

performances. Most of the modern solutions in this field
work by tuning the level of horizontal scaling of the target
service, that is the number of computing resources (either
physical hosts, virtual machines or containers) that the
service can rely upon for its operations.

1. Introduction

The increasing need of high performance computing in
data centers, as well as the recent spread of cloud comput-
ing with pay-as-you-go pricing models, are fostering the

widespread adoption of distributed services. These allow
to achieve high levels of availability with low response time
despite the heaviness of input loads. Saving costs while
ensuring high performance against variable workload is a
very challenging aspect that requires the ability to ade-
quately choose at runtime the right amount of computa-
tional resources.

Automatic scaling (or auto-scaling) emerged as an ap-
proach to dynamically provision distributed services in re-
sponses to variations in the computing environment, and,
in particular, in the incoming load. The goal of any auto-
scaling solution is to avoid as much as possible over- and /or
under-provisioning states, which would bring the running
service to either waste resources or fail to deliver expected

*Please address correspondence to Federico Lombardi
Email addresses: lombardi@dis.uniromal.it;

f.lombardi@soton.ac.uk (Federico Lombardi),
muti.1192113@studenti.uniromal.it (Andrea Muti),
l.aniello@soton.ac.uk (Leonardo Aniello),
baldoni@dis.uniromal.it (Roberto Baldoni),
bonomi@dis.uniromal.it (Silvia Bonomi),
querzoni@dis.uniromal.it (Leonardo Querzoni)

Preprint submitted to Future Generation Computer Systems

A number of auto-scaling solutions have been devel-
oped both in commercial and academic areas [1]. Even
though such solutions allow to efficiently scale a dis-
tributed system, there is still an open problem concerning
the timeliness of the reaction to load variations. As an
example, if sudden load increments are not spotted “early
enough”, then temporary performance degradations are
likely to occur or, if the reaction happens too late once
the load falls down, then it is possible to have short over-
provisioning periods. The reaction delay depends on how
long does it take to detect the load variation and on the
time required for the new system configuration to be ready.
In particular, applying new system configurations may re-
quire resource and/or service activation and state trans-
fer, which may take very different times depending on the
resource/service needed (e.g., the new configuration acti-
vation time can change according to the amount of data
to transfer). In order to minimise the impact of a config-
uration change, proactive approaches based on workload
forecasting have been proposed, and they show effective
results by anticipating scaling decisions [1]. The majority

March 14, 2019

of proactive solutions work under the assumption of load
balancing among the machines, providing a coarse grained
workload prediction. However, this assumption does not
hold in several scenarios like, e.g., in distributed stream
processing systems, and prevents them to be used in an
effective way. In such kind of systems a computation is
modelled as a directed acyclic graph of operators, which
are allocated to available machines on the basis of some
scheduling policy. In general, the input of an operator
depends on several parameters like the stream processing
system workload, the topology of operators graph, and
the scheduling of operators on machines. Thus, when the
stream processing system workload is the only parame-
ter that changes, the load balancing assumption does not
hold anymore and current proactive schemes cannot be di-
rectly applied. Some works do not address the problem at
all, and assume in a simplistic way that for a given input
load there exists a correct minimum amount of machines
able to handle it, regardless of how operators are allo-
cated to machines and of the heterogeneity of load among
operators [2]. A similar problem arises when considering
distributed storages where the load of each machines de-
pends on the subset of data allocated on it and that can
be queried differently.

In this paper we introduce PASCAL, an architecture
for proactive auto-scaling of distributed services. PASCAL
works by learning and predicting workload patterns at fine
grained level (e.g., at the level of the operator in stream
processing systems), and then using this knowledge to dy-
namically provision the required amount of resources to
the target system. The main novelties introduced by PAS-
CAL are (i) the possibility to accurately tune the timing
for (de-)provisioning resources by taking into account the
time needed to complete such operations, and (ii) a model
for estimating system performance even when the load is
not balanced among resources.

Being PASCAL a generic solution, we propose an in-
stantiations on two very relevant scenarios presenting com-
plementary issues, i.e. a (i) a distributed stream process-
ing system (dSPS) where load between resources may be
temporary unbalanced due to workload oscillation and op-
erator allocations, making challenging to estimate their
performance, and (ii) a distributed datastore where the
time to complete scaling actions is strictly dependent by
the amount of data to transfer to keep the storage updated
and may be potentially very high.

Although PASCAL architecture is general and
application-independent, the implementation of its mod-
ules, including the one executing the scaling strategy (see
Section 4) depends on the specific application scenario.
We designed two distinct auto-scaling strategies for the
considered two scenarios, implemented them in PASCAL,
and integrated it within two prototype deployments, one
working with Apache Storm (a framework for distributed
stream processing applications) and the other with Apache
Cassandra (a NoSQL distributed datastore). The exten-
sive experimental evaluation performed on these two pro-

totypes demonstrates PASCAL’s ability to timely and ac-
curately provision resources to the target system, thus re-
ducing operating costs without negatively impacting on
performance.

The rest of the paper is organized as follows: related
works are presented in Section 2; Section 3 introduces the
system model and defines the problem to solve; Section 4
describes the PASCAL architecture; Section 5, 6 present
the solutions and prototype implementations proposed for
distributed stream processing and distributed datastore
scenarios, respectively; Section 7 shows the experimental
evaluation of the two prototypes; finally, Sections 8 and 9
outline conclusions and future directions.

2. Related Work

The design of PASCAL is based on the lessons learned
by the authors while developing and deploying in real
settings the MYSE architecture [3], a former prototype
of a proactive auto-scaling solution. MYSE takes an
analytical-based approach by relying on queuing theory
to estimate service performance (i.e., the expected ser-
vice time), with the assumption of balance among nodes’
load, and uses machine learning for workload prediction.
With PASCAL we aim to address the main limitations of
MYSE, i.e. (i) the analytical model based on queuing the-
ory, which is not accurate enough in realistic use cases, and
(ii) the assumption of load balancing, which made MYSE
not usable in several scenarios of interest, such as dSPS.

Regarding the latter point, it is to note that most auto-
scaling solutions are based on the assumption of load bal-
ancing among nodes to simplify the problem of estimating
performances. This kind of approach is specifically de-
signed for cloud web applications based on multi-tier ar-
chitectures, such as [4], making it unfeasible to use in en-
vironments where load cannot be expected to be balanced.
Many works indeed assume load balancing, thus suffering
from the same limitation of MYSE. Ghanbari et al. [5]
present an auto-scaling approach based on model predic-
tive control, which aims to meet service level agreements
(SLAs) and save resources. They target clouds with het-
erogeneous resources, and employ Amazon EC2 instances
that balance the load through a round robin policy. Moore
et al. [6] describe an elasticity framework composed by two
controllers operating in a coordinated manner: one works
reactively on the basis of static rules, and the other uses a
time-series forecaster (based on support vector machines)
and two Naive Bayes models to predict both the workload
and the target system performance. Also this work as-
sumes load balancing between service instances, as well as
a fixed time interval between consecutive scaling actions
(30 minutes in their experimental evaluation). In [7], the
authors propose DC2, a proactive solution that does not
need any application profiling. They infer system param-
eters through Kalman Filters. Also in this work perfect
load balancing is assumed.

The solution we propose in this paper does not as-
sume load balancing among nodes and uses a proactive
approach. Although a reactive version of PASCAL is men-
tioned in Section 7, its sole purpose is to quantitatively
show the advantages of proactivity over reactivity. While
Subsection 2.1 describes related work on reactive tech-
niques for automatic scaling, Subsection 2.2 delves with
existing works following a proactive strategy and their
comparison with PASCAL.

A relevant feature of PASCAL, inherited from MYSE,
is its general purpose design to make it usable for dis-
tinct types of systems. A number of works addressed the
auto-scaling problem by designing solutions for specific
scenarios such as high performance computing [8], publish-
subscribe systems [9], computation platforms [10], cloud
datacenter [11, 12] and smart grids [13]. Most of these solu-
tions are strictly application-dependent and cannot be di-
rectly applied in a different context. Contrarily, PASCAL
has been designed to be application-independent and em-
ployable in different scenarios. Indeed we show the design,
prototype implementation and evaluation of PASCAL for
dSPSs and distributed datastores. We report for complete-
ness a discussion on related work on automatic scaling for
dSPSs (see Subsection 2.3) and distributed datastores (see
Subsection 2.4).

2.1. Reactive Auto-scaling

In their survey on automatic scaling, Lorido-Botréan et
al. [1] state that the most widely used approach by Cloud
providers relies on static, threshold-based policies, where
the system configuration is changed according to a set of
rules [14, 15, 16]. All these approaches are reactive, i.e.
they monitor the workload and react to changes by re-
provisioning the system. Due to long delays needed to ac-
tivate new VM instances !, reactive approaches can some-
times lag-behind frequent workload fluctuations, leaving
the system in a state where it is underperforming or it is
over-provisioned.

2.2. Proactive Auto-scaling

Proactive approaches are starting to be used as a way
to anticipate scale-in/-out operations, hence mitigating
some limitations of reactive approaches. Nevertheless, it
is worth noticing that proactive approaches can provide
clear advantages over reactive ones only in those scenarios
where historical data is available to correctly train predic-
tion models and where such models do not get outdated
too quickly due to the dynamic nature of the considered
setting.

Proactive approaches are based on time-series analysis
to learn recurring workload patterns over time through
techniques like averaging methods, regression and artifi-
cial neural networks (ANNs) [18, 19, 20, 21]. While reac-
tive solutions allow to observe metrics of interest to decide

Linstance startup times in EC2 may range from 10 to 45 minutes,
as reported in [17].

how to take scaling decision, proactive approaches need to
accurately estimate the performance that the distributed
service would provide when fed with the foreseen work-
load. More in details, [18, 19, 21] use time-series analysis
to dynamically adjust resources in a machine (i.e., vertical
scaling) while in PASCAL we take an orthogonal perspec-
tive using the estimation to scale the number of machines
used to provide the service (i.e., horizontal scaling). In
[20], the authors focus on horizontal scaling proposing an
architecture similar to PASCAL. However, the scaling de-
cision is driven by a different objective function with re-
spect to the one considered in this paper and the evalua-
tion in performed just through simulations and not in real
environments. Additionally, in [18, 19, 20, 21] the time
window used to perform scaling decision is fixed while we
designed a solution able to estimate when to trigger scaling
actions to have a configuration ready when necessary, thus
limiting over /under-provisioning periods. Some works em-
ploy Reinforcement learning to automatically learn online
the performance model of the target system without any a
priori knowledge [22, 23, 24]. These works mainly focus on
improving the learning phase used to perform scaling ac-
tions and do not really provide a real system. Some works
use Queuing Theory to analytically estimate the perfor-
mance of the target system given a small set of parame-
ters, like input rates and service times [25, 26]. The main
limitation of these works is in the usage of an analytical
model to estimate scaling actions that does not always ab-
stract real systems executions. Other works employ Con-
trol Theory to automate the management of scaling deci-
sions through the employment of a feedback/feedforward
controller [27, 28, 29].

2.8. Autoscaling Distributed Stream Processing Systems
Heinze et al. present a set of works that are closely
related to PASCAL. In [30] they adapt threshold-based and
reinforcement learning solutions presented in [1] to auto-
scale a stream processing system in a reactive manner.
They also designed a latency-aware approach [31] and a
solution to properly choose the scaling strategy through
online parameter optimization [32]. PASCAL differs from
such solution since it is able to estimate the performance
of a dSPS instead of reacting to observed metrics. This
feature allows it to auto-scale the dSPS proactively.
Other works combine elasticity and fault tolerance.
In [33] the authors consider the problem of scaling stateful
operators deployed over a large cloud infrastructure. Also
in this case, the approach adopted to scale the system is
purely reactive. Ishii et al. [2] propose a proactive solu-
tion to move part of the computation to the cloud when a
local cluster becomes unable to handle the predicted work-
load. They use a simple benchmark to map a workload to
the number of nodes required to sustain it. The proactive
model we propose is more fine-grained due to a resource
estimator that allows to accurately compute the expected
resource consumption given an input load and a configu-
ration (see Section 5). Similarly, ELYSIUM [34] uses an

approach for symbiotic scaling of operators and resources.
Both PASCAL and ELYSIUM rely on a performance pro-
filer but they have different goals: ELYSIUM combines op-
erator scaling and resource scaling, PASCAL defines a so-
lution to enable a proactive scaling of resources in a dSPS.
Recently, some efforts have been done to extend DSP ar-
chitecture with elasticity capabilities at different level.

In [35], Cardellini et al. propose a hierarchical archi-
tecture for DSP systems for geo-distributed environment.
In such architecture, adaptation is done by employing Re-
inforced Learning techniques. In [36], Mencagli et al. pre-
sented a two-level adaptation solution that handles work-
load variations at different time-scales: (i) fast time-scales
(using a control theory based approach to deal with load
imbalance) and (ii) slower time-scale (using fuzzy logic to
for scaling decisions). However, both approaches are re-
active and not proactive as PASCAL, not requiring any
mechanism to estimate the system performance.

A similar approach has been followed by [37] where
the proposed methodology is able to control the number
of replicas in streaming operators. The authors proposed
two algorithms to be applied at different time-scales. but
with a different role with respect to [36]. Also in this case
the approach is reactive.

Concerning operators scaling, Liu et al. [38] proposed
a stepwise profiling framework that considers both appli-
cation features and processing power of the computing re-
sources to evaluate different configurations of parallelism.

Stela [39] relies on a throughput-based metric to esti-
mate the impact of each operator towards the application
throughput to identify operators that need to be scaled.
An interesting evolution is the one presented in [40] where
the authors present the development of an elastic stream
processing framework for IoT environments. Also this ap-
proach is reactive and it is mainly studied for long-term
steady load variations that do not causes the triggering of
continuous reconfiguration actions.

2.4. Autoscaling Distributed Datastores

Several solutions have been published for automatic
scaling of SQL and NoSQL storage systems. In [41] the
authors propose ElastMan, an elasticity manager for key-
value stores in the Cloud. Their work relies on both feed-
forward and feedback controllers for effective scaling ac-
tions. The main differences with our approach are that
(i) they use a reactive approach and (ii) they do not con-
sider activation/deactivation time to match the demand
point with the time when the configuration is ready. Dif-
ferent solutions have been proposed at distinct XaaS lev-
els. Many works (e.g. AGILE [42]) address the scaling
problem from a IaaS perspective. Likewise our solution,
they profile the target system and apply AGILE to scale
a Cassandra cluster. Their work is orthogonal with re-
spect to PASCAL, indeed their goal is to minimize the
start-up time of a new instance through a pre-copy live
cloning approach at VM level (i.e. they act at IaaS level),
while we act at the datastore level (PaaS level). Barker

et al. propose ShuttleDB [43], a solution for database live
migration and replication which combines VM level and
database level scaling. They monitor the query latency
and/or predict it to trigger scaling actions. Our approach,
differently from theirs, also considers the activation time
of newly provisioned nodes. Huang et al. [44] deal with the
auto-scaling and data distribution of a MongoDB datas-
tore. Their solution scales a sharded MongoDB cluster
reactively, while we operate proactively. Finally, Casal-
icchio et al. proposed an energy-aware autoscaling solu-
tion for Cassandra [45] where they evaluate and compare
three heuristics under a model similar to ours, with homo-
geneous machines and assuming a CPU-bound workload.
Their results show that horizontal scaling of Cassandra is
slow due to the amount of data to move. Differently from
our work, they do not provide a solution to dynamically
trigger scaling actions based on time.

3. System Model and Problem Statement

3.1. Distributed Service Model

We consider a cluster as a fixed set with cardinality
N of available servers (or nodes), i.e., virtual or physical
machines. Servers are homogeneous, they have the same
finite computational power and can be used interchange-
ably. We consider a distributed service, consisting of a set
of service instances deployed over the available nodes. At
most one service instance is deployed on each node. Any
service instance can be in one of these four states:

e inactive: the service instance is not running, thus it
is not part of the distributed service;

e active: the service instance is running, thus it is part
of the distributed service;

e joining: the service instance is becoming part of the
distributed service but is not active yet;

e decommissioning: the service instance is leaving the
distributed service but is not inactive yet.

8.2. System Configuration Model

We refer to configuration as the number of active ser-
vice instances (i.e., service instances in the active state),
which also corresponds to the number of used nodes. The
configuration can change over time in response to scaling
actions: scale-in actions reduce the configuration by tak-
ing active service instances to inactive state, while scale-
out actions augment the configuration by making inac-
tive service instances become active (see Figure 1). Any
state management for the distributed service, required to
keep the service state across reconfigurations, is assumed
to be handled by the service itself. A scaling action take
a time Ty, which depends on the number of service in-
stances to provide/remove: we refer to joining_time as the
time needed for a service instance to switch from the in-
active state to the active one during a scale-out action.

Conversely, we refer to decommissioning_time as the time
needed for a service instance to switch from the active
state to the inactive one during a scale-in action.

I scale-out

joining complete

B

JOINING

INACTIVE ACTIVE
DECOMMISSIONING
decommissioning complete scale-in

Figure 1: State diagram of a service instance: in response to a
scale-out action, it transitions to the joining state, which takes join-
ing_time to complete and move to the active state, where the service
instance can serve requests. A scale-in action brings an active ser-
vice instance to decommissioning state, which takes decommission-
ing_time to complete and transition to inactive state.

A scaling action sa is characterised by three points in
time [46]: (i) sa triggering point (T Ps,), when the scaling
action is triggered and the service instance transitions
from inactive (active) to joining (decommissioning) state,
and (ii) sa reconfiguration point (RPs,), when the scaling
action completes and the service instance passes from
joining (decommissioning) to active (inactive) state.
Finally, the sa demand point (DPs,), the point in time
when the new configuration is needed. Note that for a
scaling action sa, joining/decommissioning times can be
computed as the distance between T'P;, and RPs,.

3.3. Workload and Performance Model

A number of clients interact with the distributed ser-
vice by sending request messages. We refer to input rate
or workload A(t) as the number of requests per time unit
issued by clients towards the distributed service at a given
time t. We consider also a temporal horizon h in which
we can aggregate the workload, thus we define Ay,q4(h) as
the maximum workload for t = tq,- - ,t.

Once a request is received by the distributed service,
a certain amount of time is required to serve it. We refer
to that time as the response time, and to the number of
requests served per time unit by the distributed service
as the throughput. Depending on the specific application
scenario where the distributed service is employed, pro-
vided performances (i.e., response time and throughput)
may need to ensure certain properties in spite of possi-
ble changes of the workload during time, e.g., response
time should not exceed a given upper bound, or should
not diverge over time. For example, if the workload were
too high for the current configuration and response times
started increasing, then a scale-out action would be re-
quired to keep response times below a given upper bound.
A distributed service, setup with a given configuration, is
said to sustain a certain workload if provided performances
satisfy a given set of application-specific requirements. On
the base of whether the current configuration is enough to

sustain incoming workload, a distributed service can be in
one of these two states:

e normal: the distributed service sustains current
workload with the present configuration;

e overloaded: the distributed service does not sustain
current workload with the present configuration.

If the distributed service is overloaded, there likely is some
bottleneck to be solved through a scale-out action. Oth-
erwise, maybe a scale-in action is required to decrease
the number of used nodes and consequently save resources
(e.g., save money by using less nodes).

Under the assumption that sa would set a configuration
such to bring the distributed service in normal state, the
ideal situation would be having RPs;, = DPs,, i.e., the
new configuration is ready exactly when it is required. In
real settings, for a scaling action sa we have that one of
these two situations occurs:

e RP,, > DP;,: the scaling action completes late of
a time interval of length RPs, — DPs,. In case of a
scale-in action, this is a period of over-provisioning
(since a smaller configuration could sustain the work-
load), while in case of a scale-out action this is
an under-provisioning period (since there should be
more active service instances).

e RP,, < DP;,: the scaling action finishes in advance
of a time interval of length RP;, — D Ps,. In case of a
scale-in action, this is a period of under-provisioning
(since a larger configuration should be needed to sus-
tain the workload), while in case of a scale-out ac-
tion this is an over-provisioning period (since there
should be less active service instances).

8.4. Problem Statement

The goal is to find the minimum configuration, i.e. the
smallest configuration such that the distributed service is
in not overloaded (i.e., in normal state), and thus able to
sustain the input workload.

Furthermore, as scaling actions need some time to com-
plete, the goal is identifying the minimum configuration
early enough to minimize over-provisioning and under-
provisioning periods. Thus, for the required scaling action
sa we want to minimize |DPs, — RPs,|.

Since we assume the workload to be dynamic, the min-
imum configuration has to be computed periodically over
time. We refer to this computation period as configura-
tion assessment period. We assume that computing the
minimum configuration takes much lower than the con-
figuration assessment period, thus consecutive minimum
configuration computations do not overlap.

4. PASCAL Architecture

PASCAL works in two consecutive phases: a profiling
phase and an auto-scaling phase. The basic idea that un-
derlines PASCAL is to use machine learning techniques to

learn, during the profiling phase, the workload patterns
(i.e., the workload model) and performance behaviours
(i.e., the performance model) typical for the target dis-
tributed service. These models are then used at runtime,
during the auto-scaling phase, to proactively scale the dis-
tributed service: future input rate is predicted on the
base of the workload model, the corresponding minimum
configuration is estimated using the performance model,
and the consequent scaling action is triggered to minimise
over /under-provisioning periods.

The architecture of PASCAL includes three main func-
tional modules: (i) a Service Monitor collecting during
both phases the metrics related to the target distributed
service, (ii) a Service Profiler implementing the first phase
and (iii) an AutoScaler for the second phase. Figure 2
shows PASCAL’s functional architecture and how it inte-
grates with the target distributed service.

——— PASCAL AUTO-SCALER ——

prediction

horizon ('WORKLOAD | future load (3epgR |<—1— config DISTRIBUTED
e CORECASTE . params SERVICE
workloads [/ expected .
/ performance coung
{
iy
/ CONFIGURATION
! MANAGER

model model
A
|

‘ workloadJ ‘performance
1

actions . 5
‘o'_ ‘o'_ ~~t

runtime metrics

[}

1
SERVICE |
MONITOR

[[
| SERVICE |.
PROFILER

Figure 2: PASCAL’s functional architecture integrated with the tar-
get distributed service.

Next sub-sections detail these three main functional
modules. The instantiation of this high-level architecture
heavily depends on the peculiar characteristics of the dis-
tributed service to auto-scale. Anyway, its constituting
modules capture the key aspects of realising a proactive
auto-scaling for a broad range of distributed services, thus
PASCAL’s architecture constitutes an effective guideline
to instantiate specific solutions, as will be shown for the
two application scenarios detailed in Sections 5 and 6.

4.1. Service Monitor

The Service Monitor monitors at runtime a set of met-
rics (such as CPU and memory) related to service in-
stances. Metrics are collected periodically and used in
both profiling and auto-scaling phases. They include the
input rate, to be used (i) to learn the workload model dur-
ing the profiling phase and (ii) to predict future workload
during the auto-scaling phase. The other included metrics
depend on the specific application scenario, e.g., the type
of distributed service, the algorithm used to compute the
minimum configuration.

4.2. Service Profiler and Performance/Workload Models

The Service Profiler is used during the profiling phase
to learn the performance model and the workload model

on the base of the metrics collected by the Service Monitor.

Different workloads are provided to the target dis-
tributed service for sufficiently long time, and related per-
formance metrics are collected. The duration of the pro-
filing phase depends both on the distributed service and
on the algorithm used for minimum configuration com-
putation?. Collected metrics are processed to learn the
performance model, which is used by the AutoScaler in
auto-scaling phase to estimate the performance of the dis-
tributed service under a certain workload.

Real workloads in input to the target distributed ser-
vice are observed over time, and related metrics are gath-
ered. These metrics are analysed to learn the workload
model, aimed at providing predictions as accurate as pos-
sible about what the workload will be like during the con-
sidered prediction horizon.

4.8. AutoScaler

The AutoScaler comes into play in the auto-scaling
phase. Every configuration assessment period, it uses its
internal modules to (i) predict forthcoming input rate, (ii)
estimate the minimum configuration and (iii) possibly trig-
ger the required scaling action, if current configuration dif-
fers from the minimum one.

The Workload Forecaster is in charge of forecasting
the input rate over some prediction horizon h. It exposes
a primitive predict() which requires as input the list w of
the workloads monitored during the last observation pe-
riod, and outputs the expected workloads A;(h) during the
forthcoming prediction horizon h. The lengths of observa-
tion and prediction periods, as well as the sampling rate of
observed workloads, and how many distinct workloads to
forecast during the prediction horizon, have to be chosen
at a preliminary stage (i.e., before starting the profiling
phase), as they relevantly affect how workload metrics are
gathered and what machine learning technique to use to
train the workload model. Note that the observation pe-
riod w and the forecast horizon h can be quite different.
Specifically, the observation period impact the accuracy of
the timeseries prediction [47], while the prediction horizon
is used to avoid oscillations by providing an estimation of
the maximum future workload in the future h time unit.
Thus, while the observation period can be very long pro-
ducing a good accuracy, a too long prediction horizon can
lead to high over-provisioning and so it has to be tuned
properly (we evaluate how to set this period in Section 7).

The Performance Estimator is in charge of estimating
the performances of the target distributed service accord-
ing to the performance model learned during the profiling
phase. It exposes the primitive estimate() which, taking as
input the expected input rate Af(h) and a configuration,

2In Section 7, we evaluated this time empirically for the two con-
sidered application scenarios.

outputs a set of metrics describing the estimated perfor-
mances of the distributed service. The set of output met-
rics depends on the specific distributed service and what
are the performance indicators of interest in the applica-
tion scenario.

The Decider module, through the primitive getMin-
Config(), computes the minimum configuration to sustain
a forecasted workload and sends the consequent scaling
actions to the Configuration Manager. The Decider lever-
ages the Workload Forecaster to predict workloads, and
the Performance Estimator to estimate the expected per-
formances of the distributed services given a certain con-
figuration and an expected input rate.

The Configuration Manager is in charge of applying
a configuration. It accepts scaling actions from the De-
cider and applies the requested configuration to the target
distributed service by activating (or deactivating) service
instances.

5. PASCAL for Distributed Stream Processing
System

Distributed stream processing systems represent the
most widely adopted solution for on-line processing of large
data streams [48]. A computation in a dSPS is modelled as
a Directed Acyclic Graph (DAG) where vertices represent
operators and edges represent streams of tuples connect-
ing operators. Such a graph is referred to as application.
There can be more applications running in a dSPS. Each
operator carries out a piece of the overall computation
on tuples received from input streams, and emits down-
stream the results of its partial elaboration through out-
put streams. In general, an operator has a certain number
of input streams (none for source operators) and output
streams (none for sink operators). Each application is also
characterized by a workload that varies over time and rep-
resents the rate of tuples fed to the dSPS for such applica-
tion through its source operators. Each tuple fed in input
to the dSPS potentially generates multiple tuples that tra-
verse several streams in the application. The processing
of some of these tuples may fail, and in this case we say
that the input tuple is failed. Conversely, if all the tuples
generated from a given input tuple are correctly processed,
then we say that the corresponding input tuple is acked.

For the sake of simplicity, and without loss of gener-
ality, we assume that a stream connecting operators A
(upstream operator) and B (downstream operator) can be
uniquely identified by the pair (A, B), which means that
no two distinct streams can connect the same pair of op-
erators. The square above of Figure 3 shows an example
of a DAG representing an application with three operators
A.B and C. The selectivity for a stream (A, B) is defined
as the ratio a between the tuple rate of (A, B) and the
sum of the tuple rates of all the input streams of A, i.e.
the selectivity of (A, B) measures its tuple rate as a func-
tion of the total input rate of A [49]. We assume to work

parallelism parallelism parallelism
Ap=2 Bp=2 Cp=3
X a(BC)-x
I:> >® > Op. C
Op. A

Operator Level

Operator Instance Level

Figure 3: Example of a simple DAG representing a dSPS applica-
tion. The above square shows the logic of the application (operator
level). The square below represents as operators can be parallelized
at operator instance level. Those are the actual thread that will be
deployed over the dSPS worker nodes.

with applications having operators with constant selectiv-
ity, as in the case of synchronous data flow languages and
signal processing applications [50]. In practice, as will be
shown in Section 7.1, the solution we propose for dSPS
works well also when selectivities have some reasonably
small deviations.

Each operator can be instantiated multiple times, so
that each operator instance (not to be confused with a
service instance in our system model) handles a fraction
of the operator input rate. Here we assume that each
operator instance processes input tuples sequentially by
using a single core at a time. The number of instances
for a given operator is defined as its level of parallelism,
and we assume that it is fixed at application deployment
time and does not change over time. As a consequence, a
stream (A, B) can be counstituted by several sub-streams,
each connecting one of the instances of operator A to one
of the instances of operator B, as it possible to see from the
bottom square of Figure 3. To simplify the discussion, here
we assume that the dSPS is able to fairly distribute the
load among the available instances of each operator. This
is usually achieved through round-robin policies, hashing
or by means of grouping functions that manage how tu-
ples in a stream are mapped to its sub-streams. When an
application is run, the dSPS uses a scheduler to assign the
execution of each operator instance to a node among those
available in the dSPS cluster.

5.1. Auto-scaling Solution Outline

A dSPS able to sustain a workload maintains a
throughput almost equal to the input rate, with not di-

verging response times. Once a dSPS is no more able to
sustain a workload, response times start diverging and the
throughput begins to fall behind the input rate. The bot-
tleneck is usually due to some saturated node, i.e., a node
not able to keep up with the rate of tuples that are being
received by the operator instances it is executing. Note
that even a single saturated node can lead to a bottle-
neck, so it is important to keep all nodes under a certain
usage. Thus, with reference to our system model, we con-
sider a dSPS cluster to be in overloaded state if at least
one node has its C PU _usage > maz_threshold, in normal
state otherwise. We consider the CPU as indicator as it
is the most prominent bottleneck for dASPS as many works
stated and used in the state of the art [51, 52]. We aim to
include also memory and bandwidth in a more complete
model as future work.

Hence, one of the main challenges in designing a proac-
tive auto-scaling solution for a dSPS lies in the ability to
accurately estimate the CPU usage of nodes. In many
scenarios, the load can be considered as balanced among
cluster nodes (see Section 2), which relevantly ease the
estimation of CPU usage. Instead, in a dSPS, the load
generally differs among nodes as it depends on what oper-
ator instances are running on each node, and on the rate
of tuples that each operator instance is receiving. Indeed,
many allocation optimizations for dSPSs have been pro-
posed in literature [50, 49].

With reference to the PASCAL architecture described
in Section 4 and shown in Figure 2, the Service Profiler
for a dSPS is composed by four sub-modules : (i) the Se-
lectivity Profiler (SP), which learns the selectivity of each
stream, (ii) the Operator CPU Usage Profiler (OCUP),
which learns how the CPU usage of each operator instance
varies as a function of its input rate, (iii) the Overhead Pro-
filer (OP), which learns how to estimate the CPU usage of
a node when having at disposal the CPU usages of the op-
erator instances running on that node, and (iv) the Input
Load Profiler (ILP), which learns the workload model, used
to predict the workload of each application. The output
of the first three sub-modules is the performance model.

On the base of performance model, the Performance
Estimator for a dSPS has to estimate the CPU usage of
each node, given the expected input rate of each appli-
cation and the allocation of operator instances to nodes.
When its estimate() method is invoked, the Performance
Estimator works as follows:

1. using the selectivities provided by the SP and the in-
put rates of each application, it estimates the tuple
rates of all the streams of these applications (i.e.,
streams among operators, not sub-streams among
operator instances);

2. having an estimation of the input rate of each op-
erator, it assesses the input rate for each of each

3The profiler proposed here has been also used to enable a com-
parison with the reactive approach of the symbiotic solution proposed
in the ELYSIUM autoscaler [34].

operator instance by simply dividing by the level of
parallelism of the operator itself;

3. using the expected input rate of each operator in-
stance, it estimates its CPU usage leveraging the
profiles generated by the OCUP;

4. with the given configuration and the allocation of
operator instances to nodes, it uses such CPU usage
estimations to compute an evaluation of the overall
CPU usage of each node, which can be then refined
by exploiting the profiles learned by the OP.

Every configuration assessment period, the Decider ex-
ecutes the getMinConfig() function (see Algorithm 1).
This function takes as input the prediction horizon h, the
cluster size N, the maz_threshold parameter, the reference
to the dSPS scheduler and the list of running applications.
Firstly, it gets the last workloads monitored during the last
observation period and, through the predict () primitive
of the Workload Forecaster module, computes the fore-
casted workload A¢(h) for the next prediction horizon h
(lines 2-3). Then, it starts looking for the minimum con-
figuration by iterating in ascending order over the possi-
ble configurations (lines 4-8). For each iteration, it uses
the dSPS scheduler to compute the allocation of operator
instances to service instances. Then, through the Perfor-
mance Estimator, it computes the expected CPU usages
of used nodes. If every node is expected to have a CPU
usage under the max_threshold parameter, then the con-
figuration is the minimum one.

Algorithm 1 AutoScaling Algorithm for SPS

1: function GETMINCONFIG(int h, int N, double
maz_threshold, Scheduler s, List(App) apps)
w « getLastWorkloads()
Ar(h) < predict(ty, w)
for conf <+~ 1 to N do
allocation + s.allocate(apps, con f)
cpulUsages — estimate(allocation, A (h))
if Vo € cpuUsages : © < max_threshold then
return conf

return N

5.2. Implementing PASCAL in Storm

In this paper we consider Apache Storm [53] as refer-
ence dSPS. In Storm, operators are referred to as compo-
nents and the application is called topology. Source com-
ponents are called spouts, while operators that perform
computations on streams are named bolts. Spouts are usu-
ally simple wrappers for external sources of tuples, that
generate the input load for an application. At runtime,
each component is executed by a configurable number of
threads, called ezecutors (i.e., the operator instances).

A Storm cluster comprises a single master machine
(Nimbus), which coordinates a number of slave machines
(Supervisors). Each Supervisor provides a fixed number

of Java processes where to run executors, namely work-
ers. Each worker can only run the executors of a single
topology, and represents a service instance in our system
model. As a rule of thumb, each topology should use a sin-
gle worker per Supervisor in order to avoid the overhead of
inter-process communication. With reference to our sys-
tem model, the nodes are the Supervisors. The Nimbus
can dynamically vary the number of active workers for
a topology through a rebalance operation, which corre-
sponds to trigger scaling actions in our system model. We
consider the joining/decommissioning_time as the period
required for the Nimbus to change the state of the work-
ers during a rebalance operation. In Storm this operation
takes a few seconds, hence we can consider TPy, ~ RP;,,
thus we consider those periods as negligible?.

With respect to our system model, tuple rate acked
over time corresponds to the throughput, and the time it
takes for a tuple from its emission by a spout to its acking
by some bolt represents the response time.

Figure 4 shows the integration of PASCAL within a
Storm cluster. In the following paragraphs we will describe
the implementations of each subsystem.

+ o Executors

7777777777777777777777777777 § Monitorin:
perfo.-manceh1 PASCAL agents g Worker process
& workload «~— gservice

rrrrrrrrr m%d,e,l,,,,,,,,j Profiler

,,,,,,,,,,,,, | Y

| PASCAL

AutoScaIErmr < : L]
—
iScheduler| “—
T |/ Slots

Worker Nodes

Storm Nimbus Master Node

Figure 4: PASCAL integrated within Storm. The node on the left
represent the cluster coordinator which executes the Storm Nimbus
node, the metric DB and the PASCAL autoscaling system. The blue
square represents the PASCAL Service Profiler which acts in the
profiling phase and produces the performance and workload mod-
els. The red square represents instead the modules involved in the
autoscaling phase, thus the PASCAL AutoScaler and the Nimbus
which triggers the scaling actions. The nodes on the right highlights
the internal module of a Storm Worker.

Service Monitor Implementation

The Service Monitor comprises a set of monitoring agents,
which are threads running inside workers (see Figure 4)
and monitoring several executor metrics, by leveraging a
metrics framework provided by Storm itself [54]. Moni-
tored metrics are (i) the rate of tuples emitted by spouts
(to monitor the workload), (ii) the rate of tuples received
by bolts (to monitor inter-operator traffic), (iii) the CPU
usage of the executors, and (iv) the CPU usage of the
workers. All these metrics are periodically stored into an

4We experimentally evaluated those periods in Section 7.1.

Apache Derby DB [55] used as a metric DB hosted on the
Nimbus.

Service Profiler Implementation

The Service Profiler is implemented through a series of
Java modules which realise its sub-modules. They access
the metric DB, extract the required dataset and produce
their output as Java objects serialized to files, which actu-
ally are the performance model and the workload model.

The SP computes the selectivities for each stream by
averaging collected selectivities over time. This is moti-
vated by the initial assumption that selectivities remain
stable during the execution, as also confirmed by the em-
pirical results shown in Section 7.1.

The OCUP and OP use Artificial Neural Networks °
(ANNSs) as output functions. Each ANN is trained with
the dataset resulting from the profiling phase. The OCUP
employs an ANN for each operator; each one has one input
node for the input rate, and an output node for the esti-
mated corresponding CPU usage. In a similar way, the OP
uses a single input node with the aggregated sum of CPU
usages of operator instances and a single output node for
the estimation of the worker node CPU usage.

The ILP instead employs an ANN which combines a
timeseries approach with a date approach, so it takes as
input (i) features extracted from the current timestamp
and (ii) the input loads seen in the last w minutes. The
number of hidden layers and neurons in each layer is tuned
empirically (see Section 7). The outputs of the ANN are
the input loads predicted for each next minute up to the
prediction horizon. With the aim of over-provisioning over
the next prediction horizon, the function learned by the
ILP simply returns the maximum of these predicted input
loads. We use Encog [56] to configure all profilers’” ANNs.

Auto-Scaler Implementation

The AutoScaler is implemented as a Java library to
be imported by the Nimbus and it is invoked periodically
with period equals to the chosen assessment period. In
this way, assessments are executed at the right frequency
and have access to all the required information about allo-
cations. The Workload Forecaster module loads the ANN
previously serialised by the ILP and the workload model
to compute the future workload.

The Performance Estimator loads the performance
model i.e. the profiles produced by the Service Profiler
(selectivities, OCUP ANN and OP ANN) to estimate the
performance.

The Decider implements the scheduler interface and
executes Algorithm 1. It wraps the default scheduler of
Storm and uses it to simulate allocations when checking
the effectiveness of configurations. In case the chosen con-
figuration is different from the current one, it issues a re-

5We chose Feed-Forward ANNs after an intensive empirical eval-
uation of different estimators, such as Recurrent Neural Networks,
Elman and Jordan.

balance operation through the Nimbus API to apply the
new configuration.

6. PASCAL for Distributed Datastores

Node 1 Node 2 Node 3
n A F B A C B
Fo®
e S * y/
D E F
” Gs B D C E D
Node 4 Node 5 Node 6

Figure 5: Representation of the datastore model. The ring on the
left represents different chunk of data, and on the right is depicted
how nodes handle those data. The node #5 represents a new node
joining the cluster which receive the blue parts of data from nodes

#1, #3 and #4.

We consider a key-value datastore, distributed over a
cluster of nodes Each node stores a fraction of the whole
data, managed by the datastore instance (i.e., service in-
stance) running on that node. The amount of stored data
is balanced among nodes. Each value associated to a key
is replicated among nodes with a given replication fac-
tor a. Scaling operations lead to data migration. Fol-
lowing a scale-out operation, joining datastore instances
receive from already active instances the portions of data
they will have to managed once the scale-out will com-
plete. Contrarily, as a result of a scale-in operation, de-
commissioning datastore instances transfer their data to
remaining instances. Figure 5 presents an example of such
kind of datastore with the new Node #5 which obtains
chunk of data from other active nodes.

We refer respectively to T,qq(data) and Tep, (data) as
the time to add and to remove a node according to the
amount of data stored in the database.

In many real distributed datastores, adding/removing
more nodes per time is not recommended because it may
lead to consistency issue, especially for system based
on eventual consistency, thus the best practice is to
add/remove one node per time [57], hence we can con-
sider Tsq ~ Toqajrem(data) - 2 to be the time of a scaling
action that involves z service instances. Those reconfig-
uration periods, contrarily to stream processing scenario,
are not negligible, hence we cannot consider T'P;, ~ RP;,.

We consider the distributed datastore able to sustain
a workload if it maintains a throughput almost equal to
the input rate, with not diverging response times. Once
a cluster is no more able to sustain a workload, response
times start diverging and the throughput begins to fall be-
hind the input rate. Thus, with reference to our system

10

model, we consider a distributed datastore to be in over-
loaded state if it is unable to sustain an input rate with
response times under a certain max_threshold, in normal
state otherwise.

6.1. Auto-scaling Solution Outline

Let us recall that the main challenge in auto-scaling lies
in correctly anticipating the TP in order to make the RP
matches the DP. This issue is even more important when
dealing with datastore where the time required to acti-
vate/deactivate a service instance is non-negligible due to
the potential huge amount of data that must be transferred
to preserve consistency.

Algorithm 2 AutoScaling Algorithm for Datastore
1: function GETMINCONFIG(int M, int curr, int data)

2: conf < curr
3: w < getLastWorkloads()
> start scale-out evaluation
4: fori < 0to N —curr—1do
5: h < Thqq(data) - N — curr —i
6: th < thow + h
7: Af(h) = predict(ty, w)
8: Xmaz(conf) < estimate(con f)
9: while A;(h) > X,naz(conf) - p do
10: conf < conf +1
11: if conf == curr + M then
12: return conf < curr + M
13: else if conf == N — curr — i then
14: return conf
15: else
16: Xmaz(conf) < estimate(conf)
17: conf < curr
> start scale-in evaluation
18: for : <~ 0 to curr —a—1do
19: h < Tyem(data) - curr — o — i
20: th < thow + h
21: Ar(h) < predict(ty, w)
22: Xmaz(conf) < estimate(conf)
23: while Af(h) < Xpasz(conf) - p do
24: conf < conf —1
25: if conf == curr — M then
26: return conf < curr — M
27 else if conf == curr — a — i then
28: return conf
29: else
30: Xmaz(conf) < estimate(conf)
31 conf < curr
32: return curr > no scaling action necessary

Suppose that curr + x (or curr — x) service instances
are required to handle a predicted input rate, where curr
is the current number of provisioned service instances. It
is therefore necessary to provision (or release) = service
instances by means of a proper scaling action which takes a

time Tsq ~ Tyaqa(data) - z. In order to make RPs, ~ DPs,,
our idea is to set the prediction horizon h = Tk,.

During the first phase (profiling), PASCAL profiles the
durations of the scaling actions in order to pull out a time
table which stores the amount of time necessary to add
or remove a service instance (respectively T,q4(data) and
Tyrem(data)) according to the amount of data stored. PAS-
CAL profiles also the maximum sustainable throughput
Xmaz(conf) for each configuration with the related re-
sponse times to pull out a performance table containing
for each configuration (i) the input rate, (ii) the through-
put and (iii) the response time.

In the second phase (auto-scaling) the Au-
toScaler invokes continuously over time the function
getMinConfig() reported in Algorithm 2. Each configu-
ration assessment consists of two main parts: a scale-out
evaluation followed by a scale-in evaluation.

In each assessment, knowing the period T,4q(data)
needed to add a service instance, we are able to compute
the duration of the entire scaling-action T, to add a cer-
tain number of service instances.

As mentioned before we want impose h = Ty, thus we
consider t; as the future time instant up to which fore-
casting the workload Af(h), i.e. the maximum forecasted
workload during the next horizon h.

Then the Performance Estimator by relying on the per-
formance table, is able to estimate the maximum through-
put sustainable with the current configuration, so we de-
cide whether a scale-out action is needed, otherwise we
evaluate in the same way a scale-in action.

prediction # 1

A

time to
add 1server © o e

time to add max-1 servers

time to add max servers

Figure 6: Representation of a scaling assessment step of for both
scale-out and scale-in evaluation of the datastore solution Auto-
Scaling algorithm.

Note that we introduced a parameter p € (0, 1] refer-
ring to a max percentage of achievable maximum through-
put. We call Xg(conf) = Xpaz(conf) - p the bounded
throughput of a configuration with conf service instances.
The p parameter can be set by the user according to a de-
sired level of performance; in our solution we set p accord-
ing to a maximum desiderata response time (see Section
7.2 for more details.

11

Furthermore, introducing bounds on the maximum
achievable throughput of each configuration allows the
cluster nodes work under their maximum processing ca-
pability, so as to handle (within a certain extent) unex-
pected workload spikes whose intensity is beyond what
can be predicted by the Workload Forecaster.

The configuration assessment period very is low so as
to execute the algorithm very frequently and maximize
its efficiency in founding the right point in time to trig-
ger scaling actions. However, to avoid oscillations, after
a scaling action the Decider execution is suspended until
the ongoing reconfiguration process terminates.

We denote the minimum and maximum number of ser-
vice instances that can be provisioned respectively as «
and N ¢ but note that a single scaling action is limited
to M < N for scalability reason, indeed without a limit,
a cluster with hundreds of nodes should provide too far
predictions. M can be set according to how far the user
wants to over-provide: big values of M allow to handle
workload with high variations at the cost of higher over-
provisioning; on the contrary, low values of M allow more
accuracy in predictions, .i.e., lower over-provisioning val-
ues at the cost of some possible under-provisioning if are
not set enough new resources.

Figure 6 provides a graphical representation of a con-
figuration assessment step of proposed auto-scaling algo-
rithm; it is possible to see that the order of predictions is
from the the farthest configuration (i.e. the one in which
we need to add/remove M nodes) to the closest (i.e. the
one in which we need to add/remove only 1 node) because
the more servers are required to be added or removed in a
single scaling action, the more time is required for the ex-
ecution of such scaling action to complete. Therefore, it is
required that adding or removing x servers is evaluated be-
fore the necessity of adding or removing (z—1) servers, and
so on. Specifically in each configuration assessment we first
set the current configuration (curr) in a variable (conf),
then we get the last observed input workload, stored in
the metric DB, through the function getLastWorkload ()
(lines 2 and 3 of Algorithm 2).

Then we start evaluating whether a scale-out action is
needed (lines 4-16), therefore iteratively from the farthest
(i.e. adding maximum M nodes) to the closest scaling
action (i.e. 1 node), we compute the horizon h by imposing
the time needed to add i service instances, thus we find
out the related time instant ¢; as the current time ¢,,0q
summed to the horizon h.

So, we forecast the maximum input load Af(h) dur-
ing the next horizon h through the predict() primitive
exposed by the Workload Forecaster and we estimate the
maximum throughput sustainable with such a configura-
tion through the primitive estimate() provided by the
Performance Estimator (lines 7-8).

6We cannot provide less service instance than the replication fac-
tor as well we cannot provide more instance than the cluster size
having one service instance per node.

Then, we iteratively increase the number of service in-
stances as long as we find out a configuration such that
the estimation X4, (conf)-p is lower than the forecasted
input load Af(h). If the new configuration needs M or
more nodes the algorithm return curr+ M nodes, being M
the maximum number of nodes foe a scaling action (line
11-12); if instead the new configuration requires exactly
N — curr — i nodes, it is returned as it is the minimum
configuration to handle the expected workload in the fu-
ture horizon h which require the horizon h to be effectively
set (line 13-14). Otherwise no scale-out action is needed
with the current horizon h.

If no scale-out action is necessary for any h is evaluated
in a similar way if a scale-in action is necessary (lines 18-
31). The main difference here is that we cannot neither
scale-in more than M nodes nor scale under «, i.e. the
replication factor, as it is the minimum number of nodes
we can have in a configuration. Indeed, having less than
«a nodes implies that we cannot have each shard of data
replicated among a sufficient number of nodes.

Finally, if neither a scale-out nor a scale-in action is
necessary is returned the current configuration (line 32).

6.2. Implementing PASCAL in Cassandra

In this paper we considered Cassandra as an exam-
ple of a typical distributed datastore [58]. Cassandra is
a NoSQL column-oriented datastore. In Cassandra a col-
umn represents the smallest unit of storage composed by a
unique name (key), a value and a time-stamp. Data stored
in the keyspace is sharded among the nodes which make
up the Cassandra cluster. Each node runs a Cassandra in-
stance that, with reference to our system model, is the ser-
vice instance. In order to provide fault-tolerance and high
availability, Cassandra replicates records throughout the
cluster by a user-set replication factor. Cassandra offers
configurable consistency levels for each single operation,
providing the flexibility of trading-off latency and consis-
tency (ZERO, ONE, QUORUM, ALL or ANY). Cassan-
dra clusters can be easily scaled horizontally achieving a
linear increase of performance through the nodetool util-
ity [58]. During a scaling action new nodes become active
after transitioning through the joining (scale-out) and de-
commissioning (scale-in) states. At the end of this phase
a cleanup operation must be invoked to clean up keyspaces
and partition keys no longer belonging the nodes.

Service Monitor Implementation. The Service Mon-
itor for Cassandra is made up of three sub-modules that
read throughput and response times. To read CPU val-
ues, we implemented a JMX (Java Management Exten-
sion) client that gathers samples from Cassandra nodes.
To compute the throughput we implemented a module
that leverages the cassandra.metrics.ClientRequest
MBean. Finally, to collect the response times we imple-
mented a module that uses the DataStax Java Driver, to
interact with Cassandra keeping track of latencies.

12

Service Profiler Implementation. The Service Pro-
filer is implemented with java modules that collect through
the Service Monitor the metrics of interest mentioned in
the previous paragraph. The output performance model
is composed by two tables mentioned in the previous sub-
section: the performance table and the time table. Those
tables are serialized on a file that the Performance Esti-
mator will use. From the time table the maximum values
of adding and removing nodes are set as reference Ty,4q
and Ty, for the reference dataset of 1 GB used. Other
T,qdjrem (data) for different data are estimated through re-
gression on the time table.

AutoScaler Implementation. The Workload Fore-
caster is implemented as explained in Section 5.2. Before
training the ANN, the trace output from the ILP needs to
be filtered to smooth any rapid fluctuations; this is per-
formed by extracting the 95" percentile values related to
trace subsets spanning a time interval of one hour each. In
such a way we obtained an approzimated workload trace
(AWT) that better represents the service usage pattern
and such an AWT was then used as input training set for
the ANN (more details discussed in Section 7.2.1).

The Performance Estimator and the Decider are Java
modules that implement respectively the estimate() and
getMinConfig() primitives. The Performance Estimator
loads the serialized files containing the two tables output
from the Service Profiler to make the estimation that the
Decider, by implementing the algorithm 2, will use to com-
pute the configuration.

The Configuration Manager is a java module that
takes a scaling action (scale_out|scale_in, z) and issues the
nodetool command to start/stop z nodes. The nodes are
activated/deactivated sequentially once the redistribution
during the joining/decommision phase ends.

7. Experimental Evaluation

Testbed. We evaluated the effectiveness of both pro-
posed PASCAL prototypes in a computing system com-
posed by four IBM HS22 blade servers, each equipped
with two quad-core Intel Xeon X5560 2.28 GHz CPUs,
24 GB of RAM running VMware ESXi v5.1.0 type-1 hy-
pervisor. We deployed Storm and Cassandra nodes on
dedicated VMs deployed on these blades. Load was gener-
ated through dedicated VMs and an external Dell Pow-
erEdge T620 server equipped with a 8-core Intel Xeon
CPU E5-2640 v2 2.00GHz, 32 GB of RAM running Linux
Ubuntu 12.04 Server x86_64. Please note that the very
same tests executed in public-cloud environments with-
out resource reservation may possibly produce different
results, as public-cloud compute instances may suffer from
multiple users competing for limited shared resources, thus
impairing the ability of PASCAL to correctly provision
running applications.

Workload Trace. We evaluated PASCAL for the two
case studies by using both synthetic and real traces to

real trace

eeeeepredicted values

Figure 7: Accuracy of ANN prediction for the tested datasets.

generate the input load. As synthetic traces we employed
(i) a square wave, (ii) a sine function and (iii) a sawtooth
wave to mimic abrupt but predictable load changes. As a
real trace we used a subset of a 10 GB Twitter trace with
3 months of tweets captured during the European Parlia-
ment election round of 2014 from March to May in Italy.
To make tests with the real trace practical, we selected
a subset ranging the 41 most intensive consecutive days
having high load variations, and then applied a 60:1 time-
compression factor to allow the replay of the real trace
with reasonable timing. For the profiling phase we instead
injected for 30 minutes a stair-shaped curve.

Artificial Neural Network Setup. To setup the Work-
load Forecaster ANN we followed common empirical rules
presented in [47]. The final network is composed by 4 input
nodes linked to time features (day, day of the week, month,
hour) and 10 input nodes for the input rates measured
during the last 10 scaling assessments. We empirically set
a single hidden layer with 24 neurons and 5 output nodes
representing the predicted workload intensity at the future
time during the next forecast horizon h7. We trained the
ANN with the Resilient Backpropagation [59] algorithm®
and a k-cross validation with & = 10 to avoid overfitting.
We normalized all data with min-max normalization [0; 1].
Figure 7 qualitatively shows the ability of the Workload
Forecaster to predict both synthetic (sawtooth, sine and
square synthetic loads in the three first plots) and real
trace curves (twitter load in the last plot) providing an
average Mean Square Error equal to 3%. Having a fine
accuracy in load prediction is fundamental to accurately
estimate system performance.

Performance Degradation Evaluation. To effectively
assess PASCAL, we evaluate how performance metrics, i.e.
throughput and response time, degrade over time, in order
to keep as low as possible such performance degradations
due to under-provisioning.

"The horizon h is discussed in Setion 7.

8We choice RPROP as it can set the weights of the neurons
quickly and speed up the learning phase; besides, it is more robust
against the choice of initial parameters, so it can relieve the user to
the effort of accurately tuning the learning rate as he would need to
do with the normal Backpropagation [59, 60].

13

CPU Max Threshold | Reward
0.60 0.53
0.65 0.57
0.70 0.62
0.75 0.66
0.80 0.71
0.85 0.65
0.90 0.43

Table 1: Reward of Q-Learning for CPU max_threshold

7.1. BEwvaluation of PASCAL on Storm
7.1.1. Environement

Storm Cluster. We distributed the Storm framework on
a cluster of 5 VMs, each configured with 4 CPU cores,
4 GBs of RAM, and runnig Linux Ubuntu 14.04 Server
x86_64. One was dedicated to hosting the Nimbus process
and the Apache Derby DB, while the remaining 4 VMs
hosted Storm’s nodes.

Load Generation. One further VM was used for the
Data Driver process, in charge of generating the input
load. This VM was equipped with 2 CPU cores and 4
GBs of RAM. The Data Driver is Java process which gen-
erates tuples according to a given dataset, and sends them
to a Java Messaging Service (JMS) queue. We setup such
a queue with a HornetQ server [61]. The spouts are con-
nected to such JMS queue to get tuples to be injected into
the Storm’s topology.

Reference Application. To evaluate PASCAL on Storm
we implemented as a reference topology the Twitter
Rolling-Top-K-Words. The topology is a chain of oper-
ators composed by a TweetReader spout that read tweets
from the JMS queue and forwards them towards the subse-
quent operators i.e. a WordGenerator bolt, a Filter bolt,
a Counter bolt and, finally, two Ranker bolts [62]. A fur-
ther bolt, namely the __acker, allows to compute response
time and throughput of every component. The reference
topology is depicted in Figure 8, where is also possible to
see the integration with the Data Driver process and the
JMS queue.

TweetReader
(spout)

HornetQ JMS queue

Data Driver

[Stopword
Filter

J/Word /

' Counter

Jmterme-
| diate
_ Ranker

Figure 8: Twitter Rolling-Top-K-Words composed by 1 spout (TweetReader) and 6 bolts (WordGenerator, StopwordFilter, Counter, Inter-
mediateRanker, FinalRanker, __acker). The topology is fed with tweets generated by the Data Driver process according to an input dataset.
Tuples output from the Data Driver are generated so according a real workload curve and are enqueued in the JMS queue. Spout instances
read those tuples and generate the stream towards the other bolts of the topology. Note that all Storm components, i.e. both spout and
bolts, are parallelised and distributed among worker nodes. The number of such worker nodes change over time according to the PASCAL

autoscaling algorithm.

Parameter Setup. The Forecaster maintains input rate
samples in a sliding window spanning the last 10 min-
utes, a sample for each minute; it uses these values as
ANN time-series input to compute the prediction of the
next temporal horizon. We empirically set 5 output nodes
representing the predicted workload intensity at the fu-
ture time during the next 5 minutes; thus, the fore-
cast horizon h = 5 as described in Section 5.1. To au-
tomatically set the max_threshold, we used a solution
based on Reinforcement Learning. Specifically, we em-
ployed Q-Learning [63] during the profiling phase which
starts without knowledge of the application behaviour. We
propose a Reward Function R(threshold) which aims to
maximize the node usage, namely it looks for the maxi-
mum CPU threshold corresponding to the lowest through-
put degradation, i.e., R(cpu-maz_thr) = cpu-max_thr —
throughput_degradation. The throughput_degradation is
defined as 7P “t’ll.ospdu;fﬁ) Taodughp utl Table 1 presents the re-
wards and is possible to see as the max reward corresponds
to a threshold equals to 0.8, i.e. 80% CPU usage.

7.1.2. Load Imbalance Evaluation

This Section gives evidence of the possibility of load
imbalance among worker nodes in a dSPS. Such a sit-
uation can derive from the way the scheduler allocates
operators to workers nodes ?. We carried out an eval-
uation in Storm by injecting a sinusoidal trace against
3 worker nodes where the reference application was de-
ployed. As previously described, this topology has 4 op-
erator instances for each operator, thus, for example, 2
worker nodes will be allocated one spout instance each,
while the other worker node will host 2 spout instances,
which is likely to lead to load imbalances.

91t is indeed possible to achieve load balancing by employing ap-
propriate scheduling policies, but this is a different research problem
not in the scope of this paper.

14

time (sec)

—Worker 1 —Worker 2

Figure 9: Comparison between the CPU load of two worker nodes
hosting a different number of operator instances. Worker 1 has 1
spout instance, while Worker 2 has 2 spout instances. This leads to
a load imbalance between the two worker nodes.

Figure 9 shows such a situation by comparing the load
of the worker node #1 (with 1 spout instance) and the
worker node #2 (which has instead 2 spout instances).
It is possible to observe that in some periods the load of
worker #2 is almost twice the load of the worker #1.

The next subsection shows how by aggregating the load
per worker node with the OCUP and OP modules we are
able to cope with such a load imbalance.

7.1.8. Performance Estimator Accuracy

The accuracy of the estimations provided by the Per-
formance Estimator depends in turn on the accuracy of the
profiles learned by the ILP, the SP, the OCUP, and the OP.
Table 2 shows average and standard deviation of the selec-
tivities observed for the streams of the reference topology,
during the profiling phase. Reported standard deviations

Table 2: Average selectivity of reference topology edges with related

standard deviation

| Edge | Avg. [o* |
WordGenerator - StopWordFilter 17.86 | 0.54
StopWordFilter - Counter 0.68 | 0.02
Counter - IntermediateRanker 0.41 0.34
IntermediateRanker - FinalRanker | 0.01 0.00

are very small, which backups the implementation choice
for the SP, described in Section 5, of modeling selectivities
with constant values. The stream Counter - Intermediat-
eRanker is the only one having a large standard deviation.
This is due to the semantics of the Counter bolt; indeed, it
periodically sends tuples downstream to the Intermediat-
eRanker bolt, independently of its input rate. The impact
on the estimation is negligible, because at runtime the in-
put rate of the bolts downstream the Counter bolt is very
low and produces limited CPU usage.

1E+10
9E+09 -=-counter real ~-counter estimated
':E 8E+09 —filter real «filter estimated
5 7E+09 A "y
G 6E+09 KN o
= SE+09 / AN L/ \
S 4E+09 A\ W, .
© 3E+09 . . "/ x
Soer09 | [. ,o\ A . ;\
© 1E+09 \ \ /
0 |4 v %o
1 6 11 16 21
time (min)

Figure 10: Comparison between real and estimated total CPU usage
(in Hz) for all the instances of Counter and StopWordFilter operators

The accuracy of the OCUP is related to the estimations
of CPU usage for an operator instance given its input rate.
Such accuracy can be assessed by comparing these estima-
tions against the real CPU usage. Figure 10 reports the
real CPU usage over time of the instances of two opera-
tors, aggregated by operator, and the correspondent esti-
mations provided by the OCUP. In this test, we injected
a sinusoidal workload for 25 minutes. As the figure shows,
the estimations faithfully reflect the actual load.

The OP allows to estimate the CPU usage of a node as
a function of the sum of the CPU usage of all the operator
instances sharing the same CPU. In this way it is possible
to take into account the overhead due to the SPS, such
as tuple dispatching and thread management. Figure 11
depicts the profiling of such overhead in a node of our
cluster. Such profiles provide the remaining information
needed to accurately predict the total CPU usage of a
node.

7.1.4. Reconfiguration Overhead
The overhead introduced by PASCAL in Storm at run-
time is negligible. Metrics about CPU usage and traf-

15

100 &
90
80 ar
70 P
60 &

50 At

40 gl
30 A
20 x5

10 o

o+ 44—+

20 30 40 50 60 70 80 90
summed executors CPU (%)

worker CPU (%)
>

99

Figure 11: Node CPU usage as a function of the sum of the CPU
usage of all the executors running in such node

0,7

06 Tos

0,5 ~.

0,4 .

0,3 .

0,2

0,1
0

throughput degradation

1 2 3 4 5 6
reconfiguration period (min)

Figure 12: Throughput degradation as a function of the assessment
period

fic are collected every 10 seconds, and their monitoring
is extremely light. The bandwidth consumption for data
collection is a few KBs, and depends on the number of
operator instances, while it is independent from the input
load. The real-time computation of the AutoScaler is ex-
tremely lightweight and consumes an insignificant amount
of CPU periodically. When the configuration has to be
changed, the throughput of an application degrades due
to a rebalance operation which stops the topology, allo-
cates the components on a different set of available nodes
and re-starts the topology. Meanwhile, the input queue ac-
cumulates tuples and, as soon as the topology start again,
the spouts have to drain such a queue. Reconfigurations
have a non negligible cost, so we can set the maximum
frequency they occur by tuning the assessment period. To
objectively measure the reconfiguration overhead, we used
the reference topology with an over-provisioned configura-
tion injected by 9 minutes of sinusoidal input load. We
computed the throughput degradation for different assess-
ment periods. As expected, Figure 12 clearly shows the
throughput degradation gets larger as the assessment pe-
riod is decreased.

By comparing these results with the quasi-zero
throughput degradation obtained without reconfigurations
and in an over-provisioned setting, it can be noted that re-

configuration input rate configuration input rate
. (# nodes) (K tuple/sec) g (#nodes) (K tuple/sec)
-2 -2
4 joerba¥ieeenenl 4 ! sereng sl areney {
: - by - 1,5
.:. 3 1’5 R ST S R —T e i
2 pestendt -1 2 iL
- 05 1 {L 0,5
0 0 0 ~ 0
L B I I I e R T e T e B e
FPBRIILS ® 38R
L B B o B i
time (sec) time (sec)
PASCAL iZreactive

(a) Sawtooth wave (b) Sine Wave

configuration input rate configuration input rate
5 (# nodes) (K tuple/sec) g (# nodes) (K tuple/sec)
-2 2
4 4 s $ed
- 1,5 P4 1,5
3 e P YR LR 31 3 E E
2| g 2 | Pl
1 pod - 0,5 1 LA : 1 0,5
|
0! 0 0 Kot o
R B I I I e I s o e b D e D e e S
[ejololololoNe] [olololo]olololele]
MOOAONLNOO MNOANLNCO <IN
=N NN AN
time (sec) time (sec)
input rate

(¢) Square Wave (d) Twitter Trace

Figure 13: Comparison between PASCAL and a reactive solution in term of used nodes while injected with different workload traces.

10 50
9 14
= — — 12 |
g 8 = < 40
T, |z % 30
=] (] H
5 - £ 8 °
7 ; =
L4 — w 6 H - 20 —m—F— 88 =8
Q. © [J]
23 8 41 S
2 — szi] “10 —SE—SE—E—H
: il I il
sawtooth sin square twitter sawtooth sin square twitter sawtooth sin square twitter
wave wave trace wave wave trace wave wave trace
B over-provisioning PASCAL reactive

Figure 14: Auto-scaling test overall results for the different traces in term of tuples failed, average latency and saved nodes.

configuration overhead is significant. Nevertheless, recon-
figurations are required when input load changes to some
extent, otherwise application performance would become
even worse. The assessment period has to be tuned accord-
ing to input load variability and throughput degradation
tolerance. In our tests, we set the assessment period to 5
minute i.e. where the throughput degradation settles.

7.1.5. Auto-scaling Test Results

We executed several tests on the four traces described
in Section 7. We compared the performances of PASCAL
with an over-provisioned configuration which is the min-
imum one able to sustain all injected workloads. In our
experimentation such a configuration was composed by 4
nodes.

Figure 13(a) shows a workload generated with a saw-
tooth wave with a start rate of 500 event/sec that increases
linearly each minute up to 1800 event/sec. On the x-axis
we show the time in seconds, split in intervals of 300 sec-
onds each, that correspond to our forecast horizon and
assessment period; therefore, each tick marks a reconfigu-
ration assessment. It is possible to note, between seconds
1-600, that PASCAL starts with a configuration of 1 node
and quickly switches to a configuration with 4 nodes at

16

the first assessment (second 300): this is caused by an in-
put load increase forecasted for the next 5 minutes (up
to second 600). PASCAL thus proactively scales-out the
configuration before the system overloads.

The reactive auto-scaler, instead, keeps a configuration
with 2 nodes because it is not noticing neither overload-
ing nor underloading. At the second assessment (second
600) PASCAL forecasts the traffic in the next 5 minutes
and notices that the input rate will decrease, so switches
to a configuration with 3 nodes. Actually, the input rate
remains high for other 2 minutes, and then decreases sud-
denly afterward. The reactive auto-scaler instead notices
another overloading situation, so switches to a configu-
ration with 3 nodes. In the next two assessments (sec-
onds 900 and 1200), PASCAL keeps the configuration to
3 nodes and then switches to 4 nodes, while the reactive
auto-scaler moves to a configuration with 4 nodes at once
because it still notices overloading; this is due to the fact
that, being the cluster overloaded, it accumulated events
to handle from previous periods. So even if in the period
600-900 PASCAL and the reactive auto-scaler have the
same configuration (3 nodes), PASCAL is able to handle
all the workload, while the reactive auto-scaler does not,
thus incurring some data losses. Overall results show how

PASCAL uses less resources than the reactive auto-scaler
with 21.42% of saved nodes against 17.85% , providing
a smaller and more stable average latency with 1259ms
against 2944ms of the reactive approach and without tu-
ples failure against a 1% of the reactive one. The over-
provisioning approach has instead an average latency lower
than the reactive auto-scaler and very similar to PASCAL,
equals to 1478ms with a failure rate equals to zero.

Figure 13(b) shows the test on a sinusoidal wave. PAS-
CAL and the reactive auto-scaler provide similar results in
term of average latency with 1638ms for PASCAL against
the 1370 of the reactive and in term of tuples failed as well
both with quasi-zero percentage. The over-provisioning
approach has a lower average latency with respect to both
approaches equals to 121ms and no tuples failed as well.
In term of saved nodes PASCAL saved more resources,
with a 25% of nodes against the 17.85% of the reactive
auto-scaler. This result can be easily explained as such
a variable workload is well predicted by PASCAL that is
able to save more nodes.

Figure 13(c) show the results on injected square wave.
PASCAL, being able to predict the square wave spikes,
prepares an adequate configuration in the previous assess-
ment. The average latency of PASCAL is 955 ms against
the 258 ms of the over-provisioning approach. Anyway
PASCAL saved 41.07% resources in this test. The square
wave instead resulted very difficult to handle for the reac-
tive auto-scaler that is slow to adapt to sudden spikes. The
results are: no tuples failed with PASCAL against 5.22%
of the reactive auto-scaler; lower average latency for PAS-
CAL with 995ms against 13535ms of the reactive. The
reactive solution saved more nodes with 44.07% against
the 41.07% of PASCAL, but this is because the reactive
auto-scaler is definitely not able to follow such pattern and
scaling decision is not taken properly.

Figure 13(d) shows a test on a real scenario based on
the Twitter trace mentioned before. It is possible to see
how PASCAL dynamically adapts the configuration to the
predicted input workload. Only unpredictable spikes are
a problem for PASCAL as is possible to see at seconds
2400. For instance, in the assessment at seconds 2400,
PASCAL switches the configuration from 3 nodes to 2
nodes while a spike is occurring. PASCAL ignores that
fail and keeps the configuration constant to 2 nodes. The
results in the Twitter trace show how PASCAL has an
average latency of 2284ms against the 1633ms of the over-
provisioning. In term of saved nodes, PASCAL allowed to
save 35% of nodes against 30% of the reactive.

The overall results presented in Figure 14 show how
PASCAL has comparable and acceptable performance
with respect to the over-provisioning approach in terms
of latency allowing to save up to 41% of the available re-
sources (nodes). Furthermore, all the tests showed a clear
performance gain of PASCAL with respect to a reactive
approach.

17

7.2. Evaluation of PASCAL on Cassandra

7.2.1. Environment

Cassandra Cluster. We evaluated the effectiveness of
the proposed prototype using a cluster composed by 6 Cas-
sandra 3.0 nodes, each one installed on a VM configured
with 4 CPU cores, 4 GBs of RAM, running Linux Ubuntu
14.04 Server x86_64.

Load Generation. In order to properly assess the effec-
tiveness of the PASCAL prototype, we developed a mod-
ified version of Apache JMeter [64], a workload generator
able to generate massive requests against Cassandra. To
make it generates a workload according to a real trace, we
used the Throughput Shaping Timer (TST) plugin [65],
which allows to control the rate at which client requests
are generated by defining the desired shape of the work-
load to submit towards the target system.

250

N

o

o
|

150

100

input rate (reg/sec)

50

T

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96
time (hour)
—Approximated Trace —Real Trace

Figure 15: Real Trace and Approximated Workload Trace (AWT) of
4 consecutive days. This trace is fed into the TST plugin to make
JMeter generate the workload according to the trace

We also developed a Data Driver process as a Java pro-
gram which reads the input dataset and converts it to the
AWT (described in Section 6.2) as an XML file contain-
ing tuples in a format compliant with the TST plugin.
A smooth parameter allow to generate a more realistic
smoother curve. Figure 15 shows the AWT generated from
the real trace, while in Figure 16 is possible to see the work-
load plan fed towards JMeter; Specifically it shows how a
part of AWT workload (figure on the left) is converted in a
TST compliant workload plan that JMeter will generate.
The JMeter generator is distributed over a cluster; one
node is the coordinator (master) which leads the workload
that each slave node have to generate against Cassandra
according to the XML file within the TST plugin.

The workload consists of CQL queries requesting ran-
dom keys. All the reads are executed with Consistency
Level ONE. In such a way, we are evaluating cluster perfor-
mances as if it is intended to be used by a Read-Intensive
application (see Figure 17). To generate the CQL queries
we developed a custom version of the CqlJmeter plugin
[66], by editing the code to make it generate the workload
to multiple Cassandra nodes in an asynchronous fashion
to simulate a realistic multi-user workload 1°.

10The original version of CqlJmeter plugin is synchronous, i.e., the

=T pe— jp@gc - Throughput Shaping Timer
() 15 Name: jp@gc - Throughput Shaping Timer
50
rLﬁ‘ 2 10 g o
5 F 3 15 omments:
4 20 (@ Help on this plugin v1.3.1
40 -8 5 20 Requests Per Second (RPS) Schedule
=
T
g | 6 10 Start RPS | End RPS | Duration, sec \
g3 (®) 7 15 10 10 60 i
v ; 20 20 60
L 30 .o 30 30 60
g ;V 40 40 60
p 40 40 60
72 20 20 60 S
a
% 20 { Add Row il Copy Row il Delete Row |
o
15 M Expected RPS
o
g 100
90
10 £ 80
o 70
5 § 50
5 4
" 5 30
3 20
0 2 4 6 8 10 12 14 16 18 20 ’g lg
Time [min] = 00:00:0000:02:0000:04: 00 00: 06:00 00:08:0000:10:0000: 12:00 00:14:0000:16:0000: 18:00 00:20:00
Elapsed Time

Figure 16: The left picture shows the Approximated Workload Trace (AWT) generated by the Data Driver. The picture on the right represents
the related workload plan in Jmeter.

AWT XML file

TST compliant

T T T T T T T eI T T T T T T T T T I T T T T T T |

JMeter Slave #1 c : !
ey, | 2 |
—_— | I
JMeter Slave #2 I i
— | |
JMeter Slave #3 44 Cassandra Cluster I
|

I

I

|

|

I

|

|

I

I

|

|

JMeter Slave #4 / @ @
] |

I
. |

I

I

I

JMeter Slave #5

JMeter Master

Figure 17: Integration of JMeter with the Cassandra cluster

60000 60000

50000 - 50000 -
2 2
$ 40000 - £ 40000
T g
<=-30000 - ;30000 8
Q 2
" o
+= 20000 - += 20000 -
2 2 v}'ulv bt ol
3 £
= 10000 - 10000 -

0 \ \ \ \ . . . : . \ 0 \ \ \ \ . . : :
0 60 120 180 240 300 360 420 480 540 600 0 60 120 180 240 300 360 420 480
time (sec) time (sec)
—tot throughput —node throughput —tot throughput —node throughput
Figure 18: Joining impact on throughout when input rate is 50K rps Figure 19: Decommission impact on throughout when input rate is
50K rps

workload generator client waits to receive a response before injecting for benchmarking scopes and not for simulating realistic multi-user
the following request. This is because the plugin has been designed behaviour.

18

1200

1000
£ 800
]
S 600
(2]
ol
T 400
[a)
200
0 | || L L
3nodes 4nodes 5nodes 6 nodes
Configuration
Emnode 1 node 2 ®mnode 3
Enode 4 mnode 5 ®node 6

Figure 20: Distribution of 1.0 GB dataset stored with replication
factor 3. By increasing nodes in the configuration, data are almost
equally sharded among available nodes.

Reference Dataset. We created a Cassandra keyspace
with replication factor o = 3 ! containing a column family
with 11 columns; the first column is the primary key, while
the other 10 columns contain random text strings of 20
characters for each field. The full dataset contained 1GB
of data. Since we configured the keyspace with o = 3, all
experiments had a minimum number of nodes equals to 3
which have exactly the same data. By adding nodes, the
1GB of data will be sharded among the available nodes,
and from Figure 20 is possible to see how the amount of
data tends to fairly distribute over the nodes.

Parameters Setup. The Auto-Scaler prototype was con-
figured with the following parameters indicating the mini-
mum and maximum system configurations: a = 3, M = 6,
thus four possible system configurations were tested i.e. 3,
4, 5 and 6 nodes. In Figure 21 is represented the maxi-
mum sustainable throughput for each configurations with
the related response time. These values represent the per-
formance model output from the Service Profiler and we
make use of it to properly set the bounded throughput.
Specifically, the parameter p, i.e. the maz_threshold, is
set to 0.7. It means that each configuration is allowed to
serve requests at a bounded throughput corresponding to
the 70% of their maximum. Such value came out by the
heuristic of limiting each configuration to a throughput
such that average response times over this value start di-
verging with a high standard deviation. In our setting this
response time is 4.5 ms. Maximum and bounded through-
put with the obtained p are reported in Table 3.

UThis is the common value to protect against data loss due to
single machine failure once the data has been persisted to at least
two machines in modern distributed datastore as recommended for
example by DataStax for Cassandra [67], by Apache for HDFS [68]
or Amazon for Dynamo [69].

19

Table 3: Maximum and bounded throughputs with 70% threshold

conf Xmaz(conf) (tps) Xp(conf) (tps)
92476 64733
4 105869 74108
5 118036 82625
6 131406 91984

Table 4: Add and Remove Times
Config. Change Time (sec)

3to4 155
4to05 155
5to 6 155
4to03 120
5to4 145
6tob 160

7.2.2. Reconfiguration Overhead

We evaluated the time needed to switch from a configu-
ration to another. Collected times are reported in Table 4,
thus we obtain T,44 = 155 sec and T..,,, = 160 sec as maxi-
mum values. We then evaluated how the insertion/removal
of a new node in the Cassandra cluster would impact the
cluster performance, namely throughput, CPU utilization
and response times. In particular we studied how the sys-
tem behaves when, during the joining and decommisioning
process, a constant workload with input rate of 50.000 re-
quests per seconds is submitted to the cluster.

Figure 18 shows the impact of the joining process. We
set the cluster starting with 3 nodes and a fourth node is
inserted at time 120 seconds. Before and during the joining
process, each node of the cluster serves one third of the
received requests. After the joining process is completed
(second 210), the new node starts serving requests and as
result all nodes of the cluster now serve one fourth of the
received requests. The cleanup operations are triggered
60 seconds after the time instant in which the fourth node
has completed its joining process and does not impact on
the cluster throughput.

Figure 19 presents the impact of the decommission pro-
cess. We set a cluster starting with 4 nodes and the re-
moval of a node is triggered at time 120 seconds. Before
and during the decommission process, each node of the
four, serves one fourth of received requests. As soon as
the decommissioning process is completed, the removed
node stops serving user requests, and its portion of han-
dled requests is fairly redistributed among the remaining
three nodes, each one serving one third of requests without
any impact on the total throughput.

160
18]

140 . 100000 + o .
»120 m 6 — Xg(5) (I gt 141 5
g El4 § 80000 X.(4) 4 8
X100 g12 S Xg(3)] 3 8
= £ o I = c
2 80 =10 £ 60000 ;
=y g g & 1
g 6o g < 40000 |
< o 6 a
= 40 o 4 £ %/ﬁ/”

20000 — |
20 2 . demand points _!
0 A 0 (. AR R E S A
0 40 80 120 160 20 0 20 40 60 80 100 120 140 ©22828888982828988889s8888¢°
input rate (K reg/sec) input rate (K reg/sec) SEHNOMTTWwo ‘°t," "(°°,°)’ o9 dyuNmay
ime (min
—3 nodes 4 nodes —3 nodes 4 nodes
—5nodes —6 nodes —5nodes —6 nodes resource demand —prediction input rate

(a) Max Throughput (b) Response Time

(¢) Bounded Througputs

Figure 21: Performance Model obtained by profiling throughput and response times with different configurations under different input rates.
Figure 21(a) shows the max throughput from each configuration. From Figure 21(b) it is possible to see how the response times diverge over
the max sustainable input rate. We set a threshold to those throughput levels and we used the Xp(conf) (reported in Table 3) to decide
the minimum configuration. Finally, Figure 21(c) shows how we actually decide the configuration from the forecasted workload through the

performance model.

7.2.8. Test Results

As we previously discussed, in Figure 15, it is possi-
ble to see the generated AWT compared to the real input
workload over 4 consecutive days which is fed to the ANN
of the Workload Forecaster to learn it. As we evaluated
in the previous sections, due to a combination of time-
series and date features used as input nodes for the ANN,
it is possible to forecast with high accuracy different days.
Figure 21(c) reports, in more detail, the real input rate
injected into Cassandra with the related workload predic-
tion of a single day. Through the prediction and the bound
throughput values, we obtain the resource demand to fig-
ure out which is the minimum configuration able to handle
the predicted workload. The bounded throughput values
are obtained from the performance model by applying the
heuristic aforementioned on the maximum throughput and
the response time for each configuration (see respectively
Figure 21(a) and 21(b)).

To evaluate PASCAL, we compared the performance of
our system with an over-provisioning solution and another
based on average load. In Figure 22 we show how the
throughput sustained from PASCAL is the same of the
over-provisioning solution (with static 6 nodes), except for
a very short period of system reconfiguration appreciable
mostly at minute 780 and 910.

Comparing the performance in term of response times
is instead possible to see how PASCAL follows the same
behaviour of the over-provisioning solution, while the so-
lution based on the average load (with 3 nodes) after the
minute 600, starts increasing its response times. These
results are presented in Figure 23.

It is also possible to note between the minutes 390 and
525 as well as over the minute 1173, that PASCAL has a
lower response time with respect to the over-provisioning
solution. This result makes sense because PASCAL, by
using less nodes with respect the over-provisioning solu-
tion, allows to have a lower overhead due to less nodes

20

120000

100000
80000

i
,u ,u 51‘ h‘.". h \Slt !\Li A‘ h N

60000

throughput (tps)

fl [““ Hi

40000 ‘HH|“““hanHlu

20000

o

time (min)

—6 nodes PASCAL

Figure 22: Throughput comparison between 6-nodes config and PAS-
CAL

response time (ms)
w
.

2
1
0 : : : :
™M 0 M WO MO M O M M 0 M 00 M O M 0 M O M ©
© M O © N O 1 N n « 0 < N O~ MO O
1 H N M TN O N~NMNOWOOOOOOO A A NMM
. . D L B R I
time (min)
—3nodes —6 nodes PASCAL

Figure 23: Response time comparison between static configs and
PASCAL

inter-communication. Till minute 600 PASCAL provides
a configuration with 3 nodes; having a replication factor
a = 3, when a client request a data to a random node, it
always finds a node which has the requested data and it
is able to send to the client directly the response. When

scale id action TP RP DP duration A
1 +1 7242 s (603 min) 7347 s (612 min) 7380 s (615 min) 105 s 33s
2 +1 9399 s (783 min) 9492 s (791 min) 9540 s (795 min) 93 s 48 s
3 +1 10848 s (903 min) 10935 s (911 min) 10980 s (915 min) 87s 45s
4 2 13602 s (1134 min) 13833 s (1152 min) 13860 s (1155 min) 231s 27
5 1 14379 s (1198 min) 14514 s (1210 min) 14580 s (1215 min) 1355 66s

Table 5: Scaling Event Times

instead a client request a data to a random node in an
over-provisioning configuration having 6 nodes, with cer-
tain probability it will not find the data in that node and
the latter has to forward the request toward a node which
has the requested data.

From Table 5 is possible to see how every scaling action
is triggered (TP) so as to have the RP some times before
the DP. In the same table are shown the duration of the
scaling action and a value § representing how many sec-
onds before the DP the configuration is ready (i.e. RP).
As a result we can see how each scaling action concludes
30-60 seconds before the demand point so as to avoid an
excessive period of over-provisioning, and providing an ad-
equate configuration offering good performances as afore-
mentioned by Figure 22 and 23.

8. Conclusions

In this paper we introduced PASCAL, a modular archi-
tecture for auto-scaling generic distributed services. The
main contributions of the paper regard (i) the definition
of general architectural framework for enabling proactive
automatic scaling of distributed services, (ii) a solution
for proactive auto-scaling a distributed stream processing
system and (iii) a solution for proactive auto-scaling a dis-
tributed datastore. The problem we addressed in imple-
menting the architectural framework for the two diverse
case studies has been respectively (i) a solution to estimate
performance of worker nodes even with servers having un-
balanced load and (ii) a solution to choose the triggering
point of a scaling action in order to reduce as much as pos-
sible the difference between the demand point and the re-
configuration point. The modular architecture of PASCAL
allows to move from scenario to scenario simply changing
the implementation of some modules. In this work we im-
plemented two real prototypes of PASCAL, one dedicated
to Apache Storm and one dedicated to Cassandra.

The experimental results show as in both cases PAS-
CAL allows to save up to 40% of resources while handling
a variable workload with low latency and performance
comparable to the over-provisioning configuration. In the
dSPS scenario we showed how PASCAL outperforms a re-
active approach. In the datastore case study we instead
showed as the system reconfiguration anticipates some sec-
onds the demand point, reducing so the over-provisioning.

21

Furthermore, by employing only resources actually neces-
sary, the instantiation of PASCAL in specific periods per-
forms better than the over-provisioning configuration as
a lower overhead due to a less message exchange between
nodes allows to reduce the response time while ensuring
the same throughput.

9. Future Directions

To extend this work we aim to consider three main
directions: (i) a more comprehensive model for autoscal-
ing a target system, (ii) an integration with solutions to
provide fault tolerance and finally (iii) an autoscaling
benchmark able to compare elasticity and effectiveness
provided by different systems. A detailed description of
these three directions follows.

Comprehensive Model

As future directions, first we aim to design a more
complete model to estimate performances which includes
also memory and bandwidth. Furthermore, we aim
to extend the model to heterogeneous servers having
different computational capability, by building upon the
proactive approach based on Q-learning we proposed
in [70]. We also want to investigate solutions to integrate
load shedding techniques to tackle with load bottlenecks.

Fault Tolerance
Then, we aim to extend the work by integrating scaling
and fault tolerance, thus, the scaling policy will be not only
related to system overloading, but also in response to a
failure. Specifically, we are striving to integrate the failure
prediction and anomaly detection system we proposed in
[71, 72] as a further module of PASCAL interacting with
the Decider module to trigger scaling decisions.
Furthermore, to make the system tolerant to Byzan-
tine attacks, we target to decentralized the architecture
in order to provide an elastic Byzantine Fault Tolerant
approach similar to CloudBFT [73]. For the stream
processing scenario a relevant work to compare with shall
be [33], as the authors integrate fault tolerance with oper-
ators scale-out, but without proposing a real autoscaling
solution as they do not scale-in. Another relevant work
to compare with is Drizzle [74] a reactive solution which
integrates fault tolerance and scaling. For the datastore

scenario, instead, a good system to compare with can be
Replex [75], a scalable datastore which efficiently react to
failure, but not providing an autoscaling feature.

Autoscaling Benchmark

As a final direction, we aim to develop a benchmark to
evaluate autoscaling systems by standardising, for exam-
ple, models, metrics and load generation. A good work to
start with is APMT (Autoscaling Performance Measure-
ment Tool) [76], a preliminary tool proposed by Jindal et
al. to evaluate autoscaling systems. Then, to develop a
comprehensive benchmark, we aim to (i) implement the
definition suggested by Kuperberg et al. [77] to quantify
and compare elasticity, and (ii) integrate novel solutions
to detect scalability issues and bottlenecks as Wang et
al. proposed with Exalt and Tardis [78] and with semi-
automatic tools like PatternMiner [79] by extrapolating
workloads. An integration with Exalt/Tardis and Pat-
ternMiner may successfully help the autoscaling developer
to assess system scalability; indeed, those solutions allow
to estimate with good accuracy the scalability of a sys-
tem having thousands of nodes with less than 10 physical
nodes.

References

[1] T. Lorido-Botran, J. Miguel-Alonso, and J. A. Lozano, “A re-
view of auto-scaling techniques for elastic applications in cloud
environments,” Journal of Grid Computing, vol. 12, no. 4, pp.
559-592, 2014.

A. Ishii and T. Suzumura, “Elastic stream computing with
clouds,” in Cloud Computing (CLOUD), 2011 IEEE Interna-
tional Conference on. IEEE, 2011, pp. 195-202.

L. Aniello, S. Bonomi, F. Lombardi, A. Zelli, and R. Baldoni,
“An architecture for automatic scaling of replicated services,”
in Networked Systems. Springer, 2014, pp. 122-137.

W. Igbal, M. N. Dailey, D. Carrera, and P. Janecek, “Adaptive
resource provisioning for read intensive multi-tier applications
in the cloud,” Future Gener. Comput. Syst., vol. 27, no. 6, pp.
871-879, Jun. 2011.

H. Ghanbari, B. Simmons, M. Litoiu, C. Barna, and G. Iszlai,
“Optimal autoscaling in a iaas cloud,” in Proceedings of the 9th
International Conference on Autonomic Computing, ser. ICAC
’12. New York, NY, USA: ACM, 2012, pp. 173-178.

L. R. Moore, K. Bean, and T. Ellahi, “Transforming reactive
auto-scaling into proactive auto-scaling,” in Proceedings of the
3rd International Workshop on Cloud Data and Platforms, ser.
CloudDP ’13. New York, NY, USA: ACM, 2013, pp. 7-12.
A. Gandhi, P. Dube, A. Karve, A. Kochut, and L. Zhang,
“Adaptive, model-driven autoscaling for cloud applications,”
in 11th International Conference on Autonomic Computing
(ICAC 14), 2014, pp. 57-64.

R. da Rosa Righi, V. F. Rodrigues, C. A. da Costa, G. Galante,
L. C. E. de Bona, and T. Ferreto, “Autoelastic: Automatic re-
source elasticity for high performance applications in the cloud,”
IEEE Transactions on Cloud Computing, vol. 4, no. 1, pp. 6-19,
2016.

V. Setty, R. Vitenberg, G. Kreitz, G. Urdaneta, and
M. Van Steen, “Cost-effective resource allocation for de-
ploying pub/sub on cloud,” in Distributed Computing Sys-
tems (ICDCS), 2014 IEEE 3jth International Conference on.
IEEE, 2014, pp. 555-566.

M. R. Jam, L. M. Khanli, M. K. Akbari, E. Hormozi, and
M. S. Javan, “Survey on improved autoscaling in hadoop into

(9]

(10]

22

[12]

[13]

[14]

[15]

[16]

[17]

18]

[21]

22]

[23]

[24]

[25]

[26]

[27]

cloud environments,” in Information and Knowledge Technol-
ogy (IKT), 2013 5th Conference on. 1EEE, 2013, pp. 19-23.
S. Chaisiri, R. Kaewpuang, B.-S. Lee, and D. Niyato, “Cost
minimization for provisioning virtual servers in amazon elastic
compute cloud,” in 2011 IEEE 19th Annual International Sym-
posium on Modelling, Analysis, and Simulation of Computer
and Telecommunication Systems. IEEE, 2011, pp. 85-95.

F. P. Tso, K. Oikonomou, E. Kavvadia, and D. P. Pezaros,
“Scalable traffic-aware virtual machine management for cloud
data centers,” in Distributed Computing Systems (ICDCS),
2014 IEEE 34th International Conference on. IEEE, 2014,
pp. 238-247.

I. Georgievski, V. Degeler, G. A. Pagani, T. A. Nguyen, A. La-
zovik, and M. Aiello, “Optimizing energy costs for offices con-
nected to the smart grid,” IEEE Transactions on Smart Grid,
vol. 3, no. 4, pp. 2273-2285, 2012.

R. Han, L. Guo, M. Ghanem, and Y. Guo, “Lightweight re-
source scaling for cloud applications,” in Cluster, Cloud and
Grid Computing (CCGrid), 2012 12th IEEE/ACM Interna-
tional Symposium on, 2012, pp. 644-651.

M. Hasan, E. Magana, A. Clemm, L. Tucker, and S. Gudreddi,
“Integrated and autonomic cloud resource scaling,” in Network
Operations and Management Symposium (NOMS), 2012 IEEE,
2012, pp. 1327-1334.

M. Maurer, I. Brandic, and R. Sakellariou, “Enacting slas in
clouds using rules,” in Proceedings of the 17th International
Conference on Parallel Processing - Volume Part I, ser. Euro-
Par’l1l. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 455-466.
T. N. T. Blog, “Scryer: Netflix’s predictive auto
scaling engine,” http://techblog.netflix.com/2013/11/
scryer-netflixs-predictive-auto-scaling.html, November 2013.

Z. Gong, X. Gu, and J. Wilkes, “Press: Predictive elastic re-
source scaling for cloud systems,” in Network and Service Man-
agement (CNSM), 2010 International Conference on, 2010, pp.
9-16.

S. Islam, J. Keung, K. Lee, and A. Liu, “Empirical prediction
models for adaptive resource provisioning in the cloud,” Future
Gener. Comput. Syst., vol. 28, no. 1, pp. 155-162, Jan. 2012.
N. Roy, A. Dubey, and A. Gokhale, “Efficient autoscaling in
the cloud using predictive models for workload forecasting,” in
Cloud Computing (CLOUD), 2011 IEEE International Confer-
ence on, 2011, pp. 500-507.

Z. Shen, S. Subbiah, X. Gu, and J. Wilkes, “Cloudscale: Elastic
resource scaling for multi-tenant cloud systems,” in Proceedings
of the 2Nd ACM Symposium on Cloud Computing, ser. SOCC
’11. New York, NY, USA: ACM, 2011, pp. 5:1-5:14.

E. Barrett, E. Howley, and J. Duggan, “Applying reinforcement
learning towards automating resource allocation and applica-
tion scalability in the cloud,” Concurrency and Computation:
Practice and Ezxperience, vol. 25, no. 12, pp. 1656-1674, 2013.
X. Dutreilh, S. Kirgizov, O. Melekhova, J. Malenfant, N. Riv-
ierre, and I. Truck, “Using reinforcement learning for autonomic
resource allocation in clouds: Towards a fully automated work-
flow,” in ICAS 2011, The Seventh International Conference
on Autonomic and Autonomous Systems, Venice/Mestre, Italy,
2011, pp. 67-74.

J. Rao, X. Bu, C.-Z. Xu, L. Wang, and G. Yin, “Vconf:
A reinforcement learning approach to virtual machines auto-
configuration,” in Proceedings of the 6th International Confer-
ence on Autonomic Computing, ser. ICAC ’09. New York, NY,
USA: ACM, 2009, pp. 137-146.

B. Urgaonkar, P. Shenoy, A. Chandra, P. Goyal, and T. Wood,
“Agile dynamic provisioning of multi-tier internet applications,”
ACM Trans. Auton. Adapt. Syst., vol. 3, no. 1, pp. 1:1-1:39,
Mar. 2008.

Q. Zhang, L. Cherkasova, and E. Smirni, “A Regression-Based
Analytic Model for Dynamic Resource Provisioning of Multi-
Tier Applications,” in Proceedings of the Fourth International
Conference on Autonomic Computing, ser. ICAC ’07. Wash-
ington, DC, USA: IEEE Computer Society, 2007, pp. 27—.

P. Bodik, R. Griffith, C. Sutton, A. Fox, M. Jordan, and

(30]

31]

32]

(33]

(36]

(37)

(38]

(39]

[40]

[41]

(42]

D. Patterson, “Statistical machine learning makes automatic
control practical for internet datacenters,” in Proceedings of the
2009 Conference on Hot Topics in Cloud Computing, ser. Hot-
Cloud’09. Berkeley, CA, USA: USENIX Association, 2009.
A. Ali-Eldin, J. Tordsson, and E. Elmroth, “An adaptive hy-
brid elasticity controller for cloud infrastructures,” in Network
Operations and Management Symposium (NOMS), 2012 IEEE,
2012, pp. 204-212.

P. Padala, K.-Y. Hou, K. G. Shin, X. Zhu, M. Uysal, Z. Wang,
S. Singhal, and A. Merchant, “Automated control of multiple
virtualized resources,” in Proceedings of the 4th ACM FEuropean
Conference on Computer Systems, ser. EuroSys ’09. New York,
NY, USA: ACM, 2009, pp. 13-26.

T. Heinze, V. Pappalardo, Z. Jerzak, and C. Fetzer, “Auto-
scaling techniques for elastic data stream processing,” in Data
Engineering Workshops (ICDEW), 2014 IEEE 30th Interna-
tional Conference on. IEEE, 2014, pp. 296-302.

T. Heinze, Z. Jerzak, G. Hackenbroich, and C. Fetzer, “Latency-
aware elastic scaling for distributed data stream processing sys-
tems,” in Proceedings of the 8th ACM International Conference
on Distributed Event-Based Systems. ACM, 2014, pp. 13-22.
T. Heinze, L. Roediger, A. Meister, Y. Ji, Z. Jerzak, and C. Fet-
zer, “Online parameter optimization for elastic data stream pro-
cessing,” in Proceedings of the Sizth ACM Symposium on Cloud
Computing. ACM, 2015, pp. 276-287.

R. Castro Fernandez, M. Migliavacca, E. Kalyvianaki, and
P. Pietzuch, “Integrating scale out and fault tolerance in stream
processing using operator state management,” in Proceedings of
the 2018 ACM SIGMOD international conference on Manage-
ment of data. ACM, 2013, pp. 725—736.

F. Lombardi, L. Aniello, S. Bonomi, and L. Querzoni, “Elastic
symbiotic scaling of operators and resources in stream process-
ing systems,” IEEE Transactions on Parallel and Distributed
Systems, vol. 29, no. 3, pp. 572-585, 2018.

V. Cardellini, F. L. Presti, M. Nardelli, and G. R.
Russo, “Decentralized self-adaptation for elastic data stream
processing,” Future Generation Computer Systems, vol. 87, pp.
171 — 185, 2018. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0167739X17326821

G. Mencagli, M. Torquati, and M. Danelutto, “Elastic-ppq:
A two-level autonomic system for spatial preference query
processing over dynamic data streams,” Future Generation
Computer Systems, vol. 79, pp. 862 — 877, 2018. [Online].
Available: http://www.sciencedirect.com/science/article/pii/
S0167739X1730938X

N. Hidalgo, D. Wladdimiro, and E. Rosas, “Self-adaptive
processing graph with operator fission for elastic stream
processing,” Journal of Systems and Software, vol. 127, pp.
205 — 216, 2017. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0164121216300796

X. Liu, A. V. Dastjerdi, R. N. Calheiros, C. Qu, and
R. Buyya, “A stepwise auto-profiling method for performance
optimization of streaming applications,” ACM Trans. Auton.
Adapt. Syst., vol. 12, no. 4, pp. 24:1-24:33, Nov. 2017. [Online].
Available: http://doi.acm.org/10.1145/3132618

L. Xu, B. Peng, and 1. Gupta, “Stela: Enabling stream pro-
cessing systems to scale-in and scale-out on-demand,” in 2016
IEEE International Conference on Cloud Engineering (IC2E),
April 2016, pp. 22-31.

C. Hochreiner, M. Vogler, S. Schulte, and S. Dustdar, “Elastic
stream processing for the internet of things,” in 2016 IEEE 9th
International Conference on Cloud Computing (CLOUD), June
2016, pp. 100-107.

A. Al-Shishtawy and V. Vlassov, “Elastman: elasticity man-
ager for elastic key-value stores in the cloud,” in Proceedings of
the 2013 ACM Cloud and Autonomic Computing Conference.
ACM, 2013, p. 7.

H. Nguyen, Z. Shen, X. Gu, S. Subbiah, and J. Wilkes, “Ag-
ile: Elastic distributed resource scaling for infrastructure-as-a-
service,” in Proceedings of the 10th International Conference
on Autonomic Computing (ICAC 18), 2013, pp. 69-82.

23

[43]

[47]

(48]

[49]

[50]

[51]

S. Barker, Y. Chi, H. Haciglimiis, P. Shenoy, and E. Cecchet,
“Shuttledb: Database-aware elasticity in the cloud,” in 11th In-
ternational Conference on Autonomic Computing (ICAC 14),
2014, pp. 33-43.

C.-W. Huang, W.-H. Hu, C. C. Shih, B.-T. Lin, and C.-W.
Cheng, “The improvement of auto-scaling mechanism for dis-
tributed database-a case study for mongodb.” in APNOMS,
2013, pp. 1-3

E. Casalicchio, L. Lundberg, and S. Shirinbab, “Energy-aware
auto-scaling algorithms for Cassandra virtual data centers,”
Cluster Computing, vol. 20, no. 3, pp. 2065-2082, 2017.

M. Kuperberg, N. Herbst, J. von Kistowski, and R. Reussner,
“Defining and Quantifying Elasticity of Resources in Cloud
Computing and Scalable Platforms,” https://sdqweb.ipd.kit.
edu/publications/pdfs/KuHeKiRe2011-ResourceElasticity.pdf,
KIT — University of the State of Baden-Wuerttemberg and
National Research Center of the Helmholtz Association, Tech.
Rep., 2011.

G. Zhang, B. E. Patuwo, and M. Y. Hu, “Forecasting With
Artificial Neural Networks: the State of the Art,” International
Journal of Forecasting, vol. 14, no. 1, pp. 35 — 62, 1998.

T. Heinze, L. Aniello, L. Querzoni, and Z. Jerzak, “Cloud-
based data stream processing,” in Proceedings of the 8th ACM
International Conference on Distributed Event-Based Systems.
ACM, 2014, pp. 238-245.

M. Hirzel, R. Soulé, S. Schneider, B. Gedik, and R. Grimm, “A
catalog of stream processing optimizations,” ACM Computing
Surveys (CSUR), vol. 46, no. 4, p. 46, 2014.

S. Schneider, M. Hirzel, and B. Gedik, “Tutorial: stream pro-
cessing optimizations,” in Proceedings of the 7th ACM interna-
tional conference on Distributed event-based systems. ACM,
2013, pp. 249-258

N. Tatbul and S. Zdonik, “Dealing with overload in distributed
stream processing systems,” in Data Engineering Workshops,
2006. Proceedings. 22nd International Conference on. I1EEE,
2006, pp. 24-24.

Y. Zhai and W. Xu, “Efficient bottleneck detection in stream
process system using fuzzy logic model,” in Parallel, Distributed
and Network-based Processing (PDP), 2017 25th Euromicro In-
ternational Conference on. IEEE, 2017, pp. 438-445.

A. S. Foundation, “Storm,” http://storm.apache.org.

“Storm metrics framework.” [Online]. Available: http:
//storm.apache.org/documentation/Metrics.html

A. S. Fundation, “Apache derby db.” [Online]. Available:
https://db.apache.org/derby/

H. Research, “Encog machine learning framework.” [Online].
Available: http://www.heatonresearch.com/encog/

DataStax, “Cassandra docs - operations - adding
nodes to an existing cluster.” [Online]. Avail-
able: https://docs.datastax.com/en/cassandra/2.1/cassandra/
operations/ops_add-node_to_cluster_t.html

A. S. Foundation, “Cassandra.” [Online]. Available:
/ /cassandra.apache.org/

M. Riedmiller and H. Braun, “A direct adaptive method for
faster backpropagation learning: The rprop algorithm,” in Neu-
ral Networks, 1993., IEEE International Conference on. 1EEE,
1993, pp. 586-591.

N. G. Pavlidis, D. K. Tasoulis, M. N. Vrahatis et al., “Time
series forecasting methodology for multiple-step-ahead predic-
tion.” Computational Intelligence, vol. 5, pp. 456—461, 2005.
JBoss, “Hornetq.” [Online]. Available: http://hornetq.jboss.

http:

org/
Twitter, “Twitter-rolling-top-words topology.” [Online].
Available: https://storm.apache.org/javadoc/apidocs/storm/

starter /RollingTopWords.html
C. J. Watkins and P. Dayan, “Q-learning,” Machine learning,
vol. 8, no. 3-4, pp. 279-292, 1992.

A. S. Fundation, “Jmeter,” 2016. [Online]. Available:
http://jmeter.apache.org/

e “Jmeter throughput shaping timer plugin,”
2016. [Online]. Available: http://jmeter-plugins.org/wiki/

[72]

[75]

[76]

ThroughputShapingTimer/

M. Stepura, “Cqljmeter plugin.” [Online]. Available: http:
//mishail.github.io/CqlJmeter

DataStax, “Best practices in deploying and man-
aging datastax enterprise,” 2014. [Online]. Avail-
able: https://www.datastax.com/wp-content/uploads/2014/
04/WP-DataStax- Enterprise- Best- Practices.pdf

A. S. Foundation, “Hdfs architecture guide,” 2014. [Online].
Available: https://hadoop.apache.org/docs/r1.2.1/hdfs_design.
html

G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,
and W. Vogels, “Dynamo: amazon’s highly available key-value
store,” in ACM SIGOPS operating systems review, vol. 41,
no. 6. ACM, 2007, pp. 205-220.

F. Lombardi, “A proactive g-learning approach for autoscaling
heterogeneous cloud servers,” in 2018 14th European Depend-
able Computing Conference (EDCC). IEEE, 2018, pp. 166—
172.

R. Baldoni, A. Cerocchi, C. Ciccotelli, A. Donno, F. Lom-
bardi, and L. Montanari, “Towards a non-intrusive recognition
of anomalous system behavior in data centers,” in Interna-
tional Conference on Computer Safety, Reliability, and Secu-
rity. Springer, 2014, pp. 350-359.

C. Ciccotelli, L. Aniello, F. Lombardi, L. Montanari, L. Quer-
zoni, and R. Baldoni, “Nirvana: A non-intrusive black-box mon-
itoring framework for rack-level fault detection,” in Depend-
able Computing (PRDC), 2015 IEEE 21st Pacific Rim Inter-
national Symposium on. 1EEE, 2015, pp. 11-20.

R. Nogueira, F. Araujo, and R. Barbosa, “Cloudbft: elastic
byzantine fault tolerance,” in Dependable Computing (PRDC),
2014 IEEE 20th Pacific Rim International Symposium on.
IEEE, 2014, pp. 180-189.

S. Venkataraman, A. Panda, K. Ousterhout, M. Armbrust,
A. Ghodsi, M. J. Franklin, B. Recht, and I. Stoica, “Drizzle:
Fast and adaptable stream processing at scale,” in Proceed-
ings of the 26th Symposium on Operating Systems Principles.
ACM, 2017, pp. 374-389.

A. Tai, M. Wei, M. J. Freedman, I. Abraham, and D. Malkhi,
“Replex: A scalable, highly available multi-index data store.”
in USENIX Annual Technical Conference, 2016, pp. 337-350.
A. Jindal, V. Podolskiy, and M. Gerndt, “Autoscaling per-
formance measurement tool,” in Companion of the 2018
ACM/SPEC International Conference on Performance Engi-
neering. ACM, 2018, pp. 91-92.

M. Kuperberg, N. Herbst, J. Von Kistowski, and R. Reussner,
“Defining and quantifying elasticity of resources in cloud com-
puting and scalable platforms,” 2011.

Y. Wang, M. Kapritsos, L. Schmidt, L. Alvisi, and M. Dahlin,
“Exalt: Empowering researchers to evaluate large-scale storage
systems.” in NSDI, 2014, pp. 129-141.

R. Shi, Y. Gan, and Y. Wang, “Evaluating scalability bottle-
necks by workload extrapolation,” in 2018 IEEE 26th Inter-
national Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems (MASCOTS).
IEEE, 2018, pp. 333-347.

24

Federico Lombardi is a Lec-
turer in cybersecurity at University
of Southampton. He obtained a
PhD in Engineering in Computer
Science from Sapienza University of
Rome and his research mainly copes
with scalability and elasticity prob-
lems of cloud services, distributed
storage, stream processing systems
and blockchain. He also works on performance and se-
curity evaluations for failure prediction and detection sys-
tems, IoT and consensus algorithms. He has been involved
in several National and EU projects related to cybersecu-
rity, blockchain and IoT.

Andrea Muti is a MsC In En-
gineering of Computer Science from
Sapienza University of Rome. Cur-
rently he works as Software Engineer
at Capgemini. His work mainly copes
with the integration of IoT devices
and Big Data technologies. Specifi-
cally he focuses on Stream Processing
Systems, Complex Event Processing
and scalability of distributed datastore for reliable and
multi-tenant solutions.

Leonardo Aniello is a Lecturer
at University of Southampton. He
obtained a Ph.D. in Engineering in
Computer Science from the Sapienza
University of Rome. His research
studies include several topics in the
fields of Big Data in large-scale en-
I vironments, distributed storages and

distributed computation techniques,
with focus on the aspects of cyber security, integrity
(blockchain-based storage), fault-tolerance, scalability and
performance. Leonardo is author of more than 20 papers
about these topics, published on international conferences,
workshops, journals and books.

Roberto Baldoni Roberto Bal-
doni is a full professor in the field of
Distributed Systems at Sapienza Uni-
versity of Rome. He has been the
coordinator of several EU projects,
the vice-Chair of the IEEE technical
Committee on Fault Tolerant and De-
pendable Systems and IEEE TDFT
Committee Chair. He is a member of
the IFIP WG 10.4 and of the steer-

ing committees of ACM DEBS, DSN Conferences and
of the Editorial Board of IEEE Transactions on Paral-
lel and Distributed Systems. He is author of around 200
peer-reviewed publications in international scientific con-
ferences and journals in the area.

Silvia Bonomi is a PhD in Com-
puter Science at Sapienza University
of Rome. She is member of the Re-
search Center of Cyber Intelligence
and Information Security (CIS) in
Sapienza. She is doing research on
various computer science fields in-
cluding Byzantine fault-tolerance, dy-
namic distributed systems, Intrusion Detection Systems
and event-based systems. In these research fields, she pub-
lished several papers in peer reviewed scientific forums.
She has been involved in several National and EU-funded
project where she addressed problems related to depend-
ability and security of complex distributed systems like
smart environment or critical infrastructures.

Leonardo Querzoni is assistant
professor at Sapienza University of
Rome. His research interests range
from distributed systems to com-
puter security and focus, in particu-
lar, on topics that include distributed
stream processing, dependability and
security in distributed systems, large
scale and dynamic distributed sys-
tems, publish/subscribe middleware services. He regularly
serves in the technical program committees of conferences
in the field of dependability and event-based systems like
DSN and ACM DEBS. He was general chair for the 2014
edition of the OPODIS conference and has been appointed
as PhD Symposium co-chair for the 2017 edition of the
ACM DEBS conference.

25

